-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnewsgroups.py
43 lines (41 loc) · 1.68 KB
/
newsgroups.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import h5py,time,tarfile
import numpy as np
from collections import Counter,OrderedDict
from nltk.corpus import stopwords
import os
from tqdm import tqdm
from scipy.sparse import coo_matrix,csr_matrix,csc_matrix,hstack
from utils.sparse_utils import saveSparseHDF5, loadSparseHDF5,readSparseFile
from utils.misc import savePickle,downloadData
from scipy.io import loadmat
from nltk.stem.lancaster import LancasterStemmer
def _load20news_miao():
"""
Dataset setup from Miao et. al
"""
DIR = os.path.dirname(os.path.realpath(__file__)).split('vae_sparse')[0]+'vae_sparse/optvaedatasets'
DIR += '/20news_miao'
h5file = DIR+'/miao.h5'
if not os.path.exists(h5file):
flen = len(open(DIR+'/vocab').readlines())
print 'DIM: ',flen
np.random.seed(1)
TRAIN_VALID_MAT = readSparseFile(DIR+'/train.feat', flen, zeroIndexed=False)
idx = np.random.permutation(TRAIN_VALID_MAT.shape[0])
VALIDMAT = TRAIN_VALID_MAT[idx[:500]]
TRAINMAT = TRAIN_VALID_MAT[idx[500:]]
TESTMAT = readSparseFile(DIR+'/test.feat', flen, zeroIndexed=False)
saveSparseHDF5(TRAINMAT,'train', h5file)
saveSparseHDF5(VALIDMAT,'valid', h5file)
saveSparseHDF5(TESTMAT, 'test' , h5file)
dset = {}
dset['vocabulary']= [k.strip().split(' ')[0] for k in open(DIR+'/vocab').readlines()]
dset['train'] = loadSparseHDF5('train',h5file)
dset['valid'] = loadSparseHDF5('valid',h5file)
dset['test'] = loadSparseHDF5('test',h5file)
dset['dim_observations'] = dset['train'].shape[1]
dset['data_type'] = 'bow'
return dset
if __name__=='__main__':
dset = _load20news_miao()
import ipdb;ipdb.set_trace()