-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest_post_hoc_lib.py
138 lines (108 loc) · 5.35 KB
/
test_post_hoc_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
"""
test_post_hoc_lib.py
Test the post hoc library
"""
import torch
import torch.nn as nn
from torchvision import models, transforms
from celeb_race import CelebRace, unambiguous
from post_hoc_lib import DebiasModel
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.manual_seed(0)
descriptions = ['5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive',
'Bags_Under_Eyes', 'Bald', 'Bangs', 'Big_Lips', 'Big_Nose',
'Black_Hair', 'Blond_Hair', 'Blurry', 'Brown_Hair',
'Bushy_Eyebrows', 'Chubby', 'Double_Chin', 'Eyeglasses',
'Goatee', 'Gray_Hair', 'Heavy_Makeup', 'High_Cheekbones',
'Male', 'Mouth_Slightly_Open', 'Mustache', 'Narrow_Eyes',
'No_Beard', 'Oval_Face', 'Pale_Skin', 'Pointy_Nose',
'Receding_Hairline', 'Rosy_Cheeks', 'Sideburns', 'Smiling',
'Straight_Hair', 'Wavy_Hair', 'Wearing_Earrings', 'Wearing_Hat',
'Wearing_Lipstick', 'Wearing_Necklace', 'Wearing_Necktie',
'Young', 'White', 'Black', 'Asian', 'Index', 'Female']
def load_celeba(input_size=224, num_workers=2, trainsize=10000, testsize=1000, batch_size=32, transform_type='normalize'):
"""Load CelebA dataset"""
if transform_type == 'normalize':
transform = transforms.Compose([
transforms.RandomResizedCrop(input_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
else:
transform = transforms.ToTensor()
trainset = CelebRace(root='./data', download=True, split='train', transform=transform)
testset = CelebRace(root='./data', download=True, split='test', transform=transform)
# return only the images which were predicted white, black, or asian by >70%.
trainset = unambiguous(trainset, split='train')
testset = unambiguous(testset, split='test')
if trainsize >= 0:
# cut down the training set
trainset, _ = torch.utils.data.random_split(trainset, [trainsize, len(trainset) - trainsize])
trainset, valset = torch.utils.data.random_split(trainset, [int(len(trainset)*0.7), int(len(trainset)*0.3)])
if testsize >= 0:
testset, _ = torch.utils.data.random_split(testset, [testsize, len(testset) - testsize])
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
valloader = torch.utils.data.DataLoader(valset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
return trainloader, valloader, testloader
def get_resnet_model():
"""Get Pretrained resnet model"""
resnet18 = models.resnet18(pretrained=True)
num_ftrs = resnet18.fc.in_features
resnet18.fc = nn.Linear(num_ftrs, 2)
return resnet18
class CustomModel(DebiasModel):
"""Custom Model based built on Debias Model"""
def __init__(self):
"""Initialize"""
super().__init__()
self.lam = 0.75
self.bias_measure = 'aod'
self.__protected_index = descriptions.index('Black')
self.__prediction_index = descriptions.index('Smiling')
self.model = get_resnet_model()
self.model.to(device)
self.model.load_state_dict(torch.load('bs_checkpoint.pt')['model_state_dict'])
self.loaders = load_celeba()
@property
def protected_index(self):
"""Index for protected attribute"""
return self.__protected_index
@property
def prediction_index(self):
"""Index for prediction attribute"""
return self.__prediction_index
def get_valloader(self):
"""get the valloader"""
return self.loaders[1]
def get_testloader(self):
"""get the testloader"""
return self.loaders[2]
def get_model(self):
"""load model"""
return self.model
def get_last_layer_name(self):
"""Last fully connected layer of network."""
return 'fc'
def main():
"""Main Function"""
# CustomModel is a subclass of DebiasModel.
custom_model = CustomModel()
# This returns a dictionary containing bias statistics for the original model.
# If verbose is True, then it prints out the bias statistics.
orig_data = custom_model.evaluate_original(verbose=True)
# This runs the random debiasing algorithm on the model and returns
# the random debiased model and the random threshold that will minimize the objective.
rand_model, rand_thresh = custom_model.random_debias_model()
# This returns a dictionary containing bias statistics for the random debiased model.
# If verbose is True, then it prints out the bias statistics.
rand_data = custom_model.evaluate_random_debiased(verbose=True)
# This runs the adversarial debiasing algorithm on the model and returns
# the adversarial debiased model and the adversarial threshold that will minimize the objective.
adv_model, adv_thresh = custom_model.adversarial_debias_model()
# This returns a dictionary containing bias statistics for the adversarial debiased model.
# If verbose is True, then it prints out the bias statistics.
adv_data = custom_model.evaluate_adversarial_debiased(verbose=True)
if __name__ == "__main__":
main()