-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathtrain.py
523 lines (471 loc) · 26.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import argparse
from argparse import RawTextHelpFormatter
import sys
import numpy as np
import time
import statistics
import torch
import torch.nn.functional as F
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
from torchsummary import summary
from datasets.graph_data_reader import DataReader, GraphData
from models.GCN import GCN
from models.GAT import GAT
from models.GraphSAGE import GraphSAGE
from models.APPNP import APPNP
from models.GIN import GIN
from models.GraphUNet import GraphUNet
from models.ARMA import ARMA
from models.SGCNN import SGCNN
from models.GraphResNet import GraphResNet
from models.GraphDenseNet import GraphDenseNet
from models.NodeRandomWalkNet import NodeRandomWalkNet
from models.ExpandedSpatialGraphEmbeddingNet import ExpandedSpatialGraphEmbeddingNet
from utils import create_directory, save_result_csv
model_list = ['GCN', 'GAT', 'GraphSAGE', 'APPNP', 'GIN', 'GraphUNet', 'ARMA', 'SGCNN', 'GraphResNet', 'GraphDenseNet', 'NodeRandomWalkNet', 'ExpandedSpatialGraphEmbeddingNet']
dataset_list = ['IMDB-BINARY', 'IMDB-MULTI', 'PROTEINS', 'ENZYMES', 'NCI1', 'MUTAG']
readout_list = ['max', 'avg', 'sum']
parser = argparse.ArgumentParser(formatter_class=RawTextHelpFormatter)
# Target model & dataset & readout param
parser.add_argument('--model_list', nargs='+', required=True,
help='target train model list \n'+
'available model: ' + str(model_list)
+ '\nable to choose multiple models \n'+
'ALL: choose all available model')
parser.add_argument('--dataset_list', nargs='+', required=True,
help='target graph classification dataset list \n'+
'available dataset: ' + str(dataset_list)
+ '\nable to choose multiple datasets \n'+
'ALL: choose all available dataset')
parser.add_argument('--readout_list', nargs='+', required=True,
help='target readout method list \n'+
'available readout: ' + str(readout_list)
+ '\nable to choose multiple readout methods \n'+
'ALL: choose all available readout')
# Dataset param
parser.add_argument('--node_att', default='FALSE',
help='use additional float valued node attributes available in some datasets or not\n'+
'TRUE/FALSE')
parser.add_argument('--seed', type=int, default=111,
help='random seed')
parser.add_argument('--n_folds', type=int, default=10,
help='the number of folds in 10-cross validation')
parser.add_argument('--threads', type=int, default=0,
help='how many subprocesses to use for data loading \n'+
'default value 0 means that the data will be loaded in the main process')
# Graph data subsampling
parser.add_argument('--n_graph_subsampling', type=int, default=0,
help='the number of running graph subsampling each train graph data\n'+
'run subsampling 5 times: increasing graph data 5 times')
parser.add_argument('--graph_node_subsampling', default='TRUE',
help='TRUE: removing node randomly to subsampling and augmentation of graph dataset \n'+
'FALSE: removing edge randomly to subsampling and augmentation of graph dataset')
parser.add_argument('--graph_subsampling_rate', type=float, default=0.2,
help='graph subsampling rate')
# Learning param
parser.add_argument('--cuda', default='TRUE',
help='use cuda device in train process or not\n'+
'TRUE/FALSE')
parser.add_argument('--batch_size', type=int, default=32,
help='batch size of data')
parser.add_argument('--epochs', type=int, default=50,
help='train epochs')
parser.add_argument('--learning_rate', type=float, default=0.001,
help='learning rate of optimizer')
parser.add_argument('--weight_decay', type=float, default=5e-4,
help='weight decay of optimizer')
parser.add_argument('--log_interval', type=int, default=10,
help='print log interval in train process')
parser.add_argument('--save_model', default='TRUE',
help='save model or not\n'+
'TRUE/FALSE')
# Model param
parser.add_argument('--n_agg_layer', type=int, default=2,
help='the number of graph aggregation layers')
parser.add_argument('--agg_hidden', type=int, default=64,
help='size of hidden graph aggregation layer')
parser.add_argument('--fc_hidden', type=int, default=128,
help='size of fully-connected layer after readout')
parser.add_argument('--dropout', type=float, default=0,
help='dropout rate of layer')
# NodeRandomWalkNet param
parser.add_argument('--walk_length', type=int, default=20,
help='walk length of random walk')
parser.add_argument('--num_walk', type=int, default=10,
help='num_walk of random walk')
parser.add_argument('--p', type=float, default=0.65,
help='Possibility to return to the previous vertex, how well you navigate around')
parser.add_argument('--q', type=float, default=0.35,
help='Possibility of moving away from the previous vertex, how well you are exploring new places')
# ExpandedSpatialGraphEmbeddingNet param
parser.add_argument('--n_spatial_graph_embedding_model_layer', type=int, default=1,
help='the number of spatial graph embedding model layers')
parser.add_argument('--n_node_random_walk_model_layer', type=int, default=1,
help='the number of node random walk model layers')
parser.add_argument('--node_random_walk_model_name', default='LSTM',
help='node random walk model name\n'+
'LSTM/GRU')
#parser.add_argument('--freeze_layer', default='FALSE',
# help='the number of graph aggregation layers')
#parser.add_argument('--fc_layer_type', default='A',
# help='fully-connected layer type of ExpandedSpatialGraphEmbeddingNet')
#parser.add_argument('--concat_dropout', type=float, default=0.0,
# help='dropout rate of concat layer of ExpandedSpatialGraphEmbeddingNet')
args = parser.parse_args()
args.cuda = (args.cuda.upper()=='TRUE')
args.save_model = (args.save_model.upper()=='TRUE')
args.node_att = (args.node_att.upper()=='TRUE')
args.graph_node_subsampling = (args.graph_node_subsampling.upper()=='TRUE')
#args.freeze_layer = (args.freeze_layer.upper()=='TRUE')
# Build random walk or not (if mode == NodeRandomWalkNet or ExpandedSpatialGraphEmbeddingNet)
random_walk = ('NodeRandomWalkNet' in args.model_list or 'ExpandedSpatialGraphEmbeddingNet' in args.model_list or 'ALL' in args.model_list)
# Choose target graph classification model
if 'ALL' in args.model_list:
args.model_list = model_list
else:
for model in args.model_list:
if not model in model_list:
print('There are not available models in the target graph classification model list')
sys.exit()
print('Target model list:', args.model_list)
# Choose target dataset
if 'ALL' in args.dataset_list:
args.dataset_list = dataset_list
else:
for dataset in args.dataset_list:
if not dataset in dataset_list:
print('There are not available datasets in the target graph dataset list')
sys.exit()
print('Target dataset list:', args.dataset_list)
# Choose target readout
if 'ALL' in args.readout_list:
args.readout_list = readout_list
else:
for readout in args.readout_list:
if not readout in readout_list:
print('There are not available readouts in the target readout list')
sys.exit()
print('Target readout list:', args.readout_list)
# Choose device
if args.cuda and torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
print('Using device in train process:', device)
if args.n_graph_subsampling > 0 and args.graph_node_subsampling:
print('graph subsampling: random node removal')
elif args.n_graph_subsampling > 0 and not args.graph_node_subsampling:
print('graph subsampling: random edge removal')
for dataset_name in args.dataset_list:
print('-'*50)
print('Target dataset:', dataset_name)
# Build graph data reader: IMDB-BINARY, IMDB-MULTI, ...
datareader = DataReader(data_dir='./datasets/%s/' % dataset_name.upper(),
rnd_state=np.random.RandomState(args.seed),
folds=args.n_folds,
use_cont_node_attr=False,
random_walk=random_walk,
num_walk=args.num_walk,
walk_length=args.walk_length,
p=args.p,
q=args.q,
node2vec_hidden=args.agg_hidden
)
for model_name in args.model_list:
for i, readout_name in enumerate(args.readout_list):
print('-'*25)
# Build graph classification model
if model_name == 'GCN':
model = GCN(n_feat=datareader.data['features_dim'],
n_class=datareader.data['n_classes'],
n_layer=args.n_agg_layer,
agg_hidden=args.agg_hidden,
fc_hidden=args.fc_hidden,
dropout=args.dropout,
readout=readout_name,
device=device).to(device)
elif model_name == 'GAT':
model = GAT(n_feat=datareader.data['features_dim'],
n_class=datareader.data['n_classes'],
n_layer=args.n_agg_layer,
agg_hidden=args.agg_hidden,
fc_hidden=args.fc_hidden,
dropout=args.dropout,
readout=readout_name,
device=device).to(device)
elif model_name == 'GraphSAGE':
model = GraphSAGE(n_feat=datareader.data['features_dim'],
n_class=datareader.data['n_classes'],
n_layer=args.n_agg_layer,
agg_hidden=args.agg_hidden,
fc_hidden=args.fc_hidden,
dropout=args.dropout,
readout=readout_name,
device=device).to(device)
elif model_name == 'APPNP':
model = APPNP(n_feat=datareader.data['features_dim'],
n_class=datareader.data['n_classes'],
n_layer=args.n_agg_layer,
agg_hidden=args.agg_hidden,
fc_hidden=args.fc_hidden,
dropout=args.dropout,
readout=readout_name,
device=device).to(device)
elif model_name == 'GIN':
model = GIN(n_feat=datareader.data['features_dim'],
n_class=datareader.data['n_classes'],
n_layer=args.n_agg_layer,
agg_hidden=args.agg_hidden,
fc_hidden=args.fc_hidden,
dropout=args.dropout,
readout=readout_name,
device=device).to(device)
elif model_name == 'GraphUNet':
model = GraphUNet(n_feat=datareader.data['features_dim'],
n_class=datareader.data['n_classes'],
n_layer=args.n_agg_layer,
agg_hidden=args.agg_hidden,
fc_hidden=args.fc_hidden,
dropout=args.dropout,
readout=readout_name,
device=device).to(device)
elif model_name == 'GraphResNet':
model = GraphResNet(n_feat=datareader.data['features_dim'],
n_class=datareader.data['n_classes'],
n_layer=args.n_agg_layer,
agg_hidden=args.agg_hidden,
fc_hidden=args.fc_hidden,
dropout=args.dropout,
readout=readout_name,
device=device).to(device)
elif model_name == 'ARMA':
model = ARMA(n_feat=datareader.data['features_dim'],
n_class=datareader.data['n_classes'],
n_layer=args.n_agg_layer,
agg_hidden=args.agg_hidden,
fc_hidden=args.fc_hidden,
dropout=args.dropout,
readout=readout_name,
device=device).to(device)
elif model_name == 'SGCNN':
model = SGCNN(n_feat=datareader.data['features_dim'],
n_class=datareader.data['n_classes'],
n_layer=args.n_agg_layer,
agg_hidden=args.agg_hidden,
fc_hidden=args.fc_hidden,
dropout=args.dropout,
readout=readout_name,
device=device).to(device)
elif model_name == 'GraphDenseNet':
model = GraphDenseNet(n_feat=datareader.data['features_dim'],
n_class=datareader.data['n_classes'],
n_layer=args.n_agg_layer,
agg_hidden=args.agg_hidden,
fc_hidden=args.fc_hidden,
dropout=args.dropout,
readout=readout_name,
device=device).to(device)
elif model_name == 'NodeRandomWalkNet':
model = NodeRandomWalkNet(n_feat=datareader.data['features_dim'],
n_class=datareader.data['n_classes'],
n_layer=args.n_agg_layer,
agg_hidden=args.agg_hidden,
fc_hidden=args.fc_hidden,
dropout=args.dropout,
readout=readout_name,
device=device,
walk_length=args.walk_length,
node_random_walk_model_name=args.node_random_walk_model_name).to(device)
elif model_name == 'ExpandedSpatialGraphEmbeddingNet':
model = ExpandedSpatialGraphEmbeddingNet(
n_class=datareader.data['n_classes'],
agg_hidden=args.agg_hidden,
fc_hidden=args.fc_hidden,
dropout=args.dropout,
readout=readout_name,
device=device,
walk_length=args.walk_length,
n_spatial_graph_embedding_model_layer=args.n_spatial_graph_embedding_model_layer,
n_node_random_walk_model_layer=args.n_node_random_walk_model_layer,
node_random_walk_model_name=args.node_random_walk_model_name).to(device)
# elif model_name == 'ExpandedSpatialGraphEmbeddingNet':
# model = ExpandedSpatialGraphEmbeddingNet(
# n_class=datareader.data['n_classes'],
# fc_hidden=args.fc_hidden,
# dropout=args.dropout,
# readout=readout_name,
# device=device,
# dataset_name=dataset_name,
# n_folds=args.n_folds,
# freeze_layer=args.freeze_layer,
# fc_dropout=args.concat_dropout).to(device)
# elif model_name == 'ExpandedSpatialGraphEmbeddingNet':
# model = ExpandedSpatialGraphEmbeddingNet(
# n_class=datareader.data['n_classes'],
# fc_hidden=args.fc_hidden,
# dropout=args.dropout,
# readout=readout_name,
# device=device,
# dataset_name=dataset_name,
# n_folds=args.n_folds,
# freeze_layer=args.freeze_layer,
# fc_layer_type=args.fc_layer_type,
# concat_dropout=args.concat_dropout).to(device)
print(model)
print('Readout:', readout_name)
# Train & test each fold
acc_folds = []
time_folds = []
for fold_id in range(args.n_folds):
print('\nFOLD', fold_id)
loaders = []
for split in ['train', 'test']:
# Build GDATA object
if split == 'train':
gdata = GraphData(fold_id=fold_id,
datareader=datareader,
split=split,
random_walk=random_walk,
n_graph_subsampling=args.n_graph_subsampling,
graph_node_subsampling=args.graph_node_subsampling,
graph_subsampling_rate=args.graph_subsampling_rate)
else:
gdata = GraphData(fold_id=fold_id,
datareader=datareader,
split=split,
random_walk=random_walk,
n_graph_subsampling=0,
graph_node_subsampling=args.graph_node_subsampling,
graph_subsampling_rate=args.graph_subsampling_rate)
# Build graph data pytorch loader
loader = torch.utils.data.DataLoader(gdata,
batch_size=args.batch_size,
shuffle=split.find('train') >= 0,
num_workers=args.threads,
drop_last=False)
loaders.append(loader)
# Total trainable param
c = 0
for p in filter(lambda p: p.requires_grad, model.parameters()):
c += p.numel()
print('N trainable parameters:', c)
# Optimizer
optimizer = optim.Adam(
filter(lambda p: p.requires_grad, model.parameters()),
lr=args.learning_rate,
weight_decay=args.weight_decay,
betas=(0.5, 0.999))
scheduler = lr_scheduler.MultiStepLR(optimizer, [20, 30], gamma=0.1)
# Train function
def train(train_loader):
total_time_iter = 0
model.train()
start = time.time()
train_loss, n_samples = 0, 0
for batch_idx, data in enumerate(train_loader):
for i in range(len(data)):
data[i] = data[i].to(device)
optimizer.zero_grad()
if model_name == 'ExpandedSpatialGraphEmbeddingNet':
output = model(data, fold_id, 'train')
else:
output = model(data)
loss = loss_fn(output, data[4])
loss.backward()
optimizer.step()
time_iter = time.time() - start
total_time_iter += time_iter
train_loss += loss.item() * len(output)
n_samples += len(output)
if batch_idx % args.log_interval == 0 or batch_idx == len(train_loader) - 1:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f} (avg: {:.6f}) \tsec/iter: {:.4f}'.format(
epoch, n_samples, len(train_loader.dataset),
100. * (batch_idx + 1) / len(train_loader), loss.item(), train_loss / n_samples, time_iter / (batch_idx + 1) ))
scheduler.step()
return total_time_iter / (batch_idx + 1)
# Test function
def test(test_loader):
print('Test model ...')
model.eval()
start = time.time()
test_loss, correct, n_samples = 0, 0, 0
for batch_idx, data in enumerate(test_loader):
for i in range(len(data)):
data[i] = data[i].to(device)
if model_name == 'ExpandedSpatialGraphEmbeddingNet':
output = model(data, fold_id, 'test')
else:
output = model(data)
loss = loss_fn(output, data[4], reduction='sum')
test_loss += loss.item()
n_samples += len(output)
pred = output.detach().cpu().max(1, keepdim=True)[1]
correct += pred.eq(data[4].detach().cpu().view_as(pred)).sum().item()
time_iter = time.time() - start
test_loss /= n_samples
acc = 100. * correct / n_samples
print('Test set (epoch {}): Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(epoch,
test_loss,
correct,
n_samples, acc))
return acc
# Loss function
loss_fn = F.cross_entropy
total_time = 0
for epoch in range(args.epochs):
total_time_iter = train(loaders[0])
total_time += total_time_iter
acc = test(loaders[1])
acc_folds.append(round(acc,2))
time_folds.append(round(total_time/args.epochs,2))
# Save model
if args.save_model:
print('Save model ...')
create_directory('./save_model')
create_directory('./save_model/' + model_name)
if model_name == 'ExpandedSpatialGraphEmbeddingNet':
file_name = model_name + '_' + dataset_name + '_' + readout_name + '_' + str(fold_id) + '_' + args.node_random_walk_model_name + '_' + str(args.n_spatial_graph_embedding_model_layer) + '_' + str(args.n_node_random_walk_model_layer) + '_' + str(args.walk_length) + '_' + str(args.num_walk) + '_' + str(args.p) + '_' + str(args.q) + '_h' + str(args.agg_hidden) + '.pt'
elif model_name == 'NodeRandomWalkNet':
file_name = model_name + '_' + dataset_name + '_' + readout_name + '_' + str(fold_id) + '_' + args.node_random_walk_model_name + '_' + str(args.n_agg_layer) + '_' + str(args.walk_length) + '_' + str(args.num_walk) + '_' + str(args.p) + '_' + str(args.q) + '_h' + str(args.agg_hidden) + '.pt'
else:
file_name = model_name + '_' + dataset_name + '_' + readout_name + '_' + str(fold_id) + '_' + str(args.n_agg_layer) + '_h' + str(args.agg_hidden) + '.pt'
torch.save(model, './save_model/' + model_name + '/' + file_name)
print('Complete to save model')
print(acc_folds)
print('{}-fold cross validation avg acc (+- std): {} ({})'.format(args.n_folds, statistics.mean(acc_folds), statistics.stdev(acc_folds)))
# Save 10-cross validation result as csv format
create_directory('./test_result')
create_directory('./test_result/' + model_name)
result_list = []
result_list.append(dataset_name)
result_list.append(readout_name)
for acc_fold in acc_folds:
result_list.append(str(acc_fold))
result_list.append(statistics.mean(acc_folds))
result_list.append(statistics.stdev(acc_folds))
result_list.append(statistics.mean(time_folds))
if model_name == 'ExpandedSpatialGraphEmbeddingNet':
file_name = model_name + '_' + args.node_random_walk_model_name + '_' + str(args.n_spatial_graph_embedding_model_layer) + '_' + str(args.n_node_random_walk_model_layer) + '_' + str(args.walk_length) + '_' + str(args.num_walk) + '_' + str(args.p) + '_' + str(args.q) + '_h' + str(args.agg_hidden) + '_' + '10_cross_validation.csv'
if args.n_graph_subsampling > 0 and args.graph_node_subsampling:
file_name = model_name + '_' + args.node_random_walk_model_name + '_' + str(args.n_spatial_graph_embedding_model_layer) + '_' + str(args.n_node_random_walk_model_layer) + '_' + str(args.walk_length) + '_' + str(args.num_walk) + '_' + str(args.p) + '_' + str(args.q) + '_h' + str(args.agg_hidden) + '_' + 'node_graph_subsampling' + '_' + '10_cross_validation.csv'
elif args.n_graph_subsampling > 0:
file_name = model_name + '_' + args.node_random_walk_model_name + '_' + str(args.n_spatial_graph_embedding_model_layer) + '_' + str(args.n_node_random_walk_model_layer) + '_' + str(args.walk_length) + '_' + str(args.num_walk) + '_' + str(args.p) + '_' + str(args.q) + '_h' + str(args.agg_hidden) + '_' + 'edge_graph_subsampling' + '_' + '10_cross_validation.csv'
elif model_name == 'NodeRandomWalkNet':
file_name = model_name + '_' + args.node_random_walk_model_name + '_' + str(args.n_agg_layer) + '_' + str(args.walk_length) + '_' + str(args.num_walk) + '_' + str(args.p) + '_' + str(args.q) + '_h' + str(args.agg_hidden) + '_' + '10_cross_validation.csv'
if args.n_graph_subsampling > 0 and args.graph_node_subsampling:
file_name = model_name + '_' + args.node_random_walk_model_name + '_' + str(args.n_agg_layer) + '_' + str(args.walk_length) + '_' + str(args.num_walk) + '_' + str(args.p) + '_' + str(args.q) + '_h' + str(args.agg_hidden) + '_' + 'node_graph_subsampling' + '_' + '10_cross_validation.csv'
elif args.n_graph_subsampling > 0:
file_name = model_name + '_' + args.node_random_walk_model_name + '_' + str(args.n_agg_layer) + '_' + str(args.walk_length) + '_' + str(args.num_walk) + '_' + str(args.p) + '_' + str(args.q) + '_h' + str(args.agg_hidden) + '_' + 'edge_graph_subsampling' + '_' + '10_cross_validation.csv'
else:
file_name = model_name + '_' + str(args.n_agg_layer) + '_h' + str(args.agg_hidden) + '_' + '10_cross_validation.csv'
if args.n_graph_subsampling > 0 and args.graph_node_subsampling:
file_name = model_name + '_' + str(args.n_agg_layer) + '_h' + str(args.agg_hidden) + '_' + 'node_graph_subsampling' + '_' + '10_cross_validation.csv'
elif args.n_graph_subsampling > 0:
file_name = model_name + '_' + str(args.n_agg_layer) + '_h' + str(args.agg_hidden) + '_' + 'edge_graph_subsampling' + '_' + '10_cross_validation.csv'
if i == 0:
save_result_csv('./test_result/' + model_name + '/' + file_name, result_list, True)
else:
save_result_csv('./test_result/' + model_name + '/' + file_name, result_list, False)
print('-'*25)
print('-'*50)