-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn_transfer.py
209 lines (177 loc) · 7.26 KB
/
cnn_transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#%%
import numpy as np
import torch
import torchvision
import torch.nn as nn
from torchvision import datasets, transforms, models
import cv2
import matplotlib.pyplot as plt
import time
import os
import copy
print("Torchvision Version: ",torchvision.__version__)
# %%
# Top level data directory. Here we assume the format of the directory conforms
# to the ImageFolder structure
data_dir = "./hymenoptera_data"
# Models to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception]
model_name = "resnet"
# model_name = "alexnet"
# model_name = "vgg"
# Number of classes in the dataset
num_classes = 2
# Batch size for training (change depending on how much memory you have)
batch_size = 32
# Number of epochs to train for
num_epochs = 15
# Flag for feature extracting. When False, we finetune the whole model,
# when True we only update the reshaped layer params
feature_extract = True
input_size = 224
# %%
all_imgs = datasets.ImageFolder(os.path.join(data_dir, "train"), transforms.Compose([
transforms.RandomResizedCrop(input_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
]))
loader = torch.utils.data.DataLoader(all_imgs,
batch_size=batch_size,
shuffle=True,
num_workers=4)
# %%
data_transforms = {
"train": transforms.Compose([
transforms.RandomResizedCrop(input_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
"val": transforms.Compose([
transforms.Resize(input_size),
transforms.CenterCrop(input_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
}
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ["train", "val"]}
dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x],
batch_size=batch_size, shuffle=True, num_workers=0) for x in ["train", "val"]}
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# %%
img = next(iter(dataloaders_dict["val"]))[0]
print(img.shape)
# %%
'''
unloader = transforms.ToPILImage() # reconvert into PIL image
plt.ion()
def imshow(tensor, title=None):
image = tensor.cpu().clone() # we clone the tensor to not do changes on it
image = image.squeeze(0) # remove the fake batch dimension
image = unloader(image)
plt.imshow(image)
if title is not None:
plt.title(title)
plt.pause(0.001) # pause a bit so that plots are updated
plt.figure()
imshow(img[11], title='Image')
'''
# %%
def set_parameter_requires_grad(model, feature_extract):
if feature_extract:
for param in model.parameters():
param.requires_grad = False
def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
if model_name == "resnet":
model_ft = models.resnet18(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, num_classes)
input_size = 224
elif model_name == "alexnet":
model_ft = models.alexnet(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
s = len(model_ft.classifier) - 1
num_ftrs = model_ft.classifier[s].in_features
model_ft.classifier[s] = nn.Linear(num_ftrs, num_classes)
input_size = 224
elif model_name == "vgg":
model_ft = models.vgg19_bn()
set_parameter_requires_grad(model_ft, feature_extract)
s = len(model_ft.classifier) - 1
num_ftrs = model_ft.classifier[s].in_features
model_ft.classifier[s] = nn.Linear(num_ftrs, num_classes)
input_size = 224
else:
print("model not implemented")
return None, None
return model_ft, input_size
model_ft, input_size = initialize_model(model_name,
num_classes, feature_extract, use_pretrained=True)
print(model_ft)
# %%
def train_model(model, dataloaders, loss_fn, optimizer, num_epochs=5):
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.
val_acc_history = []
for epoch in range(num_epochs):
for phase in ["train", "val"]:
running_loss = 0.
running_corrects = 0.
if phase == "train":
model.train()
else:
model.eval()
for inputs, labels in dataloaders[phase]:
inputs, labels = inputs.to(device), labels.to(device)
with torch.autograd.set_grad_enabled(phase=="train"):
outputs = model(inputs) # bsize * 2
loss = loss_fn(outputs, labels)
preds = outputs.argmax(dim=1)
if phase == "train":
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds.view(-1) == labels.view(-1)).item()
epoch_loss = running_loss / len(dataloaders[phase].dataset)
epoch_acc = running_corrects / len(dataloaders[phase].dataset)
print("Phase {} loss: {}, acc: {}".format(phase, epoch_loss, epoch_acc))
if phase == "val" and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
if phase == "val":
val_acc_history.append(epoch_acc)
model.load_state_dict(best_model_wts)
return model, val_acc_history
# %%
model_ft = model_ft.to(device)
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad,
model_ft.parameters()), lr=0.001, momentum=0.9)
loss_fn = nn.CrossEntropyLoss()
# %%
_, ohist = train_model(model_ft, dataloaders_dict, loss_fn, optimizer, num_epochs=num_epochs)
# %%
model_scratch, _ = initialize_model(model_name,
num_classes, feature_extract=False, use_pretrained=False)
model_scratch = model_scratch.to(device)
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad,
model_scratch.parameters()), lr=0.001, momentum=0.9)
loss_fn = nn.CrossEntropyLoss()
_, scratch_hist = train_model(model_scratch, dataloaders_dict, loss_fn, optimizer, num_epochs=num_epochs)
save_model = True
if (save_model):
torch.save(model_scratch.state_dict(),"cnn_transfer.pt")
# %%
# Plot the training curves of validation accuracy vs. number
# of training epochs for the transfer learning method and
# the model trained from scratch
plt.figure()
plt.title("Validation Accuracy vs. Number of Training Epochs")
plt.xlabel("Training Epochs")
plt.ylabel("Validation Accuracy")
plt.plot(range(1,num_epochs+1),ohist,label="Pretrained")
plt.plot(range(1,num_epochs+1),scratch_hist,label="Scratch")
plt.ylim((0,1.))
plt.xticks(np.arange(1, num_epochs+1, 1.0))
plt.legend()
plt.show()