diff --git a/awards/teach_me_qiskit_2018/exact_ising_model_simulation/Ising_time_evolution.ipynb b/awards/teach_me_qiskit_2018/exact_ising_model_simulation/Ising_time_evolution.ipynb index a921a5f..1f3d68e 100644 --- a/awards/teach_me_qiskit_2018/exact_ising_model_simulation/Ising_time_evolution.ipynb +++ b/awards/teach_me_qiskit_2018/exact_ising_model_simulation/Ising_time_evolution.ipynb @@ -93,7 +93,40 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 165, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
Qiskit Software | Version |
---|---|
Qiskit | 0.19.6 |
Terra | 0.14.2 |
Aer | 0.5.2 |
Ignis | 0.3.3 |
Aqua | 0.7.3 |
IBM Q Provider | 0.7.2 |
System information | |
Python | 3.7.6 (default, Jan 8 2020, 20:23:39) [MSC v.1916 64 bit (AMD64)] |
OS | Windows |
CPUs | 2 |
Memory (Gb) | 7.886066436767578 |
Wed Aug 12 16:55:27 2020 Hora de Verão de GMT |
┌──────┐┌────┐┌───────────┐ ░ ┌────┐ ░ ┌─┐ \n", + "q_0: |0>┤0 ├┤0 ├┤ RZ(-pi/2) ├─░───────────┤0 ├───────────░─┤M├─────────\n", + " │ B_1 ││ F │└───────────┘ ░ ┌────────┐│ F │┌────────┐ ░ └╥┘┌─┐ \n", + "q_1: |0>┤1 ├┤1 ├──────────────░─┤0 ├┤1 ├┤0 ├─░──╫─┤M├──────\n", + " └──────┘├────┤ ░ │ FSWAP │├────┤│ FSWAP │ ░ ║ └╥┘┌─┐ \n", + "q_2: |0>────────┤0 ├──────────────░─┤1 ├┤0 ├┤1 ├─░──╫──╫─┤M├───\n", + " ┌───┐ │ F │ ░ └────────┘│ F │└────────┘ ░ ║ ║ └╥┘┌─┐\n", + "q_3: |0>─┤ X ├──┤1 ├──────────────░───────────┤1 ├───────────░──╫──╫──╫─┤M├\n", + " └───┘ └────┘ ░ └────┘ ░ ║ ║ ║ └╥┘\n", + " c: 0 4/════════════════════════════════════════════════════════════╩══╩══╩══╩═\n", + " 0 1 2 3" + ], + "text/plain": [ + " ┌──────┐┌────┐┌───────────┐ ░ ┌────┐ ░ ┌─┐ \n", + "q_0: |0>┤0 ├┤0 ├┤ RZ(-pi/2) ├─░───────────┤0 ├───────────░─┤M├─────────\n", + " │ B_1 ││ F │└───────────┘ ░ ┌────────┐│ F │┌────────┐ ░ └╥┘┌─┐ \n", + "q_1: |0>┤1 ├┤1 ├──────────────░─┤0 ├┤1 ├┤0 ├─░──╫─┤M├──────\n", + " └──────┘├────┤ ░ │ FSWAP │├────┤│ FSWAP │ ░ ║ └╥┘┌─┐ \n", + "q_2: |0>────────┤0 ├──────────────░─┤1 ├┤0 ├┤1 ├─░──╫──╫─┤M├───\n", + " ┌───┐ │ F │ ░ └────────┘│ F │└────────┘ ░ ║ ║ └╥┘┌─┐\n", + "q_3: |0>─┤ X ├──┤1 ├──────────────░───────────┤1 ├───────────░──╫──╫──╫─┤M├\n", + " └───┘ └────┘ ░ └────┘ ░ ║ ║ ║ └╥┘\n", + " c: 0 4/════════════════════════════════════════════════════════════╩══╩══╩══╩═\n", + " 0 1 2 3 " + ] + }, + "execution_count": 111, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# This circuit can be implemented in ibmqx5 using qubits (q0,q1,q2,q3)=(6,7,11,10)\n", - "# It can also be implemented between other qubits or in ibqmx2 and ibqmx4 using fermionic SWAPS\n", - "# For instance, the lines commented correspond to the implementations:\n", - "# ibmqx2 (q0,q1,q2,q3)=(4,2,0,1)\n", - "# ibmqx4 (q0,q1,q2,q3)=(3,2,1,0)\n", - "def Udisg(qc,lam,q0,q1,q2,q3):\n", - " k=1\n", - " n=4\n", - " th1=-np.arccos((lam-np.cos(2*pi*k/n))/np.sqrt((lam-np.cos(2*pi*k/n))**2+np.sin(2*pi*k/n)**2))\n", - " B(Udis,th1,q0,q1)\n", - " F1(Udis,q0,q1)\n", - " F0(Udis,q2,q3)\n", - " #fSWAP(Udis,q2,q1) # for ibmqx2\n", - " #fSWAP(Udis,q1,q2) # for ibmqx4\n", - " F0(Udis,q0,q2)\n", - " F0(Udis,q1,q3)\n", - " #fSWAP(Udis,q2,q1) # for ibmqx2\n", - " #fSWAP(Udis,q1,q2) # for ibmqx4\n", - "\n", - "def Initial(qc,lam,q0,q1,q2,q3):\n", - " if lam <1:\n", - " qc.x(q3)\n", - "\n", - "def Ising(qc,ini,udis,mes,lam,q0,q1,q2,q3,c0,c1,c2,c3):\n", - " Initial(ini,lam,q0,q1,q2,q3)\n", - " Udisg(udis,lam,q0,q1,q2,q3)\n", - " mes.measure(q0,c0)\n", - " mes.measure(q1,c1)\n", - " mes.measure(q2,c2)\n", - " mes.measure(q3,c3)\n", - " qc.add_circuit(\"Ising\",ini+udis+mes)" + "def get_circ(lam, barriers=True, with_initial=True):\n", + " circuit = QuantumCircuit(4, 4)\n", + " \n", + " if with_initial:\n", + " if lam < 1:\n", + " circuit.x(3)\n", + "\n", + " circuit.append(bog(lam, k=1), [0, 1])\n", + "\n", + " circuit.append(F(), [0, 1])\n", + " circuit.rz(-2*np.pi/4*1, 0) # twiddle factor\n", + " circuit.append(F(), [2, 3])\n", + " if barriers:\n", + " circuit.barrier()\n", + " circuit.append(fswap(), [1, 2])\n", + " circuit.append(F(), [0, 1])\n", + " circuit.append(F(), [2, 3])\n", + " circuit.append(fswap(), [1, 2])\n", + " \n", + " if barriers:\n", + " circuit.barrier()\n", + " circuit.measure(0, 0)\n", + " circuit.measure(1, 1)\n", + " circuit.measure(2, 2)\n", + " circuit.measure(3, 3)\n", + "\n", + " return circuit\n", + "\n", + "\n", + "get_circ(0.25).draw(output=\"text\", fold=2000, vertical_compression=\"high\", initial_state=True, cregbundle=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We are now ready to simulate our system. We start with the qasm simulator:" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done\n" + ] + } + ], "source": [ - "#import sys \n", - "#sys.path.append(\"../../\") \n", - "# importing the QISKit\n", - "from qiskit import QuantumCircuit,QuantumProgram\n", - "#import Qconfig \n", - "# useful additional packages\n", - "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "import numpy as np\n", - "from scipy import linalg as la" + "mag_sim=[]\n", + "lam_values=np.linspace(0,2,15)\n", + "qasm=Aer.get_backend(\"qasm_simulator\")\n", + "shots=2048\n", + "for lam in lam_values:\n", + " qc = get_circ(lam)\n", + " result = execute(qc, backend=qasm, shots=shots).result()\n", + " res = result.get_counts()\n", + " r1 = list(res.keys())\n", + " r2 = list(res.values())\n", + " M = 0\n", + " for j in range(0, len(r1)):\n", + " M = M+(4-2*digit_sum(r1[j]))*r2[j]/shots\n", + " mag_sim.append(M/4)\n", + "print(\"Done\")" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAAGFCAYAAAC8I4Q4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAABFnklEQVR4nO3deXhU5fnG8e8TFtli2JQt7GBYREBArAsSUFkUqWgFtNCC1qpgxUItuG+0WgGtRevSqlVUcEFFCYgokVL1JyAo+2qQACI7BAgJ5P39cSZxEiYkgWTmJHN/rmuuzMxZ5nnPzCR33vOec8w5h4iIiIhEVkykCxARERERhTIRERERX1AoExEREfEBhTIRERERH1AoExEREfEBhTIRERERH1AoE8mHmc0ys9+UwHpXmFn34l5vAa9pZvayme0xs68LucwrZvZoSdcWaWWhnSfz/vqFmd1gZnMiXUewkviOmtmDZjblJJf13TaSkqFQJmFhZilmlmFmtfM8v9TMnJk1iVBp2XUc9wvTOdfHOfefU1zvcX/wnXNtnXPJp7Lek3ARcBkQ75w7L+9EM/utmS0Ic02lWuBz26II8yeb2U0lVM4J39/iZmY1zWzHiT4zZtbdzFILWpdz7nXn3OXFW+GpidB3NF9+3EZSMhTKJJy+BwZnPzCzdkDlyJUTVRoDKc65g5EupCBmVj7SNZRC4X5/HwdWhem1RKKGQpmE02vA0KDHvwFeDZ7BzK4wsyVmtt/MNpvZg3mmDzWzTWa2y8zuC/TAXRqY9qCZvWVmr5rZgcAuiM5By9Y3s3cD/+F/b2Z/CDzfG7gbGGhmaWb2beD5nJ4NM/s2MC375rJ3b5jZ22b2o5ntM7P5ZtY28PzNwA3AXYFlPgw8H1zzaWb2lJltDdyeMrPTAtO6m1mqmY02s5/MbJuZDctv4wbaN8PMdpvZejP7XeD5G4F/Ab8I1PFQnuVaA88FTd8bNLmGmc0MbM//M7PmQcu1MrNPAq+3xsyuO0FtTQPb5oCZzTWzZ7J7Js2sSWB73mhmPwCfmVmMmd0beK9/CrynccHbJc/6i/I56Ghm3wSmTQMqnaDuFmb2eeC93RmYHzObH5gl+3Mx0MxqmNlHgc/XnsD9+MD844GLgcmB+SefxDY8qfc3MM9vzWyBmU0I1Pa9mfXJ77VOxMx+AZwNvFzE5X5rZhsD2/17M7shuLag+ZyZ3WJm6wK1PmNmFphWzswmBt6L781sZGD+kEHezP5sZlsCr7nGzHoGnn/QzN4xs2mBad+YWfug5Qr9eQrxmm2D3tPtZnZ30OSKJ/hcjjWzDYFpK83s6jzbrlDbSEo555xuupX4DUgBLgXWAK2BcsBmvP/wHdAkMF93oB3ePwznANuBXwamtQHS8HbVVAQmAJnApYHpDwLpQN/A+v8KfBWYFgMsBu4PLNsM2Aj0Clp2Sp6ak4GbQrTlZmA1cHrg8XAgFjgNeApYGjTvK8CjobZF4P7DwFfAmcAZwBfAI0Hb4mhgngqBdh0CauSzjT8HnsULGR2AHUDPwLTfAgtO8P4cNz1Q+27gPKA88DowNTCtauD9GxaYdi6wE2ibz/q/DLxfFQPv3/7s7Q00CXwGXg2st3Jgm64PvE/VgOnAa0HbJfUE2/REn4OKwCbgzsA2vRbvM/RoPnW/CdyD9/mpBFwUNM0BLYIe1wKuAaoEPg9vA+/n93k6iW14qu9vJvC7wDa5FdgKWGD6s8DefG7fBa2nHPAN0KkQr5nzPgXauh9ICDyul93OvOsJbNePgOpAo0A7ewem3QKsBOKBGsDcwPzlQ7x+QmD71g/6nDUP+oxkBt7/CsAYvJ78CkX5PIV4zVhgGzA68D7FAl0Lsx7gV0B9vM/aQOAgUK+o20i30n1TT5mEW3Zv2WV4wWZL8ETnXLJzbplzLss59x3eH8VLApOvBT50zi1wzmXgBay8F29d4JxLcs4dC7xW9n+/XYAznHMPO+cynHMbgReBQUUp3swuAh4FrnLO7Q/U/JJz7oBz7gjeL9722b06hXAD8LBz7ifn3A7gIWBI0PTMwPRM51wSXihNCFFXQ7yw82fnXLpzbile78mQvPMW0XTn3NfOuaN4oaxD4Pkr8XaXveycO+qc+wZ4F+89yltbI7ztf39g2y8AZoR4rQedcwedc4fxtssk59xG51waMA4YlF+PSAj5fQ7Ox/sj/FRgm74DLDzBejLx/nGoH9iu+Y6hcs7tcs6965w75Jw7AIzn589uKEXZhsXx/m5yzr0Y2Cb/wQtGdQK13+acq57P7ZygdfwB+D/n3OIivG62LOBsM6vsnNvmnFtxgnkfc87tdc79AMzj58/ddcDfnXOpzrk9wGMnWMcxvH+U2phZBedcinNuQ9D0xc65d5xzmcAkvBB1fj7ryu/zlNeVwI/OuYmB9+mAc+7/CrMe59zbzrmtgd9904B1eP8Q5Se/bSSlmEKZhNtrwPV4//m9mneimXU1s3mBXUD78P4zzj44oD7ef74AOOcOAbvyrOLHoPuHgEqBP+SNgfpmtjf7hrfLsk5hCw/8YXwL+I1zbm3guXJm9lhgt8N+vP+wCaq5IPXxem6ybQo8l21XIBAFt6laPuvZHQgDwetqUMg68pN3e2a/dmOga57teQNQ9wS1HQp6bnOI+YKfC7VdylP49yu/z0F9YItzLjjMbyJ/dwEGfB3Y3TQ8vxnNrIqZPW/eLtf9wHygupmVy2eRk9mGp/L+5myToPci1GcpJDOrjxfK7inCa2a/3kG83p9bgG3m7RJvVZhayf25y/U7gNCfo+zXXA+MwvtH6Sczmxpow3HLOueygFRyf/dOVE/25ymvhsCGEM8XuB7zhmYsDfosnM2Jf4/kt42kFFMok7Byzm3C203QF2+XVF5v4PWiNHTOxeGNdcoeK7ENb7cFAGZWGW+XUWFsBr7P0wMQ65zrm13aiRYOvNb7eD0ss4ImXQ/0x9s1G4e3i4Sgmk+4XrxdSI2DHjcKPFdUW4GaZhabZ11b8pk/r4LqzGsz8Hme7VnNOXdriHm3BWqrEvRcwwJqCLVdjuLtzj6It4sQ8IIx3q7fwtgGNMgz/qZRfjM75350zv3OOVcf+D3wrOV/xOVovF7Mrs6504Fu2SVmry7P/EXZhqf6/p6QmT1nucdMBt+ye7TOw+tdW2lmPwJ/B84zbzxlfsEzh3PuY+fcZYF1rMbrqS6qXL8DCP05Cn7NN5xzF/HzMInHQy1rZjGB9Z7Mdy/YZqB5gXPlYWaN8bbHSKCWc646sJyfPzsSJRTKJBJuBHq40EeKxeL1CKSb2Xl4oSfbO0A/M7vAzCri7eor7C+tr4H9gYG/lQM9XGebWZfA9O1Ak8Av51BeAlY75/4Wot4jeD12VYC/5Jm+HW9cVH7eBO41szPMO13I/UCRz2XknNuMNx7tr2ZWyczOwdvOrxdyFduB+MB2LYyPgLPMbIiZVQjcuph30EDe2jYBi4AHzayieQPF+xWw/jeBO807QKAa3nadFug1XIvXw3CFmVUA7sXbTVUYX+KFuz+YWXkzG8AJdhGZ2a8sMFgf2IP3h/1Y4HHe9zYWOAzsNbOawAN5Vpd3/qJsw1N9f0/IOXdLIBCGurUNzDYL75+ODoHb/cASoENgd1y+zKyOmV1lZlXxvi9p/Lwdi+It4A4za2Bm1YE/n+A1E8ysh3kHzqTjvTfBr9nJzAYEeqpGBer66iRqCvYRUNfMRpl3EE+smXUtxHJV8T5bOwK1D8PrKZMoo1AmYeec2+CcW5TP5NuAh83sAN4v/beCllsB3A5MxfuP+QDwE94v04Je8xheEOiA11O3E29MTvbYr7cDP3eZ2TchVjEIuDpPD8LFeLtgN+H1WKzk+F/q/8Yb07LXzN4Psd5H8QLLd8AyvEHUJ3si08F4fzS3Au8BDzjnPinksp8BK4AfzWxnQTMHdqNdjrddtuLtSnmc/MPRDcAv8MLro8A0Tvy+vYS3q3s+3vuVjvfe45zbh/c5+Rfedj+It+upQM4bizgAb/f5HrxdaqF6bLN1Af7PzNLwenDvcM59H5j2IPCfwHt7Hd5BHpXxPltfAbPzrOvvwLXmHS339Elsw1N5f0+Zc+5IoOfwR+fcj8A+IDNwvyAxeD2JW/EOHrkE7z0sqheBOXjflyVAEl7IDhXwTsMbc7YTb9ueiTdkIdsHeO//HryxeQMC48tOWuA9vQzvd82PeOPCEgux3EpgIt4/DdvxDnb636nUIqVT9pE3IqVOoAdlL9Ay6A+llALmnVpitXMub2+SSKGZd1qP55xzjQucOfdyD+IdOfvrEilM5CSpp0xKFTPrFxhQXRXvFAvL+HlwvfhUYLdcc/POP9Ybbxze+xEuS0qZwNCDvoFdzw3wdhG/F+m6RIqLQpmUNv3xdoFsBVoCg5y6e0uDunjn6UoDngZudc4tiWhFUhoZ3ljSPXi7L1fhDXMQKRO0+1JERETEB9RTJiIiIuIDCmUiIiIiPlDYS5b4Vu3atV2TJk1K9DUOHjxI1apVS/Q1/Cya2x/NbYfobr/aHp1th+hufzS3HcLT/sWLF+90zoU84XWpD2VNmjRh0aL8TnlVPJKTk+nevXuJvoafRXP7o7ntEN3tV9u7R7qMiInm9kdz2yE87TezfC/tpt2XIiIiIj6gUCYiIiLiAwplIiIiIj5Q6seUhZKZmUlqairp6enFsr64uDhWrVpVLOsqjSLZ/kqVKhEfH0+FChUi8voiIiLhUiZDWWpqKrGxsTRp0gQzO+X1HThwgNjY2GKorHSKVPudc+zatYvU1FSaNm0a9tcXEREJpzK5+zI9PZ1atWoVSyCTyDEzatWqVWw9niIiIn5WJkMZoEBWRuh9FBGRaFFmQ1mklStXjg4dOuTcHnvssWJb99KlS0lKSiq29YmIiEQ952DvXu9nhJTJMWV+ULlyZZYuXVoi6166dCmLFi2ib9++JbJ+ERGRqJOUBBs2eD+vuCIiJainLIz27dtHQkICa9asAWDw4MG8+OKLANx666107tyZtm3b8sADD+Qss3DhQi644ALat2/Peeedx759+7j//vuZNm0aHTp0YNq0aRFpi4iISJnhHIwZ490fMyZivWVlvqds1KhRp9xjdezYMcqVK5fzuEOHDjz11FMnXObw4cN06NAh5/G4ceMYOHAgkydP5re//S133HEHe/bs4Xe/+x0A48ePp2bNmhw7doyePXvy3Xff0apVKwYOHMi0adPo0qUL+/fvp0qVKjz88MMsWrSIyZMnn1K7REREBK93LDXVu5+aGrHesjIfyiIlv92Xl112GW+//TYjRozg22+/zXn+rbfe4oUXXuDo0aNs27aNlStXYmbUq1ePLl26AHD66aeHq3wREZGS4xy8/z788pcQ6QO6snvJ0tK8x2lp3uO+fcNeW5kPZQX1aBVGcZ6nKysri1WrVlG5cmV2795NfHw833//PRMmTGDhwoXUqFGD3/72t6Snp+Oc09GHIiJS9iQlwYAB8NFHERu/lauW7F6ybBHqLSvzocxvnnzySVq3bs1f/vIXhg8fzpdffsn+/fupWrUqcXFxbN++nVmzZtG9e3datWrF1q1bWbhwIV26dOHAgQNUrlyZ2NhYDhw4EOmmiIiIFF3e8Vsl0CPlnOPQoUPs27ePffv2sXfv3pz7uZ7bu5e4adMYn91Lli1CvWUKZSUk75iy3r17M3z4cP71r3/x9ddfExsbS7du3Xj00Ud56KGH6NixI23btqVZs2ZceOGFAFSsWJFp06Zx++23c/jwYSpXrszcuXNJTEzkscceo0OHDjlj1UREREqFQozfSk9PDx2i8nkcKnQdPXr0hGXExMQQV6UKbQ8dCj1DBHrLFMpKyLFjx0I+H3wNyUmTJuXcf+WVV0LO36VLF7766qvjnl+4cOGpFSgiIlKCMjIy2LNnD7t372bPnj3e/V272POnP7EnLY3d4P0cOJA97dvnzLt3716OHDlS4PpPP/104uLiqF69OnFxcdSvX5/WrVvnPA6+5X2uevXqVK1SBWvbFlavDv0CEegtUygTEREpbn4ayA4nXY9zjgMHDrBz50527drF7t27c4esE9w/lF8PVMDpQE2gxuHD1Dx4kPpt21KjRg1q1KhxwjAVFxdHbGwsMTGneFavjz+GNWsg73qCH69ZA3PmQK9ep/ZahaRQJiIiUtz8NJA9UI8bMIB9U6eyq3PnnJAV/HPnzp2sXr0aM8s1LTMzM9/VVqlShZo1a+aEqebNm+fcD36+Zs2a1KhenRrXX0/NjRuJIyiAZGXBkSPw1lvhDbDNm8P48bmfa9AAHn30+PnCRKFMRESkOIVhIDtAZmYmO3bs4Keffsp1yw5YuYLXmjXsAo4OGhRyXeXKlaNWrVpUrlyZRo0a0bJlS84//3xq165N7dq1qVWrVs4tO2RVr16d0047rfAFz5wJP/0UelokjnZs0QLGjcv9XHIy5LONwkGhTEREpDid5IlInXPs3bv3uJCV32337t0h11OhQgVq1aqVE6ZaV69OLTNqA7UrVqTWiBHUvvTSXPPExcVhZiQnJ9O9e/fi2xY/Ny73ucDyiuC5wfxEoUxERKS45AkfLi2N3XfeybZGjfhx+3a2bdvGtm3b2L59e8igFeqIQTOjVq1anHnmmZx55pmcc845OfdD3U4//fSfz3HpHLRpA9nrzciAWbNg4sTwhp85c0KP3woW5vFbfqRQJiIipV+YB9ZnZmayfft2fvzxx5yg9eOPP7Ltq6/Ytm4d24AfA7eMdevgnHNyLV+lShXq1KnDmWeeScOGDenUqVO+Iat27dqUL3+Sf679cmLUUOO38psviimUZSvmL3RqaiojRoxg5cqVHDt2jL59+zJx4sRc+9/vuOMO3nnnHTZv3pxzFMn27du58cYb2bx5M5mZmTRp0oSkpCRSUlJo2rQp9957L4888ggAO3fupF69evz+978v1HUwt27dyh/+8AfeeeedU25fcnIyEyZM4KOPPsp3nqVLl7J161b69u17yq8nInJCxTSwPisri927d7N48WJSU1PZsmULqampbN269efgtW0bO3fuxIW4aHXtcuWod+wYdYFWQL3ArW79+tR74w3q1a9PvXr1qFat2knXWGj57TKMxK7CUOO35DgKZdmK8UgZ5xwDBgzg1ltv5YMPPuDYsWPcfPPN3HXXXfz9738HvC/+e++9R8OGDZk/f37OPvz777+fyy67jDvuuAOA7777Lme9zZo146OPPsoJZW+//TZt27YtdF3169cvlkBWWEuXLmXRokVFCmVHjx49+f8IRSQ6FXJgfUZGBtu2bSM1NTVX4Ar+uXXr1uOONixfvjx169alXr16NGnShF/84hc5j7NvdevWpc7ixVQcMiT0uKn9+73nW7YsiS0QWqhesmwRvOi25E9//aDYj5T57LPPqFSpEsOGDQO8o1qefPJJGjduzPjx46lWrRrz5s3j7LPPZuDAgbz55ps5oWzbtm1cfvnlOes6J6jLu3LlyrRu3ZpFixbRuXNnpk2bxnXXXcfWrVuPq+Hzzz/PCXZmxvz589m1axdXXnkly5cv55VXXuH999/n2LFjLF++nNGjR5ORkcFrr73GaaedRlJSEjVr1qR79+489NBDXHLJJezcuZPOnTuTkpKS67W+/vprRo0alXPVgZdffpmmTZty//33c/jwYRYsWMC4ceO47LLLGD58OBs3bqRKlSq88MILnHPOOTz44INs3bqVlJQUateuzRtvvHHS215EolBSEpmbN5MKbEpJ4YfRo0mtXTsnbGUHru3btx+3aJUqVYiPj6dBgwZ069aN+Ph4Dh48SI8ePWjQoAHx8fGceeaZBZ8Tyzm4/HL/DGTXwPpSSaEMTvpImfysWLGCTp065Xru9NNPp0mTJqxfv54OHTrw5ptvMnjwYPr378/dd99NZmYmFSpUYMSIEQwcOJDJkydz6aWXMmzYMOrXr5+znkGDBjF16lTq1q1LuXLlqF+/fshQNmHCBJ555hkuvPBC0tLSqFSp0nHzLF++nCVLlpCenk6LFi14/PHHWbJkCXfeeSevvvoqo0aNKlR7W7Vqxfz58ylfvjxz587l7rvv5t133+Xhhx9m0aJFObtWb7/9djp27Mj777/PZ599xtChQ1m6dCkAixcvZsGCBVSuXLmQW1lEosn+/fv54Ycf2LRpU87PnPtff83Wo0dxAOnp8OSTANSsWZP4+Hji4+Pp1KlTTvgK/pl91GGwkzoC0W8D2f1WjxSKQlne/yaK4b8H59xxX/Ls58HrQk9KSuLJJ58kNjaWrl27MmfOHK644gp69erFxo0bmT17NrNmzaJjx44sX748Zx29e/fmvvvuo06dOie85uWFF17IH//4R2644QYGDBhAfHz8cfMkJiYSGxtLbGwscXFx9OvXD4B27drl2m1akH379vGb3/yGdevWYWb5nmhwwYIFvPvuuwD06NGDXbt2sW/fPgCuuuoqBTKR0qKYx+A659i1axcbN24kJSXl+NC1aRN79+7NtUyFChVo1KgRjapW5TKgMdAo+2eVKsS/9hqVBww45doKzW8D2f1WjxSKQlkJHJnStm3bnPCRbf/+/Wzfvp2EhARmz57Nvn37aNeuHQCHDh2iSpUqXBF4vZo1a3L99ddz/fXXc+WVVzJ//vycnreKFSvSqVMnJk6cyIoVK/jwww9D1jB27FiuuOIKkpKSOP/885k7d+5xvWXBBx3ExMTkPI6Jick5LLt8+fJkZWUB3gViQ7nvvvtITEzkvffeIyUlJd//MEMNis0Or1WrVg25jIj40EmMwT1y5AgpKSls3Lgx1+37779n48aNHDhwINf8cXFxNGrUiMaNG3PRRRfl3G/cuDGNGjWibt26xJjlPt1DtkOH4J574Oqro3cgu9/qkUKJ7lBWQkem9OzZk7Fjx/Lqq68ydOhQjh07xujRoxk5ciSVK1fmzTff5F//+heDBw8G4ODBgzRt2pRDhw7x1Vdfcf7551OlShUOHDjAhg0baNSoUa71jx49mksuuYRatWrlW8OGDRto164d7dq148svv2T16tV06NChyG1p0qQJS5cuJTExMd+DBPbt20eDBg2A3BdWj42NzfWLtlu3brz++uvcd999JCcnU7t2bU4//fQi1yQiEZTPGFznHNu3bw8ZuDZu3MiWLVty/WNWqVIlmjVrRrNmzbjkkkto1qwZTZs2pUmTJjRu3Ji4uLiCa5k5UwPZpUyJ7lBWQkemmBnvvfceI0aM4JFHHmHHjh0MHDiQe+65h0OHDvHxxx/z/PPP58xftWpVLrroIj788EN++OEHRo4cmdNDddNNN9GlS5dcg+vbtm1b4FGXTz31FPPmzaNcuXK0adOGPn36sG3btiK3ZcyYMVx77bW8/fbb9OjRI+Q8d911F7/5zW+YNGlSrnkSExN57LHH6NChA+PGjePBBx9k2LBhnHPOOVSpUoX//Oc/Ra5HJCr55OLWzjl+nDKFdZs2sQ5Yt2ED6y66iLX797NhwwYOHz6ca/4GDRrQtGlTevTokRPAsm9169YNOcyjCMVoILuUORZql1Jp0rlzZ7do0aJcz61atYrWrVufeMHssxyvXp3/PK1awcqVHEhLIzY29qRr/OKLLxg8eDDTp08/7gCA0uDAgQOn1P5TVaj3s4SU2CVHSolobr+v2j5zJlx5ZVgubu2cY8aMGZx55pmsW7eOtWvXsm7dupxbWlAIqgA0q1iRlpdfTosWLWjevHlO6GrcuHHJjhP9+GPo0+fEgcs57+z1RRzI7qv3Psyiue0Qnvab2WLnXOdQ06K3p6woR6ZccMEpvdQFF1zApk2bTmkdIhKlSuji1hkZGWzYsIFVq1axatUqVq9ezdq1a1m7dm2uQfUxMTE0bdqUli1bclF8PC0//piWGRmchTewvnzFinDLLeHfTaiB7FIGRW8o0xdaREqDUzxlz/79+1m9ejWrV6/OCV+rVq1iw4YNua6zGB8fT0JCAoMHD8bM6NOnDy1btqRp06ZUrFjx570LGRm5XyBSuwk1kF3KoOgNZUX5Quc5KkhEJCyKcMqeHTt2sHz58pyer+wAtmXLlpx5ypcvT8uWLWnTpg3XXHMNrVu3plWrViQkJOQaohByF47ODi9S4spsKMvvXGFSupT2MY8ipyREEErbvJkVTz7J8rg4li1bxvLly1m2bBk//fRTzjzVqlWjdevW9OzZk1atWuWEr+bNm1OhQoWi16FB9SJhUSZDWaVKldi1axe1atVSMCvFsk8oGepqBCJlXcaRI6y9/XaWp6WxDFgOLAO+P3gQRo8GvEsEtW3bliuuuIJ27drlHJldv3794v3dp7PDi4RFmQxl8fHxpKamsmPHjmJZX3p6elQHg0i2v1KlSiGvRiBSlvz0008sXbqUJUuWsHTpUpYvX86a1avJzD6JM5AAnAcMB9pVqsTZ//gHTYcPL/iajMVBY3BFwqJMhrIKFSrQtGnTYltfcnIyHTt2LLb1lTbR3n6R4pKVlcX333+fE76yfwZfv7Zx48acc8459Nu2jbN37aIdcBZwWvCK0tNh4kS48cbwFK5B9SJhUSZDmYhIpGVkZLBixYpc4Wvp0qU5V7nIPrHzpZdeSocOHejYsSPt27enRo0a3jm4PvpIuwtFooxCmYjIKcrIyGDZsmUsXLiQhQsX8s0337BixQoyMzMB76od7du3Z8iQIXTs2JGOHTvStm3b/IcFaHehSFRSKBMRycs52LvX+5lnwPyxY8dYvXp1TgBbuHAh3377LRmB83fVqlWLTp060atXr5wA1rx5c8qVK1f419fuQpGopFAmIpJXUhJs2ICbOZMNrVqxaNGiXL1gBw8eBCA2NpZOnTpxxx130LlzZ7p06UKTJk101LeInBSFMhGRYNnn5LrpJpJvu40emzcD3pHAHTp0YPjw4XTp0oXOnTuTkJAQnqMfRSQqKJSJiAQLOmFr5927eWHkSLrceCNt27Y9uROviogUkv7FExHJlufM9bEHD/K7uXPp0L69ApmIlDiFMhGRbKGu75h9XUcRkRKmUCYiAvlf3zH7uo66DquIlDCFMhERCN1Llk29ZSISBgplIiL59ZJlU2+ZiISBQpmIyJw53mWLYmJ+vkHux9mXNRIRKSE6JYaISKjLGjVoAI8+evx8IiIlRKFMRCTUZY2Sk2HQoIiUIyLRSbsvRURERHxAoUxERETEBxTKRERERHxAoUxERETEB8Iaysyst5mtMbP1ZjY2xPQ4M/vQzL41sxVmNiyc9YmIiIhESthCmZmVA54B+gBtgMFm1ibPbCOAlc659kB3YKKZVQxXjSIiIiKREs6esvOA9c65jc65DGAq0D/PPA6INTMDqgG7gaNhrFFEREQkIsIZyhoAm4MepwaeCzYZaA1sBZYBdzjnssJTnoiIiEjkmAvTtdzM7FdAL+fcTYHHQ4DznHO3B81zLXAh8EegOfAJ0N45tz/Pum4GbgaoU6dOp6lTp5Zo7WlpaVSrVq1EX8PPorn90dx2iO72q+3R2XaI7vZHc9shPO1PTExc7JzrHGpaOM/onwo0DHocj9cjFmwY8JjzkuJ6M/seaAV8HTyTc+4F4AWAzp07u+7du5dUzQAkJydT0q/hZ9Hc/mhuO0R3+9X27pEuI2Kiuf3R3HaIfPvDuftyIdDSzJoGBu8PAmbkmecHoCeAmdUBEoCNYaxRREREJCLC1lPmnDtqZiOBj4FywEvOuRVmdktg+nPAI8ArZrYMMODPzrmd4apRREREJFLCekFy51wSkJTnueeC7m8FLg9nTSIiIiJ+oDP6i4iIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiIDyiUiYiIiPiAQpmIiIiID4Q1lJlZbzNbY2brzWxsPvN0N7OlZrbCzD4PZ30iIiIikVI+XC9kZuWAZ4DLgFRgoZnNcM6tDJqnOvAs0Ns594OZnRmu+kREREQiKZw9ZecB651zG51zGcBUoH+eea4HpjvnfgBwzv0UxvpEREREIsacc+F5IbNr8XrAbgo8HgJ0dc6NDJrnKaAC0BaIBf7unHs1xLpuBm4GqFOnTqepU6eWaO1paWlUq1atRF/Dz6K5/dHcdoju9qvt0dl2iO72R3PbITztT0xMXOyc6xxqWth2XwIW4rm8ibA80AnoCVQGvjSzr5xza3Mt5NwLwAsAnTt3dt27dy/+aoMkJydT0q/hZ9Hc/mhuO0R3+9X27pEuI2Kiuf3R3HaIfPvDGcpSgYZBj+OBrSHm2emcOwgcNLP5QHtgLSIiIiJlWDjHlC0EWppZUzOrCAwCZuSZ5wPgYjMrb2ZVgK7AqjDWKCIiIhIRYespc84dNbORwMdAOeAl59wKM7slMP0559wqM5sNfAdkAf9yzi0PV40iIiIikRLO3Zc455KApDzPPZfn8RPAE+GsS0RERCTSdEZ/ERERER9QKBMRERHxAYUyERERER9QKBMRERHxAYUyERERER9QKBMRERHxAYUyERERER9QKBMRERHxAYUyERERER9QKBMRERHxAYUyERERER9QKBMRERHxAYUyERERER9QKBMRERHxAYUyERERER9QKBMRERHxAYUyERERER9QKBMRERHxAYUyERERER9QKBMRERHxAYUyERERER9QKBMRERHxAYUyERERER9QKBMRERHxAYUyERERER9QKBMRERHxgfKFmcnMagD9gKuBs4DvgQ+AGc657SVXnoiIiEh0KDCUmdl0oAYwE/izc26tmTUC+gOvmVlF51z3ki1TREREpGwrTE/ZcOfc3uAnnHM/AP8A/mFm1UugLhEREZGoUuCYsryBDMDMXjWzSiVSkYiIiEgUOtmB/jHAc2ZWGfhjMdYjIiIiEpUKNdA/hO+BfwP/BHYVXzkiIiIi0elke8pedM6lAA8CvYutGhEREZEoVehQZmYPZN8PDPTHOZfinGtbEoWJiIiIRJOi7L58wMyqADWBb4Cpzrk9JVOWiIiISHQpyu5LB6QDHwMNgS/MrH2JVCUiIiISZYrSU7baOZe9C/MdM3sFeA7oUexViYiIiESZovSU7TSzTtkPnHNrgTOKvyQRERGR6FOUnrI/AFPNbDGwDGiPd2oMERERETlFBfaUmVkMgHPuW6AD8GZg0mfAoOzpIiIiInLyChOoPjGzaWY2GDjNOTcT77qXe4DngcUlWaCIiIhINChw96VzrqeZtQH6AzPNrALekZgfA086574p4RpFREREyrxCjSlzzq0EVgJ/NbNKzrn0ki1LREREJLoUeTyYApmIiIhI8dMgfREREREfUCgTERER8QGFMhEREREfUCgTERER8QGFMhEREREfUCgTERER8QGFMhEREREfUCgTERER8QGFMhEREREfCGsoM7PeZrbGzNab2dgTzNfFzI6Z2bXhrE9EREQkUsIWysysHPAM0AdoAwwOXOg81HyP413wXERERCQqhLOn7DxgvXNuo3MuA5gK9A8x3+3Au8BPYaxNREREJKLMOReeF/J2RfZ2zt0UeDwE6OqcGxk0TwPgDaAH8G/gI+fcOyHWdTNwM0CdOnU6TZ06tURrT0tLo1q1aiX6Gn4Wze2P5rZDdLdfbY/OtkN0tz+a2w7haX9iYuJi51znUNPKl+gr52YhnsubCJ8C/uycO2YWavbAQs69ALwA0LlzZ9e9e/diKjG05ORkSvo1/Cya2x/NbYfobr/a3j3SZURMNLc/mtsOkW9/OENZKtAw6HE8sDXPPJ2BqYFAVhvoa2ZHnXPvh6VCERERkQgJZyhbCLQ0s6bAFmAQcH3wDM65ptn3zewVvN2X74exRhEREZGICFsoc84dNbOReEdVlgNecs6tMLNbAtOfC1ctIiIiIn4Tzp4ynHNJQFKe50KGMefcb8NRk4iIiIgf6Iz+IiIiIj6gUCYiIiLiAwplIiIiIj6gUCYiIiLiAwplIiIiIj6gUCYiIiLiAwplIiIiIj6gUCYiIiLiAwplIhL1nHOkpKTwxhtvcOjQoUiXIyJRKqxn9BcR8YOMjAyWLFnCF198kXPbunUrAPPmzaN79+6RLVBEopJCmYiUeTt27ODLL7/kf//7H1988QWLFi0iPT0dgKZNm5KYmMgFF1zABRdcwNlnnx3hakUkWimUiUiZs3nzZubPn59zW716NQAVKlSgU6dO3HbbbTkhrF69ehGuVkTEo1AmIqWac44NGzYwf/58Pv/8c+bPn09KSgoAcXFxXHzxxQwbNowLL7yQTp06UalSpcgWLCKSD4UyEYk85+D99+GXvwSzE86alZXFypUrc/WEbdu2DYAzzjiDbt26ceedd3LJJZdw9tlnU65cuZKvX0SkGCiUiUjkJSXBgAHw0UdwxRW5JjnnWL9+PZ9++imffvop8+bNY9euXQA0aNCAxMRELrnkErp160ZCQgJWQKgTEfErhTIRiSznYMwY7/6YMdC3L9t+/DEnhH366ads3rwZgIYNG3LllVeSmJhIt27daNKkiUKYiJQZCmUiEllJSezdvJlk4NMNG/i0cWNWBUJYzZo16dGjB3fffTc9e/akRYsWCmEiUmYplIlI2GVmZvLVV18xe9YsPnnySRanp5MFVMnMpNvu3Qz/29/oeemltG/fnpgYneNaRKKDQpmIhMXmzZuZPXs2s2fPZu7cuezfv59yMTGcD9wL9ATOByqaQZs20LFjZAsWEQkzhTIRKRFHjhzhv//9b04QW7FiBeCNCxs4cCC9e/Wi57hxxK1bl3vBtLScsWUFHYkpIlKWKJSJSLHZsGEDs2fPZtasWcybN49Dhw5RsWJFunXrxvDhw+nduzetW7f2xoXNnAmBU1kcJzXVOyIzz5GYIiJlmUKZiJy0o0eP8uWXXzJjxgw+/PBD1qxZA0CLFi1yQlj37t2pWrVq7gWzj7hMSwu9YvWWiUgUUigTkSLZv38/c+bMYcaMGSQlJbFr1y4qVKhAYmIiI0aMoE+fPrRo0eLEK5kzB9asgRMN4l+zxpuvV6/ibYCIiE8plIlIgX744Qc+/PBDZsyYwbx588jMzKRmzZpcccUVXHXVVVx++eWcfvrphV9h8+Ywfnzh5hMRiRIKZSJyHOccixYt4qWXXmLUqFF8++23ACQkJDBq1Cj69evHL37xC8qXP8lfIS1awLhxxVixiEjpp1AmEo1CXGvy2LFj/O9//2P69OlMnz6dzZs3ExMTw0UXXcSECRPo168fZ511VkTLFhEpyxTKRKJR4FqTme+/T3KVKrz77ru8//77bN++ndNOO41evXrx6KOPEhcXR//+/SNdrYhIVFAoE4ky6YcP88nvf8+7wIwBA9iTlUXVqlXp27cv11xzDX379iU2NhaA5OTkiNYqIhJNFMpEokBGRgZz5sxh6tSpzJg+nQOHDxMHXBUTwzV3383ld99N5cqVI12miEhUUygTKaOOHj3KvHnzmDp1KtOnT2fv3r3UqFGD6ypW5NrDh+kBVDx6FN55Bx5+ONLliohEPYUykTIkKyuL//73v0ybNo133nmHHTt2EBsbS//+/Rk0aBCXZWZScciQ3Avp7PkiIr6gUCZSymWfvuKNN97grbfeYuvWrVSuXJl+/foxcOBA+vTp4+2adM670Hfes+jr7PkiIr6gUCZSSqWkpDBlyhSmTJnCmjVrqFixIn369GHgwIH069ePatWq5V4gKcnrFQtFvWUiIhGnUCZSiuzZs4e3336bKVOm8N///heAbt26MXr0aK699lpq1KgRekFda1JExPcUykR8LiMjg6SkJKZMmcKHH35IRkYGrVq1Yvz48Vx//fU0adKk4JXoWpMiIr6nUCZS0kKcPb/gRRxLlizhpZde4s0332T37t2ceeaZ3HrrrQwZMoRzzz0XK0qPlq41KSLiewplIiUtcPZ8PvqowDFbO3fu5PXXX+fll1/m22+/5bTTTuPqq69m6NChXHbZZbrWpIhIGaZQJlKSssdyQb5jto4dO8acOXN46aWX+OCDD8jMzKRLly48++yzDBo0KP9xYiIiUqYolImUpOAjHvMc4bhu3TpefvllXn31VbZs2ULt2rUZOXIkw4YNo127dhEsWkREIkGhTKSk5D3iMS2NI3/8I+/u3cvzL7zA/PnziYmJoU+fPjz99NNceeWVVKxYMbI1i4hIxCiUiZSUoF6ytcALwCtr17Lr17+mefPm/PWvf2Xo0KHUr18/omWKiIg/KJSJlATnyBg9mvfS0ngemIf3Zfsl8PuGDemxZg0x5cpFtEQREfGXE5y0SEROxoYNG/jzr35F/Nq1DAK+B8YDm4G3gUv37CFm9uyI1igiIv6jUCZSDI4dO8aMGTO4/PLLadGiBRPffZcLnWMWsAG4G6ibPXP22fOdi1i9IiLiPwplIqdg165dPPHEE7Ro0YL+/fuzcuVKHh4yhB+A92Ji6B0TQ0xMjHcm/eBb9tnzRUREAjSmTOQkLF26lMmTJ/P666+Tnp7OJZdcwoQJE+jfvz/lU1KgdeuCV6Kz54uISBCFMpFCyszMZPr06UyePJkFCxZQpUoVhg4dysiRI3OfV0xnzxcRkZOgUCZSgB07dvDcc8/xz3/+k23bttGsWTMmTpzIsGHDdLZ9EREpNgplIvlYuXIlEyZMYO7cuRw5coRevXrx4osv0qdPH2+cmIiISDFSKBMJ4pxj7ty5TJo0idmzZ1OxYkWGDRvGqFGjaNWqVaTLExGRMkyhTMoe5+D99+GXvzzu4t/5SU9P580332TSpEksX76cunXr8sgjj9CuXTv69+9fouWKiIiATokhZVFSEgwY4P0swI4dO3j44Ydp3Lgxw4cPJyYmhldeeYWUlBTuvfde4uLiwlCwiIiIesqkrMm+CDh4P/v2DdlbtnHjRiZMmMDLL79Meno6ffv25Y9//CM9evTACtm7JiIiUpzC2lNmZr3NbI2ZrTezsSGm32Bm3wVuX5hZ+3DWJ2VA0EXASU09rrdsyZIlDBo0iJYtW/Lvf/+bX//616xatYqZM2fSs2dPBTIREYmYsIUyMysHPAP0AdoAg82sTZ7Zvgcucc6dAzwCvBCu+qQMyO4lS0vzHgcuZ+Sysvj000+5/PLLOffcc5k1axZjxowhJSWFF198UQP4RUTEF8K5+/I8YL1zbiOAmU0F+gMrs2dwzn0RNP9XQHwY65PSLriXDDgGvJeSwuOtWrFo3Trq1q3LY489xi233KKxYiIi4jvhDGUNgM1Bj1OBrieY/0ZgVolWJGVHUC/ZEeA/wARgXXo6LVJSeOH55xkydCiVKlWKcKEiIiKhmXMuPC9k9iugl3PupsDjIcB5zrnbQ8ybCDwLXOSc2xVi+s3AzQB16tTpNHXq1BKtPS0tjWrVqpXoa/hZqWj/vn2kr17NR19+ybR589i5fz8J8fEMTkzkovbtKdeiBZxE71ipaHsJiub2q+3R2XaI7vZHc9shPO1PTExc7JzrHHKicy4sN+AXwMdBj8cB40LMdw6wATirMOvt1KmTK2nz5s0r8dfwM7+3f/++fe7xM85wZ4ID3CXg5oDL8vrPvFurVs5lZRV53X5ve0mL5var7dErmtsfzW13LjztBxa5fDJNOI++XAi0NLOmZlYRGATMCJ7BzBoB04Ehzrm1YaxNSqG9e/fyyCOP0CQ+nj/v2EEHYL4ZyTExXBYTg8XEQPZtzRqYMyfSJYuIiOQrbGPKnHNHzWwk8DFQDnjJObfCzG4JTH8OuB+oBTwbODXBUZdfF59ErZ07d/LUU0/xj3/8g/3799OvRw/uTUjgvIYNT7xg8+bhKVBEROQkhPXksc65JCApz3PPBd2/CbgpnDVJ6bF9+3YmTJjAP//5Tw4dOsQ111zDPffcQ4cOHSJdmoiIyCnTGf3F93bs2METTzzB5MmTOXLkCIMHD+buu++mTZu8p7kTEREpvRTKxLd2797NxIkT+fvf/86hQ4e44YYbuO+++zjrrLMiXZqIiEixUygT39m7dy9PPvkkTz75JGlpaVx33XU88MADtG7dOtKliYiIlBiFMvGN/fv38/TTTzNx4kT27t3LNddcwwMPPEC7du0iXZqIiEiJUyiTiEtLS2Py5Mk88cQT7N69m6uuuoqHHnpIA/hFRCSqKJRJxBw6dIh//vOfPP744+zYsYO+ffvy0EMP0bmzzoIiIiLRJ5wnjxUBICMjg2effZbmzZszZswYOnTowBdffMHMmTMVyEREJGqpp0zCJisri6lTp3LfffexceNGLr74Yt566y0uvvjiSJcmIiISceopkxLnnGPWrFmce+653HDDDVSrVo2ZM2fy+eefK5CJiIgEKJRJifryyy9JTEykb9++HDhwgNdff50lS5bQt29fApfSEhERERTKpISsWLGCX/7yl1xwwQWsXr2ayZMns2rVKq6//npiYvSxExERyUt/HeXUOQfvvQfOsWnTJoYNG8Y555zDvHnzeOSRR1i/fj0jRoygYsWKka5URETEtzTQX05dUhI7BwzgL/3788ysWZgZd955J2PHjqV27dqRrk5ERKRUUCiTU3L40CH+PmwYfwXSPviA3w4bxoMPPUTDhg0jXZqIiEipot2XclKysrKYMmUKCU2aMG7HDi4BllWpwr+vuUaBTERE5CQolEmRJScn06VLF4YMGcKZBw4wD5gBtDl0CMaM8caYiYiISJEolEmhrVq1iquuuorExER27NjBlNGj+bpcOboHz5SaCklJEapQRESk9FIokwLt2bOH2267jXbt2vH555/z2GOPsWb1am6YOZOYgwdzz5yWpt4yERGRk6CB/pKvQ4cO8dRTTzF+/HgyMjK49dZbuf/++znjjDNg5kyvVyyU7N6yK64Ib8EiIiKlmHrK5DhZWVm8+uqrJCQkcM8993DuueeyfPly/vGPf3iBzDmvNywtLfQK1FsmIiJSZOopk1z++9//MmrUKL755hu6dOnCG2+8wbFjx0hISPh5pjlzYM0aONGZ+des8ebr1avkixYRESkDFMoEgE2bNnHXXXfx1ltvER8fz+uvv86gQYOIiYkhOTk598zNm8P48QWvtHnzEqlVRESkLFIoi3IHDx7k8ccf54knnsDMeOCBB7jrrruoUqVK/gu1aAHjxoWvSBERkSigUBalsrKyeOONNxg7dixbtmxh8ODBPP744zrxq4iISIRooH8U+vrrr7nwwgsZMmQIdevWZcGCBbzxxhsKZCIiIhGkUBZFtmzZwtChQ+natSspKSm8/PLLOQFNREREIku7L6PA4cOHmTRpEn/5y184evQoY8eO5e677yY2NjbSpYmIiEiAQlkZ5pzjnXfe4U9/+hObNm3i6quvZsKECTRr1izSpYmIiEge2n1ZRi1dupTu3btz3XXXERcXx2effcb06dMVyERERHxKoayM2b17NyNGjKBTp06sXLmS5557jm+++YbExMRIlyYiIiInoFBWGjkH772X6zJGWVlZvPjii5x11lk899xzjBgxgrVr1/L73/+ecuXKRbBYERERKQyFstIoKQkGDPB+4p3i4vzzz+fmm2+mTZs2fPPNNzz99NPUqFEjwoWKiIhIYSmUlTbZFwMHdowaxU033kjXrl3ZvHkzU6ZM4fPPP6d9+/YRLlJERESKSkdfljZJSRzdvJnngXvXryft++8ZPXo0999/P6effnqkqxMREZGTpFBWmjjHgttuY+TBg3wL9ASebtSINk88AWaRrk5EREROgXZflhLbtm1jSM+eXPzDD+wG3gY+Adrs2JEztkxERERKL4Uyn8vMzGTSpEkkJCTwVnIydwOrgGsBA0hL88aYBR2JKSIiIqWPQpmPffbZZ7Rv357Ro0dz0VlnsbxyZcYDVfPOmJqq3jIREZFSTqHMhzZv3szAgQPp2bMn6enpzPjgA2ampdHy0KHQC6i3TEREpNRTKPORjIwMHn/8cVq1asWMGTN46KGHWLFiBf1OOw1buxZiYvK/rVkDc+ZEugkiIiJyknT0pU8kJydz2223sWrVKvr3789TTz1FkyZNvInNm8P48QWvpHnzEq1RRERESo5CWYRt376dMWPGMGXKFJo0acKHH37IlVdemXumFi1g3LjIFCgiIiJhod2XEXLs2DGeffZZEhISmDZtGvfccw8rVqw4PpCJiIhIVFBPWQQsXLiQW2+9lcWLF9OzZ0+eeeYZEhISIl2WiIiIRJB6ysJoz5493HbbbXTt2pUtW7bw5ptv8sknnyiQiYiIiEJZODjneO2112jVqhXPP/88t99+O6tXr2bQoEGYLo8kIiIiaPdliVuxYgW33XYb8+fPp2vXrsyePZuOHTtGuiwRERHxGfWUlZCDBw8yduxYOnTowLJly3jhhRf44osvFMhEREQkJPWUFTPnHB988AF/+MMf2Lx5M8OHD+exxx7jjDPOiHRpIiIi4mPqKStGGzdupF+/flx99dVUr16dBQsW8O9//1uBTERERAqkUFYMjhw5wqOPPkrbtm35/PPPmThxIosXL+bCCy+MdGkiIiJSSmj3ZUGcg717vZ8hjpScO3cuI0aMYO3atfzqV79i0qRJxMfHh79OERERKdXUU1aQpCTYsMH7GWTbtm0MHjyYyy67jKysLGbPns1bb72lQCYiIiInRaHsRJyDMWO8+2PGgHMcPXqUp59+moSEBN577z0efPBBli1bRq9evSJbq4iIiJRqYQ1lZtbbzNaY2XozGxtiupnZ04Hp35nZueGs7zhJSZCa6t1PTeWrSZPo0qULd9xxBxdccAHLly/ngQceoFKlShEtU0REREq/sIUyMysHPAP0AdoAg82sTZ7Z+gAtA7ebgX+Gq77jZPeSpaWx7+BBbk5L4xdjxrBjxw7eeecdZs2aRYsWLSJWnoiIiJQt4Rzofx6w3jm3EcDMpgL9gZVB8/QHXnXOOeArM6tuZvWcc9vCWKcn0Ev2IfCbv/2NNGB0hQo88OSTxF5zTdjLERERkbLNvPwThhcyuxbo7Zy7KfB4CNDVOTcyaJ6PgMeccwsCjz8F/uycW5RnXTfj9aRRp06dTlOnTi3+glesgPR0Vv/wA5M/+YQ/9u1Ls3r1oFIlaNu2+F/Px9LS0qhWrVqky4iIaG47RHf71fbobDtEd/ujue0QnvYnJiYuds51DjUtnD1loa68nTcRFmYenHMvAC8AdO7c2XXv3v2Ui8tl5kwYOxbS0ugOJDzxBIl/+pM3rVo1mDoVrriieF/Tx5KTkyn2bVxKRHPbIbrbr7Z3j3QZERPN7Y/mtkPk2x/Ogf6pQMOgx/HA1pOYp2QFjSXLZsHnJ0tLyzkSU0RERKS4hDOULQRamllTM6sIDAJm5JlnBjA0cBTm+cC+sI8nmzMH1qyBmJifb5D78Zo13nwiIiIixSRsuy+dc0fNbCTwMVAOeMk5t8LMbglMfw5IAvoC64FDwLBw1ZejeXMYPz73cw0awKOPHj+fiIiISDEJ62WWnHNJeMEr+Lnngu47YEQ4azpOixYwblzu55KTYdCgiJQjIiIi0UFn9BcRERHxAYUyERERER9QKBMRERHxAYUyERERER9QKBMRERHxAYUyERERER9QKBMRERHxAYUyERERER9QKBMRERHxAXOl/MLaZrYD2FTCL1Mb2FnCr+Fn0dz+aG47RHf71fboFc3tj+a2Q3ja39g5d0aoCaU+lIWDmS1yznWOdB2REs3tj+a2Q3S3X22PzrZDdLc/mtsOkW+/dl+KiIiI+IBCmYiIiIgPKJQVzguRLiDCorn90dx2iO72q+3RK5rbH81thwi3X2PKRERERHxAPWUiIiIiPhD1oczMepvZGjNbb2ZjQ0w3M3s6MP07Mzu3sMv6XSHafkOgzd+Z2Rdm1j5oWoqZLTOzpWa2KLyVF49CtL+7me0LtHGpmd1f2GX9rhBt/1NQu5eb2TEzqxmYVqrfezN7ycx+MrPl+Uwvy9/5gtpe1r/zBbW/LH/nC2p7Wf7ONzSzeWa2ysxWmNkdIebxx/feORe1N6AcsAFoBlQEvgXa5JmnLzALMOB84P8Ku6yfb4Vs+wVAjcD9PtltDzxOAWpHuh0l3P7uwEcns6yfb0WtH+gHfFaG3vtuwLnA8nyml8nvfCHbXma/84Vsf5n8zhem7XnmLWvf+XrAuYH7scBav/6tj/aesvOA9c65jc65DGAq0D/PPP2BV53nK6C6mdUr5LJ+VmD9zrkvnHN7Ag+/AuLDXGNJOpX3r8y/93kMBt4MS2Vh4JybD+w+wSxl9TtfYNvL+He+MO99fsr8e59HWfvOb3POfRO4fwBYBTTIM5svvvfRHsoaAJuDHqdy/BuV3zyFWdbPilr/jXj/RWRzwBwzW2xmN5dAfSWtsO3/hZl9a2azzKxtEZf1q0LXb2ZVgN7Au0FPl/b3viBl9TtfVGXtO19YZfE7X2hl/TtvZk2AjsD/5Znki+99+ZJacSlhIZ7LezhqfvMUZlk/K3T9ZpaI9wv6oqCnL3TObTWzM4FPzGx14D+x0qIw7f8G73IYaWbWF3gfaFnIZf2sKPX3A/7nnAv+D7u0v/cFKavf+UIro9/5wiir3/miKLPfeTOrhhc2Rznn9uedHGKRsH/vo72nLBVoGPQ4HthayHkKs6yfFap+MzsH+BfQ3zm3K/t559zWwM+fgPfwunhLkwLb75zb75xLC9xPAiqYWe3CLOtzRal/EHl2Y5SB974gZfU7Xyhl+DtfoDL8nS+KMvmdN7MKeIHsdefc9BCz+OJ7H+2hbCHQ0syamllFvA/jjDzzzACGBo7MOB/Y55zbVshl/azA+s2sETAdGOKcWxv0fFUzi82+D1wOhDyix8cK0/66ZmaB++fhfV92FWZZnytU/WYWB1wCfBD0XFl47wtSVr/zBSrj3/kCleHvfKGU1e984D39N7DKOTcpn9l88b2P6t2XzrmjZjYS+BjvCIuXnHMrzOyWwPTngCS8ozLWA4eAYSdaNgLNOCmFbPv9QC3g2cDvqaPOu1BrHeC9wHPlgTecc7Mj0IyTVsj2XwvcamZHgcPAIOcdjhMN7z3A1cAc59zBoMVL/XtvZm/iHWVX28xSgQeAClC2v/NQqLaX2e88FKr9ZfI7D4VqO5TR7zxwITAEWGZmSwPP3Q00An9973VGfxEREREfiPbdlyIiIiK+oFAmIiIi4gMKZSIiIiI+oFAmIiIi4gMKZSIiIiI+oFAmIiIi4gMKZSIiIiI+oFAmIhLEzNqZ2SYzuzXStYhIdFEoExEJ4pxbhncplaGRrkVEootCmYjI8X4C2ka6CBGJLgplIiLHeww4zcwaR7oQEYkeCmUiIkHMrDdQFZiJestEJIwUykREAsysEvA34DZgGXB2ZCsSkWiiUCYi8rN7gVedcykolIlImCmUiYgAZpYAXAY8FXhKoUxEwsqcc5GuQURERCTqqadMRERExAcUykRERER8QKFMRERExAcUykRERER8QKFMRERExAcUykRERER8QKFMRERExAcUykRERER84P8B9Cyq2GweIqkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
Type | Gate error | |
---|---|---|
cx2_1 | cx | 0.00697 |
cx2_3 | cx | 0.00797 |
cx3_2 | cx | 0.00797 |
sample_name | Snake |
qubit_lo_range | [[4333430597.562168, 5333430597.562168], [4123852322.963768, 5123852322.963768], [4320531275.264617, 5320531275.264617], [4242331971.9375987, 5242331971.937599], [4316318056.924669, 5316318056.924669]] |
open_pulse | False |
conditional_latency | [] |
coupling_map | [[0, 1], [1, 0], [1, 2], [2, 1], [2, 3], [3, 2], [3, 4], [4, 3]] |
channels | {'acquire0': {'operates': {'qubits': [0]}, 'purpose': 'acquire', 'type': 'acquire'}, 'acquire1': {'operates': {'qubits': [1]}, 'purpose': 'acquire', 'type': 'acquire'}, 'acquire2': {'operates': {'qubits': [2]}, 'purpose': 'acquire', 'type': 'acquire'}, 'acquire3': {'operates': {'qubits': [3]}, 'purpose': 'acquire', 'type': 'acquire'}, 'acquire4': {'operates': {'qubits': [4]}, 'purpose': 'acquire', 'type': 'acquire'}, 'd0': {'operates': {'qubits': [0]}, 'purpose': 'drive', 'type': 'drive'}, 'd1': {'operates': {'qubits': [1]}, 'purpose': 'drive', 'type': 'drive'}, 'd2': {'operates': {'qubits': [2]}, 'purpose': 'drive', 'type': 'drive'}, 'd3': {'operates': {'qubits': [3]}, 'purpose': 'drive', 'type': 'drive'}, 'd4': {'operates': {'qubits': [4]}, 'purpose': 'drive', 'type': 'drive'}, 'm0': {'operates': {'qubits': [0]}, 'purpose': 'measure', 'type': 'measure'}, 'm1': {'operates': {'qubits': [1]}, 'purpose': 'measure', 'type': 'measure'}, 'm2': {'operates': {'qubits': [2]}, 'purpose': 'measure', 'type': 'measure'}, 'm3': {'operates': {'qubits': [3]}, 'purpose': 'measure', 'type': 'measure'}, 'm4': {'operates': {'qubits': [4]}, 'purpose': 'measure', 'type': 'measure'}, 'u0': {'operates': {'qubits': [0, 1]}, 'purpose': 'cross-resonance', 'type': 'control'}, 'u1': {'operates': {'qubits': [1, 0]}, 'purpose': 'cross-resonance', 'type': 'control'}, 'u2': {'operates': {'qubits': [1, 2]}, 'purpose': 'cross-resonance', 'type': 'control'}, 'u3': {'operates': {'qubits': [2, 1]}, 'purpose': 'cross-resonance', 'type': 'control'}, 'u4': {'operates': {'qubits': [2, 3]}, 'purpose': 'cross-resonance', 'type': 'control'}, 'u5': {'operates': {'qubits': [3, 2]}, 'purpose': 'cross-resonance', 'type': 'control'}, 'u6': {'operates': {'qubits': [3, 4]}, 'purpose': 'cross-resonance', 'type': 'control'}, 'u7': {'operates': {'qubits': [4, 3]}, 'purpose': 'cross-resonance', 'type': 'control'}} |
meas_kernels | ['boxcar'] |
allow_q_object | True |
dt | 2.2222222222222221e-10 |
acquisition_latency | [] |
url | None |
rep_times | [0.001] |
u_channel_lo | [[{'q': 1, 'scale': (1+0j)}], [{'q': 0, 'scale': (1+0j)}], [{'q': 2, 'scale': (1+0j)}], [{'q': 1, 'scale': (1+0j)}], [{'q': 3, 'scale': (1+0j)}], [{'q': 2, 'scale': (1+0j)}], [{'q': 4, 'scale': (1+0j)}], [{'q': 3, 'scale': (1+0j)}]] |
n_registers | 1 |
credits_required | True |
dtm | 2.2222222222222221e-10 |
qubit_channel_mapping | [['d0', 'm0', 'u0', 'u1'], ['m1', 'u1', 'u3', 'u2', 'u0', 'd1'], ['m2', 'u3', 'u2', 'u4', 'u5', 'd2'], ['m3', 'd3', 'u4', 'u5', 'u7', 'u6'], ['u7', 'd4', 'm4', 'u6']] |
discriminators | ['quadratic_discriminator', 'linear_discriminator'] |
dynamic_reprate_enabled | False |
local | False |
uchannels_enabled | True |
memory | True |
meas_lo_range | [[6952624018.0, 7952624018.0], [6701014434.0, 7701014434.0], [6837452605.0, 7837452605.0], [6901770712.0, 7901770712.0], [6775814414.0, 7775814414.0]] |
simulator | False |
conditional | False |
online_date | 2020-06-03 04:00:00+00:00 |
parametric_pulses | [] |
description | 5 qubit device |
meas_map | [[0, 1, 2, 3, 4]] |
backend_name | ibmq_santiago |
allow_object_storage | True |
hamiltonian | $$\\begin{align} \\mathcal{H}/\\hbar = & \\sum_{i=0}^{4}\\left(\\frac{\\omega_{q,i}}{2}(\\mathbb{I}-\\sigma_i^{z})+\\frac{\\Delta_{i}}{2}(O_i^2-O_i)+\\Omega_{d,i}D_i(t)\\sigma_i^{X}\\right) \\\\ & + J_{0,1}(\\sigma_{0}^{+}\\sigma_{1}^{-}+\\sigma_{0}^{-}\\sigma_{1}^{+}) + J_{3,4}(\\sigma_{3}^{+}\\sigma_{4}^{-}+\\sigma_{3}^{-}\\sigma_{4}^{+}) + J_{2,3}(\\sigma_{2}^{+}\\sigma_{3}^{-}+\\sigma_{2}^{-}\\sigma_{3}^{+}) + J_{1,2}(\\sigma_{1}^{+}\\sigma_{2}^{-}+\\sigma_{1}^{-}\\sigma_{2}^{+}) \\\\ & + \\Omega_{d,0}(U_{0}^{(0,1)}(t))\\sigma_{0}^{X} + \\Omega_{d,1}(U_{1}^{(1,0)}(t)+U_{2}^{(1,2)}(t))\\sigma_{1}^{X} \\\\ & + \\Omega_{d,2}(U_{3}^{(2,1)}(t)+U_{4}^{(2,3)}(t))\\sigma_{2}^{X} + \\Omega_{d,3}(U_{6}^{(3,4)}(t)+U_{5}^{(3,2)}(t))\\sigma_{3}^{X} \\\\ & + \\Omega_{d,4}(U_{7}^{(4,3)}(t))\\sigma_{4}^{X} \\\\ \\end{align}$$ |
meas_levels | [1, 2] |
n_uchannels | 8 |
Type | Gate error | |
---|---|---|
cx3_4 | cx | 0.00712 |
cx4_3 | cx | 0.00712 |
Type | Gate error | |
---|---|---|
cx2_1 | cx | 0.00697 |
cx2_3 | cx | 0.00797 |
cx3_2 | cx | 0.00797 |
Type | Gate error | |
---|---|---|
cx0_1 | cx | 0.00677 |
cx1_0 | cx | 0.00677 |
cx1_2 | cx | 0.00697 |
Frequency | T1 | T2 | U1 gate error | U2 gate error | U3 gate error | Readout error | |
---|---|---|---|---|---|---|---|
Q0 | 4.83343 GHz | 92.68711 µs | 157.17411 µs | 0 | 0.00022 | 0.00044 | 0.0125 |
Q1 | 4.62385 GHz | 88.58389 µs | 94.28362 µs | 0 | 0.00016 | 0.00033 | 0.0205 |
Q2 | 4.82053 GHz | 148.28351 µs | 93.83139 µs | 0 | 0.00025 | 0.00049 | 0.014 |
Q3 | 4.74233 GHz | 183.80524 µs | 133.6838 µs | 0 | 0.00034 | 0.00067 | 0.0205 |
Q4 | 4.81632 GHz | 139.69121 µs | 161.77685 µs | 0 | 0.00027 | 0.00055 | 0.0185 |
Property | Value |
---|---|
n_qubits | 5 |
quantum_volume | 32 |
operational | True |
status_msg | active |
pending_jobs | 2 |
backend_version | 1.0.0 |
basis_gates | ['id', 'u1', 'u2', 'u3', 'cx'] |
max_shots | 8192 |
max_experiments | 75 |
Type | Gate error | |
---|---|---|
cx3_4 | cx | 0.00712 |
cx4_3 | cx | 0.00712 |
dtm | 2.2222222222222221e-10 |
meas_levels | [1, 2] |
local | False |
meas_kernels | ['boxcar'] |
memory | True |
simulator | False |
hamiltonian | $$\\begin{align} \\mathcal{H}/\\hbar = & \\sum_{i=0}^{4}\\left(\\frac{\\omega_{q,i}}{2}(\\mathbb{I}-\\sigma_i^{z})+\\frac{\\Delta_{i}}{2}(O_i^2-O_i)+\\Omega_{d,i}D_i(t)\\sigma_i^{X}\\right) \\\\ & + J_{0,1}(\\sigma_{0}^{+}\\sigma_{1}^{-}+\\sigma_{0}^{-}\\sigma_{1}^{+}) + J_{3,4}(\\sigma_{3}^{+}\\sigma_{4}^{-}+\\sigma_{3}^{-}\\sigma_{4}^{+}) + J_{2,3}(\\sigma_{2}^{+}\\sigma_{3}^{-}+\\sigma_{2}^{-}\\sigma_{3}^{+}) + J_{1,2}(\\sigma_{1}^{+}\\sigma_{2}^{-}+\\sigma_{1}^{-}\\sigma_{2}^{+}) \\\\ & + \\Omega_{d,0}(U_{0}^{(0,1)}(t))\\sigma_{0}^{X} + \\Omega_{d,1}(U_{1}^{(1,0)}(t)+U_{2}^{(1,2)}(t))\\sigma_{1}^{X} \\\\ & + \\Omega_{d,2}(U_{3}^{(2,1)}(t)+U_{4}^{(2,3)}(t))\\sigma_{2}^{X} + \\Omega_{d,3}(U_{6}^{(3,4)}(t)+U_{5}^{(3,2)}(t))\\sigma_{3}^{X} \\\\ & + \\Omega_{d,4}(U_{7}^{(4,3)}(t))\\sigma_{4}^{X} \\\\ \\end{align}$$ |
meas_map | [[0, 1, 2, 3, 4]] |
parametric_pulses | [] |
coupling_map | [[0, 1], [1, 0], [1, 2], [2, 1], [2, 3], [3, 2], [3, 4], [4, 3]] |
url | None |
open_pulse | False |
u_channel_lo | [[{'q': 1, 'scale': (1+0j)}], [{'q': 0, 'scale': (1+0j)}], [{'q': 2, 'scale': (1+0j)}], [{'q': 1, 'scale': (1+0j)}], [{'q': 3, 'scale': (1+0j)}], [{'q': 2, 'scale': (1+0j)}], [{'q': 4, 'scale': (1+0j)}], [{'q': 3, 'scale': (1+0j)}]] |
dynamic_reprate_enabled | False |
uchannels_enabled | True |
allow_object_storage | True |
meas_lo_range | [[6952624018.0, 7952624018.0], [6701014434.0, 7701014434.0], [6837452605.0, 7837452605.0], [6901770712.0, 7901770712.0], [6775814414.0, 7775814414.0]] |
allow_q_object | True |
credits_required | True |
discriminators | ['quadratic_discriminator', 'linear_discriminator'] |
sample_name | Snake |
qubit_lo_range | [[4333430597.562168, 5333430597.562168], [4123852322.963768, 5123852322.963768], [4320531275.264617, 5320531275.264617], [4242331971.9375987, 5242331971.937599], [4316318056.924669, 5316318056.924669]] |
qubit_channel_mapping | [['d0', 'm0', 'u0', 'u1'], ['m1', 'u1', 'u3', 'u2', 'u0', 'd1'], ['m2', 'u3', 'u2', 'u4', 'u5', 'd2'], ['m3', 'd3', 'u4', 'u5', 'u7', 'u6'], ['u7', 'd4', 'm4', 'u6']] |
description | 5 qubit device |
conditional_latency | [] |
backend_name | ibmq_santiago |
dt | 2.2222222222222221e-10 |
rep_times | [0.001] |
online_date | 2020-06-03 04:00:00+00:00 |
conditional | False |
n_uchannels | 8 |
n_registers | 1 |
acquisition_latency | [] |
channels | {'acquire0': {'operates': {'qubits': [0]}, 'purpose': 'acquire', 'type': 'acquire'}, 'acquire1': {'operates': {'qubits': [1]}, 'purpose': 'acquire', 'type': 'acquire'}, 'acquire2': {'operates': {'qubits': [2]}, 'purpose': 'acquire', 'type': 'acquire'}, 'acquire3': {'operates': {'qubits': [3]}, 'purpose': 'acquire', 'type': 'acquire'}, 'acquire4': {'operates': {'qubits': [4]}, 'purpose': 'acquire', 'type': 'acquire'}, 'd0': {'operates': {'qubits': [0]}, 'purpose': 'drive', 'type': 'drive'}, 'd1': {'operates': {'qubits': [1]}, 'purpose': 'drive', 'type': 'drive'}, 'd2': {'operates': {'qubits': [2]}, 'purpose': 'drive', 'type': 'drive'}, 'd3': {'operates': {'qubits': [3]}, 'purpose': 'drive', 'type': 'drive'}, 'd4': {'operates': {'qubits': [4]}, 'purpose': 'drive', 'type': 'drive'}, 'm0': {'operates': {'qubits': [0]}, 'purpose': 'measure', 'type': 'measure'}, 'm1': {'operates': {'qubits': [1]}, 'purpose': 'measure', 'type': 'measure'}, 'm2': {'operates': {'qubits': [2]}, 'purpose': 'measure', 'type': 'measure'}, 'm3': {'operates': {'qubits': [3]}, 'purpose': 'measure', 'type': 'measure'}, 'm4': {'operates': {'qubits': [4]}, 'purpose': 'measure', 'type': 'measure'}, 'u0': {'operates': {'qubits': [0, 1]}, 'purpose': 'cross-resonance', 'type': 'control'}, 'u1': {'operates': {'qubits': [1, 0]}, 'purpose': 'cross-resonance', 'type': 'control'}, 'u2': {'operates': {'qubits': [1, 2]}, 'purpose': 'cross-resonance', 'type': 'control'}, 'u3': {'operates': {'qubits': [2, 1]}, 'purpose': 'cross-resonance', 'type': 'control'}, 'u4': {'operates': {'qubits': [2, 3]}, 'purpose': 'cross-resonance', 'type': 'control'}, 'u5': {'operates': {'qubits': [3, 2]}, 'purpose': 'cross-resonance', 'type': 'control'}, 'u6': {'operates': {'qubits': [3, 4]}, 'purpose': 'cross-resonance', 'type': 'control'}, 'u7': {'operates': {'qubits': [4, 3]}, 'purpose': 'cross-resonance', 'type': 'control'}} |
Property | Value |
---|---|
n_qubits | 5 |
quantum_volume | 32 |
operational | True |
status_msg | active |
pending_jobs | 0 |
backend_version | 1.0.0 |
basis_gates | ['id', 'u1', 'u2', 'u3', 'cx'] |
max_shots | 8192 |
max_experiments | 75 |
Frequency | T1 | T2 | U1 gate error | U2 gate error | U3 gate error | Readout error | |
---|---|---|---|---|---|---|---|
Q0 | 4.83343 GHz | 92.68711 µs | 157.17411 µs | 0 | 0.00022 | 0.00044 | 0.0125 |
Q1 | 4.62385 GHz | 88.58389 µs | 94.28362 µs | 0 | 0.00016 | 0.00033 | 0.0205 |
Q2 | 4.82053 GHz | 148.28351 µs | 93.83139 µs | 0 | 0.00025 | 0.00049 | 0.014 |
Q3 | 4.74233 GHz | 183.80524 µs | 133.6838 µs | 0 | 0.00034 | 0.00067 | 0.0205 |
Q4 | 4.81632 GHz | 139.69121 µs | 161.77685 µs | 0 | 0.00027 | 0.00055 | 0.0185 |
Type | Gate error | |
---|---|---|
cx0_1 | cx | 0.00677 |
cx1_0 | cx | 0.00677 |
cx1_2 | cx | 0.00697 |
dtm | 2.2222222222222221e-10 |
meas_levels | [1, 2] |
local | False |
meas_kernels | ['boxcar'] |
memory | True |
simulator | False |
hamiltonian | $$\\begin{align} \\mathcal{H}/\\hbar = & \\sum_{i=0}^{4}\\left(\\frac{\\omega_{q,i}}{2}(\\mathbb{I}-\\sigma_i^{z})+\\frac{\\Delta_{i}}{2}(O_i^2-O_i)+\\Omega_{d,i}D_i(t)\\sigma_i^{X}\\right) \\\\ & + J_{0,1}(\\sigma_{0}^{+}\\sigma_{1}^{-}+\\sigma_{0}^{-}\\sigma_{1}^{+}) + J_{3,4}(\\sigma_{3}^{+}\\sigma_{4}^{-}+\\sigma_{3}^{-}\\sigma_{4}^{+}) + J_{2,3}(\\sigma_{2}^{+}\\sigma_{3}^{-}+\\sigma_{2}^{-}\\sigma_{3}^{+}) + J_{1,2}(\\sigma_{1}^{+}\\sigma_{2}^{-}+\\sigma_{1}^{-}\\sigma_{2}^{+}) \\\\ & + \\Omega_{d,0}(U_{0}^{(0,1)}(t))\\sigma_{0}^{X} + \\Omega_{d,1}(U_{1}^{(1,0)}(t)+U_{2}^{(1,2)}(t))\\sigma_{1}^{X} \\\\ & + \\Omega_{d,2}(U_{3}^{(2,1)}(t)+U_{4}^{(2,3)}(t))\\sigma_{2}^{X} + \\Omega_{d,3}(U_{6}^{(3,4)}(t)+U_{5}^{(3,2)}(t))\\sigma_{3}^{X} \\\\ & + \\Omega_{d,4}(U_{7}^{(4,3)}(t))\\sigma_{4}^{X} \\\\ \\end{align}$$ |
meas_map | [[0, 1, 2, 3, 4]] |
parametric_pulses | [] |
coupling_map | [[0, 1], [1, 0], [1, 2], [2, 1], [2, 3], [3, 2], [3, 4], [4, 3]] |
url | None |
open_pulse | False |
u_channel_lo | [[{'q': 1, 'scale': (1+0j)}], [{'q': 0, 'scale': (1+0j)}], [{'q': 2, 'scale': (1+0j)}], [{'q': 1, 'scale': (1+0j)}], [{'q': 3, 'scale': (1+0j)}], [{'q': 2, 'scale': (1+0j)}], [{'q': 4, 'scale': (1+0j)}], [{'q': 3, 'scale': (1+0j)}]] |
dynamic_reprate_enabled | False |
uchannels_enabled | True |
allow_object_storage | True |
meas_lo_range | [[6952624018.0, 7952624018.0], [6701014434.0, 7701014434.0], [6837452605.0, 7837452605.0], [6901770712.0, 7901770712.0], [6775814414.0, 7775814414.0]] |
allow_q_object | True |
credits_required | True |
discriminators | ['quadratic_discriminator', 'linear_discriminator'] |
sample_name | Snake |
qubit_lo_range | [[4333430597.562168, 5333430597.562168], [4123852322.963768, 5123852322.963768], [4320531275.264617, 5320531275.264617], [4242331971.9375987, 5242331971.937599], [4316318056.924669, 5316318056.924669]] |
qubit_channel_mapping | [['d0', 'm0', 'u0', 'u1'], ['m1', 'u1', 'u3', 'u2', 'u0', 'd1'], ['m2', 'u3', 'u2', 'u4', 'u5', 'd2'], ['m3', 'd3', 'u4', 'u5', 'u7', 'u6'], ['u7', 'd4', 'm4', 'u6']] |
description | 5 qubit device |
conditional_latency | [] |
backend_name | ibmq_santiago |
dt | 2.2222222222222221e-10 |
rep_times | [0.001] |
online_date | 2020-06-03 04:00:00+00:00 |
conditional | False |
n_uchannels | 8 |
n_registers | 1 |
acquisition_latency | [] |
channels | {'acquire0': {'operates': {'qubits': [0]}, 'purpose': 'acquire', 'type': 'acquire'}, 'acquire1': {'operates': {'qubits': [1]}, 'purpose': 'acquire', 'type': 'acquire'}, 'acquire2': {'operates': {'qubits': [2]}, 'purpose': 'acquire', 'type': 'acquire'}, 'acquire3': {'operates': {'qubits': [3]}, 'purpose': 'acquire', 'type': 'acquire'}, 'acquire4': {'operates': {'qubits': [4]}, 'purpose': 'acquire', 'type': 'acquire'}, 'd0': {'operates': {'qubits': [0]}, 'purpose': 'drive', 'type': 'drive'}, 'd1': {'operates': {'qubits': [1]}, 'purpose': 'drive', 'type': 'drive'}, 'd2': {'operates': {'qubits': [2]}, 'purpose': 'drive', 'type': 'drive'}, 'd3': {'operates': {'qubits': [3]}, 'purpose': 'drive', 'type': 'drive'}, 'd4': {'operates': {'qubits': [4]}, 'purpose': 'drive', 'type': 'drive'}, 'm0': {'operates': {'qubits': [0]}, 'purpose': 'measure', 'type': 'measure'}, 'm1': {'operates': {'qubits': [1]}, 'purpose': 'measure', 'type': 'measure'}, 'm2': {'operates': {'qubits': [2]}, 'purpose': 'measure', 'type': 'measure'}, 'm3': {'operates': {'qubits': [3]}, 'purpose': 'measure', 'type': 'measure'}, 'm4': {'operates': {'qubits': [4]}, 'purpose': 'measure', 'type': 'measure'}, 'u0': {'operates': {'qubits': [0, 1]}, 'purpose': 'cross-resonance', 'type': 'control'}, 'u1': {'operates': {'qubits': [1, 0]}, 'purpose': 'cross-resonance', 'type': 'control'}, 'u2': {'operates': {'qubits': [1, 2]}, 'purpose': 'cross-resonance', 'type': 'control'}, 'u3': {'operates': {'qubits': [2, 1]}, 'purpose': 'cross-resonance', 'type': 'control'}, 'u4': {'operates': {'qubits': [2, 3]}, 'purpose': 'cross-resonance', 'type': 'control'}, 'u5': {'operates': {'qubits': [3, 2]}, 'purpose': 'cross-resonance', 'type': 'control'}, 'u6': {'operates': {'qubits': [3, 4]}, 'purpose': 'cross-resonance', 'type': 'control'}, 'u7': {'operates': {'qubits': [4, 3]}, 'purpose': 'cross-resonance', 'type': 'control'}} |
Type | Gate error | |
---|---|---|
cx3_4 | cx | 0.00712 |
cx4_3 | cx | 0.00712 |
Circuit Properties
" + } + }, + "ad3dbc4974774b2fa7114c602987ed4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "ade0a1cf0b3a46baaedc39f025ffdbb0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "grid_gap": "0px 0px", + "grid_template_areas": "\n \"left right right right\"\n \"bottom bottom bottom bottom\"\n ", + "grid_template_columns": "31% 23% 23% 23%", + "grid_template_rows": "auto auto" + } + }, + "afc56bc4612b4c3eaea4a9fe4ace6dce": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "grid_area": "right" + } + }, + "b1f204f1502640f28b817d4178016b9b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": {} + }, + "b348f8e7cdc54c89aa1fc1a70e0ab518": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "TabModel", + "state": { + "_titles": { + "0": "Configuration", + "1": "Qubit Properties", + "2": "Multi-Qubit Gates", + "3": "Error Map", + "4": "Job History" + }, + "children": [ + "IPY_MODEL_b53ff551702347eba6a46ddc4cb7f2fe", + "IPY_MODEL_396d5eea41404a1fb3bf190bcc821bc5", + "IPY_MODEL_92a5dca6784046a18e81e10d61afa119", + "IPY_MODEL_f7f4cfc0d755411f89a0bdce5dcad88e", + "IPY_MODEL_09c2053b68af4162b72b94bbd39e2d10" + ], + "layout": "IPY_MODEL_d498823102984e0081af43104c967ca4" + } + }, + "b53ff551702347eba6a46ddc4cb7f2fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "GridBoxModel", + "state": { + "children": [ + "IPY_MODEL_71fea12ba96e44168cd4fae223e18325", + "IPY_MODEL_6211098838b44d6f83f01301b6bcc823", + "IPY_MODEL_882164748d60474caf727353d875cc24" + ], + "layout": "IPY_MODEL_4a245758633a4388a0ce5a5ff5bd594e" + } + }, + "b5865e92f36b4f5e8bac678873837a50": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "b5a308681d1b4c27a2909817fa86947c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "b5fad6f29174493d874966f16229b04f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "width": "190px" + } + }, + "b7b54ed14be149b4a97c353f453d1ff2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "bbae36f498ff4143b10a780c0d160201": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "grid_area": "right" + } + }, + "bdd500a138c349dba647397770c3afac": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "grid_area": "middle" + } + }, + "be167568476440688a87221c8e63add6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "align_items": "center", + "display": "flex-inline", + "grid_area": "right", + "max_height": "325px", + "padding": "10px 10px 10px 10px", + "width": "auto" + } + }, + "be552461accd4f76a6d642205f2b89f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_94d6d3c309b0477bb1d66e1716df43ab", + "style": "IPY_MODEL_a56b194594ef49c88f63173ae26d6819", + "value": "Property | Value |
---|---|
n_qubits | 5 |
quantum_volume | 32 |
operational | True |
status_msg | active |
pending_jobs | 3 |
backend_version | 1.0.0 |
basis_gates | ['id', 'u1', 'u2', 'u3', 'cx'] |
max_shots | 8192 |
max_experiments | 75 |
Frequency | T1 | T2 | U1 gate error | U2 gate error | U3 gate error | Readout error | |
---|---|---|---|---|---|---|---|
Q0 | 4.83343 GHz | 92.68711 µs | 157.17411 µs | 0 | 0.00022 | 0.00044 | 0.0125 |
Q1 | 4.62385 GHz | 88.58389 µs | 94.28362 µs | 0 | 0.00016 | 0.00033 | 0.0205 |
Q2 | 4.82053 GHz | 148.28351 µs | 93.83139 µs | 0 | 0.00025 | 0.00049 | 0.014 |
Q3 | 4.74233 GHz | 183.80524 µs | 133.6838 µs | 0 | 0.00034 | 0.00067 | 0.0205 |
Q4 | 4.81632 GHz | 139.69121 µs | 161.77685 µs | 0 | 0.00027 | 0.00055 | 0.0185 |
Type | Gate error | |
---|---|---|
cx2_1 | cx | 0.00697 |
cx2_3 | cx | 0.00797 |
cx3_2 | cx | 0.00797 |
Type | Gate error | |
---|---|---|
cx0_1 | cx | 0.00677 |
cx1_0 | cx | 0.00677 |
cx1_2 | cx | 0.00697 |
Circuit Properties
" + } + }, + "ffa650e4fccf4d36b4aa8bbc72378b4e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "grid_area": "left" + } + } + }, + "version_major": 2, + "version_minor": 0 + } } }, "nbformat": 4,