-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy path13-1-ladder.rb
56 lines (48 loc) · 1.24 KB
/
13-1-ladder.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# https://codility.com/demo/results/trainingJGVJ86-CE8/
a = [4, 4, 5, 5, 1]
b = [3, 2, 4, 3, 1]
# returns Fibonacci sequence:
# ways(1) = 1, ways(2) = 2, ways(3) = 3, ways(4) = 5, ways(5) = 8, etc.
def ways(n, c = 0)
if n == 0
c += 1
return c
end
return 0 if n < 0
ways(n - 1, c) + ways(n - 2, c)
end
def slow_solution(a, b)
ans = []
w = []
a.size.times do |i|
unless w[a[i]]
w[a[i]] = ways(a[i])
end
ans << w[a[i]] % 2**b[i]
end
ans
end
# O(L), L = size of a, b arrays
def fast_solution(a, b)
ans = []
ways = [1, 1]
(2..a.max).each do |n|
# ways to climb ladder is just Fibonacci sequence!
ways[n] = ways[n - 1] + ways[n - 2]
end
a.size.times do |i|
# If d = power of 2, d & (d - 1) = 0
# x % d = (x & (d − 1)), where & is bitwise AND.
# Also, x / d = x >> power, where 2^power = d
# http://stackoverflow.com/questions/6670715/mod-of-power-2-on-bitwise-operators/6670853#6670853
# http://blog.teamleadnet.com/2012/07/faster-division-and-modulo-operation.html
ans << (ways[a[i]] & (2**b[i] - 1))
end
ans
end
start = Time.now
p slow_solution(a, b)
puts "#{Time.now - start} secs" # 6.6e-05
start = Time.now
p fast_solution(a, b)
puts "#{Time.now - start} secs" # 3.0e-05