|
| 1 | +# Copyright (c) Qualcomm Innovation Center, Inc. |
| 2 | +# All rights reserved |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | +import warnings |
| 7 | +from typing import cast, Dict, List |
| 8 | + |
| 9 | +import executorch.backends.qualcomm.python.PyQnnWrapperAdaptor as PyQnnWrapper |
| 10 | +import numpy as np |
| 11 | + |
| 12 | +import torch |
| 13 | + |
| 14 | +from executorch.backends.qualcomm.utils.constants import QCOM_DATA, QCOM_DTYPE |
| 15 | + |
| 16 | +from .node_visitor import NodeVisitor, QNN_QUANT_TYPE_MAP, QNN_TENSOR_TYPE_MAP |
| 17 | +from .node_visitor_manager import register_node_visitor |
| 18 | +from .qnn_constants import OpGridSample, OpTranspose, QNN_OP_PACKAGE_NAME_QTI_AISW |
| 19 | + |
| 20 | + |
| 21 | +@register_node_visitor |
| 22 | +class GridSample(NodeVisitor): |
| 23 | + target = ["aten.grid_sampler_2d.default", "aten.grid_sampler_3d.default"] |
| 24 | + |
| 25 | + def __init__(self, *args) -> None: |
| 26 | + super().__init__(*args) |
| 27 | + |
| 28 | + def define_node( |
| 29 | + self, |
| 30 | + node: torch.fx.Node, |
| 31 | + nodes_to_wrappers: Dict[torch.fx.Node, PyQnnWrapper.TensorWrapper], |
| 32 | + ) -> PyQnnWrapper.PyQnnOpWrapper: |
| 33 | + grid_sample_op_list = [] |
| 34 | + input_node = self.get_node(node.args[0]) |
| 35 | + input_tensor = self.get_tensor(input_node, node) |
| 36 | + input_tensor_wrapper = self.define_tensor( |
| 37 | + input_node, |
| 38 | + node, |
| 39 | + input_tensor, |
| 40 | + PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, |
| 41 | + nodes_to_wrappers, |
| 42 | + ) |
| 43 | + |
| 44 | + grid_node = self.get_node(node.args[1]) |
| 45 | + grid_tensor = self.get_tensor(grid_node, node) |
| 46 | + grid_tensor_wrapper = self.define_tensor( |
| 47 | + grid_node, |
| 48 | + node, |
| 49 | + grid_tensor, |
| 50 | + PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, |
| 51 | + nodes_to_wrappers, |
| 52 | + ) |
| 53 | + |
| 54 | + input_shape = input_node.meta["val"].shape |
| 55 | + input_rank = len(input_shape) |
| 56 | + if input_rank not in [4, 5]: |
| 57 | + warnings.warn( |
| 58 | + "[QNN Delegate Op Builder]: The shape is not supported, fallback op", |
| 59 | + stacklevel=1, |
| 60 | + ) |
| 61 | + return |
| 62 | + |
| 63 | + # About this operator, in ATen, the layout of input_tensor and of grid_tensor are not identical. |
| 64 | + # But in HW they are all NHWC or NDHWC. So, we make shape transformation again. |
| 65 | + if input_rank == 4: |
| 66 | + dims_shape_back = (0, 3, 1, 2) |
| 67 | + elif input_rank == 5: |
| 68 | + dims_shape_back = (0, 4, 1, 2, 3) |
| 69 | + else: |
| 70 | + warnings.warn( |
| 71 | + f"[QNN Delegate Op Builder]: Not support rank {input_rank}, fallback op", |
| 72 | + stacklevel=1, |
| 73 | + ) |
| 74 | + return |
| 75 | + |
| 76 | + grid_quant_encoding, grid_quant_configs = self.get_quant_encoding_conf( |
| 77 | + grid_node, node |
| 78 | + ) |
| 79 | + grid_dtype = ( |
| 80 | + QNN_TENSOR_TYPE_MAP[grid_tensor.dtype] |
| 81 | + if grid_quant_encoding |
| 82 | + == PyQnnWrapper.Qnn_QuantizationEncoding_t.QNN_QUANTIZATION_ENCODING_UNDEFINED |
| 83 | + else QNN_QUANT_TYPE_MAP[ |
| 84 | + ( |
| 85 | + torch.uint16 |
| 86 | + if grid_quant_configs[QCOM_DTYPE] == torch.int32 |
| 87 | + else grid_quant_configs[QCOM_DTYPE] |
| 88 | + ) |
| 89 | + ] |
| 90 | + ) |
| 91 | + # transpose |
| 92 | + permute_output_tensor = grid_tensor.permute(dims=dims_shape_back) |
| 93 | + transpose_output_tensor_wrapper = self.define_custom_tensor_wrapper( |
| 94 | + node_name=node.name + "_transpose", |
| 95 | + tensor_type=PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, |
| 96 | + dtype=grid_dtype, |
| 97 | + quant_encoding=grid_quant_encoding, |
| 98 | + quant_configs=grid_quant_configs, |
| 99 | + dims=permute_output_tensor.size(), |
| 100 | + tensor=permute_output_tensor, |
| 101 | + is_fake_tensor=True, |
| 102 | + nodes_to_wrappers=nodes_to_wrappers, |
| 103 | + ) |
| 104 | + |
| 105 | + permute_order = cast(List[int], dims_shape_back) |
| 106 | + permute_order_shape = [len(permute_order)] |
| 107 | + transpose_op = PyQnnWrapper.PyQnnOpWrapper( |
| 108 | + node.name, |
| 109 | + QNN_OP_PACKAGE_NAME_QTI_AISW, |
| 110 | + OpTranspose.op_name, |
| 111 | + ) |
| 112 | + transpose_op.AddInputTensors([grid_tensor_wrapper]) |
| 113 | + transpose_op.AddOutputTensors([transpose_output_tensor_wrapper]) |
| 114 | + transpose_op.AddTensorParam( |
| 115 | + OpTranspose.param_perm, |
| 116 | + PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_UINT_32, |
| 117 | + len(permute_order_shape), |
| 118 | + permute_order_shape, |
| 119 | + np.array(permute_order, dtype=np.uint32), |
| 120 | + True, |
| 121 | + ) |
| 122 | + grid_sample_op_list.append(transpose_op) |
| 123 | + |
| 124 | + out_tensor = self.get_tensor(node, node) |
| 125 | + output_tensor_wrapper = self.define_tensor( |
| 126 | + node, |
| 127 | + node, |
| 128 | + out_tensor, |
| 129 | + PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, |
| 130 | + nodes_to_wrappers, |
| 131 | + ) |
| 132 | + |
| 133 | + align_corners = node.args[4] if len(node.args) > 4 else False |
| 134 | + padding_mode = node.args[3] if len(node.args) > 3 else 0 |
| 135 | + interpo_mode = node.args[2] if len(node.args) > 2 else 0 |
| 136 | + |
| 137 | + grid_sample_op = PyQnnWrapper.PyQnnOpWrapper( |
| 138 | + node.name, |
| 139 | + QNN_OP_PACKAGE_NAME_QTI_AISW, |
| 140 | + OpGridSample.op_name, |
| 141 | + ) |
| 142 | + grid_sample_op.AddInputTensors( |
| 143 | + [input_tensor_wrapper, transpose_output_tensor_wrapper] |
| 144 | + ) |
| 145 | + grid_sample_op.AddOutputTensors([output_tensor_wrapper]) |
| 146 | + grid_sample_op.AddScalarParam( |
| 147 | + OpGridSample.param_align_corners, |
| 148 | + PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_BOOL_8, |
| 149 | + {QCOM_DATA: align_corners}, |
| 150 | + ) |
| 151 | + grid_sample_op.AddScalarParam( |
| 152 | + OpGridSample.param_mode, |
| 153 | + PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_UINT_32, |
| 154 | + {QCOM_DATA: np.uint32(interpo_mode)}, |
| 155 | + ) |
| 156 | + grid_sample_op.AddScalarParam( |
| 157 | + OpGridSample.param_padding_mode, |
| 158 | + PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_UINT_32, |
| 159 | + {QCOM_DATA: np.uint32(padding_mode)}, |
| 160 | + ) |
| 161 | + grid_sample_op_list.append(grid_sample_op) |
| 162 | + return grid_sample_op_list |
0 commit comments