-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathfibonacci.rb
146 lines (130 loc) · 3.11 KB
/
fibonacci.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# http://introcs.cs.princeton.edu/java/23recursion/ (theory)
# recursive
# O(2^n)
def fib(n, c)
indent = ' ' * c
puts "#{indent}fibonacci(#{n})"
return n if n <= 1
fib(n - 2, c + 2) + fib(n - 1, c + 2)
end
#p fib(7, 0)
# Recursion sucks here: O(2^n)
# fibonacci(7)
# fibonacci(5)
# fibonacci(3)
# fibonacci(1)
# fibonacci(2)
# fibonacci(0)
# fibonacci(1)
# fibonacci(4)
# fibonacci(2)
# fibonacci(0)
# fibonacci(1)
# fibonacci(3)
# fibonacci(1)
# fibonacci(2)
# fibonacci(0)
# fibonacci(1)
# fibonacci(6)
# fibonacci(4)
# fibonacci(2)
# fibonacci(0)
# fibonacci(1)
# fibonacci(3)
# fibonacci(1)
# fibonacci(2)
# fibonacci(0)
# fibonacci(1)
# fibonacci(5)
# fibonacci(3)
# fibonacci(1)
# fibonacci(2)
# fibonacci(0)
# fibonacci(1)
# fibonacci(4)
# fibonacci(2)
# fibonacci(0)
# fibonacci(1)
# fibonacci(3)
# fibonacci(1)
# fibonacci(2)
# fibonacci(0)
# fibonacci(1)
# 13
# iterative (bottom up)
# O(n) time, O(n) space
def fib(n)
return n if n <= 1
f = [0, 1]
(2..n).each do |i|
f[i] = f[i - 2] + f[i - 1]
end
f[n]
end
# iterative
# O(n) time, O(1) space
def fib(n)
return n if n <= 1
f0, f1, f2 = 0, 1, 1
(2..n).each do |i|
f2 = f0 + f1
f0 = f1
f1 = f2
end
f2
end
#p fib(10) # answer 55
# recursive (top down)
# O(2n) = O(n)
class TopDownFib
def initialize
@f = [0, 1]
end
def fib(n)
return n if n <= 1
return @f[n] if @f[n]
@f[n] = fib(n - 2) + fib(n - 1)
end
end
#p TopDownFib.new.fib(15) # answer 89
# For all given numbers x0, x1,...,xn-1, such that 1 <= xi <= m <= 1,000,000,
# check if they may be presented as sum of two Fibonacci numbers.
# fib(30) = 832040, fib(31) = 1346269 (> 1,000,000)
# O(n + m)
def check_sum_fib(a)
f = [0, 1]
n = 2
m = a.max
puts "a: #{a}, m: #{m}"
loop do
fib = fib(n)
break if fib > m
f[n] = fib
n += 1 # max value = 30
end
puts "Fib nums: #{f}"
fib_sum = []
(0..f.size - 2).each do |i|
(i + 1..f.size - 1).each do |j|
k = f[i] + f[j]
# If some of the Fibonacci #'s sum to k <= m, we mark index k in array to
# denote that k can be presented as sum of two Fibonacci numbers.
fib_sum[k] = [f[i], f[j]] if k <= m
end
end
# for each number xi we can answer whether it is the sum of two Fibonacci
# numbers in constant time. The total time complexity is O(n + m).
a.each do |num|
if fib_sum[num]
puts "#{num} is sum of #{fib_sum[num]}."
end
end
end
check_sum_fib([29, 178, 2584, 6368, 12325, 37323, 242786, 346468, 734774, 635622])
# Fib nums: [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229]
# 29 is sum of [8, 21].
# 178 is sum of [34, 144].
# 2584 is sum of [987, 1597].
# 242786 is sum of [46368, 196418].
# 346468 is sum of [28657, 317811].
# 635622 is sum of [121393, 514229].