From 379b920fa7340caa2bab9b7b0b785462c57eae4d Mon Sep 17 00:00:00 2001 From: EllaKaye Date: Mon, 22 Jan 2024 14:06:53 +0000 Subject: [PATCH 01/12] Add penguins and penguins_raw datasets --- src/library/datasets/data-raw/penguins.R | 27 + src/library/datasets/data-raw/penguins_raw.R | 97 ++ src/library/datasets/data/penguins.R | 350 ++++++ src/library/datasets/data/penguins_raw.R | 1146 ++++++++++++++++++ src/library/datasets/man/penguins.Rd | 37 + src/library/datasets/man/penguins_raw.Rd | 44 + 6 files changed, 1701 insertions(+) create mode 100644 src/library/datasets/data-raw/penguins.R create mode 100644 src/library/datasets/data-raw/penguins_raw.R create mode 100644 src/library/datasets/data/penguins.R create mode 100644 src/library/datasets/data/penguins_raw.R create mode 100644 src/library/datasets/man/penguins.Rd create mode 100644 src/library/datasets/man/penguins_raw.Rd diff --git a/src/library/datasets/data-raw/penguins.R b/src/library/datasets/data-raw/penguins.R new file mode 100644 index 00000000000..b6d811f60c2 --- /dev/null +++ b/src/library/datasets/data-raw/penguins.R @@ -0,0 +1,27 @@ +# Code adapted from the palmerpenguin package +# by Allison Horst, Alison Hill, and Kristen Gorman +# https://github.com/allisonhorst/palmerpenguins + +source("./src/library/datasets/data/penguins_raw.R") + +penguins <- penguins_raw[, c("Species", "Island", + "Culmen Length (mm)", "Culmen Depth (mm)", + "Flipper Length (mm)", "Body Mass (g)", + "Sex", "Date Egg")] +colnames(penguins) <- c( + "species", "island", "bill_length_mm", "bill_depth_mm", "flipper_length_mm", + "body_mass_g", "sex", "year" +) +penguins$species <- regmatches(penguins$species, + regexpr("^\\w+\\b", penguins$species)) +penguins$species <- as.factor(penguins$species) +penguins$island <- as.factor(penguins$island) +penguins$flipper_length_mm <- as.integer(penguins$flipper_length_mm) +penguins$body_mass_g <- as.integer(penguins$body_mass_g) +penguins$sex <- tolower(penguins$sex) +penguins$sex <- as.factor(penguins$sex) +penguins$year <- regmatches(penguins$year, + regexpr("\\d{4}", penguins$year)) +penguins$year <- as.integer(penguins$year) + +dump("penguins", "./src/library/datasets/data/penguins.R") \ No newline at end of file diff --git a/src/library/datasets/data-raw/penguins_raw.R b/src/library/datasets/data-raw/penguins_raw.R new file mode 100644 index 00000000000..8c9332603df --- /dev/null +++ b/src/library/datasets/data-raw/penguins_raw.R @@ -0,0 +1,97 @@ +# Code adapted from the palmerpenguin package +# by Allison Horst, Alison Hill, and Kristen Gorman +# https://github.com/allisonhorst/palmerpenguins + +# penguins raw ------------------------------------------------------------ + +# Download raw data +# Adelie penguin data from: https://doi.org/10.6073/pasta/abc50eed9138b75f54eaada0841b9b86 +uri_adelie <- "https://portal.edirepository.org/nis/dataviewer?packageid=knb-lter-pal.219.3&entityid=002f3893385f710df69eeebe893144ff" + +# Gentoo penguin data from: https://doi.org/10.6073/pasta/2b1cff60f81640f182433d23e68541ce +uri_gentoo <- "https://portal.edirepository.org/nis/dataviewer?packageid=knb-lter-pal.220.3&entityid=e03b43c924f226486f2f0ab6709d2381" + +# Chinstrap penguin data from: https://doi.org/10.6073/pasta/409c808f8fc9899d02401bdb04580af7 +uri_chinstrap <- "https://portal.edirepository.org/nis/dataviewer?packageid=knb-lter-pal.221.2&entityid=fe853aa8f7a59aa84cdd3197619ef462" + +# Combining the URIs +uris <- c(uri_adelie, uri_gentoo, uri_chinstrap) + +# Download data and combine into one dataframe +penguins_raw_list <- lapply(uris, read.csv) +penguins_raw <- do.call(rbind, penguins_raw_list) + +# Adjustments to make penguins_raw identical to palmerpenguins:::penguins_raw +penguins_raw$Sample.Number <- as.numeric(penguins_raw$Sample.Number) +penguins_raw$Date.Egg <- as.Date(penguins_raw$Date.Egg) +penguins_raw$Flipper.Length..mm. <- as.numeric(penguins_raw$Flipper.Length..mm.) +penguins_raw$Body.Mass..g. <- as.numeric(penguins_raw$Body.Mass..g.) +penguins_raw$Sex <- replace(penguins_raw$Sex, penguins_raw$Sex %in% c("", "."), NA) +penguins_raw$Comments <- replace(penguins_raw$Comments, penguins_raw$Comments == "", NA) + +colnames(penguins_raw) <- c( + "studyName", "Sample Number", "Species", "Region", "Island", "Stage", + "Individual ID", "Clutch Completion", "Date Egg", "Culmen Length (mm)", + "Culmen Depth (mm)", "Flipper Length (mm)", "Body Mass (g)", "Sex", + "Delta 15 N (o/oo)", "Delta 13 C (o/oo)", "Comments" +) + +# add sample numbers that correspond to test/train set in Gorman et al. (2014) +# these have been provided by Kristen Gorman +ADPE_train_sample_nums <- c( + 1, 2, 3, 5, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 32, 33, + 34, 41, 42, 43, 45, 46, 47, 49, 50, 52, 56, 57, 61, 62, 63, 64, 66, 67, 71, + 73, 74, 76, 78, 81, 84, 85, 88, 89, 91, 92, 93, 94, 95, 96, 98, 99, 102, + 104, 105, 107, 108, 112, 113, 115, 116, 117, 118, 119, 120, 123, 124, 125, + 128, 129, 130, 133, 136, 138, 142, 143, 144, 145, 147, 148, 149, 150, 151, + 152 +) + +ADPE_test_sample_nums <- c( + 6, 13, 15, 28, 35, 36, 37, 38, 44, 51, 53, 54, 55, 58, 59, 60, 65, 68, 72, + 75, 77, 79, 80, 82, 83, 86, 87, 90, 97, 100, 101, 103, 106, 109, 110, 111, + 114, 126, 127, 134, 135, 137, 141, 146 +) + +CHPE_train_sample_nums <- c( + 3, 5, 6, 7, 8, 9, 13, 15, 16, 19, 22, 29, 30, 32, 33, 34, 35, 37, 41, 42, + 43, 45, 47, 48, 50, 52, 53, 54, 55, 56, 57, 58, 61, 63, 67, 68 +) + +CHPE_test_sample_nums <- c(4, 10, 11, 12, 14, 20, 21, 31, 36, 38, 44, 46, 49, + 51, 59, 60, 62, 64) + +GEPE_train_sample_nums <- c( + 2, 4, 5, 7, 9, 10, 13, 14, 15, 20, 21, 22, 24, 25, 26, 28, 30, 31, 32, 33, + 34, 35, 36, 37, 38, 39, 40, 44, 49, 50, 52, 53, 54, 55, 60, 62, 63, 64, 65, + 66, 69, 70, 73, 75, 76, 77, 78, 79, 82, 84, 85, 86, 89, 90, 91, 93, 94, 95, + 97, 98, 99, 101, 102, 103, 106, 109, 110, 112, 114, 115, 118, 121, 123, 124 +) + +GEPE_test_sample_nums <- c( + 1, 3, 6, 8, 16, 17, 18, 19, 23, 29, 43, 45, 46, 51, 56, 57, 58, 59, 61, 68, + 71, 72, 74, 80, 81, 83, 87, 88, 92, 96, 100, 104, 107, 108, 111, 113, 116, + 122 +) + +# get count of each species +n_Adelie <- sum(grepl("Adelie", penguins_raw$Species)) +n_Gentoo <- sum(grepl("Gentoo", penguins_raw$Species)) +n_Chinstrap <- sum(grepl("Chinstrap", penguins_raw$Species)) + +# vector of train/test for each species, then together +Adelie_sample <- rep(NA, n_Adelie) +Adelie_sample[ADPE_train_sample_nums] <- "train" +Adelie_sample[ADPE_test_sample_nums] <- "test" +Gentoo_sample <- rep(NA, n_Gentoo) +Gentoo_sample[GEPE_train_sample_nums] <- "train" +Gentoo_sample[GEPE_test_sample_nums] <- "test" +Chinstrap_sample <- rep(NA, n_Chinstrap) +Chinstrap_sample[CHPE_train_sample_nums] <- "train" +Chinstrap_sample[CHPE_test_sample_nums] <- "test" +Sample <- c(Adelie_sample, Gentoo_sample, Chinstrap_sample) + +# Add sample column to penguins_raw +penguins_raw$Sample <- Sample + +dump("penguins_raw", "./src/library/datasets/data/penguins_raw.R") diff --git a/src/library/datasets/data/penguins.R b/src/library/datasets/data/penguins.R new file mode 100644 index 00000000000..06c12f1eadb --- /dev/null +++ b/src/library/datasets/data/penguins.R @@ -0,0 +1,350 @@ +penguins <- +structure(list(species = structure(c(1L, 1L, 1L, 1L, 1L, 1L, +1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, +1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, +1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, +1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, +1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, +1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, +1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, +1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, +1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, +1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, +3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, +3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, +3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, +3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, +3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, +3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, +3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, +2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, +2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, +2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, +2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, +2L, 2L), levels = c("Adelie", "Chinstrap", "Gentoo"), class = "factor"), + island = structure(c(3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, + 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, + 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, + 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, + 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, + 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, + 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, + 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, + 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, + 3L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, + 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, + 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, + 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, + 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, + 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, + 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, + 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, + 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, + 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, + 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, + 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, + 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, + 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, + 2L, 2L, 2L, 2L, 2L), levels = c("Biscoe", "Dream", "Torgersen" + ), class = "factor"), bill_length_mm = c(39.100000000000001, + 39.5, 40.299999999999997, NA, 36.700000000000003, 39.299999999999997, + 38.899999999999999, 39.200000000000003, 34.100000000000001, + 42, 37.799999999999997, 37.799999999999997, 41.100000000000001, + 38.600000000000001, 34.600000000000001, 36.600000000000001, + 38.700000000000003, 42.5, 34.399999999999999, 46, 37.799999999999997, + 37.700000000000003, 35.899999999999999, 38.200000000000003, + 38.799999999999997, 35.299999999999997, 40.600000000000001, + 40.5, 37.899999999999999, 40.5, 39.5, 37.200000000000003, + 39.5, 40.899999999999999, 36.399999999999999, 39.200000000000003, + 38.799999999999997, 42.200000000000003, 37.600000000000001, + 39.799999999999997, 36.5, 40.799999999999997, 36, 44.100000000000001, + 37, 39.600000000000001, 41.100000000000001, 37.5, 36, 42.299999999999997, + 39.600000000000001, 40.100000000000001, 35, 42, 34.5, 41.399999999999999, + 39, 40.600000000000001, 36.5, 37.600000000000001, 35.700000000000003, + 41.299999999999997, 37.600000000000001, 41.100000000000001, + 36.399999999999999, 41.600000000000001, 35.5, 41.100000000000001, + 35.899999999999999, 41.799999999999997, 33.5, 39.700000000000003, + 39.600000000000001, 45.799999999999997, 35.5, 42.799999999999997, + 40.899999999999999, 37.200000000000003, 36.200000000000003, + 42.100000000000001, 34.600000000000001, 42.899999999999999, + 36.700000000000003, 35.100000000000001, 37.299999999999997, + 41.299999999999997, 36.299999999999997, 36.899999999999999, + 38.299999999999997, 38.899999999999999, 35.700000000000003, + 41.100000000000001, 34, 39.600000000000001, 36.200000000000003, + 40.799999999999997, 38.100000000000001, 40.299999999999997, + 33.100000000000001, 43.200000000000003, 35, 41, 37.700000000000003, + 37.799999999999997, 37.899999999999999, 39.700000000000003, + 38.600000000000001, 38.200000000000003, 38.100000000000001, + 43.200000000000003, 38.100000000000001, 45.600000000000001, + 39.700000000000003, 42.200000000000003, 39.600000000000001, + 42.700000000000003, 38.600000000000001, 37.299999999999997, + 35.700000000000003, 41.100000000000001, 36.200000000000003, + 37.700000000000003, 40.200000000000003, 41.399999999999999, + 35.200000000000003, 40.600000000000001, 38.799999999999997, + 41.5, 39, 44.100000000000001, 38.5, 43.100000000000001, 36.799999999999997, + 37.5, 38.100000000000001, 41.100000000000001, 35.600000000000001, + 40.200000000000003, 37, 39.700000000000003, 40.200000000000003, + 40.600000000000001, 32.100000000000001, 40.700000000000003, + 37.299999999999997, 39, 39.200000000000003, 36.600000000000001, + 36, 37.799999999999997, 36, 41.5, 46.100000000000001, 50, + 48.700000000000003, 50, 47.600000000000001, 46.5, 45.399999999999999, + 46.700000000000003, 43.299999999999997, 46.799999999999997, + 40.899999999999999, 49, 45.5, 48.399999999999999, 45.799999999999997, + 49.299999999999997, 42, 49.200000000000003, 46.200000000000003, + 48.700000000000003, 50.200000000000003, 45.100000000000001, + 46.5, 46.299999999999997, 42.899999999999999, 46.100000000000001, + 44.5, 47.799999999999997, 48.200000000000003, 50, 47.299999999999997, + 42.799999999999997, 45.100000000000001, 59.600000000000001, + 49.100000000000001, 48.399999999999999, 42.600000000000001, + 44.399999999999999, 44, 48.700000000000003, 42.700000000000003, + 49.600000000000001, 45.299999999999997, 49.600000000000001, + 50.5, 43.600000000000001, 45.5, 50.5, 44.899999999999999, + 45.200000000000003, 46.600000000000001, 48.5, 45.100000000000001, + 50.100000000000001, 46.5, 45, 43.799999999999997, 45.5, 43.200000000000003, + 50.399999999999999, 45.299999999999997, 46.200000000000003, + 45.700000000000003, 54.299999999999997, 45.799999999999997, + 49.799999999999997, 46.200000000000003, 49.5, 43.5, 50.700000000000003, + 47.700000000000003, 46.399999999999999, 48.200000000000003, + 46.5, 46.399999999999999, 48.600000000000001, 47.5, 51.100000000000001, + 45.200000000000003, 45.200000000000003, 49.100000000000001, + 52.5, 47.399999999999999, 50, 44.899999999999999, 50.799999999999997, + 43.399999999999999, 51.299999999999997, 47.5, 52.100000000000001, + 47.5, 52.200000000000003, 45.5, 49.5, 44.5, 50.799999999999997, + 49.399999999999999, 46.899999999999999, 48.399999999999999, + 51.100000000000001, 48.5, 55.899999999999999, 47.200000000000003, + 49.100000000000001, 47.299999999999997, 46.799999999999997, + 41.700000000000003, 53.399999999999999, 43.299999999999997, + 48.100000000000001, 50.5, 49.799999999999997, 43.5, 51.5, + 46.200000000000003, 55.100000000000001, 44.5, 48.799999999999997, + 47.200000000000003, NA, 46.799999999999997, 50.399999999999999, + 45.200000000000003, 49.899999999999999, 46.5, 50, 51.299999999999997, + 45.399999999999999, 52.700000000000003, 45.200000000000003, + 46.100000000000001, 51.299999999999997, 46, 51.299999999999997, + 46.600000000000001, 51.700000000000003, 47, 52, 45.899999999999999, + 50.5, 50.299999999999997, 58, 46.399999999999999, 49.200000000000003, + 42.399999999999999, 48.5, 43.200000000000003, 50.600000000000001, + 46.700000000000003, 52, 50.5, 49.5, 46.399999999999999, 52.799999999999997, + 40.899999999999999, 54.200000000000003, 42.5, 51, 49.700000000000003, + 47.5, 47.600000000000001, 52, 46.899999999999999, 53.5, 49, + 46.200000000000003, 50.899999999999999, 45.5, 50.899999999999999, + 50.799999999999997, 50.100000000000001, 49, 51.5, 49.799999999999997, + 48.100000000000001, 51.399999999999999, 45.700000000000003, + 50.700000000000003, 42.5, 52.200000000000003, 45.200000000000003, + 49.299999999999997, 50.200000000000003, 45.600000000000001, + 51.899999999999999, 46.799999999999997, 45.700000000000003, + 55.799999999999997, 43.5, 49.600000000000001, 50.799999999999997, + 50.200000000000003), bill_depth_mm = c(18.699999999999999, + 17.399999999999999, 18, NA, 19.300000000000001, 20.600000000000001, + 17.800000000000001, 19.600000000000001, 18.100000000000001, + 20.199999999999999, 17.100000000000001, 17.300000000000001, + 17.600000000000001, 21.199999999999999, 21.100000000000001, + 17.800000000000001, 19, 20.699999999999999, 18.399999999999999, + 21.5, 18.300000000000001, 18.699999999999999, 19.199999999999999, + 18.100000000000001, 17.199999999999999, 18.899999999999999, + 18.600000000000001, 17.899999999999999, 18.600000000000001, + 18.899999999999999, 16.699999999999999, 18.100000000000001, + 17.800000000000001, 18.899999999999999, 17, 21.100000000000001, + 20, 18.5, 19.300000000000001, 19.100000000000001, 18, 18.399999999999999, + 18.5, 19.699999999999999, 16.899999999999999, 18.800000000000001, + 19, 18.899999999999999, 17.899999999999999, 21.199999999999999, + 17.699999999999999, 18.899999999999999, 17.899999999999999, + 19.5, 18.100000000000001, 18.600000000000001, 17.5, 18.800000000000001, + 16.600000000000001, 19.100000000000001, 16.899999999999999, + 21.100000000000001, 17, 18.199999999999999, 17.100000000000001, + 18, 16.199999999999999, 19.100000000000001, 16.600000000000001, + 19.399999999999999, 19, 18.399999999999999, 17.199999999999999, + 18.899999999999999, 17.5, 18.5, 16.800000000000001, 19.399999999999999, + 16.100000000000001, 19.100000000000001, 17.199999999999999, + 17.600000000000001, 18.800000000000001, 19.399999999999999, + 17.800000000000001, 20.300000000000001, 19.5, 18.600000000000001, + 19.199999999999999, 18.800000000000001, 18, 18.100000000000001, + 17.100000000000001, 18.100000000000001, 17.300000000000001, + 18.899999999999999, 18.600000000000001, 18.5, 16.100000000000001, + 18.5, 17.899999999999999, 20, 16, 20, 18.600000000000001, + 18.899999999999999, 17.199999999999999, 20, 17, 19, 16.5, + 20.300000000000001, 17.699999999999999, 19.5, 20.699999999999999, + 18.300000000000001, 17, 20.5, 17, 18.600000000000001, 17.199999999999999, + 19.800000000000001, 17, 18.5, 15.9, 19, 17.600000000000001, + 18.300000000000001, 17.100000000000001, 18, 17.899999999999999, + 19.199999999999999, 18.5, 18.5, 17.600000000000001, 17.5, + 17.5, 20.100000000000001, 16.5, 17.899999999999999, 17.100000000000001, + 17.199999999999999, 15.5, 17, 16.800000000000001, 18.699999999999999, + 18.600000000000001, 18.399999999999999, 17.800000000000001, + 18.100000000000001, 17.100000000000001, 18.5, 13.199999999999999, + 16.300000000000001, 14.1, 15.199999999999999, 14.5, 13.5, + 14.6, 15.300000000000001, 13.4, 15.4, 13.699999999999999, + 16.100000000000001, 13.699999999999999, 14.6, 14.6, 15.699999999999999, + 13.5, 15.199999999999999, 14.5, 15.1, 14.300000000000001, + 14.5, 14.5, 15.800000000000001, 13.1, 15.1, 14.300000000000001, + 15, 14.300000000000001, 15.300000000000001, 15.300000000000001, + 14.199999999999999, 14.5, 17, 14.800000000000001, 16.300000000000001, + 13.699999999999999, 17.300000000000001, 13.6, 15.699999999999999, + 13.699999999999999, 16, 13.699999999999999, 15, 15.9, 13.9, + 13.9, 15.9, 13.300000000000001, 15.800000000000001, 14.199999999999999, + 14.1, 14.4, 15, 14.4, 15.4, 13.9, 15, 14.5, 15.300000000000001, + 13.800000000000001, 14.9, 13.9, 15.699999999999999, 14.199999999999999, + 16.800000000000001, 14.4, 16.199999999999999, 14.199999999999999, + 15, 15, 15.6, 15.6, 14.800000000000001, 15, 16, 14.199999999999999, + 16.300000000000001, 13.800000000000001, 16.399999999999999, + 14.5, 15.6, 14.6, 15.9, 13.800000000000001, 17.300000000000001, + 14.4, 14.199999999999999, 14, 17, 15, 17.100000000000001, + 14.5, 16.100000000000001, 14.699999999999999, 15.699999999999999, + 15.800000000000001, 14.6, 14.4, 16.5, 15, 17, 15.5, 15, 13.800000000000001, + 16.100000000000001, 14.699999999999999, 15.800000000000001, + 14, 15.1, 15.199999999999999, 15.9, 15.199999999999999, 16.300000000000001, + 14.1, 16, 15.699999999999999, 16.199999999999999, 13.699999999999999, + NA, 14.300000000000001, 15.699999999999999, 14.800000000000001, + 16.100000000000001, 17.899999999999999, 19.5, 19.199999999999999, + 18.699999999999999, 19.800000000000001, 17.800000000000001, + 18.199999999999999, 18.199999999999999, 18.899999999999999, + 19.899999999999999, 17.800000000000001, 20.300000000000001, + 17.300000000000001, 18.100000000000001, 17.100000000000001, + 19.600000000000001, 20, 17.800000000000001, 18.600000000000001, + 18.199999999999999, 17.300000000000001, 17.5, 16.600000000000001, + 19.399999999999999, 17.899999999999999, 19, 18.399999999999999, + 19, 17.800000000000001, 20, 16.600000000000001, 20.800000000000001, + 16.699999999999999, 18.800000000000001, 18.600000000000001, + 16.800000000000001, 18.300000000000001, 20.699999999999999, + 16.600000000000001, 19.899999999999999, 19.5, 17.5, 19.100000000000001, + 17, 17.899999999999999, 18.5, 17.899999999999999, 19.600000000000001, + 18.699999999999999, 17.300000000000001, 16.399999999999999, + 19, 17.300000000000001, 19.699999999999999, 17.300000000000001, + 18.800000000000001, 16.600000000000001, 19.899999999999999, + 18.800000000000001, 19.399999999999999, 19.5, 16.5, 17, 19.800000000000001, + 18.100000000000001, 18.199999999999999, 19, 18.699999999999999 + ), flipper_length_mm = c(181L, 186L, 195L, NA, 193L, 190L, + 181L, 195L, 193L, 190L, 186L, 180L, 182L, 191L, 198L, 185L, + 195L, 197L, 184L, 194L, 174L, 180L, 189L, 185L, 180L, 187L, + 183L, 187L, 172L, 180L, 178L, 178L, 188L, 184L, 195L, 196L, + 190L, 180L, 181L, 184L, 182L, 195L, 186L, 196L, 185L, 190L, + 182L, 179L, 190L, 191L, 186L, 188L, 190L, 200L, 187L, 191L, + 186L, 193L, 181L, 194L, 185L, 195L, 185L, 192L, 184L, 192L, + 195L, 188L, 190L, 198L, 190L, 190L, 196L, 197L, 190L, 195L, + 191L, 184L, 187L, 195L, 189L, 196L, 187L, 193L, 191L, 194L, + 190L, 189L, 189L, 190L, 202L, 205L, 185L, 186L, 187L, 208L, + 190L, 196L, 178L, 192L, 192L, 203L, 183L, 190L, 193L, 184L, + 199L, 190L, 181L, 197L, 198L, 191L, 193L, 197L, 191L, 196L, + 188L, 199L, 189L, 189L, 187L, 198L, 176L, 202L, 186L, 199L, + 191L, 195L, 191L, 210L, 190L, 197L, 193L, 199L, 187L, 190L, + 191L, 200L, 185L, 193L, 193L, 187L, 188L, 190L, 192L, 185L, + 190L, 184L, 195L, 193L, 187L, 201L, 211L, 230L, 210L, 218L, + 215L, 210L, 211L, 219L, 209L, 215L, 214L, 216L, 214L, 213L, + 210L, 217L, 210L, 221L, 209L, 222L, 218L, 215L, 213L, 215L, + 215L, 215L, 216L, 215L, 210L, 220L, 222L, 209L, 207L, 230L, + 220L, 220L, 213L, 219L, 208L, 208L, 208L, 225L, 210L, 216L, + 222L, 217L, 210L, 225L, 213L, 215L, 210L, 220L, 210L, 225L, + 217L, 220L, 208L, 220L, 208L, 224L, 208L, 221L, 214L, 231L, + 219L, 230L, 214L, 229L, 220L, 223L, 216L, 221L, 221L, 217L, + 216L, 230L, 209L, 220L, 215L, 223L, 212L, 221L, 212L, 224L, + 212L, 228L, 218L, 218L, 212L, 230L, 218L, 228L, 212L, 224L, + 214L, 226L, 216L, 222L, 203L, 225L, 219L, 228L, 215L, 228L, + 216L, 215L, 210L, 219L, 208L, 209L, 216L, 229L, 213L, 230L, + 217L, 230L, 217L, 222L, 214L, NA, 215L, 222L, 212L, 213L, + 192L, 196L, 193L, 188L, 197L, 198L, 178L, 197L, 195L, 198L, + 193L, 194L, 185L, 201L, 190L, 201L, 197L, 181L, 190L, 195L, + 181L, 191L, 187L, 193L, 195L, 197L, 200L, 200L, 191L, 205L, + 187L, 201L, 187L, 203L, 195L, 199L, 195L, 210L, 192L, 205L, + 210L, 187L, 196L, 196L, 196L, 201L, 190L, 212L, 187L, 198L, + 199L, 201L, 193L, 203L, 187L, 197L, 191L, 203L, 202L, 194L, + 206L, 189L, 195L, 207L, 202L, 193L, 210L, 198L), body_mass_g = c(3750L, + 3800L, 3250L, NA, 3450L, 3650L, 3625L, 4675L, 3475L, 4250L, + 3300L, 3700L, 3200L, 3800L, 4400L, 3700L, 3450L, 4500L, 3325L, + 4200L, 3400L, 3600L, 3800L, 3950L, 3800L, 3800L, 3550L, 3200L, + 3150L, 3950L, 3250L, 3900L, 3300L, 3900L, 3325L, 4150L, 3950L, + 3550L, 3300L, 4650L, 3150L, 3900L, 3100L, 4400L, 3000L, 4600L, + 3425L, 2975L, 3450L, 4150L, 3500L, 4300L, 3450L, 4050L, 2900L, + 3700L, 3550L, 3800L, 2850L, 3750L, 3150L, 4400L, 3600L, 4050L, + 2850L, 3950L, 3350L, 4100L, 3050L, 4450L, 3600L, 3900L, 3550L, + 4150L, 3700L, 4250L, 3700L, 3900L, 3550L, 4000L, 3200L, 4700L, + 3800L, 4200L, 3350L, 3550L, 3800L, 3500L, 3950L, 3600L, 3550L, + 4300L, 3400L, 4450L, 3300L, 4300L, 3700L, 4350L, 2900L, 4100L, + 3725L, 4725L, 3075L, 4250L, 2925L, 3550L, 3750L, 3900L, 3175L, + 4775L, 3825L, 4600L, 3200L, 4275L, 3900L, 4075L, 2900L, 3775L, + 3350L, 3325L, 3150L, 3500L, 3450L, 3875L, 3050L, 4000L, 3275L, + 4300L, 3050L, 4000L, 3325L, 3500L, 3500L, 4475L, 3425L, 3900L, + 3175L, 3975L, 3400L, 4250L, 3400L, 3475L, 3050L, 3725L, 3000L, + 3650L, 4250L, 3475L, 3450L, 3750L, 3700L, 4000L, 4500L, 5700L, + 4450L, 5700L, 5400L, 4550L, 4800L, 5200L, 4400L, 5150L, 4650L, + 5550L, 4650L, 5850L, 4200L, 5850L, 4150L, 6300L, 4800L, 5350L, + 5700L, 5000L, 4400L, 5050L, 5000L, 5100L, 4100L, 5650L, 4600L, + 5550L, 5250L, 4700L, 5050L, 6050L, 5150L, 5400L, 4950L, 5250L, + 4350L, 5350L, 3950L, 5700L, 4300L, 4750L, 5550L, 4900L, 4200L, + 5400L, 5100L, 5300L, 4850L, 5300L, 4400L, 5000L, 4900L, 5050L, + 4300L, 5000L, 4450L, 5550L, 4200L, 5300L, 4400L, 5650L, 4700L, + 5700L, 4650L, 5800L, 4700L, 5550L, 4750L, 5000L, 5100L, 5200L, + 4700L, 5800L, 4600L, 6000L, 4750L, 5950L, 4625L, 5450L, 4725L, + 5350L, 4750L, 5600L, 4600L, 5300L, 4875L, 5550L, 4950L, 5400L, + 4750L, 5650L, 4850L, 5200L, 4925L, 4875L, 4625L, 5250L, 4850L, + 5600L, 4975L, 5500L, 4725L, 5500L, 4700L, 5500L, 4575L, 5500L, + 5000L, 5950L, 4650L, 5500L, 4375L, 5850L, 4875L, 6000L, 4925L, + NA, 4850L, 5750L, 5200L, 5400L, 3500L, 3900L, 3650L, 3525L, + 3725L, 3950L, 3250L, 3750L, 4150L, 3700L, 3800L, 3775L, 3700L, + 4050L, 3575L, 4050L, 3300L, 3700L, 3450L, 4400L, 3600L, 3400L, + 2900L, 3800L, 3300L, 4150L, 3400L, 3800L, 3700L, 4550L, 3200L, + 4300L, 3350L, 4100L, 3600L, 3900L, 3850L, 4800L, 2700L, 4500L, + 3950L, 3650L, 3550L, 3500L, 3675L, 4450L, 3400L, 4300L, 3250L, + 3675L, 3325L, 3950L, 3600L, 4050L, 3350L, 3450L, 3250L, 4050L, + 3800L, 3525L, 3950L, 3650L, 3650L, 4000L, 3400L, 3775L, 4100L, + 3775L), sex = structure(c(2L, 1L, 1L, NA, 1L, 2L, 1L, 2L, + NA, NA, NA, NA, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, + 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, + 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, NA, 1L, 2L, 1L, 2L, 1L, + 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, + 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, + 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, + 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, + 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, + 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, + 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, + 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, + 1L, 1L, 2L, 1L, 2L, NA, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, + 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, + 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, + NA, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, + 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, + 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, NA, 2L, 1L, 2L, 1L, 2L, 1L, + 2L, 1L, 2L, 1L, 2L, NA, 2L, 1L, NA, 1L, 2L, 1L, 2L, 1L, 2L, + 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, + 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, + 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, + 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, + 1L, 2L, 1L, 2L, 2L, 1L), levels = c("female", "male"), class = "factor"), + year = c(2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, + 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, + 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, + 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, + 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, + 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2008L, 2008L, + 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, + 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, + 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, + 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, + 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, + 2008L, 2008L, 2008L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, + 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, + 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, + 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, + 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, + 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, + 2009L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, + 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, + 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, + 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2008L, + 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, + 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, + 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, + 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, + 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, + 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, + 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, + 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, + 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, + 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2007L, + 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, + 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, + 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2008L, 2008L, + 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, + 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2009L, 2009L, + 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, + 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, + 2009L, 2009L, 2009L, 2009L)), row.names = c(NA, -344L), class = "data.frame") diff --git a/src/library/datasets/data/penguins_raw.R b/src/library/datasets/data/penguins_raw.R new file mode 100644 index 00000000000..93bf69157f5 --- /dev/null +++ b/src/library/datasets/data/penguins_raw.R @@ -0,0 +1,1146 @@ +penguins_raw <- +structure(list(studyName = c("PAL0708", "PAL0708", "PAL0708", +"PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", +"PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", +"PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", +"PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", +"PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", +"PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", +"PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", +"PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0809", +"PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", +"PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", +"PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", +"PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", +"PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", +"PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", +"PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", +"PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", +"PAL0809", "PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", +"PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", +"PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", +"PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", +"PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", +"PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", +"PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", +"PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", +"PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0708", +"PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", +"PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", +"PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", +"PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", +"PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", +"PAL0708", "PAL0708", "PAL0708", "PAL0809", "PAL0809", "PAL0809", +"PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", +"PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", +"PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", +"PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", +"PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", +"PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", +"PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", +"PAL0809", "PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", +"PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", +"PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", +"PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", +"PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", +"PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", +"PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", +"PAL0910", "PAL0910", "PAL0910", "PAL0708", "PAL0708", "PAL0708", +"PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", +"PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", +"PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", +"PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0708", "PAL0809", +"PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", +"PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", +"PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0809", "PAL0910", +"PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", +"PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", +"PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910", +"PAL0910", "PAL0910", "PAL0910", "PAL0910", "PAL0910"), `Sample Number` = c(1, +2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, +20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, +36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, +52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, +68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, +84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, +100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, +113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, +126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, +139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, +152, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, +18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, +34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, +50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, +66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, +82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, +98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, +111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, +124, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, +18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, +34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, +50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, +66, 67, 68), Species = c("Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Adelie Penguin (Pygoscelis adeliae)", +"Adelie Penguin (Pygoscelis adeliae)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Gentoo penguin (Pygoscelis papua)", +"Gentoo penguin (Pygoscelis papua)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)", "Chinstrap penguin (Pygoscelis antarctica)", +"Chinstrap penguin (Pygoscelis antarctica)"), Region = c("Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", +"Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers", "Anvers" +), Island = c("Torgersen", "Torgersen", "Torgersen", "Torgersen", +"Torgersen", "Torgersen", "Torgersen", "Torgersen", "Torgersen", +"Torgersen", "Torgersen", "Torgersen", "Torgersen", "Torgersen", +"Torgersen", "Torgersen", "Torgersen", "Torgersen", "Torgersen", +"Torgersen", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", +"Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Dream", "Dream", +"Dream", "Dream", "Dream", "Dream", "Dream", "Dream", "Dream", +"Dream", "Dream", "Dream", "Dream", "Dream", "Dream", "Dream", +"Dream", "Dream", "Dream", "Dream", "Biscoe", "Biscoe", "Biscoe", +"Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", +"Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", +"Biscoe", "Torgersen", "Torgersen", "Torgersen", "Torgersen", +"Torgersen", "Torgersen", "Torgersen", "Torgersen", "Torgersen", +"Torgersen", "Torgersen", "Torgersen", "Torgersen", "Torgersen", +"Torgersen", "Torgersen", "Dream", "Dream", "Dream", "Dream", +"Dream", "Dream", "Dream", "Dream", "Dream", "Dream", "Dream", +"Dream", "Dream", "Dream", "Dream", "Dream", "Biscoe", "Biscoe", +"Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", +"Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", +"Torgersen", "Torgersen", "Torgersen", "Torgersen", "Torgersen", +"Torgersen", "Torgersen", "Torgersen", "Torgersen", "Torgersen", +"Torgersen", "Torgersen", "Torgersen", "Torgersen", "Torgersen", +"Torgersen", "Dream", "Dream", "Dream", "Dream", "Dream", "Dream", +"Dream", "Dream", "Dream", "Dream", "Dream", "Dream", "Dream", +"Dream", "Dream", "Dream", "Dream", "Dream", "Dream", "Dream", +"Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", +"Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", +"Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", +"Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", +"Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", +"Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", +"Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", +"Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", +"Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", +"Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", +"Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", +"Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", +"Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", +"Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", +"Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", +"Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", +"Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", +"Biscoe", "Biscoe", "Biscoe", "Biscoe", "Biscoe", "Dream", "Dream", +"Dream", "Dream", "Dream", "Dream", "Dream", "Dream", "Dream", +"Dream", "Dream", "Dream", "Dream", "Dream", "Dream", "Dream", +"Dream", "Dream", "Dream", "Dream", "Dream", "Dream", "Dream", +"Dream", "Dream", "Dream", "Dream", "Dream", "Dream", "Dream", +"Dream", "Dream", "Dream", "Dream", "Dream", "Dream", "Dream", +"Dream", "Dream", "Dream", "Dream", "Dream", "Dream", "Dream", +"Dream", "Dream", "Dream", "Dream", "Dream", "Dream", "Dream", +"Dream", "Dream", "Dream", "Dream", "Dream", "Dream", "Dream", +"Dream", "Dream", "Dream", "Dream", "Dream", "Dream", "Dream", +"Dream", "Dream", "Dream"), Stage = c("Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage", +"Adult, 1 Egg Stage", "Adult, 1 Egg Stage", "Adult, 1 Egg Stage" +), `Individual ID` = c("N1A1", "N1A2", "N2A1", "N2A2", "N3A1", +"N3A2", "N4A1", "N4A2", "N5A1", "N5A2", "N6A1", "N6A2", "N7A1", +"N7A2", "N8A1", "N8A2", "N9A1", "N9A2", "N10A1", "N10A2", "N11A1", +"N11A2", "N12A1", "N12A2", "N13A1", "N13A2", "N17A1", "N17A2", +"N18A1", "N18A2", "N21A1", "N21A2", "N22A1", "N22A2", "N23A1", +"N23A2", "N24A1", "N24A2", "N25A1", "N25A2", "N26A1", "N26A2", +"N27A1", "N27A2", "N28A1", "N28A2", "N29A1", "N29A2", "N30A1", +"N30A2", "N21A1", "N21A2", "N22A1", "N22A2", "N23A1", "N23A2", +"N24A1", "N24A2", "N25A1", "N25A2", "N27A1", "N27A2", "N28A1", +"N28A2", "N29A1", "N29A2", "N30A1", "N30A2", "N32A1", "N32A2", +"N34A1", "N34A2", "N35A1", "N35A2", "N36A1", "N36A2", "N37A1", +"N37A2", "N38A1", "N38A2", "N39A1", "N39A2", "N40A1", "N40A2", +"N41A1", "N41A2", "N42A1", "N42A2", "N44A1", "N44A2", "N45A1", +"N45A2", "N46A1", "N46A2", "N48A1", "N48A2", "N49A1", "N49A2", +"N50A1", "N50A2", "N47A1", "N47A2", "N49A1", "N49A2", "N51A1", +"N51A2", "N53A1", "N53A2", "N55A1", "N55A2", "N58A1", "N58A2", +"N60A1", "N60A2", "N61A1", "N61A2", "N63A1", "N63A2", "N64A1", +"N64A2", "N66A1", "N66A2", "N67A1", "N67A2", "N69A1", "N69A2", +"N71A1", "N71A2", "N72A1", "N72A2", "N73A1", "N73A2", "N76A1", +"N76A2", "N77A1", "N77A2", "N78A1", "N78A2", "N79A1", "N79A2", +"N80A1", "N80A2", "N81A1", "N81A2", "N82A1", "N82A2", "N83A1", +"N83A2", "N84A1", "N84A2", "N85A1", "N85A2", "N31A1", "N31A2", +"N32A1", "N32A2", "N33A1", "N33A2", "N34A1", "N34A2", "N35A1", +"N35A2", "N36A1", "N36A2", "N37A1", "N37A2", "N38A1", "N38A2", +"N39A1", "N39A2", "N40A1", "N40A2", "N41A1", "N41A2", "N42A1", +"N42A2", "N44A1", "N44A2", "N46A1", "N46A2", "N47A1", "N47A2", +"N50A1", "N50A2", "N56A1", "N56A2", "N2A1", "N2A2", "N4A1", "N4A2", +"N5A1", "N5A2", "N6A1", "N6A2", "N7A1", "N7A2", "N8A1", "N8A2", +"N11A1", "N11A2", "N12A1", "N12A2", "N13A1", "N13A2", "N14A1", +"N14A2", "N15A1", "N15A2", "N16A1", "N16A2", "N17A1", "N17A2", +"N18A1", "N18A2", "N19A1", "N19A2", "N20A1", "N20A2", "N51A1", +"N51A2", "N53A1", "N53A2", "N54A1", "N54A2", "N55A1", "N55A2", +"N56A1", "N56A2", "N58A1", "N58A2", "N60A1", "N60A2", "N1A1", +"N1A2", "N6A1", "N6A2", "N8A1", "N8A2", "N13A1", "N13A2", "N14A1", +"N14A2", "N15A1", "N15A2", "N18A1", "N18A2", "N19A1", "N19A2", +"N20A1", "N20A2", "N21A1", "N21A2", "N22A1", "N22A2", "N23A1", +"N23A2", "N24A1", "N24A2", "N28A1", "N28A2", "N29A1", "N29A2", +"N32A1", "N32A2", "N34A1", "N34A2", "N35A1", "N35A2", "N36A1", +"N36A2", "N38A1", "N38A2", "N39A1", "N39A2", "N43A1", "N43A2", +"N61A1", "N61A2", "N62A1", "N62A2", "N64A1", "N64A2", "N66A1", +"N66A2", "N67A1", "N67A2", "N68A1", "N68A2", "N69A1", "N69A2", +"N70A1", "N70A2", "N71A1", "N71A2", "N72A1", "N72A2", "N73A1", +"N73A2", "N85A1", "N85A2", "N89A1", "N89A2", "N61A1", "N61A2", +"N62A1", "N62A2", "N63A1", "N63A2", "N65A1", "N65A2", "N67A1", +"N67A2", "N69A1", "N69A2", "N72A1", "N72A2", "N74A1", "N74A2", +"N75A1", "N75A2", "N86A1", "N86A2", "N87A1", "N87A2", "N88A1", +"N88A2", "N90A1", "N90A2", "N92A1", "N92A2", "N93A1", "N93A2", +"N94A1", "N94A2", "N95A1", "N95A2", "N96A1", "N96A2", "N98A1", +"N98A2", "N99A1", "N99A2", "N100A1", "N100A2"), `Clutch Completion` = c("Yes", +"Yes", "Yes", "Yes", "Yes", "Yes", "No", "No", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"No", "No", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "No", "No", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "No", "No", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "No", "No", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "No", "No", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "No", "No", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "No", +"No", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "No", "No", "Yes", "Yes", "Yes", "Yes", "No", "No", +"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "No", "No", +"Yes", "Yes", "Yes", "Yes", "No", "No", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "No", "No", "Yes", "Yes", "Yes", "Yes", "No", "No", +"No", "No", "No", "No", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "No", "No", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", +"Yes", "Yes", "Yes", "No", "No", "Yes", "Yes"), `Date Egg` = structure(c(13828, +13828, 13833, 13833, 13833, 13833, 13832, 13832, 13826, 13826, +13826, 13826, 13832, 13832, 13833, 13833, 13829, 13829, 13833, +13833, 13829, 13829, 13829, 13829, 13827, 13827, 13829, 13829, +13827, 13827, 13826, 13826, 13826, 13826, 13833, 13833, 13833, +13833, 13830, 13830, 13833, 13833, 13836, 13836, 13833, 13833, +13830, 13830, 13830, 13830, 14189, 14189, 14192, 14192, 14192, +14192, 14198, 14198, 14198, 14198, 14196, 14196, 14196, 14196, +14196, 14196, 14189, 14189, 14194, 14194, 14197, 14197, 14194, +14194, 14191, 14191, 14189, 14189, 14192, 14192, 14185, 14185, +14190, 14190, 14200, 14200, 14191, 14191, 14191, 14191, 14197, +14197, 14188, 14188, 14200, 14200, 14191, 14191, 14193, 14193, +14557, 14557, 14563, 14563, 14563, 14563, 14563, 14563, 14568, +14568, 14560, 14560, 14563, 14563, 14565, 14565, 14566, 14566, +14570, 14570, 14565, 14565, 14564, 14564, 14566, 14566, 14569, +14569, 14566, 14566, 14571, 14571, 14558, 14558, 14561, 14561, +14564, 14564, 14564, 14564, 14562, 14562, 14564, 14564, 14564, +14564, 14561, 14561, 14565, 14565, 14565, 14565, 13844, 13844, +13844, 13844, 13835, 13835, 13844, 13844, 13844, 13844, 13844, +13844, 13846, 13846, 13850, 13850, 13844, 13844, 13844, 13844, +13844, 13844, 13844, 13844, 13846, 13846, 13846, 13846, 13846, +13846, 13846, 13846, 13850, 13850, 14196, 14196, 14185, 14185, +14192, 14192, 14187, 14187, 14187, 14187, 14186, 14186, 14192, +14192, 14185, 14185, 14187, 14187, 14187, 14187, 14187, 14187, +14186, 14186, 14189, 14189, 14186, 14186, 14196, 14196, 14187, +14187, 14192, 14192, 14196, 14196, 14186, 14186, 14192, 14192, +14189, 14189, 14189, 14189, 14192, 14192, 14566, 14566, 14563, +14563, 14570, 14570, 14568, 14568, 14573, 14573, 14573, 14573, +14579, 14579, 14575, 14575, 14566, 14566, 14566, 14566, 14570, +14570, 14566, 14566, 14579, 14579, 14558, 14558, 14557, 14557, +14568, 14568, 14575, 14575, 14573, 14573, 14579, 14579, 14579, +14579, 14570, 14570, 14570, 14570, 13836, 13836, 13843, 13843, +13838, 13838, 13845, 13845, 13838, 13838, 13845, 13845, 13843, +13843, 13839, 13839, 13847, 13847, 13847, 13847, 13850, 13850, +13845, 13845, 13845, 13845, 14208, 14208, 14197, 14197, 14207, +14207, 14207, 14207, 14208, 14208, 14197, 14197, 14207, 14207, +14207, 14207, 14197, 14197, 14565, 14565, 14575, 14575, 14571, +14571, 14569, 14569, 14571, 14571, 14575, 14575, 14569, 14569, +14569, 14569, 14575, 14575, 14567, 14567, 14569, 14569, 14569, +14569), class = "Date"), `Culmen Length (mm)` = c(39.100000000000001, +39.5, 40.299999999999997, NA, 36.700000000000003, 39.299999999999997, +38.899999999999999, 39.200000000000003, 34.100000000000001, 42, +37.799999999999997, 37.799999999999997, 41.100000000000001, 38.600000000000001, +34.600000000000001, 36.600000000000001, 38.700000000000003, 42.5, +34.399999999999999, 46, 37.799999999999997, 37.700000000000003, +35.899999999999999, 38.200000000000003, 38.799999999999997, 35.299999999999997, +40.600000000000001, 40.5, 37.899999999999999, 40.5, 39.5, 37.200000000000003, +39.5, 40.899999999999999, 36.399999999999999, 39.200000000000003, +38.799999999999997, 42.200000000000003, 37.600000000000001, 39.799999999999997, +36.5, 40.799999999999997, 36, 44.100000000000001, 37, 39.600000000000001, +41.100000000000001, 37.5, 36, 42.299999999999997, 39.600000000000001, +40.100000000000001, 35, 42, 34.5, 41.399999999999999, 39, 40.600000000000001, +36.5, 37.600000000000001, 35.700000000000003, 41.299999999999997, +37.600000000000001, 41.100000000000001, 36.399999999999999, 41.600000000000001, +35.5, 41.100000000000001, 35.899999999999999, 41.799999999999997, +33.5, 39.700000000000003, 39.600000000000001, 45.799999999999997, +35.5, 42.799999999999997, 40.899999999999999, 37.200000000000003, +36.200000000000003, 42.100000000000001, 34.600000000000001, 42.899999999999999, +36.700000000000003, 35.100000000000001, 37.299999999999997, 41.299999999999997, +36.299999999999997, 36.899999999999999, 38.299999999999997, 38.899999999999999, +35.700000000000003, 41.100000000000001, 34, 39.600000000000001, +36.200000000000003, 40.799999999999997, 38.100000000000001, 40.299999999999997, +33.100000000000001, 43.200000000000003, 35, 41, 37.700000000000003, +37.799999999999997, 37.899999999999999, 39.700000000000003, 38.600000000000001, +38.200000000000003, 38.100000000000001, 43.200000000000003, 38.100000000000001, +45.600000000000001, 39.700000000000003, 42.200000000000003, 39.600000000000001, +42.700000000000003, 38.600000000000001, 37.299999999999997, 35.700000000000003, +41.100000000000001, 36.200000000000003, 37.700000000000003, 40.200000000000003, +41.399999999999999, 35.200000000000003, 40.600000000000001, 38.799999999999997, +41.5, 39, 44.100000000000001, 38.5, 43.100000000000001, 36.799999999999997, +37.5, 38.100000000000001, 41.100000000000001, 35.600000000000001, +40.200000000000003, 37, 39.700000000000003, 40.200000000000003, +40.600000000000001, 32.100000000000001, 40.700000000000003, 37.299999999999997, +39, 39.200000000000003, 36.600000000000001, 36, 37.799999999999997, +36, 41.5, 46.100000000000001, 50, 48.700000000000003, 50, 47.600000000000001, +46.5, 45.399999999999999, 46.700000000000003, 43.299999999999997, +46.799999999999997, 40.899999999999999, 49, 45.5, 48.399999999999999, +45.799999999999997, 49.299999999999997, 42, 49.200000000000003, +46.200000000000003, 48.700000000000003, 50.200000000000003, 45.100000000000001, +46.5, 46.299999999999997, 42.899999999999999, 46.100000000000001, +44.5, 47.799999999999997, 48.200000000000003, 50, 47.299999999999997, +42.799999999999997, 45.100000000000001, 59.600000000000001, 49.100000000000001, +48.399999999999999, 42.600000000000001, 44.399999999999999, 44, +48.700000000000003, 42.700000000000003, 49.600000000000001, 45.299999999999997, +49.600000000000001, 50.5, 43.600000000000001, 45.5, 50.5, 44.899999999999999, +45.200000000000003, 46.600000000000001, 48.5, 45.100000000000001, +50.100000000000001, 46.5, 45, 43.799999999999997, 45.5, 43.200000000000003, +50.399999999999999, 45.299999999999997, 46.200000000000003, 45.700000000000003, +54.299999999999997, 45.799999999999997, 49.799999999999997, 46.200000000000003, +49.5, 43.5, 50.700000000000003, 47.700000000000003, 46.399999999999999, +48.200000000000003, 46.5, 46.399999999999999, 48.600000000000001, +47.5, 51.100000000000001, 45.200000000000003, 45.200000000000003, +49.100000000000001, 52.5, 47.399999999999999, 50, 44.899999999999999, +50.799999999999997, 43.399999999999999, 51.299999999999997, 47.5, +52.100000000000001, 47.5, 52.200000000000003, 45.5, 49.5, 44.5, +50.799999999999997, 49.399999999999999, 46.899999999999999, 48.399999999999999, +51.100000000000001, 48.5, 55.899999999999999, 47.200000000000003, +49.100000000000001, 47.299999999999997, 46.799999999999997, 41.700000000000003, +53.399999999999999, 43.299999999999997, 48.100000000000001, 50.5, +49.799999999999997, 43.5, 51.5, 46.200000000000003, 55.100000000000001, +44.5, 48.799999999999997, 47.200000000000003, NA, 46.799999999999997, +50.399999999999999, 45.200000000000003, 49.899999999999999, 46.5, +50, 51.299999999999997, 45.399999999999999, 52.700000000000003, +45.200000000000003, 46.100000000000001, 51.299999999999997, 46, +51.299999999999997, 46.600000000000001, 51.700000000000003, 47, +52, 45.899999999999999, 50.5, 50.299999999999997, 58, 46.399999999999999, +49.200000000000003, 42.399999999999999, 48.5, 43.200000000000003, +50.600000000000001, 46.700000000000003, 52, 50.5, 49.5, 46.399999999999999, +52.799999999999997, 40.899999999999999, 54.200000000000003, 42.5, +51, 49.700000000000003, 47.5, 47.600000000000001, 52, 46.899999999999999, +53.5, 49, 46.200000000000003, 50.899999999999999, 45.5, 50.899999999999999, +50.799999999999997, 50.100000000000001, 49, 51.5, 49.799999999999997, +48.100000000000001, 51.399999999999999, 45.700000000000003, 50.700000000000003, +42.5, 52.200000000000003, 45.200000000000003, 49.299999999999997, +50.200000000000003, 45.600000000000001, 51.899999999999999, 46.799999999999997, +45.700000000000003, 55.799999999999997, 43.5, 49.600000000000001, +50.799999999999997, 50.200000000000003), `Culmen Depth (mm)` = c(18.699999999999999, +17.399999999999999, 18, NA, 19.300000000000001, 20.600000000000001, +17.800000000000001, 19.600000000000001, 18.100000000000001, 20.199999999999999, +17.100000000000001, 17.300000000000001, 17.600000000000001, 21.199999999999999, +21.100000000000001, 17.800000000000001, 19, 20.699999999999999, +18.399999999999999, 21.5, 18.300000000000001, 18.699999999999999, +19.199999999999999, 18.100000000000001, 17.199999999999999, 18.899999999999999, +18.600000000000001, 17.899999999999999, 18.600000000000001, 18.899999999999999, +16.699999999999999, 18.100000000000001, 17.800000000000001, 18.899999999999999, +17, 21.100000000000001, 20, 18.5, 19.300000000000001, 19.100000000000001, +18, 18.399999999999999, 18.5, 19.699999999999999, 16.899999999999999, +18.800000000000001, 19, 18.899999999999999, 17.899999999999999, +21.199999999999999, 17.699999999999999, 18.899999999999999, 17.899999999999999, +19.5, 18.100000000000001, 18.600000000000001, 17.5, 18.800000000000001, +16.600000000000001, 19.100000000000001, 16.899999999999999, 21.100000000000001, +17, 18.199999999999999, 17.100000000000001, 18, 16.199999999999999, +19.100000000000001, 16.600000000000001, 19.399999999999999, 19, +18.399999999999999, 17.199999999999999, 18.899999999999999, 17.5, +18.5, 16.800000000000001, 19.399999999999999, 16.100000000000001, +19.100000000000001, 17.199999999999999, 17.600000000000001, 18.800000000000001, +19.399999999999999, 17.800000000000001, 20.300000000000001, 19.5, +18.600000000000001, 19.199999999999999, 18.800000000000001, 18, +18.100000000000001, 17.100000000000001, 18.100000000000001, 17.300000000000001, +18.899999999999999, 18.600000000000001, 18.5, 16.100000000000001, +18.5, 17.899999999999999, 20, 16, 20, 18.600000000000001, 18.899999999999999, +17.199999999999999, 20, 17, 19, 16.5, 20.300000000000001, 17.699999999999999, +19.5, 20.699999999999999, 18.300000000000001, 17, 20.5, 17, 18.600000000000001, +17.199999999999999, 19.800000000000001, 17, 18.5, 15.9, 19, 17.600000000000001, +18.300000000000001, 17.100000000000001, 18, 17.899999999999999, +19.199999999999999, 18.5, 18.5, 17.600000000000001, 17.5, 17.5, +20.100000000000001, 16.5, 17.899999999999999, 17.100000000000001, +17.199999999999999, 15.5, 17, 16.800000000000001, 18.699999999999999, +18.600000000000001, 18.399999999999999, 17.800000000000001, 18.100000000000001, +17.100000000000001, 18.5, 13.199999999999999, 16.300000000000001, +14.1, 15.199999999999999, 14.5, 13.5, 14.6, 15.300000000000001, +13.4, 15.4, 13.699999999999999, 16.100000000000001, 13.699999999999999, +14.6, 14.6, 15.699999999999999, 13.5, 15.199999999999999, 14.5, +15.1, 14.300000000000001, 14.5, 14.5, 15.800000000000001, 13.1, +15.1, 14.300000000000001, 15, 14.300000000000001, 15.300000000000001, +15.300000000000001, 14.199999999999999, 14.5, 17, 14.800000000000001, +16.300000000000001, 13.699999999999999, 17.300000000000001, 13.6, +15.699999999999999, 13.699999999999999, 16, 13.699999999999999, +15, 15.9, 13.9, 13.9, 15.9, 13.300000000000001, 15.800000000000001, +14.199999999999999, 14.1, 14.4, 15, 14.4, 15.4, 13.9, 15, 14.5, +15.300000000000001, 13.800000000000001, 14.9, 13.9, 15.699999999999999, +14.199999999999999, 16.800000000000001, 14.4, 16.199999999999999, +14.199999999999999, 15, 15, 15.6, 15.6, 14.800000000000001, 15, +16, 14.199999999999999, 16.300000000000001, 13.800000000000001, +16.399999999999999, 14.5, 15.6, 14.6, 15.9, 13.800000000000001, +17.300000000000001, 14.4, 14.199999999999999, 14, 17, 15, 17.100000000000001, +14.5, 16.100000000000001, 14.699999999999999, 15.699999999999999, +15.800000000000001, 14.6, 14.4, 16.5, 15, 17, 15.5, 15, 13.800000000000001, +16.100000000000001, 14.699999999999999, 15.800000000000001, 14, +15.1, 15.199999999999999, 15.9, 15.199999999999999, 16.300000000000001, +14.1, 16, 15.699999999999999, 16.199999999999999, 13.699999999999999, +NA, 14.300000000000001, 15.699999999999999, 14.800000000000001, +16.100000000000001, 17.899999999999999, 19.5, 19.199999999999999, +18.699999999999999, 19.800000000000001, 17.800000000000001, 18.199999999999999, +18.199999999999999, 18.899999999999999, 19.899999999999999, 17.800000000000001, +20.300000000000001, 17.300000000000001, 18.100000000000001, 17.100000000000001, +19.600000000000001, 20, 17.800000000000001, 18.600000000000001, +18.199999999999999, 17.300000000000001, 17.5, 16.600000000000001, +19.399999999999999, 17.899999999999999, 19, 18.399999999999999, +19, 17.800000000000001, 20, 16.600000000000001, 20.800000000000001, +16.699999999999999, 18.800000000000001, 18.600000000000001, 16.800000000000001, +18.300000000000001, 20.699999999999999, 16.600000000000001, 19.899999999999999, +19.5, 17.5, 19.100000000000001, 17, 17.899999999999999, 18.5, +17.899999999999999, 19.600000000000001, 18.699999999999999, 17.300000000000001, +16.399999999999999, 19, 17.300000000000001, 19.699999999999999, +17.300000000000001, 18.800000000000001, 16.600000000000001, 19.899999999999999, +18.800000000000001, 19.399999999999999, 19.5, 16.5, 17, 19.800000000000001, +18.100000000000001, 18.199999999999999, 19, 18.699999999999999 +), `Flipper Length (mm)` = c(181, 186, 195, NA, 193, 190, 181, +195, 193, 190, 186, 180, 182, 191, 198, 185, 195, 197, 184, 194, +174, 180, 189, 185, 180, 187, 183, 187, 172, 180, 178, 178, 188, +184, 195, 196, 190, 180, 181, 184, 182, 195, 186, 196, 185, 190, +182, 179, 190, 191, 186, 188, 190, 200, 187, 191, 186, 193, 181, +194, 185, 195, 185, 192, 184, 192, 195, 188, 190, 198, 190, 190, +196, 197, 190, 195, 191, 184, 187, 195, 189, 196, 187, 193, 191, +194, 190, 189, 189, 190, 202, 205, 185, 186, 187, 208, 190, 196, +178, 192, 192, 203, 183, 190, 193, 184, 199, 190, 181, 197, 198, +191, 193, 197, 191, 196, 188, 199, 189, 189, 187, 198, 176, 202, +186, 199, 191, 195, 191, 210, 190, 197, 193, 199, 187, 190, 191, +200, 185, 193, 193, 187, 188, 190, 192, 185, 190, 184, 195, 193, +187, 201, 211, 230, 210, 218, 215, 210, 211, 219, 209, 215, 214, +216, 214, 213, 210, 217, 210, 221, 209, 222, 218, 215, 213, 215, +215, 215, 216, 215, 210, 220, 222, 209, 207, 230, 220, 220, 213, +219, 208, 208, 208, 225, 210, 216, 222, 217, 210, 225, 213, 215, +210, 220, 210, 225, 217, 220, 208, 220, 208, 224, 208, 221, 214, +231, 219, 230, 214, 229, 220, 223, 216, 221, 221, 217, 216, 230, +209, 220, 215, 223, 212, 221, 212, 224, 212, 228, 218, 218, 212, +230, 218, 228, 212, 224, 214, 226, 216, 222, 203, 225, 219, 228, +215, 228, 216, 215, 210, 219, 208, 209, 216, 229, 213, 230, 217, +230, 217, 222, 214, NA, 215, 222, 212, 213, 192, 196, 193, 188, +197, 198, 178, 197, 195, 198, 193, 194, 185, 201, 190, 201, 197, +181, 190, 195, 181, 191, 187, 193, 195, 197, 200, 200, 191, 205, +187, 201, 187, 203, 195, 199, 195, 210, 192, 205, 210, 187, 196, +196, 196, 201, 190, 212, 187, 198, 199, 201, 193, 203, 187, 197, +191, 203, 202, 194, 206, 189, 195, 207, 202, 193, 210, 198), + `Body Mass (g)` = c(3750, 3800, 3250, NA, 3450, 3650, 3625, + 4675, 3475, 4250, 3300, 3700, 3200, 3800, 4400, 3700, 3450, + 4500, 3325, 4200, 3400, 3600, 3800, 3950, 3800, 3800, 3550, + 3200, 3150, 3950, 3250, 3900, 3300, 3900, 3325, 4150, 3950, + 3550, 3300, 4650, 3150, 3900, 3100, 4400, 3000, 4600, 3425, + 2975, 3450, 4150, 3500, 4300, 3450, 4050, 2900, 3700, 3550, + 3800, 2850, 3750, 3150, 4400, 3600, 4050, 2850, 3950, 3350, + 4100, 3050, 4450, 3600, 3900, 3550, 4150, 3700, 4250, 3700, + 3900, 3550, 4000, 3200, 4700, 3800, 4200, 3350, 3550, 3800, + 3500, 3950, 3600, 3550, 4300, 3400, 4450, 3300, 4300, 3700, + 4350, 2900, 4100, 3725, 4725, 3075, 4250, 2925, 3550, 3750, + 3900, 3175, 4775, 3825, 4600, 3200, 4275, 3900, 4075, 2900, + 3775, 3350, 3325, 3150, 3500, 3450, 3875, 3050, 4000, 3275, + 4300, 3050, 4000, 3325, 3500, 3500, 4475, 3425, 3900, 3175, + 3975, 3400, 4250, 3400, 3475, 3050, 3725, 3000, 3650, 4250, + 3475, 3450, 3750, 3700, 4000, 4500, 5700, 4450, 5700, 5400, + 4550, 4800, 5200, 4400, 5150, 4650, 5550, 4650, 5850, 4200, + 5850, 4150, 6300, 4800, 5350, 5700, 5000, 4400, 5050, 5000, + 5100, 4100, 5650, 4600, 5550, 5250, 4700, 5050, 6050, 5150, + 5400, 4950, 5250, 4350, 5350, 3950, 5700, 4300, 4750, 5550, + 4900, 4200, 5400, 5100, 5300, 4850, 5300, 4400, 5000, 4900, + 5050, 4300, 5000, 4450, 5550, 4200, 5300, 4400, 5650, 4700, + 5700, 4650, 5800, 4700, 5550, 4750, 5000, 5100, 5200, 4700, + 5800, 4600, 6000, 4750, 5950, 4625, 5450, 4725, 5350, 4750, + 5600, 4600, 5300, 4875, 5550, 4950, 5400, 4750, 5650, 4850, + 5200, 4925, 4875, 4625, 5250, 4850, 5600, 4975, 5500, 4725, + 5500, 4700, 5500, 4575, 5500, 5000, 5950, 4650, 5500, 4375, + 5850, 4875, 6000, 4925, NA, 4850, 5750, 5200, 5400, 3500, + 3900, 3650, 3525, 3725, 3950, 3250, 3750, 4150, 3700, 3800, + 3775, 3700, 4050, 3575, 4050, 3300, 3700, 3450, 4400, 3600, + 3400, 2900, 3800, 3300, 4150, 3400, 3800, 3700, 4550, 3200, + 4300, 3350, 4100, 3600, 3900, 3850, 4800, 2700, 4500, 3950, + 3650, 3550, 3500, 3675, 4450, 3400, 4300, 3250, 3675, 3325, + 3950, 3600, 4050, 3350, 3450, 3250, 4050, 3800, 3525, 3950, + 3650, 3650, 4000, 3400, 3775, 4100, 3775), Sex = c("MALE", + "FEMALE", "FEMALE", NA, "FEMALE", "MALE", "FEMALE", "MALE", + NA, NA, NA, NA, "FEMALE", "MALE", "MALE", "FEMALE", "FEMALE", + "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", + "MALE", "FEMALE", "MALE", "FEMALE", "FEMALE", "MALE", "FEMALE", + "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "MALE", "FEMALE", + "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", + "MALE", "MALE", NA, "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", + "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", + "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", + "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", + "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", + "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "MALE", "FEMALE", + "MALE", "FEMALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", + "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", + "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", + "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", + "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", + "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", + "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", + "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", + "FEMALE", "MALE", "MALE", "FEMALE", "FEMALE", "MALE", "FEMALE", + "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "MALE", "FEMALE", + "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", + "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", + "MALE", "FEMALE", "FEMALE", "MALE", "FEMALE", "MALE", NA, + "MALE", "FEMALE", "MALE", "MALE", "FEMALE", "FEMALE", "MALE", + "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", + "MALE", "FEMALE", "MALE", "MALE", "FEMALE", "FEMALE", "MALE", + "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", + "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", + "FEMALE", "MALE", "FEMALE", "MALE", NA, "MALE", "FEMALE", + "MALE", "FEMALE", "MALE", "MALE", "FEMALE", "FEMALE", "MALE", + "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", + "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", + "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "MALE", + "FEMALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", + NA, "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", + "MALE", "FEMALE", "MALE", "FEMALE", "MALE", NA, "MALE", "FEMALE", + NA, "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", + "MALE", "FEMALE", "MALE", "FEMALE", "FEMALE", "MALE", "FEMALE", + "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", + "MALE", "FEMALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", + "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", + "FEMALE", "MALE", "FEMALE", "MALE", "MALE", "FEMALE", "FEMALE", + "MALE", "FEMALE", "MALE", "MALE", "FEMALE", "MALE", "FEMALE", + "FEMALE", "MALE", "FEMALE", "MALE", "MALE", "FEMALE", "FEMALE", + "MALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "MALE", + "MALE", "FEMALE", "MALE", "FEMALE", "FEMALE", "MALE", "FEMALE", + "MALE", "MALE", "FEMALE"), `Delta 15 N (o/oo)` = c(NA, 8.94956, + 8.3682099999999995, NA, 8.7665100000000002, 8.6649600000000007, + 9.1871799999999997, 9.4605999999999995, NA, 9.1336200000000005, + 8.6324299999999994, NA, NA, NA, 8.5558300000000003, NA, 9.1852800000000006, + 8.6753800000000005, 8.4782700000000002, 9.1161600000000007, + 8.7376199999999997, 8.6627100000000006, 9.2228600000000007, + 8.4342299999999994, 9.6395400000000002, 9.2129200000000004, + 8.9399700000000006, 8.0813799999999993, 8.3840400000000006, + 8.9002700000000008, 9.6975599999999993, 9.7276399999999992, + 9.6652299999999993, 8.7966499999999996, 9.1784700000000008, + 9.1530799999999992, 9.1898499999999999, 8.0478699999999996, + 9.4113100000000003, NA, 9.68933, NA, 9.5077200000000008, + 9.2371999999999996, 9.3639200000000002, 9.4910599999999992, + NA, NA, 9.5178399999999996, 8.87988, 8.4661600000000004, + 8.5136199999999995, 8.1953899999999997, 8.48095, 8.4183699999999995, + 8.3539600000000007, 8.5719899999999996, 8.5667399999999994, + 9.0787800000000001, 9.1080000000000005, 8.9647199999999998, + 8.7480200000000004, 8.5806299999999993, 8.6226400000000005, + 8.6262299999999996, 8.85562, 8.5619200000000006, 8.7107799999999997, + 8.4778099999999998, 8.8685299999999998, 7.88863, 9.2980800000000006, + 8.3352400000000006, 8.1865799999999993, 8.7064199999999996, + 8.2993000000000006, 8.4725699999999993, 8.3553999999999995, + 7.8238099999999999, 9.0573599999999992, 7.6977799999999998, + 8.6325900000000004, 7.8849400000000003, 8.9000199999999996, + 8.3271800000000002, 9.1486300000000007, 8.5708699999999993, + 8.5914699999999993, 9.0782600000000002, 8.3693600000000004, + 8.4653100000000006, 8.7701799999999999, 8.0148499999999991, + 8.4991500000000002, 8.9072300000000002, 8.4820399999999996, + 8.1027699999999996, 8.3945900000000009, 9.0421800000000001, + 8.9702500000000001, 8.8445099999999996, 9.0107900000000001, + 9.2150999999999996, 9.5192899999999998, 9.0264199999999999, + 8.8569899999999997, 8.7732200000000002, 9.5924499999999995, + 9.7953200000000002, 9.3173499999999994, 8.4395100000000003, + 8.6546599999999998, 9.0265699999999995, 8.8018599999999996, + 8.8096700000000006, 8.9143399999999993, 9.1802100000000006, + 9.4964499999999994, 8.9643599999999992, 9.3227700000000002, + 9.0429600000000008, 9.1106599999999993, 9.3072199999999992, + 9.5946200000000008, 8.8166799999999999, 9.2253699999999998, + 8.8809799999999992, 8.5256600000000002, 9.1903100000000002, + 9.1070200000000003, 8.9846000000000004, 8.8649500000000003, + 8.98705, 8.5670800000000007, 8.7170000000000005, 8.9436499999999999, + 8.7598400000000005, 8.9599799999999998, 8.6165099999999999, + 9.2576900000000002, 9.2881, 9.2340800000000005, 8.7978699999999996, + 9.0567399999999996, 9.0682899999999993, 9.2203300000000006, + 9.1100600000000007, 8.6874400000000005, 8.9433199999999999, + 8.9753299999999996, 8.9346499999999995, 8.8963999999999999, + 7.9930000000000003, 8.1475600000000004, 8.1470500000000001, + 8.2553999999999998, 8.2345000000000006, 7.9953000000000003, + 8.2451500000000006, 8.2267299999999999, 8.1364300000000007, + 8.1631, 8.1957900000000006, 8.1041699999999999, 7.7767200000000001, + 7.8208000000000002, 7.7995799999999997, 8.0713699999999999, + 7.6388400000000001, 8.2737599999999993, 7.8405699999999996, + 7.9649099999999997, 7.8962000000000003, 7.6322000000000001, + 7.9043599999999996, 7.9097099999999996, 7.6852799999999997, + 7.8373299999999997, 7.9662100000000002, 7.9235800000000003, + 7.6886999999999999, 8.3051499999999994, NA, 7.6345200000000002, + 7.9740799999999998, 7.7684300000000004, 7.8974399999999996, + 8.0365900000000003, 7.9693500000000004, 8.1374600000000008, + 8.0197900000000004, 8.1477599999999999, 8.1456700000000009, + 8.3832400000000007, 8.3761500000000009, 8.2654800000000002, + 8.4689399999999999, 8.2714099999999995, 8.4782899999999994, + 8.6580300000000001, 8.45167, 8.5586800000000007, 8.3828899999999997, + 8.3986699999999992, 8.5195100000000004, 8.5015300000000007, + 8.4878900000000002, 8.6348800000000008, 8.5831900000000001, + 8.6360399999999995, 8.48367, 8.7464700000000004, 8.65015, + 8.6009200000000003, 8.6287000000000003, 8.4966200000000001, + 8.6044699999999992, 8.4706700000000001, 8.2425300000000004, + 8.4985400000000002, 8.6493099999999998, 8.63551, 8.5301799999999997, + 8.3507800000000003, 8.2465100000000007, 8.5848700000000004, + 8.4793800000000008, 8.5963999999999992, 8.3929899999999993, + 8.4032699999999991, 8.2469400000000004, 8.1974900000000002, + 8.3580199999999998, 8.2860099999999992, 8.1910100000000003, + 8.2004199999999994, 8.1123799999999999, 8.2742799999999992, + 8.2346800000000009, 8.1542600000000007, 8.1269100000000005, + 8.2759499999999999, 8.2967099999999991, 8.3670100000000005, + 8.1556599999999992, 8.83352, 8.20106, 8.27102, 8.0362399999999994, + 7.8880999999999997, 8.1658200000000001, 8.2065999999999999, + 8.1023099999999992, 8.3117999999999999, 8.3081700000000005, + 8.6591400000000007, 8.2581799999999994, 8.3235899999999994, + 8.1231100000000005, 8.4101700000000008, 8.4207000000000001, + 8.4573800000000006, 8.2469099999999997, 8.2922600000000006, + 8.2163400000000006, 8.7855699999999999, 8.3023100000000003, + 8.0835399999999993, 8.0411099999999998, 8.3382500000000004, + 7.9918399999999998, NA, 8.4115099999999998, 8.30166, 8.2424599999999995, + 8.3638999999999992, 9.0393500000000007, 8.9206900000000005, + 9.2907799999999998, 8.6470099999999999, 9.0064200000000003, + 8.8894199999999994, 8.8566400000000005, 8.6370100000000001, + 8.4717300000000009, 8.7958099999999995, 8.9506300000000003, + 8.6874699999999994, 8.7203700000000008, 9.0233000000000008, + 9.1227699999999992, 9.8058999999999994, 10.020189999999999, + 9.1438199999999998, 9.3210499999999996, 9.2715800000000002, + 9.3513800000000007, 9.42666, 9.3541600000000003, 9.2815300000000001, + 9.7414400000000008, 9.3679900000000007, 8.9398999999999997, + 9.6307399999999994, 9.3736899999999999, 9.2517700000000005, + 9.0845800000000008, 9.4928299999999997, 9.3666800000000006, + 9.2319600000000008, 9.7548600000000008, 9.0782500000000006, + 8.8350200000000001, 9.4314599999999995, 9.8058899999999998, + 10.02544, 9.5326199999999996, 9.6173400000000004, 10.023720000000001, + 9.3649299999999993, 9.4368400000000001, 9.4582700000000006, + 9.4681899999999999, 9.3408899999999999, 9.6895000000000007, + 9.3216900000000003, 9.4692900000000009, 9.4378200000000003, + 9.4149999999999991, 9.9372699999999998, 9.5653400000000008, + 9.7752800000000004, 9.6235700000000008, 9.88809, 9.7449200000000005, + 9.4698499999999992, NA, 9.6506100000000004, 9.2671500000000009, + 9.7046500000000009, 9.37608, 9.4618000000000002, 9.9804399999999998, + 9.3930500000000006), `Delta 13 C (o/oo)` = c(NA, -24.69454, + -25.333020000000001, NA, -25.324259999999999, -25.29805, + -25.21799, -24.89958, NA, -25.093679999999999, -25.213149999999999, + NA, NA, NA, -25.22588, NA, -25.06691, -25.13993, -25.23319, + -24.772269999999999, -25.093830000000001, -25.0639, -25.034739999999999, + -25.22664, -25.298559999999998, -24.3613, -25.362880000000001, + -25.494479999999999, -25.198370000000001, -25.11609, -25.11223, + -25.010200000000001, -25.060199999999998, -25.145910000000001, + -25.230609999999999, -25.034690000000001, -25.12255, -25.495229999999999, + -25.041689999999999, NA, -24.422799999999999, NA, -25.03492, + -24.526979999999998, -25.01745, -24.102550000000001, NA, + NA, -25.076830000000001, -25.18543, -26.12989, -26.55602, + -26.172129999999999, -26.314599999999999, -26.547180000000001, + -26.27853, -26.07188, -25.988430000000001, -25.88156, -25.89677, + -26.40943, -26.37809, -26.215689999999999, -26.60023, -26.116499999999998, + -26.092939999999999, -25.955410000000001, -25.810120000000001, + -26.078209999999999, -26.062090000000001, -26.630849999999999, + -25.234529999999999, -26.553509999999999, -26.459779999999999, + -26.150030000000001, -26.389859999999999, -26.020019999999999, + -26.447870000000002, -26.513819999999999, -25.81513, -26.538699999999999, + -26.230270000000001, -26.248370000000001, -26.462540000000001, + -26.383959999999998, -26.096350000000001, -26.222270000000002, + -26.08165, -26.124169999999999, -26.111989999999999, -26.05621, + -25.83352, -26.695430000000002, -26.424060000000001, -26.300370000000001, + -26.579409999999999, -26.500859999999999, -26.011520000000001, + -26.15775, -26.03679, -26.280550000000002, -26.380849999999999, + -26.225300000000001, -25.691990000000001, -25.864820000000002, + -25.80208, -26.489730000000002, -25.70711, -25.273849999999999, + -25.451709999999999, -26.57563, -26.329090000000001, -26.06203, + -26.412179999999999, -26.789580000000001, -26.420179999999998, + -25.772639999999999, -26.366779999999999, -23.903089999999999, + -26.099889999999998, -26.19444, -26.425630000000002, -25.610389999999999, + -25.426210000000001, -25.953990000000001, -25.608260000000001, + -25.897410000000001, -26.0245, -25.737220000000001, -26.013629999999999, + -25.579560000000001, -26.139600000000002, -25.57647, -26.49288, + -25.779509999999998, -26.069430000000001, -25.976959999999998, + -26.32601, -26.070209999999999, -25.887979999999999, -25.549759999999999, + -26.01549, -26.610749999999999, -25.795290000000001, -25.852029999999999, + -26.034420000000001, -25.795490000000001, -25.8306, -25.791889999999999, + -26.034949999999998, -26.070810000000002, -26.069669999999999, + -25.5139, -25.393689999999999, -25.46172, -25.400749999999999, + -25.544560000000001, -25.328289999999999, -25.46782, -25.427600000000002, + -25.321760000000001, -25.38017, -25.3933, -25.50562, -25.416799999999999, + -25.480250000000002, -25.626180000000002, -25.524730000000002, + -25.52627, -25.00169, -25.378990000000002, -25.395869999999999, + -25.377459999999999, -25.465689999999999, -25.3947, -25.38157, + -25.39181, -25.428260000000002, -25.693269999999998, -25.483830000000001, + -25.508109999999999, -25.190169999999998, NA, -25.463270000000001, + -25.537680000000002, -25.682099999999998, -26.634049999999998, + -26.861270000000001, -26.709679999999999, -26.790929999999999, + -26.683109999999999, -26.84506, -26.594670000000001, -26.84272, + -26.727910000000001, -26.7699, -26.60436, -26.776499999999999, + -26.61788, -26.575849999999999, -26.896439999999998, -26.677990000000001, + -26.863520000000001, -26.793579999999999, -27.018540000000002, + -26.614139999999999, -26.83006, -26.756209999999999, -26.844149999999999, + -26.748899999999999, -26.864850000000001, -26.798459999999999, + -26.79053, -26.84374, -26.604839999999999, -26.841660000000001, + -26.616009999999999, -26.691659999999999, -26.8154, -26.748090000000001, + -26.688669999999998, -26.74249, -26.727509999999999, -26.707830000000001, + -26.66958, -26.5929, -26.954699999999999, -26.71199, -26.787330000000001, + -26.76821, -26.653590000000001, -26.659310000000001, -26.276599999999998, + -26.275729999999999, -26.243690000000001, -26.39677, -26.203720000000001, + -26.300190000000001, -26.18599, -26.343299999999999, -26.236129999999999, + -26.116569999999999, -26.085470000000001, -25.898340000000001, + -26.228480000000001, -25.691949999999999, -26.165240000000001, + -26.112439999999999, -26.065940000000001, -26.047260000000001, + -26.139710000000001, -26.36863, -26.187629999999999, -26.35425, + -26.21651, -25.79203, -26.238859999999999, -26.057559999999999, + -26.448149999999998, -26.33867, -26.38092, -26.22664, -26.184660000000001, + -26.210190000000001, -26.11046, -25.761469999999999, -25.960129999999999, + -26.181609999999999, -26.184439999999999, -25.885470000000002, + -26.205380000000002, NA, -26.13832, -26.041170000000001, + -26.119689999999999, -26.15531, -24.302289999999999, -24.23592, + -24.755700000000001, -24.62717, -24.618670000000002, -24.494330000000001, + -24.556439999999998, -24.840589999999999, -24.292290000000001, + -24.360880000000002, -24.598970000000001, -24.387509999999999, + -24.805260000000001, -24.389330000000001, -24.90024, -24.729399999999998, + -24.547039999999999, -24.579940000000001, -24.64162, -24.643350000000002, + -24.687899999999999, -24.263750000000002, -25.011849999999999, + -24.971340000000001, -24.594670000000001, -24.471419999999998, + -23.890170000000001, -24.34684, -24.528960000000001, -24.696380000000001, + -24.549029999999998, -24.599959999999999, -24.45195, -24.172820000000002, + -24.311979999999998, -25.145499999999998, -24.65859, -24.6844, + -24.737349999999999, -24.908159999999999, -24.668669999999999, + -24.66188, -24.865939999999998, -24.662590000000002, -24.165659999999999, + -24.35575, -24.45721, -24.451889999999999, -24.430620000000001, + -24.415620000000001, -24.484030000000001, -24.362020000000001, + -24.805, -24.59066, -24.608820000000001, -24.564810000000001, + -24.789840000000002, -24.595130000000001, -24.404, -24.657859999999999, + -23.787669999999999, -24.481529999999999, -24.319120000000002, + -24.534939999999999, -24.407530000000001, -24.706150000000001, + -24.68741, -24.252549999999999), Comments = c("Not enough blood for isotopes.", + NA, NA, "Adult not sampled.", NA, NA, "Nest never observed with full clutch.", + "Nest never observed with full clutch.", "No blood sample obtained.", + "No blood sample obtained for sexing.", "No blood sample obtained for sexing.", + "No blood sample obtained.", "Not enough blood for isotopes.", + "Not enough blood for isotopes.", NA, "Not enough blood for isotopes.", + NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "Nest never observed with full clutch.", + "Nest never observed with full clutch.", NA, NA, NA, NA, + NA, NA, NA, NA, "Nest never observed with full clutch.", + "Nest never observed with full clutch. Not enough blood for isotopes.", + NA, "Not enough blood for isotopes.", NA, NA, NA, NA, "Not enough blood for isotopes.", + "Sexing primers did not amplify. Not enough blood for isotopes.", + NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, + NA, NA, NA, NA, NA, "Nest never observed with full clutch.", + "Nest never observed with full clutch.", NA, NA, NA, NA, + NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, + NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, + NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, + NA, "Nest never observed with full clutch.", "Nest never observed with full clutch.", + NA, NA, NA, NA, NA, NA, NA, NA, "Nest never observed with full clutch.", + "Nest never observed with full clutch.", NA, NA, NA, NA, + NA, NA, "Nest never observed with full clutch.", "Nest never observed with full clutch.", + NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, + NA, NA, NA, NA, NA, NA, NA, "Nest never observed with full clutch.", + "Nest never observed with full clutch.", NA, NA, NA, NA, + NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "Sexing primers did not amplify.", + NA, NA, NA, "Not enough blood for isotopes.", NA, NA, NA, + NA, NA, NA, NA, NA, NA, "Nest never observed with full clutch.", + "Nest never observed with full clutch.", NA, NA, NA, NA, + "Nest never observed with full clutch.", "Nest never observed with full clutch.", + NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, + NA, NA, NA, "Sexing primers did not amplify.", NA, NA, NA, + NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, + NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, + NA, NA, NA, NA, "Sexing primers did not amplify.", NA, NA, + NA, NA, NA, NA, NA, NA, NA, NA, NA, "Sexing primers did not amplify.", + NA, "Nest never observed with full clutch.", "Adult not sampled. Nest never observed with full clutch.", + NA, NA, NA, NA, "Nest never observed with full clutch.", + "Nest never observed with full clutch.", NA, NA, NA, NA, + NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "Nest never observed with full clutch.", + "Nest never observed with full clutch.", NA, NA, NA, NA, + "Nest never observed with full clutch.", "Nest never observed with full clutch.", + "Nest never observed with full clutch.", "Nest never observed with full clutch.", + "Nest never observed with full clutch.", "Nest never observed with full clutch.", + NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "Nest never observed with full clutch.", + "Nest never observed with full clutch.", NA, NA, NA, NA, + NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, + NA, "No delta15N data received from lab.", NA, NA, NA, "Nest never observed with full clutch.", + "Nest never observed with full clutch.", NA, NA), Sample = c("train", + "train", "train", NA, "train", "test", NA, NA, NA, NA, NA, + NA, "test", "train", "test", "train", "train", "train", "train", + "train", "train", "train", "train", "train", "train", "train", + "train", "test", NA, NA, "train", "train", "train", "train", + "test", "test", "test", "test", NA, NA, "train", "train", + "train", "test", "train", "train", "train", NA, "train", + "train", "test", "train", "test", "test", "test", "train", + "train", "test", "test", "test", "train", "train", "train", + "train", "test", "train", "train", "test", NA, NA, "train", + "test", "train", "train", "test", "train", "test", "train", + "test", "test", "train", "test", "test", "train", "train", + "test", "test", "train", "train", "test", "train", "train", + "train", "train", "train", "train", "test", "train", "train", + "test", "test", "train", "test", "train", "train", "test", + "train", "train", "test", "test", "test", "train", "train", + "test", "train", "train", "train", "train", "train", "train", + NA, NA, "train", "train", "train", "test", "test", "train", + "train", "train", NA, NA, "train", "test", "test", "train", + "test", "train", NA, NA, "test", "train", "train", "train", + "train", "test", "train", "train", "train", "train", "train", + "train", "test", "train", "test", "train", "train", "test", + "train", "test", "train", "train", NA, NA, "train", "train", + "train", "test", "test", "test", "test", "train", "train", + "train", "test", "train", "train", "train", NA, "train", + "test", "train", "train", "train", "train", "train", "train", + "train", "train", "train", "train", "train", NA, NA, "test", + "train", "test", "test", NA, NA, "train", "train", "test", + "train", "train", "train", "train", "test", "test", "test", + "test", "train", "test", "train", "train", "train", "train", + "train", NA, "test", "train", "train", "test", "test", "train", + "test", "train", "train", "train", "train", "train", "test", + "test", "train", "test", "train", "train", "train", "test", + "test", "train", "train", "train", "test", "train", "train", + "train", "test", "train", "train", "train", "test", "train", + "train", "train", "test", NA, "train", "test", "test", "train", + "train", "test", "train", "test", "train", "train", "test", + NA, "train", NA, NA, "train", "test", "train", "train", NA, + NA, "train", "test", "train", "train", "train", "train", + "train", "test", "test", "test", "train", "test", "train", + "train", NA, NA, "train", "test", "test", "train", NA, NA, + NA, NA, NA, NA, "train", "train", "test", "train", "train", + "train", "train", "test", "train", "test", NA, NA, "train", + "train", "train", "test", "train", "test", "train", "train", + "test", "train", "test", "train", "train", "train", "train", + "train", "train", "train", "test", "test", "train", "test", + "train", "test", NA, NA, "train", "train")), row.names = c(NA, +-344L), class = "data.frame") diff --git a/src/library/datasets/man/penguins.Rd b/src/library/datasets/man/penguins.Rd new file mode 100644 index 00000000000..beecaf3a9d3 --- /dev/null +++ b/src/library/datasets/man/penguins.Rd @@ -0,0 +1,37 @@ +\name{penguins} +\docType{data} +\alias{penguins} +\title{Size Measurements for Adult Foraging Penguins near Palmer Station, Antarctica} +\description{ + Includes measurements for penguin species, island in Palmer Archipelago, +size (flipper length, body mass, bill dimensions), and sex. +This is a subset of \code{\link{penguins_raw}}. +} +\usage{penguins} +\format{ + A tibble with 344 rows and 8 variables: + \describe{ + \item{species}{a factor denoting penguin species (Adélie, Chinstrap and Gentoo)} + \item{island}{a factor denoting island in Palmer Archipelago, Antarctica (Biscoe, Dream or Torgersen)} + \item{bill_length_mm}{a number denoting bill length (millimeters)} + \item{bill_depth_mm}{a number denoting bill depth (millimeters)} + \item{flipper_length_mm}{an integer denoting flipper length (millimeters)} + \item{body_mass_g}{an integer denoting body mass (grams)} + \item{sex}{a factor denoting penguin sex (female, male)} + \item{year}{an integer denoting the study year (2007, 2008, or 2009)} + } +} +\references{ +Gorman, K. B., Williams, T. D. and Fraser, W. R. (2014) Ecological Sexual Dimorphism and Environmental Variability within a Community of Antarctic Penguins (Genus Pygoscelis). PLoS ONE \bold{9}, 3, e90081. doi:10.1371/journal.pone.0090081. +} +\source{ +{Adélie penguins: Palmer Station Antarctica LTER and K. Gorman. 2020. Structural size measurements and isotopic signatures of foraging among adult male and female Adélie penguins (Pygoscelis adeliae) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 ver 5. Environmental Data Initiative.} \ifelse{text}{doi: 10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f (URL: https://doi.org/10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f)}{\ifelse{latex}{doi:\out{\nobreakspace{}}\href{https://doi.org/10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f}{10.6073\out{\slash{}}pasta\out{\slash{}}98b16d7d563f265cb52372c8ca99e60f}}{doi: \href{https://doi.org/10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f}{10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f}}} + +{Gentoo penguins: Palmer Station Antarctica LTER and K. Gorman. 2020. Structural size measurements and isotopic signatures of foraging among adult male and female Gentoo penguin (Pygoscelis papua) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 ver 5. Environmental Data Initiative.} \ifelse{text}{doi: 10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689 (URL: https://doi.org/10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689)}{\ifelse{latex}{doi:\out{\nobreakspace{}}\href{https://doi.org/10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689}{10.6073\out{\slash{}}pasta\out{\slash{}}7fca67fb28d56ee2ffa3d9370ebda689}}{doi: \href{https://doi.org/10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689}{10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689}}} + +{Chinstrap penguins: Palmer Station Antarctica LTER and K. Gorman. 2020. Structural size measurements and isotopic signatures of foraging among adult male and female Chinstrap penguin (Pygoscelis antarcticus) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 ver 6. Environmental Data Initiative.} \ifelse{text}{doi: 10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e (URL: https://doi.org/10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e)}{\ifelse{latex}{doi:\out{\nobreakspace{}}\href{https://doi.org/10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e}{10.6073\out{\slash{}}pasta\out{\slash{}}c14dfcfada8ea13a17536e73eb6fbe9e}}{doi: \href{https://doi.org/10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e}{10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e}}} +} +\note{ +This data is also available in the \CRANpkg{palmerpenguins} package. See also \url{https://allisonhorst.github.io/palmerpenguins/} for further details and resources. +} +\keyword{datasets} \ No newline at end of file diff --git a/src/library/datasets/man/penguins_raw.Rd b/src/library/datasets/man/penguins_raw.Rd new file mode 100644 index 00000000000..0918e1bc1f8 --- /dev/null +++ b/src/library/datasets/man/penguins_raw.Rd @@ -0,0 +1,44 @@ +\title{Penguin Size, Clutch, and Blood Isotope Data for Foraging Adults near Palmer Station, Antarctica} +\name{penguins_raw} +\alias{penguins_raw} +\description{ + Includes nesting observations, penguin size data, and isotope measurements from blood samples for adult Adélie, Chinstrap, and Gentoo penguins. +} +\usage{penguins_raw} +\format{ + A tibble with 344 rows and 17 variables: + \describe{ + \item{studyName}{Sampling expedition from which data were collected, generated, etc.} + \item{Sample Number}{an integer denoting the continuous numbering sequence for each sample} + \item{Species}{a character string denoting the penguin species} + \item{Region}{a character string denoting the region of Palmer LTER sampling grid} + \item{Island}{a character string denoting the island near Palmer Station where samples were collected} + \item{Stage}{a character string denoting reproductive stage at sampling} + \item{Individual ID}{a character string denoting the unique ID for each individual in dataset} + \item{Clutch Completion}{a character string denoting if the study nest observed with a full clutch, i.e., 2 eggs} + \item{Date Egg}{a date denoting the date study nest observed with 1 egg (sampled)} + \item{Culmen Length}{a number denoting the length of the dorsal ridge of a bird's bill (millimeters)} + \item{Culmen Depth}{a number denoting the depth of the dorsal ridge of a bird's bill (millimeters)} + \item{Flipper Length}{an integer denoting the length penguin flipper (millimeters)} + \item{Body Mass}{an integer denoting the penguin body mass (grams)} + \item{Sex}{a character string denoting the sex of an animal} + \item{Delta 15 N}{a number denoting the measure of the ratio of stable isotopes 15N:14N} + \item{Delta 13 C}{a number denoting the measure of the ratio of stable isotopes 13C:12C} + \item{Comments}{a character string with text providing additional relevant information for data} + \item{Sample}{a character string denoting whether the bird featured in the test or train set (or neither) in the original analysis (see References).} + } +} +\references{ +Gorman, K. B., Williams, T. D. and Fraser, W. R. (2014) Ecological Sexual Dimorphism and Environmental Variability within a Community of Antarctic Penguins (Genus Pygoscelis). PLoS ONE \bold{9}, 3, e90081. doi:10.1371/journal.pone.0090081. +} +\source{ +{Adélie penguins: Palmer Station Antarctica LTER and K. Gorman. 2020. Structural size measurements and isotopic signatures of foraging among adult male and female Adélie penguins (Pygoscelis adeliae) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 ver 5. Environmental Data Initiative.} \ifelse{text}{doi: 10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f (URL: https://doi.org/10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f)}{\ifelse{latex}{doi:\out{\nobreakspace{}}\href{https://doi.org/10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f}{10.6073\out{\slash{}}pasta\out{\slash{}}98b16d7d563f265cb52372c8ca99e60f}}{doi: \href{https://doi.org/10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f}{10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f}}} + +{Gentoo penguins: Palmer Station Antarctica LTER and K. Gorman. 2020. Structural size measurements and isotopic signatures of foraging among adult male and female Gentoo penguin (Pygoscelis papua) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 ver 5. Environmental Data Initiative.} \ifelse{text}{doi: 10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689 (URL: https://doi.org/10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689)}{\ifelse{latex}{doi:\out{\nobreakspace{}}\href{https://doi.org/10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689}{10.6073\out{\slash{}}pasta\out{\slash{}}7fca67fb28d56ee2ffa3d9370ebda689}}{doi: \href{https://doi.org/10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689}{10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689}}} + +{Chinstrap penguins: Palmer Station Antarctica LTER and K. Gorman. 2020. Structural size measurements and isotopic signatures of foraging among adult male and female Chinstrap penguin (Pygoscelis antarcticus) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 ver 6. Environmental Data Initiative.} \ifelse{text}{doi: 10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e (URL: https://doi.org/10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e)}{\ifelse{latex}{doi:\out{\nobreakspace{}}\href{https://doi.org/10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e}{10.6073\out{\slash{}}pasta\out{\slash{}}c14dfcfada8ea13a17536e73eb6fbe9e}}{doi: \href{https://doi.org/10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e}{10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e}}} +} +\note{ +This data is also available in the \CRANpkg{palmerpenguins} package. See also \url{https://allisonhorst.github.io/palmerpenguins/} for further details and resources. +} +\keyword{datasets} \ No newline at end of file From 6bdef18ce600039b72c14572baa158639c46de65 Mon Sep 17 00:00:00 2001 From: EllaKaye Date: Mon, 29 Jan 2024 11:06:36 +0000 Subject: [PATCH 02/12] Use .rda data files --- src/library/datasets/data-raw/penguins.R | 9 +- src/library/datasets/data-raw/penguins_raw.R | 11 +- src/library/datasets/data/penguins.R | 350 ------ src/library/datasets/data/penguins.rda | Bin 0 -> 2923 bytes src/library/datasets/data/penguins_raw.R | 1146 ------------------ src/library/datasets/data/penguins_raw.rda | Bin 0 -> 10435 bytes 6 files changed, 17 insertions(+), 1499 deletions(-) delete mode 100644 src/library/datasets/data/penguins.R create mode 100644 src/library/datasets/data/penguins.rda delete mode 100644 src/library/datasets/data/penguins_raw.R create mode 100644 src/library/datasets/data/penguins_raw.rda diff --git a/src/library/datasets/data-raw/penguins.R b/src/library/datasets/data-raw/penguins.R index b6d811f60c2..bf7464bb4ad 100644 --- a/src/library/datasets/data-raw/penguins.R +++ b/src/library/datasets/data-raw/penguins.R @@ -2,7 +2,7 @@ # by Allison Horst, Alison Hill, and Kristen Gorman # https://github.com/allisonhorst/palmerpenguins -source("./src/library/datasets/data/penguins_raw.R") +load("./src/library/datasets/data/penguins_raw.rda") penguins <- penguins_raw[, c("Species", "Island", "Culmen Length (mm)", "Culmen Depth (mm)", @@ -24,4 +24,9 @@ penguins$year <- regmatches(penguins$year, regexpr("\\d{4}", penguins$year)) penguins$year <- as.integer(penguins$year) -dump("penguins", "./src/library/datasets/data/penguins.R") \ No newline at end of file +save(penguins, file = "./src/library/datasets/data/penguins.rda") + +# Check identical with version palmerpenguins package +# rm(penguins) +# load("./src/library/datasets/data/penguins.rda") +# identical(penguins, palmerpenguins:::penguins_df) # without sample TRUE diff --git a/src/library/datasets/data-raw/penguins_raw.R b/src/library/datasets/data-raw/penguins_raw.R index 8c9332603df..1caf2940b70 100644 --- a/src/library/datasets/data-raw/penguins_raw.R +++ b/src/library/datasets/data-raw/penguins_raw.R @@ -94,4 +94,13 @@ Sample <- c(Adelie_sample, Gentoo_sample, Chinstrap_sample) # Add sample column to penguins_raw penguins_raw$Sample <- Sample -dump("penguins_raw", "./src/library/datasets/data/penguins_raw.R") +save(penguins_raw, file = "./src/library/datasets/data/penguins_raw.rda") + +# Check identical with version palmerpenguins package +# rm(penguins_raw) +# load("./src/library/datasets/data/penguins_raw.rda") +# pp_penguins_raw <- palmerpenguins:::penguins_raw_df +# attr(pp_penguins_raw, "spec") <- NULL +# identical(penguins_raw[, 1:17], pp_penguins_raw) # without sample TRUE +# all.equal(tibble::as_tibble(penguins_raw[, 1:17]), palmerpenguins::penguins_raw, check.attributes = FALSE) # without sample TRUE + diff --git a/src/library/datasets/data/penguins.R b/src/library/datasets/data/penguins.R deleted file mode 100644 index 06c12f1eadb..00000000000 --- a/src/library/datasets/data/penguins.R +++ /dev/null @@ -1,350 +0,0 @@ -penguins <- -structure(list(species = structure(c(1L, 1L, 1L, 1L, 1L, 1L, -1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, -1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, -1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, -1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, -1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, -1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, -1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, -1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, -1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, -1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, -3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, -3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, -3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, -3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, -3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, -3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, -3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, -2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, -2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, -2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, -2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, -2L, 2L), levels = c("Adelie", "Chinstrap", "Gentoo"), class = "factor"), - island = structure(c(3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, - 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, - 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, - 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, - 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, - 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, - 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, - 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, - 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, - 3L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, - 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, - 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, - 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, - 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, - 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, - 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, - 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, - 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, - 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, - 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, - 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, - 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, - 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, - 2L, 2L, 2L, 2L, 2L), levels = c("Biscoe", "Dream", "Torgersen" - ), class = "factor"), bill_length_mm = c(39.100000000000001, - 39.5, 40.299999999999997, NA, 36.700000000000003, 39.299999999999997, - 38.899999999999999, 39.200000000000003, 34.100000000000001, - 42, 37.799999999999997, 37.799999999999997, 41.100000000000001, - 38.600000000000001, 34.600000000000001, 36.600000000000001, - 38.700000000000003, 42.5, 34.399999999999999, 46, 37.799999999999997, - 37.700000000000003, 35.899999999999999, 38.200000000000003, - 38.799999999999997, 35.299999999999997, 40.600000000000001, - 40.5, 37.899999999999999, 40.5, 39.5, 37.200000000000003, - 39.5, 40.899999999999999, 36.399999999999999, 39.200000000000003, - 38.799999999999997, 42.200000000000003, 37.600000000000001, - 39.799999999999997, 36.5, 40.799999999999997, 36, 44.100000000000001, - 37, 39.600000000000001, 41.100000000000001, 37.5, 36, 42.299999999999997, - 39.600000000000001, 40.100000000000001, 35, 42, 34.5, 41.399999999999999, - 39, 40.600000000000001, 36.5, 37.600000000000001, 35.700000000000003, - 41.299999999999997, 37.600000000000001, 41.100000000000001, - 36.399999999999999, 41.600000000000001, 35.5, 41.100000000000001, - 35.899999999999999, 41.799999999999997, 33.5, 39.700000000000003, - 39.600000000000001, 45.799999999999997, 35.5, 42.799999999999997, - 40.899999999999999, 37.200000000000003, 36.200000000000003, - 42.100000000000001, 34.600000000000001, 42.899999999999999, - 36.700000000000003, 35.100000000000001, 37.299999999999997, - 41.299999999999997, 36.299999999999997, 36.899999999999999, - 38.299999999999997, 38.899999999999999, 35.700000000000003, - 41.100000000000001, 34, 39.600000000000001, 36.200000000000003, - 40.799999999999997, 38.100000000000001, 40.299999999999997, - 33.100000000000001, 43.200000000000003, 35, 41, 37.700000000000003, - 37.799999999999997, 37.899999999999999, 39.700000000000003, - 38.600000000000001, 38.200000000000003, 38.100000000000001, - 43.200000000000003, 38.100000000000001, 45.600000000000001, - 39.700000000000003, 42.200000000000003, 39.600000000000001, - 42.700000000000003, 38.600000000000001, 37.299999999999997, - 35.700000000000003, 41.100000000000001, 36.200000000000003, - 37.700000000000003, 40.200000000000003, 41.399999999999999, - 35.200000000000003, 40.600000000000001, 38.799999999999997, - 41.5, 39, 44.100000000000001, 38.5, 43.100000000000001, 36.799999999999997, - 37.5, 38.100000000000001, 41.100000000000001, 35.600000000000001, - 40.200000000000003, 37, 39.700000000000003, 40.200000000000003, - 40.600000000000001, 32.100000000000001, 40.700000000000003, - 37.299999999999997, 39, 39.200000000000003, 36.600000000000001, - 36, 37.799999999999997, 36, 41.5, 46.100000000000001, 50, - 48.700000000000003, 50, 47.600000000000001, 46.5, 45.399999999999999, - 46.700000000000003, 43.299999999999997, 46.799999999999997, - 40.899999999999999, 49, 45.5, 48.399999999999999, 45.799999999999997, - 49.299999999999997, 42, 49.200000000000003, 46.200000000000003, - 48.700000000000003, 50.200000000000003, 45.100000000000001, - 46.5, 46.299999999999997, 42.899999999999999, 46.100000000000001, - 44.5, 47.799999999999997, 48.200000000000003, 50, 47.299999999999997, - 42.799999999999997, 45.100000000000001, 59.600000000000001, - 49.100000000000001, 48.399999999999999, 42.600000000000001, - 44.399999999999999, 44, 48.700000000000003, 42.700000000000003, - 49.600000000000001, 45.299999999999997, 49.600000000000001, - 50.5, 43.600000000000001, 45.5, 50.5, 44.899999999999999, - 45.200000000000003, 46.600000000000001, 48.5, 45.100000000000001, - 50.100000000000001, 46.5, 45, 43.799999999999997, 45.5, 43.200000000000003, - 50.399999999999999, 45.299999999999997, 46.200000000000003, - 45.700000000000003, 54.299999999999997, 45.799999999999997, - 49.799999999999997, 46.200000000000003, 49.5, 43.5, 50.700000000000003, - 47.700000000000003, 46.399999999999999, 48.200000000000003, - 46.5, 46.399999999999999, 48.600000000000001, 47.5, 51.100000000000001, - 45.200000000000003, 45.200000000000003, 49.100000000000001, - 52.5, 47.399999999999999, 50, 44.899999999999999, 50.799999999999997, - 43.399999999999999, 51.299999999999997, 47.5, 52.100000000000001, - 47.5, 52.200000000000003, 45.5, 49.5, 44.5, 50.799999999999997, - 49.399999999999999, 46.899999999999999, 48.399999999999999, - 51.100000000000001, 48.5, 55.899999999999999, 47.200000000000003, - 49.100000000000001, 47.299999999999997, 46.799999999999997, - 41.700000000000003, 53.399999999999999, 43.299999999999997, - 48.100000000000001, 50.5, 49.799999999999997, 43.5, 51.5, - 46.200000000000003, 55.100000000000001, 44.5, 48.799999999999997, - 47.200000000000003, NA, 46.799999999999997, 50.399999999999999, - 45.200000000000003, 49.899999999999999, 46.5, 50, 51.299999999999997, - 45.399999999999999, 52.700000000000003, 45.200000000000003, - 46.100000000000001, 51.299999999999997, 46, 51.299999999999997, - 46.600000000000001, 51.700000000000003, 47, 52, 45.899999999999999, - 50.5, 50.299999999999997, 58, 46.399999999999999, 49.200000000000003, - 42.399999999999999, 48.5, 43.200000000000003, 50.600000000000001, - 46.700000000000003, 52, 50.5, 49.5, 46.399999999999999, 52.799999999999997, - 40.899999999999999, 54.200000000000003, 42.5, 51, 49.700000000000003, - 47.5, 47.600000000000001, 52, 46.899999999999999, 53.5, 49, - 46.200000000000003, 50.899999999999999, 45.5, 50.899999999999999, - 50.799999999999997, 50.100000000000001, 49, 51.5, 49.799999999999997, - 48.100000000000001, 51.399999999999999, 45.700000000000003, - 50.700000000000003, 42.5, 52.200000000000003, 45.200000000000003, - 49.299999999999997, 50.200000000000003, 45.600000000000001, - 51.899999999999999, 46.799999999999997, 45.700000000000003, - 55.799999999999997, 43.5, 49.600000000000001, 50.799999999999997, - 50.200000000000003), bill_depth_mm = c(18.699999999999999, - 17.399999999999999, 18, NA, 19.300000000000001, 20.600000000000001, - 17.800000000000001, 19.600000000000001, 18.100000000000001, - 20.199999999999999, 17.100000000000001, 17.300000000000001, - 17.600000000000001, 21.199999999999999, 21.100000000000001, - 17.800000000000001, 19, 20.699999999999999, 18.399999999999999, - 21.5, 18.300000000000001, 18.699999999999999, 19.199999999999999, - 18.100000000000001, 17.199999999999999, 18.899999999999999, - 18.600000000000001, 17.899999999999999, 18.600000000000001, - 18.899999999999999, 16.699999999999999, 18.100000000000001, - 17.800000000000001, 18.899999999999999, 17, 21.100000000000001, - 20, 18.5, 19.300000000000001, 19.100000000000001, 18, 18.399999999999999, - 18.5, 19.699999999999999, 16.899999999999999, 18.800000000000001, - 19, 18.899999999999999, 17.899999999999999, 21.199999999999999, - 17.699999999999999, 18.899999999999999, 17.899999999999999, - 19.5, 18.100000000000001, 18.600000000000001, 17.5, 18.800000000000001, - 16.600000000000001, 19.100000000000001, 16.899999999999999, - 21.100000000000001, 17, 18.199999999999999, 17.100000000000001, - 18, 16.199999999999999, 19.100000000000001, 16.600000000000001, - 19.399999999999999, 19, 18.399999999999999, 17.199999999999999, - 18.899999999999999, 17.5, 18.5, 16.800000000000001, 19.399999999999999, - 16.100000000000001, 19.100000000000001, 17.199999999999999, - 17.600000000000001, 18.800000000000001, 19.399999999999999, - 17.800000000000001, 20.300000000000001, 19.5, 18.600000000000001, - 19.199999999999999, 18.800000000000001, 18, 18.100000000000001, - 17.100000000000001, 18.100000000000001, 17.300000000000001, - 18.899999999999999, 18.600000000000001, 18.5, 16.100000000000001, - 18.5, 17.899999999999999, 20, 16, 20, 18.600000000000001, - 18.899999999999999, 17.199999999999999, 20, 17, 19, 16.5, - 20.300000000000001, 17.699999999999999, 19.5, 20.699999999999999, - 18.300000000000001, 17, 20.5, 17, 18.600000000000001, 17.199999999999999, - 19.800000000000001, 17, 18.5, 15.9, 19, 17.600000000000001, - 18.300000000000001, 17.100000000000001, 18, 17.899999999999999, - 19.199999999999999, 18.5, 18.5, 17.600000000000001, 17.5, - 17.5, 20.100000000000001, 16.5, 17.899999999999999, 17.100000000000001, - 17.199999999999999, 15.5, 17, 16.800000000000001, 18.699999999999999, - 18.600000000000001, 18.399999999999999, 17.800000000000001, - 18.100000000000001, 17.100000000000001, 18.5, 13.199999999999999, - 16.300000000000001, 14.1, 15.199999999999999, 14.5, 13.5, - 14.6, 15.300000000000001, 13.4, 15.4, 13.699999999999999, - 16.100000000000001, 13.699999999999999, 14.6, 14.6, 15.699999999999999, - 13.5, 15.199999999999999, 14.5, 15.1, 14.300000000000001, - 14.5, 14.5, 15.800000000000001, 13.1, 15.1, 14.300000000000001, - 15, 14.300000000000001, 15.300000000000001, 15.300000000000001, - 14.199999999999999, 14.5, 17, 14.800000000000001, 16.300000000000001, - 13.699999999999999, 17.300000000000001, 13.6, 15.699999999999999, - 13.699999999999999, 16, 13.699999999999999, 15, 15.9, 13.9, - 13.9, 15.9, 13.300000000000001, 15.800000000000001, 14.199999999999999, - 14.1, 14.4, 15, 14.4, 15.4, 13.9, 15, 14.5, 15.300000000000001, - 13.800000000000001, 14.9, 13.9, 15.699999999999999, 14.199999999999999, - 16.800000000000001, 14.4, 16.199999999999999, 14.199999999999999, - 15, 15, 15.6, 15.6, 14.800000000000001, 15, 16, 14.199999999999999, - 16.300000000000001, 13.800000000000001, 16.399999999999999, - 14.5, 15.6, 14.6, 15.9, 13.800000000000001, 17.300000000000001, - 14.4, 14.199999999999999, 14, 17, 15, 17.100000000000001, - 14.5, 16.100000000000001, 14.699999999999999, 15.699999999999999, - 15.800000000000001, 14.6, 14.4, 16.5, 15, 17, 15.5, 15, 13.800000000000001, - 16.100000000000001, 14.699999999999999, 15.800000000000001, - 14, 15.1, 15.199999999999999, 15.9, 15.199999999999999, 16.300000000000001, - 14.1, 16, 15.699999999999999, 16.199999999999999, 13.699999999999999, - NA, 14.300000000000001, 15.699999999999999, 14.800000000000001, - 16.100000000000001, 17.899999999999999, 19.5, 19.199999999999999, - 18.699999999999999, 19.800000000000001, 17.800000000000001, - 18.199999999999999, 18.199999999999999, 18.899999999999999, - 19.899999999999999, 17.800000000000001, 20.300000000000001, - 17.300000000000001, 18.100000000000001, 17.100000000000001, - 19.600000000000001, 20, 17.800000000000001, 18.600000000000001, - 18.199999999999999, 17.300000000000001, 17.5, 16.600000000000001, - 19.399999999999999, 17.899999999999999, 19, 18.399999999999999, - 19, 17.800000000000001, 20, 16.600000000000001, 20.800000000000001, - 16.699999999999999, 18.800000000000001, 18.600000000000001, - 16.800000000000001, 18.300000000000001, 20.699999999999999, - 16.600000000000001, 19.899999999999999, 19.5, 17.5, 19.100000000000001, - 17, 17.899999999999999, 18.5, 17.899999999999999, 19.600000000000001, - 18.699999999999999, 17.300000000000001, 16.399999999999999, - 19, 17.300000000000001, 19.699999999999999, 17.300000000000001, - 18.800000000000001, 16.600000000000001, 19.899999999999999, - 18.800000000000001, 19.399999999999999, 19.5, 16.5, 17, 19.800000000000001, - 18.100000000000001, 18.199999999999999, 19, 18.699999999999999 - ), flipper_length_mm = c(181L, 186L, 195L, NA, 193L, 190L, - 181L, 195L, 193L, 190L, 186L, 180L, 182L, 191L, 198L, 185L, - 195L, 197L, 184L, 194L, 174L, 180L, 189L, 185L, 180L, 187L, - 183L, 187L, 172L, 180L, 178L, 178L, 188L, 184L, 195L, 196L, - 190L, 180L, 181L, 184L, 182L, 195L, 186L, 196L, 185L, 190L, - 182L, 179L, 190L, 191L, 186L, 188L, 190L, 200L, 187L, 191L, - 186L, 193L, 181L, 194L, 185L, 195L, 185L, 192L, 184L, 192L, - 195L, 188L, 190L, 198L, 190L, 190L, 196L, 197L, 190L, 195L, - 191L, 184L, 187L, 195L, 189L, 196L, 187L, 193L, 191L, 194L, - 190L, 189L, 189L, 190L, 202L, 205L, 185L, 186L, 187L, 208L, - 190L, 196L, 178L, 192L, 192L, 203L, 183L, 190L, 193L, 184L, - 199L, 190L, 181L, 197L, 198L, 191L, 193L, 197L, 191L, 196L, - 188L, 199L, 189L, 189L, 187L, 198L, 176L, 202L, 186L, 199L, - 191L, 195L, 191L, 210L, 190L, 197L, 193L, 199L, 187L, 190L, - 191L, 200L, 185L, 193L, 193L, 187L, 188L, 190L, 192L, 185L, - 190L, 184L, 195L, 193L, 187L, 201L, 211L, 230L, 210L, 218L, - 215L, 210L, 211L, 219L, 209L, 215L, 214L, 216L, 214L, 213L, - 210L, 217L, 210L, 221L, 209L, 222L, 218L, 215L, 213L, 215L, - 215L, 215L, 216L, 215L, 210L, 220L, 222L, 209L, 207L, 230L, - 220L, 220L, 213L, 219L, 208L, 208L, 208L, 225L, 210L, 216L, - 222L, 217L, 210L, 225L, 213L, 215L, 210L, 220L, 210L, 225L, - 217L, 220L, 208L, 220L, 208L, 224L, 208L, 221L, 214L, 231L, - 219L, 230L, 214L, 229L, 220L, 223L, 216L, 221L, 221L, 217L, - 216L, 230L, 209L, 220L, 215L, 223L, 212L, 221L, 212L, 224L, - 212L, 228L, 218L, 218L, 212L, 230L, 218L, 228L, 212L, 224L, - 214L, 226L, 216L, 222L, 203L, 225L, 219L, 228L, 215L, 228L, - 216L, 215L, 210L, 219L, 208L, 209L, 216L, 229L, 213L, 230L, - 217L, 230L, 217L, 222L, 214L, NA, 215L, 222L, 212L, 213L, - 192L, 196L, 193L, 188L, 197L, 198L, 178L, 197L, 195L, 198L, - 193L, 194L, 185L, 201L, 190L, 201L, 197L, 181L, 190L, 195L, - 181L, 191L, 187L, 193L, 195L, 197L, 200L, 200L, 191L, 205L, - 187L, 201L, 187L, 203L, 195L, 199L, 195L, 210L, 192L, 205L, - 210L, 187L, 196L, 196L, 196L, 201L, 190L, 212L, 187L, 198L, - 199L, 201L, 193L, 203L, 187L, 197L, 191L, 203L, 202L, 194L, - 206L, 189L, 195L, 207L, 202L, 193L, 210L, 198L), body_mass_g = c(3750L, - 3800L, 3250L, NA, 3450L, 3650L, 3625L, 4675L, 3475L, 4250L, - 3300L, 3700L, 3200L, 3800L, 4400L, 3700L, 3450L, 4500L, 3325L, - 4200L, 3400L, 3600L, 3800L, 3950L, 3800L, 3800L, 3550L, 3200L, - 3150L, 3950L, 3250L, 3900L, 3300L, 3900L, 3325L, 4150L, 3950L, - 3550L, 3300L, 4650L, 3150L, 3900L, 3100L, 4400L, 3000L, 4600L, - 3425L, 2975L, 3450L, 4150L, 3500L, 4300L, 3450L, 4050L, 2900L, - 3700L, 3550L, 3800L, 2850L, 3750L, 3150L, 4400L, 3600L, 4050L, - 2850L, 3950L, 3350L, 4100L, 3050L, 4450L, 3600L, 3900L, 3550L, - 4150L, 3700L, 4250L, 3700L, 3900L, 3550L, 4000L, 3200L, 4700L, - 3800L, 4200L, 3350L, 3550L, 3800L, 3500L, 3950L, 3600L, 3550L, - 4300L, 3400L, 4450L, 3300L, 4300L, 3700L, 4350L, 2900L, 4100L, - 3725L, 4725L, 3075L, 4250L, 2925L, 3550L, 3750L, 3900L, 3175L, - 4775L, 3825L, 4600L, 3200L, 4275L, 3900L, 4075L, 2900L, 3775L, - 3350L, 3325L, 3150L, 3500L, 3450L, 3875L, 3050L, 4000L, 3275L, - 4300L, 3050L, 4000L, 3325L, 3500L, 3500L, 4475L, 3425L, 3900L, - 3175L, 3975L, 3400L, 4250L, 3400L, 3475L, 3050L, 3725L, 3000L, - 3650L, 4250L, 3475L, 3450L, 3750L, 3700L, 4000L, 4500L, 5700L, - 4450L, 5700L, 5400L, 4550L, 4800L, 5200L, 4400L, 5150L, 4650L, - 5550L, 4650L, 5850L, 4200L, 5850L, 4150L, 6300L, 4800L, 5350L, - 5700L, 5000L, 4400L, 5050L, 5000L, 5100L, 4100L, 5650L, 4600L, - 5550L, 5250L, 4700L, 5050L, 6050L, 5150L, 5400L, 4950L, 5250L, - 4350L, 5350L, 3950L, 5700L, 4300L, 4750L, 5550L, 4900L, 4200L, - 5400L, 5100L, 5300L, 4850L, 5300L, 4400L, 5000L, 4900L, 5050L, - 4300L, 5000L, 4450L, 5550L, 4200L, 5300L, 4400L, 5650L, 4700L, - 5700L, 4650L, 5800L, 4700L, 5550L, 4750L, 5000L, 5100L, 5200L, - 4700L, 5800L, 4600L, 6000L, 4750L, 5950L, 4625L, 5450L, 4725L, - 5350L, 4750L, 5600L, 4600L, 5300L, 4875L, 5550L, 4950L, 5400L, - 4750L, 5650L, 4850L, 5200L, 4925L, 4875L, 4625L, 5250L, 4850L, - 5600L, 4975L, 5500L, 4725L, 5500L, 4700L, 5500L, 4575L, 5500L, - 5000L, 5950L, 4650L, 5500L, 4375L, 5850L, 4875L, 6000L, 4925L, - NA, 4850L, 5750L, 5200L, 5400L, 3500L, 3900L, 3650L, 3525L, - 3725L, 3950L, 3250L, 3750L, 4150L, 3700L, 3800L, 3775L, 3700L, - 4050L, 3575L, 4050L, 3300L, 3700L, 3450L, 4400L, 3600L, 3400L, - 2900L, 3800L, 3300L, 4150L, 3400L, 3800L, 3700L, 4550L, 3200L, - 4300L, 3350L, 4100L, 3600L, 3900L, 3850L, 4800L, 2700L, 4500L, - 3950L, 3650L, 3550L, 3500L, 3675L, 4450L, 3400L, 4300L, 3250L, - 3675L, 3325L, 3950L, 3600L, 4050L, 3350L, 3450L, 3250L, 4050L, - 3800L, 3525L, 3950L, 3650L, 3650L, 4000L, 3400L, 3775L, 4100L, - 3775L), sex = structure(c(2L, 1L, 1L, NA, 1L, 2L, 1L, 2L, - NA, NA, NA, NA, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, - 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, - 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, NA, 1L, 2L, 1L, 2L, 1L, - 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, - 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, - 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, - 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, - 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, - 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, - 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, - 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, - 1L, 1L, 2L, 1L, 2L, NA, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, - 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, - 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, - NA, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, - 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, - 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, NA, 2L, 1L, 2L, 1L, 2L, 1L, - 2L, 1L, 2L, 1L, 2L, NA, 2L, 1L, NA, 1L, 2L, 1L, 2L, 1L, 2L, - 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, - 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, - 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, - 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, - 1L, 2L, 1L, 2L, 2L, 1L), levels = c("female", "male"), class = "factor"), - year = c(2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, - 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, - 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, - 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, - 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, - 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2008L, 2008L, - 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, - 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, - 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, - 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, - 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, - 2008L, 2008L, 2008L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, - 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, - 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, - 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, - 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, - 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, - 2009L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, - 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, - 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, - 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2008L, - 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, - 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, - 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, - 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, - 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, - 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, - 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, - 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, - 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, - 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2007L, - 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, - 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, - 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2008L, 2008L, - 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, - 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2009L, 2009L, - 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, - 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, - 2009L, 2009L, 2009L, 2009L)), row.names = c(NA, -344L), class = "data.frame") diff --git a/src/library/datasets/data/penguins.rda b/src/library/datasets/data/penguins.rda new file mode 100644 index 0000000000000000000000000000000000000000..b38058cbfd50857baebd1c8624fe904034668f7d GIT binary patch literal 2923 zcmV-x3zYO9iwFP!000001MOQ|Y*oh{)y5wfD@qlCQs?+!Za{Rp@zMzE_Z+=jCrS zkKV=~>};?9mgg1ZnZX9Hz}sy42ZnM3Jx})zj2PR9j7?u+mUsC!>utT=zLvk<{;yiz zdJDGDJ^Yov+%vg8a|?UrzFL@V>&o@@<}liv*l#ZC(c$b6m(#g{(ZN9nYU94X>&Aa7By3=voY5un>FYE2zXm`P_dN(z>mh-N8&Yd3b z9oaX?JAGqvIG63`1;2A}xFTRhJzH4D39i31Dfb1IgY_T&>wKGH3p zpZ!Bdn_h{*ke>He@>v|jbC4rj+UL5uuGtM~p+qe-|JQ|LV_$l~{FMv0B0XGS| zIC!^1m-ra`VjuO0lLzcmk3e7AVSgL;Q{OiF8wXFUGj8%B&o=0mgg$YX2jWfAo_b)N zdM6QY4C@Ktl5acKxjzLxtgg^A4jogB54=;fLp`*SAM;B7&?(M3q;447c*)-j>rem8 zR{}gx_puoErC8t87d`9H)+Otada$lppT%K3j@wyB*vI-J&(!WP9(8czV?5-QWPGTP zHuzT^+X=5cb5%e>lxE!a!FO9g`p-Y)_K- z?BoIZrVuA_c}_aWm-(TNsH+{&&*oz}Y?mP(`6A9V_NReQeQjPik2uoYk2n}7d+OcE z{irYIi~4jRUn#CLF5q_-hy8UjUe+Ia)(7!2tY_9O_>(X5umks0+TqQ5vh@#rI)Tgc zk>NQ59`&~R@;rj~4(dgF;KRTDenG!B-{eQWj2C)RH=g6p-Qj%L`+#vd`&geHtOL|x zC-VirjI#rE_BhWU>jVB$9P^y8epx@@M|`W_bQrJGxqo&*M}9Br0M870b3e`{@mU9* ztedfLUOISQnK!3Cc}}^Hd1bzB9YBAcN1iY8we`zc1bX4q}R`nGBZ2l}^yM+n=ns)^lx>ie)QQ*C-||7<#JFMKR2}BW{j8G~ z$Da9VrS8NhFZyR5$&dJqndUM%10@R<6u4w_i6UYLiCAAGn@y{TIha2XHt&A9A2 z;5z+{h4F0unXiSgJ^42}b!T-ZzLS4jZ`9SvC-*bY>|0qcj&Alo0A8b`3+sdD+v@4$ z|GIp_PYvq|@zlXj1Lo`DrxtxZ*WsrI_zmc5ojT>1``9;Pp17{R2H4fX59ir8(m(k) z_6@MJW2dik{87((tWyv2XWiGj{24EG!kGS9KebNJ`5O3Zba*ijb<~&fxOzM5RzKj? zQa{%}{g6NAiO+ki&WXpyMID$|M|bLB@u?s6b@aD5#9av6Q-AWaIyw2Hf7UtiS&#MD z$M~sxy`wkJVS|I;==ibmxcJPcQ_rk(#@FEJ!@N^J@?<_xU-tV2>zj7<4j=dZXYVE6 zo4ogUPjKCNFGYDDIqwtuK5*_Ae!sEzIPrNu@x4VH@N?gnmOpTKuSFeP`+lKc=8^ZJ zPG*-WnS&~ z9lqzNqxv(C{HxmQrX4kHR*}3J(*VfEaE(l@eJ0F!Tv2Yd4AWlQ}BBf_NN0r4uglZlhA7tnBs3f zke4}doWlAXo{uAj`GD^U*!~_Ij$(Z(5YHK4&jD{9`>5>+@SZ`N2xv7O$O-dEn|Dn6 zlWEKFaly3nc$WE(O#1+HADXs^{v2$U&|iYxXM4C;t8%i0LGFe+0Yp=!3dZmk%)iIpSXiNA`mE;h5)t&SQKQw$q;0q11rX z2y68)o@X(Zb)HA5lS%Yq^SZZk-sD+okmrl{%?UJFJLRp^+XP}2yLt3y!0QyAC%}=7 z{?B?V=Vc!AGr*hhR?eA>-v$5oJUwUP=Y7o2z>nbIo-I9Sn$fiQu6DM_D#>L zOqlTto>%^oSvNT;9X0)!+E+B`SnMl)W#+#ycKgjZW9G}%rffiaX(g9+Z}E3^zS!tq zwq0@kUiLq#Yrd_SudIQ+tbbK~7MZhL@gHN8HP63M|FW;d+~4I3IxaIY7VQMT%j&=A zVU1PreD3A2dl){e%>Dv1{;OHvi}mfgU+@J>bda9&WiM+?l~1V;KmMu}pTf!4pd2_0 zs*m7Hd@}ZNuPR^hU;0af_q18hSARwQz&i*Xdd&K7&G?_HgZM8W*R`_0A?_*VA(~3O z!o%0)>l&ZW`=t7}<1b)mTE$OPU-~Qih4L0Y(o0RqKH)0)kb3dgUO@dEgibGOZB!*S zX6YY%$UK|+t2A}L<$IcoEnm}IKlrNlRTorCzc<=H^lR8JD@Now-4{8k&yl~Yc2$+C ziQsJcx#mS|w!Wf1#CPNgT@%d(Px2#}qDAHNx;OF-_3zso>@DWKUwK7)-|us3BiORf z=d)M$%0Ai&AK@VQeq4ui?8o{13U|@Lw>zZ#w+`w0)^D4>!q|6eO$c9~<0on-ej-KS z{DktAb>Ht5#f?0sHiF}8az*z?22KA{#r6BAw6FMBd*SB$ufhCQ&4*wKzsO^HUkF~+ zGwMtH`!&B^YocUMYlP=r>Vjv64l}zrGj1^GQ7qJi9)>D&^$gTW4^-=T`8f zNxl2Lrodq;@GCL-HG}^P54@i?1m^N&F4(;AFF`iA_BZI=xtq0L)$T@o@1p)z%CE7PHzCC@pfu7O*d;0nF-x7beD>oFJtmy9R9U96F zUuRvkcd+Z(J^k5{kv%<_${)%7h;NK%bJ<~s=jP$TA2yI{318ONu3bI!C9jskuIy;G Vp?lbD!RzJfe*uuGx;}>CKn9h8#`}*#NP<*WK+o;)_ z<8ho~`J4>Pi%^uMf7E5&@Zurtar-A(_%JP5NtO>+``8|ea@dXIy~N0*bvNoPBa;rH zptI%?=4Wtzr%^SXqn!-r9nR-<_cBC8)Fos@3ane20Ta^w(^;1oE4v4$w_kA!? zGn0Ph?8%jLH!Dq5US7bb3VQq%1OADi$G=KC8^k$KpaEpSPYZgm{9nlndeGzlszK0$ z8UI)Qf*wrxzaj{F0PugsDu|`S|5c(O_B{Tt3mJ$C~&hK@YHSS6)U%mND2X!{qUuSpn65&O)LS!57&WODSBUE-avs0aM$FbwT zsl9c{E*CQAUy73cGHGyh%D}k}n>a1Z#k#9Zp%jc<;hycyu)SS0x7$O5y7Q7dv}l{+ zxqL{7t9C#`>b3L=q1wXK%F?p!(w5TyO(3q9_Oa>dzHlvlPoSH+<71U-X+Fv2ci-0d ze+<1LB^DBb*JMP5WtXxD8n!;VMM`bZ7Y+eS8VX}9zV!cJh(tC<5LOf<*VD!qKIY{4 zD8v5;(ojmf*!tK8gGWhDL#dph*Q%~uJQaQ6YgoU|JSua0$zksl`vPyOW_KqIGI}q} zGVpY%__$#i8BE(&tNO2Z(w^*XtbA22kfmMGCPAe|k+bFN!!55{**HPc_nv30Nw(Ze z`*qniU(Yv2>W9exK3Ug_Az<4$<9&~P%qcs09pEoj9sap^i)fu>ymZ- zUV+uIaRsS#I`lCn-__QvLa)^Cp=Ch4Z-D7Jd2JCdbG^l>%YgbGElHf2p6b+PNPUmF zB>U85V-cK@@cw^e-$V~FdD)}B$669+tQRtQ*-sU?9jH2q3v@<*_>*y|PCefD9fBwY z-u)0J!6m{+COX@NiT!&2>0RCqM9ATa4>mVQfy{Q@>8O07OpyU;Ls@ zN>zHy6XyRiVxI6HvW+2r+M!d$f4J{g`4`oEWuUP@QgNb=S-)`U8vE2^wto>2ay4kX z8UerBDO?oyZ;Vh604mu6l>tC?EyUC^VhZ~?s;$6o6e@;-fVaslWe1qbz3TyfqRnMK z89_DEQL6>*a)a6p*#=e zH9Y8o8e^N_pEI`k16}sWQAmzS+)44;_qBl6e+KcW3QT6m+hhB)zV+P&^r}K-ao-JH zRK|}e~cjXh~gWWiYI)YvkK0oxl2C!({0s| ziYMXfxOIFckSJQg?@EVvI;Q>Zk|U3D;k`;$9}5h(r4?v~xiJgnB8g6mgj zBL{75fs%6jKk3P^J3T5@V0DYfd9?0! zaKBN9J?xM%etv`+^60E!OoSY|9L8wd;QiK#gT`t)m+NxfzWrtPxo3e^wD;j91V7|u zf0CfeIW%m(GU^T+MWNOd{DrDP-vMK*Ss(??Q=;~%VXrA+krauum5Qy4fPIG7D;oP- z0OEjS7Bw6a!-vKnPxeJoBkjSorEos4h!u^o1E$5!_uMr1S?-#ksx$;i%{6WCotjKCQG1*U604uCg`|7n1PP<7gV!D>O6_>fSHqI z^jmL7XPAi~M{v4O0bY-+N$OxFF?%ukjS;(5_i;~Eqb1nZBB}e4p*7&@T>6^Cx%n`b zaOwq3+U!hm(rFjj0ep>hCjbc8F&qP;yPMdUa#XSaf$GU2^hqaL9S~Cs00VL$imsh4 zT7n0E`Lz!d0kBGx<2*P^def!UsSaRJQBBJW|1;Ldo^&8p-8kWML>3Zo?Yy?qp6Q1; zreg-gFNL${OAJ69<6U4RJ2*{rr`AZd|0n3QXcllYD&%MI?Vo_Ylcz|dWcr*UktSu0 zut-6J!?>-lV(4C?Jut7T>l#c~&A{zQ^9Kn1R#B@%{T$gbET!eAau54!0vl6b4CjHs zJHi;mLVDQHwAh?&P)2GW^hC22!qXQ=Vd5mwQ{Fm&9aqkV^~Cv|k5c05TI~xnA%gH6 zjA6KtH)th#Sh|M@G7xwsKyj1#s1v+Xg^>1y6fQ>ta1My~hQoY0Yt^jt!8Z@+*3diE z;7kXQ2I$?>HhV~Xt=OUExg78gU{?BkkgDh`auys8ph%n+Siznyk}pK5qFal_eqOr2 z=nUApOmPIgdAjn<4KvP(l9*1w7^=dZqx^b*H={NSmnY@C}V9x~J2IUAIYbb33 zj_g4SJ)ON}J4~DhYdHl8OdC1rfJN@L9>0AoBPJSfY>rPP`5bjAF527H=)l-=MY*MO zVGIBxg?PThC2?0=o*E&B37&L>>p~R3dft*81=vBv{*$Kmb<+J#YvUnDY7Jnq8p2}5 zuS*VR+DP{p&g47k4Xj?~N%LkkN+dmZqlg{#2k%aA3sZ?UD`G*~G#g4vSU1A^=pM9O z)sS?a-sZNq8pNS0JrmKkZo`uVw1Ta`d zVNBP5u)2g==pe~qm0!%c37vjlkGx<#-M?F3=XCkhNi~8tYk>nYplA@Ooiz!x)~k9Z ziR4I|T)kO2^NzCZ(^SpsCxhex$Zon#zoO+6Yk{R2E&(_*8lYm?4YE|C^6 z9EAoQM4fKnt4{7BTkDDGupan&Oc`h|DKwE<1HwcI^d$vV^>6T@@+7v9>WxX40ay^` z`;ja`sc&m=g9(#(s+DB{_$9p&8bL`2K2lUAQ{clQS(%E*o(5mCTGLd$fL_Nj-XPBd zh82ZDejS=(?*6hSI6Mg{%|-snw3Q*cW!?<&gp>=9-hTyq{;G=_=y8+e6QmU~*cL~M z%+YB`HD3-;npa#3Bvl@M1vl@%JBw{6Ay6j|#pdAv#X)@`uZwAzOGt_PN1&ZdK)xxlILD z%O5MI;)JcPCJ~yX(Vc#;U?LF4mm$vZb@p9`QNXzKuJR_+E|-m<;T`8S^id6~Zs=H2 z$Ep^P!dr*P@87MOOeo-in}BV$yu44il+Yua>#wKnVxnAkIWJ;jzNAHCelhKK!am-0 ziy}EfZl2O*ocGs->BZ3C(t2}z6egSr^W|h?EpeKdpoQR(UfuZtt4lT1 z42@^TUCautdji-^p>is!MAQyV&x?Bc$3h~nh+;+APp<#`R3e`U)cDkNVuWNGyB;w? z4_3QmrS5WN3-U8CxjPte*u9qCi{pPx*zi0am?rjyUQTjdGe7)RPZGmj1?qn~4ZLK- zpJnr7Yi)HOPyD6xfe$z=>T{AzKAW>%FyE9+EZ|>bM5-C(9>9(6N|=*zfjv=>u!!bxYw*>1R&o$Rwu@6PG4iC zQqe04ilQk&7yJi9xkgs+0x5!Or5iP`21DiaS}T7JhTYy+>sQ`CX5K4X*BL{b9?Ikt zSSc;*rPJ>1mm%nlus7k-o?i32mrfFG=ZD+decxtF#nu}aqOL${t6-{}&JrrNT=sB1 z*V*5(F7`-)!_l)IV?@aBqLcz!3Wo;m%84G`sl^y~U0ABXIQ~JJ`{Z7$XUh{1T6l=) ziW67e!xq$=l3!Cx=d)ndkejY+Ht!k9EPr-J3y<;y(6RM6@MOvA6yNNx49k;;MKiDE zg3gD?N~()s&u&Q@@ok}7s=?%qEe2Ajy0%*q4o!^)c|8RSqA=2;{;_^mQcovYx~l^^+l6W@eYQOjvmLj6NT>%cCRg%s>)- z4&VHV`MUFNDy*uv*7u7%Xcle(`E%?J{X+t4JlTe?LqEz>N$ZVu)c2J;04g%jGh|3F zBBWd%Jg}D4LAhNOsP5VRMPS=eHQl_N8{OMnbA`x*i6>`VtZtt&FgI4QT{=6x6kf&X ztvKVB>T+6dO%N&L9g)4N%-++}^v$0H?`2@o8h$-IiOwam&cCZK5=fbOFtlY5+xdntji zbkHz8+I+j-NWy$u>0Ni^iM1#7&sPgl>X93gb@RCN+fVSNz;upuh)9x7J@s}@7TPN0 z&k-vTmkASIQ;&2m#Va%_G|`G*ju)rT~8hqwgMg$^*}NwU@ZHh=*C*Wx7g?Yryph)P&1ELIB??&KW z@+k|+QQa7TWuh+khFr57=9n+AX-4X(^MFjUu)6Jxt_O68&My=gfNyo?*7-0gPX0r> zQTv<0X_TNZqumwEuI?ahpM%dTE&biN!;kP9*y*g@t=CS!*=+I0sq0$@d3wGNsfx@r z;JH&-;4aIN;poN+$I(HW>LaFKmQ<3T)AICbZ(eYY$1mg-pCs6E2=$@8*cC}8B8DHV zu8bOmNjRz6254!wt;AG&r8{cYS79pvs3wxv)O^pZvYSESzE;oVF3E%=EG7Ckxe<~v z#C{*enSK(PhPmc&>4fO1dp8!ND$*y;p#WjshN3DlPy4Ox^kQndE8mPga*OfY9Z=Yl zWW8(}8CF3EvK8zLi?iZ$5tPxsABH!^=EjJ%jc@z;S+lQh-5iqWU*Jf4Z>KU|=^KE%u1%?wOQUyZ!)iPoFP;I@gAFMTYWuhp(-9DD>1* z%r#aVWAmB^$#eLlT#YMwAJbn>H`-(ItH>#BTQ-Kxy8J~hL^x(&=M&x_kuPSyZD!ps z?CCuVVTGcjrRW-Br!Y3^wrgpv%htyaJ!Z8d5elyUqBmCdE10E5uJ^^IHH>@~Vq5D# zE+;c`3-(#%Jz;QgAFfl$y`hc&fb}S_;#iyaUU@uF$V*|ZW2||FOKFX)_TGr(be|FdcV~?I819}S=Qe?zO`IrVES%FPkiS1Zctu!q)kV#!yh-;>tD|VB^4s3}8LMf# zTe%QO!opbcc{^Ep52aMmuF)=~iYttlC(5QfwmH@|BtgR}o%nD0q)YFT)A^$q8eBhW z=!^9|tWb9w*!I6eG#D^*5Lepia@$I)CBKZb4Gy?1)822Sw-uvDkq6xoM`SnY6TH=$ zUfhrw*+XuRnybZlmV3VFYK@Do38IMYJd+{0a8SxPulKnWIKrAjKJYjtN*zE8vwND5 z!HtPv5q8t9j>g4yNqzkQ8}nBl&dF5#!mOt9(s;)k|E2k|i?phJ= zY8u?%#=vHAJkGat>>ZC&D?gunZ)W;GEmf}2V;=|dx5Jzrt(+c<@wWoS>gC9Z49G$0 zJ$?1od@Ifhop^;()>;0HNAY~DA$VxiR8L?nW_a*^Q4Q5~1!1XsQKsk#(bE(w&=Z*7 z=avhTPvTh-YY7Uzq%yO`WX+e(!*^?6aXg<{hNao}d4435OahD)6*=>c!!$Q{{_tY% z-FVZV{EsCqi>3Xp-?=Ik!@o#-fJnXvcpc;mOzKiF9 zVKOY;`aB)TLC>mkIpz?vLA&^*2x!bf0;LgV&8Pon-xx-H{xp;axGD65`5q5>BM}ln zdHAONxq}eFR%8@5jT|Giw%y~oeFx1Iq{{veq;0xhQN{f3&Yd3e-8VN?46ZfczG_=9 zi@XlVtg@K^ux$-yuMoX-S-n^V>fEwyG8LgAk8va0!qG;d>r7CB$Bn7JNk1zh;UA&+ zQUOk{O@6OE#COEj=tXo$v3nYL-uK2R$IP>=p@)J~%e$#9s8a>BYVC0GjRb+{gRJ9= zQZajXOG6v-EXsOVdz!US`BkCFR7FrCbgkmcQcuuEk=q2!P-IFyt$)NTUa0HvovgIG zUCD5QtFXm9*ntTDRvsCys8Um&mSdPDx^y+fU&B^NF*NuoF1Qbr{iAN7&Ukr=9##I6LvZ;G6K-v4ajf)E0_I?6y%4)Q90zQ0$IB7Sv}9 zcZ9XO2_LR;?_FNq-18$r91m2BCwB#`XBR8fPSg7{Ud2O<*3l)NLN-nlrGv-rcFm27 zp0BglUg*?Pn?^QUwmu46dz-;gu<{*~x`1V0O+1>FzpjlvQ^i8{zuA4d)z$ehE_(mT z(x)0z=Gp^;7f6+T&RRq4;;)(ZVdN=tV+E`cUnu))3)W`%Caa``+19d+iHLw)Pao-5 z{=BiZH*~EF+tvlI3XS4fQmJ=C^hBLkLC{>s7WLnFl&?Pfhmw5YBF7(XUy@Pnx9BHS z9#`j{Q6F)B%>-p;F)-Q~6!6*PVPg!Nf^att4ZrtZn_nz5Eapf@7X>f~8zJHntW$KW z5!zHssHNm)(xNMDspKDa?b?4N9YU2(Z5s1bkiuPXCk3igu%FN!Nd3vlvlt$3m`mvf zBIC4eyurazzES%u_D)exJg=R*lqdymb+CNTIkaV>8C@ImzNun`Ea%P&{p?{^sTzMC zH2TupRp+tL@NCZ1VxxjgLx@knI*Wf5i(i=*^?^_qqVUru%3DbDlTha<=!#%hyLtPb zydN`rSoI<>D7-gdR6Xrwu9X`veXjc;2Wok`K}zZGuNUeuCYvkW6=Old-0b-O=a zuCzaRGY<(}ekQHrQI+~D!}Jvgd+M}PWC6gdUHy3YW4T3P(%Vpp3i{}|nwh9IngzvX z`ce6o<{K7Ci7?Y9KA99)=$y-OX3t5aA7Wah=t6(#E1Tp8@v9N=bSDRI=Xr3gYNpnL zgKjnj;vydfXU+Eec1wnF#vX8W8f!j#2=(J^U74G;9UyKW5;G;1)@DOahk`X?WM0Co zXYvDLN=|yM&jidax`ud;#A{7O5BXxeF!xHi-4^yxJz_nRzJ%#}{bzdaC^A}9h80LOYeSGzodY9M}U0VZoti_Hzj{R#Wu|j z_7pyCUJzkE5}wjS*jWTRaY56_7QeUNy5|bVF{YMHq^6IK?ETXM>V|z!)o`$q?;_s5 zCbg+K1(>NCM%#@5^}C~gd+#^QK4)}Lw!-KpeOrijp=I`KrlyEW>6Fj3-?NGT>>eI= z-$vW^yAQKDK6|IEEw;n0>aZIo-kY2<3O}s?h7Nl1SO!&UFVx?zN{KQH- zw#U5=iYMa}XkI?W>q9x8nG8&DzOx_riV}_w?Hs3ACGLyl)&z)}qe5m?Qgz20?-mfa zko{?L%7|J&!4w<9^N_};Tq##AsupNQxU#IqA}Kzd!i$LsnBE6w;uA4X@Je?Jg+ynL z!M>k$zd4>V&aBusxgSKtW;0Ef+aaV=lyj|Y+pI;!S)R@Os4g_aS7%FzKemPJrOf7; zmEv6rSJY#_m_+;zEjn_3SU4UNfpd5)-nLvb@in7$j(VTc!1rlRy+1fq(fLkF*2`nS zffE#NR5IHSETU0^q&>c8klxPO0tas}aYb2HIWebP{PxnS{HucqL6@N03?s7{x=EwWNrI#zRX8xQPL9DlQHVzp; z?uusdgIe0nc9X-d)be zi!YFp2ft&XCy6!>H(pHR%yR}g+_jRZAnn}$U>`c=H9D|m( zLXOr+X7USbsfC49$X?UE!W22Ow`*m=_*2Y5txQV$t8S?VoEdQJXmB@I!Ptd`q)G~8 zNO?UcQLS+$<)6)S@)zyyZ{QjN*i)=)XY}V4ZdL7E#SZR^vet)r8VA95v+r&I9Z@6t zN`{41{x8dABR1-XO7_P*(u`MRUrk5oY{a@N2O)Hx2fX_>aOKJhi1zTU^L#8a#2K~{S5?795$ zbA%QNX!M{IA9D9()KfeGgu3|T%^*FdH=60HiOYgB=Fz>4Z`N++d&9)=r9pQGV54>+Du$It}BItS4lavs^RSf1jt_cBdJ?Bq=UXEDw)7 zhL}lxb2^xw7MUX=7#+JlFHz@mCiGqwjgJ}%-QWavuA5hY&X%vdb&1;ubXmlmC;BOrD*lqmLE^RDMWspT?a-6*xc@g){2F0#>sYOze#^{`5MXed4s zYyWmxyYOknoISYvCJCWFycvIO;~;{s@;12qB@-6@v2dyHZfL5h*gPS7fKZ>S^4$b+ z$d}t9)AoEVBh!NFAbf@QYOZ783pk)`<--vdR78RKs|igj?;&YciPz@U`;*6XDT}F= zAob%-ZLC-nD{=4Zcyv(eT{qsn=hLW!vt~IjTWKXB(V$N_0 zJI=EH`6c9nU1-{%>D71Kl;@XHVAWj-g?Pq=T!VPgl>lyhk9j@XYOYK&! zsGS${Bn@D$?`CV0nwk1@sE$d{Z;O`6i0sDh!mYNIxGAXl$hZLn@sN*m(Z&~z<}=H= z_U`NS-h&Ma{W1C5E7=rqqgoShqON*B$~+Ih>4!{i|2(?0MmVv3e&C>>l2UI8*^94K zA?!-?s!tyo=iXMGMrGv3V@(5JM6IMl(!ml#795W@+A?+R%9S!s9gBlyPh(%`S&9@R zz7w)X(QY=^ydLPKa{DhZOB5q|f?w9OXCu@QL$9vTl&6X$AvnIQUm3Mx`96ChbE22)mQ+v&dQ-)c zV%{?RLg7k^o6cm350oV{fDo28G>a8$ezU8Ro4p`;KMZj@X3)0P3M6FaFX2EL|LWb( z)s+g^tUXzz0y^V&QBNye7&E@x* zQx2xQtfWwh8Gv#Nktc2inxwT_mcWzve(;)>ZSi5R2qrR97l{@3P*O=8tfb!y9FBD) zjve=>O%0|Wf>V=l3*hTM$?B=LmuKGw#SQjqKcV=LABdZ0y4gdnn}w}0>y10@WV5sT z9Cp`UFmrc)3i#w>Mpku;_cGz+a!RNP3pesA+9k!u((BYjq1nU}AA*0H!Nj;=)u@Lu z@%5ckr#qo+2R|}it{8cVlP;Za)9T%ucH4L)9(F(+bF)U>UJe7q!J*8^L@B*q7J_PY z!H$ns));9U(frUX3$rz1R~lcLaWW+1UsY9oT*b3*P=6#TZS=iUc@F|dC*0@rh=Sw^ zWl7gm?UGGaIQnf{`7xTk1OmyTjza9$?0tL}DV<#xzUxGyT~r_oDA`hq#zd>;L>JumqN)2=Zp}hGEk7=!HuPDsOjZOjiVaDj@h_Y3P+Jj*8Zm zkHQmk#3^LH24=bZ;s};t$DF_)zUbCg8WZm*L939-r`ANJp$R%ugrbggw?Z6$;B8$9P zu2Qgm=M{%{g&q#NPXl2bI&4@3U49C&Z<4c+)4Z<_w{{h z&g{g;oNGNd`sPRT>jgO0h-&h9vhIOL?eD`Cli%dXTQtF-xx?H~7gQ9tY&HX>Hl?>8 z?c>L(D6tctSLd@g%Y4;W35Gv5(G-aN>#$9{-gOjd;TT&;MwMWOiU{^LLZ)vm^t_Aa zmQ+ll<(x9!`sxMf<;#6-I-JbW{HAoH5#Am5(2jRXI)h(!VkAZ^$-a(G?ka;UZ#Y~( zb%~H?0ODBGdj{ku*Ak&wxw$SVQC;lX-o8a|$Sew#`qAl;ACU9pdt^|~ad&`LE) zD_J!9;GblK+X6z@JSY1Uu1rgsBO97ziXymj`hAD^P$PU3ee(xOCaJ3^f;O6YaH2Y%`pJ#$04jZE;6fR-yrN{ZohL_nRb0PxSCM zuj9k0-Y#R8)V-MD+0iSm&tnYrdq*zHjXaQt_n@VWKW_&1T23U-_AJNLSZ+Sca}m6i z%2G}FsCE89{j204lrcL7_UQ5X*d(T9F+quDxX69y7Y}1l`fRR*9ZNm0r)lS`#_L{t zcYcp?aY;R7noT}5OxP8@moEFyn+#mjFSh5u Date: Mon, 29 Jan 2024 11:08:17 +0000 Subject: [PATCH 03/12] Edit note about Sample column --- src/library/datasets/data-raw/penguins.R | 2 +- src/library/datasets/data-raw/penguins_raw.R | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/src/library/datasets/data-raw/penguins.R b/src/library/datasets/data-raw/penguins.R index bf7464bb4ad..adf67cffe90 100644 --- a/src/library/datasets/data-raw/penguins.R +++ b/src/library/datasets/data-raw/penguins.R @@ -29,4 +29,4 @@ save(penguins, file = "./src/library/datasets/data/penguins.rda") # Check identical with version palmerpenguins package # rm(penguins) # load("./src/library/datasets/data/penguins.rda") -# identical(penguins, palmerpenguins:::penguins_df) # without sample TRUE +# identical(penguins, palmerpenguins:::penguins_df) diff --git a/src/library/datasets/data-raw/penguins_raw.R b/src/library/datasets/data-raw/penguins_raw.R index 1caf2940b70..a1bad55d45d 100644 --- a/src/library/datasets/data-raw/penguins_raw.R +++ b/src/library/datasets/data-raw/penguins_raw.R @@ -101,6 +101,6 @@ save(penguins_raw, file = "./src/library/datasets/data/penguins_raw.rda") # load("./src/library/datasets/data/penguins_raw.rda") # pp_penguins_raw <- palmerpenguins:::penguins_raw_df # attr(pp_penguins_raw, "spec") <- NULL -# identical(penguins_raw[, 1:17], pp_penguins_raw) # without sample TRUE +# identical(penguins_raw[, 1:17], pp_penguins_raw) # TRUE without Sample col # all.equal(tibble::as_tibble(penguins_raw[, 1:17]), palmerpenguins::penguins_raw, check.attributes = FALSE) # without sample TRUE From c9b643a655a2c4b661ffcee0a1f37e09a2e27ab9 Mon Sep 17 00:00:00 2001 From: EllaKaye Date: Mon, 29 Jan 2024 11:29:05 +0000 Subject: [PATCH 04/12] Fix encoding and doi in man files --- src/library/datasets/man/penguins.Rd | 15 ++++++++------- src/library/datasets/man/penguins_raw.Rd | 18 ++++++++++-------- 2 files changed, 18 insertions(+), 15 deletions(-) diff --git a/src/library/datasets/man/penguins.Rd b/src/library/datasets/man/penguins.Rd index beecaf3a9d3..7e68039bfe5 100644 --- a/src/library/datasets/man/penguins.Rd +++ b/src/library/datasets/man/penguins.Rd @@ -1,4 +1,5 @@ \name{penguins} +\encoding{UTF-8} \docType{data} \alias{penguins} \title{Size Measurements for Adult Foraging Penguins near Palmer Station, Antarctica} @@ -11,7 +12,7 @@ This is a subset of \code{\link{penguins_raw}}. \format{ A tibble with 344 rows and 8 variables: \describe{ - \item{species}{a factor denoting penguin species (Adélie, Chinstrap and Gentoo)} + \item{species}{a factor denoting penguin species (Adelie, Chinstrap and Gentoo)} \item{island}{a factor denoting island in Palmer Archipelago, Antarctica (Biscoe, Dream or Torgersen)} \item{bill_length_mm}{a number denoting bill length (millimeters)} \item{bill_depth_mm}{a number denoting bill depth (millimeters)} @@ -21,15 +22,15 @@ This is a subset of \code{\link{penguins_raw}}. \item{year}{an integer denoting the study year (2007, 2008, or 2009)} } } -\references{ -Gorman, K. B., Williams, T. D. and Fraser, W. R. (2014) Ecological Sexual Dimorphism and Environmental Variability within a Community of Antarctic Penguins (Genus Pygoscelis). PLoS ONE \bold{9}, 3, e90081. doi:10.1371/journal.pone.0090081. -} \source{ -{Adélie penguins: Palmer Station Antarctica LTER and K. Gorman. 2020. Structural size measurements and isotopic signatures of foraging among adult male and female Adélie penguins (Pygoscelis adeliae) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 ver 5. Environmental Data Initiative.} \ifelse{text}{doi: 10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f (URL: https://doi.org/10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f)}{\ifelse{latex}{doi:\out{\nobreakspace{}}\href{https://doi.org/10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f}{10.6073\out{\slash{}}pasta\out{\slash{}}98b16d7d563f265cb52372c8ca99e60f}}{doi: \href{https://doi.org/10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f}{10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f}}} +\enc{Adélie}{Adelie} penguins: Palmer Station Antarctica LTER and K. Gorman. 2020. Structural size measurements and isotopic signatures of foraging among adult male and female \enc{Adélie}{Adelie} penguins (Pygoscelis adeliae) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 ver 5. Environmental Data Initiative, \doi{10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f}. -{Gentoo penguins: Palmer Station Antarctica LTER and K. Gorman. 2020. Structural size measurements and isotopic signatures of foraging among adult male and female Gentoo penguin (Pygoscelis papua) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 ver 5. Environmental Data Initiative.} \ifelse{text}{doi: 10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689 (URL: https://doi.org/10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689)}{\ifelse{latex}{doi:\out{\nobreakspace{}}\href{https://doi.org/10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689}{10.6073\out{\slash{}}pasta\out{\slash{}}7fca67fb28d56ee2ffa3d9370ebda689}}{doi: \href{https://doi.org/10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689}{10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689}}} +Gentoo penguins: Palmer Station Antarctica LTER and K. Gorman. 2020. Structural size measurements and isotopic signatures of foraging among adult male and female Gentoo penguin (Pygoscelis papua) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 ver 5. Environmental Data Initiative, \doi{10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689}. -{Chinstrap penguins: Palmer Station Antarctica LTER and K. Gorman. 2020. Structural size measurements and isotopic signatures of foraging among adult male and female Chinstrap penguin (Pygoscelis antarcticus) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 ver 6. Environmental Data Initiative.} \ifelse{text}{doi: 10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e (URL: https://doi.org/10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e)}{\ifelse{latex}{doi:\out{\nobreakspace{}}\href{https://doi.org/10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e}{10.6073\out{\slash{}}pasta\out{\slash{}}c14dfcfada8ea13a17536e73eb6fbe9e}}{doi: \href{https://doi.org/10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e}{10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e}}} +Chinstrap penguins: Palmer Station Antarctica LTER and K. Gorman. 2020. Structural size measurements and isotopic signatures of foraging among adult male and female Chinstrap penguin (Pygoscelis antarcticus) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 ver 6. Environmental Data Initiative, \doi{10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e}. +} +\references{ +Gorman, K. B., Williams, T. D. and Fraser, W. R. (2014) Ecological Sexual Dimorphism and Environmental Variability within a Community of Antarctic Penguins (Genus Pygoscelis). PLoS ONE \bold{9}, 3, e90081. doi:10.1371/journal.pone.0090081. } \note{ This data is also available in the \CRANpkg{palmerpenguins} package. See also \url{https://allisonhorst.github.io/palmerpenguins/} for further details and resources. diff --git a/src/library/datasets/man/penguins_raw.Rd b/src/library/datasets/man/penguins_raw.Rd index 0918e1bc1f8..9cca9fd6810 100644 --- a/src/library/datasets/man/penguins_raw.Rd +++ b/src/library/datasets/man/penguins_raw.Rd @@ -1,8 +1,10 @@ -\title{Penguin Size, Clutch, and Blood Isotope Data for Foraging Adults near Palmer Station, Antarctica} \name{penguins_raw} +\encoding{UTF-8} +\docType{data} \alias{penguins_raw} +\title{Penguin Size, Clutch, and Blood Isotope Data for Foraging Adults near Palmer Station, Antarctica} \description{ - Includes nesting observations, penguin size data, and isotope measurements from blood samples for adult Adélie, Chinstrap, and Gentoo penguins. + Includes nesting observations, penguin size data, and isotope measurements from blood samples for adult \enc{Adélie}{Adelie}, Chinstrap, and Gentoo penguins. } \usage{penguins_raw} \format{ @@ -28,15 +30,15 @@ \item{Sample}{a character string denoting whether the bird featured in the test or train set (or neither) in the original analysis (see References).} } } -\references{ -Gorman, K. B., Williams, T. D. and Fraser, W. R. (2014) Ecological Sexual Dimorphism and Environmental Variability within a Community of Antarctic Penguins (Genus Pygoscelis). PLoS ONE \bold{9}, 3, e90081. doi:10.1371/journal.pone.0090081. -} \source{ -{Adélie penguins: Palmer Station Antarctica LTER and K. Gorman. 2020. Structural size measurements and isotopic signatures of foraging among adult male and female Adélie penguins (Pygoscelis adeliae) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 ver 5. Environmental Data Initiative.} \ifelse{text}{doi: 10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f (URL: https://doi.org/10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f)}{\ifelse{latex}{doi:\out{\nobreakspace{}}\href{https://doi.org/10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f}{10.6073\out{\slash{}}pasta\out{\slash{}}98b16d7d563f265cb52372c8ca99e60f}}{doi: \href{https://doi.org/10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f}{10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f}}} +\enc{Adélie}{Adelie} penguins: Palmer Station Antarctica LTER and K. Gorman. 2020. Structural size measurements and isotopic signatures of foraging among adult male and female \enc{Adélie}{Adelie} penguins (Pygoscelis adeliae) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 ver 5. Environmental Data Initiative, \doi{10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f}. -{Gentoo penguins: Palmer Station Antarctica LTER and K. Gorman. 2020. Structural size measurements and isotopic signatures of foraging among adult male and female Gentoo penguin (Pygoscelis papua) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 ver 5. Environmental Data Initiative.} \ifelse{text}{doi: 10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689 (URL: https://doi.org/10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689)}{\ifelse{latex}{doi:\out{\nobreakspace{}}\href{https://doi.org/10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689}{10.6073\out{\slash{}}pasta\out{\slash{}}7fca67fb28d56ee2ffa3d9370ebda689}}{doi: \href{https://doi.org/10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689}{10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689}}} +Gentoo penguins: Palmer Station Antarctica LTER and K. Gorman. 2020. Structural size measurements and isotopic signatures of foraging among adult male and female Gentoo penguin (Pygoscelis papua) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 ver 5. Environmental Data Initiative, \doi{10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689}. -{Chinstrap penguins: Palmer Station Antarctica LTER and K. Gorman. 2020. Structural size measurements and isotopic signatures of foraging among adult male and female Chinstrap penguin (Pygoscelis antarcticus) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 ver 6. Environmental Data Initiative.} \ifelse{text}{doi: 10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e (URL: https://doi.org/10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e)}{\ifelse{latex}{doi:\out{\nobreakspace{}}\href{https://doi.org/10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e}{10.6073\out{\slash{}}pasta\out{\slash{}}c14dfcfada8ea13a17536e73eb6fbe9e}}{doi: \href{https://doi.org/10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e}{10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e}}} +Chinstrap penguins: Palmer Station Antarctica LTER and K. Gorman. 2020. Structural size measurements and isotopic signatures of foraging among adult male and female Chinstrap penguin (Pygoscelis antarcticus) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 ver 6. Environmental Data Initiative, \doi{10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e}. +} +\references{ +Gorman, K. B., Williams, T. D. and Fraser, W. R. (2014) Ecological Sexual Dimorphism and Environmental Variability within a Community of Antarctic Penguins (Genus Pygoscelis). PLoS ONE \bold{9}, 3, e90081. doi:10.1371/journal.pone.0090081. } \note{ This data is also available in the \CRANpkg{palmerpenguins} package. See also \url{https://allisonhorst.github.io/palmerpenguins/} for further details and resources. From 241464b1ee281eecf419e843de21413c943fdbab Mon Sep 17 00:00:00 2001 From: EllaKaye Date: Mon, 10 Feb 2025 11:04:12 +0000 Subject: [PATCH 05/12] Some shorter variable names in penguins --- src/library/datasets/data-raw/penguins.R | 12 ++++++++---- src/library/datasets/data/penguins.rda | Bin 2923 -> 2910 bytes 2 files changed, 8 insertions(+), 4 deletions(-) diff --git a/src/library/datasets/data-raw/penguins.R b/src/library/datasets/data-raw/penguins.R index adf67cffe90..bf8052fa91b 100644 --- a/src/library/datasets/data-raw/penguins.R +++ b/src/library/datasets/data-raw/penguins.R @@ -9,15 +9,15 @@ penguins <- penguins_raw[, c("Species", "Island", "Flipper Length (mm)", "Body Mass (g)", "Sex", "Date Egg")] colnames(penguins) <- c( - "species", "island", "bill_length_mm", "bill_depth_mm", "flipper_length_mm", - "body_mass_g", "sex", "year" + "species", "island", "bill_len", "bill_dep", "flipper_len", + "body_mass", "sex", "year" ) penguins$species <- regmatches(penguins$species, regexpr("^\\w+\\b", penguins$species)) penguins$species <- as.factor(penguins$species) penguins$island <- as.factor(penguins$island) -penguins$flipper_length_mm <- as.integer(penguins$flipper_length_mm) -penguins$body_mass_g <- as.integer(penguins$body_mass_g) +penguins$flipper_len <- as.integer(penguins$flipper_len) +penguins$body_mass <- as.integer(penguins$body_mass) penguins$sex <- tolower(penguins$sex) penguins$sex <- as.factor(penguins$sex) penguins$year <- regmatches(penguins$year, @@ -29,4 +29,8 @@ save(penguins, file = "./src/library/datasets/data/penguins.rda") # Check identical with version palmerpenguins package # rm(penguins) # load("./src/library/datasets/data/penguins.rda") +# old_nms <- sub("len", "length_mm", +# sub("dep","depth_mm", +# sub("mass", "mass_g", colnames(penguins)))) +# colnames(penguins) <- old_nms # identical(penguins, palmerpenguins:::penguins_df) diff --git a/src/library/datasets/data/penguins.rda b/src/library/datasets/data/penguins.rda index b38058cbfd50857baebd1c8624fe904034668f7d..104b5eb202e64d0054cfbe25053f0d99af9ae308 100644 GIT binary patch delta 2906 zcmV-g3#Ihy7Ty+rABzY80000000Zq?TWnoN6+N*X()j&IomxVC6jTYn?dw#0r070< zuN{gI3RR+3s&3-z)YA1swp%D5VevyhLVwCnDqi{dp>b#$lEzMx zv_-9vfDZ^C@Y96ZXRkFrXPV+faug@{N~1Y5vuEwK*WNRK=Ssf*ZgNkgcu%qCd4*n4 zQGr*u**toizqh-y=^LJBCOmJGSLAIq{e45ZfdfzX4U8Du8X23u%q;KmZ8q9QyM3*2 zqy1mCf{hkzp?mmC`P?(Pyt#$FN?$F^#(Hx3z8pqd6Hl3odUQBD#N~8uV03WMf!e%3 zpB*8R#qZ63?jIc-Hc!_AH~d;>_-0T3TC2HUZlpUM$DQVXyYjNp?vAz&Zq@bFChKpBMb@!QlhB;gQ^c?k(ir8{OgsUb$J=6HOdkFrU-W#Iz@$ zX!4<6`TXP`GTQP=G`{ym^LZ(nIONYq6C)A%L=!K6>U^wJ_oqDFA755G_DSM@OZyo5 zIQj(eQ&HU?izt5D#an{Ef5Cqpc=hUf4E&P7O#&|tdyW}r9QPq!`Q}4 z{$5yr`e(ip;DNf2MzJr&`li0U;d)J=ep19|UDKX_dQo526M3-ST|V$1<$lD+xX6R&j`su4 zht(Tn@=pV=3-cM^a-0UgG~()nE@|F7@Sk?-HA7wCCxdgsI?rGq&t(R@(}>sdz_{~Z zm`57*#=2)5om{7%Iwv0b1z+Mmia0YElWz(-c9OrN6YDI)a}0cryI2oghaQ~o1piKd z#t(lPu7giksgnojn?jt#{&(M~3GNc+}hK%kv1{yQmj`?ST*f_WK3>+I*8A`7&PUN!@skyZ46kVebRR z8!g=Z9d1c<5`s6v~KIWDAwsipgc^-Mb$k)~{^9lX!eaQQNg?Z+E z#`Epem%WdALpb((Y&-b0VZB}TuyqzeK03gs4R{fZ+rg^?`Dnwq4g1<)w*%`t>Kq*C z-vJ)&;IRWbwgZPeBfz2GHjWW@J9#=|uD6am`@w_jZQw(m9T>NR5A}#(y`AgSk9P3W zN*+$U)*pK6(>5NChwBmQLBEWDlk>oD#XR}Zztx@ooqRElR?OS|#6x@$Ctg>7%Ljcc z#DvrgI_d*-Kux)Yzg=%0BcKjJe!r!L)kv3%>oW9rX3Xl1>6VIDSq@Zmc3 zrf#jkWjxF`-0Ak#y)1|Ig(Ue(G6Qh^G;Lnlax5KMm-cxDG${z;8z1;M6I{+{eBJ^Tc)i zHN&nEemKv*h5pIMv2TW*9Xoxa_B{^^JOF;9HnV~tKcHZJPGygIs54~tLzsIQ~H#UbuO*q-{6 zpVi69AN{k=iO+g$!al}N-J2Y}c@CQ${1(TLjmO1jKAn1Ioin~>M<3>$`jIE|f%>xF zFIeBSYjXIw?>~Dl@!sUU$9sb7&U-1s`^b5p*!O{RzwrBwy~l}v&-;n*E#iQm`@XdN zfx~+(;^5l%3;i;WycZq+_TGelzBjCYM>q1b?_K(bUHe#gY`@=)hvRH@`C~rf*nRH% z2>oE*exIOj^bcI-)qdaMdyYD)Kl8}Hs=aR7G1F!h$(u2467#cxvDmz3+V4!8GVN{C zeh-^D(~g>U+_YDJVfPl+<$1!iH_-nEb4SqL#9qNU0bj4d|55mxh5r-4oW%S%o~N+> zCdMb>i}N$UJ09RH{WN?`V~+dZMn4Ikb9kNw=276!BF+;S&tUyH?B7C@=XXpy4Zp`= zerc?%ZTGI@U@Kbr?CAHzAmFJ zVZ02^m*7)>?9RdF9Pp+81Ug*Acp1;11nk7$p93+S0`CuCcL9A+H|p{p=08RJ%izdf z@ZKNu{Lcl9&%t)u(>jzIkQ!mF9>Mc0#yIg{}_;QvQY&zbmn7xOdlBRIHc z%MY1mG%Y=%x|RLVjN_(#-SeswX8eNZRla1_O-{;3O+TjgRjoP}`>J1<`Ol2qQ)Zko z^Ob5-F`&J)vMai`^xHaLYILvIsknYG`ybXd-`31m*TY`czpOq>%vrAbkFm*`=U=IR z*;i(N?(fP49aoqbOLl|b74={8pvEeAKKDx4JqVw*W`B_x|JAJT!}?C$FZhBbI!Mp? zikCH}>L=8PAAjwNPvPWiPzjs`)kp9pJ{kMC*OagLFaNp0d)llQs=tzc;2nYv2h94f z&G?_HgZQr;*R_hjA?_*VA(~3O!o%0)s~Vqw&-;}6x8u)XXIj;dRA2h5_?hw+KGI7~ z$UfmJ`H*_?*Iq#V9D+_SYi-mfHD>AWf51GO`l~i|zwJAki)~-gT;Kny_O%yPOTRbT zKk!S~FDpjPbGonQm_FD1UA3#NR!szF+fOwwVzd1f^&!4%9@90^T<|16f+<>5Kd*a# zYrdxbeS3qw&Aj)kuWIl6eNJrzTlV>U_UT^PM?2vo90cEw>#&afIG!SOY@s{3mOP5)!X_4_BZ zuli7X;pY3V$NYB9hhPc6nn(1$5WL!dXVjPY_iKKq)1FEUK;4lYb5tR?accZ$+`zPVqslMgKg;^-KxZ^2arI zetj>1=i_=Fcy@h$waUrAx6a~x&#mA|lX~}gO@YHy;8$YuYX<)p9(X@(3d|K8$Xu{_ z;a`Gma_w)>yK^^dzpCAh_^zY=R^z_glZXl=e-X}Vyl%CQSHTJWO02;C(ks`W>1c zMgH^ZzX`M7jkjF5N7~{&(w6SAcBkv&Zm*9!oxk;(@4H0b@IPD(Wczdchl~3#xn*Q1 zx4+L!?rBY_YDo@h65&B_YL+u`((fTXNOJ{ zG>+tcz}LgGx$Lk*YU}Xe_nS$qjBn=a*RLJ^g7-*qPj)oh+&gTx;9YX_ z!}r=WRaMallt}1;uZ<3Fxju6Xd*!}bm~HFI_4Vd3+ML*LF6z=2jJxq;EaK?iE% zzP{`Tkt}|HcXr?C;IMhR8o1%tI>R@6^4D6;yX8i@({bEs{+RlXcfqZCH#NDI z^R9W$ogVKU**C~LePePsm+j{TzjJW7CpSEj8_>P^+80}JMJDwde` z*ke>He@>v|jbC4rj+UL5uuGtM~p+qe-|JQ|LV_$l~{ zFMv0B0XGS|IC!^1m-ra`VjuO0lLzcmk3e7AVSgL;Q{OiF8wXFUGj8%B&o=0mgg$YX z2jWeC(w=%?oq8t`Zw%`R;F51U*110gJ*=+KGY%b7j1Rn1v_n0#kstF){?IATI;3tG z+jz;}3+qq+%vSuBG1(BFdlVq z<6}JJm1KOVk2d&aeXyRB%;Q+NUK6OF6!BSq*R-cz)R*-{9;|nl5B$ftAMr6R^5D7S z{lN2K^~RX|)4=P%dZC*H! zIMUpYI2b2;>fOoxs4wP=`g9;)DXudv;CB{>{dF>4)*pJ-2k|njXVxwFlP~kI1NT(g z;mvxo^$&eIfy?ue;W+~y^|t!*Jc9Rs4(dgF;KRTDenG!B-{eQWj2C)RH=g6p-Qj%L z`+#vd`&geHtOL|xC-VirjI#rE_BhWU>jVB$9P^y8epx@@M|`W_bQrJGxqo&*M}9Br z0M870b3e`{@mU9*tedfLUOISQnK!3Cc}}^Hd1bzB9YBAcN1iY8we`zgBS#x3AOJ)&4|;X3uB z9sD$rhZC>$ho1U0kB8&odX##9&@bcUJn)+^Pk!`ob*FzPUyP#(^L9V+5MR`Z*VW(h zLEpr9k~OSfJu-|Fy~`m+w2Sg&4~hm9Y6 zxK6#PTN7{@5A)5q>^a~%{f&k3Z2px1Xp>gnYFx_rV<4eJW=)WJ^!=Ii077JWU};im@p4d`o~I^~%A*f(OH zxURnj*ww)g=h-*XKlwQJ4Y0Fgr>}GTQO|m;QxEcI-PgMO883ChnEqKmwNB6Z8u)8; zcrg!k)R*zNdOPb@Kj77WQa{%}{g6NAiO+ki&WXpyMID$|M|bLB@u?s6b@aD5#9av6 zQ-AWaIyw2Hf7UtiS&#MD$M~sxy`wkJVS|I;==ibmxcJPcQ_rk(#@FEJ!@N^J@?<_x zU-tV2>zj7<4j=dZXYVE6o4ogUPjKCNFGYDDIqwtuK5*_Ae!sDQ_c-x+Kk>aq9Po4B zmzFE~ZU*?hbqT}D*oAA%~hV}30Mt=6aOaHKI84Hi?_q*|MoJ}r&%tsx& z>%NcB59aOn3F=1wz-3!uwwZB~)I8Pg^)KN}c}&1YZ92^Z$6NhIdGi9`W&8*BZm2a?+Ms{{vI5TVtpzQ&lzCP0dF4r zsO<^xoNTxi?EeF@5BE^v~%!#I?z7FzD4Y#-%kU6h|BpUj86ypPtadN9DjkYWsEXM4C;t8%i0LGFe+0Yp=!3dZmk%)iIpSXi zNA`mE;h5)t&SQKQw$q;0q11rX2y68)o@X(Zb)HA5lS%Yq^SZZk-sD+okmrl{%?UJF zJLRp^+XP}2yLt3y!0QyAC%}=7{?B?V=Vc!AGr*gF@K(;5jNb+S_dGpk;^%$L&%lr1 z;GQi#XqwTq_^|3$@?$fOoAyo5t4x^j3!Yd0l36!7DIGQanA%q~=~(P5er4vrFn0UR zIAi9^)uwDfdub(?b#L)^b-vi>UbbCv{a*Gzs%yTjnXjyYy{vy#eHNLsT=5@clQqx3 zQU9`kuf*KnKEG?Ydv^1xs|0 zp7UidYfP0-sSiK?suiEY$=9G9I18$e;7fcm_HnN&U-4i1OM~~cSZwqPA_Y1R3$ZL=^uQ^Je&HfG@DWKUwK7)-|us3BiORf=d)M$%0Ai&AK@VQeq4ui?8o{13U|@Lw>zZ# zw+`w0)^D4>!q|6eO$c9~<0on-ej-KS{DktAb>Ht5#f?0sHiF}8az*z?22KA{#r6BA zw6FMBd*SB$ufhCQ&4*wKzsO^HUkF}*)idf#{QEV(U2CFbPHTkcUFw2o$-ft-P$%Xb zmi$|L-ZTEaf^#Z0=hyWj&dsB^XBO2~>d8L`3oGZC=eMj-Yp3vl)}ntN<9eoqYw44k zJHNgc!1GBx4?Md*zbfVA-&<#JzUNl(q)EN|yr#fmD)1{Y`89+83lF@XHU#D!@?j#t46{Yos){?aSgpY7wX z#0vc9)qfLazZ-8lf1k9)`=l-1XYEec#l2o1cRGJ}YrgLheZ&87F_7)g@gFW8z~rWp zq1?V+GmTriccd>n(1lUy-rl~xJ$<=>p3(h#`uX$U5`VTUHx!(#=+ zut4kCJ^k5{kv%<_${)%7h;NK%bJ<~s=jP$TA2yI{318ONu3bI!C9jskuIy;Gp?lbD R!RzJfe*uuGx; Date: Mon, 10 Feb 2025 11:06:14 +0000 Subject: [PATCH 06/12] Remove data-raw and scripts --- src/library/datasets/data-raw/penguins.R | 36 ------- src/library/datasets/data-raw/penguins_raw.R | 106 ------------------- 2 files changed, 142 deletions(-) delete mode 100644 src/library/datasets/data-raw/penguins.R delete mode 100644 src/library/datasets/data-raw/penguins_raw.R diff --git a/src/library/datasets/data-raw/penguins.R b/src/library/datasets/data-raw/penguins.R deleted file mode 100644 index bf8052fa91b..00000000000 --- a/src/library/datasets/data-raw/penguins.R +++ /dev/null @@ -1,36 +0,0 @@ -# Code adapted from the palmerpenguin package -# by Allison Horst, Alison Hill, and Kristen Gorman -# https://github.com/allisonhorst/palmerpenguins - -load("./src/library/datasets/data/penguins_raw.rda") - -penguins <- penguins_raw[, c("Species", "Island", - "Culmen Length (mm)", "Culmen Depth (mm)", - "Flipper Length (mm)", "Body Mass (g)", - "Sex", "Date Egg")] -colnames(penguins) <- c( - "species", "island", "bill_len", "bill_dep", "flipper_len", - "body_mass", "sex", "year" -) -penguins$species <- regmatches(penguins$species, - regexpr("^\\w+\\b", penguins$species)) -penguins$species <- as.factor(penguins$species) -penguins$island <- as.factor(penguins$island) -penguins$flipper_len <- as.integer(penguins$flipper_len) -penguins$body_mass <- as.integer(penguins$body_mass) -penguins$sex <- tolower(penguins$sex) -penguins$sex <- as.factor(penguins$sex) -penguins$year <- regmatches(penguins$year, - regexpr("\\d{4}", penguins$year)) -penguins$year <- as.integer(penguins$year) - -save(penguins, file = "./src/library/datasets/data/penguins.rda") - -# Check identical with version palmerpenguins package -# rm(penguins) -# load("./src/library/datasets/data/penguins.rda") -# old_nms <- sub("len", "length_mm", -# sub("dep","depth_mm", -# sub("mass", "mass_g", colnames(penguins)))) -# colnames(penguins) <- old_nms -# identical(penguins, palmerpenguins:::penguins_df) diff --git a/src/library/datasets/data-raw/penguins_raw.R b/src/library/datasets/data-raw/penguins_raw.R deleted file mode 100644 index a1bad55d45d..00000000000 --- a/src/library/datasets/data-raw/penguins_raw.R +++ /dev/null @@ -1,106 +0,0 @@ -# Code adapted from the palmerpenguin package -# by Allison Horst, Alison Hill, and Kristen Gorman -# https://github.com/allisonhorst/palmerpenguins - -# penguins raw ------------------------------------------------------------ - -# Download raw data -# Adelie penguin data from: https://doi.org/10.6073/pasta/abc50eed9138b75f54eaada0841b9b86 -uri_adelie <- "https://portal.edirepository.org/nis/dataviewer?packageid=knb-lter-pal.219.3&entityid=002f3893385f710df69eeebe893144ff" - -# Gentoo penguin data from: https://doi.org/10.6073/pasta/2b1cff60f81640f182433d23e68541ce -uri_gentoo <- "https://portal.edirepository.org/nis/dataviewer?packageid=knb-lter-pal.220.3&entityid=e03b43c924f226486f2f0ab6709d2381" - -# Chinstrap penguin data from: https://doi.org/10.6073/pasta/409c808f8fc9899d02401bdb04580af7 -uri_chinstrap <- "https://portal.edirepository.org/nis/dataviewer?packageid=knb-lter-pal.221.2&entityid=fe853aa8f7a59aa84cdd3197619ef462" - -# Combining the URIs -uris <- c(uri_adelie, uri_gentoo, uri_chinstrap) - -# Download data and combine into one dataframe -penguins_raw_list <- lapply(uris, read.csv) -penguins_raw <- do.call(rbind, penguins_raw_list) - -# Adjustments to make penguins_raw identical to palmerpenguins:::penguins_raw -penguins_raw$Sample.Number <- as.numeric(penguins_raw$Sample.Number) -penguins_raw$Date.Egg <- as.Date(penguins_raw$Date.Egg) -penguins_raw$Flipper.Length..mm. <- as.numeric(penguins_raw$Flipper.Length..mm.) -penguins_raw$Body.Mass..g. <- as.numeric(penguins_raw$Body.Mass..g.) -penguins_raw$Sex <- replace(penguins_raw$Sex, penguins_raw$Sex %in% c("", "."), NA) -penguins_raw$Comments <- replace(penguins_raw$Comments, penguins_raw$Comments == "", NA) - -colnames(penguins_raw) <- c( - "studyName", "Sample Number", "Species", "Region", "Island", "Stage", - "Individual ID", "Clutch Completion", "Date Egg", "Culmen Length (mm)", - "Culmen Depth (mm)", "Flipper Length (mm)", "Body Mass (g)", "Sex", - "Delta 15 N (o/oo)", "Delta 13 C (o/oo)", "Comments" -) - -# add sample numbers that correspond to test/train set in Gorman et al. (2014) -# these have been provided by Kristen Gorman -ADPE_train_sample_nums <- c( - 1, 2, 3, 5, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 32, 33, - 34, 41, 42, 43, 45, 46, 47, 49, 50, 52, 56, 57, 61, 62, 63, 64, 66, 67, 71, - 73, 74, 76, 78, 81, 84, 85, 88, 89, 91, 92, 93, 94, 95, 96, 98, 99, 102, - 104, 105, 107, 108, 112, 113, 115, 116, 117, 118, 119, 120, 123, 124, 125, - 128, 129, 130, 133, 136, 138, 142, 143, 144, 145, 147, 148, 149, 150, 151, - 152 -) - -ADPE_test_sample_nums <- c( - 6, 13, 15, 28, 35, 36, 37, 38, 44, 51, 53, 54, 55, 58, 59, 60, 65, 68, 72, - 75, 77, 79, 80, 82, 83, 86, 87, 90, 97, 100, 101, 103, 106, 109, 110, 111, - 114, 126, 127, 134, 135, 137, 141, 146 -) - -CHPE_train_sample_nums <- c( - 3, 5, 6, 7, 8, 9, 13, 15, 16, 19, 22, 29, 30, 32, 33, 34, 35, 37, 41, 42, - 43, 45, 47, 48, 50, 52, 53, 54, 55, 56, 57, 58, 61, 63, 67, 68 -) - -CHPE_test_sample_nums <- c(4, 10, 11, 12, 14, 20, 21, 31, 36, 38, 44, 46, 49, - 51, 59, 60, 62, 64) - -GEPE_train_sample_nums <- c( - 2, 4, 5, 7, 9, 10, 13, 14, 15, 20, 21, 22, 24, 25, 26, 28, 30, 31, 32, 33, - 34, 35, 36, 37, 38, 39, 40, 44, 49, 50, 52, 53, 54, 55, 60, 62, 63, 64, 65, - 66, 69, 70, 73, 75, 76, 77, 78, 79, 82, 84, 85, 86, 89, 90, 91, 93, 94, 95, - 97, 98, 99, 101, 102, 103, 106, 109, 110, 112, 114, 115, 118, 121, 123, 124 -) - -GEPE_test_sample_nums <- c( - 1, 3, 6, 8, 16, 17, 18, 19, 23, 29, 43, 45, 46, 51, 56, 57, 58, 59, 61, 68, - 71, 72, 74, 80, 81, 83, 87, 88, 92, 96, 100, 104, 107, 108, 111, 113, 116, - 122 -) - -# get count of each species -n_Adelie <- sum(grepl("Adelie", penguins_raw$Species)) -n_Gentoo <- sum(grepl("Gentoo", penguins_raw$Species)) -n_Chinstrap <- sum(grepl("Chinstrap", penguins_raw$Species)) - -# vector of train/test for each species, then together -Adelie_sample <- rep(NA, n_Adelie) -Adelie_sample[ADPE_train_sample_nums] <- "train" -Adelie_sample[ADPE_test_sample_nums] <- "test" -Gentoo_sample <- rep(NA, n_Gentoo) -Gentoo_sample[GEPE_train_sample_nums] <- "train" -Gentoo_sample[GEPE_test_sample_nums] <- "test" -Chinstrap_sample <- rep(NA, n_Chinstrap) -Chinstrap_sample[CHPE_train_sample_nums] <- "train" -Chinstrap_sample[CHPE_test_sample_nums] <- "test" -Sample <- c(Adelie_sample, Gentoo_sample, Chinstrap_sample) - -# Add sample column to penguins_raw -penguins_raw$Sample <- Sample - -save(penguins_raw, file = "./src/library/datasets/data/penguins_raw.rda") - -# Check identical with version palmerpenguins package -# rm(penguins_raw) -# load("./src/library/datasets/data/penguins_raw.rda") -# pp_penguins_raw <- palmerpenguins:::penguins_raw_df -# attr(pp_penguins_raw, "spec") <- NULL -# identical(penguins_raw[, 1:17], pp_penguins_raw) # TRUE without Sample col -# all.equal(tibble::as_tibble(penguins_raw[, 1:17]), palmerpenguins::penguins_raw, check.attributes = FALSE) # without sample TRUE - From 7f61c4e9242c23ce4809509f2c9db8155bc12e90 Mon Sep 17 00:00:00 2001 From: EllaKaye Date: Mon, 10 Feb 2025 14:08:26 +0000 Subject: [PATCH 07/12] Incorporate Martin Maechler's changes to penguins.Rd --- src/library/datasets/man/penguins.Rd | 74 ++++++++++++++++++++++------ 1 file changed, 59 insertions(+), 15 deletions(-) diff --git a/src/library/datasets/man/penguins.Rd b/src/library/datasets/man/penguins.Rd index 7e68039bfe5..f8092da7b84 100644 --- a/src/library/datasets/man/penguins.Rd +++ b/src/library/datasets/man/penguins.Rd @@ -1,38 +1,82 @@ \name{penguins} \encoding{UTF-8} \docType{data} +\title{Size Measurements for Penguins near Palmer Station, Antarctica} \alias{penguins} -\title{Size Measurements for Adult Foraging Penguins near Palmer Station, Antarctica} +\alias{penguins_raw} \description{ - Includes measurements for penguin species, island in Palmer Archipelago, -size (flipper length, body mass, bill dimensions), and sex. -This is a subset of \code{\link{penguins_raw}}. + The data set of size measurements for three adult foraging penguin + species on three islands in the Palmer Archipelago, Antarctica, including their + size (flipper length, body mass, bill dimensions), and sex. + + These columns of \code{penguins} are a subset of the more extensive + \code{penguins_raw} data frame which results from reading the original + data, resulting in only numeric (double precision), character and Date variables. +} +\usage{ +penguins +penguins_raw } -\usage{penguins} \format{ - A tibble with 344 rows and 8 variables: + \code{penguins} is a data frame with 344 rows and 8 variables: \describe{ \item{species}{a factor denoting penguin species (Adelie, Chinstrap and Gentoo)} \item{island}{a factor denoting island in Palmer Archipelago, Antarctica (Biscoe, Dream or Torgersen)} - \item{bill_length_mm}{a number denoting bill length (millimeters)} - \item{bill_depth_mm}{a number denoting bill depth (millimeters)} - \item{flipper_length_mm}{an integer denoting flipper length (millimeters)} - \item{body_mass_g}{an integer denoting body mass (grams)} + \item{bill_len}{a number denoting bill length (millimeters)} + \item{bill_dep}{a number denoting bill depth (millimeters)} + \item{flipper_len}{an integer denoting flipper length (millimeters)} + \item{body_mass}{an integer denoting body mass (grams)} \item{sex}{a factor denoting penguin sex (female, male)} \item{year}{an integer denoting the study year (2007, 2008, or 2009)} } + + \code{penguins_raw} is a data frame with 344 rows and 18 variables: + .............. } \source{ -\enc{Adélie}{Adelie} penguins: Palmer Station Antarctica LTER and K. Gorman. 2020. Structural size measurements and isotopic signatures of foraging among adult male and female \enc{Adélie}{Adelie} penguins (Pygoscelis adeliae) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 ver 5. Environmental Data Initiative, \doi{10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f}. + \describe{ + \item{\enc{Adélie}{Adelie} penguins:}{Palmer Station Antarctica LTER and K. Gorman (2020). + Structural size measurements and isotopic signatures of foraging + among adult male and female \enc{Adélie}{Adelie} penguins (Pygoscelis adeliae) + nesting along the Palmer Archipelago near Palmer Station, 2007-2009 + ver 5. Environmental Data Initiative, \doi{10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f}.} -Gentoo penguins: Palmer Station Antarctica LTER and K. Gorman. 2020. Structural size measurements and isotopic signatures of foraging among adult male and female Gentoo penguin (Pygoscelis papua) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 ver 5. Environmental Data Initiative, \doi{10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689}. + \item{Gentoo penguins:}{Palmer Station Antarctica LTER and K. Gorman (2020). + Structural size measurements and isotopic signatures of foraging + among adult male and female Gentoo penguin (Pygoscelis papua) + nesting along the Palmer Archipelago near Palmer Station, 2007-2009 + ver 5. Environmental Data Initiative, \doi{10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689}.} -Chinstrap penguins: Palmer Station Antarctica LTER and K. Gorman. 2020. Structural size measurements and isotopic signatures of foraging among adult male and female Chinstrap penguin (Pygoscelis antarcticus) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 ver 6. Environmental Data Initiative, \doi{10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e}. + \item{Chinstrap penguins:}{Palmer Station Antarctica LTER and K. Gorman. 2020. + Structural size measurements and isotopic signatures of foraging + among adult male and female Chinstrap penguin (Pygoscelis antarcticus) + nesting along the Palmer Archipelago near Palmer Station, 2007-2009 + ver 6. Environmental Data Initiative, \doi{10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e}.} + } } \references{ -Gorman, K. B., Williams, T. D. and Fraser, W. R. (2014) Ecological Sexual Dimorphism and Environmental Variability within a Community of Antarctic Penguins (Genus Pygoscelis). PLoS ONE \bold{9}, 3, e90081. doi:10.1371/journal.pone.0090081. + Gorman, K. B., Williams, T. D. and Fraser, W. R. (2014) + Ecological Sexual Dimorphism and Environmental Variability within a + Community of Antarctic Penguins (Genus Pygoscelis). + \emph{PLoS ONE} \bold{9}, 3, e90081; \doi{10.1371/journal.pone.0090081}. } \note{ -This data is also available in the \CRANpkg{palmerpenguins} package. See also \url{https://allisonhorst.github.io/palmerpenguins/} for further details and resources. + This data is also available in the \CRANpkg{palmerpenguins} package. See + also \url{https://allisonhorst.github.io/palmerpenguins/} for further + details and resources. +} +\examples{ +mosaicplot( ~ species + island, data = penguins) +mosaicplot( ~ species + island + sex, data = penguins) + +## Produce the long variable names as from {palmerpenguins} pkg: +old_nms <- sub("len", "length_mm", + sub("dep","depth_mm", + sub("mass", "mass_g", colnames(penguins)))) +## compare old and current: +noquote(rbind(old_nms, nms = colnames(penguins))) + +\dontrun{ # << not in this example, keeping our 'penguins' names: + colnames(penguins) <- old_nms } \keyword{datasets} \ No newline at end of file From c78b05dd76f79d86a6d1f3d6a5a8bd50601456d3 Mon Sep 17 00:00:00 2001 From: EllaKaye Date: Mon, 10 Feb 2025 14:20:45 +0000 Subject: [PATCH 08/12] Set rather than Sample in penguins_raw --- src/library/datasets/data/penguins_raw.rda | Bin 10435 -> 10435 bytes 1 file changed, 0 insertions(+), 0 deletions(-) diff --git a/src/library/datasets/data/penguins_raw.rda b/src/library/datasets/data/penguins_raw.rda index cd471f178220465ba71b01313a48888c047a50ba..c4887c18e3987b3d99f3d20675d57ac64a080243 100644 GIT binary patch literal 10435 zcma*LcTiJL7^p2GMNv8irHP10ks{I|5orq2L6BYqqzgzBl2BB7Q|TpC=}meKND007 z-a`*936PLne}3PcJNM4qnS17$=bhd6{bP5}oSn1F5kYzF-$Qy}O5xAcH3c8@yLp~# zhr07n>`?=6lUnLoY^>JH@&-%|sZ58EvW+i^QY^MLDHfj8pPx#)S}5X}2$K+a#&_jqon~sY_0cNiC?7 z#tB&}NxZi6#F+n4J#>*Su98mm7JQHn=5=Df*Ymd-)4LT{S@^eZEWd7O>ucCgiCJ0q z=Y-^vcC9`P?$6`II~Y*swQ9wRU-$hdyI5~>-+uzcdXxD6lR>OEneRVI z#CntZ{u5(Q&W+4W023MGS&l7ry zAa{$5u^K=?Jg&<~&0tdBQ{Pno|0RIk^{p$!q`0`1UV#G~inztbv-x+!8?(y_{;$C* zL$73$0~VW>5oh}voLR;#)$x5wjw`FlC6i^FyfN^93+>DEFL0>TyC>?0&gyE@Qt9LW z7y8%JFjylcbU-9%~P5FkWHw=Uy3_9#wplnZc{wF7}P||4B%0;HC!ucR7~8a zH_cZ26ec*z{r}$BkPpM4S{Oq=Vm%G6_OtN&Sw>i`(p3FD+sVd!heh3*!#pFbPN`q< zREz!|u*j2Rva!GjpuhLs!Bl68O1Zv?_qt5Z_xfV)Lx->sqqVGrq)GZJqqUrb^8)T{ zqlZP0*d1>CpJX_MT9P8 zpD2k&{D-ph+Z^#??bOMF!QH;($#~J?b&>y_V?D%rVKhS5R7%rxQ+6`$a}gI>Pi40- zdP0}2Fkf0n(=#_?_m$k_u}{(Z|6i-d7L)jx-E&D6%s!kdO<}gn>Qm@9p|+S~w)?7O zBJOkH`mqjTy;S+&A1kHG|C6$yy2e{eyC#0c9tWjE(RI=?OS}6%#Z~J$-CO^0NXy|F za$cZ~`;W?t|Apvo&QL+j{hGfN4E-ZoMGwJMv`#m99J=eH=qa1sct+Z$a^9R^in68&}WVzZ2sSndTT{(iA=BAm~61?PRM--Rn{sjFJHu zKK~TJQp9J3+~9;BvQ5_m3BspmMk9>bGzH-d6URP|pRZPhDF2(7%p>pRyEJe&B{6aB z&r^{=y!tQYl>@ZTJ+RLbdj_eeI(R}1t<7~by79u)S^FU!1;laqHRCle;b;{T(7 zTg>5gy2O95#pFh-=peWX*W)IRU+wxl`kM(hN_X5bE2C1XZ(5}4Y4`mIH|{pHe|tHbEJAbI#U(!7k7;M z`l;?!Kj-nwC>tCbLw{2l*YwC_$%s9{L9Ir{?!5b(pSH2L*ElX28XNN@f4bPCy#&(q z^>@5ul=1_PHfoef&S}YrwPmh;9-q?;xvw(*H_@wY1{%!FYX&PPBrG98YHGT-jZ#wb z^6(JZgRarEGt?>ZLt}B$>S(n^Lc&(=@c0_*)80`Ybm9*pPo6A0LG~0G0fIXIcF!b# zI=F-1+7_Z9;+t1C{r#Ik?91Rwsm=}*tOMVO!XF`%LFIVa?R4~qxtJWVWFHDP{HuO#ZfYY4gf)h_M%|K1mo?SF>Zpq?_gUhpD5-}@hD7k5^+gCdVIJNF9%)S%a3Qj-IPj!Zd67>*`t~W!# znWWc`We!FZ?gtQ3r3!?!K$(OUP^{!Wc#xXd-VBFXz?UtE;Q{dQ5WoVj>uFq~vdC&`INa(gEyjCMoZXIKMN8Undv}LEA{cnv^qSR#0n5pcMxn zIP5C)qOG-?AdrO)@u$Vm%~(P?huWx(ph*-!U?hbbnT7udM{9);h63YpZAwIKzML=u z3f$(v-A9XORfLktGv&ug~fce~y zS6TxASKk!UINP|EUi4Vgt|3ppfbRw&nekl9j5w0bSQ-v(x)&^{o@y=}buh5<#7 z>x0fP$Z^_prDj8p0j@KB<_*n4gng+Q<)uP1t)1`;MKE-rTnAthA{jKwzSbrgXVt1O z%6>_;_w~a57W$T=R5uwxLG1&Us>`R67+?j>gwyWZ?Hjkn_*7C`3g-t&EzD@D5)~jX z+l4Y>Xl3nIXiiHv0K;4>)E)j=!1Iu+cr4jr@dV2;r&%Q6B+R$NgLO{cn8t?P!X%9i zW2d`My4|5w0@#mm6aNaNLY#(Nk>JQ4#vpIt062=HEGRcrZ%^oFD#$Wc#UCI>mc|*% zaGuDHtcKu?b7SA z9jAln#Ah*9VvwKSB@`=e6b&I<9ICM7EcT251RFj%5PQueLyN|HWwCvT?X3C5p?=&c z=>_%%D|!WM`3|I^vAmPVZz`nDfQ1LQufZBo6Qs}?fyyfhk@<` z9J}p6m(bt{gISs1!jdBr zhv7jK1uWfnE?t;v&PUjBox$UXOCPJHQPA3-tIFt5nk#F66Z4a+?3L1jO%dV@h09Di z`BQ3cNL#S`fW+3|9lVvSp=+d?6vY$7)$eM;&r9nTFGn;T6kLY-DVqZ=BdEeH%^E&u z%T3)YsF<|o$M9i_( z-$lKugzkQ1oObMhpruR7H~>(qIul72-?`x{Z1r(LB9=5``RzKQ)KVtAvGM zW6&Fy_i(K19-Ak@o(MdrMhV4P;z?^8LAm8KD?5RpyG1{wp5`aXqcyasW}Bw60M1^Z zSnzMhMmqcl+)=_F?p!4hfTgJtc&VFK6UtIrZ{lxG z7m5>zdfM`~SrvQqh}n*2U=@R8lRzn0)-L~C?1S40gg!v?1~ANFeVgQYTm%i;@0vQJ zq}25+s2&QJ4T??e1T`RKpdhZq}BwZFJEnc9u|XW z>uT?10t4Bph00?fj18;p{`4W5y+SLmrHi7}3PF7$E=TjEXesC|rfT;tju^m|Me{Z^ zA;I8?E9SGJ8k5vySq=eA5C)zFAGb*l@p3Qsc$_oIk{>kcfGTt^6-RchA(ez%kk$6) zu{!FaW}%<{*{p6s<~GzFjn61zRpcrRwj|0_>^J*NuFIv#NNWD{yMbd9%1S77fshhXD14<=6>{S#P>Ew* zswjTF<;#WUHF%%QHFUK5<#j-Q$4~%jCU1~+Pt8DbJDXWX|I+DL3~`B22&{D<(I-$h z=6(wIvlNkT|xe0zGT(5Q$ETh78m_y7eIQDaDFw8=SG3Rsu4CzTT!F?^$Fke5t#_b8Z z9JeAVq8ZBK#_J;twXQj@ggh}gS_7iubE#ak~ZB>e}gj|K7M`+xwv zM|b&Kzy&<;r0??}s;xZs>u^no+8)hLA7OZ|4*4l0J}I5Ido!@!jekzULDyL0DE!~j3ELq${3X1q^`%D?y zT_NZ{`0N&Xp)J6Xt;E=+ysRqBWbzPp2m0D;(AcQ?*7Cdla@p)n5m!}wjnvijH5AEH z!2ymH{Ut!CtFx=K2{Zf|(sF4f&G6Znyj%1UR%VEbV5YM~MOw4x!y$N~-+zj_x7o5r zzIVMO##772tbAmSi+Vyq>ay!1cY(qO>V_485(W8DnUdaHtIesIgAv~)>hp!mIXd9) zgOD1@%N3w42J{hR1!Xz_SnHC_lIx4d`E3Lrb9P;nZ8&C%)3mYNo+Dx_R$B+JuOeT{ z2hyzE{+8`M3!~VTU1$vG##lb*fl1}~$+Bt+`QFDR#vF7#^hux|<%YVxHUo0}J@#%y zRUM(^V5D-aYOqkvok`r(_9XiY&*VThOaJ-k>t0RAytlp+ZKl(4=+Powt9ULocG-7~>Ey1Tj-J?K z2`#iE!0y(F)2)jT2kl$@L$w@_)AE=wbe8=kKWwHN8P*T`U4l(o9}7<1XW&_qdSUWR zxj%nd>XnI+=F@6FjJ#EvzrXOiM5Q9lnlysX~|aXQlHi zGC0(J`F)|?=&f6j!~(UDUm-$`2qf{KKr^hPb3*8;q*k-y87g9-`#hP^aPcuLd=AvSKLj+p6JmI>qyx*S`5dEMZ42 z$PLfdEJZ^uiC^f&(8|kpE)<2RLs6AI@_SsTUe#crgo78)V^~EgmEho`?uf+N!Q_Xu z>uvC*pX5lcZX-@{GApNnY8lvL<&(H!*Bm2;^*Q(Dw}c1L%;{CG=;rElX1_F)o={rF z=Ye}C$|jN`E+zy-oeM+g>Gm?!VasG-(yxK~laxKChXTnm5L`&B;x@+R&(}ttFcHg( zO46$c21|z=7`ak8*PnPterV}o*Ac;O-e)>qGDQ76>?~dJjegU&aQ2qhHR&CYkC?Ld z%dK;)U=ETV8Hb*FYev_#Ta%9nBZ1RewreGh`7J&EWy{3Ub6jlLte*bsHe5ckY`Mj) zZzj6S*lSbM^LOacyZGTd`34nuF)L6SXLp=)cy7W|z*P}$WPF~4|IK6kxXGcvKxUl?_xzd!s?lv&4$Pf{RL z|A&v2st_cSeeB4#yHw+-^HiDVI zbCE&HCfS;G_qDZzx4F7s#XBYEH)kq%%{qTBf%WH`U<~VtdD!=C&ls#<1H3XXD+n6S zkijZ?5noielXf+`$Wno{g~zMAA}*3gy(qS~4C{ksqWpm5?#p8Escmm>XOhlNhkA=Q z?Rwb#axh_5*2+JBduwNO-vq|tj^!sE4x=?dz+^lrh>VY3LK0`pB5xCS0qX<&p>f?HS&s-ENG^obo@b1Pf8DCNk1&wz}TZ|d%?39CXFFfEq=gD59eAQg5*TOH>&ruliU zLR^0e<^oskhUkz(sRDk7B@c!|`n)c3)a}+}-PA7|_I-2?7F~F8X;7{q(f&w>F-eeH z#;I8#x3=7?nqhH9$M}&zN$>4fX^dmjxqrglSC+dGymYhkcPls9+Cn1x{e&irj zAeMK%O!0}WEK&>@zS*nI!#ObpAvkG-D=qP=hP{{-ne_^yM48o}%0slQRbaC~uFLdGCn&(Xa{s|6wbQ+%3 zV$lq^(9sI;`=hT-iuDbCi-hSJSsDRPKg3;eZ%0kwR^>02bpT_74__qZ^lWv}iCn6| z;Zy1~3uOK5=m5y2s=>wVH&?xuht-*!@8V~i+{1-Rw)ttM~5nB04`U+o;4U3f%v&rHw#=bydBW_e) z81m%c7r?WM=Pd>^e^;3{$1mS2D$$3*GGyBPPKt5pQPk74+rMD`z#3)9L&M^3S2pi- z%DsmrskY7!{?z{zWxD(O)OptQm)@H5!_J{s*rsz{x?DPyzF($RS8)rc!9UEaApYxb z^XLW2>7Y|)ZzC?a>gLS7i{5-0EqN1RXs!XAcHSOBg&yt9MiGnkDFrV27W|&Yd1Ua@v!C-bwAqNJvfO zr{Ve&;*pv*ryWlzT5Bhc-BFKxy1c;V7QE=Fu(%rwq7M^x-O0VEN(&vyeHD8eauHgA ziZ5?cUwrw6qohuS-QqaiW5CAJV$FP6&tCIO*uK=qBd&*!TnjJZv-_?0k&7$npYTv& zXFt99IwATji~&qywtr~8n7h$7abEFD9(s0VTOqA{Sgz`ksPc}r<+AGhH7l=uwDu9S z1R}Wic*=wG&$k37IPXGKQXjl^zZ$1*g>M%(+oK=hH_)^JHvVo}Dr6x!gUwOyys+p7p=z_j(Z~ z;t4gL&h`!~Jnu3lc+V_2_k0&(Q zW#d{jS&_3{D0jq!$i7@vgXc`&<}(qS^oDse7xg!uGa_?R$w>ruz;o2 zMG5%26_Y#|Nvl)1$(4CRl9&(#Y;e`^GIjDNkJi^g>P3JKV zzHY_GkoaxWB~f4^Mo;MYv*l{K{=Vsnbsh}x8yqcg->^)>*h*TWsec=Co5<~VJZp| z^5{7OJiGZ+5;47$v~c6M&{fl&;)01buSG&gxVa5n%yU+fPyfkGy;-$l-m~-%+$aV; zK6iI8Q6aJL5kO#h<&x!gA{eMudD@mT8G+5yLFyJ4d+#ac1@24Vul=dYj`2{+E86RC zp%?wBst+tZn^#%Y>yv01u4aE)s3*<&K%+!8Z(7DHMbATG9$tX*vZkL$8kW;gME&|+ zbw#iw?4ua@m~b;4XUibe=F`_6aN(wYh1reFHQ{-*Q=SeW`nX^E@ zKF=1RRR~%3s(IU@Zo}ob8IMcovz}8LYKVpPdG?oh8lUmS8%HLgm5ZnJ*lkcMd=w#2 zuXQ8o`1BdalGRsyi?wi`f=^C64RkFng`XT28fBCcbfqA!3r|R^BIYhIKlyQm`|Ce? zpUH0)Qh^Rl4#ne(51W2(4~yzSqSSXt-sv^k5{EL!GLl}7dFL0Hw64@Yv$Eq$v@P#G zzo$p|pmjE9Ls~E~0x{S2JuAAxoqpAp@~AmjRoc9NY&wPh@M`lAgSy8DV7$da{X}K6 znvBCqQZKSkLAk_|UvJKFzV%VON}BWj^sxb7zkzG({Dvl?7#D1DJ%i{T-Yv z&W9{MXog?d{Bisk^2YO9MoOE<7;n0G3DmLEVe)rtHyUam+eQE)gTXcPb zqtDeD=G$L|we9kjQJNYjsdALGFi(e|XL-G-^mf%ZUj}j<AE&SC-3Mhbl~Bf0Ohw$Kd7e8~J6f9>+GkTYRko0fCTWVF?aX$6 zZyRaMW?l;!$7CtyF_hlDv=hN;!=%UtBt(eQ%TE$t709+&$Hznn`!~&aY&IF|NozT4 zP?W<9Ox_P~m6odgM*H6B{vy(JRW&%S=KO1HNb?U5BYXRXfiuVTlI5@V5u0Eq7)s-} zkO1GEd#A=eYtRD5sw?E2c}l^=JgW|JUzx8C}ID*t=UVz)dvL6^6WkluswOq1y~ zYCdCuHHx&@tf!2#P-W^66*$9iGg9|VTw>4TLGcR- zv+O|ZmNJSrg!*zncP!L*O5X9_p-t^@l)qkvGn`oH9||TgrYLNRVX!y%iY1!zc`7}s z_dkewWf$UeuKW`Fbnky-y0W<)53OjA$~qy(VQj`qAefP1^Q8xHNH6pR{nBxa1X)@7LA%k93HpyZFRYL@i|ttF5J`i z-k&#r=3lbM1+w&Uf{7{JTh2ckpoWXUg`sZ~D!Eho{3PO=4LzQpBDB!9CrpD0zg4w- ze_Y9=cTLy7{1clXAhcf#c&p_bb}(lJmhts7Ok5NoIPQxxw;h$%z<(4rTfeb|r#MkN zSt1^vI`Rp9xHztsnJj1?AqeKX(+2OIk>*6>lwDXC?bMJ_dbNM>=n}X5=^pRdg-UR1 zRf8^6xw3wHOwYxR*m5(T>NiLtQc>^G z<~z?)7Y+5w*v#^W4#b?6q%KVb*X#2)=rJgNFPA#Ti{n3!_`DAs{6e*6OG6LTe)O>! zP#Oc1hPR-aqD`wa4VOV;ihuW~&sS?pZ=GD?=U&Z31Pc<&`iln=o24n2I#RcPW|76^{hx`+}g34>L7EBl;{ z(hPU&R%XS^y&2LzJ{=J0ejTTmCf1E1dD)eWL5cEFvv#qED-=jRJ_yjg%G1NQi|}-5 zO_3WQtFZECDvq^ag|5PV(FYsUOilA;@e+mSgL?|)&T<_-2swd_!>4%ZMgb-X$&&}s z?gMw+UZRRmw;t=bm6Zeh3ZFGPtO+4zT3Y{%!n27olT&rgFY@rUZbWG&SAjVnnf+T# ztNvl&17zZ5n&jc!rXhf@)_VbweKiew%U5;_58lZoa{}Q|)65!(3)*pKIKkr5b9UO0 z>}A(h$T0D&j~QcTe=^lY{M{^&Hs|KM+@xo6cyXnYpsTlV-gO5yxo`RhXp4(^^16!~ z?F9G9Udx`?gR$0V9UuMfemy8HOz4o$x%)QT>fk(n+`mb?@`vup#^}?6q<0Hm+7;l$ zM7N#R@bF&DGL^Q7$drALA(Rh8%)@2HvJ1d!ttS&V%bO24)w+7kNY_;-^VTRR>;{WP z!osb2yiqCIso^qmWn!KweJ2)vwRKrmCS!gChGpCOSzaf2#^rvJBksE$WVWh;xntJ- z?-c?$Th7`M|FW5rSZw%l90Klbd12gA^Y^yprGN(RtAf(+%-tRPTKGd#Wpv$Kky7q^ z%BhW?1NAV5!2pCwn-s{5gx)&ZP%d0 zL=04;9p<61{aiEe^kyA2TpWNRUS~KHO*DAuyR_U2721Sqn3{`w-dLxPd)R6C5em(pLZ()f46#{2q&^RHo9((S8t2;?wtD z%86t5Or*U4mpLlyX zKEEl$qY4SD?`hBr%9rXAqF+8;JXT`Q2e_V;bbzpkZBn|;KMGH$mp(W6xWnwO#kf5M zEg=>n?zzNle_6O<{LER3|DHelV=D$Hl=Rs6v(Yi!V)sUb(zxg|>q{l!n*u*0KjD=k zLkBWOr=A-MuqHbkWVA)HIc2?_s{g{cP@*+{_DIeB_91<;WteW7n0oZC0Ek%qCY+x{rGA-wNW4GlVv-cQNswJejOmD z&;JDQ^Ji>|gSuaU`fK>lB*@EpZaLF}dm(?1prznZyMTk~7eP&lw44)f3Sr-MA{dg$ zprx6V5dm2}ui!|5;C|oH>Yu=}B=31BLc;tm4&;qmdbh1LKmniAz8yXbq1e2iYReyb T0O#)~V4+7l>h=8!B-j22qg1yq literal 10435 zcma)=c{G&&+xV4Gi6MkABa#sEk$o9a6tb7yh{{^_bugr|(_+gSV(d$HhOv`vWZz|M zWiVzinDy7E-}61c^Lx&D&Ux}>CKn9h8#`}*#NP<*WK+o;)_ z<8ho~`J4>Pi%^uMf7E5&@Zurtar-A(_%JP5NtO>+``8|ea@dXIy~N0*bvNoPBa;rH zptI%?=4Wtzr%^SXqn!-r9nR-<_cBC8)Fos@3ane20Ta^w(^;1oE4v4$w_kA!? zGn0Ph?8%jLH!Dq5US7bb3VQq%1OADi$G=KC8^k$KpaEpSPYZgm{9nlndeGzlszK0$ z8UI)Qf*wrxzaj{F0PugsDu|`S|5c(O_B{Tt3mJ$C~&hK@YHSS6)U%mND2X!{qUuSpn65&O)LS!57&WODSBUE-avs0aM$FbwT zsl9c{E*CQAUy73cGHGyh%D}k}n>a1Z#k#9Zp%jc<;hycyu)SS0x7$O5y7Q7dv}l{+ zxqL{7t9C#`>b3L=q1wXK%F?p!(w5TyO(3q9_Oa>dzHlvlPoSH+<71U-X+Fv2ci-0d ze+<1LB^DBb*JMP5WtXxD8n!;VMM`bZ7Y+eS8VX}9zV!cJh(tC<5LOf<*VD!qKIY{4 zD8v5;(ojmf*!tK8gGWhDL#dph*Q%~uJQaQ6YgoU|JSua0$zksl`vPyOW_KqIGI}q} zGVpY%__$#i8BE(&tNO2Z(w^*XtbA22kfmMGCPAe|k+bFN!!55{**HPc_nv30Nw(Ze z`*qniU(Yv2>W9exK3Ug_Az<4$<9&~P%qcs09pEoj9sap^i)fu>ymZ- zUV+uIaRsS#I`lCn-__QvLa)^Cp=Ch4Z-D7Jd2JCdbG^l>%YgbGElHf2p6b+PNPUmF zB>U85V-cK@@cw^e-$V~FdD)}B$669+tQRtQ*-sU?9jH2q3v@<*_>*y|PCefD9fBwY z-u)0J!6m{+COX@NiT!&2>0RCqM9ATa4>mVQfy{Q@>8O07OpyU;Ls@ zN>zHy6XyRiVxI6HvW+2r+M!d$f4J{g`4`oEWuUP@QgNb=S-)`U8vE2^wto>2ay4kX z8UerBDO?oyZ;Vh604mu6l>tC?EyUC^VhZ~?s;$6o6e@;-fVaslWe1qbz3TyfqRnMK z89_DEQL6>*a)a6p*#=e zH9Y8o8e^N_pEI`k16}sWQAmzS+)44;_qBl6e+KcW3QT6m+hhB)zV+P&^r}K-ao-JH zRK|}e~cjXh~gWWiYI)YvkK0oxl2C!({0s| ziYMXfxOIFckSJQg?@EVvI;Q>Zk|U3D;k`;$9}5h(r4?v~xiJgnB8g6mgj zBL{75fs%6jKk3P^J3T5@V0DYfd9?0! zaKBN9J?xM%etv`+^60E!OoSY|9L8wd;QiK#gT`t)m+NxfzWrtPxo3e^wD;j91V7|u zf0CfeIW%m(GU^T+MWNOd{DrDP-vMK*Ss(??Q=;~%VXrA+krauum5Qy4fPIG7D;oP- z0OEjS7Bw6a!-vKnPxeJoBkjSorEos4h!u^o1E$5!_uMr1S?-#ksx$;i%{6WCotjKCQG1*U604uCg`|7n1PP<7gV!D>O6_>fSHqI z^jmL7XPAi~M{v4O0bY-+N$OxFF?%ukjS;(5_i;~Eqb1nZBB}e4p*7&@T>6^Cx%n`b zaOwq3+U!hm(rFjj0ep>hCjbc8F&qP;yPMdUa#XSaf$GU2^hqaL9S~Cs00VL$imsh4 zT7n0E`Lz!d0kBGx<2*P^def!UsSaRJQBBJW|1;Ldo^&8p-8kWML>3Zo?Yy?qp6Q1; zreg-gFNL${OAJ69<6U4RJ2*{rr`AZd|0n3QXcllYD&%MI?Vo_Ylcz|dWcr*UktSu0 zut-6J!?>-lV(4C?Jut7T>l#c~&A{zQ^9Kn1R#B@%{T$gbET!eAau54!0vl6b4CjHs zJHi;mLVDQHwAh?&P)2GW^hC22!qXQ=Vd5mwQ{Fm&9aqkV^~Cv|k5c05TI~xnA%gH6 zjA6KtH)th#Sh|M@G7xwsKyj1#s1v+Xg^>1y6fQ>ta1My~hQoY0Yt^jt!8Z@+*3diE z;7kXQ2I$?>HhV~Xt=OUExg78gU{?BkkgDh`auys8ph%n+Siznyk}pK5qFal_eqOr2 z=nUApOmPIgdAjn<4KvP(l9*1w7^=dZqx^b*H={NSmnY@C}V9x~J2IUAIYbb33 zj_g4SJ)ON}J4~DhYdHl8OdC1rfJN@L9>0AoBPJSfY>rPP`5bjAF527H=)l-=MY*MO zVGIBxg?PThC2?0=o*E&B37&L>>p~R3dft*81=vBv{*$Kmb<+J#YvUnDY7Jnq8p2}5 zuS*VR+DP{p&g47k4Xj?~N%LkkN+dmZqlg{#2k%aA3sZ?UD`G*~G#g4vSU1A^=pM9O z)sS?a-sZNq8pNS0JrmKkZo`uVw1Ta`d zVNBP5u)2g==pe~qm0!%c37vjlkGx<#-M?F3=XCkhNi~8tYk>nYplA@Ooiz!x)~k9Z ziR4I|T)kO2^NzCZ(^SpsCxhex$Zon#zoO+6Yk{R2E&(_*8lYm?4YE|C^6 z9EAoQM4fKnt4{7BTkDDGupan&Oc`h|DKwE<1HwcI^d$vV^>6T@@+7v9>WxX40ay^` z`;ja`sc&m=g9(#(s+DB{_$9p&8bL`2K2lUAQ{clQS(%E*o(5mCTGLd$fL_Nj-XPBd zh82ZDejS=(?*6hSI6Mg{%|-snw3Q*cW!?<&gp>=9-hTyq{;G=_=y8+e6QmU~*cL~M z%+YB`HD3-;npa#3Bvl@M1vl@%JBw{6Ay6j|#pdAv#X)@`uZwAzOGt_PN1&ZdK)xxlILD z%O5MI;)JcPCJ~yX(Vc#;U?LF4mm$vZb@p9`QNXzKuJR_+E|-m<;T`8S^id6~Zs=H2 z$Ep^P!dr*P@87MOOeo-in}BV$yu44il+Yua>#wKnVxnAkIWJ;jzNAHCelhKK!am-0 ziy}EfZl2O*ocGs->BZ3C(t2}z6egSr^W|h?EpeKdpoQR(UfuZtt4lT1 z42@^TUCautdji-^p>is!MAQyV&x?Bc$3h~nh+;+APp<#`R3e`U)cDkNVuWNGyB;w? z4_3QmrS5WN3-U8CxjPte*u9qCi{pPx*zi0am?rjyUQTjdGe7)RPZGmj1?qn~4ZLK- zpJnr7Yi)HOPyD6xfe$z=>T{AzKAW>%FyE9+EZ|>bM5-C(9>9(6N|=*zfjv=>u!!bxYw*>1R&o$Rwu@6PG4iC zQqe04ilQk&7yJi9xkgs+0x5!Or5iP`21DiaS}T7JhTYy+>sQ`CX5K4X*BL{b9?Ikt zSSc;*rPJ>1mm%nlus7k-o?i32mrfFG=ZD+decxtF#nu}aqOL${t6-{}&JrrNT=sB1 z*V*5(F7`-)!_l)IV?@aBqLcz!3Wo;m%84G`sl^y~U0ABXIQ~JJ`{Z7$XUh{1T6l=) ziW67e!xq$=l3!Cx=d)ndkejY+Ht!k9EPr-J3y<;y(6RM6@MOvA6yNNx49k;;MKiDE zg3gD?N~()s&u&Q@@ok}7s=?%qEe2Ajy0%*q4o!^)c|8RSqA=2;{;_^mQcovYx~l^^+l6W@eYQOjvmLj6NT>%cCRg%s>)- z4&VHV`MUFNDy*uv*7u7%Xcle(`E%?J{X+t4JlTe?LqEz>N$ZVu)c2J;04g%jGh|3F zBBWd%Jg}D4LAhNOsP5VRMPS=eHQl_N8{OMnbA`x*i6>`VtZtt&FgI4QT{=6x6kf&X ztvKVB>T+6dO%N&L9g)4N%-++}^v$0H?`2@o8h$-IiOwam&cCZK5=fbOFtlY5+xdntji zbkHz8+I+j-NWy$u>0Ni^iM1#7&sPgl>X93gb@RCN+fVSNz;upuh)9x7J@s}@7TPN0 z&k-vTmkASIQ;&2m#Va%_G|`G*ju)rT~8hqwgMg$^*}NwU@ZHh=*C*Wx7g?Yryph)P&1ELIB??&KW z@+k|+QQa7TWuh+khFr57=9n+AX-4X(^MFjUu)6Jxt_O68&My=gfNyo?*7-0gPX0r> zQTv<0X_TNZqumwEuI?ahpM%dTE&biN!;kP9*y*g@t=CS!*=+I0sq0$@d3wGNsfx@r z;JH&-;4aIN;poN+$I(HW>LaFKmQ<3T)AICbZ(eYY$1mg-pCs6E2=$@8*cC}8B8DHV zu8bOmNjRz6254!wt;AG&r8{cYS79pvs3wxv)O^pZvYSESzE;oVF3E%=EG7Ckxe<~v z#C{*enSK(PhPmc&>4fO1dp8!ND$*y;p#WjshN3DlPy4Ox^kQndE8mPga*OfY9Z=Yl zWW8(}8CF3EvK8zLi?iZ$5tPxsABH!^=EjJ%jc@z;S+lQh-5iqWU*Jf4Z>KU|=^KE%u1%?wOQUyZ!)iPoFP;I@gAFMTYWuhp(-9DD>1* z%r#aVWAmB^$#eLlT#YMwAJbn>H`-(ItH>#BTQ-Kxy8J~hL^x(&=M&x_kuPSyZD!ps z?CCuVVTGcjrRW-Br!Y3^wrgpv%htyaJ!Z8d5elyUqBmCdE10E5uJ^^IHH>@~Vq5D# zE+;c`3-(#%Jz;QgAFfl$y`hc&fb}S_;#iyaUU@uF$V*|ZW2||FOKFX)_TGr(be|FdcV~?I819}S=Qe?zO`IrVES%FPkiS1Zctu!q)kV#!yh-;>tD|VB^4s3}8LMf# zTe%QO!opbcc{^Ep52aMmuF)=~iYttlC(5QfwmH@|BtgR}o%nD0q)YFT)A^$q8eBhW z=!^9|tWb9w*!I6eG#D^*5Lepia@$I)CBKZb4Gy?1)822Sw-uvDkq6xoM`SnY6TH=$ zUfhrw*+XuRnybZlmV3VFYK@Do38IMYJd+{0a8SxPulKnWIKrAjKJYjtN*zE8vwND5 z!HtPv5q8t9j>g4yNqzkQ8}nBl&dF5#!mOt9(s;)k|E2k|i?phJ= zY8u?%#=vHAJkGat>>ZC&D?gunZ)W;GEmf}2V;=|dx5Jzrt(+c<@wWoS>gC9Z49G$0 zJ$?1od@Ifhop^;()>;0HNAY~DA$VxiR8L?nW_a*^Q4Q5~1!1XsQKsk#(bE(w&=Z*7 z=avhTPvTh-YY7Uzq%yO`WX+e(!*^?6aXg<{hNao}d4435OahD)6*=>c!!$Q{{_tY% z-FVZV{EsCqi>3Xp-?=Ik!@o#-fJnXvcpc;mOzKiF9 zVKOY;`aB)TLC>mkIpz?vLA&^*2x!bf0;LgV&8Pon-xx-H{xp;axGD65`5q5>BM}ln zdHAONxq}eFR%8@5jT|Giw%y~oeFx1Iq{{veq;0xhQN{f3&Yd3e-8VN?46ZfczG_=9 zi@XlVtg@K^ux$-yuMoX-S-n^V>fEwyG8LgAk8va0!qG;d>r7CB$Bn7JNk1zh;UA&+ zQUOk{O@6OE#COEj=tXo$v3nYL-uK2R$IP>=p@)J~%e$#9s8a>BYVC0GjRb+{gRJ9= zQZajXOG6v-EXsOVdz!US`BkCFR7FrCbgkmcQcuuEk=q2!P-IFyt$)NTUa0HvovgIG zUCD5QtFXm9*ntTDRvsCys8Um&mSdPDx^y+fU&B^NF*NuoF1Qbr{iAN7&Ukr=9##I6LvZ;G6K-v4ajf)E0_I?6y%4)Q90zQ0$IB7Sv}9 zcZ9XO2_LR;?_FNq-18$r91m2BCwB#`XBR8fPSg7{Ud2O<*3l)NLN-nlrGv-rcFm27 zp0BglUg*?Pn?^QUwmu46dz-;gu<{*~x`1V0O+1>FzpjlvQ^i8{zuA4d)z$ehE_(mT z(x)0z=Gp^;7f6+T&RRq4;;)(ZVdN=tV+E`cUnu))3)W`%Caa``+19d+iHLw)Pao-5 z{=BiZH*~EF+tvlI3XS4fQmJ=C^hBLkLC{>s7WLnFl&?Pfhmw5YBF7(XUy@Pnx9BHS z9#`j{Q6F)B%>-p;F)-Q~6!6*PVPg!Nf^att4ZrtZn_nz5Eapf@7X>f~8zJHntW$KW z5!zHssHNm)(xNMDspKDa?b?4N9YU2(Z5s1bkiuPXCk3igu%FN!Nd3vlvlt$3m`mvf zBIC4eyurazzES%u_D)exJg=R*lqdymb+CNTIkaV>8C@ImzNun`Ea%P&{p?{^sTzMC zH2TupRp+tL@NCZ1VxxjgLx@knI*Wf5i(i=*^?^_qqVUru%3DbDlTha<=!#%hyLtPb zydN`rSoI<>D7-gdR6Xrwu9X`veXjc;2Wok`K}zZGuNUeuCYvkW6=Old-0b-O=a zuCzaRGY<(}ekQHrQI+~D!}Jvgd+M}PWC6gdUHy3YW4T3P(%Vpp3i{}|nwh9IngzvX z`ce6o<{K7Ci7?Y9KA99)=$y-OX3t5aA7Wah=t6(#E1Tp8@v9N=bSDRI=Xr3gYNpnL zgKjnj;vydfXU+Eec1wnF#vX8W8f!j#2=(J^U74G;9UyKW5;G;1)@DOahk`X?WM0Co zXYvDLN=|yM&jidax`ud;#A{7O5BXxeF!xHi-4^yxJz_nRzJ%#}{bzdaC^A}9h80LOYeSGzodY9M}U0VZoti_Hzj{R#Wu|j z_7pyCUJzkE5}wjS*jWTRaY56_7QeUNy5|bVF{YMHq^6IK?ETXM>V|z!)o`$q?;_s5 zCbg+K1(>NCM%#@5^}C~gd+#^QK4)}Lw!-KpeOrijp=I`KrlyEW>6Fj3-?NGT>>eI= z-$vW^yAQKDK6|IEEw;n0>aZIo-kY2<3O}s?h7Nl1SO!&UFVx?zN{KQH- zw#U5=iYMa}XkI?W>q9x8nG8&DzOx_riV}_w?Hs3ACGLyl)&z)}qe5m?Qgz20?-mfa zko{?L%7|J&!4w<9^N_};Tq##AsupNQxU#IqA}Kzd!i$LsnBE6w;uA4X@Je?Jg+ynL z!M>k$zd4>V&aBusxgSKtW;0Ef+aaV=lyj|Y+pI;!S)R@Os4g_aS7%FzKemPJrOf7; zmEv6rSJY#_m_+;zEjn_3SU4UNfpd5)-nLvb@in7$j(VTc!1rlRy+1fq(fLkF*2`nS zffE#NR5IHSETU0^q&>c8klxPO0tas}aYb2HIWebP{PxnS{HucqL6@N03?s7{x=EwWNrI#zRX8xQPL9DlQHVzp; z?uusdgIe0nc9X-d)be zi!YFp2ft&XCy6!>H(pHR%yR}g+_jRZAnn}$U>`c=H9D|m( zLXOr+X7USbsfC49$X?UE!W22Ow`*m=_*2Y5txQV$t8S?VoEdQJXmB@I!Ptd`q)G~8 zNO?UcQLS+$<)6)S@)zyyZ{QjN*i)=)XY}V4ZdL7E#SZR^vet)r8VA95v+r&I9Z@6t zN`{41{x8dABR1-XO7_P*(u`MRUrk5oY{a@N2O)Hx2fX_>aOKJhi1zTU^L#8a#2K~{S5?795$ zbA%QNX!M{IA9D9()KfeGgu3|T%^*FdH=60HiOYgB=Fz>4Z`N++d&9)=r9pQGV54>+Du$It}BItS4lavs^RSf1jt_cBdJ?Bq=UXEDw)7 zhL}lxb2^xw7MUX=7#+JlFHz@mCiGqwjgJ}%-QWavuA5hY&X%vdb&1;ubXmlmC;BOrD*lqmLE^RDMWspT?a-6*xc@g){2F0#>sYOze#^{`5MXed4s zYyWmxyYOknoISYvCJCWFycvIO;~;{s@;12qB@-6@v2dyHZfL5h*gPS7fKZ>S^4$b+ z$d}t9)AoEVBh!NFAbf@QYOZ783pk)`<--vdR78RKs|igj?;&YciPz@U`;*6XDT}F= zAob%-ZLC-nD{=4Zcyv(eT{qsn=hLW!vt~IjTWKXB(V$N_0 zJI=EH`6c9nU1-{%>D71Kl;@XHVAWj-g?Pq=T!VPgl>lyhk9j@XYOYK&! zsGS${Bn@D$?`CV0nwk1@sE$d{Z;O`6i0sDh!mYNIxGAXl$hZLn@sN*m(Z&~z<}=H= z_U`NS-h&Ma{W1C5E7=rqqgoShqON*B$~+Ih>4!{i|2(?0MmVv3e&C>>l2UI8*^94K zA?!-?s!tyo=iXMGMrGv3V@(5JM6IMl(!ml#795W@+A?+R%9S!s9gBlyPh(%`S&9@R zz7w)X(QY=^ydLPKa{DhZOB5q|f?w9OXCu@QL$9vTl&6X$AvnIQUm3Mx`96ChbE22)mQ+v&dQ-)c zV%{?RLg7k^o6cm350oV{fDo28G>a8$ezU8Ro4p`;KMZj@X3)0P3M6FaFX2EL|LWb( z)s+g^tUXzz0y^V&QBNye7&E@x* zQx2xQtfWwh8Gv#Nktc2inxwT_mcWzve(;)>ZSi5R2qrR97l{@3P*O=8tfb!y9FBD) zjve=>O%0|Wf>V=l3*hTM$?B=LmuKGw#SQjqKcV=LABdZ0y4gdnn}w}0>y10@WV5sT z9Cp`UFmrc)3i#w>Mpku;_cGz+a!RNP3pesA+9k!u((BYjq1nU}AA*0H!Nj;=)u@Lu z@%5ckr#qo+2R|}it{8cVlP;Za)9T%ucH4L)9(F(+bF)U>UJe7q!J*8^L@B*q7J_PY z!H$ns));9U(frUX3$rz1R~lcLaWW+1UsY9oT*b3*P=6#TZS=iUc@F|dC*0@rh=Sw^ zWl7gm?UGGaIQnf{`7xTk1OmyTjza9$?0tL}DV<#xzUxGyT~r_oDA`hq#zd>;L>JumqN)2=Zp}hGEk7=!HuPDsOjZOjiVaDj@h_Y3P+Jj*8Zm zkHQmk#3^LH24=bZ;s};t$DF_)zUbCg8WZm*L939-r`ANJp$R%ugrbggw?Z6$;B8$9P zu2Qgm=M{%{g&q#NPXl2bI&4@3U49C&Z<4c+)4Z<_w{{h z&g{g;oNGNd`sPRT>jgO0h-&h9vhIOL?eD`Cli%dXTQtF-xx?H~7gQ9tY&HX>Hl?>8 z?c>L(D6tctSLd@g%Y4;W35Gv5(G-aN>#$9{-gOjd;TT&;MwMWOiU{^LLZ)vm^t_Aa zmQ+ll<(x9!`sxMf<;#6-I-JbW{HAoH5#Am5(2jRXI)h(!VkAZ^$-a(G?ka;UZ#Y~( zb%~H?0ODBGdj{ku*Ak&wxw$SVQC;lX-o8a|$Sew#`qAl;ACU9pdt^|~ad&`LE) zD_J!9;GblK+X6z@JSY1Uu1rgsBO97ziXymj`hAD^P$PU3ee(xOCaJ3^f;O6YaH2Y%`pJ#$04jZE;6fR-yrN{ZohL_nRb0PxSCM zuj9k0-Y#R8)V-MD+0iSm&tnYrdq*zHjXaQt_n@VWKW_&1T23U-_AJNLSZ+Sca}m6i z%2G}FsCE89{j204lrcL7_UQ5X*d(T9F+quDxX69y7Y}1l`fRR*9ZNm0r)lS`#_L{t zcYcp?aY;R7noT}5OxP8@moEFyn+#mjFSh5u Date: Mon, 10 Feb 2025 14:42:24 +0000 Subject: [PATCH 09/12] Incorporate penguins_raw.Rd into penguins.Rd --- src/library/datasets/man/penguins.Rd | 46 ++++++++++++++++++------ src/library/datasets/man/penguins_raw.Rd | 46 ------------------------ 2 files changed, 35 insertions(+), 57 deletions(-) delete mode 100644 src/library/datasets/man/penguins_raw.Rd diff --git a/src/library/datasets/man/penguins.Rd b/src/library/datasets/man/penguins.Rd index f8092da7b84..ef68e471187 100644 --- a/src/library/datasets/man/penguins.Rd +++ b/src/library/datasets/man/penguins.Rd @@ -11,7 +11,8 @@ These columns of \code{penguins} are a subset of the more extensive \code{penguins_raw} data frame which results from reading the original - data, resulting in only numeric (double precision), character and Date variables. + data, containing only numeric (double precision), character and Date variables. + \code{penguins_raw} additionally contains nesting observations and blood isotope data. } \usage{ penguins @@ -30,8 +31,35 @@ penguins_raw \item{year}{an integer denoting the study year (2007, 2008, or 2009)} } - \code{penguins_raw} is a data frame with 344 rows and 18 variables: - .............. + \code{penguins_raw} is a data frame with 344 rows and 18 variables. + + 8 columns correspond to columns in \code{penguins}, though with different variable names + and/or classes: + \describe{ + \item{Species}{a character string} + \item{Island}{a character string} + \item{Culmen Length (mm)}{a number denoting bill length} + \item{Culmen Depth (mm)}{a number denoting bill depth} + \item{Flipper Length (mm)}{an number denoting flipper length} + \item{Body Mass (g)}{a number denoting body mass} + \item{Sex}{a character string} + \item{Date Egg}{a Date denoting when study nest observed with 1 egg (sampled). + The year component of this date is the `year` column in \code{penguins}} + } + + There are 10 further columns: + \describe{ + \item{studyName}{a character string denoting the sampling expedition from which data were collected, generated, etc.} + \item{Sample Number}{a number denoting the continuous numbering sequence for each sample} + \item{Region}{a character string denoting the region of Palmer LTER sampling grid} + \item{Stage}{a character string denoting reproductive stage at sampling} + \item{Individual ID}{a character string denoting the unique ID for each individual in dataset} + \item{Clutch Completion}{a character string denoting if the study nest observed with a full clutch, i.e., 2 eggs} + \item{Delta 15 N (o/oo)}{a number denoting the measure of the ratio of stable isotopes 15N:14N} + \item{Delta 13 C (o/oo)}{a number denoting the measure of the ratio of stable isotopes 13C:12C} + \item{Comments}{a character string with text providing additional relevant information for data} + \item{Set}{a character string denoting whether the bird featured in the test or train set (or \code{NA} for neither) in the original analysis (see References).} + } } \source{ \describe{ @@ -42,17 +70,13 @@ penguins_raw ver 5. Environmental Data Initiative, \doi{10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f}.} \item{Gentoo penguins:}{Palmer Station Antarctica LTER and K. Gorman (2020). - Structural size measurements and isotopic signatures of foraging - among adult male and female Gentoo penguin (Pygoscelis papua) - nesting along the Palmer Archipelago near Palmer Station, 2007-2009 - ver 5. Environmental Data Initiative, \doi{10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689}.} + \doi{10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689}.} \item{Chinstrap penguins:}{Palmer Station Antarctica LTER and K. Gorman. 2020. - Structural size measurements and isotopic signatures of foraging - among adult male and female Chinstrap penguin (Pygoscelis antarcticus) - nesting along the Palmer Archipelago near Palmer Station, 2007-2009 - ver 6. Environmental Data Initiative, \doi{10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e}.} + \doi{10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e}.} } + + The title naming convension for the source for the Gentoo and Chinstrap data is that same as for \enc{Adélie}{Adelie} penguins. } \references{ Gorman, K. B., Williams, T. D. and Fraser, W. R. (2014) diff --git a/src/library/datasets/man/penguins_raw.Rd b/src/library/datasets/man/penguins_raw.Rd deleted file mode 100644 index 9cca9fd6810..00000000000 --- a/src/library/datasets/man/penguins_raw.Rd +++ /dev/null @@ -1,46 +0,0 @@ -\name{penguins_raw} -\encoding{UTF-8} -\docType{data} -\alias{penguins_raw} -\title{Penguin Size, Clutch, and Blood Isotope Data for Foraging Adults near Palmer Station, Antarctica} -\description{ - Includes nesting observations, penguin size data, and isotope measurements from blood samples for adult \enc{Adélie}{Adelie}, Chinstrap, and Gentoo penguins. -} -\usage{penguins_raw} -\format{ - A tibble with 344 rows and 17 variables: - \describe{ - \item{studyName}{Sampling expedition from which data were collected, generated, etc.} - \item{Sample Number}{an integer denoting the continuous numbering sequence for each sample} - \item{Species}{a character string denoting the penguin species} - \item{Region}{a character string denoting the region of Palmer LTER sampling grid} - \item{Island}{a character string denoting the island near Palmer Station where samples were collected} - \item{Stage}{a character string denoting reproductive stage at sampling} - \item{Individual ID}{a character string denoting the unique ID for each individual in dataset} - \item{Clutch Completion}{a character string denoting if the study nest observed with a full clutch, i.e., 2 eggs} - \item{Date Egg}{a date denoting the date study nest observed with 1 egg (sampled)} - \item{Culmen Length}{a number denoting the length of the dorsal ridge of a bird's bill (millimeters)} - \item{Culmen Depth}{a number denoting the depth of the dorsal ridge of a bird's bill (millimeters)} - \item{Flipper Length}{an integer denoting the length penguin flipper (millimeters)} - \item{Body Mass}{an integer denoting the penguin body mass (grams)} - \item{Sex}{a character string denoting the sex of an animal} - \item{Delta 15 N}{a number denoting the measure of the ratio of stable isotopes 15N:14N} - \item{Delta 13 C}{a number denoting the measure of the ratio of stable isotopes 13C:12C} - \item{Comments}{a character string with text providing additional relevant information for data} - \item{Sample}{a character string denoting whether the bird featured in the test or train set (or neither) in the original analysis (see References).} - } -} -\source{ -\enc{Adélie}{Adelie} penguins: Palmer Station Antarctica LTER and K. Gorman. 2020. Structural size measurements and isotopic signatures of foraging among adult male and female \enc{Adélie}{Adelie} penguins (Pygoscelis adeliae) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 ver 5. Environmental Data Initiative, \doi{10.6073/pasta/98b16d7d563f265cb52372c8ca99e60f}. - -Gentoo penguins: Palmer Station Antarctica LTER and K. Gorman. 2020. Structural size measurements and isotopic signatures of foraging among adult male and female Gentoo penguin (Pygoscelis papua) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 ver 5. Environmental Data Initiative, \doi{10.6073/pasta/7fca67fb28d56ee2ffa3d9370ebda689}. - -Chinstrap penguins: Palmer Station Antarctica LTER and K. Gorman. 2020. Structural size measurements and isotopic signatures of foraging among adult male and female Chinstrap penguin (Pygoscelis antarcticus) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 ver 6. Environmental Data Initiative, \doi{10.6073/pasta/c14dfcfada8ea13a17536e73eb6fbe9e}. -} -\references{ -Gorman, K. B., Williams, T. D. and Fraser, W. R. (2014) Ecological Sexual Dimorphism and Environmental Variability within a Community of Antarctic Penguins (Genus Pygoscelis). PLoS ONE \bold{9}, 3, e90081. doi:10.1371/journal.pone.0090081. -} -\note{ -This data is also available in the \CRANpkg{palmerpenguins} package. See also \url{https://allisonhorst.github.io/palmerpenguins/} for further details and resources. -} -\keyword{datasets} \ No newline at end of file From 3c1de9db3da3d56237336bd95a101759c1995227 Mon Sep 17 00:00:00 2001 From: EllaKaye Date: Mon, 10 Feb 2025 14:50:50 +0000 Subject: [PATCH 10/12] Add line at end of file --- src/library/datasets/man/penguins.Rd | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/library/datasets/man/penguins.Rd b/src/library/datasets/man/penguins.Rd index ef68e471187..aad15005053 100644 --- a/src/library/datasets/man/penguins.Rd +++ b/src/library/datasets/man/penguins.Rd @@ -103,4 +103,4 @@ noquote(rbind(old_nms, nms = colnames(penguins))) \dontrun{ # << not in this example, keeping our 'penguins' names: colnames(penguins) <- old_nms } -\keyword{datasets} \ No newline at end of file +\keyword{datasets} From 9ad46e7e0537b687534cc489eb9171bb8c1da82c Mon Sep 17 00:00:00 2001 From: EllaKaye Date: Mon, 10 Feb 2025 14:59:56 +0000 Subject: [PATCH 11/12] Tweak to penguins documentation --- src/library/datasets/man/penguins.Rd | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/library/datasets/man/penguins.Rd b/src/library/datasets/man/penguins.Rd index aad15005053..252b1242814 100644 --- a/src/library/datasets/man/penguins.Rd +++ b/src/library/datasets/man/penguins.Rd @@ -100,7 +100,7 @@ old_nms <- sub("len", "length_mm", ## compare old and current: noquote(rbind(old_nms, nms = colnames(penguins))) -\dontrun{ # << not in this example, keeping our 'penguins' names: +\dontrun{ # << not in this example, keeping shorter 'penguins' names: colnames(penguins) <- old_nms } \keyword{datasets} From 04f6fff77b78c472784bbbfcaa3df728b2d35102 Mon Sep 17 00:00:00 2001 From: EllaKaye Date: Mon, 10 Feb 2025 15:33:07 +0000 Subject: [PATCH 12/12] Close examples {} --- src/library/datasets/man/penguins.Rd | 1 + 1 file changed, 1 insertion(+) diff --git a/src/library/datasets/man/penguins.Rd b/src/library/datasets/man/penguins.Rd index 252b1242814..0db7fa79bab 100644 --- a/src/library/datasets/man/penguins.Rd +++ b/src/library/datasets/man/penguins.Rd @@ -103,4 +103,5 @@ noquote(rbind(old_nms, nms = colnames(penguins))) \dontrun{ # << not in this example, keeping shorter 'penguins' names: colnames(penguins) <- old_nms } +} \keyword{datasets}