-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathmulti.R
540 lines (457 loc) · 16.8 KB
/
multi.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
#' Format multiple vectors in a tabular display
#'
#' @description
#' `r lifecycle::badge("soft-deprecated")`
#'
#' The vectors are formatted to fit horizontally into a user-supplied number of
#' characters per row.
#'
#' The `colonnade()` function doesn't process the input but returns an object
#' with a [format()] and a [print()] method.
#' The implementations call [squeeze()] to create [pillar] objects and fit them to a given width.
#'
#' @param x A list, which can contain matrices or data frames.
#' If named, the names will be used as title for the pillars. Non-syntactic names
#' will be escaped.
#' @param has_row_id Include a column indicating row IDs? Pass `"*"` to mark
#' the row ID column with a star.
#' @param width Default width of the entire output, optional.
#' @inheritParams rlang::args_dots_empty
#' @keywords internal
#' @export
colonnade <- function(x, has_row_id = TRUE, width = NULL, ...) {
deprecate_stop("1.9.0", "pillar::colonnade()", "pillar::tbl_format_setup()")
if (!missing(...)) {
check_dots_empty(action = warn)
}
# Reset local cache for each new colonnade
num_colors(forget = TRUE)
x <- flatten_colonnade(x)
ret <- new_data_frame(x, has_row_id = has_row_id, class = "pillar_colonnade")
ret <- set_width(ret, width)
ret
}
flatten_colonnade <- function(x) {
out <- map2(
unname(x),
names2(x),
flatten_column
)
vec_rbind(
!!!out,
# .ptype = data_frame(names = list(), data = list())
.ptype = data_frame(names = character(), data = list())
)
}
flatten_column <- function(x, name) {
if (name != "") {
name <- tick_if_needed(name)
}
if (is.data.frame(x)) {
flatten_df_column(x, name)
} else if (is.matrix(x) && !inherits(x, c("Surv", "Surv2"))) {
flatten_matrix_column(x, name)
} else {
# Length-one list, will be unlist()ed afterwards
# data_frame(names = list(name), data = list(x))
data_frame(names = name, data = list(x))
}
}
flatten_df_column <- function(x, name) {
if (length(x) == 0) {
# data_frame(names = list(name), data = list(new_empty_col_sentinel(x)))
data_frame(names = name, data = list(new_empty_col_sentinel(x)))
} else {
x <- flatten_colonnade(unclass(x))
# x$names <- map(x$names, function(.x) c(name, .x))
x$names <- paste0("$", x$names)
x$names[[1]] <- paste0(name, x$names[[1]])
x
}
}
flatten_matrix_column <- function(x, name) {
if (ncol(x) == 0) {
data_frame(
# names = list(c(name, "[,0]")),
names = name,
data = list(new_empty_col_sentinel(x))
)
} else {
x_list <- map(seq_len(ncol(x)), function(i) x[, i])
idx <- colnames(x)
if (is.null(idx)) {
idx <- seq_along(x_list)
} else {
idx <- encodeString(idx, quote = '"')
}
# names <- map(idx, function(.x) c(name, .x))
names <- paste0("[,", idx, "]")
names[[1]] <- paste0(name, names[[1]])
data_frame(names = names, data = x_list)
}
}
new_empty_col_sentinel <- function(type) {
structure(list(type), class = c("pillar_empty_col"))
}
#' Squeeze a colonnade to a fixed width
#'
#' @description
#' `r lifecycle::badge("soft-deprecated")`
#'
#' The `squeeze()` function usually doesn't need to be called manually.
#' It returns an object suitable for printing and formatting at a fixed width
#' with additional information about omitted columns, which can be retrieved
#' via [extra_cols()].
#'
#' @keywords internal
#' @export
squeeze <- function(x, width = NULL, ...) {
deprecate_stop("1.5.0", "pillar::squeeze()")
squeeze_impl(x, width, ...)
}
squeeze_impl <- function(x, width = NULL, ...) {
# Shortcut for zero-height corner case
zero_height <- length(x$data) == 0L || length(x$data[[1]]) == 0L
if (zero_height) {
return(new_colonnade_squeezed(list(), colonnade = x, extra_cols = seq_along(x$data)))
}
if (is.null(width)) {
width <- get_width(x)
}
if (is.null(width)) {
width <- getOption("width")
}
rowid <- get_rowid_from_colonnade(x)
if (is.null(rowid)) {
rowid_width <- 0
} else {
rowid_width <- max(get_widths(rowid)) + 1L
}
col_widths <- colonnade_get_width(x, width, rowid_width)
col_widths_shown <- col_widths[!safe_is_na(col_widths$tier), ]
indexes <- split(seq_along(col_widths_shown$tier), col_widths_shown$tier)
out <- map(indexes, function(i) {
inner <- map2(col_widths_shown$pillar[i], col_widths_shown$width[i], pillar_format_parts)
if (!is.null(rowid)) {
inner <- c(list(pillar_format_parts(rowid, rowid_width - 1L)), inner)
}
inner
})
n_cols_shown <- nrow(col_widths_shown)
extra_cols <- seq2(n_cols_shown + 1L, length(x$data))
new_colonnade_squeezed(out, colonnade = x, extra_cols = extra_cols)
}
get_rowid_from_colonnade <- function(x) {
has_title <- any(x$names != "")
has_row_id <- attr(x, "has_row_id", exact = TRUE)
if (!is_false(has_row_id) && length(x$data) > 0) {
rowid <- rowidformat(
length(x$data[[1]]),
has_star = identical(has_row_id, "*"),
has_title_row = has_title
)
} else {
rowid <- NULL
}
rowid
}
new_colonnade_squeezed <- function(x, colonnade, extra_cols) {
formatted_tiers <- map(x, format_colonnade_tier)
formatted <- as_glue(as.character(unlist(formatted_tiers)))
structure(
list(formatted),
extra_cols = colonnade[extra_cols, ],
class = "pillar_squeezed_colonnade"
)
}
format_colonnade_tier <- function(x) {
"!!!!!DEBUG format_colonnade_tier(`v(x)`)"
if (length(x) == 0) {
return(character())
}
unlist(pmap(unname(x), paste))
}
#' @export
format.pillar_squeezed_colonnade <- function(x, ...) {
x[[1]]
}
#' @export
print.pillar_squeezed_colonnade <- function(x, ...) {
print(format(x, ...), ...)
invisible(x)
}
# Method registration happens in .onLoad()
knit_print.pillar_squeezed_colonnade <- function(x, ...) {
unlist(map(x, knit_print_squeezed_colonnade_tier))
}
knit_print_squeezed_colonnade_tier <- function(x) {
# Hack
header <- map_chr(map(x, `[[`, "capital_format"), `[[`, "title_format")
col <- map(x, function(xx) c(xx[["capital_format"]][["type_format"]], xx[["shaft_format"]]))
knitr::kable(as.data.frame(col), row.names = NA, col.names = header)
}
#' Retrieve information about columns that didn't fit the available width
#'
#' @description
#' `r lifecycle::badge("soft-deprecated")`
#'
#' Formatting a [colonnade] object may lead to some columns being omitted
#' due to width restrictions. This method returns a character vector that
#' describes each of the omitted columns.
#'
#' @param x The result of [squeeze()] on a [colonnade] object
#' @inheritParams rlang::args_dots_used
#' @keywords internal
#' @export
extra_cols <- function(x, ...) {
deprecate_stop("1.5.0", "pillar::extra_cols()")
if (!missing(...)) {
check_dots_used(action = warn)
}
UseMethod("extra_cols")
}
#' @rdname extra_cols
#' @param n The number of extra columns to return; the returned vector will
#' always contain as many elements as there are extra columns, but elements
#' beyond `n` will be `NA`.
#' @export
extra_cols.pillar_squeezed_colonnade <- function(x, ..., n = Inf) {
extra_cols_impl(x, n)
}
extra_cols_impl <- function(x, n = NULL) {
extra_cols <- attr(x, "extra_cols", exact = TRUE)
ret <- rep(NA_character_, length(extra_cols$data))
if (is.null(n)) {
n <- Inf
}
idx <- seq_len(min(length(extra_cols$data), n))
ret[idx] <- map2_chr(extra_cols$data[idx], extra_cols$names[idx], format_abbrev, space = NBSP)
ret
}
#' @export
format.pillar_colonnade <- function(x, ...) {
format(squeeze_impl(x, ...))
}
#' @export
print.pillar_colonnade <- function(x, ...) {
print(format(x, ...))
}
#' @rdname colonnade
#' @usage NULL
#' @aliases NULL
colonnade_get_width <- function(x, width, rowid_width) {
#' @details
#' Pillars may be distributed over multiple tiers if
#' `width > getOption("width")`. In this case each tier is at most
#' `getOption("width")` characters wide. The very first step of formatting
#' is to determine how many tiers are shown at most, and the width of each
#' tier.
tier_widths <- get_tier_widths(width, length(x$data), rowid_width)
#'
#' To avoid unnecessary computation for showing very wide colonnades, a first
#' pass tries to fit all capitals into the tiers.
init_cols <- min(length(x$data), sum(floor((tier_widths + 1L) / (MIN_PILLAR_WIDTH + 1L))))
capitals <- map2(x$data[seq_len(init_cols)], x$names[seq_len(init_cols)], pillar_capital)
init_col_widths_df <- colonnade_compute_tiered_col_widths(capitals, tier_widths)
pillar_shown <- init_col_widths_df$id[!safe_is_na(init_col_widths_df$tier)]
if (length(pillar_shown) < init_cols) {
# (Include one more pillar to indicate that the data is too wide.)
pillar_shown <- c(pillar_shown, pillar_shown[length(pillar_shown)] + 1L)
}
#' For each pillar whose capital fits, it is then decided in which tier it is
#' shown, if at all, and how much horizontal space it may use (either its
#' minimum or its maximum width).
shafts <- map(x$data[pillar_shown], pillar_shaft)
pillars <- map2(capitals[pillar_shown], shafts, new_pillar_1e)
col_widths_df <- colonnade_compute_tiered_col_widths(pillars, tier_widths)
#' Remaining space is then distributed proportionally to pillars that do not
#' use their desired width.
colonnade_distribute_space_df(col_widths_df, tier_widths)
}
get_tier_widths <- function(width, ncol, rowid_width, tier_width = getOption("width")) {
if (!is.finite(width)) {
pos <- seq(0, length.out = ncol + 1L, by = tier_width)
} else if (width < tier_width) {
pos <- c(0L, width)
} else {
pos <- seq(0, width + tier_width - 1, by = tier_width)
}
widths <- diff(pos) - rowid_width
widths[widths >= 1L]
}
colonnade_compute_tiered_col_widths <- function(pillars, tier_widths) {
max_tier_width <- max(tier_widths)
max_widths <- pmin(map_int(map(pillars, get_widths), max), max_tier_width)
min_widths <- pmin(map_int(map(pillars, get_min_widths), max), max_widths)
ret <- colonnade_compute_tiered_col_widths_df(max_widths, min_widths, tier_widths)
ret$pillar <- pillars
ret
}
#' @rdname colonnade
#' @usage NULL
#' @aliases NULL
colonnade_compute_tiered_col_widths_df <- function(max_widths, min_widths, tier_widths) {
"!!!!!DEBUG colonnade_compute_tiered_col_widths_df(`v(tier_widths)`)"
max_tier_width <- max(tier_widths)
# Safety:
max_widths <- pmin(max_widths, max_tier_width)
min_widths <- pmin(min_widths, max_tier_width)
id <- seq_along(max_widths)
col_df <- data.frame(id, max_widths, min_widths, row.names = NULL)
#' @details
#' For fitting pillars in one or more tiers, first a check is made
#' if all pillars fit with their maximum width (e.g.,
#' `option(tibble.width = Inf)` or narrow colonnade).
max_fit <- distribute_pillars(col_df$max_widths, tier_widths)
#' If yes, this is the resulting fit, no more work needs to be done.
if (all_pillars_fit(max_fit)) {
return(max_fit)
}
#' Otherwise, if the maximum width is too wide, the same test
#' is carried out with the minimum width.
#' If this is still too wide, this is the resulting fit.
min_fit <- distribute_pillars(col_df$min_widths, tier_widths)
if (!all_pillars_fit(min_fit)) {
return(min_fit)
}
#' Otherwise, some tiers from the start
#' will contain pillars with their maximum width,
#' one tier will contain some pillars with maximum and some with minimum width,
#' and the remaining tiers contain pillars with their minimum width only.
#'
#' For this, we compute a "reverse minimum assignment".
min_fit_rev <- distribute_pillars_rev(col_df$min_widths, tier_widths)
combined_fit <- combine_pillar_distributions(max_fit, min_fit_rev, tier_widths)
combined_fit$max_widths <- col_df$max_widths
combined_fit
}
#' @rdname colonnade
#' @usage NULL
#' @aliases NULL
combine_pillar_distributions <- function(max_fit, min_fit_rev, tier_widths) {
#' @details
#' We determine the cut point where minimum and maximum assignment
#' agree.
#' The following strategy is applied:
#'
#' 1. First, we determine the tier in which the cut point lies.
#' This is the first instance of a column that ends up in the same tier
#' for both minimum and maximum assignment.
cut_point_tier <- max_fit$tier[min(which(max_fit$tier == min_fit_rev$tier))]
#' 2. A set of candidate cut points is derived.
cut_point_candidates <- which(max_fit$tier == cut_point_tier)
#' 3. We consult the column offsets. The last column where the minimum assignment
#' has a greater or equal offset than the maximum assignment is our latest
#' cut point.
cut_point_candidate_idx <- which(max_fit$offset_after[cut_point_candidates] <= min_fit_rev$offset_after[cut_point_candidates])
if (length(cut_point_candidate_idx) > 0) {
cut_point <- cut_point_candidates[max(cut_point_candidate_idx)]
} else {
#' If no such column exists, the cut point is the column just before our
#' first candidate.
cut_point <- cut_point_candidates[[1]] - 1L
}
#' 4. Finally, we combine maximum and minimum reverse fits at the cut point.
#' We don't need to redistribute anything here.
max_fit_cut <- max_fit[seq_len(cut_point), ]
min_fit_cut <- min_fit_rev[seq2(cut_point + 1L, nrow(min_fit_rev)), ]
rbind(max_fit_cut, min_fit_cut)
}
#' @rdname colonnade
#' @usage NULL
#' @aliases NULL
distribute_pillars <- function(widths, tier_widths) {
tier <- rep(NA_integer_, length(widths))
offset_after <- rep(NA_integer_, length(widths))
current_tier <- 1L
current_x <- 0L
#' @details
#' Fitting pillars into tiers is very similar to a word-wrapping algorithm.
for (i in seq_along(widths)) {
current_width <- widths[[i]]
#' In a loop, new tiers are opened if the current tier overflows.
if (current_x + current_width > tier_widths[[current_tier]]) {
#' If a column is too wide to fit a single tier, it will never be
#' displayed, and the colonnade will be truncated there.
#' This case should never occur with reasonable display widths larger than
#' 30 characters.
if (current_width > tier_widths[[current_tier]]) {
if (current_tier == length(tier_widths) || current_width > tier_widths[[current_tier + 1]]) {
break
}
}
current_tier <- current_tier + 1L
current_x <- 0L
#' Truncation also happens if all available tiers are filled.
if (current_tier > length(tier_widths)) break
}
tier[[i]] <- current_tier
current_x <- current_x + current_width
offset_after[[i]] <- current_x
current_x <- current_x + 1L
}
data_frame(id = seq_along(widths), tier = tier, width = widths, offset_after = offset_after)
}
distribute_pillars_rev <- function(widths, tier_widths) {
ret <- distribute_pillars(rev(widths), rev(tier_widths))
ret[2:4] <- ret[rev(seq_along(widths)), 2:4]
tier <- length(tier_widths) + 1L - ret$tier
ret$tier <- tier
splits <- split(seq_along(tier), tier)
tier_widths <- tier_widths[stats::na.omit(unique(tier))]
new_offset_after <- unlist(map2(unname(splits), tier_widths, function(.x, .y) {
new_offset_after <- cumsum(ret$width[.x] + 1)
new_offset_after - max(new_offset_after) + .y
}))
ret$offset_after <- c(new_offset_after, rep(NA_integer_, sum(is.na(tier))))
ret
}
all_pillars_fit <- function(tier_df) {
rows <- nrow(tier_df)
rows == 0 || !safe_any_na(tier_df$tier[[nrow(tier_df)]])
}
#' @rdname colonnade
#' @usage NULL
#' @aliases NULL
colonnade_distribute_space_df <- function(col_widths_df, tier_widths) {
"!!!!!DEBUG colonnade_distribute_space_df(`v(tier_widths)`)"
col_widths_split <- split(col_widths_df, col_widths_df$tier)
tier_widths <- tier_widths[seq_along(col_widths_split)]
col_widths_apply <- map2(col_widths_split, tier_widths, function(x, width) {
x$width <- x$width + colonnade_distribute_space(x$width, x$max_widths, width)
x
})
bind_rows(unname(col_widths_apply))
}
#' @rdname colonnade
#' @usage NULL
#' @aliases NULL
colonnade_distribute_space <- function(col_widths, max_widths, width) {
if (any(is.na(col_widths))) {
return(col_widths)
}
missing_space <- max_widths - col_widths
# Shortcut to avoid division by zero
if (all(missing_space == 0L)) {
return(rep_along(col_widths, 0L))
}
#' @details
#' The remaining space is distributed from left to right.
#' Each column gains space proportional to the fraction of missing and
#' remaining space,
occupied_width <- sum(col_widths + 1L) - 1L
remaining_width <- max(min(width - occupied_width, sum(missing_space)), 0L)
added_space_prop <- missing_space / sum(missing_space) * remaining_width
#' rounded down.
added_space_ceil <- ceiling(added_space_prop)
added_space_floor <- floor(added_space_prop)
added_space_diff <- added_space_ceil - added_space_floor
added_space <- ifelse(
#' Any space remaining after rounding is distributed from left to right,
#' one space per column.
sum(added_space_floor) + cumsum(added_space_diff) <= remaining_width,
added_space_ceil,
added_space_floor
)
added_space
}