From 1a3691f745a173285600f608c4f8974a51bf334c Mon Sep 17 00:00:00 2001 From: Aline Yoda Date: Sun, 1 Sep 2024 22:06:43 -0300 Subject: [PATCH] Entrega do projeto guiado II --- exercicios/para-casa/analise.ipynb | 1055 +++++++++ exercicios/para-casa/felicidade_mundial.db | Bin 0 -> 200704 bytes .../para-casa/world-happiness-report.csv | 1950 +++++++++++++++++ .../para-sala/exercicio_sala_de_aula.ipynb | 1099 ++++++++++ exercicios/para-sala/titanic_tratado.csv | 892 ++++++++ 5 files changed, 4996 insertions(+) create mode 100644 exercicios/para-casa/analise.ipynb create mode 100644 exercicios/para-casa/felicidade_mundial.db create mode 100644 exercicios/para-casa/world-happiness-report.csv create mode 100644 exercicios/para-sala/exercicio_sala_de_aula.ipynb create mode 100644 exercicios/para-sala/titanic_tratado.csv diff --git a/exercicios/para-casa/analise.ipynb b/exercicios/para-casa/analise.ipynb new file mode 100644 index 0000000..df186dd --- /dev/null +++ b/exercicios/para-casa/analise.ipynb @@ -0,0 +1,1055 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 114, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "execution_count": 115, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv(\"world-happiness-report.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 116, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Country nameyearLife LadderLog GDP per capitaSocial supportHealthy life expectancy at birthFreedom to make life choicesGenerosityPerceptions of corruptionPositive affectNegative affect
0Afghanistan20083.7247.3700.45150.800.7180.1680.8820.5180.258
1Afghanistan20094.4027.5400.55251.200.6790.1900.8500.5840.237
2Afghanistan20104.7587.6470.53951.600.6000.1210.7070.6180.275
3Afghanistan20113.8327.6200.52151.920.4960.1620.7310.6110.267
4Afghanistan20123.7837.7050.52152.240.5310.2360.7760.7100.268
5Afghanistan20133.5727.7250.48452.560.5780.0610.8230.6210.273
6Afghanistan20143.1317.7180.52652.880.5090.1040.8710.5320.375
7Afghanistan20153.9837.7020.52953.200.3890.0800.8810.5540.339
8Afghanistan20164.2207.6970.55953.000.5230.0420.7930.5650.348
9Afghanistan20172.6627.6970.49152.800.427-0.1210.9540.4960.371
\n", + "
" + ], + "text/plain": [ + " Country name year Life Ladder Log GDP per capita Social support \\\n", + "0 Afghanistan 2008 3.724 7.370 0.451 \n", + "1 Afghanistan 2009 4.402 7.540 0.552 \n", + "2 Afghanistan 2010 4.758 7.647 0.539 \n", + "3 Afghanistan 2011 3.832 7.620 0.521 \n", + "4 Afghanistan 2012 3.783 7.705 0.521 \n", + "5 Afghanistan 2013 3.572 7.725 0.484 \n", + "6 Afghanistan 2014 3.131 7.718 0.526 \n", + "7 Afghanistan 2015 3.983 7.702 0.529 \n", + "8 Afghanistan 2016 4.220 7.697 0.559 \n", + "9 Afghanistan 2017 2.662 7.697 0.491 \n", + "\n", + " Healthy life expectancy at birth Freedom to make life choices Generosity \\\n", + "0 50.80 0.718 0.168 \n", + "1 51.20 0.679 0.190 \n", + "2 51.60 0.600 0.121 \n", + "3 51.92 0.496 0.162 \n", + "4 52.24 0.531 0.236 \n", + "5 52.56 0.578 0.061 \n", + "6 52.88 0.509 0.104 \n", + "7 53.20 0.389 0.080 \n", + "8 53.00 0.523 0.042 \n", + "9 52.80 0.427 -0.121 \n", + "\n", + " Perceptions of corruption Positive affect Negative affect \n", + "0 0.882 0.518 0.258 \n", + "1 0.850 0.584 0.237 \n", + "2 0.707 0.618 0.275 \n", + "3 0.731 0.611 0.267 \n", + "4 0.776 0.710 0.268 \n", + "5 0.823 0.621 0.273 \n", + "6 0.871 0.532 0.375 \n", + "7 0.881 0.554 0.339 \n", + "8 0.793 0.565 0.348 \n", + "9 0.954 0.496 0.371 " + ] + }, + "execution_count": 116, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 117, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1949, 11)" + ] + }, + "execution_count": 117, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 118, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Country name 0\n", + "year 0\n", + "Life Ladder 0\n", + "Log GDP per capita 36\n", + "Social support 13\n", + "Healthy life expectancy at birth 55\n", + "Freedom to make life choices 32\n", + "Generosity 89\n", + "Perceptions of corruption 110\n", + "Positive affect 22\n", + "Negative affect 16\n", + "dtype: int64\n" + ] + } + ], + "source": [ + "nulos_por_colunas = df.isnull().sum()\n", + "print(nulos_por_colunas)" + ] + }, + { + "cell_type": "code", + "execution_count": 119, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 0\n", + "1 0\n", + "2 0\n", + "3 0\n", + "4 0\n", + " ..\n", + "1944 0\n", + "1945 0\n", + "1946 0\n", + "1947 0\n", + "1948 0\n", + "Length: 1949, dtype: int64\n" + ] + } + ], + "source": [ + "nulos_por_linhas = df.isnull().sum(axis=1)\n", + "print(nulos_por_linhas)" + ] + }, + { + "cell_type": "code", + "execution_count": 120, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearLife LadderLog GDP per capitaSocial supportHealthy life expectancy at birthFreedom to make life choicesGenerosityPerceptions of corruptionPositive affectNegative affect
count1949.0000001949.0000001913.0000001936.0000001894.0000001917.0000001860.0000001839.0000001927.0000001933.000000
mean2013.2160085.4667059.3684530.81255263.3593740.7425580.0001030.7471250.7100030.268544
std4.1668281.1157111.1540840.1184827.5102450.1420930.1622150.1867890.1071000.085168
min2005.0000002.3750006.6350000.29000032.3000000.258000-0.3350000.0350000.3220000.083000
25%2010.0000004.6400008.4640000.74975058.6850000.647000-0.1130000.6900000.6255000.206000
50%2013.0000005.3860009.4600000.83550065.2000000.763000-0.0255000.8020000.7220000.258000
75%2017.0000006.28300010.3530000.90500068.5900000.8560000.0910000.8720000.7990000.320000
max2020.0000008.01900011.6480000.98700077.1000000.9850000.6980000.9830000.9440000.705000
\n", + "
" + ], + "text/plain": [ + " year Life Ladder Log GDP per capita Social support \\\n", + "count 1949.000000 1949.000000 1913.000000 1936.000000 \n", + "mean 2013.216008 5.466705 9.368453 0.812552 \n", + "std 4.166828 1.115711 1.154084 0.118482 \n", + "min 2005.000000 2.375000 6.635000 0.290000 \n", + "25% 2010.000000 4.640000 8.464000 0.749750 \n", + "50% 2013.000000 5.386000 9.460000 0.835500 \n", + "75% 2017.000000 6.283000 10.353000 0.905000 \n", + "max 2020.000000 8.019000 11.648000 0.987000 \n", + "\n", + " Healthy life expectancy at birth Freedom to make life choices \\\n", + "count 1894.000000 1917.000000 \n", + "mean 63.359374 0.742558 \n", + "std 7.510245 0.142093 \n", + "min 32.300000 0.258000 \n", + "25% 58.685000 0.647000 \n", + "50% 65.200000 0.763000 \n", + "75% 68.590000 0.856000 \n", + "max 77.100000 0.985000 \n", + "\n", + " Generosity Perceptions of corruption Positive affect \\\n", + "count 1860.000000 1839.000000 1927.000000 \n", + "mean 0.000103 0.747125 0.710003 \n", + "std 0.162215 0.186789 0.107100 \n", + "min -0.335000 0.035000 0.322000 \n", + "25% -0.113000 0.690000 0.625500 \n", + "50% -0.025500 0.802000 0.722000 \n", + "75% 0.091000 0.872000 0.799000 \n", + "max 0.698000 0.983000 0.944000 \n", + "\n", + " Negative affect \n", + "count 1933.000000 \n", + "mean 0.268544 \n", + "std 0.085168 \n", + "min 0.083000 \n", + "25% 0.206000 \n", + "50% 0.258000 \n", + "75% 0.320000 \n", + "max 0.705000 " + ] + }, + "execution_count": 120, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 121, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 1949 entries, 0 to 1948\n", + "Data columns (total 11 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Country name 1949 non-null object \n", + " 1 year 1949 non-null int64 \n", + " 2 Life Ladder 1949 non-null float64\n", + " 3 Log GDP per capita 1913 non-null float64\n", + " 4 Social support 1936 non-null float64\n", + " 5 Healthy life expectancy at birth 1894 non-null float64\n", + " 6 Freedom to make life choices 1917 non-null float64\n", + " 7 Generosity 1860 non-null float64\n", + " 8 Perceptions of corruption 1839 non-null float64\n", + " 9 Positive affect 1927 non-null float64\n", + " 10 Negative affect 1933 non-null float64\n", + "dtypes: float64(9), int64(1), object(1)\n", + "memory usage: 167.6+ KB\n", + "None\n" + ] + } + ], + "source": [ + "info_df = df.info()\n", + "print(info_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 122, + "metadata": {}, + "outputs": [], + "source": [ + "df = df.drop_duplicates()" + ] + }, + { + "cell_type": "code", + "execution_count": 123, + "metadata": {}, + "outputs": [], + "source": [ + "df = df.reset_index(drop=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 124, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['Country name', 'year', 'Life Ladder', 'Log GDP per capita',\n", + " 'Social support', 'Healthy life expectancy at birth',\n", + " 'Freedom to make life choices', 'Generosity',\n", + " 'Perceptions of corruption', 'Positive affect', 'Negative affect'],\n", + " dtype='object')" + ] + }, + "execution_count": 124, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 125, + "metadata": {}, + "outputs": [], + "source": [ + "df.rename(columns={\n", + " 'Country name': 'Nome do País',\n", + " 'year': 'Ano',\n", + " 'Life Ladder': 'Índice de Felicidade',\n", + " 'Log GDP per capita': 'PIB per capita (logaritmo)',\n", + " 'Social support': 'Apoio Social',\n", + " 'Healthy life expectancy at birth': 'Expectativa de vida saudável ao nascer',\n", + " 'Freedom to make life choices': 'Liberdade para fazer escolhas',\n", + " 'Generosity': 'Generosidade',\n", + " 'Perceptions of corruption': 'Percepções de corrupção',\n", + " 'Positive affect': 'Afeto positivo',\n", + " 'Negative affect': 'Afeto negativo'\n", + "}\n", + ", inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 126, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['Nome do País', 'Ano', 'Índice de Felicidade',\n", + " 'PIB per capita (logaritmo)', 'Apoio Social',\n", + " 'Expectativa de vida saudável ao nascer',\n", + " 'Liberdade para fazer escolhas', 'Generosidade',\n", + " 'Percepções de corrupção', 'Afeto positivo', 'Afeto negativo'],\n", + " dtype='object')" + ] + }, + "execution_count": 126, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.columns" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Análises" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Média do índice de felicidade - Top 20" + ] + }, + { + "cell_type": "code", + "execution_count": 127, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABEQAAALHCAYAAACHcZdvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADKPElEQVR4nOzdeVhVVfv/8c8RQUBxtlKc0gRRQMB5VszHKS2ncsKUR9OetNQsNaeccqrMbFLTHMshcYicxxxxTFFAynnKzNIkjgKyf3/043w7gYLK8eg579d1cQV7rb32vfd96HLf7LW2yTAMQwAAAAAAAE4kh70DAAAAAAAAeNgoiAAAAAAAAKdDQQQAAAAAADgdCiIAAAAAAMDpUBABAAAAAABOh4IIAAAAAABwOhREAAAAAACA06EgAgAAAAAAnA4FEQAAAAAA4HQoiAAAHIZhGFq9erX69u2r+vXry9/fX8HBwWrdurWmTJmiX375xeYx/PrrrxozZoyeffZZ+fv7KyQkRJ07d1ZkZOQd99mwYYM6duyoqlWrqkqVKurevbt27959T8cNDQ2Vr69vui8/Pz8FBweradOmGjlypM6ePfugpyhJOn/+vPz9/VW+fHmtX78+W8Z8GMLCwizXZuzYsZn2HzFihKX/0qVLH+jYaeOkpKQ80Dj/FhERkWHuM/qKiIi47+OkfcbOnDlj2ZZ2PXft2pUdp/JI6Nixo3x9fRUVFWWT8f+Zj6z87jRr1szS/5/X3t4GDhz4wJ8pALC3nPYOAACA7HDp0iX16dNHR48eVY4cOeTn56dKlSrp+vXrOn78uL744gvNmTNHo0aN0gsvvGCTGE6dOqXOnTvr6tWrKlq0qOrWravr16/r0KFD2r9/vw4dOqThw4db7fPFF19oypQp8vT0VPXq1XXz5k1FRUVp9+7dGjt2rNq1a3dPMdSqVUuFChWy/GwYhsxms2JjY7Vo0SJFRkbqq6++UmBg4AOd6/Tp05WcnKxXX31V//nPfx5oLHtZv369hg4dKpPJlGF7SkrKY1XsKVSokGrVqnXXPiVLlnxI0SAr1q1bd9ffn9jYWJ08efIhRgQAzoWCCADgsXflyhW99NJLunz5sho1aqQhQ4aoRIkSlvakpCQtX75c48eP16BBg/THH3+oe/fu2R7H0KFDdfXqVXXu3FlDhgyRq6urJCkmJkbdunXTggULVK9ePdWvX1+SFBcXpylTpuiJJ57QN998o+LFi0uS9u/fr549e2rMmDGqW7eunnzyySzH0Lt3b1WvXj3d9pSUFA0dOlQrVqzQsGHDtGrVqvs+z4sXL2r58uVq0KCBXn/99fsex57y5s2ry5cv6+DBg6pcuXKGfXbv3q0//vhDrq6uSk5OfuBjrl69WpKUM6dt/vlVtmxZvf/++zYZ+04mTpwos9msYsWKPdTjOoK8efNqy5YtunXrlnLlypVhn7TPTHZ9BgEA1pgyAwB47A0ZMkSXL19W27Zt9dlnn1kVQyTJzc1NL730kubMmaOcOXPqgw8+UFxcXLbGcObMGR04cEBPPPGEBg8ebCmGSFKFChXUu3dvSbKaOjN79mxJ0muvvWYphkiyTJu5efOmFi1alC3x5cyZU++8845cXFx0/PjxB5o6U6xYMR09elTTp09XjhyP5z8lnn32WUnS2rVr79hn9erVypkzZ6ZPXWRV2bJlVbZs2WwZ61FRrFgxlS1bVh4eHvYO5bHz7LPP6q+//tL27dvv2Gf16tXy9fXVE0888RAjAwDn8Xj+KwYAgP/vyJEj2r59u/Lnz59uOsq/BQUF6eWXX1ZycrKmT59u1Xb58mWNGDFCzZo1U2BgoKpVq6auXbtm+UmK33//XUFBQapXr57c3NzStZcuXVrS32uMpNm2bZuk/7s5/6fGjRtLkrZu3Zql42dFvnz5lC9fPknS1atXLdtTUlK0dOlSvfzyy6pevboqVqyoatWqKSwsTN9//326caKiouTr66uOHTuma1u1apW6dOmiWrVqKTAwUI0bN9aoUaN06dKlDGPatWuXevbsqerVqysgIEDNmjXTtGnTlJiYmK7vg+bon0JDQ5UrVy6tX79ehmGka09KStLGjRtVo0YNFSxYMMMxbt68qa+++kodOnRQtWrVVLFiRdWoUUM9e/bUjh070vXPaA2RP//8UxMnTlTLli0VFBSkypUrq0OHDlq4cGG2rzWSkbQ1b0JDQ+Xv769atWqpf//+io+Pz9L+/15DJKvrmfzb6tWrFRYWpsqVK6tSpUp6/vnnNWfOnAyfijhx4oTefPNNNW7cWP7+/qpRo4ZeeeUVy+9TVh09elT/+9//VLNmTQUHB6tnz553Pe/bt29r4cKFatu2rYKCghQUFKS2bdtqwYIF95Wrpk2bSrpzUe7w4cM6f/68nnvuuQzb77Z+S1oeBg4caNmW9ns7btw4nTx5Uq+//rqqV6+uwMBAtWnTRsuWLcvwOKdPn9Zbb72lOnXqKCgoSF26dNH+/fvvem7fffedOnfurJCQEAUGBqply5b6/PPPZTab77ofADxsTJkBADzWNm7cKOnvm4us/JW6ffv2mjVrljZv3qyEhATlyZNHV69eVbt27fTrr7/Kx8dHDRo00PXr17Vv3z5FRUXpzJkz6tu3713HDQ4O1uLFi+/YfuTIEUnSU089JenvaT7Xrl1TgQIFVLhw4XT9y5YtK5PJpJ9//lm3b9+Wi4tLpueWmatXr+r333+XJMsUB8Mw1LdvX23evFn58uVTpUqVlCtXLv3888/au3ev9u7dq6tXr6pr166Zjv/ZZ59p6tSp8vT0VOXKleXh4aFjx47p66+/1vr167VixQoVKVLE0n/GjBn64IMP5OrqKn9/fxUpUkQ//vijPvnkE23atElz5861KuA8aI7+KXfu3Kpbt642btyoH3/8UcHBwVbt27dv159//qkWLVpo79696fa/deuWunTpoujoaBUpUkQhISEymUw6fvy4fvjhB23fvl2ffPJJhsWuNDdv3lTnzp0VHx+vkiVLqk6dOjKbzdq3b58OHTqk6OhoTZgwIcvndK/i4uIUHh6uq1evqlSpUmrQoIEuX76s1atXa9OmTZo2bZpleldWlSxZUi1btsyw7eDBg7pw4YKeeeYZq+0jRozQ4sWL5e7ursDAQHl5eenAgQMaP368fvjhB33xxReWIuOJEyfUvn17/fXXXwoICJCfn59+/fVXbdu2Tdu2bdN7772ntm3bZhrntm3b1KdPHyUlJSkoKEhPPvmkDhw4oI4dOypPnjzp+t+6dUuvvPKK9uzZo9y5c6t69eoymUyKiorSmDFjtGnTJk2fPj3DYuid1KxZUwUKFNCWLVuUlJSUbt+06TLNmzfPtifFJOnnn39W+/btlStXLgUHB+vatWs6dOiQ3nnnHV2/fl3h4eGWvkePHlV4eLiuX78uX19fhYSE6OjRo+rWrZu8vb3TjW0Yht5++22tWrVKbm5uqlq1qjw9PbVv3z599NFHWrt2rebMmaMCBQpk2/kAwAMxAAB4jHXt2tXw8fExli5dmuV96tSpY/j4+BiHDx82DMMwPvnkE8PHx8f44IMPrPodPnzYqFixohEYGGiYzeb7jvHXX381QkJCDB8fH2PTpk2GYRjG0aNHDR8fH+O55567437VqlUzfHx8jD/++CPTYzRs2NDw8fEx9uzZk2F7YmKi0atXL8PHx8fo3LmzZfu6desMHx8fo127dkZCQoLVPtOnTzd8fHyMxo0bW23fs2eP4ePjY3To0MGy7datW0alSpWMatWqGZcvX7ZsT05ONvr06WP4+PgYH3/8sWX77t27DV9fX6NevXpGbGys1TiDBw82fHx8jDfffNOyPbty1KVLF8PHx8fYuXOnERkZafj4+Bjvvfdeun4DBgww/P39jT///NMYNGiQ4ePjYyxZssTSPnv2bMPHx8d49dVXjaSkJMv2lJQU49133zV8fHyMbt26WY3p4+Nj+Pj4GMnJyYZhGMby5cst55mammrpd+bMGaNq1aqGj4+Pcfbs2UzPadmyZYaPj4/RpUuXTPumSUpKMho3bmz4+PgYX331ldXxN23aZFSsWNGoWrWqcfXqVcv2tM/Y6dOnLdv+eT3vZu/evUbFihWNKlWqWO2fFnvLli2Nc+fOWbbfuHHDCA8PN3x8fIwPP/zQsn3IkCGGj4+PsWjRIqvx169fb/j4+BgNGzbM9NwTEhKM2rVrG76+vsZ3331n2f7XX39Zjvnv36Xx48cbPj4+Rvv27a2uyW+//Wa0bdvW8PHxMcaPH5/psQ3D+nMwfPhww8fHx9i4caNVn9TUVKNu3brGiy++aBjGvV/7tOv6z9+htN9bHx8fo1+/fsZff/1laZs3b57h4+Nj1KxZ0/JZuH37ttGqVSvDx8fHmD59uqVvUlKS5XfUx8fHWLZsWbpxGjdubPXZvXHjhvHKK68YPj4+Rp8+fbJ0nQDgYWDKDADgsZb2xENGT1ncSdpTCpcvX5b099MaktItDBkYGKixY8fqvffeU2pq6n3Fl5iYqL59+yohIUE1atRQaGioJFkeHb/bUy1pCy1mNH3kTr744gsNHDjQ8vXmm28qPDxcderU0ZYtW1SoUCGNGTPG0j85OVmhoaEaOHCgcufObTVW2pSY8+fPZ3rcGzduyGw2y8PDw+qvvzlz5tSbb76pd999Vw0bNrRs//LLL2UYhoYOHary5ctbtru5uWnkyJEqXLiwVq9ebdMcNWzYUO7u7uneJHPz5k1t3rxZ9erVk5eXV4b7urq6qn79+nrzzTet1otxcXHRSy+9JCnz65Z2TkWLFrV6003JkiX13nvvadKkSelycjd79+696zSV2NhYS98NGzbozJkzatiwobp162Z1/NDQUHXo0EHXr1/Xt99+m+Xj38m5c+fUp08f3b59Wx988IFKlSplaZs5c6Ykafz48Vbr6OTJk0fjx4+Xq6urFi5cqKSkJEl3/hw0btxYI0aM0KBBgzL9HGzcuFFXrlzRs88+azUdxdPTUxMmTLDKp/T30yHffPONcuTIoQ8++MBqClWhQoU0ZcoUubi46Ouvv9Zff/11L5dGzZo1k5R+2syBAwd0+fJlNW/e/J7Gy4qcOXNq5MiR8vT0tGx76aWX5ObmpqtXr1qm0x08eFBxcXGqUKGCXnnlFUtfV1dXvfvuu1Zvs0ozZ84cSdLYsWOt1nLKkyeP3n//fXl5eWn9+vWP1OuDATg3pswAAB5rt2/flqR0NzF3k/aWD+P/rx1RtWpVffPNNxo3bpyOHDmihg0bqmbNmsqTJ88DvaI3ISFBvXv31qFDh1S8eHF98MEHlra0xUjv9MrXf7qXG/1/ryfg4uKi3Llzq1SpUqpTp47CwsKspq20aNFCLVq0sNrn5s2bOnnypA4dOiTp72uc2bSdQoUKqUyZMjp58qTatm2rli1bql69evL19VXp0qUta6ikjZe2BkFGb8Rxd3dXlSpVtHbtWu3fv18tWrSwSY48PT1Vv359rVu3TocPH1alSpUkSVu2bFFiYmK66/JPXbp0UZcuXay2JSQk6MSJE5a1LNJu4u+katWqkv4uDp07d06NGjVS7dq1VbBgwbtOtbmTzF67mzb9SJL27NkjSapRo0aGfevWrav58+crKirK6mb4XqX9Dly7dk0DBw5UvXr1LG1XrlzRyZMn5eXlpYoVK6bb94knnlD58uUVHR2tmJgYBQUFqWrVqvrhhx/Ur18/tW7dWvXq1VO1atXk7u6uzp07Zymmffv2SZJVLGmKFCmiSpUqWa2RER0drZs3b8rf3z/dgs2SVKJECQUEBOjHH3/UkSNHVLNmzSzFIUnVqlVT4cKF002b+f7775UjRw5LwSQ7lSpVSvnz57fa5ubmpgIFCujy5cuWYu3drlOuXLlUp04drVy50rLt0qVLOn/+vAoWLKhq1aql28fLy0v16tXT999/r71791oVxgDAXiiIAAAea0899ZROnDhheVIkK3777TfLvtLfRYGjR49qzpw5WrZsmZYtW6acOXMqODhYzZo1U9u2beXu7n5Pcf3yyy/q1auX4uLiVLJkSc2ZM8fqKZa0v87evHnzjmPcunXLqm9WzJs3L8Miw90kJCRo8eLF2r59u06cOKErV67IMAyrYo2RwcKj//bRRx+pb9++On78uI4fP673339fRYoUUWhoqF588UX5+/tLkq5du2a56croxumf0hZjtUWOpL//Qr9u3TqtXbvWUhBZvXq1PD09rZ5oychvv/2mb775Rnv27NHJkyctn8G065bZNQsKCtKQIUP0wQcfaM2aNVqzZo1MJpMqVqyoJk2a6KWXXrIqYmTmXl67m3Zdx48fr/Hjx9+x3y+//JLl4//b7du31a9fP/38889q0aKFevbsmWEMN27cyHCh1X/3DQoKUvfu3RUfH6/vvvtO8+fP1/z58+Xm5qbq1avrueeeU8uWLTNdbydtYeM7vc66ePHiVgWRtP4ZrZnxz31+/PFHq0WTs8LFxUX/+c9/9PXXX2vnzp1q2LChbt++rXXr1qlq1ao2ebtM3rx5M9yeVihOK8CmncudYvjnEz3/7H+3VzCn7ZP2pA8A2BsFEQDAY61ChQrauXOnDh8+fMfFHP/p119/1YULF+Tm5qYyZcpYtg8aNEhdunTRhg0btH37dh08eFD79u3Tvn37NH/+fH3zzTdZXggwJiZGvXr10q+//qqKFStqxowZ6ab0pN2MpRVn/i0pKUnXr1+Xq6trur/mZqeffvpJL7/8sq5evaoCBQooMDBQzz33nHx9fVW9enU1aNAgy2P5+vpq9erV2rlzp7Zs2aLdu3fr9OnTWrx4sZYsWaJ33nlHXbt2tTzV4+bmpiZNmtx1zH/+FTk7c5SmQYMG8vT01Lp16zRo0CAlJCRo27Ztaty48V2nM0VFRal3795KTEzUk08+qeDgYJUtW1Z+fn4qXry42rdvn6Xjd+vWTS1bttSGDRv0ww8/aN++fTp69KiOHj2quXPn6uuvv7bJX9LTbnqrV69+15vuO71hJyvGjx+v7du3y8/PT+PGjUvXnvY5yJ8/v+rWrXvXsdKeanJ1ddX777+vV199VevXr9euXbt06NAhbd++Xdu3b9fixYs1d+7cuy5umtlTWf8uqGSlGPjPz/S9atasmb7++mutXbtWDRs2VFRUlK5evao33njjnsf6dzwZycpTaVnp97CvEwDYAgURAMBjrVWrVpo5c6a+++479e/fP9M1F5YsWSJJatSoUbq3SXh7e6tbt27q1q2bkpOTtXv3bo0ZM0anTp3SN998o//973+ZxrNnzx69+uqrSkxMVP369TVlypQMYypQoICKFCmiK1eu6I8//kh3I//zzz/LMAyVK1fOMr3GFkaPHq2rV6+qR48eGjBggNVNzvXr1+95vJw5c6p+/fqWt5NcvHhR8+bN01dffaUpU6aoQ4cOyp8/v1xdXZWSkqL33nvvnm6OsiNH/+Th4aH69etrzZo1OnLkiE6fPq1bt27ddbpM2toniYmJGjFiRLqpGjExMfcUQ6FChdShQwd16NBBqampOnjwoMaPH6+jR49qxowZGRYTHlRagaFly5ZZLt7ci0WLFmn+/PkqUKCAPv300wyLS2kx5MqVK8tPtqQpW7asXn31Vb366qsym83aunWrRo0apYMHD2rNmjV6/vnn77hvWjHywoULGbb/+ymPtILRnfpLf6+TIt3bWkZpqlSpoiJFimjTpk1KSkrS6tWr5erqmmmxMK1gkVHx48aNG/ccx7+lXaeLFy9m2P6wrxMA2AKLqgIAHms+Pj5q1qyZrl27pnffffeuf6U8duyYZsyYoZw5c1q9WrJfv36qXr261T/kXV1dVa9ePcs6EVmZOhAdHW0phrRv316ff/75XQs0aX8V37RpU7q2DRs2SMp4/n52+vHHHyVJvXv3TvcX3507d1q+z2wdk927d6tZs2YaPny41fZixYpp8ODByps3rxITE3Xt2jW5ubkpKChIqamp2r59e7qxDMNQWFiYOnToYHldcXblKCNpC1euXbtWa9asUb58+VSnTp079v/tt9907tw55c2bN8N1K3bs2CEp82s2fvx41alTx7JWg/T32jJVqlTRq6++KunBpqzcTdr6JWnrnfzbvHnz1LJlS3366af3PHZakSpnzpz66KOP7jjVpHjx4ipWrJguX76suLi4dO1ms1mtWrVS586ddf78ed2+fVthYWGqU6eO1VQzDw8PNWvWTK1atZKU+TVLW+Mj7Xfsn27cuKEDBw5YbfP395eHh4diYmIsN/T/dPbsWcXExMjT01MBAQF3PXZGcuTIoaZNm+rGjRvavn27NmzYoFq1amX6ZFjaVLq0RVD/Ke33+kGkXadNmzalK7rcvn3b8jlPU6xYMXl7e+uPP/7I8FXVN27csPw/Je3zBwD2RkEEAPDYe/fdd1W8eHGtWrVKr732Wrq/aKampmrFihXq2rWrbt26pTfeeEOBgYGW9iJFiujatWuaNGmS1UKYN2/etNw0ZXajc+vWLQ0YMECJiYl6/vnnNXbs2EzXMujUqZNy5Mihjz76SCdPnrRsP3jwoObMmaNcuXIpLCwsy9fhfqRNifh3UWbfvn1Wb6PJbIFQX19fnT17VitXrkx3Q7l161b9+eefKlasmOWpgG7dukmSxowZY/VERWpqqj766CPt3btX58+ft7yBJjtydCf169eXp6en1q5dq507d6px48Z3fWrFy8tLrq6u+vPPP63WmpCk9evX67PPPpOU+TUrWrSorly5og8//FAJCQmW7SkpKVqzZs0DnVNmmjdvriJFimjDhg366quvrAqJR44c0ccff6z4+PhM1/b4t9OnT+uNN95QSkqKhg4desdFW9O8/PLLkqS3335bZ8+etWxPSkrSu+++q+PHjysxMVHFixeXi4uLvLy8LNfsnzfp165d0w8//CBJVr/bGQkNDVXJkiW1a9cuy1tR0o45bNiwdG918vDw0IsvvqjU1FS9+eabVusV/f777xowYIBSU1Pvex0bSWratKkk6f3339e1a9fu+oRSmrTfjUWLFll91tauXZthsedeBQYGqnLlyjp16pQmTZpkKfClpqZq4sSJGb5FKS2fw4YNsyoe/fXXX3rrrbeUkJCghg0b3nU9FgB4mJgyAwB47OXPn19Lly5Vv379tGnTJm3ZskX+/v4qVqyYzGazoqOj9fvvv8vd3V2jR4+2vBY1zf/+9z9t2bJFa9eu1YEDByyLfx45ckRXr15VlSpV7voIviQtW7bMckNnNps1cODADPs9/fTTeu211yT9fbPbu3dvffbZZ3rhhRdUs2ZNJSUlKSoqSqmpqZo8ebLNHy3v3r27xo8fr0GDBmnx4sUqUqSIzp49q9jYWOXPn98yrefKlSvpphj9U8GCBfXWW29p/Pjx6ty5s4KCgvTEE0/o8uXL+vHHH+Xi4qIRI0ZYHvN/9tlnFR4ertmzZ6t9+/aqWLGinnjiCcXFxencuXPy8PDQxx9/bClMZEeO7iRXrlwKDQ1VZGSkJGV6M+ru7q4OHTpo/vz56tq1q6pWraq8efPqp59+0qlTpyx/Jb9x44Zu3rx5x5vkjh07avXq1Tp48KBCQ0NVqVIlubm5KSYmRhcvXlSZMmXUvXv3+zqnzKRd31deeUUTJkzQggUL5Ovrq2vXrungwYMyDEMvv/zyPb/tZuDAgbp+/bqKFCmin3/+WUOGDFFKSkq6J7c6dOigKlWqqGvXrjp8+LBWr16t5557TgEBAcqfP7+OHDmiX3/9VYUKFdKHH35o2W/w4ME6cOCA5s6dq40bN8rPz09JSUk6ePCgEhIS1Lx580zf8pI2RadHjx4aP368VqxYoZIlS+rIkSP6/fffVaFChXTTngYMGKCYmBjt27dPzz77rGUx4L179+qvv/5S9erV7/g7nxWVK1fWk08+qZMnT8rd3V2NGjXKdJ8XX3xRCxcu1KFDh/Sf//xHgYGBOnfunGJiYtS6dWstX778vuNJM378eHXt2lVz5szR1q1bVb58ecXFxenMmTOqVKmSDh8+bNU/LCxMhw4d0po1a9S8eXNVq1ZNHh4e2r9/v/744w/5+vraZAoYANwvCiIAAIdQsGBBzZ07Vxs2bNDKlSt15MgRxcTEKG/evCpevLi6du2qNm3aZPhmiQIFCujrr7/W559/ru3bt2vHjh1ydXVV6dKlFR4erq5du2a6zkXaX6elv58SuJOQkBBLQUSS3njjDZUpU0bz5s1TVFSU3N3dVb16dfXu3fue3xZzP7p166bChQtrzpw5io+P19GjR1WsWDGFhYWpZ8+emjlzpubPn68tW7bo6aefznSsJ554Qt98843i4uIUHR2tAgUKqHnz5urRo0e6V6sOGjRIVatW1cKFCxUdHa3Y2FgVLVpU7dq10yuvvGK1mGh25OhumjVrpsjISBUuXDhL133IkCF6+umntXjxYh05ckSpqakqXry4evfurf/+9796++23tWXLFm3btu2Oa0HkypVLs2bN0owZM7Rx40ZFRUXJZDJZxunZs+ddi1APKiQkRCtWrNDMmTO1fft2/fDDD8qfP7+qV6+usLCw+3r1b9rTE1euXNHChQvv2K9WrVqqUqWKcuTIoQ8//FD169fX0qVLFRcXp5SUFHl7e6tFixYKDw+3WvS1ZMmSWrRokb744gtFRUVp69atcnd3V7ly5dSmTRu1a9cuS3FWqlRJS5Ys0aeffmpZ/LdixYr68MMPtWTJknQFEXd3d82ePVtff/21Vq1apT179sjFxcVy3Pbt2z/QWj8mk0lNmzbV3LlzVb9+/SzlvVixYlq0aJGmTp2qqKgobdu2TeXKldOUKVPk6+ubLQWRUqVKaenSpfrss8+0ZcsWbdmyRc8884w+++wzHTt2LF1BJEeOHJoyZYrq1aunpUuX6uDBg5ZxevToobCwMOXKleuB4wKA7GIysrIkNAAAAAAAgANhDREAAAAAAOB0KIgAAAAAAACnQ0EEAAAAAAA4HQoiAAAAAADA6VAQAQAAAAAAToeCCAAAAAAAcDo57R0AHNehQ4dkGIZcXV3tHQoAAAAAwAkkJyfLZDIpODg40748IQKbMQzD8oXHm2EYSkpKIpcOgnw6DnLpOMilYyGfjoNcOg5y6Vjuls97uQflCRHYjKurq5KSkvTMM8/I09PT3uHgASQmJio2NpZcOgjy6TjIpeMgl46FfDoOcuk4yKVjuVs+o6OjszwOT4jA5kwmk71DwAMymUzy8PAglw6CfDoOcuk4yKVjIZ+Og1w6DnKJjJgMnhmCjaRV5gICAuwcCQAAAADgfqWmGsqR49EpJqU9IeLn53fHJ0Sych/KlBnY3Kdz43Txl0R7hwEAAAAAuEfFnvLUay+Xt3cYNkFBBDZ38ZdEnT6fYO8wAAAAAACwYA0RAAAAAADgdCiIAAAAAAAAp0NBBAAAAAAAOB0KIgAAAAAAwOmwqOp9Cg0N1YULFyw/u7q6qnDhwqpfv77eeOMNFSxY0I7R3Z+wsDB5e3trwoQJ9g4FAAAAAACboiDyAMLDwxUeHi5JunnzpuLj4zV58mR16dJFixcvlpeXl50jBAAAAAAAGWHKzAPw9PRUkSJFVKRIEZUoUUKNGjXS7NmzdenSJX355Zf2Dg8AAAAAANwBBZFsVqxYMTVu3Fjff/+9JOnGjRsaPny4atSoocqVK6tr166Kjo629J82bZq6deumGTNmqF69egoICFCXLl104sQJSx9fX18tXrxYnTp1UkBAgJo1a6aDBw9q8eLFatCggUJCQtSvXz/dvHnTss/SpUvVsmVLBQYGKigoSJ06dbI6bmhoqCZOnKjmzZurevXq2rt3r9V5pKSk6PXXX1eDBg109uxZW10uAAAAAADsgoKIDfj4+OjcuXNKSEhQz549de7cOU2fPl1LlixRUFCQOnbsqJiYGEv//fv368CBA5oxY4a+/vprXb16VaNGjbIac8qUKerRo4dWrlwpLy8v9e7dW+vWrdOMGTM0fvx4bdy4UUuXLpUkbdiwQaNHj1aPHj20Zs0azZkzR7du3dKwYcOsxlywYIGGDRumL7/8UkFBQZbtt2/f1ttvv62jR49q/vz5KlmypO0uFgAAAAAAdkBBxAby5s0rSdq8ebN+/PFHffTRR6pUqZLKli2rAQMGKCgoSPPmzbP0T0lJ0aRJk1S+fHkFBASoQ4cOOnjwoNWYbdu2VWhoqMqUKaPnn39e169f14gRI+Tj46MmTZrIz89PP/30kyQpf/78GjdunJ5//nl5e3srKChI7dq1U3x8vNWY9evXV61atRQQECA3NzdJUmpqqoYMGaLDhw9r/vz5KlGihC0vFQAAAAAAdsGiqjZw48YNSdK5c+dkGIYaNmxo1Z6UlKRbt25Zfi5cuLDy5ctn+dnLy0vJyclW+5QqVcryvYeHhyRZPbnh7u6upKQkSVLVqlV14sQJffrppzp58qTOnDmj48ePKzU19Y5jplmzZo2Sk5NVtmxZFSlS5J7OGwAAAACAxwUFERs4duyYSpcuLVdXV+XJk0cRERHp+qQ9kfHv7+8kZ870qcqRI+MHfL777jsNHjxYLVu2VEhIiDp06KD4+HiNHj3aqp+7u3u6fZ944gl9+OGHCg8P1yeffKIBAwZkGhsAAAAAAI8bpsxks19++UWbNm1Sy5Yt5ePjo4SEBCUnJ6tUqVKWr5kzZ2rTpk02i2HGjBlq166dJkyYoM6dO6tq1ao6d+6cJMkwjLvuW7VqVVWqVEkDBw7UrFmzdPToUZvFCQAAAACAvVAQeQCJiYm6cuWKrly5onPnzmnjxo3q0aOHihcvru7du6tu3bry8/NT//79tWfPHp05c0bjx49XRESEypYta7O4ihYtqoMHD+rYsWM6e/as5syZowULFkiSZVpNZjp06KDAwEANGTIky/sAAAAAAPC4oCDyAGbPnq06deqoTp06atasmSZOnKhGjRrp66+/Vu7cueXi4qLZs2fL399f/fr1U6tWrbRv3z598sknqlmzps3iGj58uAoXLqwuXbqoffv22rJliyZNmiRJVq/evRuTyaSxY8fq1KlT+uyzz2wWKwAAAAAA9mAyMptDAdyntOLLotXJOn0+wc7RAAAAAADuVenieTRuUIi9w7CSmJio2NhY+fn5ydPT06ot7T40ICAg03F4QgQAAAAAADgdCiIAAAAAAMDpUBABAAAAAABOh4IIAAAAAABwOhREAAAAAACA08lp7wDg+Io95Zl5JwAAAADAI8eR7+coiMDmXnu5vL1DAAAAAADcp9RUQzlymOwdRrZjygxsKikpSWaz2d5h4AGZzWbFxMSQSwdBPh0HuXQc5NKxkE/HQS4dB7l8MI5YDJEoiOAhMAzD3iHgARmGIbPZTC4dBPl0HOTScZBLx0I+HQe5dBzkEhmhIAIAAAAAAJwOBREAAAAAAOB0KIjA5kwmx5xv5kxMJpM8PDzIpYMgn46DXDoOculYyKfjIJeOg1wiIyaDSVSwkejoaElSQECAnSMBAAAAAPzb4/r2mMTERMXGxsrPz0+entavBb6X+1Beuwub+2rZGf3y2y17hwEAAAAA+P+eKpxL3duWsncYdkVBBDb3y2+3dO4Sr7cCAAAAADw6WEMEAAAAAAA4HQoiAAAAAADA6VAQAQAAAAAAToeCCAAAAAAAcDosqvqQhIWFae/evRm2hYeH6+jRo/L29taECROyNF5oaKhat26tvn37ZmeYViIiIjRkyBAdP37cZscAAAAAAMAeKIg8RM2aNdPQoUPTbffw8FBKSopcXFzsEBUAAAAAAM6HgshD5O7uriJFitg7DAAAAAAAnB5riDwiwsLCNHjwYEl/T1Vp3Lix5b/+/v5q06aNDhw4cMf9ly5dqpYtWyowMFBBQUHq1KmToqOjLe2hoaGaNWuW+vbtq+DgYFWvXl1jx45VSkqKpc+GDRvUsmVLBQQEqFOnTrp48aLtThgAAAAAADuiIPKIunTpkhYtWqTJkydr+fLl8vDw0ODBg2UYRrq+GzZs0OjRo9WjRw+tWbNGc+bM0a1btzRs2DCrflOnTlXVqlW1atUqvf3221qwYIEiIyMlSQcPHlTfvn3VpEkTrVq1Sq1bt9aMGTMeyrkCAAAAAPCwURB5iL777jsFBwdbffXo0SPDvsnJyRo1apSCgoJUrlw5de/eXWfPntWVK1fS9c2fP7/GjRun559/Xt7e3goKClK7du0UHx9v1a9OnTrq2rWrSpQoobZt26p8+fI6ePCgJGnBggUKCQlRnz599PTTT6t9+/Z66aWXsv8iAAAAAADwCGANkYcoNDRUAwcOtNrm7u5+x/5ly5a1fO/l5SXp70LJv1WtWlUnTpzQp59+qpMnT+rMmTM6fvy4UlNT7zhe2php48XHx6t27dpW7cHBwZo3b14WzgwAAAAAgMcLBZGHKHfu3CpVqlSW+7u5uaXbltGUme+++06DBw9Wy5YtFRISog4dOig+Pl6jR4/O8ngmkyldAcXV1TXLsQIAAAAA8DihIOIAZsyYoXbt2mnUqFGWbZs2bZL0d8HDZDJlOkb58uV16NAhq21Hjx7N3kABAAAAAHhEsIaIAyhatKgOHjyoY8eO6ezZs5ozZ44WLFggSUpKSsrSGOHh4YqLi9PEiRN16tQprVq1yjIGAAAAAACOhoKIAxg+fLgKFy6sLl26qH379tqyZYsmTZokSVav3r0bPz8/zZw5U1FRUWrVqpXmzJmj3r172zJsAAAAAADsxmRktCgFkA3SijGRu3Lp3CWznaMBAAAAAKQpUdRDQ3r52DuM+5KYmKjY2Fj5+fnJ09PTqi3tPjQgICDTcXhCBAAAAAAAOB0KIgAAAAAAwOlQEAEAAAAAAE6HgggAAAAAAHA6FEQAAAAAAIDTyWnvAOD4niqcy94hAAAAAAD+gfs0CiJ4CLq3LWXvEAAAAAAA/5KaaihHDpO9w7AbpszAppKSkmQ2m+0dBh6Q2WxWTEwMuXQQ5NNxkEvHQS4dC/l0HOTScZDLjDlzMUSiIIKHwDAMe4eAB2QYhsxmM7l0EOTTcZBLx0EuHQv5dBzk0nGQS2SEgggAAAAAAHA6FEQAAAAAAIDToSACmzOZnHtemiMwmUzy8PAglw6CfDoOcuk4yKVjIZ+Og1w6DnKJjJgMJlHBRqKjoyVJAQEBdo4EAAAAAJybI71RJjExUbGxsfLz85Onp6dV273ch/LaXdjc4nW/6tffk+wdBgAAAAA4pScKuumlJk/YO4xHDgUR2Nyvvyfp4hUKIgAAAACARwdriAAAAAAAAKdDQQQAAAAAADgdCiIAAAAAAMDpUBABAAAAAABOx6kLIqtWrdKLL76ooKAgBQcHq23btlq0aNF9jRUaGqpp06ZJkgzD0PLly3X16tXsDNfK+fPn5evrq6ioKJsdQ5IGDx6ssLAwmx4DAAAAAICHzWnfMvPtt99q3LhxGjp0qCpXrizDMLRz506NHTtWv/32m/r06XPP4+XKlUuStG/fPg0ePFibNm2yRegAAAAAAOABOW1B5Ouvv1bbtm3Vrl07y7YyZcro8uXLmjdv3j0XRAoWLGj53jCMbIsTAAAAAABkP6edMpMjRw4dOnRI169ft9r+yiuvaPHixerbt6969+5t2R4XFydfX1/NmjXLsm3+/Plq3LixpP+bMhMVFaWuXbtKkho1aqSIiAiFhobK19c33deQIUMk/V1AmTlzpho1aqRKlSrp+eef16pVqyzHiYqKUoUKFTRjxgxVr15dbdq0SVd0SUpK0sSJExUaGip/f39Vq1ZNb7zxhn7//XdJ/zfFZt26dWrfvr38/f0VGhqqxYsXW8YwDEOfffaZ6tWrp6CgIA0ZMkS3bt3KjssNAAAAAMAjxWkLIj169FBMTIzq1aunV155RTNmzNCRI0fk5eWlp59+Wg0bNtTevXuVkpIiSdq5c6dMJpPVmh1bt25Vo0aNrMYNDg62rCWydOlSNW/eXN9++6127Nhh+QoPD1fu3LnVrVs3SdKUKVP0zTffaPjw4fruu+/UtWtXvfvuu1q4cKFl3Nu3b2vbtm1avHixxo0bJ5PJZHXcSZMmaf369ZowYYLWrVunCRMmaM+ePfr888+t+o0fP169e/fWmjVr1KBBA7377rs6d+6cJGnGjBn68ssv9fbbbysiIkJ58+bV6tWrs+eCAwAAAADwCHHaKTNNmzbVU089pXnz5mnnzp3atm2bJKl06dJ677331KBBAw0dOlQ//vijqlSpol27dqlRo0bavXu3UlJSlJSUpL1791o9RSJJbm5uypcvn6S/p9G4u7vL3d3d0r5hwwbNmzdPn376qXx9fZWYmKg5c+boww8/VIMGDSRJJUuW1IULFzRr1ix17tzZsm94eLhKly4t6e8nPv4pICBATZs2VZUqVSRJ3t7eqlWrluLj4636devWzVLE6d+/vxYuXKjDhw+rePHimj9/vrp27arnnntOkjRkyBCbL9oKAAAAAIA9OG1BRJKCgoIUFBSk1NRUxcXFadu2bVqwYIF69uypDRs2qFKlStq5c6cCAwO1f/9+zZ8/X1u3btXRo0d19epVeXp6KiQkJMvHi46O1ltvvaW33nrLUvz4+eefdevWLb355pvKkeP/HthJK7rcvHnTsi2tGJKR559/Xrt27dL777+v06dP6+TJkzp16pSlQJKmbNmylu+9vLwkScnJyfrjjz905coVBQQEpLtGJ06cyPI5AgAAAADwOHDKgsgvv/yi6dOnq1evXnrqqaeUI0cOVahQQRUqVNCzzz6r5557Tvv27VNoaKg2btyoatWqKW/evAoMDFRAQICioqJ04cIFNWzYUC4uLlk65qVLl/Tqq6+qVatWlqky0v8twPrRRx+pTJky6fZzc3OzfJ/2FpuMjBgxQuvWrdMLL7yg0NBQvfbaa5o1a5YuX758x/H+GUPaFJx/r02SM6dTfkQAAAAAAA7OKdcQcXNz09KlS60WLk2TN29eSVLhwoUVGhqqo0ePasOGDapZs6YkqVatWtqzZ0+G64ek+ff6HgkJCerVq5fKli2rESNGWLWVKVNGOXPm1MWLF1WqVCnL17Zt2zRr1iyrp0bu5I8//tDixYs1cuRIDRkyRG3atJGfn59OnjyZ5TfeFChQQEWLFtWBAwesth89ejRL+wMAAAAA8Dhxyj//FyxYUD169NDUqVP1119/qWnTpsqTJ49+/vlnffbZZ6pevbrVWhxLly7V6NGjJUk1a9bU559/LldXV9WuXTvD8T09PSX9/WaafPnyacCAAbp165bGjh2ra9euWYoULi4uKliwoDp06KCpU6cqT548CgkJUVRUlCZPnqxevXpl6Xzy5MkjLy8vbdq0SRUrVtTNmze1YMECHTt2TJUqVcrydenZs6cmTpyoMmXKqEqVKlq5cqWOHDmiypUrZ3kMAAAAAAAeB05ZEJGkfv36qXTp0lqyZIkWLlyomzdvqlixYmrWrJlVIaJhw4aaO3euatSoIenvNTXc3d1VvXp1S+Hj33x8fFS/fn3169dPAwYM0A8//CBJevbZZ636eXt7a/PmzRoyZIgKFCigqVOn6tdff1XRokX1+uuvq0ePHlk6F1dXV02dOlUTJkxQy5YtlS9fPlWvXl0DBgzQ9OnTZTabszRO586dlZqaqs8//1y//fab6tatq3bt2unUqVNZ2h8AAAAAgMeFycjqnArgHkVHR0uSth4toItXkuwcDQAAAAA4p2JF3NS3Y3F7h5FtEhMTFRsbKz8/v3QPKqTdh/77hSEZcco1RAAAAAAAgHOjIAIAAAAAAJwOBREAAAAAAOB0KIgAAAAAAACn47RvmcHD80RBN3uHAAAAAABOi3uyjFEQgc291OQJe4cAAAAAAE4tNdVQjhwme4fxSGHKDGwqKSlJZrPZ3mHgAZnNZsXExJBLB0E+HQe5dBzk0rGQT8dBLh0HuRTFkAxQEIHNGYZh7xDwgAzDkNlsJpcOgnw6DnLpOMilYyGfjoNcOg5yiYxQEAEAAAAAAE6HgggAAAAAAHA6FEQAAAAAAIDToSACmzOZWLzncWcymeTh4UEuHQT5dBzk0nGQS8dCPh0HuXQc5BIZMRmsKgMbiY6OliQFBATYORIAAAAAcB6O/ordxMRExcbGys/PT56enlZt93IfmtMm0QH/sGrHNV29nmLvMAAAAADA4RXKl1Ot6uS3dxiPBQoisLmr11N0+XcKIgAAAACARwdriAAAAAAAAKdDQQQAAAAAADgdCiIAAAAAAMDpUBABAAAAAABOh4KIjYWGhio0NFQJCQnp2gYPHqywsDA7RAUAAAAAgHOjIPIQXLhwQZMmTbJ3GAAAAAAA4P+jIPIQlChRQosXL9auXbvsHQoAAAAAABAFkYeiVatWqlmzpoYOHZrh1BlJunbtmkaNGqX69esrMDBQHTp0UFRUlKV92rRp6tKli/r376+QkBCFhYXJ19dXx44ds/R57bXXVLlyZd2+fVuSlJqaqho1amjlypWSpKVLl6ply5YKDAxUUFCQOnXqpOjoaEnS3LlzFRwcLLPZbBkvNTVV9erV08KFC7P9mgAAAAAAYE8URB4Ck8mkcePG6fr165o4cWK69tu3bys8PFz79+/X5MmTFRERIR8fH/33v//VkSNHLP327dunwoULa+XKlRozZoy8vb21c+dOyxhRUVH666+/LEWSI0eO6MaNG2rQoIE2bNig0aNHq0ePHlqzZo3mzJmjW7duadiwYZKkli1bKjk5WevXr7ccb9euXfrjjz/03HPP2fLyAAAAAADw0FEQeUi8vb01aNAgLVmyRDt27LBq27Fjh44dO6YPPvhA1apV0zPPPKNRo0apXLlymjVrllXf119/XSVKlFDp0qUVGhpqKYgcOXJErq6uCgoKsjxZsnXrVlWuXFn58uVT/vz5NW7cOD3//PPy9vZWUFCQ2rVrp/j4eElSwYIFFRoaqlWrVlmOtXz5coWGhipfvny2vDQAAAAAADx0FEQeopdeekm1a9fWsGHDrKbOxMfHy8vLSz4+PpZtJpNJVapUsRQsJKlQoULy8vKy/NywYUMdPHhQN2/e1M6dO1WjRg1VqVJFe/bskSRt27ZNjRo1kiRVrVpVFStW1Keffqo333xT7dq103vvvafU1FTLeG3bttXu3bv166+/KiEhQRs3blSbNm1sdj0AAAAAALAXCiIP2dixY3Xjxg2NHz/ess0wjAz7GoahnDlzWn52d3e3aq9WrZrc3Ny0d+9e7d69WzVr1lTNmjV18OBBXbhwQbGxsZaCyHfffadWrVrp3LlzCgkJ0aBBgzR48GCr8erUqaPChQsrMjJS69evV968eVWnTp3sOnUAAAAAAB4ZOTPvguxUrFgxDR48WMOGDVOJEiVUtGhR+fr66saNG4qPj7c8JWIYhg4cOKBnnnnmjmO5urqqTp062rRpkw4fPqwJEyaoSJEiSklJ0bRp0+Tj46PixYtLkmbMmKF27dpp1KhRlv03bdpkOZbJZJKLi4teeOEFbdiwQXnz5tXzzz8vFxcXG14NAAAAAADsgydE7KB9+/aqU6eOzp07J+nvJzP8/Pz05ptvau/evTpx4oRGjx6t+Ph4vfzyy3cdKzQ0VBEREXriiSdUokQJubu7Kzg4WCtXrrQ8HSJJRYsW1cGDB3Xs2DGdPXtWc+bM0YIFCyRJSUlJln5t2rTR4cOHtWvXLrVu3doGZw8AAAAAgP1RELGTsWPHWtYDcXFx0ezZs1WhQgX16dNHbdu21U8//aQ5c+YoKCjoruPUr19ft2/fVo0aNSzbatWqpdTUVKuCyPDhw1W4cGF16dJF7du315YtWzRp0iRJsrx6V5JKly6tSpUqqUKFCipbtmw2njEAAAAAAI8Ok3GnBSzglAzD0LPPPqvevXurffv2DzRWWqFl/9miuvx7SnaEBwAAAAC4iycL5lT3FoXtHYZNJSYmKjY2Vn5+fvL09LRqS7sPDQgIyHQc1hCBJCk5OVmbN2/Wnj17lJiYqBYtWtg7JAAAAAAAbIaCCCT9vUDr2LFjJUmTJ09OV2UDAAAAAMCRUBCBxfbt2+0dAgAAAAAADwWLqgIAAAAAAKfDEyKwuUL5+JgBAAAAwMPA/VfWcaVgc63q5Ld3CAAAAADgNFJTDeXIYbJ3GI88pszAppKSkmQ2m+0dBh6Q2WxWTEwMuXQQ5NNxkEvHQS4dC/l0HOTScThbLimGZA0FEdicYRj2DgEPyDAMmc1mcukgyKfjIJeOg1w6FvLpOMil4yCXyAgFEQAAAAAA4HQoiAAAAAAAAKdDQQQ2ZzIxf+1xZzKZ5OHhQS4dBPl0HOTScZBLx0I+HQe5dBzkEhkxGUyigo1ER0dLkgICAuwcCQAAAAA4plTDUA4nK/QkJiYqNjZWfn5+8vT0tGq7l/tQXrsLm9t44C/9kXDb3mEAAAAAgEMpkMdFz1bObe8wHlsURGBzfyTc1m/XKYgAAAAAAB4drCECAAAAAACcDgURAAAAAADgdCiIAAAAAAAAp0NBBAAAAAAAOB2nKYiEhoYqNDRUCQkJ6doGDx6ssLCwLI1jGIaWL1+uq1evSpIiIiLk6+ubrbFKUlRUlHx9fXX+/PlsH/ufwsLCNHjwYJseAwAAAACAR43TFEQk6cKFC5o0adIDjbFv3z4NHjxYZrM5m6ICAAAAAAAPm1MVREqUKKHFixdr165d9z2GYRjZGBEAAAAAALAHpyqItGrVSjVr1tTQoUMznDojSTdu3NDw4cNVo0YNVa5cWV27dlV0dLSkv6exdO3aVZLUqFEjRUREWPaLiIjQs88+q4CAALVp00aHDx+2tCUlJWny5MmqW7eugoOD9eKLL2rHjh1W+zZu3Fhjx45V5cqV9b///S9dXNevX9ewYcNUt25dVaxYUTVr1tSwYcMsT6pERUWpQoUK2rZtm5577jn5+/uradOm2rhxo1Uc7733nmrWrKnKlStr8uTJSk1NtTrOrFmz9Oyzz8rf31+hoaH69NNPKQIBAAAAAByOUxVETCaTxo0bp+vXr2vixInp2g3DUM+ePXXu3DlNnz5dS5YsUVBQkDp27KiYmBgFBwdr2rRpkqSlS5eqefPmln2XLFmiDz/8UMuWLZObm5v69etnaRsyZIh27typ999/X8uXL1ezZs3Uu3dvbd261dLn7Nmz+vXXX7VixQr1798/XWyDBw9WTEyMPvnkE61bt05DhgzRihUrtHjxYkuf27dva/LkyRo6dKgiIyPl4+OjQYMG6a+//pIkjR07VqtXr9aECRO0aNEi/fLLL9q/f79l/82bN2v69OkaNWqU1q9fr4EDB+rzzz/XqlWr7vuaAwAAAADwKMpp7wAeNm9vbw0aNEgjRoxQkyZNVKdOHUvbnj179OOPP2rPnj3Knz+/JGnAgAE6ePCg5s2bpwkTJihfvnySpIIFC8rd3d2y77hx41S2bFlJ0n//+1/16dNHV69eVUJCgiIjI7VixQr5+flJkrp37664uDjNmjVLDRo0sIzxv//9TyVKlJD09xMf/1S7dm1VrVrVsoBr8eLFtWDBAsXHx1v169evn2rWrGkZb926dYqPj1e5cuUUERGhkSNHqn79+pKk9957T3v27LHse/bsWbm5ucnb21vFihVTsWLF9MQTT6hYsWL3d7EBAAAAAHhEOV1BRJJeeuklrVu3TsOGDVNkZKRl+7Fjx2QYhho2bGjVPykpSbdu3brrmKVLl7Z8nzdvXknSzZs3FRMTI0nq1KmTVf/k5GRLv4zG+LdOnTpp8+bNWr58uU6fPq2ff/5Z58+fV5kyZaz6/fPnPHnyWI516tQpJScnKyAgwNKeK1cuVahQwfJzq1attGzZMjVp0kTPPPOMatWqpSZNmlAQAQAAAAA4HKcsiEh/Tx9p2bKlxo8fb9mWmpqqPHnyWK0NksbNze2u47m4uKTbZhiGZf2NhQsXKnfu3FbtOXJYz1j65xMn/5SamqpevXrpp59+0nPPPafmzZurYsWKGj58eJbiNAxDJpPJ8v0/5cz5fx+BggULauXKlTp06JB27typHTt2aN68eerbt6/69OmTYWwAAAAAADyOnGoNkX8qVqyYBg8erG+//dayjoaPj48SEhKUnJysUqVKWb5mzpypTZs2SZKlsJBV5cqVkyRduXLFasyIiIgMCy8ZiY2N1Q8//KCpU6dq4MCBatWqlUqWLKmzZ89mecHTp59+Wrly5dLBgwct21JSUhQXF2f5edWqVfrmm29UuXJlvf7661qyZInat2+v1atX38MZAwAAAADw6HPagogktW/fXnXq1NG5c+ckSXXr1pWfn5/69++vPXv26MyZMxo/frwiIiIs64N4enpKkuLi4iyLld5NuXLl1LBhQ40cOVKbN2/WuXPnNHPmTE2fPl0lS5bMUpyFCxdWzpw5tWbNGp07d07R0dHq16+frly5oqSkpCyNkTt3bnXp0kUff/yx1q9frxMnTmjkyJG6fPmypc+tW7c0ceJErVixQufPn9f+/fu1b98+BQcHZ+kYAAAAAAA8Lpx2ykyatKkz0t/TXmbPnq3JkyerX79+MpvNKlu2rD755BPLQqU+Pj6qX7+++vXrpwEDBlgWX72bKVOmaMqUKRoxYoSuX7+ukiVLaty4cWrdunWWYnzyySc1YcIETZs2TQsXLlSRIkXUoEEDdevWTZs3b87yub755pvKlSuXRo8erb/++kvNmjVTaGiopb19+/a6du2aPvvsM126dEn58uVTkyZNNHDgwCwfAwAAAACAx4HJyOqcC+AeRUdHS5Lifi+l367ftnM0AAAAAOBYCudzUfv6eTPv6GASExMVGxsrPz8/yyyONGn3of98ocidOPWUGQAAAAAA4JwoiAAAAAAAAKdDQQQAAAAAADgdCiIAAAAAAMDpUBABAAAAAABOx+lfuwvbK5DHxd4hAAAAAIDD4V7rwVAQgc09Wzm3vUMAAAAAAIeUahjKYTLZO4zHElNmYFNJSUkym832DgMPyGw2KyYmhlw6CPLpOMil4yCXjoV8Og5y6TgcOZcUQ+4fBRHYnGEY9g4BD8gwDJnNZnLpIMin4yCXjoNcOhby6TjIpeMgl8gIBREAAAAAAOB0KIgAAAAAAACnQ0EENmdiTttjz2QyycPDg1w6CPLpOMil4yCXjoV8Og5y6TjIJTJiMphEBRuJjo6WJAUEBNg5EgAAAABwLIZhOG2BJzExUbGxsfLz85Onp6dV273ch/LaXdjcrhiz/kxMtXcYAAAAAOAQ8nrmUK0KHvYO47FHQQQ292diqv5IoCACAAAAAHh0sIYIAAAAAABwOhREAAAAAACA06EgAgAAAAAAnA4FEQAAAAAA4HQoiDxEgwcPVlhYWLaMFRYWpsGDB2fLWHcSFRUlX19fnT9/3qbHAQAAAADgYaMgAgAAAAAAnA4FEQAAAAAA4HQoiNhJcnKypk6dqoYNG6pSpUpq06aNdu7caWk/ceKEevbsqeDgYNWpU0dvvvmmrly5csfxNm7cqPbt2ysoKEgBAQFq06aNtm/fbmkPCwvT+++/r3feeUdVqlRRSEiI3nzzTSUkJFj67N+/X+3bt1dgYKBatWqluLg425w8AAAAAAB2RkHETsaNG6dFixZp0KBB+u6771S3bl317t1bJ0+e1OXLl9WpUyeVKlVK3377rb744gslJCTopZdeUmJiYrqxjh49qr59+6pFixb67rvvtGTJEhUsWFBvv/22kpKSLP3mzJmjwoUL69tvv9XkyZO1adMmzZkzR5J07tw5hYeHy8/PT8uXL9drr72mzz777GFdDgAAAAAAHqqc9g7AGSUkJOjbb7/V8OHD1bRpU0lS//79ZRiGEhIStGrVKj311FMaNmyYZZ+PPvpINWrU0Nq1a9WmTRur8VxcXDR8+HB16tTJsq1r167q2bOnrl69qqJFi0qSnnnmGQ0YMECSVLp0adWuXVuHDh2SJC1ZskSFCxfWyJEj5eLiorJly+rSpUsaP368Ta8FAAAAAAD2QEHEDk6dOqXk5GRVqlTJantaseKTTz7RTz/9pODgYKv2W7du6cSJE+nG8/PzU758+TRjxgydPHlSZ86csUx3uX37tqVfmTJlrPbz8vLSn3/+KUmKj49XhQoV5OLiYmkPCQl5gLMEAAAAAODRRUHEDlxdXe/anpqaqho1amjkyJHp2ry8vNJt27t3r/773/+qQYMGqly5slq2bCmz2azXXnvNqp+bm9sdj2kymZSammq1LWdOPh4AAAAAAMfEGiJ2UKpUKbm6uio6Otpq+4svvqg5c+aoXLlyOnHihIoWLapSpUqpVKlSypcvn9577z3Fx8enG2/27NmqXr26pk2bpm7duql27dq6dOmSJMkwjCzFVL58eR09etRqzZGjR48+wFkCAAAAAPDooiBiBx4eHurSpYumTp2qTZs26ezZs/rwww8VHx+vevXqqVOnTrpx44YGDhyouLg4xcXFqX///oqOjpaPj0+68YoWLarjx49r//79On/+vJYtW6apU6dKklWB4246duwos9msd955RydOnNCWLVs0bdq0bD1vAAAAAAAeFcyJsJMBAwbIxcVFI0eO1I0bN1S+fHnNmDHDss7HggUL9MEHH6hjx45ycXFRSEiI5s2bp4IFC6Yb6/XXX9dvv/2m3r17S/p78dT33ntPb731lqKjo1W2bNlM43nyySc1d+5cvffee2rdurWKFi2qV199VaNGjcreEwcAAAAA4BFgMrI6pwK4R2lTgi7cKqM/ElIz6Q0AAAAAyIoCeXKoaZXc9g7DbhITExUbGys/Pz95enpataXdhwYEBGQ6DlNmAAAAAACA06EgAgAAAAAAnA4FEQAAAAAA4HQoiAAAAAAAAKdDQQQAAAAAADgdXrsLm8vrSd0NAAAAALIL91jZg4IIbK5WBQ97hwAAAAAADsUwDJlMJnuH8VijrASbSkpKktlstncYeEBms1kxMTHk0kGQT8dBLh0HuXQs5NNxkEvH4Yi5pBjy4CiIwOYMw7B3CHhAhmHIbDaTSwdBPh0HuXQc5NKxkE/HQS4dB7lERiiIAAAAAAAAp0NBBAAAAAAAOB0KIrA55rY9/kwmkzw8PMilgyCfjoNcOg5y6VjIp+Mgl46DXCIjJoNJVLCR6OhoSVJAQICdIwEAAACAxwtvkbmzxMRExcbGys/PT56enlZt93Ifymt3YXM/nriphJup9g4DAAAAAB4LedxzKKisu73DcHgURGBzCTdT9WciBREAAAAAwKODNUQAAAAAAIDToSACAAAAAACcDgURAAAAAADgdCiIAAAAAAAAp0NBxMZSUlI0d+5ctWnTRsHBwapRo4bCw8O1Z88ee4emadOmKTQ01N5hAAAAAADw0PGWGRu6deuWunfvrkuXLun1119XcHCwbt68qWXLlql79+6aNGmSWrZsae8wAQAAAABwOhREbGjq1Kk6fvy4IiMjVbRoUcv2oUOHKiEhQWPHjlVoaKhy585txygBAAAAAHA+TJmxkeTkZC1btkxt2rSxKoak6devn2bOnCl3d3fFx8erV69eqlq1qvz9/dWoUSPNnj3b0nfatGnq1q2bZsyYoXr16ikgIEBdunTRiRMnLH0yG0OSFi9erMaNGyswMFC9e/fW9evXrdqzMgYAAAAAAI6AgoiNnDt3TteuXVNISEiG7U8++aQCAwOVlJSk8PBw5c+fX4sWLVJkZKSaNm2qiRMnKjY21tJ///79OnDggGbMmKGvv/5aV69e1ahRoyRJZrM50zEiIyM1evRodevWTStXrlRISIgWLlxoGT8rYwAAAAAA4CgoiNhI2tMX+fLlu2s/s9msrl27asSIESpbtqxKly6t119/XZJ0/PhxS7+UlBRNmjRJ5cuXV0BAgDp06KCDBw9meYz58+erefPm6ty5s55++mm98soratiw4T3HAQAAAACAI2ANERspWLCgJOnatWuZ9uvUqZMiIyMVExOjs2fPKi4uTpKUmppq6Ve4cGGr4oqXl5eSk5OzPEZ8fLxatGhhdezg4GBLv6zGAQAAAACAI+AJERspUaKEChcubHmK499OnDih8PBwHThwQK1atdLSpUv15JNPqlOnTlq+fHm6/m5ubnc81pUrV7I0xr8LG66urvc8BgAAAAAAjoAnRGwkR44cateunebPn6///ve/6RZW/fLLLxUdHa29e/fq2rVrWrdunaVAkTZFxTCMLB0rMjIy0zH8/Px08OBBdevWzbJfdHT0PY0BAAAAAICj4AkRG+rdu7dKly6tTp06acWKFTp79qyOHDmiIUOGaMWKFRozZoxKly4ts9mstWvX6uLFi9qxY4cGDBggSUpKSsrScZ566qlMx3jllVe0YcMGffnllzp9+rTmz5+vdevW3dMYAAAAAAA4Cp4QsSEPDw8tWLBAs2fP1syZM3Xx4kW5u7urQoUKmj9/vqpUqSLDMHTs2DFNmDBBCQkJ8vb2Vvv27bVp0yZFR0erY8eOmR6nadOmmY7RoEEDffDBB5o2bZqmTp2qoKAghYeHKzIyMstjAAAAAADgKEwG8yFgI2lTcq7nKKs/E1mYFQAAAACyIq9nDtWp6GnvMB5ZiYmJio2NlZ+fnzw9ra9T2n1oQEBApuMwZQYAAAAAADgdCiIAAAAAAMDpUBABAAAAAABOh4IIAAAAAABwOhREAAAAAACA0+G1u7C5PO7U3QAAAAAgq7iHejgoiMDmgsq62zsEAAAAAHisGIYhk8lk7zAcGmUn2FRSUpLMZrO9w8ADMpvNiomJIZcOgnw6DnLpOMilYyGfjoNcOo7HMZcUQ2yPgghszjAMe4eAB2QYhsxmM7l0EOTTcZBLx0EuHQv5dBzk0nGQS2SEgggAAAAAAHA6FEQAAAAAAIDToSACm2Pu2+PPZDLJw8ODXDoI8uk4yKXjIJeOhXw6DnLpOMglMmIymEQFG4mOjpYkBQQE2DkSAAAAAHh88IaZu0tMTFRsbKz8/Pzk6elp1XYv96G8dhc2F3cuUYm3bts7DAAAAAB45HnmclH5Ep6Zd8QDoyACm0u8dVt/3Uy1dxgAAAAAAFiwhggAAAAAAHA6FEQAAAAAAIDToSACAAAAAACcDgURAAAAAADgdCiI2NCqVav04osvKigoSMHBwWrbtq0WLVr00I4fEREhX1/fh3Y8AAAAAAAeF7xlxka+/fZbjRs3TkOHDlXlypVlGIZ27typsWPH6rffflOfPn3sHSIAAAAAAE6LgoiNfP3112rbtq3atWtn2VamTBldvnxZ8+bNoyACAAAAAIAdMWXGRnLkyKFDhw7p+vXrVttfeeUVLV68WH379lXv3r0t2+Pi4uTr66tZs2ZZts2fP1+NGzeWJCUlJWny5MmqW7eugoOD9eKLL2rHjh1WY2/YsEEtW7ZUQECAOnXqpIsXL1q1ZzZGRESEGjdubPmvv7+/2rRpowMHDmTbdQEAAAAA4FFAQcRGevTooZiYGNWrV0+vvPKKZsyYoSNHjsjLy0tPP/20GjZsqL179yolJUWStHPnTplMJkVFRVnG2Lp1qxo1aiRJGjJkiHbu3Kn3339fy5cvV7NmzdS7d29t3bpVknTw4EH17dtXTZo00apVq9S6dWvNmDHDKqbMxpCkS5cuadGiRZo8ebKWL18uDw8PDR48WIZh2PaCAQAAAADwEDFlxkaaNm2qp556SvPmzdPOnTu1bds2SVLp0qX13nvvqUGDBho6dKh+/PFHValSRbt27VKjRo20e/dupaSkKCkpSXv37lXv3r115swZRUZGasWKFfLz85Mkde/eXXFxcZo1a5YaNGigBQsWKCQkxDIV5+mnn1Z8fLzmzZsnSVkaQ5KSk5M1atQoqz6vvfaarly5oieeeOJhXkIAAAAAAGyGgogNBQUFKSgoSKmpqYqLi9O2bdu0YMEC9ezZUxs2bFClSpW0c+dOBQYGav/+/Zo/f762bt2qo0eP6urVq/L09FRISIjWr18vSerUqZPV+MnJycqbN68kKT4+XrVr17ZqDw4OthREYmJiMh0jTdmyZS3fe3l5WfoBAAAAAOAoKIjYwC+//KLp06erV69eeuqpp5QjRw5VqFBBFSpU0LPPPqvnnntO+/btU2hoqDZu3Khq1aopb968CgwMVEBAgKKionThwgU1bNhQLi4ulukqCxcuVO7cua2OlSPH37OeTCaTUlNTrdpcXV0t32dljDRubm7pzokpMwAAAAAAR8IaIjbg5uampUuXatWqVena0p7GKFy4sEJDQ3X06FFt2LBBNWvWlCTVqlVLe/bssVo/pFy5cpKkK1euqFSpUpaviIgIRURESJLKly+vQ4cOWR3r6NGjlu+zMgYAAAAAAM6CgogNFCxYUD169NDUqVM1ZcoUxcbG6ty5c9qyZYv69Omj6tWrq0qVKnrmmWfk7e2tpUuXWgoiNWvW1J49e3Tt2jXLFJhy5cqpYcOGGjlypDZv3qxz585p5syZmj59ukqWLClJCg8PV1xcnCZOnKhTp05p1apVWrBggSWmrIwBAAAAAICzYMqMjfTr10+lS5fWkiVLtHDhQt28eVPFihVTs2bN1KtXL0u/hg0bau7cuapRo4akv9cdcXd3V/Xq1eXp6WnpN2XKFE2ZMkUjRozQ9evXVbJkSY0bN06tW7eWJPn5+WnmzJmaPHmyFixYoHLlyql37956//33szwGAAAAAADOwmSwOARsJDo6WpKU7FFaf91MzaQ3AAAAACC3ew6FPONl7zAeaYmJiYqNjZWfn5/VgwTS/92HBgQEZDoOU2YAAAAAAIDToSACAAAAAACcDgURAAAAAADgdCiIAAAAAAAAp8NbZmBznrlc7B0CAAAAADwWuH96eCiIwObKl/DMvBMAAAAAQJJkGIZMJpO9w3B4TJmBTSUlJclsNts7DDwgs9msmJgYcukgyKfjIJeOg1w6FvLpOMil43jcckkx5OGgIAKbMwzD3iHgARmGIbPZTC4dBPl0HOTScZBLx0I+HQe5dBzkEhmhIAIAAAAAAJwOBREAAAAAAOB0KIgAAAAAAACnQ0EENseCQI8/k8kkDw8PcukgyKfjIJeOg1w6FvLpOMil4yCXyIjJYFUZ2Eh0dLQkKSAgwM6RAAAAAMCjhVfr3r/ExETFxsbKz89Pnp6eVm33ch+a0ybRAf9w6tIN3UxKsXcYAAAAAPBIcHfLqaeLetk7DKdHQQQ2dzMpReZbt+0dBgAAAAAAFqwhAgAAAAAAnA4FEQAAAAAA4HQoiAAAAAAAAKdDQQQAAAAAADgdhymIhIaGKjQ0VAkJCenaBg8erLCwsIcSR0REhHx9fe/4NW3atGw7lq+vryIiIrJtvIxMmzZNoaGhNj0GAAAAAAAPm0O9ZebChQuaNGmSRo8ebbcYmjdvrrp166bbPmHCBK1bt07169e3Q1QAAAAAAOCfHOYJEUkqUaKEFi9erF27dtktBnd3dxUpUsTqa9OmTYqMjNSQIUMUGBhot9gAAAAAAMDfHKog0qpVK9WsWVNDhw7NcOpMmhs3bmj48OGqUaOGKleurK5duyo6OlqStHnzZpUvX16///67pf8LL7yg5557zvLz9evXVaFCBe3fvz/TmI4ePapx48bpueeeU+fOnbMUgySlpqZq+vTpatKkifz9/RUSEqIePXro7NmzGR4nK/19fX317bffqlu3bgoMDFSdOnX0ySefWI2zePFiNW7cWIGBgerdu7euX7+e6TkCAAAAAPC4caiCiMlk0rhx43T9+nVNnDgxwz6GYahnz546d+6cpk+friVLligoKEgdO3ZUTEyMatWqpVy5cmnPnj2SpN9//13Hjx/XTz/9pKtXr0qSduzYoXz58ikkJOSu8fz555964403VLJkSY0ZMybLMUjSvHnzNGvWLA0ePFjr1q3Tp59+qtOnT2vChAkZHiur/SdOnKjWrVvr+++/V5cuXTRt2jTt27dPkhQZGanRo0erW7duWrlypUJCQrRw4cIsXHkAAAAAAB4vDlUQkSRvb28NGjRIS5Ys0Y4dO9K179mzRz/++KM++ugjVapUSWXLltWAAQMUFBSkefPmyd3dXTVr1rTsu2vXLlWoUEFPPvmkoqKiJElbt25VgwYNlCPHnS+fYRgaNGiQ/vjjD3388cfy9PTMcgySVLJkSU2cOFENGzaUt7e3atasqaZNmyo+Pj7D42W1/wsvvKDnn39eJUqUUO/evZU3b14dPHhQkjR//nw1b95cnTt31tNPP61XXnlFDRs2vIerDwAAAADA48GhFlVN89JLL2ndunUaNmyYIiMjrdqOHTsmwzDS3egnJSXp1q1bkv5+Y81nn30mSdq5c6dq1qypCxcuaM+ePWratKm2b9+usWPH3jWGWbNmafPmzZoyZYrKli17XzEcPnxYU6dO1alTp3Tq1Cn9/PPPevLJJzM8Xlb7/zsWLy8vJScnS5Li4+PVokULq/bg4GDFxcXd9VwBAAAAAHjcOGRBRJLGjh2rli1bavz48VbbU1NTlSdPngxfV+vm5iZJatCggUaMGKETJ05o9+7dGjdunC5cuKBZs2bp8OHDMpvNql279h2PfeDAAU2ZMkVdu3ZV8+bN07VnJYYZM2bo008/VevWrVWzZk1169ZNmzZt0vfff5/hMbPaP238fzIMwyq2f3J1db3jeQIAAAAA8LhyuCkzaYoVK6bBgwfr22+/tVr81MfHRwkJCUpOTlapUqUsXzNnztSmTZskSU888YT8/f31zTff6OrVq6pcubJq1qyp06dPa/HixapVq5Y8PDwyPO7vv/+u/v37KyAgQG+//XaGfbISwxdffKHXXntN7777rl566SUFBQXp9OnTVsWLf7rX/hnx8/OzTJ9J88+FXgEAAAAAcBQOWxCRpPbt26tOnTo6d+6cZVvdunXl5+en/v37a8+ePTpz5ozGjx+viIgIq+kkoaGhWrx4sYKCguTu7q4SJUqoePHiWrlypRo1anTHYw4cOFA3b97U8OHDde3aNV25csXq68aNG1mKoWjRotq5c6d+/vlnnTx5UlOmTNH69euVlJSU4XHvtX9GXnnlFW3YsEFffvmlTp8+rfnz52vdunVZ3h8AAAAAgMeFQxdEpL+nznh5eVl+dnFx0ezZs+Xv769+/fqpVatW2rdvnz755BPVrFnT0i80NFRJSUmqUaOGZVutWrUk6a4Lje7cuVPXr19XmzZtVKdOnXRf48aNy1IMkyZN0s2bN9W2bVt16dJF8fHxGjVqlK5evaqLFy+mO+699s9IgwYN9MEHH2jZsmVq2bKl1q9fr/Dw8CztCwAAAADA48Rk3MucCuAepE23yZm3uMy3bts5GgAAAAB4NHjkcpFfqQL2DuOxlZiYqNjYWPn5+Vm90VX6v/vQgICATMdx+CdEAAAAAAAA/o2CCAAAAAAAcDoURAAAAAAAgNOhIAIAAAAAAJxOTnsHAMfn7sbHDAAAAADScI/0aCALsLmni3pl3gkAAAAAnIhhGDKZTPYOw6kxZQY2lZSUJLPZbO8w8IDMZrNiYmLIpYMgn46DXDoOculYyKfjIJeO41HMJcUQ+6MgApszDMPeIeABGYYhs9lMLh0E+XQc5NJxkEvHQj4dB7l0HOQSGaEgAgAAAAAAnA4FEQAAAAAA4HQoiMDmmBv3+DOZTPLw8CCXDoJ8Og5y6TjIpWMhn46DXDoOcomMmAwmUcFGoqOjJUkBAQF2jgQAAAAA7I83y2SPxMRExcbGys/PT56enlZt93Ifymt3YXMXL19VUlKyvcMAAAAAALtxc3NVsScL2TsM/AMFEdhcUlKyblEQAQAAAAA8QlhDBAAAAAAAOB0KIgAAAAAAwOlQEAEAAAAAAE6HgggAAAAAAHA6FESyUUJCgipVqqRatWopOTl7FxFNTk7WnDlzHnic0NBQTZs2TZIUEREhX1/fBx4TAAAAAIDHDQWRbPT999+rUKFCunHjhjZs2JCtY0dGRmr8+PHZOmbz5s21Y8eObB0TAAAAAIDHAQWRbLRs2TLVrVtXNWrU0KJFi7J1bMMwsnU8SXJ3d1eRIkWyfVwAAAAAAB51FESyyYkTJ3T48GHVrl1b//nPfxQVFaVTp05Z2v85VSWjbbdv39bkyZNVv359+fv7q2nTpvrmm28k/T21ZciQIZIkX19fRUVFadq0aerSpYv69++vkJAQjRkzRpK0dOlStWzZUoGBgQoKClKnTp0UHR2dYcz/njITHx+vXr16qWrVqvL391ejRo00e/bs7LtIAAAAAAA8IiiIZJNvv/1Wnp6eqlevnho3bixXV9d7ekrk66+/1tq1azVlyhStW7dOXbp00bvvvqv9+/erefPmeueddyRJO3bsUHBwsCRp3759Kly4sFauXKmwsDBt2LBBo0ePVo8ePbRmzRrNmTNHt27d0rBhwzI9vtlsVnh4uPLnz69FixYpMjJSTZs21cSJExUbG3t/FwUAAAAAgEcUBZFskJKSolWrVik0NFTu7u7Knz+/6tSpoxUrVujWrVtZGuPs2bPy9PRU8eLF5e3trS5duuirr77S008/LXd3d3l5eUmSihQpIjc3N8t+r7/+ukqUKKHSpUsrf/78GjdunJ5//nl5e3srKChI7dq1U3x8fKbHN5vN6tq1q0aMGKGyZcuqdOnSev311yVJx48fv4+rAgAAAADAoyunvQNwBNu2bdNvv/2mFi1aWLa1aNFCW7Zs0Zo1a/TCCy9kOkbnzp21ceNG1a9fX35+fqpdu7ZatGihQoUK3XGfQoUKWQolklS1alWdOHFCn376qU6ePKkzZ87o+PHjSk1NzfT4BQsWVKdOnRQZGamYmBidPXtWcXFxkpSl/QEAAAAAeJzwhEg2iIiIkCT16dNHFSpUUIUKFTRo0CBJuuu0mZSUFMv3pUuX1vr16/Xll1+qRo0a2rp1q1544QUtX778jvu7u7tb/fzdd9+pVatWOnfunEJCQjRo0CANHjw4S+dw5coVtWrVSkuXLtWTTz6pTp063fXYAAAAAAA8zu77CZGEhAT99ddfevLJJ5WcnKz58+fr4sWLatKkiapWrZqdMT7Srl69qm3btqlNmzbq3r27VducOXO0bNkyxcfHy9XVVQkJCZa2hIQEXb161fLzvHnzVKhQIbVo0UK1a9fW22+/re7du2v16tVq3bq1TCZTprHMmDFD7dq106hRoyzbNm3aJOnvt9TcbYzIyEhdu3ZN69atk6urq6T/mypjizfcAAAAAABgT/f1hMjhw4fVsGFDLViwQJI0duxYTZo0SatWrdLLL79suQl3BqtWrVJKSop69uwpHx8fq6/evXsrR44cWrRokYKCgrR69WodPHhQP//8s9555x25uLhYxvn99981evRobdq0SRcuXND27dsVGxtrWUDV09NTknT06FHdvHkzw1iKFi2qgwcP6tixYzp79qzmzJljyVFSUtJdz+Opp56S2WzW2rVrdfHiRe3YsUMDBgzI0r4AAAAAADxu7usJkY8++khly5bViy++KLPZrJUrV6pTp04aMWKERowYoS+++EKNGjXK7lgfSREREapVq5bKlCmTrq1kyZJ69tlntWrVKn3//fe6du2aunfvLi8vL4WHh+vPP/+09O3Tp4+Sk5M1duxYXblyRUWKFFHHjh3Vq1cvSVKNGjVUqVIldejQQZMnT84wluHDh2vEiBHq0qWL3NzcVL58eU2aNEn9+/dXdHS0qlSpcsfzaNq0qY4dO6YJEyYoISFB3t7eat++vTZt2qTo6Gh17NjxAa8UAAAAAACPDpNxH/MhQkJCNGXKFNWvX18bN25U3759tWjRIlWqVEl79uxR79699eOPP9ogXDxOoqOjJUle+YvoVlKynaMBAAAAAPvJ5eaq0iWesncYDiExMVGxsbHy8/OzzKZIk3YfGhAQkOk49zVlJkeOHMqVK5ckafv27cqbN68CAwMl/b02xr8X+wQAAAAAAHiU3NeUGX9/fy1dulTu7u5au3atGjRoIJPJpKtXr2rmzJny9/fP7jgBAAAAAACyzX09IfLWW29p165d6tChg1xcXPTqq69Kkp577jmdPn1a/fr1y84YAQAAAAAAstV9PSFSsWJFbdiwQSdOnFC5cuUsc3beffddhYSEqEiRItkaJAAAAAAAQHbK8hMiEydOtPo5T548qlSpktUCJk2aNKEYAgAAAAAAHnlZfkLkq6++0unTpzV16lTNmDHjrn1NJpNee+21Bw4OjsHNzdXeIQAAAACAXXFf9OjJckHk66+/1tSpU3X+/Hl98sknd+1LQQT/VOzJQvYOAQAAAADszjAMmUwme4eB/y/LBZGQkBDNnTtXkhQXF2ezgOBYkpKSZDab5eHhYe9Q8ADMZrNOnTqlp59+mlw6APLpOMil4yCXjoV8Og5y6TgelVxSDHm03NdbZoB7YRiGvUPAAzIMQ2azmVw6CPLpOMil4yCXjoV8Og5y6TjIJTJyX2+ZkaRbt27p+PHjSkpKsnyoUlNTZTabtX//fg0cODDbggQAAAAAAMhO91UQiYqK0htvvKHr169n2J47d24KIgAAAAAA4JF1XwWRKVOmqECBAhozZoxWrVqlHDlyqE2bNvrhhx/0zTffaObMmdkdJx5jzJN7/JlMJnl4eJBLB0E+HQe5dBzk0rGQT8dBLh0HuURGTMZ9TKIKDg7W2LFj1aJFC0VERGjRokVasmSJJGnEiBH65ZdfMn01LxxfdHS0JCkgIMDOkQAAAADAw8UbZWwnMTFRsbGx8vPzk6enp1XbvdyH3tcTIqmpqXryySclSaVKldJPP/1kaWvSpIkGDRp0P8PCQf32y3klJyXZOwwAAAAAeChc3dxU+Kni9g4DmbivgkjJkiV1/PhxValSRU8//bTMZrNOnjypMmXKKCUlRX/99Vd2x4nHWHJSkpJv3bR3GAAAAAAAWNzXa3dbtmyp999/XwsWLFDBggXl7++vMWPGaPPmzfr000/1zDPPZHecAAAAAAAA2ea+CiI9evRQhw4ddPjwYUnSyJEjFRsbq//97386efKk3n777WwNEgAAAAAAIDvd85SZI0eO6MKFC3ruuedUsWJFSX8vVrJx40bLtJk8efJke6AAAAAAAADZJcsFkT///FO9evXSjz/+aFktNzg4WB988IGKFi2qPHnyKDAw0JaxAgAAAAAAZIssT5n56KOPFBMTo759+2rGjBkaNGiQTp48qREjRtgyPoeWkJCgSpUqqVatWkpOTs7WsZOTkzVnzpy79omIiJCvr2+2HhcAAAAAgMdBlgsiW7Zs0YABA/S///1P9erVU7du3TRy5Ejt2rVLiYmJtozRYX3//fcqVKiQbty4oQ0bNmTr2JGRkRo/fvxd+zRv3lw7duzI1uMCAAAAAPA4yHJB5MqVK5Y1Q9JUr15dt2/f1qVLl7I9MGewbNky1a1bVzVq1NCiRYuydWzDMDLt4+7uriJFimTrcQEAAAAAeBxkuSCSkpIiNzc3q2358uWTJN26dSt7o3ICJ06c0OHDh1W7dm395z//UVRUlE6dOmVpDw0N1bRp06z2+ee227dva/Lkyapfv778/f3VtGlTffPNN5L+ngozZMgQSZKvr6+ioqI0bdo0denSRf3791dISIjGjBmTbspMfHy8evXqpapVq8rf31+NGjXS7NmzbX0pAAAAAAB46O7rtbv/lpWnEWDt22+/laenp+rVq6fGjRvL1dX1np4S+frrr7V27VpNmTJF69atU5cuXfTuu+9q//79at68ud555x1J0o4dOxQcHCxJ2rdvnwoXLqyVK1cqLCzMajyz2azw8HDlz59fixYtUmRkpJo2baqJEycqNjY2+04cAAAAAIBHQLYUREwmU3YM4zRSUlK0atUqhYaGyt3dXfnz51edOnW0YsWKLD9tc/bsWXl6eqp48eLy9vZWly5d9NVXX+npp5+Wu7u7vLy8JElFihSxerLn9ddfV4kSJVS6dGmr8cxms7p27aoRI0aobNmyKl26tF5//XVJ0vHjx7PnxAEAAAAAeERk+bW7kvTuu+8qT548lp/TngwZPny4cufObdluMpk0d+7cbArR8Wzbtk2//fabWrRoYdnWokULbdmyRWvWrNELL7yQ6RidO3fWxo0bVb9+ffn5+al27dpq0aKFChUqdMd9ChUqZCmU/FvBggXVqVMnRUZGKiYmRmfPnlVcXJwkKTU19d5OEAAAAACAR1yWCyJVq1aVlH56TEbbmUJzdxEREZKkPn36pGtbtGjRHQsiKSkplu9Lly6t9evXa+/evdq5c6e2bt2qmTNnavz48WrdunWG+7u7u98xpitXruill15SwYIFFRoaqjp16iggIED169e/hzMDAAAAAODxkOWCyPz5820Zh9O4evWqtm3bpjZt2qh79+5WbXPmzNGyZcsUHx8vV1dXJSQkWNoSEhJ09epVy8/z5s1ToUKF1KJFC9WuXVtvv/22unfvrtWrV6t169b3PI0pMjJS165d07p16+Tq6irp/6bKUOACAAAAADiae5oygwe3atUqpaSkqGfPnipTpoxVW+/evbV8+XItWrRIQUFBWr16tZo0aaK8efPq448/louLi6Xv77//rk8//VTu7u4qX768Tp48qdjYWHXt2lWS5OnpKUk6evSonnnmmUzjeuqpp2Q2m7V27VpVrlxZJ0+e1Pjx4yVJSUlJ2XX6AAAAAAA8EiiIPGQRERGqVatWumKIJJUsWVLPPvusVq1ape+//17Xrl1T9+7d5eXlpfDwcP3555+Wvn369FFycrLGjh2rK1euqEiRIurYsaN69eolSapRo4YqVaqkDh06aPLkyZnG1bRpUx07dkwTJkxQQkKCvL291b59e23atEnR0dHq2LFj9l0EAAAAAADszGQwHwI2Eh0dLUkqnC+3km/dtHM0AAAAAPBwuOZyV9GS6f8IjuyRmJio2NhY+fn5WWZHpEm7Dw0ICMh0nGx57S4AAAAAAMDjhIIIAAAAAABwOhREAAAAAACA06EgAgAAAAAAnA4FEQAAAAAA4HR47S5sztXNzd4hAAAAAMBDwz3Q44GCCGyu8FPF7R0CAAAAADxUhmHIZDLZOwzcBVNmYFNJSUkym832DgMPyGw2KyYmhlw6CPLpOMil4yCXjoV8Og5y6TjskUuKIY8+CiKwOcMw7B0CHpBhGDKbzeTSQZBPx0EuHQe5dCzk03GQS8dBLpERCiIAAAAAAMDpUBABAAAAAABOh4IIbI65c48/k8kkDw8PcukgyKfjIJeOg1w6FvLpOMil4yCXyIjJYBIVbCQ6OlqSFBAQYOdIAAAAAODh4O0ytpeYmKjY2Fj5+fnJ09PTqu1e7kN57S5s7vq5n5Ryk5W5AQAAADi2nO4eyleinL3DQBZREIHNpdw0K+Vmor3DAAAAAADAgjVEAAAAAACA06EgAgAAAAAAnA4FEQAAAAAA4HQoiAAAAAAAAKdDQeQRNnjwYIWFhdk1Bl9fX0VERNg1BgAAAAAAshsFEQAAAAAA4HQoiAAAAAAAAKdDQeQxceTIEXXq1EnBwcGqWrWq+vbtq4sXL0qSzp8/L19fX02fPl21a9dWo0aNlJCQoPj4ePXq1UtVq1aVv7+/GjVqpNmzZ1uNu2XLFrVp00aBgYFq3LixPvroIyUlJdnjFAEAAAAAeGgoiDwGbt++bSlsrFq1SnPmzNHFixf1zjvvWPVbvny55s6dq48++kguLi4KDw9X/vz5tWjRIkVGRqpp06aaOHGiYmNjJUk//PCD+vXrpxdffFGRkZEaOXKk1qxZo7feessepwkAAAAAwEOT094BIHMJCQn6448/9MQTT8jb21slSpTQRx99pKtXr1r169Spk5555hlJ0u+//66uXbuqc+fOyp07tyTp9ddf15dffqnjx4/Lz89PX3zxhV588UV16NBBklSyZEmNGjVKL7/8ss6fP6/ixYs/3BMFAAAAAOAhoSDyGMiXL5969OihMWPG6OOPP1aNGjVUv359NWvWzKpfqVKlLN8XLFhQnTp1UmRkpGJiYnT27FnFxcVJklJTUyVJMTExOnLkiL799lvLfoZhSJJOnDhBQQQAAAAA4LAoiDwmBg4cqE6dOmnbtm3avXu3xowZoy+//FIrVqyw9HF3d7d8f+XKFb300ksqWLCgQkNDVadOHQUEBKh+/fqWPqmpqerRo4dat26d7nhFihSx6fkAAAAAAGBPFEQeAydPntTcuXP1zjvvqGPHjurYsaMOHDigTp06KS4uTgULFky3T2RkpK5du6Z169bJ1dVVknT8+HFJ//cUSLly5XTq1CmrJ0uioqI0b948vfvuu/L09HwIZwcAAAAAwMPHoqqPgQIFCuj777/XiBEjdOLECZ06dUrLly9Xvnz5VKZMmQz3eeqpp2Q2m7V27VpdvHhRO3bs0IABAyTJ8haZnj17at26dfrkk0906tQp7d69W0OGDNGNGzd4QgQAAAAA4NB4QuQxUKBAAc2cOVMffPCBXnzxRd2+fVtBQUH66quvlCdPHl27di3dPk2bNtWxY8c0YcIEJSQkyNvbW+3bt9emTZsUHR2tjh07qmnTppoyZYqmT5+uL774Qvnz51doaKgGDhz48E8SAAAAAICHyGSkzZ8Asll0dLQkqZi7oZSbiXaOBgAAAABsK6e7pwqVC7R3GA4vMTFRsbGx8vPzS7fUQ9p9aEBAQKbjMGUGAAAAAAA4HQoiAAAAAADA6VAQAQAAAAAAToeCCAAAAAAAcDoURAAAAAAAgNPhtbuwuZzuHvYOAQAAAABsjnufxwsFEdhcvhLl7B0CAAAAADwUhmHIZDLZOwxkAVNmYFNJSUkym832DgMPyGw2KyYmhlw6CPLpOMil4yCXjoV8Og5y6TgeZi4phjw+KIjA5gzDsHcIeECGYchsNpNLB0E+HQe5dBzk0rGQT8dBLh0HuURGKIgAAAAAAACnQ0EEAAAAAAA4HQoisDnm0D3+TCaTPDw8yKWDIJ+Og1w6DnLpWMin4yCXjoNcIiMmg0lUsJHo6GhJUkBAgJ0jAQAAAIDsxxtl7CMxMVGxsbHy8/OTp6enVdu93Ify2l3Y3I0TR5RiTrB3GAAAAACQbXJ65JFX2UB7h4EHQEEENpdiTtDtxBv2DgMAAAAAAAvWEAEAAAAAAE6HgggAAAAAAHA6FEQAAAAAAIDToSACAAAAAACcDouq/n8pKSlauHChVq5cqVOnTilXrlyqUKGCXnnlFdWoUSPbjpOYmKjly5erc+fO9z3G4MGDtXz5cqttOXPmVIECBVSzZk0NGTJEBQsWlCSFhYXJ29tbEyZMeKC4AQAAAABwJBREJN26dUvdu3fXpUuX9Prrrys4OFg3b97UsmXL1L17d02aNEktW7bMlmPNnj1bERERD1QQkaTg4GBNmzbN8vPNmzd16NAhjR49WteuXdPMmTMlSdOmTZOLi8sDHQsAAAAAAEdDQUTS1KlTdfz4cUVGRqpo0aKW7UOHDlVCQoLGjh2r0NBQ5c6d+4GPZRjGA48hSa6uripSpIjVthIlSujs2bOaNm2abty4IS8vL+XPnz9bjgcAAAAAgCNx+jVEkpOTtWzZMrVp08aqGJKmX79+mjlzptzd3SVJ165d06hRo1S/fn0FBgaqQ4cOioqKsvQ3m80aOnSoateurYCAAL3wwgtav369pL+f1vjkk0904cIF+fr66vz580pKStLEiRMVGhoqf39/VatWTW+88YZ+//33+zqfXLlyyWQyWZ4KCQsL0+DBgy3tR44cUbdu3RQcHKxatWpp5MiRMpvNkqTr169r2LBhqlu3ripWrKiaNWtq2LBhlnYAAAAAAByF0xdEzp07p2vXrikkJCTD9ieffFKBgYFycXHR7du3FR4erv3792vy5MmKiIiQj4+P/vvf/+rIkSOS/u9pkxkzZmj16tWqV6+e+vfvr/Pnzys8PFzh4eF66qmntGPHDhUtWlSTJk3S+vXrNWHCBK1bt04TJkzQnj179Pnnn9/TeRiGoYMHD2ru3Ln6z3/+I09PzwzP9eWXX9YTTzyhxYsXa9q0adq5c6dGjRol6e+1SWJiYvTJJ59o3bp1GjJkiFasWKHFixff41UFAAAAAODR5vRTZq5fvy5JypcvX6Z9d+zYoWPHjum7776Tj4+PJGnUqFGKjo7WrFmzNHXqVJ09e1a5c+dWiRIllDdvXr3xxhuqWrWq8uXLp9y5c8vT01MuLi6W6S4BAQFq2rSpqlSpIkny9vZWrVq1FB8ff9dY9u/fr+DgYMvPt27dUsGCBdW8eXP169cvw32WLFmi/Pnz67333lPOnH+nfuzYsTp06JAkqXbt2qpatap8fX0lScWLF9eCBQsyjQUAAAAAgMeN0xdE0t7Gcu3atUz7xsfHy8vLy1IMkSSTyaQqVapox44dkqSePXuqd+/eqlmzpgIDA1W7dm21bNlSXl5eGY75/PPPa9euXXr//fd1+vRpnTx5UqdOnbIUSO7E399f77//viTpxIkTGjNmjMqXL6833ngjw6dD0uKvWLGipRgiSTVq1LC8RadTp07avHmzli9frtOnT+vnn3/W+fPnVaZMmUyvDQAAAAAAjxOnnzJTokQJFS5cWAcPHsyw/cSJEwoPD9dPP/10xwVRDcOwFBmCg4O1bds2ffzxx6pYsaJWrFih5s2ba/fu3RnuO2LECPXv31/JyckKDQ3VBx98oBYtWmQat7u7u0qVKqVSpUopNDRUM2fO1J49ezRgwIA7xvnPQsi/paamqlevXho7dqxy5syp5s2ba/r06XecSgQAAAAAwOPM6QsiOXLkULt27RQREaFLly6la//yyy8VHR0tb29v+fr66saNG1ZTSAzD0IEDB/TMM89Ikj7++GMdOHBAjRo10rBhw7Ru3TqVKFFC69atk/T3EyVp/vjjDy1evFgjR47UkCFD1KZNG/n5+enkyZP3/DaaZ555RgMHDtTWrVu1aNGiO/aJiYnR7du3Lds2bNig0NBQ/fjjj/rhhx80depUDRw4UK1atVLJkiV19uzZbHszDgAAAAAAjwqnL4hIUu/evVW6dGl16tRJK1as0NmzZ3XkyBHLoqJjxoyRp6en6tSpIz8/P7355pvau3evTpw4odGjRys+Pl4vv/yypL8XLh05cqR2796tCxcuaN26dbp48aJlvQ9PT09dv35dp06dUp48eeTl5aVNmzbpzJkzOn78uIYPH65jx44pKSnpns+jU6dOqlKlit5//31dvnw5w/Y//vhDI0eO1IkTJ7Rv3z5NmjRJNWrUkLe3t3LmzKk1a9bo3Llzio6OVr9+/XTlypX7igUAAAAAgEeZyeDP/5KkxMREzZ49W2vWrNHFixfl7u6uChUq6NVXX7Vaz+P333/XxIkTtWXLFiUlJcnf39+ycKokJSQkWNqvXbsmb29vde7cWV27dpUknT9/Xj169NCFCxe0YMECJSQkaMKECTpz5ozy5cun6tWrq1y5cpo+fbp27twpDw+PdLEOHjxYFy5c0Pz589O1nTp1Ss8//7xq166tzz//XGFhYfL29taECRMkSYcOHdLkyZMVHR2tfPnyqXnz5howYIDc3d313Xffadq0abp06ZKKFCmiBg0ayNXVVZs3b9aGDRvu+ZpGR0dLkoqbbuh24o173h8AAAAAHlUunl4q4F/L3mE4pcTERMXGxsrPzy/dGppp96EBAQGZjkNBBDZDQQQAAACAo6IgYj/ZVRBhygwAAAAAAHA6FEQAAAAAAIDToSACAAAAAACcDgURAAAAAADgdHLaOwA4vpweeewdAgAAAABkK+5zHn8URGBzXmUD7R0CAAAAAGQ7wzBkMpnsHQbuE1NmYFNJSUkym832DgMPyGw2KyYmhlw6CPLpOMil4yCXjoV8Og5y6ThslUuKIY83CiKwOcMw7B0CHpBhGDKbzeTSQZBPx0EuHQe5dCzk03GQS8dBLpERCiIAAAAAAMDpUBABAAAAAABOh4IIAAAAAABwOhREYHMsNPT4M5lM8vDwIJcOgnw6DnLpOMilYyGfjoNcOg5yiYyYDFaVgY1ER0dLkgICAuwcCQAAAABkHa/TfbQlJiYqNjZWfn5+8vT0tGq7l/vQnDaJDviHG0d363bin/YOAwAAAAAy5eKZV17+Ne0dBh4CCiKwuduJf+r2jT/sHQYAAAAAABasIQIAAAAAAJwOBREAAAAAAOB0KIgAAAAAAACnQ0EEAAAAAAA4HYcoiISFhWnw4MEZtg0ePFhhYWFZHmvatGkKDQ21/PzTTz9p69atDxTfv8fMyJEjR9SrVy9Vq1ZNAQEBatKkiT744AMlJCRY+iQnJ2vOnDn3dOyLFy/q+++/v5+wAQAAAABwWA5REMlO4eHh+vbbby0/9+rVy/IeY1v56aefFBYWpmeeeUbz58/X6tWr9eabbyoyMlL/+9//LP0iIyM1fvz4exp70KBB2r59e3aHDAAAAADAY43X7v5L7ty5lTt37od6zIiICJUqVUpvvfWWZVuJEiXk7u6unj17Ki4uTuXLl5dhGA81LgAAAAAAHJXTPSHi6+urb7/9Vt26dVNgYOD/a+/Ow6qq3v6Pfw4gAgqOpOYcJqIi4JSYE6jhQM7fco7I1LScU0wcS9M0UcE5zZw1Nc20HNIcKsdyKDSH0BxSc9ZAQTi/P3o4P0+gMnbknPfrurgezh7Wvte+D9+nfbvW2qpTp46ioqJM+x+e3hIYGKgLFy4oKirKNO3mzp07Gj58uGrVqqVq1aqpa9euKUaQrFixQo0bN1aVKlXUs2dP3bp167ExGQwGXbhwQadOnTLbXrt2bW3YsEFly5bVmjVrNHToUFMf9u7dq6SkJM2ePVtBQUGqXLmyqlatqm7duumPP/6Q9M9Uon379umLL74w9Sk+Pl4TJ05U3bp15efnp1deeUW7d+82XTMxMVETJ05U/fr1VblyZTVp0kTLli3LyK0GAAAAAOCpZXMFEUmaMGGCWrdurQ0bNqhz586KjIzU/v37Uxy3atUqFS1aVKGhoYqMjJTRaNSbb76pc+fOafbs2Vq5cqV8fX3VoUMHRUdHS/pnWsuYMWMUEhKidevWqWrVqlqyZMlj43n11Vfl4OCg4OBgtW/fXpMnT9auXbuUmJiocuXKKXfu3GrWrJnee+89SdLu3bvl5+enhQsXat68eQoLC9OmTZs0ffp0nTlzRuPHj5f0T3HHz89PTZs2NU0DGjp0qL7//ntNmjRJX3zxhZo2baqePXua1klZunSpvvnmG0VERGjTpk3q3LmzRo0apQMHDmTV7QcAAAAAwOJssiDSqlUrtWzZUiVLllTPnj3l5uamn376KcVxBQsWlL29vVxcXJQ/f37t2bNHhw4d0pQpU+Tj4yMPDw8NGDBAvr6+WrhwoSRp0aJFatasmTp16qSyZcuqe/fuCggIeGw8pUuX1tq1a9WlSxdduXJFs2fPVrdu3VSnTh2tXLlSkuTk5CRXV1dJkru7uxwdHVWqVClNmDBBAQEBKl68uPz9/dWkSROdOHFCkpQ/f37lypVLTk5OKliwoM6ePWtah+SFF15QmTJl9Prrr6t58+aaN2+eJOmPP/6Qi4uLSpQooeLFi6tz58769NNPVbZs2Sy7/wAAAAAAWJpVrCHi4OCgpKSkVPclJSXJwcG8mx4eHmafXV1dlZCQ8MTr/PrrrzIajSkKHPHx8bp//74k6cSJE2revLnZfj8/Px0/fvyxbRcrVkzDhg3TsGHDdO7cOf3www9aunSphg8friJFiqh+/fopzgkMDNThw4c1depUxcTEKCYmRqdOnVKRIkVSvUbyKJaOHTuabU9ISJCbm5skqVOnTtq6davq168vLy8vvfjii2revLkKFSr02PgBAAAAAMhJrKIg4ubmptu3b6e679atW8qXL5/ZNkdHxxTHpWXB0qSkJOXNm1dr1qxJse/hNv9dnMmVK9dj2/3oo49Ut25d+fv7S/pnQdVXX31VrVu3VuPGjbVjx45UCyJz5szR9OnT1bp1a/n7+yskJETffvvtI1+zm9zHJUuWpFg41s7un8FCZcqU0ebNm7Vv3z59//33+u677zR37lx9+OGHat269WP7AQAAAABATmEVU2YqVaqkX375RfHx8Wbb4+PjdeTIEXl7e2fJdcqXL6+7d+8qISFBpUuXNv3MnTtX3377rSTJy8srxfSbJ72298cff9T8+fNTbHd0dJSTk5NpdIbBYDDbP2vWLPXu3VujRo3Sq6++Kl9fX505c+aRxZ3nn39ekvTXX3+Zxb9mzRpTkWfhwoXavHmzXnzxRQ0ePFjr16+Xv7+/Nm7cmIY7BAAAAABAzmAVBZF27dopKSlJb7/9tn7++WdduHBB+/btU69eveTg4KB27dpluO08efLozJkzunr1qurWrSsvLy/1799fe/bs0dmzZ/Xhhx9qzZo1pmk43bt315YtW/TJJ5/ozJkzWrRokTZt2vTYa/Tv318//PCD+vbtq/3795viHzx4sP7++2+9+uqrkiQXFxdJ0i+//KJ79+6pWLFi+v7773Xq1Cn9/vvvioiI0ObNm80KQ3ny5NGFCxd06dIlPf/88woICNDIkSO1bds2nTt3TnPnztXs2bNVqlQpSdL169c1ZswYffvtt7pw4YJ27dqlY8eOyc/PL8P3EAAAAACAp41VFEQKFiyoFStWyM3NTe+8846CgoI0YMAAFS5cWCtXrkwxZSY9unTpou+++06hoaGyt7fX/PnzVblyZfXr108tWrTQ/v37FRUVZZru0qBBA3388cdavXq1Xn75ZW3evFmhoaGPvUa9evW0aNEixcfHq2/fvgoKClL//v1lMBi0fPlyFS5cWJJUq1Yt+fj4qH379tq+fbs++ugj3bt3T23btlXnzp114sQJjR49WteuXdPFixclSe3bt9eJEyfUokULJSYmKiIiQi+99JJGjBihZs2aae3atRo7dqxpOszbb7+tdu3a6YMPPlBQUJBGjBihDh06qEePHhm+hwAAAAAAPG0MxrQsngFkQPJUoZJxF5V454aFowEAAACAJ7N3LaD8NYMsHQYeIzY2VseOHZOXl5dpJkWy5OfQtCydYRUjRAAAAAAAANKDgggAAAAAALA5FEQAAAAAAIDNoSACAAAAAABsjoOlA4D1s3dxs3QIAAAAAJAmPL/YDgoiyHaulf0tHQIAAAAApJnRaJTBYLB0GMhmTJlBtoqPj1dcXJylw0AmxcXFKTo6mlxaCfJpPcil9SCX1oV8Wg9yaT3Sm0uKIbaBggiyndFotHQIyCSj0ai4uDhyaSXIp/Ugl9aDXFoX8mk9yKX1IJdIDQURAAAAAABgcyiIAAAAAAAAm0NBBNmO+Xc5n8FgkLOzM7m0EuTTepBL60EurQv5tB7k0nqQS6TGYGQSFbLJ0aNHJUne3t4WjgQAAAAAHs9oTJLBwJiBnCA2NlbHjh2Tl5eXXFxczPal5zmU1+4i293a/60S79ywdBgAAAAAkCp71wLKV6OhpcPAf4yCCLJd4p0benDrqqXDAAAAAADAhPFAAAAAAADA5lAQAQAAAAAANoeCCAAAAAAAsDkURAAAAAAAgM2hIGIhYWFh6tKlS4bP37t3rzw9PXX+/PksjCqlLl26KCwsLFuvAQAAAADAf42CCAAAAAAAsDkURAAAAAAAgM2hIPIUCAwM1IQJE9SsWTO98MIL2rdvn4xGo+bOnauGDRvKx8dHLVu21JdffvnINm7duqXw8HDVrVtXlSpVkr+/v8LDwxUXFyfpnyk2FStW1I4dOxQcHKzKlSurSZMm2rp1q6mN+Ph4jRs3Tv7+/qpWrZomTpyopKSkbO8/AAAAAAD/NQdLB4B/LF68WLNnz5arq6s8PT0VERGhr776SiNGjNBzzz2n/fv3a9SoUbpz5446deqU4vywsDBdvnxZUVFRKlSokH766Se99957KleunEJCQiRJiYmJmjhxooYNG6ZixYpp8uTJGjJkiHbu3Kk8efLogw8+0LZt2zR+/Hg9++yzmjVrlg4cOKCSJUv+x3cDAAAAAIDsRUHkKVG/fn3Vrl1bkhQbG6sFCxZo8uTJatCggSSpVKlSunDhgubNm5dqQeTFF19UjRo15OnpKUkqUaKEFi9erBMnTpgd169fP/n7+0uSevXqpU2bNunEiRN6/vnntWbNGo0cOVL169eXJI0bN0579uzJri4DAAAAAGAxFESeEqVLlzb9furUKd2/f18DBw6Und3/n9X04MEDxcfH6969eynO79ixo7Zt26YvvvhCZ86c0alTp3T+/Hk999xzZsc9/Dlv3rySpISEBMXExCghIUHe3t6m/blz51bFihWzrI8AAAAAADwtKIg8JZycnEy/G41GSdKUKVNSFDQkydHR0exzUlKSevTooZMnTyo4OFjNmjVTpUqVNHz48Ceem3w9g8Fgdu1kDg58RQAAAAAA1oen3afQc889JwcHB128eFEBAQGm7QsXLtSpU6c0ZswYs+OPHTumnTt3auXKlfLx8ZH0z6iPP/74I83rf5QtW1a5c+fWTz/9JC8vL0n/jEg5fvy4XnjhhSzqGQAAAAAATwcKIk8hV1dXtW/fXlOnTlXevHlVtWpV7d27VxMnTlSPHj1SHF+4cGE5ODjo66+/VsGCBXXz5k3NmjVLf/31l+Lj49N0zTx58qhz586aNm2a3N3d5eHhofnz5+vy5ctZ3T0AAAAAACyOgshTaujQoSpQoICmTp2qK1euqFixYurTp4+6deuW4tgiRYpo/PjxioyM1JIlS+Tu7q4GDRooJCRE27ZtS/M1Bw4cqNy5c2vMmDH6+++/1bRpUwUGBmZltwAAAAAAeCoYjP9eNALIIkePHpUkFf/rNz24ddXC0QAAAABA6hzyFVbBwHaWDgNpFBsbq2PHjsnLy0suLi5m+5KfQx9+Ycij2D3xCAAAAAAAACtDQQQAAAAAANgcCiIAAAAAAMDmUBABAAAAAAA2h4IIAAAAAACwObx2F9nO3rWApUMAAAAAgEfimcU2URBBtstXo6GlQwAAAACAxzIak2QwMInClpBtZKv4+HjFxcVZOgxkUlxcnKKjo8mllSCf1oNcWg9yaV3Ip/Ugl9YjLbmkGGJ7yDiyndFotHQIyCSj0ai4uDhyaSXIp/Ugl9aDXFoX8mk9yKX1IJdIDQURAAAAAABgcyiIAAAAAAAAm0NBBNnOYDBYOgRkksFgkLOzM7m0EuTTepBL60EurQv5tB7k0nqQS6TGYGQSFbLJ0aNHJUne3t4WjgQAAAAAUmdMSpLBjrECOUlsbKyOHTsmLy8vubi4mO1Lz3Mor91Ftrv23To9uHnV0mEAAAAAgBmH/IVVqEFLS4cBC6Eggmz34OZVJVy7bOkwAAAAAAAwYVwQAAAAAACwORREAAAAAACAzaEgAgAAAAAAbA4FEQAAAAAAYHOsuiASGBioyMhIS4eRZmvWrJGnp6elwwAAAAAAwOpZdUEEAAAAAAAgNRREAAAAAACAzbHZgkhYWJi6dOnyyG3z589XxYoVdeTIEUlSUlKSOnbsqDZt2ig+Pl6StH37drVp00ZVqlRR48aNNWXKFNM+SfL09NSKFSvUsWNHeXt7q2nTpvrpp5+0YsUKNWjQQFWrVlW/fv107949szhWrlypunXrysfHRz179tSFCxdM++7du6cpU6aoYcOG8vb2VsuWLbVp0ybT/tSm3fx7W2BgoCZMmKBmzZrphRde0L59+5SYmKiIiAjVqVNHvr6+6tOnj8aOHZviHgEAAAAAYA1stiDyJCEhIapWrZqGDRumhIQEzZ07V8eOHdPkyZPl6OionTt3ql+/fnrllVf01VdfaeTIkfr666/17rvvmrUTERGhbt26ad26dXJ1dVXPnj21adMmzZkzRx9++KG2bt2qzz//3OycRYsWaerUqVqyZIlu3Lih3r17y2g0SpIGDBigtWvXavjw4fryyy/VqFEj9e3bV1u3bk1X/xYvXqzw8HB98skn8vX11aRJk7RixQqNHDlSq1evlru7uxYtWpS5mwgAAAAAwFPKwdIBPK3s7Ow0fvx4tWjRQsOGDdPGjRv1/vvvq0yZMpKkWbNm6ZVXXlH79u0lSaVKldLo0aP12muv6fz58ypRooQkqW3btgoMDJQktWzZUmPGjNGIESNUpkwZlS9fXp988olOnjxpdu2JEyeqQoUKkqQJEyYoKChIP/74o4oUKaJvv/1Ws2bNUoMGDSRJ77zzjo4fP65Zs2apUaNGae5f/fr1Vbt2bUlSXFycli5dqqFDh6px48aSpPDwcP38888Zu3kAAAAAADzlKIg8RvHixfXee+/pvffeU6NGjdS6dWvTvujoaB05ckSrVq0ybUsexXH69GlTQaR06dKm/c7OzpL+KZ4kc3JyMptmkydPHlMxRJLKlCmjfPny6cSJE7p586YkqVq1amZx1qhRQ5MnT05X3x6O6/Tp07p37558fX1N2wwGg6pVq6bjx4+nq10AAAAAAHICCiIPefDgQYptv/zyixwcHHT06FHdunVL+fLlk/TPmiLdunUzK5Ikc3d3N/3u4JDyFtvZPXqmkr29fYptSUlJcnR0fOQ5RqMx1eskS0xMTLHNyckpRYzJBR0AAAAAAKydza4hkitXLt29e9ds29mzZ80+79q1S8uWLdP06dPl7Oys0aNHm/Y9//zziomJUenSpU0/ly5d0kcffaS///47w3Hdvn1bf/zxh+nzb7/9pjt37qh8+fKmhVEPHjxods6BAwdUrlw5U78kmfXtzJkzj71m6dKl5eTkpEOHDpltP3z4cEa7AQAAAADAU83qR4icPXtWO3fuNNvm5OQkX19frVq1Sl9++aX8/Pz05Zdf6sSJE6pSpYok6ebNm3rvvff0yiuvqEGDBsqbN686d+6swMBABQcH680331S/fv0UFRWl5s2b69KlSxo2bJhKlChhNkIkvezs7NSvXz+NGDFCkjRy5EjVrFlT1atXlyQFBARo9OjRMhgMKl26tDZs2KBvv/1WU6ZMkST5+vrKYDAoMjJSXbp00dGjR/XFF1889prOzs7q0qWLpk2bJnd3d3l4eGjlypU6fPiwatasmeG+AAAAAADwtLL6gsj69eu1fv16s23FixfXpk2bdOzYMX3wwQd68OCBmjZtqtdee820kOjIkSNlb2+vwYMHS5KqV6+ujh07asyYMapRo4aaNGmiiIgIzZ49W7NmzVL+/PkVGBioQYMGZSreggULqmXLlurVq5fi4uIUEBCg8PBw0/7Jkydr8uTJGjZsmG7fvq3y5csrMjLStBhqyZIlNXr0aM2ePVtLly5VtWrVNHjwYA0ZMuSx1+3bt68SEhIUHh5uum7Dhg11//79TPUHAAAAAICnkcHIwhGQtGXLFlWrVk0FCxY0bQsNDVXRokU1bty4DLV59OhRSdIzp/cp4drlLIkTAAAAALJKrkJFVKTVG5YOA+kUGxurY8eOycvLSy4uLmb7kp9Dvb29n9iOza4hAnPz5s3TwIEDdezYMZ07d04LFizQnj171KJFC0uHBgAAAABAlqMgAknSpEmTlCdPHoWEhCg4OFjr16/X1KlTVatWLUuHBgAAAABAlrP6NUSQNiVKlFBUVJSlwwAAAAAA4D/BCBEAAAAAAGBzKIgAAAAAAACbw5QZZDuH/IUtHQIAAAAApMCzim2jIIJsV6hBS0uHAAAAAACpMiYlyWDH5AlbRNaRreLj4xUXF2fpMJBJcXFxio6OJpdWgnxaD3JpPcildSGf1oNcWo/H5ZJiiO0i88h2RqPR0iEgk4xGo+Li4sillSCf1oNcWg9yaV3Ip/Ugl9aDXCI1FEQAAAAAAIDNoSACAAAAAABsDgURZDuDwWDpEJBJBoNBzs7O5NJKkE/rQS6tB7m0LuTTepBLwLrxlhlkK0dHRzk7O1s6DGSSs7OzKlasaOkwkEXIp/Ugl9aDXFoX8mk9yKV1MCYlUdRCqiiIINtd+mqpEq5dsXQYAAAAAGxMrkLPqGhwR0uHgacUBRFku4RrV3T/8gVLhwEAAAAAgAlriAAAAAAAAJtDQQQAAAAAANgcCiIAAAAAAMDmUBABAAAAAAA2h4JINggMDJSnp6fpp3LlygoKCtInn3yS5jb27t0rT09PnT9/PluOBwAAAADAlvGWmWwSGhqq0NBQSdK9e/d05MgRhYeHy9nZWZ06dcry6/n5+Wn37t0qWLBglrcNAAAAAIC1oSCSTVxcXOTu7m76XLJkSe3du1erV6/OloKIo6Oj2fUAAAAAAMCjMWXmP+Tk5GT63Wg0au7cuWrYsKF8fHzUsmVLffnll488NzExUREREapTp458fX3Vp08fjR07Vl26dJGUcspMYGCgIiMjzdp4eNuaNWvUuHFjLV++XA0aNJCPj4/69Omjy5cva9CgQfLz81O9evW0atWqrL4NAAAAAABYHAWR/8iRI0f01Vdf6X//+58kKSIiQsuWLdPw4cO1fv16de3aVaNGjdKSJUtSPX/SpElasWKFRo4cqdWrV8vd3V2LFi3KVEwXL17UN998ozlz5mjatGn69ttv9fLLL6tSpUpavXq16tWrp1GjRunGjRuZug4AAAAAAE8bpsxkk9mzZ2v+/PmSpISEBCUkJMjHx0cvv/yyYmNjtWDBAk2ePFkNGjSQJJUqVUoXLlzQvHnzUkypiYuL09KlSzV06FA1btxYkhQeHq6ff/45UzE+ePBAw4cPl4eHh8qXL68KFSooV65cev311yVJr7/+uj7//HOdOXNGBQoUyNS1AAAAAAB4mlAQySbt27c3TWd58OCBzp49q4iICHXq1EljxozR/fv3NXDgQNnZ/f9BOg8ePFB8fLzu3btn1tbp06d17949+fr6mrYZDAZVq1ZNx48fz1ScpUqVMv3u4uKiYsWKmT7nzp1bkhQfH5+pawAAAAAA8LShIJJN8uXLp9KlS5s+e3h4KF++fOrYsaN27dolSZoyZYqee+65FOc6OjqafXZw+CdNRqMxUzE9ePAgxbZcuXKZfX64QAMAAAAAgLXi6fc/lFzQqFChghwcHHTx4kWVLl3a9LNjxw7NmzcvRVGidOnScnJy0qFDh8y2Hz58+JHXypUrl+7evWv6fPfuXV27di3rOgMAAAAAQA7GCJFsEhsbq7/++kvSP4WQP/74Q+PGjdMzzzyjF198Ue3bt9fUqVOVN29eVa1aVXv37tXEiRPVo0ePFG05OzurS5cumjZtmtzd3eXh4aGVK1fq8OHDqlmzZqrX9/X11caNGxUUFCQ3NzdNmzZN9vb22dpnAAAAAAByCgoi2WT+/PmmRVXt7OyUP39+Va9eXZMmTZKzs7OGDh2qAgUKaOrUqbpy5YqKFSumPn36qFu3bqm217dvXyUkJCg8PFxxcXEKCAhQw4YNdf/+/VSPHzBggG7evKnXX39drq6uCg0N1e3bt7OtvwAAAAAA5CQGY2YXpsB/YsuWLapWrZoKFixo2hYaGqqiRYtq3LhxFozs0Y4ePSpJyv/Tt7p/+YKFowEAAABga3IXKa6Sr/VTXFycoqOj5eXlJRcXF0uHhUyKjY3VsWPHUs1n8nOot7f3E9thDZEcYt68eRo4cKCOHTumc+fOacGCBdqzZ49atGhh6dAAAAAAAMhxKIjkEJMmTVKePHkUEhKi4OBgrV+/XlOnTlWtWrUsHRoAAAAAADkOa4jkECVKlFBUVJSlwwAAAAAAwCowQgQAAAAAANgcCiIAAAAAAMDmMGUG2S5XoWcsHQIAAAAAG8SzCB6HggiyXdHgjpYOAQAAAICNMiYlWToEPKWYMoNsFR8fr7i4OEuHgUxKfm87ubQO5NN6kEvrQS6tC/m0HuTSOhjs7GQ0Gi0dBp5CFESQ7fgfn5zPaDQqLi6OXFoJ8mk9yKX1IJfWhXxaD3IJWDcKIgAAAAAAwOZQEAEAAAAAADaHggiyncFgsHQIyCSDwSBnZ2dyaSXIp/Ugl9aDXFoX8mk9yCVg3XjLDLKVo6OjnJ2dLR0GMsnZ2VkVK1a0dBjIIuTTepBL60EurQv5tB7kMucwJiXJYMe/9yN9KIgg251d9onuX/nT0mEAAAAAsEK5nymm0h26WToM5EAURJDt7l/5U3EX/rB0GAAAAAAAmDCmCAAAAAAA2BwKIgAAAAAAwOZQEAEAAAAAADaHgggAAAAAALA5Fi+IdOnSRWFhYanuCwsLU5cuXdLcVmRkpAIDA02fT548qe+++y5T8f27zX97VIwbN25UxYoVNXz4cCUlJaW7Lxmxd+9eeXp66vz589l6HQAAAAAAcjqrestMaGioOnXqZPrco0cPtW7dWg0aNPhP49i4caPeffdddejQQeHh4TIYDBo2bJgSExP/0zgAAAAAAEDqrKogkidPHuXJk8eiMXzzzTd69913U4x8cXV1tWBUAAAAAADgYRafMpMenp6eWrVqlUJCQlSlShXVqVNHUVFRpv0PT28JDAzUhQsXFBUVZZqqcufOHQ0fPly1atVStWrV1LVrVx09etTsGitWrFDjxo1VpUoV9ezZU7du3UpzfJs2bdLAgQP1xhtvpJgG9PCUmb1796pixYrasWOHgoODVblyZTVp0kRbt241HZ+YmKiIiAjVqVNHvr6+6tOnj8aOHWs27ebAgQP63//+pypVqqhFixY6fvy42TUTExO1YMECBQUFydvbW0FBQVq2bJlpf3IcW7ZsUVBQkKpUqaKuXbvqzz//1AcffKDq1avL399fM2fOTPM9AAAAAAAgJ8hRBRFJmjBhglq3bq0NGzaoc+fOioyM1P79+1Mct2rVKhUtWlShoaGKjIyU0WjUm2++qXPnzmn27NlauXKlfH191aFDB0VHR0uSvvrqK40ZM0YhISFat26dqlatqiVLlqQprs2bN2vAgAHy9fXVgAEDnnh8YmKiJk6cqGHDhumrr75S+fLlNWTIEP3999+SpEmTJmnFihUaOXKkVq9eLXd3dy1atMh0/rlz5xQaGiovLy998cUX6t27t2bMmGF2jfHjx2vGjBl6++23tX79enXq1Eljx47VggULzOKYOXOmJk2apM8++0zHjx9Xy5YtlStXLn3++edq3769pkyZot9++y1N9wEAAAAAgJwgxxVEWrVqpZYtW6pkyZLq2bOn3Nzc9NNPP6U4rmDBgrK3t5eLi4vy58+vPXv26NChQ5oyZYp8fHzk4eFhKmAsXLhQkrRo0SI1a9ZMnTp1UtmyZdW9e3cFBAQ8MaaTJ09qwIABeuGFF3TgwAGzkR6P069fP/n7+6tMmTLq1auX7t69qxMnTiguLk5Lly5Vv3791LhxY3l4eCg8PFwVK1Y0nbty5UoVLlxYI0eOlIeHh4KCgvTWW2+Z9t+9e1fLli1Tnz599PLLL6tMmTLq2rWrOnbsqDlz5shoNJqO7du3r7y9veXn56datWrJ2dlZgwcPVtmyZdWjRw9THwEAAAAAsBYWL4g4ODgoKSkp1X1JSUlycDBf5sTDw8Pss6urqxISEp54nV9//VVGo1EBAQHy8/Mz/fz88886ffq0JOnEiRPy9vY2O8/Pz++Jbd+4cUP9+vXT/PnzVa9ePQ0bNkyXLl164nnPPfec6fe8efNKkhISEnT69Gndu3dPvr6+pv0Gg0HVqlUzfT5x4oQqVqwoe3t707aqVauafv/999+VkJBgdo4k1axZU9euXdO1a9dM20qXLm363cXFRSVKlJDBYJAkOTk5SZLi4+Of2B8AAAAAAHIKiy+q6ubmptu3b6e679atW8qXL5/ZNkdHxxTHPTza4VGSkpKUN29erVmzJsW+h9v8d3EmV65cT2y7atWq6tatmyRp3LhxCg4O1qBBg/TZZ5+ZFSwed91kRqPRVAR6XL8MBkOKWB8uHj3q3ORzHj7230UnOzuL18kAAAAAAMhWFn/yrVSpkn755ZcUIxDi4+N15MiRFCM2Mqp8+fK6e/euEhISVLp0adPP3Llz9e2330qSvLy8Uky/+feiq6l5uKDg7u6u999/X/v370+xpkdalS5dWk5OTjp06JDZ9sOHD5t+r1ChQor79ssvv5h+9/DwUK5cuXTw4EGzNg4cOCB3d/cUhSYAAAAAAGyJxQsi7dq1U1JSkt5++239/PPPunDhgvbt26devXrJwcFB7dq1y3DbefLk0ZkzZ3T16lXVrVtXXl5e6t+/v/bs2aOzZ8/qww8/1Jo1a0zTcLp3764tW7bok08+0ZkzZ7Ro0SJt2rQp3dd96aWX1Lp1a82cOTPVBV+fxNnZWV26dNG0adO0detWxcTEaMKECWYFkQ4dOiguLk7vvfeeTp8+re3btysyMtK0P2/evHr11Vc1bdo0ffXVVzp79qyWLFmipUuXKjQ01DQlBgAAAAAAW2TxgkjBggW1YsUKubm56Z133lFQUJAGDBigwoULa+XKlZkaydClSxd99913Cg0Nlb29vebPn6/KlSurX79+atGihfbv36+oqCj5+/tLkho0aKCPP/5Yq1ev1ssvv6zNmzcrNDQ0Q9cODw9X0aJFNWjQIN28eTPd5/ft21ctWrRQeHi4WrVqpT///FMNGzY0TbMpUqSIPvvsM126dEmtW7fW+PHjzRZVlaShQ4eqa9eumjRpkpo3b65ly5ZpxIgRGe4TAAAAAADWwmBMywIc+M9t2bJF1apVU8GCBU3bQkNDVbRoUY0bN86CkaVd8nSj3NvWKu7CHxaOBgAAAIA1ci5eSuX7Dn/sMbGxsTp27Ji8vLzk4uLyH0WG7PK4fCY/h6Zl+Q2LjxBB6ubNm6eBAwfq2LFjOnfunBYsWKA9e/aoRYsWlg4NAAAAAIAcj4LIU2rSpEnKkyePQkJCFBwcrPXr12vq1KmqVauWpUMDAAAAACDHs/hrd5G6EiVKKCoqytJhAAAAAABglRghAgAAAAAAbA4jRJDtcj9TzNIhAAAAALBSPG8goyiIINuV7tDN0iEAAAAAsGLGpCQZ7JgAgfThG4NsFR8fr7i4OEuHgUyKi4tTdHQ0ubQS5NN6kEvrQS6tC/m0HuQy56AYgozgW4NsZzQaLR0CMsloNCouLo5cWgnyaT3IpfUgl9aFfFoPcglYNwoiAAAAAADA5lAQAQAAAAAANoeCCAAAAAAAsDkURJDtDAaDpUNAJhkMBjk7O5NLK0E+rQe5tB7k0rqQT+tBLgHrxmt3ka0cHR3l7Oxs6TCQSc7OzqpYsaKlw0AWIZ/Wg1xaD3JpXcin9SCXTw9eq4vsQEEE2e632dMUe/GCpcMAAAAAkAO5PFtcnj36WDoMWCEKIsh2sRcv6O+zMZYOAwAAAAAAE8YcAQAAAAAAm0NBBAAAAAAA2BwKIgAAAAAAwOZQEAEAAAAAADaHRVWfMomJiVqxYoXWrFmj06dPy97eXuXKlVO7du3Utm1b3oEOAAAAAEAWoCDyFElISFDv3r115MgRvf3226pTp44SExO1a9cujR8/Xtu2bVNkZKTs7e0tHSoAAAAAADkaBZGnyOzZs3XgwAGtWrVKzz33nGm7h4eHatasqVdeeUXz5s1T9+7dLRglAAAAAAA5H2uIPCWSkpK0aNEitWnTxqwYkqxixYpq2bKlFi1apHPnzsnT01MbNmxQq1at5O3trTZt2uj06dOaPn26ateurZo1a2r06NEyGo2m9mfPnq2goCBVrlxZVatWVbdu3fTHH3+YruHp6alVq1YpJCREVapUUZ06dRQVFfWf3QMAAAAAAP4rFESeEjExMbp586aqVq36yGP8/f115coVJSUlSZIiIiL03nvv6fPPP9ft27fVoUMHnTlzRosWLVL//v21dOlSbd++XZK0cOFCzZs3T2FhYdq0aZOmT5+uM2fOaPz48WbXmDBhglq3bq0NGzaoc+fOioyM1P79+7Ov4wAAAAAAWAAFkafErVu3JEkFChR45DHJ+65fvy5JCg0NVc2aNVWhQgU1btxYsbGxGjNmjDw8PNShQwcVKlRIJ0+elCSVKlVKEyZMUEBAgIoXLy5/f381adJEJ06cMLtGq1at1LJlS5UsWVI9e/aUm5ubfvrpp+zoMgAAAAAAFsMaIk+J5GLHnTt3HnlMctGkYMGCkqTSpUub9rm4uKhw4cJydnY2bXNyclJ8fLwkKTAwUIcPH9bUqVMVExOjmJgYnTp1SkWKFDG7hoeHh9lnV1dXJSQkZKJnAAAAAAA8fRgh8pQoVaqU3N3dHzs9Zd++fXJ3dze9etfBwbyeZWf36HTOmTNHXbt21Y0bN+Tv76/Ro0crNDQ0xXGOjo4ptiWvQwIAAAAAgLWgIPKUsLe3V0hIiFatWqXTp0+n2H/y5EmtXbtWnTt3fmzh41FmzZql3r17a9SoUXr11Vfl6+urM2fOUOwAAAAAANgkpsw8RUJDQ3X06FF16tRJ77zzjurUqSNJ2r17t6ZNm6ZatWrpzTff1J9//pnutosVK6bvv/9egYGBsrOz07p167R582YVLlw4q7sBAAAAAMBTjxEiTxE7OztNnTpVYWFh+uqrr9S2bVu1adNG69ev16BBgzRz5kzZ29tnqO2PPvpI9+7dU9u2bdW5c2edOHFCo0eP1rVr13Tx4sUs7gkAAAAAAE83g5E5E8gmR48elSQ9WLVYf5+NsXA0AAAAAHKiPKXLym/0hEy1ERsbq2PHjsnLy0suLi5ZFBks5XH5TH4O9fb2fmI7jBABAAAAAAA2h4IIAAAAAACwORREAAAAAACAzaEgAgAAAAAAbA6v3UW2c3m2uKVDAAAAAJBD8TyB7EJBBNnOs0cfS4cAAAAAIAczJiXJYMcEB2QtvlHIVvHx8YqLi7N0GMikuLg4RUdHk0srQT6tB7m0HuTSupBP60Eunx4UQ5Ad+FYh2xmNRkuHgEwyGo2Ki4sjl1aCfFoPcmk9yKV1IZ/Wg1wC1o2CCAAAAAAAsDkURAAAAAAAgM2hIIJsZzAYLB0CMslgMMjZ2ZlcWgnyaT3IpfUgl9aFfFoPcglYN94yg2zl6OgoZ2dnS4eBTHJ2dlbFihUtHQayCPm0HuTSepBL60I+rQe5fDoYExNlsLe3dBiwQhREkO1+Hj9ed/44Z+kwAAAAAOQwrqVKyi8szNJhwEpREEG2u/PHOd0+dcrSYQAAAAAAYMIaIgAAAAAAwOZQEAEAAAAAADaHgggAAAAAALA5FEQAAAAAAIDNYVHVTDAajfriiy/0xRdf6OTJk7p7966KFSumBg0aqHv37nJ3d7d0iAAAAAAAIBWMEMmgpKQk9e7dW+PHj1dAQIAWLVqkzZs3Kzw8XEePHlXbtm117do1S4cJAAAAAABSwQiRDFqwYIF27NihlStXqlKlSqbtzz77rF544QU1b95c8+bN0+DBgy0YJQAAAAAASA0jRDLAaDRq8eLFatGihVkxJJmTk5MWLlyofv36SZIuX76s/v37q3r16nrhhRfUs2dPnTlzxnR8WFiY+vTpo9DQUFWtWlVz585VZGSkQkJCFBUVpdq1a8vPz08jRozQn3/+qR49esjHx0eNGzfWd999Z2rn4sWL6t+/v/z9/VWpUiXVq1dPEydOVFJSkiRpzZo1aty4sen/Vq5cWW3atNHBgwclSZ999pn8/PwUFxdnajMpKUn16tXTkiVLsv5GAgAAAABgIRREMuD8+fO6cOGCateu/chjihcvLkdHR8XGxqpLly6SpMWLF2vRokUqUKCAXnnlFV2+fNl0/KZNm1S7dm2tXr1awcHBkqQDBw4oJiZGS5YsUXh4uFasWKF27dqpadOmWrNmjTw8PBQWFiaj0ShJeuutt3Tnzh19+umn+uabbxQaGqpPPvlE27ZtM13nzz//1PLlyzVx4kR98cUXcnZ2NrXx8ssvKyEhQZs3bzYd/8MPP+jGjRummAAAAAAAsAYURDLg6tWrkqSCBQuabe/Zs6f8/PxMP82bN9eGDRt0+/ZtTZw4URUqVFD58uU1duxY5c2bVytXrjSdmy9fPnXr1k1ly5ZVsWLFJP0zOmP06NEqW7as2rZtqwIFCqhWrVpq1aqVPDw81KFDB924cUN//fWX7t27p5YtW+r9999XhQoVVLJkSYWEhKhw4cL67bffTNdJSEjQ6NGj5evrq+eff16vv/66/vjjD/31118qWLCgAgMD9eWXX5qO/+KLLxQYGKh8+fJl5y0FAAAAAOA/xRoiGVCgQAFJ0q1bt8y2jx49Wvfu3ZMkLVq0SNu2bVN0dLRu3bqlGjVqmB17//59nT592vS5dOnSKa5TqFAh5c2b1/TZxcVFpUqVMn12cnKSJMXHx8vJyUmdO3fWN998oyNHjujs2bP67bffdPXqVdOUmWQeHh6m311dXSX9UyiRpLZt2+qtt97SlStX5OLioq1bt2ratGlpvDMAAAAAAOQMFEQyoGTJknJ3d9fevXvVrFkz0/YiRYqYfk8eUZGUlKSyZctq5syZKdpxcXEx/Z5c3HhYrly5Umyzs0t9UE9sbKw6d+6se/fuqUmTJmrdurWqVKmiTp06pTjW0dExxbbkaTd16tRR4cKF9dVXXyl//vxyc3NTnTp1Ur0mAAAAAAA5FQWRDLC3t1fXrl01ffp0dejQQRUqVEhxzJ9//ilJKl++vNatWydXV1fTFJuEhAQNHDhQTZo0MSuoZMbu3bv166+/6vvvv1fhwoUlSTdv3tS1a9dMxY60sLe3V6tWrbRlyxa5ubmpZcuWsre3z5IYAQAAAAB4WrCGSAZ169ZNAQEB6tixo2bNmqXjx4/r/Pnz2rZtm0JDQ7V69WrVqlVLLVq0UL58+dSnTx8dPnxYp0+fVlhYmHbu3ClPT88si6do0aKSpC+//FIXLlzQgQMH1KtXLyUkJCg+Pj5dbbVp00aHDx/WDz/8oNatW2dZjAAAAAAAPC0YIZJBdnZ2mjJlir7++mutXr1aCxcu1O3bt1W4cGFVr15dixcvNq0bsnjxYn300Ud64403lJiYqEqVKmn+/Plma3lkVpUqVTR06FAtWLBAU6ZMUZEiRdSsWTMVK1ZMR48eTVdbZcqUkY+Pj5KSkrI0RgAAAAAAnhYGY3rmU8AmGI1GNWrUSD179tT//ve/DLeTXIi5MXOWbp86lVXhAQAAALARbuXKqd6M6ZluJzY2VseOHZOXl5fZWo7ImR6Xz+TnUG9v7ye2wwgRmCQkJGjbtm3as2ePYmNj1bx5c0uHBAAAAABAtqAgApNcuXLpgw8+kCRNnDiRyikAAAAAwGpREIGZXbt2WToEAAAAAACyHW+ZAQAAAAAANoeCCAAAAAAAsDlMmUG2cy1V0tIhAAAAAMiBeJZAdqIggmznFxZm6RAAAAAA5FDGxEQZ7O0tHQasEFNmkK3i4+MVFxdn6TCQSXFxcYqOjiaXVoJ8Wg9yaT3IpXUhn9aDXD4dKIYguxiMRqPR0kHAOv30008yGo3KlSuXDAaDpcNBJhiNRiUkJJBLK0E+rQe5tB7k0rqQT+tBLq0HubQuj8tnfHy8DAaDqlat+sR2mDKDbJP8xeR/cHI+g8EgR0dHS4eBLEI+rQe5tB7k0rqQT+tBLq0HubQuj8unwWBI8zMoI0QAAAAAAIDNYQ0RAAAAAABgcyiIAAAAAAAAm0NBBAAAAAAA2BwKIgAAAAAAwOZQEAEAAAAAADaHgggAAAAAALA5FEQAAAAAAIDNoSACAAAAAABsDgURAAAAAABgcyiIAAAAAAAAm0NBBAAAAAAA2BwKIgAAAAAAwOZQEEG2SEpK0rRp01S3bl35+vrqzTff1Llz5ywdFjJp9uzZ6tKli6XDQAbdvHlTI0aMUL169VS1alV16NBBBw4csHRYyIBr167p3XffVa1ateTn56fu3bvr9OnTlg4LmRQTEyM/Pz+tWbPG0qEggy5fvixPT88UP+Q0Z1q7dq2aNWsmb29vNW/eXF9//bWlQ0IG7N27N9W/S09PTzVs2NDS4SGdHjx4oKlTpyogIEB+fn7q1KmTDh06lOH2KIggW8yYMUNLly7V+++/r+XLlyspKUndunVTfHy8pUNDBi1ZskRTpkyxdBjIhAEDBujnn3/W5MmTtXr1anl5eemNN97Q77//bunQkE69e/fW2bNnNWfOHK1atUpOTk4KCQlRXFycpUNDBiUkJGjQoEGKjY21dCjIhOPHjyt37tzatWuXdu/ebfpp1qyZpUNDOq1bt07Dhg1Tp06dtGHDBgUHB5v+/yhyFj8/P7O/x927dysqKkoGg0G9evWydHhIp5kzZ+rzzz/X+++/r7Vr16ps2bLq1q2brly5kqH2KIggy8XHx2v+/Pnq06ePGjRooAoVKigiIkKXLl3S5s2bLR0e0uny5cvq2bOnJk2apDJlylg6HGTQ2bNn9f3332vUqFGqXr26ypYtq+HDh+uZZ57R+vXrLR0e0uHWrVsqXry4PvjgA1WpUkUeHh7q1auXrly5opMnT1o6PGRQZGSk8ubNa+kwkEknTpxQmTJl9Mwzz8jd3d304+TkZOnQkA5Go1FTp05V165d1alTJ5UqVUpvvfWWateurX379lk6PKSTo6Oj2d9jnjx59OGHH6p169Zq27atpcNDOm3dulXBwcGqU6eOSpcurbCwMN25cyfDo0QoiCDLHT9+XH///bf8/f1N29zc3FSxYkXt37/fgpEhI3799VflypVLX375pXx8fCwdDjKoQIECmjNnjry9vU3bDAaDDAaDbt++bcHIkF758uXTxx9/rPLly0uSrl+/rgULFqho0aIqV66chaNDRuzfv18rVqzQ+PHjLR0KMum3336Th4eHpcNAJsXExOjChQt6+eWXzbbPmzdPPXr0sFBUyCqzZs1SXFychgwZYulQkAGFChXS9u3bdf78eSUmJmrFihVydHRUhQoVMtSeQxbHB+jSpUuSpGLFipltf+aZZ0z7kHMEBgYqMDDQ0mEgk9zc3FS/fn2zbZs2bdLZs2f13nvvWSgqZNbw4cO1cuVKOTo6aubMmXJxcbF0SEin27dva/DgwQoPD0/x/zeR85w4cUIFChRQp06dFBMTo9KlS+utt95SvXr1LB0a0iEmJkaSFBsbqzfeeEPR0dEqUaKE3nrrLf6bKIdL/keEgQMHKn/+/JYOBxkwbNgw9e3bVw0bNpS9vb3s7OwUGRmpUqVKZag9RoggyyXPYXd0dDTbnjt3bt2/f98SIQH4l59++klDhw7VSy+9pAYNGlg6HGTQa6+9ptWrVys4OFi9e/fWr7/+aumQkE6jRo2Sn59fin+JRs7z4MED/f7777p165beeecdzZkzR76+vurevbt+/PFHS4eHdLh7964kaciQIQoODtb8+fP14osvqlevXuQyh1u6dKlcXV316quvWjoUZNCpU6fk6uqq6dOna8WKFWrTpo0GDRqkY8eOZag9RoggyyXPk42PjzebM3v//n05OztbKiwA/2fr1q0aNGiQqlatqkmTJlk6HGRC8hSZsWPH6vDhw1q8eLE+/PBDC0eFtFq7dq0OHDjAOj5WwsHBQXv37pW9vb3pv38qV66skydPat68eWZTifF0y5UrlyTpjTfeUOvWrSVJXl5eio6O1qeffkouc7C1a9eqVatWrOuTQ/35558aOHCgFixYoOrVq0uSvL29derUKUVGRmrGjBnpbpMRIshyyUN+/73S75UrV1SkSBFLhATg/yxevFjvvPOOAgICNGvWLOXOndvSISGdrl+/rg0bNujBgwembXZ2dipXrlyGV1iHZaxevVrXrl1TgwYN5OfnJz8/P0nSyJEj1a1bNwtHh4zIkydPiget559/XpcvX7ZQRMiI5P9eTV6rKVm5cuV0/vx5S4SELHD8+HGdO3eOEXk52OHDh5WQkGC2Jp4k+fj46OzZsxlqk4IIslyFChWUN29e7d2717Tt9u3bio6OVo0aNSwYGWDbkl+F3alTJ02ePDnFtDbkDFevXtWAAQPMhm0nJCQoOjqaxRxzmEmTJmnjxo1au3at6UeS+vTpo7Fjx1o2OKTbyZMnVbVqVbP//pGkX375hQWPc5hKlSopT548Onz4sNn2EydOZHidAljegQMHVKhQoQwvvgnLK1q0qKR/FrB+WPIbvjKCKTPIco6OjurcubMmTZqkggULqnjx4po4caKKFi2ql156ydLhATYpJiZG48aNU+PGjdWjRw9dvXrVtM/JyUmurq4WjA7pUb58edWrV08ffPCBPvjgA+XLl0+zZ8/W7du3FRISYunwkA6PGjVZqFAhRlTmQB4eHnruuec0ZswYjR49WgUKFNDKlSt16NAhrV692tLhIR2cnJzUrVs3TZ8+XUWKFFGVKlW0YcMGff/991qwYIGlw0MGRUdHy9PT09JhIBOqVKmiatWqaciQIRo5cqSKFi2qtWvX6scff9SyZcsy1CYFEWSLPn366MGDBwoPD9e9e/dUo0YNzZs3zzQnE8B/a9OmTUpISNCWLVu0ZcsWs32tW7fmdZ85zOTJk/Xxxx+rf//+unPnjqpXr64lS5bo2WeftXRogM2ys7PTrFmz9PHHH6tfv366ffu2KlasqE8//TTF1As8/Xr16iVnZ2dFRETo8uXL8vDwUGRkpF544QVLh4YM+uuvv3izTA5nZ2enmTNnasqUKRo6dKhu3bql8uXLa8GCBfLx8clQmwaj0WjM4jgBAAAAAACeaqwhAgAAAAAAbA4FEQAAAAAAYHMoiAAAAAAAAJtDQQQAAAAAANgcCiIAAAAAAMDmUBABAAAAAAA2h4IIAADItOvXr+v06dO6e/eupUMBAABIE4PRaDRaOggAAJCztWnTRomJiVq+fLmcnZ0tHQ4AAMATOVg6AAAAkLPt2LFDFy9e1KpVqyiGAACAHIMRIgAAAAAAwOawhggAAI/RpUsXeXp6qn379o88pn///vL09FRYWFiq+ydOnKjKlStr3759T7ze3r175enpqb1790qS1qxZI09PT50/fz5jHUjHtTLq/Pnz8vT01Jo1a7I8puzsf1p4enoqMjIyS9p51I+fn1+GY0pvDtN6fFb1O6vzd+TIEQUFBSk+Pl5S2uIMDAw0+9vcs2ePgoKCVLlyZXXr1i3DsURGRsrT0zPD5z9JWFiYAgMDH3tMVv0NS9KqVavUvXv3TLcDADkJU2YAAHgCOzs7HTp0SJcuXVLRokXN9sXGxmr79u2PPPfatWtaunSpRo4cqZo1a6b72g0aNNCKFSv0zDPPpPtca2BN/W/Xrp3+97//pdhuZ5fxf5+qVKmSVqxYoXLlymXL8U+T+/fva8iQIXr33Xfl6OiY5vOioqKUN29e0+ePPvpISUlJmjNnjgoVKpQdoeZIbdu21ZIlS7Rq1Sq1a9fO0uEAwH+CgggAAE9QsWJFnTp1St98841CQkLM9m3fvl3Ozs5yc3NL9dzcuXNr7dq1Kl26dIauXbBgQRUsWDBD51oDa+p/0aJF5evrm6Vt5s2bN11tpvf4p8nSpUvl4OCgRo0apeu8ihUrmn2+efOmatSoodq1a2dleDmewWBQjx49NGbMGAUHB8vJycnSIQFAtmPKDAAAT+Di4qL69evrm2++SbFv48aNCgoKkoOD+b8xJP8LdOvWrdW8eXMFBQVp0aJFKc5fvny5goKCVKVKFXXu3FkXL14025/alIPPP/9cbdq0ka+vr6pUqaKWLVvq66+/fmI/nnQtSTpz5oz69OmjF198Ub6+vurSpYsOHjz4xLb/zdPTU0uWLNGwYcNUs2ZN+fn5qW/fvrp69Wqm+79jxw61b99evr6+qlOnjkaMGKHbt2+b9l+8eFEDBgxQzZo15ePjo9dee03R0dFPjHnfvn169dVX5ePjo6CgIP3www8pjrl//74++ugj1a9fX5UrV9bLL7+sjRs3pvf2PFJ6209tysShQ4cUGhqqqlWrqlatWhowYIAuX778yOPT0u/z589r8ODBqlOnjipVqiR/f38NHjxYN27cMB2TlJSkGTNmqEGDBvLx8VGvXr1069atFG2dOHFCPXr0UNWqVVW1alX17t1b586de+x9iY+P16effqrg4ODHHpea5CkzyVO7Lly4oLVr15rdh4zElFb79+/XG2+8oRo1aqhy5coKDAxUZGSkkpKSTMfcunVLQ4cOVc2aNVWjRg1NnDjRbH+ytPwNP+n7n3wfPv30UzVp0kQ+Pj5avXq1JCkgIED37983fQYAa0dBBACANGjWrJlp2kyyu3fvaufOnak+pI0aNUrTpk1TixYtNGvWLDVp0kTjxo3T9OnTTccsXrxYI0eOVP369TVjxgz5+Pho+PDhj41jyZIlGjFihBo1aqTZs2dr0qRJcnR01KBBg8xi+7e0XOvUqVNq06aNzp8/r/DwcE2aNEkGg0GvvfZamtY/+beIiAglJSVp8uTJGjx4sLZv365x48Zlqv/bt29Xjx49VKhQIU2ZMkWDBg3S1q1b1b9/f0nS9evX1b59e/36668aPny4Pv74YyUlJalTp046ffr0I9v99ddfFRoaKldXV02bNk1du3bVgAEDzI4xGo3q3bu3li9frtdff10zZ86Un5+f+vfvr7Vr1z7xfiQlJenBgwcpfrKqfUmKjo5W586dTYWV0aNH65dfftEbb7xhdq309DsuLk5du3bV6dOnNXLkSM2bN09du3bVhg0bFBERYTpu4sSJmj59utq1a6eoqCjlz59fH3/8sVlbMTExat++va5du6YJEyZo7NixOnfunDp06KBr1649sl979+7V5cuX9dJLL6XpPqTmmWee0YoVK+Tu7q769etrxYoVqlSpUoZjSovjx48rJCRE+fPnV0REhGbOnKnq1asrKirKVMRMSkpSt27dtGPHDg0ZMkTjx4/XTz/9lKIQlpa/l/R8/yMjI/Xmm2/qo48+0osvvijpnxFtAQEBWr9+fab6DQA5BVNmAABIgwYNGsjZ2dls2syWLVtUqFAhVatWzezYmJgYrVy5UgMGDDAtUlinTh0ZDAbNnj1bHTt2VP78+TVjxgw1a9ZM7733numYu3fvavny5Y+M49y5c3rjjTfUq1cv07bixYurTZs2OnjwoJo3b57iHKPRmKZrRUVFydHRUQsXLjStudCgQQMFBwfro48+0qpVq9J1z8qXL68PP/zQ9PnIkSOmUTZpjenfIiMj5eXlpaioKBkMBkmSo6Ojpk6dqqtXr2rRokW6efOmli1bpuLFi0uS6tWrp2bNmmnq1KmaNm1aqu3Onj1bhQoV0syZM5UrVy5JUoECBUyFFkn64YcftGvXLkVERKhZs2aSpLp16youLk6TJk1ScHBwipFCD5sxY4ZmzJiRYvvu3bvl7u6e6fYladasWcqfP7/mz5+v3LlzS/qnEDBw4ECdPHkyQ/0+c+aMihYtqgkTJqhkyZKSpFq1aunw4cOmQtnt27e1aNEivf7663r77bdNsV+5ckW7du0ytRUVFSVnZ2ctWLDA9B3z9/dXo0aN9Mknn2jIkCGp9mvPnj1yc3NT2bJlH9v/x3F0dJSvr68cHR1VsGBB09ShkSNHZiimtDh+/Lhq166tiRMnmtaKefHFF7Vt2zbt3btXzZs3186dO3XkyBHNnTtX9erVM13/4QVV0/r38tlnn6X5+9+0aVO1bds2Rcze3t7auHGj7t69a7b2CgBYI0aIAACQBk5OTgoMDDSbNrNhwwY1bdrU9GCebM+ePTIajQoMDDQbCRAYGKj79+/r4MGD+v3333Xt2jUFBASYndu0adPHxhEWFqZBgwbp9u3bOnTokNatW6clS5ZIkunNG/+W1mvt27dPAQEBZg9BDg4Oat68uX755Rf9/fffj43t3/69VkXRokUVFxeXrpgedu/ePUVHR6tRo0Zm97xZs2batGmTChcurB9//FFeXl4qUqSI6b7b2dmpXr16qU4FSXbw4EHVrVvXVBSQpJdeekn29vamzz/++KMMBoPq16+fIq9//fVXqgWHh73yyitatWpVip8CBQpkSfvJ/ahXr56pGCJJfn5+2rZtm7y8vDLUby8vLy1dulTFixfXmTNntGPHDs2bN0+///676Tt36NAhJSQkPDGfe/bsUc2aNeXk5GTqX968eVW9evXH5ufcuXOmB/ysltGY0qJVq1aaO3euEhISdPz4cW3atEnTpk1TYmKiEhISJEkHDhxQrly5VLduXdN5ydP0kqX17yU93//Uvg/SPwXWxMTEx444AwBrwQgRAADSqGnTpnr77bd16dIl5c6dWz/++KP69euX4ribN29KUqqjNSTp8uXLpoVCkx+Gk7m7uz82hj/++EMjRozQjz/+qFy5cum5555ThQoVJP3zr8ipSV7H4UnXunXrlgoXLpzi/MKFC8toNOru3bvKkyfPY+N7mLOzs9lnOzs7U4xpjenf8RmNxse+GeTmzZs6e/asKlWqlOr+uLi4FHElt/3vWBwcHMy23bx5U0ajUVWrVk217StXrjzyIVP6Z6SGt7f3Y2PPTPvJbaTnzSlp6bckffrpp5o1a5Zu3rypwoULq3LlynJ2dtadO3dM7UhPzufNmze1cePGVNdFedziuXfv3k01b1khozGlxb179/T+++9r3bp1evDggUqUKCE/Pz85ODiY/S3kz58/RWH14XuXnvv7pO9/MhcXl1SPSd6enFsAsGYURAAASKN69eopT548+uabb+Ti4qISJUqocuXKKY5LfuPMZ599lmoB4dlnnzUtAvrvNQqSiympSUpKUvfu3ZUrVy6tWrVKXl5ecnBw0KlTp7Ru3bpHnpf8EPWka+XLly/FoqeS9Ndff5m1kxXSGtPD8ubNK4PBoOvXr5ttv3//vvbs2SMfHx+5urqqZs2aGjx4cKptPOp1rfnz50/Rd6PRaLYoqKurq1xcXLRw4cJU28jom4Sysn1XV9cU90f6ZyHa1Iopaen3+vXrNX78eL377rtq06aNqUjQt29fHT16VJJ5Pp977jnTuf/Op6urq2rXrq3XX389RSyPmw5UoEABXbly5ZH7MyOjMaXF2LFjtWnTJk2ZMkW1a9c2FRv8/f1NxxQoUEA3btxQYmKi2cich+9dWv9eMvr9f9ijii8AYI2YMgMAQBo5OjqqUaNG2rRpk77++utHjgCpXr26JOnGjRvy9vY2/Vy/fl1Tp07VzZs3VaZMGRUrVizFm2u2b9/+yOvfuHFDMTExateunby9vU0Pazt37pSkVN9KISnN16pRo4a2b9+uu3fvmrYlJiZqw4YN8vb2TtPDVFplpP958uSRl5dXimN27typ7t2768qVK6pZs6ZiYmJUtmxZs3u/bt06rVq1yuyB82H+/v7auXOn2b+g79q1yzStQZJq1qyp2NhYGY1Gs7ZPnDih6dOnp7poaXpkRfvVq1fX999/bzZ9Kjo6Wt27d9evv/6aoX4fPHhQbm5u6tatm6kY8vfff+vgwYOm75yfn5+cnJyemM+aNWvq1KlT8vLyMvWvcuXKWrBggbZs2fLIfj377LO6dOnSI0dBZUZGY0qLgwcP6oUXXlCjRo1MxZBffvlF169fN907f39/PXjwQFu3bjWdFx8fr++//970Oa1/Lxn9/j/s8uXLsre3V5EiRTLcbwDIKRghAgBAOjRr1kw9evSQnZ2dwsPDUz3G09NTLVq00PDhw3XhwgVVrlxZMTExioiIUIkSJVSmTBkZDAYNGjRIAwcOVHh4uJo0aaJDhw5p2bJlj7x2oUKFVLx4cS1ZskRFixaVm5ubdu3aZRpR8PBD7cPSeq23335bO3fuVNeuXU0jURYvXqxz587pk08+yeAdS11G+i9Jffr00VtvvaUBAwaoVatWunr1qiZPnqxGjRqpfPnyCgkJ0bp16xQSEqLQ0FAVKFBAGzdu1MqVKzV06NBHttu7d29t3bpVb7zxhrp166br169rypQpZmtr1K9fXzVq1FCvXr3Uq1cveXh46MiRI5o2bZrq1q2b6ekVWdF+r1699Oqrr6pHjx7q2rWr7t27pylTpqhKlSp68cUX9fPPP6e731WqVNGyZcs0fvx4BQQE6MqVK5o3b56uXr2qfPnySfqnWNWrVy9NmTJFzs7OqlWrlnbs2JHigb1Xr15q3769evTooQ4dOih37txasWKFtm7d+sgFb6V/FiKdM2eOTpw4IU9PT7N9hw4d0oIFC1KcU7duXXl4eKTpnmUkpmSpXdvNzU1t2rRRlSpV9PXXX2vZsmXy8PDQ8ePHNXPmTBkMBtPfq7+/v+rUqaPw8HBdu3ZNxYsX18KFC3X9+nXT9Ke0/r1k9Pv/sIMHD6p69erZNkUJAJ4mFEQAAEiH2rVry83NTcWKFXvsw9aHH36o2bNna/ny5bp06ZIKFSqkZs2aqV+/fqZ/pQ0ODpadnZ1mzJihdevWqXz58hozZkyK154+bMaMGRo7dqzCwsLk6OiocuXKaebMmRo3bpwOHDigLl26pHpeWq71/PPPa+nSpZo8ebKGDh0qg8GgKlWqaOHChaZRL1kpI/0PCAjQrFmzFBUVpd69e6tgwYJ6+eWX9c4770iSihQpouXLl+vjjz/WqFGjdP/+fZUpU0Zjx45Vu3btHtlumTJltHjxYo0fP179+/dXoUKFTK9ATWZnZ6c5c+Zo6tSpmj17tq5du6YiRYro9ddfV+/evTN9P7Ki/YoVK2rRokX6+OOP1a9fP+XNm1f169fXoEGDUh3hk5Z+t27dWufPn9fq1au1dOlSFSlSRPXr11fHjh01fPhwnT59Wh4eHurRo4dcXFz02Wef6bPPPpOfn5+GDBmiUaNGmdqqUKGClixZooiICA0ePFhGo1Hly5fX9OnT1bBhw0f2q3r16ipUqJB27NiRoiCye/du7d69O8U5BQoUSFNBJKMxJXv4TUrJSpUqpTZt2igsLEwJCQmaMmWK4uPjVaJECb311ls6deqUtm3bZpomExUVpUmTJmnatGm6f/++mjVrpldeeUXffvutqc20/L1k9Puf7P79+9q7d2+qayMBgDUyGLNj7CEAAACQhebPn69ly5Zp8+bNKRYgRdZYu3atJk2apK1bt8rJycnS4QBAtmMNEQAAADz1OnbsqKSkpBTraCBrJCUlaf78+Xr77bcphgCwGRREAAAA8NRzcnLSxIkTFRERYbZoLLLG6tWr5e7urvbt21s6FAD4zzBlBgAAAAAA2BxGiAAAAAAAAJtDQQQAAAAAANgcCiIAAAAAAMDmUBABAAAAAAA2h4IIAAAAAACwORREAAAAAACAzaEgAgAAAAAAbA4FEQAAAAAAYHMoiAAAAAAAAJvz/wAWApJOSr+sagAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Média do índice de felicidade (Life Ladder) para cada país\n", + "media_felicidade_paises = df.groupby('Nome do País')['Índice de Felicidade'].mean()\n", + "\n", + "# Deixar em ordem decrescente e selecionar os 20 mais felizes\n", + "media_felicidade_paises_decresc = media_felicidade_paises.sort_values(ascending=False)\n", + "media_felicidade_paises_top20 = media_felicidade_paises.sort_values(ascending=False).head(20)\n", + "\n", + "# Gráfico de barras\n", + "plt.figure(figsize=(12, 8))\n", + "sns.barplot(x=media_felicidade_paises_top20.values, y=media_felicidade_paises_top20.index, hue=media_felicidade_paises_top20.index, palette='coolwarm', legend=False)\n", + "\n", + "plt.title('Os 20 Países Mais Felizes do Mundo', fontsize=16)\n", + "plt.xlabel('Média do Índice de Felicidade (Life Ladder)')\n", + "plt.ylabel('País')\n", + "\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### A posição do Brasil no ranking" + ] + }, + { + "cell_type": "code", + "execution_count": 128, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "O Brasil está na posição 25 no índice de felicidade.\n", + "O Brasil está na posição 41 no índice de felicidade em 2020.\n" + ] + } + ], + "source": [ + "# Posição do Brasil - média\n", + "posicao_brasil = media_felicidade_paises_decresc.index.get_loc('Brazil') + 1 \n", + "# +1 para obter a posição na lista iniciando em 1\n", + "\n", + "# Filtrar os dados para o ano de 2020\n", + "dados_2020 = df[df['Ano'] == 2020]\n", + "\n", + "# Ordenar os países pelo índice de felicidade em ordem decrescente\n", + "paises_ordenados_2020 = dados_2020.sort_values(by='Índice de Felicidade', ascending=False)\n", + "\n", + "# Encontrar a posição do Brasil\n", + "posicao_brasil_2020 = paises_ordenados_2020['Nome do País'].tolist().index('Brazil') + 1\n", + "\n", + "print(f\"O Brasil está na posição {posicao_brasil} no índice de felicidade.\")\n", + "print(f\"O Brasil está na posição {posicao_brasil_2020} no índice de felicidade em 2020.\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Índice de felicidade no Brasil ao longo dos anos" + ] + }, + { + "cell_type": "code", + "execution_count": 129, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAIuCAYAAADKTOm9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADNBUlEQVR4nOzdd1xT9/oH8E8SAoQhS4a4EDCgAsoQwTqx1TprbW21tlq1Sztux/3Vjltrq3bcDruX1dqpHfaqHdpWUetEQRQURRBBkD2VHZLz+wOSigQlEDhJ+Lxfr74q55zkPMk36znf8UgEQRBARERERERERCZHKnYARERERERERKQfk3YiIiIiIiIiE8WknYiIiIiIiMhEMWknIiIiIiIiMlFM2omIiIiIiIhMFJN2IiIiIiIiIhPFpJ2IiIiIiIjIRDFpJyIiIiIiIjJRTNqJiIiIiIiITBSTdiIiEa1YsQIBAQGYNWsW6urqxA6HiIiIiEyMRBAEQewgiIi6o8LCQkyYMAEODg74+eef0atXL7FDIiIiIiITw552IiKRrFu3DhqNBu+++y4TdiIiIiLSiz3tRERERERERCaKPe1EIomLi0NAQECb/4uLi+vSuObOndsl59O6cOEC5syZg+DgYMTExODRRx/F8uXLMXjwYKxbt65LY9Fas2YNAgIC8P7773fK/Wuf65iYmE65fwBoaGjQvYauFBMTg4CAAGRlZXXauTuqtdiNqa3vv3vuuafd53j//fcREBCANWvW6Lb9/PPPCAgIwL///e923aeh79OueC4PHjzY4efKVD3zzDN6XxdDhgzByJEjsXjxYvz+++9ih9mCNs6GhgYAQE5ODgICAjBmzBiRI7s+7WdUV333mbN///vfCAgIwM8//yx2KM0sWLAAAQEBGDlyJOrr68UOh8isWYkdAFF3Z2dnhwkTJlz3uJ49e3ZBNOJZs2YNzp07h/Hjx6OoqAhHjx5FVVUVoqKicMcdd4gdHlm4G2+8EQqFotX9fn5+XRgNmSqlUtnswkdDQwOKi4sRFxeH/fv3IykpCc8884yIERKZhpycHMTFxcHGxgYlJSX466+/MHXqVLHDIjJbTNqJRObi4oI333xT7DBEd2UvJHW+DRs2QKVSwdvbW+xQTMKzzz6LPn36dNn5brrpJgwdOhSOjo7tun1ISAh+//33a15oIOObOHEiHn300Rbbz58/jzlz5uCLL77AlClTEBISIkJ0LWl7/62s+HOPutbPP/8MQRCwcOFCfPLJJ9i0aROTdqIO4PB4IqJuqF+/fvDz84NcLhc7lG7J0dERfn5+8PDwaNftFQoF/Pz8eNHFRAwYMACzZ88GAOzcuVPkaP7h5+fHUSLU5QRBwJYtWyCTybBgwQL4+vriyJEjOHfunNihEZktJu1EZubxxx9HQEAAfvzxR737N2zYgICAALz22mvNtv/yyy+YN28ewsLCEBISgunTp+Pjjz9GTU3Ndc95vfmzrc2Prq+vx4YNGzBr1iyEhoYiOjoa8+fPx99//93iPgoKCvD6669j+vTpCA0NRVBQEMaNG4dly5YhIyND73kTExPxyCOPIDo6GkFBQRg/fjxefPFF5OXlXfcxXamwsBAvvfQSxo8fj5CQEMyaNeu6P7z37t2LxYsXIzIyEsHBwZg0aRLeeOMNlJeXG3RufbTzZ0+fPo2tW7fitttuw7BhwxAZGYlHH30UaWlpem+3fft2zJkzB2FhYYiKisLy5ctRUVGh99jW2qyyshIffPABpk2bhmHDhmH06NF46KGHcPz48Rb3oVar8f3332P27NkIDQ1FaGgo7rzzTl0PiyEMiR0A6urqsHbtWsyYMQNDhw5FeHg45s+fj9jYWIPO214dfezXmtMeFxeHpUuXYtSoUQgNDdW9V6urq5sd09p70tDn8uTJk/i///s/xMTEIDg4GMOGDcPkyZPx5ptv4tKlSy2Or6+vx2effYYpU6Zg6NChuPHGG/HZZ59BrVa3eo7CwkKsXLkSMTExCAoKwsiRI/HEE0/g7Nmz13uqdNr7vjDW58T1eHl5AQCqqqqabQ8ICMAtt9yCI0eO4Oabb0ZwcDAmTpyIzMxMAEBFRQXef/99zJo1C+Hh4QgKCsKoUaPw2GOPISkpqcV5CgoKsHz5ckyePBkhISGIjIzE/PnzsW3bthbHXj2nvT0MfX0AHfu+6Qi1Wo1vv/1W99oYNmwYbrvtNnzzzTctngPte2j16tXIyMjAY489hhEjRui+AzZv3qz3HAUFBVixYoXu+Zg2bRq+++47xMfHIyAgQO/0CGN9X2RmZuL//u//MGrUKAwbNgx333034uPjr3kbQ9rCkNfWtRw6dAgXL15EZGQkXF1dMWPGDADAxo0b9R7f3rYoKyvDG2+8gUmTJiEoKAiRkZFYvHgx9u7dq/d4bTuMHj262W8MXkwgc8DxUkRm5pZbbsH27dvx22+/6Xp2rvTLL7/ojgMar3g//fTT2LZtG6ytrTF8+HDY2dnh6NGjeOedd7Bjxw5s2LABLi4uRo2zqqoKixYtwvHjx9GjRw9ERUWhrq4OcXFxiIuLw/LlyzFv3jwAQEZGBubNm4fS0lL4+/tj1KhRqK6uRlJSErZs2YJdu3bhl19+aVYWbePGjXj55Zeh0WgwdOhQeHl54cyZM9i0aRN27NiBtWvXtmmIak5ODu6++27k5eXBx8cH48aNw7lz5/Dwww/D399f723WrFmDTz75BDKZDOHh4XBxccHx48fx+eefY/v27fjyyy/Rt2/fDj+HH374If766y8EBgZi9OjRSEpKwp9//omDBw9iy5Ytzc7x7rvv4qOPPoJcLkdUVBRkMhm2bt2KhISENp+voKAACxYswPnz5+Hu7o7Ro0ejpKQEu3fvxt69e/Hhhx/qFs1raGjAI488gt27d8PR0RFhYWGwsrLCkSNH8Oyzz+LIkSMtLhy1xtDYKysrsXDhQiQlJcHV1RVRUVGor6/H0aNHERcXh0ceeUTvEGZjMeZjv9rnn3+ON998ExKJBGFhYbrX1jvvvIN9+/Zhw4YNsLa2bvX2hj6X27dvx1NPPQWNRoNhw4YhKCgIJSUlOH78ONauXYtDhw7hxx9/hFTaeI1fpVLh/vvvx+HDh+Hs7IwxY8agtLQUb7/9dqs9umfOnMGiRYtQUlKC/v37Y9y4cSgoKMDvv/+OXbt24f3338fYsWPb/BwZ8r4w1udEW5w6dQoAMGzYsBb7SkpKsGTJEnh7e2PUqFHIyclB//79UVJSgjlz5uDChQvo06cPoqKioFKpcOrUKfzxxx+IjY3Fxo0bERwcrLuf22+/HYWFhVAqlRg3bhwqKip0r/2srCyjvvYNfX2I9X0DNF7Ie+CBB3D48GHY29tjxIgRkEgkiIuLw8qVK7Fr1y58+umnLd4/6enpmD17NmxsbBAaGory8nIkJibiueeeQ0VFBRYtWqQ7NjMzE/Pnz0dBQQF8fHwwfvx4nDt3Di+99JLedgeM931x8uRJLFq0CBUVFQgICEBYWBhOnjyJe++9F717925xvKFtYczXljbJnjlzJoDG3yPvvfcetm7din//+9+wtbXVeztD2iI7Oxt333038vPz4enpiZiYGJSVleHQoUPYv38/lixZgscff1x3/JYtW/DMM8/AysoKERER6NGjB9LS0rBlyxb8+eef+P7776FUKtv0+IhEIRCRKA4fPiwolUph/PjxBt1OpVIJ0dHRwqBBg4SioqJm+zIzMwWlUilMmzZNt+2rr74SlEqlcNNNNwkXLlzQbb98+bLwwAMPCEqlUnjkkUdaxDVnzpxrbrvS+PHjBaVSKWRmZuq2rVy5UlAqlcL8+fOFS5cu6bYnJycLw4YNEwYPHiwUFhYKgiAIDz74oKBUKoW1a9c2u99Lly4Jt99+u6BUKoWPPvpIt/306dNCYGCgEBISIvz999+67Wq1Wnj//fcFpVIpjBkzRqipqbn2k3nFuVesWCE0NDQIgiAIGo1GeOeddwSlUikolUrhvffe0x2/a9cuQalUClFRUUJycrJue11dnfD8888LSqVSuPXWWwWNRnPdc7f2Gli2bJmgVCqFQYMGCb/99ptue21trTBnzhxBqVQKr732mm77iRMnhICAACEyMlJITU3Vbb9w4YIwbtw43eO4kr42e+ihhwSlUik8+eSTQl1dnW77zp07hcDAQCEyMlKor68XBEEQ3nvvPV37lpSU6I4tKioSZs6cKSiVSuGHH3647nPQnti1z8+TTz4pVFVV6bafP39e97gOHDhw3XMLgqC7/+zs7DYdLwiGP3bt8W+//bZu2+bNmwWlUik89dRTum1JSUlCYGCgEBYWJsTHx+u2V1dXC3fffbegVCqF9evXC4Kg/z1p6HNZV1cnjBgxQhgyZIhw9OjRZo8xPT1dCAsLE5RKZbNY1q1bJyiVSmH27NlCRUWFbvuePXuEIUOGCEqlUrj77rt12+vr64WbbrpJUCqVwhdffNHsfbFr1y5hyJAhwvDhw5s9j60x9H1hzM8J7bmv/CzQPr7c3Fzho48+EgIDA4U77rhD9x7R0j7vDz74oO7xq9VqQRD++Zx8+eWXmz03tbW1wpIlSwSlUik8//zzuu0ffPCBoFQqhbfeeqvZOU6cOCEMGTJECAkJafZ4tOdWqVSCIAhCdna2oFQqhdGjR1/3Mbfn9WHo9821aN/Lhw8fbtPxr776qu61eeXrqbi4WLjtttsEpVIpvPrqq7rt2veQUqkUHn/88WafJdrHER0d3axdtO/D1157TdeGgiAIn3zyie6+li1bptturO8LtVotzJgxQ1AqlcKnn36q215fXy8888wzunNv3ry5xWNoa1sY+tpqTUVFhRAcHCyEhYUJ1dXVuu2LFi0SlEql8NNPP7W4jaFtodFohFtvvVVQKpXCCy+80Ow9d+LECSEyMlJQKpXCrl27dNsnTJggDB48WEhLS9Nt02g0wqpVq1q0G5Ep4vB4IpFdvHjxuuWmli5dqjveysoKU6dOhVqtxvbt25vdl7aXXTsUDWgcLg8Aq1atanY138HBAW+++SYcHR3x559/GrX0V319PTZv3gwrKyv897//bbbYVlBQEObNmwelUqkbztqrVy/ceOONWLhwYbP7cXR0xLRp0wA09ohrffnll9BoNLj//vsxevRo3XapVIpHHnkEkZGRyM/P1z0frcnPz8fu3bvRs2dPPPvss5DJZAAAiUSCxx57TG95LO3z+fTTTyMoKEi33draGitWrICPjw9OnTqFw4cPt+WpuqaYmBhMmTJF97eNjQ3uvPNOAGg2FPj777+HIAh4+OGHm/UU9O3bF88++2ybzlVQUIDY2Fg4Oztj9erVzXqjJkyYgClTpqBfv37IzMxEfX09vvzyS8jlcrzxxhtwdXXVHduzZ0+sWrUKANpUqs/Q2AsKCrBt2za4u7tj5cqVsLOz0+3z8fHRDU01tEzghAkTWn3/rV69WnecMR/71b7//ntoNBo89NBDCA8P121XKBR45pln0K9fPxQVFV3z9oY8l8XFxRg1ahQWLlyIiIiIZvv8/PwQFRUFoPl7b9OmTQCAl19+GT169NBtHzt2LObMmdPiHH/99ReysrIwfvx43HvvvZBIJLp9MTExmDNnDioqKvDTTz+1+riu1tb3hbE+J670wQcfNHttaIfYvvPOOxgwYAA+/fTTVteJmDdvnu7xa3umnZycMHr0aDz22GPNnhsbGxvMmjULQPPnX9v+V69lEBISglWrVuGVV16BRqNp8+O5lva8PsT4vgEae9k3btwIqVSKt956q9n70s3NDWvWrIFMJsN3333XYvqClZUVXnzxxWafJXfeeSesra1RUlKCkpISAEBKSgqOHDkCf39//N///Z+uDQHgwQcfxIgRI1rEZazvi2PHjuHMmTMYPHgwHnjgAd12uVyOFStWwM3NrdVzt7UtjPXa+vXXX1FXV4cpU6Y0Wyjz9ttvB/DPZ4g+bW2L+Ph4nDp1Cv3798fy5cubvedCQkJ03wOff/65bntRURGsrKyarSMikUjw0EMP4YUXXsBtt9123cdGJCYOjycSWVtKvl35ZQ80DjX76quv8NtvvzWrifzbb79BKpXqkva8vDzk5OTA1dUVkZGRLe7X0dERY8aMwW+//YYjR46gf//+RnhEQHJyMqqrqzF06FB4enq22P/vf/+72VzeF198scUxJSUlSE1N1Q3rvbLG69GjRwEAkyZN0nv+qVOn4siRIzhy5IjeKQRaR44cAQBERUW1GDIpkUgwYcIEpKam6rY1NDTg2LFjkEqluOmmm1rcn5WVFSZOnIjPPvsMcXFxiI6ObvXcbTF06NAW27Q/OK6cj6h9PvTVXh43bhysrKyuO6dVWwt55MiReocuvvXWW7p/Hz9+HJcvX0ZAQIDehdSGDBkCNzc3nD9/HkVFRXB3d2/1vIbGHh8fD7VajeDg4GY/7LRuuOEGSKVSJCQkQK1W6y7EXM+1Sr5d+f5LSUkx2mO/mvb1qJ2CcPX9/vXXX9e8vaHPpbe3d4vKFYIg4OLFi0hJSdElY9r3XkFBAbKysuDh4YHAwMAW55gwYQK+/vrrZtu0yYg2wbva6NGj8fXXXyMuLq5ZMnIthr4vOvo5caWrS76p1WpUVFTg1KlTOHfuHObMmYPPPvsM/fr1a3Fbfc+ZvuHGFRUVOHv2LPbv3w+g+Wff8OHDsXHjRqxevRpJSUkYP348oqOj4eDgoBuKbCyGvj7E+r4BGr9zamtrERQUpHeoed++fREcHIzjx48jKSmp2Wdz//794ezs3Ox4a2truLi4oKCgQPeaOnjwIIDG9+eVCbvW5MmTm9WUN+b3xbXe2zY2Nhg1ahS2bt2q29aetjDWa0s7NP7qJHjChAlwdnZGUlISTp06hSFDhrS4bVvbQvtZOWHCBL2VEW6++WY8//zzOHHiBOrr62FtbY2IiAjs378fs2bNwsyZMzFmzBgEBQXBzc0Nd999d5sfH5FYmLQTiaw9Jd+CgoIwcOBAHD9+HBcvXkTv3r2RkpKCjIwMREdH6xLlwsJCAC2vnF9JW+bqWj14htLe15Vz0K8nNTUVGzduRFJSEjIzM3W9IdreJ+GKxb20j0vfPD6g7Y9Jez/6LixceT9a5eXlUKlUcHFxgYODQ4fO3RZOTk4ttmmT0Ct7PK71OKytreHh4YHc3NxrnsuQNtPeV2pqqt7RCFfKy8u7ZuJqaOzaf8fGxl7z3DU1NaioqGjW43YtbS35ZszHfrXWerraqr2vg7179+J///sfUlNTkZ2dDZVKBQDNen6BxqS9tfsHWr5fAOgWe3v11Vfx6quvthp7fn5+q/uuZuj7oqOfE1dqreRbfX09Xn31VXz33XdYunQptm3b1iKx0xc30Dg397vvvkNCQgIyMzN1iwbq++ybOnUqTp48iQ0bNmDz5s26EU2hoaGYPHkybrvttlbnC7dXW18fYn3fXHnu1tpae+7jx4/rjtW6csTIlbTJoPY1pX0tt/YZ2ZnfF9qYW6s2cfW529MWxnhtnT17FidPnoREIml2ofdqmzZtwsqVK1tsb2tbaB9fa5/ZCoUCrq6uKCoqQmlpKby8vLB69WosXboUp06dwvvvv4/3339fty7Hbbfd1uqFRSJTwaSdyEzNmDEDb731Fn7//Xfcf//9+PXXXwH8swAdgDatYq1d8flai1u19T5a+/t6Pv/8c7zxxhsAGoddjh8/Hn5+fggODsaFCxfw8ssvNzv+eo+rrY/p6h+dV7u6l7arnk+t68XX1uPa0ttsSJtpfzh5e3s3G8atj729/TX3Gxq79tz+/v4YNGjQ9UI1OmM+9qt1ZIVvoH3P5dKlS7F7927I5XIMHjwYM2fOhL+/P8LCwvD11183WzX6evevr8dL+3yNGDHimuXt2npxpS1xaBnrc6ItrK2t8eyzz+L3339HWloajh8/jrCwsGbH6Oud/fXXX7Fs2TI0NDSgb9++iI6Ohq+vL4KCgnRTHa62bNky3H333fjrr7+wb98+HDt2DEePHsXRo0fx9ddfY+PGjUZZ6M3Q10dXfz5eqSPnbuvrSXuxorVzXb3dmM9HV31XdfS1pZ3mIgiCrjdcH+3r/uqLGcZ6bwP/fPZoH5+Xlxc2b96Mo0ePIjY2FgcPHsTZs2exbds2bNu2DYsWLcKyZcvadH4iMTBpJzJTM2bMwJo1a7B9+3bcd9992L59OxQKBSZOnKg7Rvsj+eLFi63eT3Z2NoDG+bit0f7YbG0+29Vlf7S9i9qeuatlZWXhyJEjCA4Ohr29Pd566y04Ojrik08+aTF3Ujsv70oeHh7IycnBxYsXMXDgwBb7tcM29c3zu5K2x7C1Xuire2ScnZ0hl8tRUVGByspKvb0n2ufzeuc2Jg8PD2RmZiI3N7fFCt4ajQbFxcXXvY/rtVlycjLOnTuHsLAw3bFeXl4GjxLpaOzacw8aNKjD524PYz52ffd98eJF5OfnY8CAAS32b9q0CR4eHnqHzwOGP5dbt27F7t27ERAQgLVr17boQa+srGz2t6HvF+1jAoDp06e3eQi6sRjrc6KtrK2t0b9/f5SXl7dp5EBVVRWWL18OQRDw4Ycf4sYbb2y2/1rTIXr37o17770X9957L1QqFQ4dOoSVK1fi/Pnz2LhxY7N1UNrL0NeHsb5v2qMrzq3tYW/tHFe3uTG/Lwx973Xk+Wjva0ulUunWh9i+fTt8fX31Hjdt2jSkpaVh69atugoyhtI+vivXU7hSZWUlSktLIZPJmg23l0gkiIyM1E0ZKCkpwebNm7FmzRp88cUXuOeee9o90omos3EhOiIz5eXlhREjRiAlJQV//fUXcnNzMWHChGa9e97e3ujduzfKysr0XvW+fPkyDhw4AKBxrmRrtHOHtYvAXCktLa1Z/Wigcf6ttbU1Tp48qfc2P//8M/7zn//gwIEDSEpKgkajwYgRI1ok7AB08zqvvLKujfWPP/7QG692gT59CwNdKSoqClKpFAcPHmyxOBGAFrVe5XI5QkNDodFo9P6gbmho0NV3v965jWnkyJEAgD///LPFvri4uDbVRtb2Ch46dKjZHFqt9evXY9myZTh79iyCg4Nha2uLM2fO6E3UCgoKMGnSJNx77716n9eOxK5t+6NHj+p9XMnJybohzG3pjTGUMR/71bRtoK/G8Llz5/Diiy/i3XffbfX2hj6XiYmJABrnnl6dkFVVVen2ay/WeXh4wN/fHyUlJXpLyO3Zs6fFNm17tVY3+auvvsL06dPx4Ycftvq42stYnxNtpVardUmEtmb7taSlpaGqqgpKpbJFwg7o/+x7/PHHMWLEiGbJmFwux5gxY3Tzcg2ZanAthr4+jPV90x5BQUFQKBRISUnRJaNXunDhAlJSUmBnZ6crn2co7ZzzvXv36r2AvWvXrmZ/G/P7QnvuXbt26R3Zpn2taLWnLTr62tq9ezdKS0sxZMiQVhN24J8ycNdakO56tDHv2rVL7wilP/74A4IgICIiAlKpFOnp6Zg+fTruu+++Zse5ubnhgQceQEBAAARBaPWiNZEpYNJOZMZmzpwJQRB0q1tfOTRea8GCBQCA//znP81+zFRVVeH//u//UFlZifHjx19zLuCAAQNgbW2N7OxsxMbG6rZfunQJL730Uovj7e3tceutt0KlUuG5555rliycOnUKX331FWxsbDBp0iTdsNgTJ040S/BVKpWuNjXQuDqw1t133w2ZTIa1a9c2+7EiCAI++OADHD16FJ6ennp/CF+pZ8+emDp1KioqKvD88883S1Y3bNiA+Pj4FrfRPp///e9/dXWZtfG+9NJLuHDhAgIDA687dNqY5s2bB7lcjs8++6xZzIWFhS2mFrSmf//+GDVqFEpKSrBy5cpmP4R2796NHTt2wM3NDTfccAPs7Oxwxx13oLq6Gv/3f//XrN2qqqrwzDPPIDMzE/b29tcdIm5o7H379sWECROQn5+P559/vllvX0lJCZ5//nlkZWWhV69ebR5qaQhjPvaraVcX/+ijj5CSktLsfrXPxZWVIfTd3pDnUvve+/vvv5u1d1lZGZ544gmUlZUBaP7eu/feewEAL7zwQrMfuPHx8fjiiy9anGPKlClwd3fHX3/9hS+++KJZApqUlIT33nsPZ8+eve76AO1hrM+JtlCr1XjrrbdQUlKCfv36tVqz+0ra5//8+fPIyMhoFt/GjRvxww8/AGj+/Lu7u6O8vBz//e9/m31e1dbW6hLD9ialrcVnyOvDGN837aFQKHDHHXdAo9HgqaeeQmlpqW5faWkpnnzySWg0mg7N+R82bBiGDRuG9PR0vP32280S902bNukuWl35uWOs74uQkBCEh4fj/Pnz+O9//6s7t0ajweuvv663x9nQtujoa0u7AJ224ktrZsyYAZlMhrNnz+q9+NcWkZGRGDx4MLKysrBy5Urd1AWgsZ79f//7XwDQXWzw8fFBYWEh9u/fjx07djS7r5MnT+LcuXOws7ODv79/u+Ih6gocHk8ksrKysmYrqbdm+PDhurJGWjfddBNeeukl5Ofnw93dHTfccEOL291zzz1ITEzE9u3bMWXKFERGRkKhUCA+Ph5lZWUtSlrpY2dnh3nz5uGLL77Aww8/rLuPo0ePwsnJCZGRkS2u5j/99NM4efIk9uzZg5iYGERERKCiogIJCQloaGjA66+/jj59+qBXr14YPHgwUlJSMGnSJF1ve1JSEkpKSjBw4ECkpaU1G9obFBSEZ599FqtXr8bixYsxbNgweHl54cyZM8jMzISzszPWrFnT6uI/V3ruueeQmpqK7du3IzExEUOHDkV2djZSUlIQGhqq603SuvHGG7Fo0SKsX78es2fPRnh4OFxcXHDixAnk5+ejd+/eWLNmjd75q53F398fzz33HF5++WXMnz8fw4cPh729PQ4fPoyePXvC1dW12Y/Y1qxevRrz5s3DDz/8gP379yM4OBiFhYVITEyElZUV3n77bd0K60899RROnz6Nw4cP46abbkJwcDAUCgUSExNRXl4OHx+fNl0waE/sK1euRFZWFn777TccOHAAwcHBkEgkiI+PR3V1NcLCwvDEE0+078lsA2M99quFhobiX//6F9555x3Mnj0bERERsLe3x/Hjx1FSUoIbbrihRVnEKxn6XN5+++34+uuvsX//fkycOBFDhgxBZWUljh07htraWvj7+yM9Pb3Ze+/222/H4cOH8euvv+Lmm29GdHQ0qqurceTIEYSEhLR4vygUCrz33nt44IEH8Nprr+Gbb75BQEAAysvLcezYMQiCgAULFhglcb6aMT8ntPSVK6utrUVycjLy8/OhUCjw6quvtun9369fP8TExCA2NhYzZ85EZGQkbGxskJKSgtzcXL3Pv3aO+Y4dO5CQkKCrbKD9vIyIiNB78bY92vP6MMb3zdUeffTRVsvoAY29qg4ODnjyySeRkpKCo0eP4sYbb9QNgT5y5AiqqqowYsSINn3XXssrr7yCu+66C2vXrsVff/2FwMBAZGVl4fTp0+jfvz+ysrKare1gzO+LV199FfPnz8eGDRuwZ88eBAYG4syZM8jKysLQoUNx4sSJZscb2hYdeW0VFhZi3759kEqlzcox6uPh4YGRI0di37592LRpU7sucEskErz99ttYsGCB7oLJ0KFDUV5erqswcv/99+umC1pZWWHlypV47LHH8K9//QtDhgxBnz59UFZWpqs08txzzzUrT0tkapi0E4msurq6TXWCraysWiTt9vb2uPHGG7Ft2zZMnTpV74JjUqkUa9aswZgxY/Djjz/i2LFjABp7Vu+77z7cc889sLGxue75n376afTq1Ut3Hz169MDkyZPxxBNP6GpTX8nBwQHffvstNmzYgHfeeUc3ZDc6Ohr33XcfRo0aBaBxAZ0NGzbgo48+wu7du7F//37Y2trCz88Pjz32GG677TaMHDkSSUlJKC4u1s2/u+eeezBo0CCsW7cOx44dQ0pKCry8vLBgwQIsWrSoTcNTgcbepO+++w6fffYZtm/fjt27d6Nfv35YvXo1pFJpiyQEaFysJyIiAt988w1OnjyJuro69OnTB0uWLMHChQtbXSW6M911113w8fHBZ599plu9d+zYsXjmmWcwd+7cNt2HdqGezz77DDt37kRsbCwUCgXGjx+PpUuXIiQkRHesra0t1q9fj02bNmHbtm1ISkoC0Lia7z333IP58+e3uhJwR2N3c3PDDz/8gC+//BLbt2/H0aNHYW1tjQEDBuCWW27BnXfeafQVtK9kzMd+tSVLlmDw4MH48ssvkZycjJqaGvTp0wd333037rvvvuv+uDfkuezTpw9+/PFHvPPOOzh+/DhiY2Ph5OSEESNGYMGCBXB2dsasWbOwe/duPPnkkwAafyy/+eabGD58ODZt2oQDBw7AyckJixYtwqxZszB58uQWMYWFhWHLli1Yu3Yt9u3bh7///hvOzs4YMWIE7rnnnk5J2LWM9TmhdfbsWZw9e1b3t0QigUKhQJ8+fTBx4kTMnz9fb8mx1qxZswbr1q3Tld6SyWTw8fHB3LlzsWDBAtx+++26FbmDgoLg4uKC7777Dh9//DH27duH/fv3Qy6Xw8fHB4sWLcL8+fONtshbe14fxvq+uZJ2Nf3WaHudte/L7777Dtu2bcPhw4chk8kwcOBAzJo1C7Nnz+7wxVQ/Pz9s3rwZ7733Hvbv349du3ZhwIABWLVqFaqrq/HKK6+0uAhkrO+L/v3748cff9R9V+7evRv+/v746KOPcOrUqRZJu6Ft0ZHX1pYtW6BWqxEZGdmm99Stt96Kffv24Y8//sBzzz3Xpsd/tQEDBuB///sf1q5di127diE2NhY9evTA6NGjMX/+/BadGBMnTsS6deuwYcMGJCcnIzU1FT169MCYMWOwYMGCDpdoJepsEqEzJv0REV1h1apV2LRpE5YvX46ZM2cafeVgIiKiznT58mXk5uaid+/eekdnrFq1Cl9//TVefvnlFhfYiYg6ij3tRNTp7rjjDvTp0wcvvPACzpw5g+XLl4sdEhERUZuVlpZixowZ6N27N37++edmq5InJSVh8+bNsLGxwdixY8ULkogsFpN2IupUr776KgoLC5Gamgqg47WoiYiIulr//v0xceJE/Pnnnxg/fjzCwsLg4OCAvLw8JCUlQSqV4uWXXzZ4ygURUVtweDwRdaqpU6ciKysLzs7OGDt2LJ599lmDFn4iIiIyBQ0NDfjf//6HLVu2IDMzExUVFXBzc0N4eDgWLFiAoUOHih0iEVkoJu1EREREREREJop12omIiIiIiIhMFJN2IiIiIiIiIhPV7ReiS0xMhCAIkMvlYodCRERERERE3YBKpYJEIkFoaOh1j+32Pe2CIIDT+k2DIAior69ne5gxtqF5Y/uZP7ah+WMbmj+2oXlj+5k/c2lDQ/LQbt/Tru1hDw4OFjkSqq6uxunTp+Hv7w87Ozuxw6F2YBuaN7af+WMbmj+2ofljG5o3tp/5M5c2TE5ObvOx3b6nnYiIiIiIiMhUMWknIiIiIiIiMlFM2omIiIiIiIhMFJN2IiIiIiIiIhPFpJ2IiIiIiIjIRDFpJyIiIiIiIjJRTNqJiIiIiIiITBSTdiIiIiIiIiITxaSdiIiIiIiIyEQxaSciIiIiIiIyUUzaiYiIiIiIiEwUk3YiIiIiIiIiE8WknYiIiIiIiMhEMWknIiIiIiIiMlFM2omIiIiIiIhMFJN2IiIiMgu19Q1QNWhQXlkHVYMGtfUNYodERETU6azEDoCIiIjoeupVamzenY5f9mWgqkYFe4UcM0b74vaYgbCWy8QOj4iIqNMwaSciIiKTVlvfgM2707Hpz1TdtqoaFTY2/T1rvD9srfmThoiILBOHxxMREZFJk0ml+GVfht592/ZlQCblzxkiIrJc/JYjIiIik1ZVq0JVjUr/vhoVqmv17yMiIrIETNqJiIjIpNnbymGvkOvfp5DDzlb/PiIiIkvApJ2IiIhMmlqjwfTRvnr3zRjtC7VG08URERERdR2u2kJEREQmzdbaCreO9YOgEfDrgfO61eOn3TAA00f7QiqRiB0iERFRp2HSTkRERCbv860nETnEC1+9OAk1dQ2ws7VCYmoRnn5/H3x69cD/3R0BqZTJOxERWR4OjyciIiKTVlvXgN0JOVj9xREUldXAycEGcisZbKxlyC+pwv4Tufjq9xSxwyQiIuoUTNqJiIjIpCWlF6NBrYGHqx283e1124cOdMejdwwDAGzenY7thzLFCZCIiKgTMWknIiIikxZ/pgAAEBHoAclV89djIvrhrkmBAIBPNp9A/OmCLo+PiIioMzFpJyIiIpMlCAISmhLxiEGeeo+Zc5MSE4b3hUYAXv/qKM7llHdhhERERJ2LSTsRERGZrOyCyygsq4HcSopg/556j5FIJHj49mEYOrAnauvVeHndYRSV1XRxpERERJ2DSTsRERGZrPjThQCAYL+esLVuveiN3EqKZxdEop+XI0ov1eGlzw+hqkbVVWESERF1GibtREREZLISmuazhw/yuO6x9go5XrwvCq49bJCVfxmvfXkUDWpNZ4dIRETUqZi0ExERkUmqrlUh5XwJACAiUP989qt5uNjhhcVRsLWW4XhaET788QQEQejMMImIiDoVk3YiIiIySSfSitCgFtCrpz283R3afDv/Ps5YNn84pBJg59EL+H7n2U6MkoiIqHMxaSciIiKTlHCmcT57a6vGX0vEIE88NCsEAPDtjjPYnZBt1NiIiIi6CpN2IiIiMjmCIOhqrrd1aPzVJo8cgFnj/AEA732fiKT0IqPFR0RE1FWYtBMREZHJycy7hJKKWljLZQjyc2v3/SyYOhg3DPVGg1rAK18cwYX8S0aMkoiIqPMxaSciIiKTo+1lD/HvCWu5rN33I5VK8OTcMAzycUVVbQNe+vwwyi7VGitMIiKiTseknYiIiExOR+azX81aLsPzCyPh3dMehWU1eHl9HGrrGjp8v0RERF2BSTsRERGZlMoaFU5nlgIAwgOvX5+9LZwcbPDi/VFwtLNGenY53vgmAWoNS8EREZHpY9JOREREJuX42UJoNAL6eDjAy83eaPfr3dMBLywaAbmVFEdS8vH5lmTWcCciIpPHpJ2IiIhMim7VeCMMjb/aoAGueOqucADArwfOY+vfGUY/BxERkTExaSciIiKTodEIOKadz97OUm/Xc8NQbyycNgQAsP6XkziQlNsp5yEiIjIGJu1ERERkMjJyK1B2uQ621jIM9nXttPPcOs4PU0b6QBCAt79NwJms0k47FxERUUcwaSciIiKTkdA0NH7oQHfIrdpf6u16JBIJHpgZjIhBnqhv0GDlujjkFVd12vmIiIjai0k7ERERmQxjlnq7HplMiqfviYBfHydcqqrHS58fwqWq+k4/LxERkSGYtBMREZFJuFRVj9Qsbam3zk/aAUBhY4Xli6Pg7qLAxaIqrP4iDvUqdZecm4iIqC2YtBMREZFJSEwthEYA+ns5wt1F0WXnde1hixfvi4KdrRVSzpfi3U2J0LCGOxERmQgm7URERGQS4s90Xqm36+nv1QPPLYiETCrB38cv4uvtp7s8BiIiIn2YtBMREZHoriz1Fi5C0g4AQ5XuePSOYQCAn2LTsONQpihxEBERXYlJOxEREYkuPaccl6rqYWdrhUE+nVfq7XomDO+HuyYGAAA+/jkJ8U2r2RMREYmFSTsRERGJTpscD1O6w0om7s+TORMDEBPRFxqNgP9+fRQZFytEjYeIiLo3Ju1EREQkugTtfPYuWjX+WiQSCR6ZPQwh/j1RU6fGS58fRlFZjdhhERFRN8WknYiIiERVfrkOadnlAICwQA9xg2kit5Li2Xsj0c/LEaWXavHyusOoqlGJHRYREXVDTNqJiIhIVMdSCyEIgK+3E9ycuq7U2/U4KOR4cXEUXBxtkJl3Ca99dRQNao3YYRERUTfDpJ2IiIhEldA0nz18kGn0sl/Jw9UOyxdHwcZahuNni/DRTycgCKzhTkREXYdJOxEREYlGrRFwLLWx1JsY9dnbwr+vM56+JwJSCfDXkQv4YddZsUMiIqJuhEk7ERERieZsVhkqa1SwV8gR0M9F7HBaFTnYCw/cGgIA+Gb7GexJyBY5IiIi6i6YtBMRUbdQW98AVYMG5ZV1UDVoUFvfIHZIBCC+adX4sAAPyEQu9XY9U28YgFvH+QMA3v0+EcnnikWOiIiIugMrsQMgIiLqbPUqNTbvTscv+zJQ1dSrO2O0L26PGQhruUzs8Lo1Xak3E5zPrs+9UwejsLQaB5JysfqLI3jj0dHo6+kodlhERGTBTPuSNhERUQfV1jfgx9g0bPozVVeyq6pGhY1/puKn2DT2uIuo9FItzuVUAADCAkxzPvvVpFIJnrgrDIH9XVBVo8KKzw+j7HKt2GEREZEFY9JOREQWTSaV4pd9GXr3bduXAZmUX4ViOdbUy+7f1xnOjjYiR9N2NnIZ/rNoBHr1tEdhaTVWrotDbR0v/hARUefgLxUiIrJoVbUqXQ97i301KlTX6t9HnS/+dNOq8YHm0ct+JScHG6y4LwqOdtZIyy7Hm98mQK1hKTgiIjI+Ju1ERGTR7G3lsFfI9e9TyGFnq38fda4GtQbHz2pLvZnHfParebs74D+LIiG3kiLuVD7WbTspdkhERGSBmLQTEZFFq6isw7QbBujdN2O0L9QaTRdHRABwJrMUVbUNcLSzhn9f0y31dj2DB7jhybvCAAC/7MvA1r/PiRwRERFZGibtRERksaprVXhnUyKmj/bFnJuUuh53e4Ucc24KwO0xA2FrzUIqYog/3TifPTzQAzKpRORoOmbU0N5YOG0wAGDdtpM4lJwrckRERGRJ+EuFiIgs1rptp3AirQhvfJOA5xYMxx03BuBSVR3sbeU4n1fBcm8iSjjTODQ+fJD5zWfX59Zx/sgvqcb2Q5l485sEvLLUFgH9XcUOi4iILAB72omIyCIdScnHn3FZkEiAOTcpYaeQQ24lRU1dAxav/gvPfXQQldX1YofZLRWX1yAz7xIkEiAswDzns19NIpHgwVuDETHIE/UNGqxcH4f8kiqxwyIiIgvApJ2IiCxORWUd3v/hOABg5lh/BPn11O3r4+EI1x62aFBrsO8EhzGLIaGp1Juynwt62FuLHI3xyGRSPH1PBHx7O6Gish4r1h7GZV4YIiKiDmLSTkREFkUQBHy0+QTKL9ehn5cj7r45sMUx48P7AgB2x2d3dXiEf+azR1jI0PgrKWyssHzxCPR0VuBiUSVWf3EEqga12GEREZEZY9JOREQWZe+xHBxMyoNMKsGTc8P0zlsfG9YbUglwOrMUucWVIkTZfakaNDiRVgTAPOuzt4WbkwIr7ouCna0VTmWU4J1NidCwhjsREbUTk3YiIrIYxeU1+OTnJADA3EkB8OvjrPc4NycFhikb51LvScjpqvAIQMr5EtTUqeHsYAPf3k5ih9Np+vfqgecWREImleDvxIv4ZsdpsUMiIiIzJXrSHhcXh4CAAL3/TZgwQe9t6urq8NJLLyE6OhqhoaF46qmnUFpa2sWRExGRKdFoBLy7KRFVtQ0I6OeC28cPvObx48P7AAB2J2RDENgL2lW0Q+PDAj0gNfNSb9czVOmOR2YPAwD8uCsNfxzOFDUeIiIyT6In7aGhodi/f3+z/z744ANIJBIsXbpU721WrFiB/fv34/3338eXX36JjIwMPPbYY10cORF1J7X1DVA1aFBeWQdVgwa19Q1ih0RX+f3geRxPK4K1XIYn7gqDTHbtr7iooF5Q2MiQX1KN05m88NtVtIvQWeJ8dn1ujOyHOTcFAAA+2pyEY02l7oiIiNpK9Drt1tbWcHd31/1dXV2NV199Fbfeeituu+22FscXFBRgy5Yt+OSTTxAREQEAePvtt3HzzTcjMTERoaGhXRY7EXUP9So1Nu9Oxy/7MlBVo4K9Qo4Zo31xe8xA1vk2ETmFl/HFrykAgEXTBqO3u8N1b2NrY4XoYG/ExmcjNj4bgwe4dXaY3V5BaTWyCyohlUoQqnS//g0sxF2TAlBQWoXdCTl47asjeP2R0RjgbblTA4iIyLhE72m/2ieffIKamhosW7ZM7/6EhAQAQFRUlG7bgAED4OnpiaNHj3ZJjETUfdTWN+DH2DRs+jMVVTUqAEBVjQob/0zFT7Fp7HE3AWq1Bms2HkO9So1hSndMHjmgzbeNiWhcRX7/8YuoV3GF786m7WUP7O8CBzvLKfV2PRKJBI/eEYoQ/56oqVPjpc8Po7i8RuywiIjITIje036l0tJSbNiwAU899RScnZ31HlNQUAAXFxfY2Ng02+7h4YH8/Px2nVcQBFRXV7frtmQ8NTU1zf5P5scS21BubYtf9mXo3bdtXwZmT1BazOeHubbf5j0ZOHuhHHa2VnhgRiBqa9sev18vO7g52aKkohb7Ey8gKsi8h2ybehvGncwFAIT4uVrM+8YQj98RhOVrjyKnqAovfnYQL903HHa2zX+KmXob0vWxDc0b28/8mUsbCoIAiaRta7uYVNL+3XffwdHREXfeeWerx9TU1MDauuXVeRsbG9TV1bXrvCqVCqdPc1VXU5GZmSl2CNRBltKGtra26NXHV9fDfrWqGhUqq+uQm30etbW1XRxd5zGn9sstrcdPsY1zhG8O7YHC3PMozDXsPgb1lmN/RS1+238WTjLLmNtuim2oUgtITi8BADjLL3Xb793boh3x+Z81uFBQiVXrDuKucT0h07Mgnym2IRmGbWje2H7mzxzaUF9eq49JJe1btmzBzJkzYWtr2+oxtra2qK+vb7G9rq4OCoWiXeeVy+Xw9/dv123JeGpqapCZmQkfH592tyWJyxLbUG5tA3uFXG/ibq+Qw8HOBgMGtH04tikzt/arV6nx+cdx0AhA1BBP3DE5uM1XrK/k6FaJ/SmHcC6vDr37+aGHvfkO2zblNjyRXgKV+iJcHG0wLjqkXW1lKTy9K/DSunicy6/DgTTggVsCdc+HKbchtQ3b0Lyx/cyfubRhenp6m481maT9zJkzyM7OxvTp0695nJeXF8rLy1FfX9/sykRhYSE8Pds3rFEikcDOzq5dtyXjUygUbA8zZ0ltWFvfgOmjfbHpz9QW+6bfMABqtcZiHquWubTfxm0nkVNUBRdHGzxyRyjs7W2ufyM9lD528O/rjPTschw9U4rpo32NHGnXM8U2PJlxDkDjqvH29vYiRyOu4IF2ePqe4Vj9RRxiEy6it0cP3HGjstkxptiGZBi2oXlj+5k/U29DQy5em8xCdPHx8XBzc0NgYOA1jwsPD4dGo9EtSAcA58+fR0FBAYYPH97ZYRJRN2NrbYVbxvjhzhuVsFfIATT2sN95oxLTRvviryMXRI6we0o+V4ytfzcmgY/eMQxODu1L2LW0NdtjE7I7HBvpp63P3l1KvV1P5BAvPDAzGADw9fbT2HMsR7fvWiMOiYio+zGZnvaUlBQEBATo3VdUVAQ7OzvY29vD09MTU6dOxX/+8x+88sorUCgUePHFFxEZGYlhw4Z1bdBEZPEqKuvwn08PYt6kQHy9YhKqaxtgZytHYVk1nvlwP3IKK+FoJ8e48L5ih9ptVNeq8M6mRAgCMCmqP4YP9urwfY4Z1gfrt51CenY5sgsuo6+noxEiJa3c4krkFldBJpVgWDcq9XY9U0f5Ir+0Glv2nsPm2DQE+brByaFxLQ25tQ1q6xtga20yP9WIiEgkJtPTXlRU1OqK8aNGjcL69et1f69cuRLR0dF45JFHsHjxYvj6+uK9997rokiJqDv5/WAmMnMv4cddZ2Elk8LJwQZyKyl6uzsgsilZfO+H4ziTaRkLmJmDz7eeRGFpNTxd7bBo+hCj3Kezow3CAj0AALvZ2250CacbFwscPMANdrZykaMxLQunDcH00QOw6qGR2HEoE/es2IEFL/+Je1bswM+701mKkIiITKenfe3ata3uS01tPpfUzs4Oq1atwqpVqzo7LCLqxupVavx+4DwAYOYY/xZzj+ZPHYyLRZWIO5WP1V8cwZv/GgNPV9OdO2UJjpzKx19HLkAiAZ6YG2bUBDAmoi+OphRgd0IO7r55EKR6VvSm9ok/ox0a7yFyJKZHKpXg7psH4efd6fh+51nd9qoaFTY2raUxa7w/e9yJiLoxk+lpJyIyNXuP5aC8sg7uLgqMDOnVYr9MKsFT88Lh6+2E8so6rFx3GNW1+svDUcdVVNbh/R+OAwBuHeuPIb5uRr3/yMFesLe1QnF5DU5mFBv1vruz2voGnExvfD7DOZ9dL7mVDL82XSC82rZ9GZBJ+XONiKg747cAEZEegiBgS9NCZ9NH+UIm0/9xqbCxwguLR8C1hw2y8i/jv1/HQ63WdGWo3YIgCPjwpxMor6xDfy9HzLv52ouWtoe1XIZRw3oDAGLjOUTeWE6eK0F9gwbuLgr041oBelXVqvSWlQQae9x5MZCIqHtj0k5EpEdiahEu5F+GwkaGiSP6X/PYns4KPL9wBKytpEg4U4j1v5zqoii7jz3HcnAoOQ9WMgmevCsc1nJZp5xnfNOCggeTclFb39Ap5+hutKvGhwd6duva7NdibyvXVadosU8h5zoARETdHJN2IiI9tuxNBwDcNKJ/qz+mr6Ts54In7goD0DicdftB/UNdyXBFZTX49OckAMDciYHw7e3UaecaPMAVnq52qKlT4/DJ/E47T3chCMI/pd4COZ+9NWqNBjNG++rdN2O0L9Qajt4hIurOmLQTEV0lK+8SEs8WQSoBZoz2a/PtRg3tjbsnNw7b/uR/yTh+trCzQuw2NBoB735/DFW1DQjo74Lbxvt36vkkEomut303h8h32MWiShSUVsNKJkXIQJZ6a42ttRVujxmIuRMDdBcJ7RVyzJ0YgNtjBnIROiKibo7fAkREV9naNJc9OsTb4NXg75igRE5hJfYk5OC1L4/ijcfGsOZ3B/x+8DxOpBXDxlqGJ+eGtbq2gDGNj+iDTX+l4vjZQpReqoVrD9tOP6elim8q9Rbk6waFDX9yXIu1XIZZ4/0xe4IS5Zdr4WhnjcKy6k6bCkJEROaDPe1ERFcou1yL3Qk5AICZY9vey64lkUjw2B3DMMjHFVW1DVi5Lg6XquqNHWa3kFN4GV/8mgKgsZa1t7tDl5zXu6cDAvu7QCM0VhCg9kvQzmfnqvFtYmttBVV9LXYdTMHi1X/hgx9PiB0SERGZACbtRERX+P1AJhrUGgT2d0Fgf9d23YfcSobn7o2Eh6sd8kqq8MqGI1A1cE6qIdRqDdZsPIZ6lRrDlO6YMtKnS88fE9E0RD6BQ+Tbq6auASczSgCwPruhPHqocamqHmeySlF6qVbscIiISGRM2omImtSp1Pi9aQG5mWM7Nnfa2dEGyxePgMLGCqcySvDRTycgCIIxwuwWfoxNw9kL5bBXyPGvO0O7fNXxUcN6w0omxfncSzifW9Gl57YUSWlFaFBr4OVmh95dNErCUjjZWcG/Tw8IAhB3Mk/scIiISGRM2omImuyOz8alqnp4uNohKsirw/fX36sHls2PgFQC7Dx6AT/vTjdClJYvPbscm/5MBQA8NCsEPZ0VXR6Do501hg9uHNLNmu3tE3+mcT47S721T2TT6ISDyUzaiYi6OybtRERoXKVcuwDdjNG+RlvwLDzQE/fdEgwA+PL3FBxKzjXK/VqqOpUab29MgFoj4Iah3hgb2lu0WLRD5Pcey4FazekNhmhW6o3z2dtl+ODGpD05vRiV1VwXg4ioO2PSTkQE4FhqIXIKK2Fna4WbIvsZ9b6njRqAKSN9IAjAW98dw7mccqPevyX5ZvtpZBdUwsXRBktmhYjaQxse6AlHO2uUXa7DibRi0eIwRxcKLqO4vAbWVlIE+bmJHY5Z8u5pj35ejlBrBBxJKRA7HCIiEhGTdiIiAFv2Ng5dnxTlAztbuVHvWyKR4IGZwQhVuqOuXo2V6+NQUlFj1HNYguT0Yt1oh0fvGAYnBxtR45FbSTGmqaefQ+QNo101Psi/J2uMd0B0cC8AwGHOayci6taYtBNRt3c+twIn0oohlUowbdSATjmHTCbF0/OHo6+nA0oqarFqfRxq6xs65VzmqLpWhXc2HYMgAJOi+mP44I6vKWAM2iHyh07mobpWJXI05kNbnz0ikEPjOyI6qDFpTzhTyM8LIqJujEk7EXV7W/Y29u6OCvGGh4tdp53HQSHH8sVRcLSzRnpOBdZsPAaNhivKA8DnW0+isKwGnq52WDR9iNjh6Azs64ze7vaoV6lxMIm9nW1RXatCyvnGUm/hLPXWIb69neDhaod6lRqJqYVih0NERCJh0k5E3VpJRQ3+TswBANwy1q/Tz+flZo/nF0bCSibBwaQ8fLPjdKef09TFnczDX0cuQCIBnpgbZvTpCR0hkUgwnjXbDXL8bBHUGgG93e3h3ZOl3jpCIpHoetu5ijwRUffFpJ2IurXfDpxHg1rA4AGuUPZz6ZJzDvF1wyOzhwEAftyV1q3nS1dU1uGDH08AAG4d648hvqa3aNm4sMakPflcMQrLqkWOxvRpV40P59B4o9DOaz+aUgBVA6sYEBF1R0zaiajbqq1rwI5DmQCAmV3Qy36lCcP7YfaEgQCA9384jlMZJV16flMgCAI+/OkEyivr0N/LEfNuDhQ7JL08Xe0Q5OcGQWgs/0atEwQBCdr67Cz1ZhSBPq5wdrBBVY0KyedYxYCIqDti0k5E3VZsQjYuV6vQy80ekUN6dfn57755EKKDe6FBrcErG44gv6Sqy2MQ0+6EHBxKzoOVTIIn7wqHtVwmdkitign/Z4i8IHAdgtZk5l1C6aVa2FjLEGSCoybMkUwqwYigxoUZD3OIPBFRt8SknYi6JY1GwNamBehmjPGFTNr19cClUgmenBsGvz5OuFRVj5fXHUZVTfdYobyorAaf/i8JADB3YiB8ezuJHNG13TDUG9ZWUmQXVCI9p1zscEyWdmh8iH9Pk74IY26uLP3GxSuJiLofJu1E1C3Fny5AbnEV7BVyTBjeT7Q4bG2s8MKiEXDtYYvsgkq8/tVRqNWWPW9VoxHw7vfHUF3bgMD+LrhtvL/YIV2Xna0cUU0Lgu1O4BD51miT9ggOjTeqEH932NlaoexyHVKzysQOh4iIuhiTdiLqlv63Nx0AcHNUfyhsrESNxc1JgRcWj4CNtQyJZ4vw+daTosbT2X47cB4n0ophYy3DE3PDIJOZx1eRdhX5vcdy0GDhF1bao7K6HmcySwFwETpjk1tJMXxQ4xD5g8m5IkdDRERdzTx+KRERGVF6djlOniuBTCrBtFG+YocDAPDv44yn7goDAPx64Dx+3Z8hckSdI7vgMjb8egoAsGj6EHi7m09JsFClO5wdbXCpqh7HzrBm9tUSzxZBIwB9PR3h6WondjgWJzqkcaTHoeQ8rqtARNTNMGknom5n69+Nc9lHD+uNns4KkaP5R3SwN+ZPGQQAWLslGQlnCkSOyLjUag3WbDyG+gYNwgI8MDnaR+yQDCKTSTE2tA+AxkUMqbl/Sr15iByJZQoP8IC1lRQFpdXIzLskdjhERNSFmLQTUbdSXF6DfccvAgBu6eIyb21xe8xAxET0hUYA/vt1PC7kW86P8x92pSEtuxz2Cjkeu3MYJJKuX/yvo8aHNybtR07lo7KbLBrYFhqNoBt9wPnsncPWxgqhAY0XRA4mcRV5IqLuhEk7EXUrv+7PgFojINivJ/z7OIsdTgsSiQSPzB6KIb5uqK5twMvr4lBRWSd2WB2Wll2G7/9KBQAsmRUCNyfTGeFgCN/eTujv5QhVgwYHTlwUOxyTce5iOcor66CwkWHwAJZ66ywjQ/5ZRZ6IiLoPJu1E1G3U1DVgx+EsAMBME+xl15JbyfDsguHwcrNDQWk1Vn9xBKoGtdhhtVudSo01G49BrREwaqg3xoT2FjukdpNIJIhpWpAuNp5D5LUSmnrZhw50h9yKPy06y/DBXpBKJcjMu4Tc4kqxwyEioi7Cb1Yi6jZ2Hb2AqhoVvHvam/wQXicHGyxfHAV7WyuczizF+z8cN9vFp77+/TSyCyrh4miDJbcNNcth8VcaG9YHEgmQcr4U+SVVYodjEljqrWs42lkjxK8nAOBwMnvbiYi6CybtRNQtqDWCbgG6W8b6QSo1/cSxr6cjnp4/HFKpBLsTcvDjrjSxQzJYUnqR7nl/7M5Q9LC3FjmijnNzUmDoQHcArNkOABWVdTh7obF2OEu9db6o4MYh8geZtBMRdRtM2omoWzhyKg/5JdVwtJMjJryv2OG0WViABx68NRgA8PX20zhwwnxqNFfXqvDOpkQAwKSo/hbVCzu+6TW0Oz7bbEdAGEvi2SIIAuDTq4dJVWOwVFFBjfXaU7PKUFJRI3I0RETUFZi0E1G3sGVvY2/vzdE+sLWxEjkaw0wZOQDTRzfWk3974zGkZZeJHFHbrN1yEkVlNfBys8PiGUFih2NU0cG9YGstQ15JFc5kmkd7dJYElnrrUm5OCgT0dwEAHD6ZL3I0RETUFZi0E5HFO3uhDCnnS2Elk2DqDQPEDqddFk8fgrBAD9Sr1Fi1Pg7F5abdw3b4ZB52Hr0AiQR4fE4YFGZ2oeR6FDZWGBniDQDY3Y1rtqs1gm4ROksaSWHqRjYNkee8diKi7oFJOxFZvK1NvexjQvuYbakxmUyKp++OQD8vR5ReqsPKdXGoqWsQOyy9yi/X4YMfjwMAZo3zxxBfyywBpq3Zvu/4RbNe3b8j0rLLcLm6Hva2Vgj0cRU7nG5DO6896VwxLlfXixwNERF1NibtRGTRCsuqsT+pcR64KZd5awt7hRwvLBoBJwdrZORW4O3vEqDRmNZ8akEQ8NHmE6iorEd/L0fMuzlQ7JA6TbC/O9ycbFFZo8LRlAKxwxFFwunGXvZhAR6wkvEnRVfx7ukAn149oNEIOJrCIfJERJaO37BEZNF+3X8eGo2AoQN7YoC3k9jhdJiXmz2ev3cErGRSHD6Zj69+TxE7pGZ2J2TjUHIerGQSPHlXOORWMrFD6jQyqQTjwhp727trzfb4M02l3jifvctFBTWtIp/EIfJERJaOSTsRWazqWhX+OJwJAJg51l/cYIxo0ABX/OvOYQCAzbvTsfNIlrgBNSksq8an/0sGANw1KRC+vc3/Isn1aFeRjz9dgIrKOpGj6Vpll2uRnl0OAAhjqbcuNzKkMWlPTC1ErYlOlSEiIuNg0k5EFuuvIxdQXduAPh4OCAuwrJ7AceF9ceeNSgDAhz+dQPK5YlHj0WgEvLspEdW1DQjs74JZ4yznIsm19O/VA359nKDWCNh//KLY4XSpxNTGofF+fZzg2sNW5Gi6H59ePeDpaof6Bg0SmtqCiIgsE5N2IrJIarUG2/ZlAABuGeMHqVQickTGd9ekQNww1BsNagGvbjiC3OJK0WL59UAGktKLYWMtwxNzwyDrRvObtb3tsd1sFfn4pvns4exlF4VEIkF004J0hzhEnojIonWfX1VE1K0cPpmPwtJq9LC3xviIvmKH0ymkUgkenxOKgX2dcblahZc/j0OlCCtJZxdcxpe/Ns6tXzR9CLzdHbo8BjGNCe0NqVSCsxfKkVN4WexwuoRarcGxpt7dCCbtohkZ3Fh28OjpfKgaNCJHQ0REnYVJOxFZpC170wEAU0YOgI3cchdDs7W2wn8WjUBPJ1tcLKrE61/Fo0HddT/eG9QavL3xGOobNAgL8MDkaJ8uO7epcHG01U2/2J2QI3I0XeNMVhmqalRwtJND2d9F7HC6rYD+LnBxtEF1bQOS0ovEDoeIiDoJk3YisjhnMktxJqsMVjIpptzgI3Y4nc61hy1eWBwFW2sZjqcV4dP/JUMQuqYU3I+70pCeXQ57hRyP3TkMEonlTUNoi5imIfK7E7JNrgxfZ0hoWjU+NMADMgucemIupFKJbhX5Q8kcIk9EZKmYtBORxdmy9xwAYHx4H7g4do8Fsnx7O+GpeeGQSIAdhzLxS9N8/s6Ull2G7/9KBQAsmRUCNydFp5/TVEUGecHO1gpFZTU4db5E7HA6XQLns5uMqKZ57XEn86HuBheMiIi6IybtRGRR8kuqcCg5F0DjAnTdSVRQL9w7dQgAYN22k4g/XdBp56pTqfH2d8eg1ggYNdQbY0J7d9q5zIGNXIYbQhrnF++28JrtJRU1yMitgEQCi6vKYI6C/XrCXiFHeWUdzmSWih0OERF1AibtRGRRftmfAY0AhCrd0b9XD7HD6XK3jvPDTZH9oBGA/34dj8y8S51ynq9+T0FOYSVcHG2w5Lah3XZY/JVimhY83H8iF3UqtcjRdJ5jZxp72Qf2dYazo43I0ZDcSorhgxtHPHCIPBGRZWLSTkQWo6pGhb/isgAAM8d2jzrhV5NIJFhy21AE+bmhpq4BK9cdRtnlWqOeIym9CNv+bhx+/9idoehhb23U+zdXgwe4wcPVDjV1DYg7abnJU3zTfHYOjTcdI7Wl307mddl6FkRE1HWYtBORxfgzLgs1dWr083JEaIC72OGIRm4lxbMLItGrpz0Ky2qw+osjqDdSz29VjQrvbEoEAEyK6o+IQUzctKRSCcaH9QEAxFroEPkGtQaJqY2rlLPtTUdogAes5TIUllYj42KF2OEQEZGRMWknIougVmuwrWnxtZlj/Lr9cO0e9tZYvngE7BVypGaV4d3vE43SA7d2azKKymrg5WaHxTOCjBCpZRnfNEQ+8WwRyi4Zd4SDKTh9vhQ1dQ1wcrCGfx9nscOhJrbWVggPbFxf4JAFj/IgIuqumLQTkUU4mJSH4vIaODvYYGxTb2d318fDEc/OHw6ZVIK/Ey/i+51nO3R/h5LzsOtoNiQS4Im5YVDYWBkpUsvR290BAf1coNEI2Jt4UexwjE5b6i0swANSlnozKSz9RkRkuZi0E5HZEwQB/9ubDgCYcsMAWMtlIkdkOoYq3fHQrBAAwLc7zmBfOxPJ8st1+PCn4wCAWeP8MXiAm7FCtDja3nZLXEVeW5GA89lNT+RgT8ikElzIv4yLRZVih0NEREbEpJ2IzF7K+VKkZZdDbiXFlJE+Yodjcm6O9tGVv3tn0zGkZhlWFkoQBHzw43FUVNbDp1cPzLs5sDPCtBijh/WGlUyCjNyKTlu9XwyFZdXIyr8MqaRxDjWZFgc7awT79wTA3nYiIkvDpJ2IzN7Wv88BaCy55eTAElT6LJw+BBGDPFHfoMGqL46gsKy6zbeNjc9G3Kl8WMkkePKuMMitOJLhWnrYW+sWabOk3vaEplJvAf1dWTHARGlXkT/MpJ2IyKIwaScis5ZXXIXDTQsvzRjtK3I0pksmleD/7g6HT68eKL9ch5Xr4lBdq7ru7QpLq/HZlmQAwF2TAjHA26mzQ7UI2prte47lQK2xjBJcCbqh8exlN1UjgnpBIgFSL5ShuLxG7HCIiMhImLQTkVnbtu8cBKExkejn1UPscEyana0cLywaAWcHG2TmXcJb3x67ZkKp0Qh49/tEVNc2YJCPK2aNH9iF0Zq3iEGecLSTo/RSLZLSisQOp8NUDWqcaHoc4Sz1ZrJce9gisL8rAOguZhIRkflj0k5EZquyuh47j1wAANw61l/kaMyDh6sdnl8UCbmVFEdS8rHh11OtHvvr/gwkpRfDxlqGx+eGQsbVwttMbiXDqGG9AQCxCeY/RP5URglq69VwcbSBL0dbmLToYK4iT0RkaZi0E5HZ2nE4C7X1avj06oGQgT3FDsdsBPZ3xeNzQgEAW/aewx+HM1sck11wGV/+lgIAWDx9CLx7OnRliBZBO0T+UHIeauoaRI6mY7Tz2cMDPVnqzcRpk/aTGSW4VFUvcjRERGQMTNqJyCypGjT4ZV8GAGDmWD9IJEwkDDEmtA/umhgAAPh4cxKS0huHPtva2kKt0eDtjcdQ36BBWIAHbo72ETFS8xXQzwXePe1RV6/GoeRcscPpEF2pt0Gcz27qvNzsMcC7BzQaAUdO5YsdDhERGQGTdiIySwdOXETppVq4ONpgTGhvscMxS3MmBmDMsN7o1ZRYyq1t0KuPL2xsFLjzRiWU/Zzx2J3DeEGknSQSyRU123NEjqb98kuqkFNYCalUgmFKJu3mIDqIQ+SJiCyJldgBEBEZShAEbGkq8zZ11ACWIGsniUSCf80JRV29Glv/Poe3vjuGqhoV7BVyTLthAFY9dAMUNvya6IhxYX3w7Y4zOJFehOLyGvR0VogdksG0q8YP8nGFg0IucjTUFtEh3vjuz1Qkni1ETV0D38dERGaOPe1EZHZOZpTgXE4FrOUy3BzlI3Y4Zk0jCNi2LwPf7zyLqprGEnBVNSp8v/Ms/rcnHbX15j0XW2xebvYY4usGQWgs/2aO4nXz2dnLbi76ezmil5s9VA0aJJwpEDscIiLqICbtRGR2tu5t7GWfENEXTg42Ikdj3mRSKX7Zn6F337Z9GZBJ+TXRUePDG4fIx8ZnQxDMq2Z7nUqNpPRiAI1l7Mg8SCQSriJPRGRB+GuMiMzKxaJKHElpXFzplrF+Ikdj/qpqVboe9hb7alSortW/j9ruhqHekFtJkV1wGecuVogdjkFOnitGvUoNNydb+PTqIXY4ZABt0n40pQCqBrXI0RARUUcwaScis7L173MQBCBysBd6u7MMWUfZ28ph38o8ZXuFHHa2nMPcUQ4KOUYM8QIA7Dazmu3aUm8Rgzy5IKGZUfZzgWsPG9TUNeBEWrHY4RARUQcwaScis3Gpqh67jjYmPTPZy24Uao0GM0b76t03Y7Qv1BpNF0dkmbQ12/8+dhENavN5TnWl3jif3exIpRKM4CryREQWgUk7EZmNHYcyUa9Sw7e3E4L83MQOxyLYWlvh9piBmDsxQNfjbq+QY+7EANweMxC21lx12hhCAzzg5GCN8so6JKYWih1Om+QWVSKvuApWMgmGDnQXOxxqh5FNQ+TjTuVBrTGv9RSIiOgf/DVGRGZB1aDGr00Lps0c68ehukZkLZdh1nh/zJ6gRGV1HRzsbKDWaGAtZyk9Y7GSSTE2tA+27cvA7oQcDB/sJXZI16XtZR88wI3TJMxUkF9POCjkqKisx+nzJQjy6yl2SERE1A7saScis7Dv+EWUXa6Daw9bjBraW+xwLI6ttRVU9bXIzc6Aqr6WPeydYHzTEPnDJ/NQ2crif6bkyvnsZJ6sZFJENq2ncOgkh8gTEZkrJu1EZPIEQcCWpjJv00YNgNyKH12dpba2VuwQLJZfbyf09XSEqkGDAydyxQ7nmmrrGpB8rnHxMs5nN29Xln4zt5KDRETUiL98icjkJaUX43zuJdhYyzA52kfscIjaRSKR6BakM/VV5JPOFUPVoIGHiwJ9PR3FDoc6IDTAAzbWMhSV1eBcjnmVHCQiokZM2onI5Gl72W8a3g8OdtYiR0PUfuPC+kAiAU5llKCgtFrscFqVoF01nqXezJ6NXKYbLcEh8kRE5skkkvYtW7ZgypQpCA4OxtSpU7F9+/ZWj62qqsJLL72EUaNGISIiAvfffz/OnTvXhdESUVfKLriM+NMFkEiA6WP0lyYjMhc9nRUI8W9cDGyPifa2C4KAeO189kDOZ7cE0brSb6Y9LYOIiPQTPWnfunUrnn/+ecybNw+//fYbpk2bhieffBKJiYl6j1+5ciXi4uLw3nvv4fvvv4dMJsN9992Hurq6Lo6ciLrC1r8bL8qNGOIF754OIkdD1HHaIfKx8dkmOcc4p7AShaXVsJJJdRcYyLxFDPaClUyC7IJKZBdcFjscIiIykKhJuyAIePfddzF//nzMmzcP/fr1w5IlSzBy5EgcOXJE72127tyJuXPnIiwsDH5+fnj88ceRm5uL9PT0Lo6eiDpbRWUddsc39kbOHOsvcjRExhEd7A0baxlyi6uQeqFM7HBa0JZ6C/Zzg60NqwhYAgeFHCH+7gAaqxcQEZF5ETVpP3/+PC5evIjp06c3275u3To8+OCDem/j5uaG33//HSUlJaivr8dPP/0EZ2dn9OvXrytCJqIutP1QJuobNPDv64zBA1zFDofIKBQ2VroVvbUXpUxJwpnGpJ2l3izLlavIExGReWl30n7u3Dl89dVXePPNN1FQUID4+HhUVlYadB/nz58HAFRXV2Px4sWIjo7G7NmzERsb2+ptVq9ejYKCAowcORLDhg3Dli1bsHbtWjg6cnVbIktSr1Ljt/2NnxEzx/hxMSyyKOPDG4fI7zt+EaoGjcjR/KO6VoVTGSUAGhehI8sxIsgLEgmQll2OorIascMhIiIDGDzuTaPRYPny5di8eTMEQYBEIsHkyZPx0Ucf4cKFC/jmm2/g5eXVpvvSJvnLli3DI488gn//+9/4448/sHTpUnzxxReIjo5ucZvU1FT07dsXq1atgp2dHdauXYtHHnkE33//PXr16mXowwHQOEy/utp0V/HtLmpqapr9n8yPMdtwd8JFlFfWwc3JFqEDnfke7QJ8D3YdZW97uDhao+xyPQ4ev4Dhg41TC72jbXg0pRANagGergo420n4vhNBZ70PbWRAQD9nnMkqx9+JWZgcxRGKnYWfpeaN7Wf+zKUNtbl0W0gEA1fB+eCDD7B27VosX74c48aNww033IDNmzdDKpXi4YcfxvDhw/H666+36b5+//13PPHEE3jxxRdx11136bY/8MADAIDPPvus2fHHjx/HnDlzEBsbC29vbwCASqXC5MmTMX78eDz//POGPBQAQHJyMurr6w2+HRF1HkEQ8NHvBSiqaMBNoU64YRBH0pDl+TOxHAdPVyKwjy3mjDGNBd+2xZXh2LkqRCodMCXCWexwyMgOnr6MPxMr4ONhg3tvdBc7HCKibs/a2hrBwcHXPc7gnvbNmzfjsccew2233Qa1Wq3bPmjQIDz22GN4880323xfnp6NQ++USmWz7f7+/tizZ0+L4xMSEuDm5qZL2AFALpdj8ODByMrKMvCR/EMul8Pfn4tcia2mpgaZmZnw8fGBQqEQOxxqB2O14Yn0EhRVXISttQxzJ4fCXiE3YpTUGr4Hu5a9y2UcPH0YaXl16NPfD4521h2+z460oSAIeP/XfQCAmBEDMUhpGhcSupvOfB+6edXgz8T9yCqqQ+9+fuhh3/HXHLXEz1LzxvYzf+bShoYspG5w0l5cXIxBgwbp3efp6YlLly61+b6GDBkCe3t7nDhxAhEREbrtZ8+e1buwnJeXF8rKylBYWAgPj8ahhBqNBunp6Rg1apSBj+QfEokEdnZ27b49GZdCoWB7mLmOtuGOwycAABNH9Ie7m5OxwqI24nuwawT62sHX2wkZuRVIOFuGKSMHGO2+29OGmXmXUHKpDtZWUkQM6Q0bucxo8ZDhOuN96GNnB9/eTsi4WIHkjArcNKK/Ue+fmuNnqXlj+5k/U29DQ9ZrMnghuv79+2Pv3r169x05cgT9+7f9C8DW1hb33XcfPvzwQ/z666+4cOECPv74Yxw4cAALFy4EABQVFaGqqgoAMH78ePTt2xePPfYYTpw4gXPnzuGFF15AXl4e5s+fb+hDISITlJV3CcdSCyGVANNH+4odDlGnGn9FzXaxaUu9hQx0Z8JuwXSryLP0GxGR2TA4aV+wYAG++uorvPzyyzh48CAkEgmysrKwfv16rF+/vtnc9LZYunQpHn30UaxZswZTpkzBjh078P7772PEiBEAgFGjRmH9+vUAADs7O3z11Vfo3bs3Hn74YcyZMwd5eXnYuHEj+vTpY+hDISITtPXvcwCAqOBe8HKzFzkaos41NrQ3pBIgNasMuUWGVWAxNl2pt0DjLIpHpkmbtCemFqG6ViVyNERE1BYGD4+fPXs2SktL8fHHH2Pjxo0QBAFPPvkk5HI57rvvPsydO9fgIBYuXKjrWb9aampqs789PT3x1ltvGXwOIjJ9ZZdrsedYDgBg5hiuM0GWz6WHLUIDPJBwphCxCdm4+2b90886W1WNCinnSwGw1Jul6+fpCO+e9sgtrkLCmUKMHtZb7JCIiOg6DE7aAeDBBx/EvHnzcOzYMVRUVKBHjx4YOnQonJ2djRweEXUnvx/IhKpBg4D+Lhg0wFXscIi6xPjwvkg4U4jdCTm4a2IgpNK2z3EzluNni6DRCOjt7sARLhZOIpEgOrgXNu9Ox6HkPCbtRERmoF1JOwA4ODhgzJgxxoyFiLqxOpUavx88DwCYOdZP5GiIus6IIC8obKxQWFqN05mlGOLr1uUxaOezR7CXvVvQJu3xp/NRr1LDmmsYEBGZtDYl7YYu8vbVV1+1Kxgi6r72JGTjUlU9PFwUiA7qJXY4RF3G1toKo4Z6468jFxAbn93lSbsgCLr57OGcz94tDOzrAjcnW5RU1OJEWhGGD/YSOyQiIrqGNi1EJwhCs/+OHTuGxMRECIKAnj17wsrKCidPnkRycjJ69mRdVyIyjEYj6Bagmz7aDzKZwWtkEpm18eGNq8gfOHERdSp1l54742IFyi7XwcZahiC/ru/lp64nlUoQ1XRx9FAyV5EnIjJ1bepp//rrr3X/3rBhA0pLS7Fu3Tp4ef1zZba0tBQPPPAAV3EnIoMdSy1EdkElFDZWmDiin9jhEHW5Ib5ucHdRoKisBkdO5XfpPOP4pl72YQPdIbfiMOnuIjq4F347cB5xp/KhVmt4sZSIyIQZ/An9+eef41//+lezhB0AXF1d8dBDD+H77783WnBE1D1s3dvYyz4pqj/sbOUiR0PU9aRSCcaFNV707uqa7QmnCwFw1fjuJsjXDY52clyqqtdVDiAiItNkcNJeW1sLQRD07quqqupwQETUvZzPrcDxtCJIpRJMH+UrdjhEotEOkT+WWojyy3Vdcs7L1fVIzWoq9cb57N2KTCZF5JDGDphDJzlEnojIlBmctEdFReHtt99GRkZGs+2nTp3CO++8g7FjxxotOCKyfFuaetlvCPGGh6udyNEQiaevpyOU/Zyh0Qj4OzGnS86ZmFoIjQD083KEhwvff91N9BXz2lvrkCEiIvEZnLQ///zzUKlUmDZtGiZNmoQ5c+bgpptuwu233w5HR0c899xznREnEVmg0ku1uuSEZd6I/ultj03omiHyulJvgRwa3x0NC/CArbUMxeU1SM8pFzscIiJqhcFJe69evfDbb7/h+eefx5AhQ2Bvb4+QkBCsXLkSmzdvhrOzcyeESUSW6LcD59GgFjDIxxXKfi5ih0MkutHDekMmleBcTgWy8i916rk0GgHHUrXz2Tk0vjuykcsQ3nTBhqvIExGZrjatHn81hUKBefPmYd68ecaOh4i6idr6Bmw/eB4Ae9mJtJwcbBAxyBNxp/KxOz4b904b0mnnSs8pR0VlPRQ2Vhjkw1Jv3VV0cC8cSMrFoeQ8zJ8yWOxwiIhIj3Yl7UlJSYiLi0N9fb1uDpQgCKiurkZCQgJ++OEHowZJRJZnd3w2Ller4OlqhxFN8yqJCBgf0Rdxp/Kx91gO7pkyGDKppFPOk9A0NH6Y0h1yK5b76q6GD/aElUyKnMJKZBdcRl9PR7FDIiKiqxictH/77bdYtWqV3gVLpFIpRo0aZZTAiMhyaTQCtv7duADdjDG+nZaUEJmjyMGesFfIUVxRi5PpxRiqdO+U8yScaRwaH8FSb92ana0cQwf2RMKZQhxKzmPSTkRkggy+tP7NN99gzJgxiIuLw6JFi3DHHXfg+PHjePfdd2FjY4MZM2Z0RpxEZEHiTxfgYlEV7G2tcFNkf7HDITIpcisZRg/rDaDzFqSrqKzD2ewyACz1RkB0sDcA4FByrsiREBGRPgYn7Tk5Objrrrvg5OSEoKAgJCQkwNbWFpMmTcIDDzyAr776qjPiJCILoi3zdnO0DxQ27ZqlQ2TRYppWkT+YlIvaugaj3/+x1EIIAjDAuwfcnBRGv38yLyOGeEEqAdJzKlBYVi12OEREdBWDk3a5XA5bW1sAQP/+/ZGVlQWVSgUACA8PR2ZmplEDJCLLkp5TjuRzxZBJJZg2ylfscIhMUqCPC3q52aO2Xo1DJ42/qreu1BuHxhMAZ0cbDBrQuBjhYa4iT0RkcgxO2gcNGoTdu3cDAAYMGACNRoMTJ04AAPLz840bHRFZHO1c9lFDe6OnM3v4iPSRSCQYH94HQOOijcak1ghI1JZ6Y312ahId3Lgg6EEm7UREJsfgpH3hwoXYsGEDnnvuOdjZ2WHChAl4+umn8dprr+H1119HeHh4Z8RJRBagpKIG+xIvAgBuGctedqJrGR/ROET+RFoRSipqjHa/aRfKcLlaBXtbKwT2dzHa/ZJ5i26q4nH6fAnKL9eJHA0REV3J4KT9xhtvxCeffAI/v8a6yi+//DJ8fHywadMm+Pr6Yvny5UYPkogsw6/7z0OtETDE1w0D+zJZILoWLzd7DPJxhUYA9h7LMdr9aofGhwZ4QCZjqTdq5OFqB78+TtAIQNwpjpwkIjIl7VoBaty4cRg3bhwAwMXFBevXrzdmTERkgWrqGrD9UCYAYOZYP3GDITITMRF9cTqzFLHx2bh1nD8kko6XR4w/w/nspF90cC+cy6nA4ZN5mBTFyh5ERKaiTUl7bq5hJUC8vb3bFQwRWa5dRy+gqkaFXj3tETnYS+xwiMzCqKHe+GxLMrLyL+N87iX49nbq0P2VXarFuZwKAEAYS73RVaKDeuGb7Wdw/GwRqmtVsLOVix0SERGhjUl7TEyMQVf3T58+3e6AiMjyqDUCtv2dAQC4ZYwfpNKO9xYSdQcOdtaIHOyFA0m52J2Q3eGkPeFM4wJ0/n2c4OJoa4wQyYL09XREb3cHXCyqRPzpAowJ7SN2SEREhDYm7a+88oouaa+oqMCbb76J6OhoTJ48Ge7u7igvL0dsbCz27NmDZ555plMDJiLzc+RUPvJKquCgkGNC0+JaRNQ2MRF9cSApF3uO5eDeqYM7NA9dOzQ+nEPjSQ+JRILo4F74KTYNB5PzmLQTEZmINiXts2bN0v374YcfxsyZM7Fq1apmx0yfPh2rV6/G9u3bceeddxo3SiIya9oyb5NH+sDWpl1LaRB1W2GBHuhhb43yy3VIPFvU7rnoarUGx5tKvXE+O7VGm7QnnC5AvUoNa7lM7JCIiLo9gy/XHzhwAJMnT9a7b9y4cUhMTOxwUERkOc5eKMOpjBJYySSYesMAscMhMjtWMinGhPYGAOxOaH/N9jNZZaiqbYCjnTWrN1CrBvZ1Rk8nW9TWq3H8bJHY4RAREdqRtLu4uCApKUnvvsOHD8PTk1fviegf2l720cN6w81JIXI0ROYppmlayeHkPFTXqtp1H9pSb2EBHpBxXQlqhUQiQVRwY832Q8l5IkdDRERAO0q+zZ49Gx9++CFqa2sxbtw4uLi4oLi4GDt27MDGjRvx3HPPdUacRGSGCsuqsf9EY/WJmWP9RY6GyHz593FGHw8H5BRW4sCJXNw0wvByXNqkPWIQV42naxsZ7I1f959H3Kl8qNWaDq2jQEREHWdw0r5kyRJcvnwZ69atw2effQYAEAQBtra2+Ne//oV58+YZPUgiMk+/7j8PjUZAiH/PDq96TdSdSSQSxET0xVe/n8buhByDk/aSihpk5l2CRAKEBjBpp2sbPMAVjnbWuFxdj1PnSxDi7y52SERE3ZrBSbtEIsGyZcuwdOlSJCYm4tKlS3BxcUFoaCjs7Ow6I0YiMkPVtSr8cTgTADBzrJ+4wRBZgLFhffD19tNIPleMwtJqeLi2/Ts3/nTjAnTKvi5wcrDprBDJQshkUkQFeeGvIxdwKCmPSTsRkcjaPd7J0dERY8aMwbRp03DDDTcwYSeiZnYeuYDq2gb0dndAeCDXuiDqKA8XOwT79QQA7DmWY9BtE1jqjQykm9d+Mg8ajSByNERE3VubetonTJiADz/8EIGBgYiJidHVbNdHIpFg586dRguQiMyPRiNg674MAMAtY/0g5aJXREYxPrwvktKLERufjdkTBl7z+1hL1aDRrQLO+ezUVsMGukNhI0NJRS3Sc8qh7MeKA0REYmlT0h4ZGQl7e3vdv9vyI4GIuq+jpwtRWFoNRztrjA/vI3Y4RBZjZEgvfPxzEi4WVSItu22J1OnMEtTUNcDZwQZ+vZ07P0iyCNZyGcIDPbH/RC4OJuUyaSciElGbkvZXX31V9+/XXnutxf6GhgZYWRk8PZ6ILNSvB7MAAFNG+sDWmp8NRMZiZytHdFAv7E3Mwe747DYlUtr57GGBHhz1QgYZGeyN/SdycSg5DwumDmanDRGRSNo1p/2zzz7DAw88oPs7ISEBo0aNwjfffGO0wIjIPFXUypBfUgMrmRRTbxggdjhEFkdbs31v4kWoGjTXPV5X6o1rS5CBwgd5wEomRW5xFS4UXBY7HCKibsvgpH39+vV455134OPjo9vWr18/3HzzzXjttdfw448/GjM+IjITtfUNkFvbImiwEuuevwmvPzIKLj1sxQ6LyOIMHdgTLo42uFxdj2NNC8y1prC0GtkFlyGVAMMCuAI4GcbOVo5hysbXzeHkPJGjISLqvgxO2jdt2oTHH38czz33nG5br1698J///AePPPIINmzYYMz4iMgM1KvU2Lw7Hfes2IHFq/7CvSv/xNHTBahXqcUOjcjiyGRSjA1rXCsiNiH7msdqV40P6N9Yd5vIUNFNq8gfZNJORCQag5P2goICBAcH6903dOhQ5OQYVoaGiMxbbX0DfoxNw6Y/U1FVowIAVNWosOnPVPwUm4ba+gaRIySyPNoh8kdOFaCyur7V47Tz2SNY6o3aacQQL0glQMbFChSUVosdDhFRt2Rw0t67d28cOnRI776jR4/Cy8urw0ERkfmQSaX4pam829W27cuATNqupTOI6BoGeDvBp1cPNKg12HciV+8x9So1TqRrS70xaaf2cXKwwRDfngCAQ+xtJyIShcG/pu+44w6sW7cOr7/+OhISEpCZmYljx47hrbfewmeffYY5c+Z0RpxEZKKqalW6HvYW+2pUqK7Vv4+IOkbb2747Xv8Q+VMZJairV8O1hw0GePfoytDIwkQFN3bIHD7JpJ2ISAwG12K69957UVBQgK+//rrZ/HWZTIYFCxZg4cKFxoyPiEycva0c9gq53sTdXiGHna1chKiILN/YsD7Y8OspnM4sRV5xFXr1tG+2P75pPnt4oCdLdVGHRAd5Y+2Wk0g5X4Kyy7VwceQio0REXaldBZSXLVuGpUuXIjExERUVFejRowdCQkLg4nL9erFEZFnUGg2mj/bFpj9TW+ybMdoXao0G8vZVlySia3DtYYthSg8cSy3E7oRs3DUpsNn+hKZSb+EcGk8d5O6igH9fZ6Rnl+PIqXxMivIROyQiom6l3b+kHR0dMWbMGEyfPh1jx45lwk7UTdlaW2HmGD/ceaMS9orGXnV7hRxzJwbg9piBsLVu17VBImqD8doh8gnZEARBtz2/tBoXi6ogk0owbCBLvVHHjeQq8kREomnTr+kJEybgww8/RGBgIGJiYq45zE4ikWDnzp1GC5CITJtaI2Dl+jjMHOuHr16chKqaejjY2UCt0cBaLhM7PCKLFhXkBYWNDPkl1TidWQofTwUA4PjZYgDAoAGuuotpRB0RFdQLX/1+GklpRaiqUfF1RUTUhdqUtEdGRsLe3l73b86NIyKtE2lFOJVRgqy8S/h02RjkZmdhwIABsLOzEzs0Iotna22FkSHe2HU0G7Hx2Vg0VQkASGxK2iMCOTSejKOvpyP6ejogu6ASR08XYFxYH7FDIiLqNtqUtL/66qu6f7/22mudFgwRmZ9dRy8AaFwUy0omRW1trcgREXUv48P7YtfRbOw/fhF3T/SDqkHAqfNlAFjqjYwrKqgXsgvScCg5l0k7EVEXalPSnpurvwZsa7y9vdsVDBGZl6oaFQ43zW+cMLyvyNEQdU/Bfj3R01mB4vIaHEstRmFhLVQNGvR0skU/L0exwyMLMjLYGz/uSkPCmULUqdSw4RQoIqIu0aak/Xrz2K92+vTpdgdEROZj/4mLqG/QoK+nI/z7OKOmpkbskIi6HalUgvHhffDjrjTEnymEk0KGHvbWCB/EUm9kXH59nODuokBRWQ0SUwsRFdRL7JCIiLqFNiXtr7zyCr/4iaiFXUezAQA3Du/LzwgiEd0U2R/Kfi4YNtAdFVV1WDDDBhVV9WKHRRZGIpEgOqgXtu3LwKHkPCbtRERdpE1J+6xZszo7DiIyM7lFlTidWQqpBBgXzqHxRGJyc7LFrqMX8M6mRN3K3jNG++L2mIGs4kBGFRXcmLQfOZWPBrUGVrJ2Vw8mIqI2atcnbWlpKd544w3ceuutGDVqFM6cOYMPPviApd6IupFd8Y297KEBHnDtYStyNETdV219A36MTcP3O8+iqkYFoHG9iY1/puKn2DTU1jeIHCFZksED3ODkYI3KGhVOnSsROxwiom7B4KQ9OzsbM2bMwA8//ABPT0+UlJRArVbj/PnzeOyxx7Bnz55OCJOITIlGIyC2KWmfMLyfyNEQdW8yqRS/7MvQu2/bvgzIpOwJJeORSSUYMaRxWPzBZMMWKiYiovYx+Jv89ddfh5ubG3bt2oUPPvgAgiAAAN566y3ExMTgk08+MXqQRGRaktOLUVxeA3uFHCOGeIkdDlG3VlWr0vWwt9hXo0J1rf59RO0VHdyYtB8+mQ+NRhA5GiIiy2dw0n7o0CEsXboUPXr0aLHw1J133om0tDSjBUdEpmlnfGNt9jHDenO+LJHI7G3lsFfI9e9TyGFnq38fUXsNHdgTChsrlF6qxdnsMrHDISKyeO0aM2dlpX/9uvr6eq4gTWThqmtVOJjE2uxEpkKt0WDGaF+9+2aM9oVao+niiMjSya1kGD7IEwBwODlP5GiIiCyfwUl7REQEPv30U1RXV+u2SSQSaDQabNy4EWFhYUYNkIhMy4ETuahXqdHb3QHKfi5ih0PU7dlaW+H2mIGYOzFA1+Nur5Bj7sQA3B4zELbWbSoUQ2SQ6BDtvPY83VRJIiLqHAZ/kz/11FOYO3cuJk6ciBEjRkAikWDdunU4d+4csrKy8N1333VGnERkInbpFqBjbXYiU2Etl2HWeH/MnqBEZXUdHOxsoNZoOH2FOk14oCfkVlLkFVfhQv5l9O/VQ+yQiIgslsE97UqlEps3b8aIESMQFxcHmUyGgwcPol+/fti0aRMGDRrUGXF2e7X1DVA1aFBeWQdVg4YlfEgUecVVOJVRAqkEiIng0HgiU2JrbQVVfS1yszOgqq9lDzt1KoWNFUKVHgAae9uJiKjztOsb3cfHB2+99ZaxY6FW1KvU2Lw7Hb/sy0BVjQr2CjlmjPbF7TED2YtCXUpb5m3oQHe4OSlEjoaI9KmtrRU7BOomooO9cCQlH4eT8zB3YoDY4RARWaw29bSvWrUKubmsxSmG2voG/Bibhk1/pupK+lTVqLDxz1T8FJvGHnfqMo212RtXjWdtdiIiGj7YC1KpBBm5FcgvqRI7HCIii9WmpP3bb79FcXGx7m9BEHD//ffjwoULnRYYNZJJpfhlX4befdv2ZUAmbVcBACKDncooQWFZDexsrRDVVKOXiIi6LycHGwT5ugEADnGIPBFRp2lTxnf1qqAajQb79u3D5cuXOyUo+kdVrUrXw95iX40K1bX69xEZ286jjRfpRg/rDRtOyyAiIgDRTRdxmbQTEXUedtOaOHtbua6ET4t9CjnsbPXvIzKmmroGHExqnCIzIYJD44mIqFFUUGPSfiarFGWXuJ4CEVFnYNJu4tQaDWaM9tW7b8ZoX6g1mi6OiLqjg0m5qK1Xw7unPQJ9WJudiIga9XRWQNnPGYIAHD6VL3Y4REQWiUm7ibO1tsLtMQMxd2KArsfdXiHHnTcqMX2UL1glm7rCrqONq8bHsDY7ERFdJTrYGwBwKImLFhMRdYY2l3wrKirSrSCvVqsBAMXFxXpXlff29jZSeAQA1nIZZo33x+wJSlTXqmBna4XE1CI8/cE+9PV0xLL5wyGTMpGizpFfUoXkc8WQSIDx4azNTkREzUUH98KXv6UgKb0YlTUqOLQyrY+IiNqnzUn7I4880mLbQw89pPfY06dPtz8i0svWurGpnBxsADT2tueXVCOnsBLrt53E/TODxQyPLNjuhBwAQIh/T3i42IkcDRERmZre7g7o5+WIC/mXcTQlnxd4iYiMrE1J+6uvvtrZcZCBhvi64cm5YfjvN/HYti8DHq52uGWMn9hhkYURBNZmJyKi64sO6oUL+ZdxKDmPSTsRkZG1KWm/9dZbOzsOaofRob1RVF6NL35NwbptJ9HTWYEbQjg1gYwn5Xwp8kuqobCxQnQQa7MTEZF+0cG98P3Os0g4U4ja+gbdCEEiIuo4LkRn5m4d548pI30gCMDb3ybg9PlSsUMiC7KrqTb7qKHesLXhDzAiItLPt7cTPFwUqFepkZhaJHY4REQWhUm7mZNIJHhgZjCGD/ZEfYMGK9fHIbeoUuywyALU1jVg/4mLADg0noiIrk0ikfyzinwyV5EnIjImk0jat2zZgilTpiA4OBhTp07F9u3br3n8unXrMGHCBISEhGDWrFk4fPhwF0VqmmQyKZ6+OwL+fZxwuboeK9YeRkVlndhhkZk7dDIPNXVqeLnZYfAAV7HDISIiExcd3DiN6khKARrUGpGjISKyHKIn7Vu3bsXzzz+PefPm4bfffsO0adPw5JNPIjExUe/xH330ET744AM89dRT2LZtG4YNG4YlS5YgOzu7iyM3LbY2Vli+OAoernbIK6nCynVxqK1vEDssMmPaofExEf1Ym52IiK4r0McVzg42qKpRITm9WOxwiIgshqhJuyAIePfddzF//nzMmzcP/fr1w5IlSzBy5EgcOXKkxfHV1dVYu3Yt/v3vf2PKlCnw8fHB888/j759+yIhIUGER2BaXHrYYsV9UXBQyJF6oQxvf3cMao0gdlhkhgrLqpHU9IMrJoKrABMR0fXJpBKMCPIC0Dhai4iIjKNdSXtpaSneeOMN3HrrrRg1ahTOnDmDDz74ADt37jTofs6fP4+LFy9i+vTpzbavW7cODz74YIvjExISUFNTg6lTp+q2yWQybNu2DTNnzmzPQ7E4fT0d8fzCSFjJpDiUnIf1206KHRKZod0J2RCExtrsnq6szU5ERG2jHSJ/ODkPGnYcEBEZhcHLQWdnZ2Pu3Lmoq6tDeHg4zpw5A7VajfPnz+Ojjz7CRx99hHHjxrXpvs6fPw+gsQd98eLFSElJQZ8+fbBkyRLExMToPd7JyQmpqal45513kJmZCX9/fzzxxBMICwsz9KHoCIKA6urqdt/e1Pj2ssPSWUPw3o/J2LYvA84OVpg6sr/YYV1XTU1Ns/+TOARBwM64LADAqBBPg94bbEPzxvYzf2xD82fubTjQ2x4KGyuUXa7DibN5COjnLHZIXc7c27C7Y/uZP3NpQ0EQ2jwF1eCk/fXXX4ebmxu+/vpr2NnZISgoCADw1ltvoa6uDp988kmbk/bKysZVzpctW4ZHHnkE//73v/HHH39g6dKl+OKLLxAdHd3i+NraWixfvhxPPfUUvL298f3332PBggXYsmUL/Pz8DH04AACVSoXTp0+367amylUO3DjMCTuPV+Cr7WdRW1mCwX0VYofVJpmZmWKH0K1dKKpDfmkN5FYSOMnKcPp0hcH3wTY0b2w/88c2NH/m3Ib+XnIkZzVgx/7T0IQ6ix2OaMy5DYntZwnMoQ2tra3bdJzBSfuhQ4fwyiuvoEePHlCr1c323XnnnXj88cfbfF9yuRwAsHjxYtx6660AgEGDBiElJUVv0m5lZYXa2lo899xzGDt2LABgyJAhSExMxDfffIMXX3zR0Ieji8Pf379dtzVlgYECJNZn8NeRHPzvUBmCA32hNOEr3jU1NcjMzISPjw8UCvO4wGCJ9p1NAQCMDPbCsJAhBt2WbWje2H7mj21o/iyhDW9UFyA5Kwnn8tUIDAzsdouZWkIbdmdsP/NnLm2Ynp7e5mMNTtqBxuRZn/r6eoM+mD09PQEASqWy2XZ/f3/s2bOnxfFeXo2LmwQEBOi2SSQS+Pn5IScnp83nvZpEIoGdnWXO23349lCUV6pwNKUA//32BN58bDS83R3EDuuaFAqFxbaHqatTqXHoZAEAYFKUb7vbgW1o3th+5o9taP7MuQ2jh/bFh5tPoqCsBoUVDRjg7SR2SKIw5zYktp8lMPU2NCRvNnghuoiICHz66afN5rlKJBJoNBps3LjRoLnlQ4YMgb29PU6cONFs+9mzZ9GvXz+955ZIJDh+/LhumyAISE9PR//+pj9nWwwtarh/zhru1LrDyXmorm2Ah6sdhvi6iR0OERGZIYWNFUIDPAAAh5K5ijwRUUcZnLQ/9dRTOHfuHCZOnIinn34aEokE69atw6xZs5CQkIAnnniizfdla2uL++67Dx9++CF+/fVXXLhwAR9//DEOHDiAhQsXAgCKiopQVVUFAPD29sZtt92GVatWYe/evTh//jxWrlyJnJwc3HXXXYY+lG6jWQ334iqsXB+HOpX6+jekbkdXmz28L6TS7jWckYiIjEe7ijyTdiKijjM4aVcqldi8eTNGjBiBuLg4yGQyHDx4EP369cOmTZswaNAgg+5v6dKlePTRR7FmzRpMmTIFO3bswPvvv48RI0YAAEaNGoX169frjl+xYgVuu+02/Oc//8Ett9yClJQUrF+/Hr6+voY+lG6lWQ33rDK89W0Ca7hTM8XlNTieVgSAtdmJiKhjIod4QSqVIDPvEvKKq8QOh4jIrLVrTruPjw/eeustowWxcOFCXc/61VJTU5v9LZfL8cQTTxjUo0+NtDXcX/j0UGMN919O4v5bgsUOi0yEtjb7EF839OppL3Y4RERkxhztrBHs54YTacU4lJyHWeMtb8FfIqKu0qakPTc316A79fb2blcw1PmC/HriibmheOObBGz7OwMeLna4ZUz7SuWR5RAEAbuOZgMAJrCXnYiIjCA62Lspac9l0k5E1AFtStpjYmIMWt3O0mqeW5oxoX1QVFaDDb+lYN22k3B3VmBkCC+0dGepF8pwsagSNtYy3DCUrwUiIuq4qCAvfPJzEs5klaH0Ui1ce9iKHRIRkVlqU9L+yiuv6JL2iooKvPnmm4iOjsbkyZPh7u6O8vJyxMbGYs+ePXjmmWc6NWAyjlnj/VFQVo3tBzPx1rcJcO1hi0AfV7HDIpHENvWyjwzuBTtbucjREBGRJXBzUiCgvwtSs8pw+GQepowcIHZIRERmqU1J+6xZs3T/fvjhhzFz5kysWrWq2THTp0/H6tWrsX37dtx5553GjZKMTiKR4MGZwSgur8HRlAK8vC7OLGq4k/HVq9T4+/hFAMCEiJalFomIiNorOqgXUrPKcCiZSTsRUXsZvHr8gQMHMHnyZL37xo0bh8TExA4HRV2DNdwJAOJO5aOqRoWezgoE+/cUOxwiIrIg2tJvyenFqKyuFzkaIiLzZHDS7uLigqSkJL37Dh8+DE9Pzw4HRV2HNdxJV5s9grXZiYjIuLzdHdDfyxFqjYAjKQVih0NEZJYMTtpnz56NDz/8EGvWrEFiYiIyMzMRHx+PVatWYf369ViwYEFnxEmdiDXcu6+SihokphYC4KrxRETUOaKDGxc4PZRsWDUiIiJqZHCd9iVLluDy5ctYt24dPvvsMwCN5aJsbW3xr3/9C/PmzTN6kNT5WMO9e9p7LAcaARjk48r1DIiIqFNEB/fCpr9ScexMIWrrGmBrY/DPTyKibs3gT02JRIJly5Zh6dKlOH78OCoqKuDi4oLQ0FDY2dl1RozURVjDvXsRBAE7tbXZh7OXnYiIOscA7x7wdLVDQWk1jqUWsswsEZGB2n2p09HREaNHjzZmLGQCWMO9+0jLLkd2wWVYW0kxamhvscMhIiILJZFIEB3cC1v2nsOh5Dz+riAiMpDBc9rJ8s0a74/J0T4QBOCtbxNwJrNU7JCoE8TGN/ayRwd7w17B2uxERNR5tKvIn8kshapBI3I0RETmhUk7tSCRSPDgrcGIGOSJ+gYNXl4Xh9yiSrHDIiNSNaix91gOACCGQ+OJiKiTBfZ3xYr7ovD+v8fjcnU9VA0a1NY3iB0WEZFZYNJOeslkUjx9D2u4W6ojpwpQWaOCm5Mthg50FzscIiKycA1qDc5kluLelX9iwUt/4J4VO/Dz7nTUs8wsEdF1MWmnVim0NdxdFKzhbmF2xTfWZh8f3hcy1mYnIqJOVFvfgB9j07Bp51lU1agAAFU1Kmz8MxU/xaaxx52I6DranbTv3bsXr776Kp544glkZ2fjzz//xMWLF40ZG5kAlx62WHF/NOxZw91ilF2uRcKZxtrsMazNTkREnUwmleKXfRl6923blwGZlH1IRETXYvCnZE1NDRYtWoQHH3wQmzdvxo4dO3Dp0iVs3LgRs2bNQlpaWmfESSLq6+mI/yyMhJVMqqvhTuZr77EcaDQCAvq7oK+no9jhEBGRhauqVel62Fvsq1Ghulb/PiIiamRw0v7222/j1KlT2LBhAw4fPgxBaOx1ff311+Hp6Yl3333X6EGS+IL8euLxOaEAgG1/Z2Dr3+dEjojaQxAE7DzSODR+AnvZiYioC9jbylutUmKvkMPOlhVMiIiuxeCkffv27XjyyScRFRUFieSfubAeHh5YsmQJEhISjBogmY6xYX2wYOpgAMC6bSdxMClX5IjIUOcuViAr/zLkVlKMHsba7ERE1PnUGg1mjPbVu2/6qAFQq1kCjojoWgxO2i9duoTevfX/2HdyckJ1dXWHgyLTddvVNdyzWMPdnGhrs0cF9YKDnbXI0RARUXdga22F22MGYu7EAF2Pu71CjjtvVGLaKF/EncwTOUIiItNmZegNBg4ciF9++QWjRo1qsS82NhYDBw40SmBkmrQ13IvKaxB/ugAr18XhjcdGw7ung9ih0XWoGjTYk9BUm51D44mIqAtZy2WYNd4fsycoUV2rgp2tHHnFlXjmw/3IK66Cq7MCwX49xQ6TiMgkGdzTvmTJEmzduhUPPvggfvzxR0gkEhw9ehQrV67Exo0bcd9993VGnGRCrqzhfqmqHivWsoa7OYg/nY/L1fVw7WGDUCVrsxMRUdeytbaC3EoKJwcbyK2k6OvpCL/ezlBrBLz+1VEUlnG0JhGRPgYn7TfeeCPeeOMNpKamYsWKFRAEAa+99hp27NiBFStW4Oabb+6MOMnEXF3DfRVruJu8XUcbh8aPD+8LmYzldYiISFwSiQSP3DEUvt5OqKisx6sbjvC3BBGRHu365T59+nTs2bMHv//+O7777jv8+uuv2LdvH2bPnm3s+MiEXVnD/QxruJu0iso6xJ8uAMCh8UREZDpsra3w/MJI9LC3RnpOBT748biuMhERETVqV9L++++/Y/ny5fD19UVYWBguXbqEO+64A7GxscaOj0zc1TXcv/jllNghkR57j+VArREwsK8z+nn1EDscIiIiHQ9XOyybHwGpVII9CTnYti9D7JCIiEyKwUn7li1b8OSTT6K8vFy3zdnZGe7u7njkkUewc+dOY8ZHZuDKGu5b/z6HbazhbnK0Q+NZm52IiExRiL87Fk8fAgBY/8spnEgrEjkiIiLTYXDSvm7dOixcuBDvvfeebpuvry8+/vhjLFiwAB999JFRAyTzcGUN98+3ncShZNZwNxXncyuQkVsBK5kUo0P7iB0OERGRXtNH+yImoi80GgGvfxWPglIuTEdEBLQjab9w4QLGjh2rd9+YMWOQkcEhTd3VlTXc3/yGNdxNhbaXfcQQL/SwZ212IiIyTRKJBEtvHwr/vs64XF2P1V/Eoba+QeywiIhEZ3DS7u7ujqSkJL37zpw5AxcXlw4HReZJW8M9YpAn6hs0WLkuDrnFlWKH1a01qDXYc6wxaY8ZzqHxRERk2mzkMjy3IBLODjY4n3sJ73/PhemIiAxO2qdNm4aPP/4Y33zzDQoKCqBSqVBQUIBNmzbh/fffx4wZMzojTjITrOFuWhJOF6Cish7OjjYIC/AQOxwiIqLrcndRYNn8CMikEvx9/CL+tydd7JCIiERlcNL+8MMPY/To0Vi1ahXGjRuHkJAQjBs3DitWrMCYMWPw6KOPdkacZEZYw9107Ipv7GUfF9YHVqzNTkREZiLIryfunxkMAPjytxQcSy0UOSIiIvFYGXoDuVyO9957D2fPnkVCQgIqKirg6OiI8PBwBAYGdkaMZIa0Ndz/7/19uhruy+YPh0wqETu0bqOisg5HU/IBABOG9xM5GiIiIsNMGemDcznl+OvIBbzxdTzefnwsevW0FzssIqIuZ3DSrqVUKqFUKo0ZC1kYbQ33Fz49pKvhft8tQWKH1W38nXgRDWoBfn2c4NOLtdmJiMi8SCQSLLktBBfyLyP1QhlWfxGHNx4bA4VNu3++EhGZpTZ96s2fPx8vvvgi/Pz8MH/+/GseK5FI8OWXXxolODJ/2hrub36bgK1/n4OHiwIzxviJHVa3EBt/AQAwIYK97EREZJ7kVjI8e+9wPLFmL7LyL+PdTYlYNj8CEglH7hFR99GmSa5XrtopCMI1/9NoNJ0WLJmnsWF9MH/KIACs4d5VsvIuIT2nAlYyCcaE9hY7HCIionZzc1Lg2QWRsJJJcCApFz/FpokdEhFRl2pTT/vXX3+t999EbXV7zEAUltVgx6FMvPlNAlYvtUVgf1exw7JY2gXohg/2gpODjcjREBERdcygAa54aFYIPvjxBL7efhoDvJ0QMchT7LCIiLoEl5OmLiGRSPAQa7h3CbVag90JTbXZI1ibnYiILMOkKB/cHO0DQQDe/CYeuUX8HUFE3UObetpjYmIMmju0a9eudgdElktbw/3Zj/bjXE4FVqw9jDceHc2eYCM7llqI8st1cHKwZi8EERFZlAdmBiMr7xJOZ5Zi1RdxePOxMbCzlYsdFhFRp2pTT3tkZKTuv4iICBQUFKC6uhrDhw/HlClTMHLkSAjC/7d33+FR1VkfwL9TM5MGCaRBCoQklECA0BK6oQgoCAqWBVTEhoLuiwUEC4ptxba6uiwKrMICorggIL2XhCSAtISEJARCSA/pM8lk5r5/hMwSCZoyM3fK9/M8PCtz79w5d09G78nv3nMEFBUVYfTo0eaOmWyY2kmOtzjD3azqb40fwdnsRERkZxRyKV57bAA83VXIyqvAZ+tPwWAQ/vyNREQ2rEkr7R9++KHxnz/++GNERERg5cqVUKvVxtd1Oh3mzJmDqqoq00dJdsXDXYW3nozCq/842mCGO7VeeVUNTpy/OZudXeOJiMgOebirsOjxAVj41THEnc/FD3tT8cjYrmKHRURkNs1ehvvxxx/x1FNPNSjYAUChUGDmzJn49ddfTRYc2a9AX3csnjUQcpnUOMOdWq9uNrsBnTu4I7hjG7HDISIiMouuQZ54fmoEAGDdros4cT5H5IiIiMynRffOlpaWNvr69evX4eTE55OpaXp1aY8XH+4LANhyOB2/xl4VOSLbZ5zNPoCr7EREZN9GDwzCvUM6AwA+WXcKWXnlIkdERGQezS7aY2Ji8PHHH+PYsWPG1wRBwJ49e/D5559jwoQJJg2Q7NvIW2a4f78jBclZGpEjsl1ZeeVIvVoCmVSCEX39xQ6HiIjI7Gbf1xPhwe2gqa7Fe6tPoFKjEzskIiKTa3bR/tprr8HPzw+zZ89GREQEhg0bhl69euGFF15Ar1698Morr5gjTrJjU2NCjSNcNh0vQmpWidgh2aR9CXWr7P27+6CtG+94ISIi+yeXSbHw0QFo31aN7IJKfLLuJBvTEZHdaVIjulu5u7tj48aNOHToEBITE1FWVgYPDw9ERUUhOjraHDGSnauf4Z5XVIHTqYX4aO1v+PhFd3Ro7yp2aDZDbxBw4OQ1AMCoAZzNTkREjqOtmxMWPz4QC/5xBAlJeVi3+yJmjOsudlhERCbT7KIdqCuyRo4ciZEjR5o4HHJUMpkUf32wFxZ+dRQ5N3Sc4d5Mv6Xmo7hMCzdnJfp39xU7HCIiIosKCWiL56f1wWfrT+GHPakI7tAGgyM6iB0WEZFJtKhoP3bsGA4cOACNRgODwdBgm0Qiwfvvv2+S4MixqJzk+MvI9vj+wA3kFFbivdXxWPrsYDgpZGKHZvX2J9TPZu8IhZyz2YmIyPHE9A9ARnYpthxOx2frT6GjlyuC/NzFDouIqNWaXbSvWrUKH330EZycnODp6QmJRNJg++//TtQcbmoZFs7size/TURyZjE+XXcSC2YOgFTKn6s7qdDoEHtz1A1nsxMRkSObdW8PXL5eirNphXhvdTw+/etwuDorxQ6LiKhVmr0kt3btWkycOBEJCQk4cOAA9u/f3+DPvn37zBEnORB/b1fjDPfjZ3OwehtnuP+RI79lQ1drQJCvG7r4czY7ERE5LplMildn9oe3hxo5RZVY9p+T0LMxHRHZuGYX7YWFhZg6dSqUSv7Wkszn1hnumw+l45cj6SJHZL32J/xvNjvvdCEiIkfXxtUJi2cNglIhw6mL+Vi7I1nskIiIWqXZRXuPHj1w6dIlc8RC1MCtM9y/3XIesedyRI7I+lzLL8fFKzcglUowMpKz2YmIiAAguGMbvPhQHwDAT/sv4chv2eIGRETUCs0u2hctWoRVq1bh559/Rnp6Oq5fv37bHyJTuXWG+8drE3HxSrHYIVmV/Yl1Degiu3rDw10lcjRERETWY3hff9w/MgQA8PcfTuPy9VKRIyISn7amFrpaA0oqqqGrNUBbUyt2SNQEzW5E98gjj8BgMGDRokV3vBU3OZm3IZFp1M9wLyzRIDE5D0tXnsDHLwyHX3sXsUMTnd4g4MDNon30ADagIyIi+r1H76lrTHc6teBmY7oRcHfhI57kmGp0emw6kIatRzJQqdHBRa3ApGHBmBoTCiWnNVm1Zhft7777rjniILqj+qYyr319FOnXSrHkm1h8xBnuOHupAIWlWriqFRgY7iN2OERERFZHJpXglZn9Mf/zQ8gtqsKyNYlY8lQUZDKORyXHoq2pxaYDadiwO8X4WqVGh/U3/37/XSFQKVs0DZwsoNmZmTJlijniIPpDaic53podhZe/OIzrnOEO4H+3xg/v2xEKueP+/0BERPRH3JyVWDxrEF754jB+u1SAf29PwuxJPcUOi8iiZFIpth7JaHTbL0cyMG1UmIUjouZo9NeMmZmZ+Ne//mXpWIj+kIe7Cm89GQUXtcI4w93goGNcKjU6HL/ZmG8Ub40nIiL6Q5383PHXhyMB1E2lOXjqmsgREVlWpVaHSo2u8W0aHaq0jW8j69DoSrtMJsPnn3+OlJQUfPrpp+jWrVuTR0lJJBIkJSWZNEiieoG+7lg8ayDe/FescYa7I/62/OiZ66jR6RHg44rQgLZih0NERGT1hvTugGmjQvHjvkv48ofT8Pd2RYh/W7HDIrIIF5UCLmpFo4W7i1oBZ5VChKioqRot2gMCAvDf//4Xy5cvBwA8//zznP9MVqN+hvsn/zmJzYfS4eWhxqRhXcQOy6L2J96czd6fs9mJiIiaavq47rh8vQyJyXl4/9/x+OyvIxy+Rw45Br3BgIlDOmPD3tTbtk0aFgy9wQBF8weLkYXc8Zn2bt264fPPPwcAzJs3z1LxEDXJyEh/FNyowve/JuPbLefh1dYZ0b38xA7LIq4XViDpcjGkEmBkP85mJyIiaiqZVIKXpvfDS58fwvXCSny0JhFvPx0NORvTkZ0rKtXi3mHBEABsO3bZ2D1+IrvH2wT+G4ps1tSYUNwdFeRwM9z3J9Q1oOvT1Rvt2qhFjoaIiMi2uKoVWDxrINROMpxNK8TqrRfEDonI7Fb9cgELvzqK/t19sGbJOKx+Yyz+/cZY9O/mzYLdBrBoJ5slkUgw5/4I9O/ug5paA5auPIGcwkqxwzIrg0HA/pM3Z7P3ZwM6IiKilgj0dcf/PdIPQF3n7H0JV0WOiMh8ki4XIT4pF9cLK+HmooRCLkWFpgaz39uD174+hrLKGrFDpD/Bop1sWv0M9y7+bVBWWYMl38SitKJa7LDM5lx6IQpuaOCikmNQT1+xwyEiIrJZ0b388PCYrgCAr346g9SrN0SOiMj0BEHAd9vrmoSPGRiIjl6uAIAgX3e0b6uGrtZg7JVE1otFO9k8tZMcb86OgpeH2jjDvVqnFzsss6hfCRjW15+3MhEREbXSI2O7YmAPX+hqDfjg3/G4Ua4VOyQik0pMzkPS5WIo5VI8Mrar8XWJRILx0Z0AADuOZ0IQHHOMsq1g0U52wdNdhSVPRsFFJbfbGe5V2ltnsweIHA0REZHtk0oleGl6JPy9XVFYqsWH3yVAV2sQOywikzAYBHz/azIAYOKw4Nt6IQ3v2xFqJxmuF1bibFqhGCFSE7FoJ7tRN8N9EOQyiXGGuz05fvY6qmv06Ojlgq6BHmKHQ0REZBecVXWN6ZxVciRdLsa3W86JHRKRSRw+fQ2ZOWVwUcnxQEzobdudVQqMjKxbCNoZm2nh6Kg5WLSTXekV0h4vPhwJANh8KB2/HEkXOSLT2ZdY14Bu1ADOZiciIjIlf283vDS9HyQS4Nfjmdh94orYIRG1iq7WgLU7LwIAHogJhZuzstH9xg/uBACIPZfDx0OsGIt2sjsjI/3x6ITuAIBvt5xH7M1bym1ZblElzqcXQSIB7urHW+OJiIhMbWAPX0y/uxsA4J+bzjrMKFmyT7vjMpFXXAVPdydMHBZ8x/06d2iDrkEe0BsE7I1nQzprxaKd7JK9zXDff3OVvXeoF9q35Wx2IiIic5g2KgzRvfxQq69rTFdcxpVHsj2a6lps2JsKAHh4TFeolPI/3L++Id3OuCt21xPKXrBoJ7tkTzPcDQbBWLSPGsDZ7EREROYilUrw14f7ItDXDcVl1fjg3/HQ1drnRBqyX78cSUdJeTX82rlgzKCgP91/aJ+OcFErkF9chdOp+RaIkJqLRTvZLXuZ4X7hchHyiqugdpIjirPZiYiIzKq+MZ2LWoGLV27gX/9lYzqyHWWVNfj5QBoAYMb4bpDL/rzcc1LIMKp/3eOXO45nmjM8aiEW7WTX7GGGu3E2e5+Of3p7ExEREbVeh/aueGVGXWO6XXFXsIOdtclG/LT/Eqq0tQju0AZDe3ds8vvG3bxFPiEpF4UlGjNFRy1lFUX75s2bMWHCBPTq1Qv33HMPduzY0aT3JSYmonv37jhx4oSZIyRbZssz3DXVtTh25joAzmYnIiKypH7dfPDohB4AgBX/PYsLGUUiR0T0xwpuaLDtaAYA4NF7ukMqbfq0oQAfN/Ts0g4GAZyeYIVEL9q3bNmCxYsXY/r06di+fTvuvfdezJ8/H6dPn/7D95WXl+PVV1+FwWCwUKRky2x1hnvsuevQ1ujh194F3Tt5ih0OERGRQ3ngrhAM7d0BtXoBH36fwBVIsmrrd1+ErtaAnl3aIbKrd7PfPy6qE4C6ol2vZ41lTUQt2gVBwN///nc8+uijmD59OgIDAzFnzhwMHjwY8fHxf/jeJUuWICCAK4/UdL+f4b71SIbIEf25fQk3G9D1D+BsdiIiIguTSCR48aG+6OTnjpLyanzwXTxqbOwxO3IMWXnlxkcqH5vQo0XXjYMj/ODuokRRqRYJyXmmDpFaQdSi/fLly8jOzsbEiRMbvL5y5Uo888wzd3zfli1bcPr0aSxatMjcIZKduXWG+zdbziHuvPXOcM8vrsLZtMK62ez9+QsqIiIiMaic5Fg8ayDcnBVIvVqCrzedgSDYxmN25DjW7kyGQQAGhfuiWwvvzlTIZRgzsG5SEfs4WBdRu1pdvnwZAFBVVYXZs2cjKSkJ/v7+mDNnDmJiYhp9z7Vr1/Dee+/h66+/houLi0niEAQBVVVVJjkWtZxGo2nwv+YyIaojsvPLsC8xG8vWJuLNWf0RGtDGrJ/ZErti6+4ECO/sCVcn2MTPqKVySObB/Nk+5tD2MYfWyV0twQsP9sL7353CvoQsBHo7Y1xU42NYmUPbZov5S7tWiuNncyCRANPu6tyqa8bhfXyw6UAaTqfkIzO7CN4eahNGahm2kkNBEJp8R4SoRXtFRQUAYMGCBZg7dy5efvll7Nq1C8899xxWr16N6OjoBvvr9Xq88soreOihh9C/f39cu3bNJHHodDokJyeb5FjUepmZmWb/jMEhwNXrKly6rsX73yXiybHe8HSzns7sgiBgT3wuACDUR7C5n09L5JDMh/mzfcyh7WMOrY8CwJg+bbD7dCn+/WsKBG0xOvk43XF/5tC22VL+vttXAACI6OSMiuIsJBe37njBvk7IyK3GDzvPYHQf61vYaipbyKFSqWzSfqJWKQqFAgAwe/ZsTJkyBQDQvXt3JCUlNVq0L1++HBqNBvPmzTN5HCEhISY9JjWfRqNBZmYmOnXqBLXa/L/Vez2kFktWJeLy9XL8eLwM7zw1AO4uTfvimNvFKzdwoyIbKqUMk0f3hUopEzukJrF0Dsm0mD/bxxzaPubQunXrJqBSfx7Hzubi57gSfPDsILRv2zBPzKFts7X8nU0vwuW8a5DLJHjq/kh4tW19zJMNnvh0w1mcu1KNOdO6Qi4XvXd5s9hKDtPS0pq8r6hFu4+PDwAgLCysweshISE4ePDgbftv2rQJ+fn5GDRoEAAYnyd66qmnMHnyZLzzzjstikMikcDZ2blF7yXTU6vVFsmHszOw5KnBePmLw8gpqsKnG85h6bOD4aQQv0A+ejYFADC0d0d4tnUTOZrms1QOyTyYP9vHHNo+5tB6/fWRfsgpOoqM7FJ8+sM5/G3usEavHZhD22YL+RMEAT/sTQcATBjSGUEd2pnkuMMig/DvX1NQXFaNMxmlGNan6fPerYm157A5zQJF/bVJeHg4XFxccObMmQavp6amIjDw9ueE1qxZg+3bt2Pz5s3YvHkzVqxYAQB499138eKLL1okZrIvv5/h/tm6U6LPcNfW1OIoZ7MTERFZJZVSjsWPD4S7ixLp10rxjx9/Y2M6EsXxszlIu1YKtZMMD44K+/M3NJFcJsWYQUEAgJ1sSGcVRC3aVSoVnnzySXz11VfYtm0brl69in/+8584duwYZs2aBQAoKChAZWUlAKBjx44ICgoy/unQoQOAuhX7du1M85slcjyBvu5YNGsg5DIJjp29LvoM97hzOdBU18LH0xk9OvPnmoiIyNp4ezpj4aMDIJVKcPDkNfxiA2Nkyb7o9Qas2ZEEAJgyIgRtXO/cX6Elxg4KglQCnE0rxLX8cpMem5pP9AcUnnvuOcybNw+fffYZJkyYgJ07d+LLL7803gI/dOhQrFq1SuQoyd5FhHjhxYf6AhB/hvuts9mlUs5mJyIiska9Qtpj9qRwAMCqrRdwJrXAuE2lUokVFjmIvQlXkV1QCXcXJe4b0cXkx/f2cEa/7nWPMu+Ku2Ly41PzWEW77FmzZhlX1n8vJSXlju/z9/f/w+1EzTGyXwDyb2iwZkcyvtlyDl4eakT19LNoDAU3NDiTVvcffc5mJyIism4ThwYj/Vop9idmYc3OZHTu6A61kwp+/sFQKJ2gramFSmkVl9tkR6p1eqzbVVcDPTQ6DM4qhVk+Z3x0JyQk5WFfwlXMGN/dKvo+OSr+W4ToFtNGhSL/RhV2xV3BsrUn8f6cwega5Gmxzz9wMguCAPTs0g6+7Vws9rlERETUfBKJBM9P7Q1tjR7PPRCBXw5nYNuxy6jU6OCiVmDSsGBMjQmFksUOmdD2oxkoLtPCy0ON8YM7me1zIrv5wMtDjYIbGhw7cx0xXFASjei3xxNZE4lEgjn3RyCymzdqdHosXXUCOYWVFvlsQRCwP/EqAGBU/9sbMRIREZH1USpkmDu1N7YeycAPe1NRqdEBACo1OqzfnYKf9l+CtqZW5CjJXlRodPhx3yUAwPS7u0EhN98vhGRSCe6OYkM6a8Cineh3ZDIpFszsj+CObVBaUYMl38SitKLa7J+bcuUGsgsqoVLKMKR3B7N/HhEREZmGykmObccuN7rtlyMZkEl5yU2m8fOBS6jQ6BDg44aR/cy/8j1mYBBkUgmSM4uRmVNm9s+jxvHfIESNcFYp8ObsQfDyUON6YSXeWx2Pap3erJ+5N6FulX1wRAeonfjkChERka2o1OqMK+y3bdPoUF5Zg8KSKgtHRfamuExrnFTw6ITukFmgYbGnuwqDevoC4Gq7mFi0E91BuzZqvGWhGe7VOj2O/pYNgLPZiYiIbI2LSgEXdePNwFzUCjir5Hjx00OYu2w/vv81CRevFJvtmoLs1w97UlBdo0e3IA8MCve12OeOj+4EANifmAVNNR/1EAOLdqI/EGShGe4nzuegUlsLbw81ega3N8tnEBERkXnoDQZMGhbc6LaJQzsj7VoJKjQ6XMktx4/7LuGVL47gsXd24YsfTuPE+Rw+805/Kqew0jh67bF7ekAisdxY4IgQL/i1d4GmuhaHT2db7HPpf3gPLtGfqJ/h/sm6U9h8KB3eHs6YeIf/MLdU/Wz2uzibnYiIyOaolHJMjQkFUPcMe2Pd4//z9jgkXsxH/IVcnLyYh5LyauyJv4o98VehlEvRO8wLg8J9MaCHLzzdOeedGvrPzovQGwT06+aNnl0su8AjlUowLqoTVm+7gJ1xmcbmdGQ5LNqJmsCcM9yLSjX4LTUfALvGExER2SqlQob77wrBtFFhqKiqhquzE/QGg3Hcm6uzEiMj/TEy0h+6WgOSMopwIikXJy7kIr+4CglJeUhIygNwBqEBbTEo3BcDw33Ryc/doquqZH0ysktx6PQ1AMCjE3qIEsOoAQFYsyMZaVkluJR1A6EBHqLE4ahYtBM1kblmuB84eQ0GAejR2RN+7TmbnYiIyFaplHJUVVXhetZldO7cGc7Ozo3up7i5st47zAtP3dcTV3LLceJCDhIu5CHl6g1cyirBpawSrN15Ed4eagwM98XAHr7o2aU9FHI+3epovv81CQAwvG9HBHdsI0oMbVydMCSiAw6dvoadsVdYtFsYi3aiJqqf4V5QosGpi/lYuuoEls0b3qpCu8Fs9gFcZSciIrIHWq22yftKJBJ08nNHJz93PDS6K4rLtEhIykP8hVz8lpqP/BsabDt6GduOXoazSo7Irt4YFO6Lft194OasNONZkDU4l16IkxfzIZNKMH1cN1FjGT+4Ew6dvoZDp6/hiYnhd2y+SKbHop2oGepnuL/29TFkZJdiyTex+GjeMLRxdWrR8S5llSArrwJKhQxDOZudiIjI4Xm6q3B3VBDujgqCtqYWZy8V4sSFXMQn5aKkvBpHz1zH0TPXIZVK0KOzp/E2+g7tXcUOnUxMEAR8v71ulX1sVJDoOe7R2RMBPm7IyivHwZNZuGeoaXs80Z2xaCdqpvoZ7q98ecQ4w33ps4PhdPOZteYwzmbv5QdnFX9bSURERP+jUsrrbo0P94XBIOBS1g3E31yFz8wpw/n0IpxPL8LKXy4gwMcVA3vU7ds1yNMiM7zJvOIv5OLilRtQKmR4eExXscOBRCLBuOggfLP5PHbGXcGEIZ3Zb8FCWLQTtUD9DPcFXx4xznB/dWb/ZnV+r9HpceQ0Z7MTERHRn5NKJega5ImuQZ6YOb47cosqEZ+Ui/gLuTifXoSsvApk5aVh04E0uLsoMaCHDwaF+6JPmDfUTrzktzV6g4DvdyQDAO4bHmw1EwVi+gXgu+3JyMwpw8XMG+jeufX9nejP8RtM1EL1M9zfWhFrnOE+e1LPJr8/PikXFRod2rdVo1eIlxkjJSIiInvj284Fk4Z1waRhXVCh0eH0xXycuJCLxIt5KKuswb6ELOxLyIJCLkVESHvjOLn2bdVih05NcOhUFq7mlsNVrcD9d4WKHY6Rq7MSw/t0xN6Eq9gRe5lFu4WwaCdqhdbMcDfOZu/nz1vYiIiIqMVc1QoM69sRw/p2RK3egKTLRYi/kIcTF3KQW1SFkxfzcfJiPrDpLLr4t8Ggm7fRB3dsw9ubrZCuVo//7LwIoG56kauVNXwbP7gT9iZcxdEz1/Hkfb3g7sKGiObGop2olVoyw724TItTKTdns7NrPBEREZmIXCZFRIgXIkK8MHtSOLLyyusa2V3IRcrVG0i/Vor0a6VYtzsF7duojM/MR4S0h0Le/P48ZHo7YjORf0MDT3eVVTZ7Cw1oi+AObZBxvRT7E7MweUQXsUOyeyzaiUzg9zPcP3huCMIC7zy/8uDJazAYBHTv5ImOXuz2SkRERKYnkUgQ6OuOQF93TBsVhpLyaiQm5+LEhVycTi1AYakWvx7PxK/HM6F2kqFv/Ti5bj6NTsbR1tRCJpWiUquDi0oBvcEAlZLlhClVaXXYuDcVAPCXu7u2qNGxuUkkEowb3Alf/3QGO2Mv477hwbxjw8z4LSMygd/PcH9nZRw+fmE4fNvdPsNdEATsuzmbPaY/G9ARERGRZbR1c8LogUEYPTAI1To9zl4qwIkLuUhIykVxWTWOn83B8bM5kEqAbp3+N07O39sNNTo9Nh1Iw9YjGajU6OCiVmDSsGBMjQmF0goLS1u15XAGSitq0NHLBaOt+G7MEX07YvXW88guqMS59EJEsD+TWUnFDoDIXtTPcA/u2AalFTVY8k0syiprbtsv/VopruaWQymXYmifjiJESkRERI7OSSHDgB6+mDutD1a/cTc+/etwPDQmDJ07uMMgAEmXi7F6WxLm/G0/Tqfm48e9qdiwOwWVGh0AoFKjw/rdKfhp/yVoa2pFPhv7UFpRjf8evAQAmDG+O2Qy6y3VnFUKjIysW3zacTxT3GAcgPX+JBDZoPoZ7l4eamQXVOLdVSdQo9M32GffzdnsUT39rK6xCBERETkeqVSC0AAPzBjXHV+8dBdWLh6DZ6f0Qt8wL3i6O6F7kCe2Hrvc6Ht/OZIBmZQlhSls3JcKTbUeIf5tMLhXB7HD+VPjB3cCAMSdz8GNcq24wdg5fsOITKx+hruLSo7kzGJ8uv4UDAYBQF03UDagIyIiImvm7emMe4YG451nBmP5wlGo0tYaV9h/r1KjQ5W28W3UdPnFVfj1WCYA4NEJPSC1gclCnTu0QddAD9TqBeyNvyp2OHaNRTuRGQT5uuO1xwdCLpPgSk4ZMnPKoKs1oLxSh7/PH4m3noxC7zA++0NERETWTe2kgJuLEi53uDvQRa2As4p3DrbWut0XUas3ICKkPfrY0DXiuOhOAICdcVeMi1RkemxER2QmvUO9sPCxAegW5ImtRzKw7dhlY+OWiUM7IyKkPWRSNm4hIiIi66Y3GDBpWDDW7065bdvEoZ2h1xugkHMtsKWu5JbhQGIWAOCxe3rYVCf2oX064NtfziO/uAqnU/PRr5uP2CHZJX67iMyod6gXth3NwA97Uxs0btmwJ5WNW4iIiMgmqJRyTI0JxSNjuxpX3F3UCjw0Ogz3Dg3Gfw+mQRC4ytpSa3ckwyAA0b38/nBksDVSKeUY1Z8N6cyNK+1EZiSTSrH16J0bt0wbFWbhiIiIiIiaT6mQ4f67QjBtVBiqtDo4qxQoLKnCa18fRVZeBco1Ojx1X0+bWiW2BhevFCPufC6kEmDm+O5ih9Mi46I74ZcjGUhIzkNhiQbt26rFDsnucKWdyIwqtTo2biEiIiK7oFLKoZBL0cbVCQq5FH7tXXH/yBAAwNYjGVi9LYkr7s0gCAK+254EoK5BcYCPm8gRtUyAjxvCg9vBYBCw58QVscOxSyzaiczIRaVg4xYiIiKyW6MHBuG5qb0BAP89mIa1Oy+KHJHtOJ1SgPPpRVDIpXhkbDexw2mV8Tcb0u06cQV6vUHcYOwQi3YiM6pv3NKYScOCoTfwX2pERERk28ZHd8LTk3sBADbuTcWGPbc3rKOGDAYB3/1at8p+z5DO8PKw7VvKB0f4wd1FiaJSLRKS88QOx+6waCcyozs1bnlkbFdMjQmFSsm2EkRERGT7Jg4LxhMTwwEA/9l5EZv2XxI5Iut29Ew2MrJL4ayS20WPI4VchjEDAwEAO2MzxQ3GDrFiIDKzxhq36A0GKBUc90ZERET2Y8rIEOhqDVizIxn/3p4EuVyK+4Z3ETssq1OrN2DtjrrHCO4fGQJ3F6XIEZnG2KggbDqQhlMp+cgtqoRvOxexQ7IbXGknsoDfN27hCjsRERHZowdHh+HhMV0BAN9uOY/txxqfouPI9py4gpyiSrR1dcIkO/qlRof2rugT5gVBAHazIZ1JsWgnIiIiIiKT+cvdXfHAXXVd5Zf/fBa74ljA1dPW1GL97rpn/h8aEwa1k30t5NQ3pNtz4ip0tezdZCos2omIiIiIyGQkEgkeu6cHJg2va8b71U+/YX/iVZGjsg5bj2TgRnk1vD2dcXdUJ7HDMbmB4b7wdHdCSUU1TlzIETscu8GinYiIiIiITEoikeDJST0xYXAnCALw9w2nceR0tthhiaqiqgabDqQBAGaM6waF3P5KMblMijEDgwAAO45nihuMHbG/nxQiIiIiIhKdRCLBM1MiMHZQEAwC8PG6kzh+9rrYYYnmp/2XUKnRoZOfO4b39Rc7HLMZGxUEqQQ4m1aIa/nlYodjF1i0ExERERGRWUilEjw/tTdi+gfAYBCwbG0i4i/kih2WxRWVarD1SAYA4NEJ3SGTSkSOyHy8PZzRr7sPALCfgYmwaCciIiIiIrORSiV44aG+GN6nI2r1Aj74LgEnL+aJHZZFbdiTippaA3p09kT/mwWtPatvSLcv4SpqdHpxg7EDLNqJiIiIiMisZFIJ/u8vkYju5YdavQHvr47HmdQCscOyiOsFFcYRaI9O6AGJxH5X2etFdvOBl4ca5VU6HHPgRyJMhUU7ERERERGZnVwmxSsz+mNgD1/U1BqwdPUJXMgoEjsss1u78yIMBgEDevggPLid2OFYhEwqwd2D2JDOVFi0ExERERGRRSjkUix8rD8iu3mjukaPt7+NxcXMYrHDMpu0rBIc+S0bEgkwc3x3scOxqDGDgiCVSpCcWYzMnDKxw7FpLNqJiIiIiMhiFHIZFj0+EL1D20NTrcdb38TiUtYNscMyi+9/TQIAjIj0R+cObUSOxrI83VWI6ukLANgZmyluMDaORTsREREREVmUk0KG12cNQnhwO1Rpa/Hmv2KRkV0qdlgmdeZSAU6nFkAuk2D63d3EDkcU9Q3pDpzMgra6VtxgbBiLdiIiIiIisjiVkxxvzh6EbkEeqNDo8Pry47hiJ7dRC4JgXGUfF9UJvu1cRI5IHBEhXvBr54IqbS0O/5Ytdjg2i0U7ERERERGJwlmlwJKnohES0BblVTV4fflxZOWVix1Wq8Wdz0Hq1RKolDI8OCZM7HBEI5VKMC76ZkM63iLfYizaiYiIiIhINC5qBd55OhrBHdqgpKIary8/huuFFWKH1WJ6vQFrdiQDAO4b3gUebiqRIxLXqAGBkMukSMsqQVpWidjh2CQW7UREREREJCo3ZyXeeSYaQb5uKC6rxuJ/HkdecZXYYbXIgZNZyMqrgJuzElNGhogdjujauDphSEQHAMDOuExxg7FRLNqJiIiIiEh0bVydsPTZwfD3dkVhiQaL/nkMBTc0YofVLDU6Pf6zKwUA8ODoULioFSJHZB3qb5E/dOoaKjU6kaOxPSzaiYiIiIjIKni4qfDus4Ph194F+cVVWPzPYygqtZ3C/dfjmSgs0aB9GxUmDO4sdjhWIzy4HQJ8XKGt0ePgqWtih2NzWLQTEREREZHVaNdGjfeeHQJvT2fkFFXi9eXHcaNcK3ZYf6pKq8PGvakAgL/c3Q1KhUzkiKyHRCLBuJvj33bGZkIQBHEDsjEs2omIiIiIyKp4eajx3rOD0b6tGtfyK/DG8uMoragWO6w/9PPBNJRX1cDf2xUx/QPEDsfqxPQLgFIhQ2ZOGVKu3BA7HJvCop2IiIiIiKyObzsXvDdnMDzdVbiSW443/xWL8qoascNq1I1yLbYcSgcAzBzfHTIZy6zfc3VWYnifjgA4/q25+NNERERERERWqUN7V7z77GC0dXNCxvVSvLki1iobmW3cmwptjR6hAW0R3ctP7HCsVn1DuiO/ZVvtL2CsEYt2IiIiIiKyWgE+bnj3mcFwc1YiLasES76JRZXWegr33KJK7Ly5cvzYPT0gkUjEDciKhQV6ILhDG+hqDdiXkCV2ODaDRTsREREREVm1ID93vPvsYLiqFbh45QbeWXkC2upascMCAKzbdRG1egF9wrzQO9RL7HCsmkQiwbjBnQCwIV1zsGgnIiIiIiKrF9yxDd55JhrOKjkuZBRh6aoTqNbpRY0pM6fMOMLssQk9RI3FVozo2xFqJxmyCypwPr1I7HBsAot2IiIiIiKyCaEBHnj76WionWQ4m1aI9/8dD12teIX7ml+TIQjA0N4dEBLQVrQ4bImzSoERkXXd9dmQrmlYtBMRERERkc3oFuSJt56MhpNShlMX8/Hhd4nQ1RosHkfS5SLEJ+VCKpVgxvjuFv98WzYuqq4hXey567hRrhU5GuvHop2IiIiIiGxKeHA7vPHEICjlUsQn5WLZ2kTU6i1XuAuCgO+2JwEAxgwMREcvV4t9tj3o4t8WXQM9UKsXsDf+qtjhWD0W7UREREREZHN6h3ph8axBkMukiD2Xg8/WnYLeYJnGZicv5iPpcjGUcikeGdvVIp9pb8ZFdwIA7Iq7AoOF8marWLQTEREREZFNiuzmjdceHwC5TILDv2Xjix9Om70ANBj+t8o+cVgw2rVRm/Xz7NXQPh3golYgr7gKv6UWiB2OVWPRTkRERERENmtgD1+8OrM/pFIJ9idm4aufzpi1cD98+hoyc8rgopLjgZhQs32OvVMp5YjpX9+Q7rLI0Vg3Fu1ERERERGTTont1wMt/6QepBNh94gr+9d+zZpkBrqs1YO3OiwCAB2JC4easNPlnOJL6hnTxSXkoKtWIHI31YtFOREREREQ2b1jfjnjx4UhIJMCvxzOx8pcLJi/cd8dlIq+4Ch5uTpg4NNikx3ZEgb7uCA9uB4NBwO4TbEh3JyzaiYiIiIjILsT0D8DcaX0AAFsOp+O77UkmK9w11bXYsDcVAPDw2K5QOclNclxHN/5mQ7rdcZnQW3ACgC1h0U5ERERERHZj7KAgPHt/BABg04E0rNuVYpLj/nIkHSXl1fBr54Kxg4JMckwCBkf4wd1FicJSLRKT88QOxyqxaCciIiIiIrtyz5DOePK+ngCADXtSsPHmCnlLlVXW4OcDaQCA6eO6QS5jGWUqCrkMowcEAgB2xGaKG4yV4k8bERERERHZnfuGd8Hj9/QAAKzZkYz/Hkxr8bF+2n8JVdpaBHdog2F9OpoqRLrp7ui6OxdOpeQjr7hK5GisD4t2IiIiIiKySw/EhGL6uG4AgFVbL2DrkYxmH6OwRINtR+ve9+g93SGVSkwaIwEd2ruiT5gXBAHYFZcpdjhWh0U7ERERERHZrYfHdMWDo8MAACs2n8POZt6CvX53CnS1BvTs0g6RXb3NECEB/2tItyf+KnS1bEh3K6sp2jdv3owJEyagV69euOeee7Bjx4477puTk4P58+djyJAhGDBgAGbPno1Lly5ZMFoiIiIiIrIVM8Z1w5SRIQCAr346g73xV5r0vqy8cuO+j03oAYmEq+zmMjDcFx5uTigpr8aJCzlih2NVrKJo37JlCxYvXozp06dj+/btuPfeezF//nycPn36tn1ramrw9NNPo6CgAMuXL8e6devg4uKCxx57DMXFxSJET0RERERE1kwikWDWvT0wcVjdbPUvNv6Ggyez/vR9a3cmwyAAg8J90a2Tp7nDdGhymdTYlX/H8Uxxg7EyohftgiDg73//Ox599FFMnz4dgYGBmDNnDgYPHoz4+Pjb9k9MTERqaio+/vhj9OrVC6GhoVi2bBmqqqqwf/9+Ec6AiIiIiIisnUQiwVP39cT46E4QBOCz9adw9Ez2HfdPvXoDx8/mQCIBZk7obsFIHdfYqCBIJcDZtEJkF1SIHY7VEL1ov3z5MrKzszFx4sQGr69cuRLPPPPMbfuHhoZixYoV8PHxMb4mldadRllZmXmDJSIiIiIimyWRSPDs/REYMzAQBgH4eO1JxJ1v/Fbs739NAgDc1S8AQb7ulgzTYXl7OKNf97o6r7m9B+yZVRTtAFBVVYXZs2cjOjoa06ZNu+OquZeXF0aMGNHgtTVr1kCr1WLIkCFmj5eIiIiIiGyXVCrB89P6YGQ/f+gNAv72fQISk/OM21UqFZIyb+DMpULIZVL85e5uIkbreMbdbEi3L+EqanR6cYOxEnKxA6ioqLvtYcGCBZg7dy5efvll7Nq1C8899xxWr16N6OjoP3z/nj178Mknn+Dxxx9H165dWxSDIAioquI8QLFpNJoG/0u2hzm0bcyf7WMObR9zaPuYQ9vx9MSu0Gp1iLuQh+9+TUKAtws826jh5x8MZ7UCi2cNxOXsG3BTgbWCBfUIdEO7NioUlWpxICETw/r4Nev9tvIdFAShyY0NRS/aFQoFAGD27NmYMmUKAKB79+5ISkr606J9/fr1WLp0KSZNmoRXX321xTHodDokJye3+P1kWpmZmWKHQK3EHNo25s/2MYe2jzm0fcyhbRjTSw6lrB2efmAAth7JwLZjl1Gp0cFFrcC9QzrjgbtCkJF+CVqtVuxQHUpEkBIHzmrxy+FUtHcqadExbOE7qFQqm7Sf6EV7/bPpYWFhDV4PCQnBwYMH7/i+ZcuW4dtvv8WsWbOwYMGCVo1fUCgUCAkJafH7yTQ0Gg0yMzPRqVMnqNVqscOhFmAObRvzZ/uYQ9vHHNo+5tD29AiXYfOhDPywN9X4WqVGhx/2pkIqlWDy8FBAqBUxQsfj61+NQ+eP4GpBDVw8AxDo49rk99rKdzAtLa3J+4petIeHh8PFxQVnzpxB//79ja+npqYiMDCw0ffUF+wLFizAE0880eoYJBIJnJ2dW30cMg21Ws182Djm0LYxf7aPObR9zKHtYw5th67WgG3HLje67ZcjGZg2KgwKedNWRMk0nJ2dMSjcF7HncnDodC6euT+i2cew9u9gcxadRW9Ep1Kp8OSTT+Krr77Ctm3bcPXqVfzzn//EsWPHMGvWLABAQUEBKisrAQAnTpzAt99+i5kzZ2LixIkoKCgw/qnfh4iIiIiIqCkqtTpUanSNb9PoUKVtfBuZ1/ibDen2n8yCttqx73QQfaUdAJ577jmo1Wp89tlnyMvLQ5cuXfDll19i0KBBAIChQ4di7ty5mDdvHrZt2wagrmP8mjVrGhynfh8iIiIiIqKmcFEp4KJWNFq4u6gVcFYpRIiKeod6wa+dC3KKKnH4t2yMHRQkdkiisYqiHQBmzZplXFn/vZSUFOM/L126FEuXLrVUWEREREREZMf0BgMmDQvG+t0pt22bNCwYeoMBCvFvUHY4UqkE46KDsHpbEnbGZjp00c6fPiIiIiIiclgqpRxTY0LxyNiucFHXraq7qBV4ZGxXTI0JhUppNeucDmfUgEDIZVJcyipBWlaJ2OGIhj+BRERERETk0JQKGe6/KwTTRoWhoqoars5O0BsMUCpkYofm0Nq4OmFwhB8On87GzrhMzA3oI3ZIouBKOxEREREROTyVUg5djRbXszKgq9Fyhd1K1DekO3TqmsM2BWTRTkREREREdJNWqxU7BLpFeHA7BPi4Qlujx8FT18QORxQs2omIiIiIiMgqSSQSjLu52r7jeCYEQRA3IBGwaCciIiIiIiKrFdMvAEq5FJk5ZUi5ckPscCyORTsRERERERFZLVdnJYb17QgA2BGbKW4wImDRTkRERERERFatviHd0d+yUV5VI24wFsainYiIiIiIiKxaWKAHgju0QU2tAfsTs8QOx6JYtBMREREREZFVk0gkGDe4EwDHa0jHop2IiIiIiIis3oi+HaF2kiG7oALn04vEDsdiWLQTERERERGR1XNWKTAiMgCAYzWkY9FORERERERENmFcVBAAIPbcdZSUV4scjWWwaCciIiIiIiKb0MW/LboGeqBWL2BvwlWxw7EIFu1ERERERERkM8ZF162274zNhMFg/w3pWLQTERERERGRzRjapyNcVHLkFVfht9QCscMxOxbtREREREREZDNUSjliBgQCAHbGZYobjAWwaCciIiIiIiKbUt+Q7sSFXBSVakSOxrxYtBMREREREZFNCfR1R3hwOxgMAnafsO+GdCzaiYiIiIiIyOaMi+4EANgdlwm93iBuMGbEop2IiIiIiIhszpAIP7i7KFFYqsXJi/lih2M2LNqJiIiIiIjI5ijkMoy+2ZBuR2ymuMGYEYt2IiIiIiIiskl335zZfvJiHvKKq0SOxjxYtBMREREREZFN6tDeFX1CvSAIwC47Hf/Gop2IiIiIiIhs1rjBnQAAe+KvotYOG9KxaCciIiIiIiKbNSjcFx5uTigpr8aZS0VQqVRih2RScrEDICIiIiIiImopuUyKqTGh8PZ0Rt8wL1RqdFAonaCtqYVKafslr+2fARERERERETm0u6M64cd9qfh8w2lUanRwUSswaVgwpsaEQqmQiR1eq7BoJyIiIiIiIpulranFpgNp+GFvqvG1So0O63enAADuvyvEplfc+Uw7ERERERER2SyZVIqtRzIa3fbLkQzIpLZd9tp29EREREREROTQKrU6VGp0jW/T6FClbXybrWDRTkRERERERDbLRaWAi1rR+Da1As6qxrfZChbtREREREREZLP0BgMmDQtudNukYcHQG2x7drvtPo1PREREREREDk+llGNqTCiAumfY2T2eiIiIiIiIyIooFTLcf1cIpo0KQ0VVNVydnaA3GGy+YAd4ezwRERERERHZAZVSDl2NFtezMqCr0dr0mLdbsWgnIiIiIiIiu6HVasUOwaRYtBMRERERERFZKRbtRERERERERFaKRTsRERERERGRlWLRTkRERERERGSlWLQTERERERERWSkW7URERERERERWikU7ERERERERkZVi0U5ERERERERkpVi0ExEREREREVkpFu1EREREREREVopFOxEREREREZGVYtFOREREREREZKVYtBMRERERERFZKYkgCILYQYjp1KlTEAQBSqVS7FAcniAI0Ol0UCgUkEgkYodDLcAc2jbmz/Yxh7aPObR9zKFtY/5sn63ksKamBhKJBJGRkX+6r9wC8Vg1a06ko5FIJPzliY1jDm0b82f7mEPbxxzaPubQtjF/ts9WciiRSJpcizr8SjsRERERERGRteIz7URERERERERWikU7ERERERERkZVi0U5ERERERERkpVi0ExEREREREVkpFu1EREREREREVopFOxEREREREZGVYtFOREREREREZKVYtBMRERERERFZKRbtRERERERERFaKRTsRERERERGRlWLRTkRERERERGSlWLQTERERERERWSkW7WRSJSUlePPNNzF8+HBERkbikUceQWJionF7bGws7r//fvTu3Rvjxo3D9u3bG7y/uroab7/9NqKjo9G3b1+89NJLKC4ubrDP5cuX8fTTT6Nv374YMmQI3nnnHWg0GoucnyOwRA6PHz+OBx54AH369MHo0aOxcuVKi5ybo2htDm/15ptvYuHChbe93pxjUPNZIoebNm3CxIkT0adPH4wdOxYrVqyAXq83y/k4Gkvkr54gCJg9ezZmzpxp0nNwdJbIIa9nzMsSOeT1jHm1Noc5OTmYP38+hgwZggEDBmD27Nm4dOlSg3127NiBCRMmICIiApMnT0ZsbKxFzq3ZBCITmjVrlnDvvfcKCQkJQkZGhvD2228LERERQnp6upCWlib06tVL+PTTT4W0tDTh22+/FXr06CEcP37c+P6FCxcKo0ePFhISEoQzZ84IkydPFqZPn27cXlxcLAwePFiYM2eOcOnSJeHYsWPC0KFDhbfeekuEs7VP5s5henq60LNnT+HLL78Url69Kmzfvl2IiIgQ1q5dK8bp2qXW5lAQBEGv1wuffPKJEBYWJixYsKDBtqYeg1rO3DncsmWLEB4eLmzYsEG4cuWKsH37diEyMlL48ssvLXmadsvc+bvV6tWrhbCwMGHGjBnmPi2HYu4c8nrG/MydQ17PmF9rclhdXS3ce++9wowZM4SzZ88Kqampwrx584To6GihqKhIEARBiI2NFcLDw4XvvvtOSEtLEz788EOhZ8+eQlpampin3SgW7WQymZmZQlhYmJCYmGh8zWAwCKNHjxY+//xz4Y033hCmTp3a4D3z588XnnjiCUEQBCE3N1fo1q2bcPDgQeP2jIwMISwsTDh16pQgCILwxRdfCMOHDxe0Wq1xn40bNwpTpkwRDAaDOU/PIVgih6tXrxYGDhzY4BjPP/+88Mwzz5jrtBxKa3MoCHVF+UMPPSRERUUJI0eOvO1CpSnHoJazRA4ffvhhYfHixQ1e+8c//iGMGDHC9CfkYCyRv3oXL14U+vfvLzz44IMs2k3IEjnk9Yx5WSKHvJ4xr9bm8NixY0JYWJiQm5tr3K7VaoXevXsLP/74oyAIgvDEE08IL774YoNjPPTQQ8Ibb7xhprNqOd4eTybj4eGBFStWoFevXsbXJBIJJBIJysrKkJiYiOjo6AbviYqKwsmTJyEIAk6ePGl8rV7nzp3h4+ODhIQEAMDRo0cxZswYODk5GfeZNm0afv75Z0gkEnOenkOwRA7btWuHkpISbNu2DYIgICUlBSdPnkTv3r0tcIb2r7U5BIC4uDh06dIF27Ztg7+//22f0ZRjUMtZIocvv/wyZs+e3eA1qVSK0tJSM5yRY7FE/oC6R5FefvllvPDCC+jcubP5TsgBWSKHvJ4xL0vkkNcz5tXaHIaGhmLFihXw8fExbpdK60rfsrIyGAwGnDp16rZjDBo0yHjNak1YtJPJuLu7Y8SIEVAqlcbXdu3ahStXrmDYsGHIzc2Fr69vg/d4e3tDo9Hgxo0byMvLg4eHR4P/gNXvk5ubC6Du+S9vb2988MEHGDlyJMaMGYOPPvoI1dXV5j9BB2CJHI4fPx7Tpk3DK6+8gvDwcEyaNAlDhgzBs88+a/4TdACtzSEATJ8+He+99x7atWvX6Gc05RjUcpbIYb9+/RoUeuXl5Vi/fj2GDRtmhjNyLJbIHwAsW7YM3t7emDFjhnlOxIFZIoe8njEvS+SQ1zPm1docenl5YcSIEQ22r1mzBlqtFkOGDEFZWRmqqqoaPUb9Nas1YdFOZnPq1Cm89tprGDt2LEaOHAmtVtvgiwfA+PeamhpoNJrbtgOAk5OT8T9iFRUV+Oabb1BdXY1//OMfeOWVV7B161a8/vrr5j8hB2SOHBYVFSE7OxsvvPACfvrpJ7z33ns4dOgQvvzyS/OfkANqbg6bwhTHoKYzRw5vVVlZieeeew7V1dV49dVXTRIz/Y858nf48GFs3boV77//PldlLcAcOeT1jGWZI4e8nrGs1uZwz549+OSTT/D444+ja9eu0Gq1Dd5T79ZrVmsiFzsAsk979+7Fyy+/jMjISHz88ccA6r4Ev/8S1f9drVZDpVI1+iWrrq6GWq0GAMjlcnTu3BlLliwBAPTs2RN6vR5//etfsXDhwj9claDmMVcOFy9eDD8/P8yZMwcA0KNHDwiCgCVLlmDGjBnw9PQ052k5lJbksClMcQxqGnPlsF5BQQGeeeYZXLt2DStXrrzjrdjUMubIX3FxMRYtWoQlS5Y0uO2TzMNc30Fez1iOuXLI6xnLaW0O169fj6VLl2LSpEnGX07X3xX6+2Pces1qTbjSTia3du1azJs3D3fddReWL19u/FL4+fkhPz+/wb75+flwdnaGm5sbfH19UVJSctuXJz8/33hh4uvri9DQ0Abb6/+enZ1trlNyOObM4cmTJxs8nwQAffr0QW1tLa5du2bGs3IsLc1hU5jiGPTnzJlDAEhPT8eDDz6IoqIi/Oc//7nte0mtY678HTp0CAUFBVi0aBH69u2Lvn37YuvWrUhMTETfvn1x/fp1s5yPIzLnd5DXM5ZhzhzyesYyWpvDZcuWYcmSJXj00UfxwQcfGJ9rb9u2LZydnRs9hjX+QpRFO5nUunXrsHTpUkyfPh2ffvppg1tO+vfvj/j4+Ab7x8XFITIyElKpFP369YPBYDA2MwPqnvnKy8vDgAEDAAADBgzA2bNnGzS7Sk1NhUwm4wqRiZg7hz4+PkhJSWlwjJSUFEgkEgQFBZnxzBxHa3LYFKY4Bv0xc+cwKysLjz32GNRqNTZs2HBb8UCtY878jRkzBrt378bmzZuNf2JiYtCzZ09s3rwZ3t7eJj8fR2Tu7yCvZ8zP3Dnk9Yz5tTaHy5Ytw7fffosFCxZg4cKFDR4nkkgkiIyMvO0YJ06cQP/+/c14Vi0kQsd6slMZGRlCeHi48Pzzzwv5+fkN/pSVlQmpqalCeHi4sGzZMiEtLU1YuXLlbTMx58+fL8TExAhxcXHGGd+3jrFJT08XevfuLbzxxhtCRkaGcPjwYWH48OHCwoULxThlu2OJHG7YsEHo0aOH8N133wlXr14V9uzZIwwZMkR4++23xThlu2OKHN5qxowZt425ae4xqHkskcMZM2YIAwYMEJKTk2/7DGodS+Tv9xYsWMCRbyZkiRzyesa8LJFDXs+YV2tzGBcXJ4SFhQlLly697f0VFRWCIAjCkSNHhO7duwurVq0S0tLShL/97W9CRESEVc5plwgC5/OQaSxfvhyfffZZo9umTJmCDz/8EIcPH8ayZcuQmZkJf39/zJs3DxMmTDDuV1VVhffffx+7du0CAAwfPhyvv/46PDw8jPucPXsWH330Ec6ePQs3NzdMmjQJ//d//9doAzRqHkvlcPPmzVi9ejWuXLkCHx8f3HfffXjqqaegUCjMe4IOwBQ5vNXMmTPRsWNHfPjhhw1eb84xqHnMncO8vDwMHz78jp//+5Ujah5LfQdvtXDhQmRnZ2PNmjUmOQdHZ6kc8nrGfCyVQ17PmE9rc/jGG29g48aNjb5/7ty5mDdvHoC6HH799dfIzc1FSEgIXnnlldvGwFkDFu1EREREREREVooPHxIRERERERFZKRbtRERERERERFaKRTsRERERERGRlWLRTkRERERERGSlWLQTERERERERWSkW7URERERERERWikU7ERERERERkZVi0U5ERESNeumll9C1a1esWrVK7FCIiIgclkQQBEHsIIiIiMi6lJeXY+jQoQgMDERNTQ127twJiUQidlhEREQOhyvtREREdJtt27YBABYvXozMzEzExcWJHBEREZFjkosdABEREVmfTZs2ITo6GlFRUQgKCsKGDRsQHR1t3D5z5kwEBgYiKCgI69atQ1FREcLDw7Fo0SJEREQY9zt37hw+//xznD9/HjqdDgMHDsRLL72E0NBQMU6LiIjI5nClnYiIiBq4dOkSzp07h8mTJwMAJk+ejH379qGwsLDBfrt27cK+ffvw+uuv49NPP0VhYSHmzZsHvV4PAIiLi8MjjzwCAHj//ffx7rvvIicnBw8//DDS09Mtek5ERES2ikU7ERERNbBp0ya0bdsWMTExAIApU6ZAr9fjp59+arBfbW0tVq5cidGjR2PMmDGYO3cucnNzkZycDAD45JNPEBQUhBUrVmDUqFGYMGEC1qxZA7lcji+++MLi50VERGSLWLQTERGRkU6nwy+//ILRo0dDq9WirKwMLi4u6NevHzZu3AiDwWDcNyQkBK6ursa/+/j4AAA0Gg2qqqpw7tw5jB8/HjKZzLiPu7s77rrrLsTHx1vupIiIiGwYn2knIiIio4MHD6KoqAg//fTTbSvrAHDkyBGMGDECAKBWqxtsk0rr1gIMBgPKy8shCALat29/2zHat2+P8vJyM0RPRERkf1i0ExERkdGmTZsQEBCA9957r8HrgiBg7ty52LBhg7Fo/yNubm6QSCS3PQcPAAUFBWjbtq2pQiYiIrJrLNqJiIgIQF0xfeTIETz55JMYNGjQbdvHjRuHn3/+GXl5eX96LGdnZ/Ts2RM7duzAnDlzjLfIl5eX4+DBg4iKijJ5/ERERPaIz7QTERERAGDz5s2ora3FPffc0+j2yZMnQ6/XY+PGjU063ksvvYTLly/j6aefxr59+7Bz50489thjqKmpwfPPP2/K0ImIiOwWi3YiIiICAPz8888IDQ1FWFhYo9v79esHf39//Pjjj8axbn8kOjoaq1evhlarxfz58/HGG2/Ax8cHGzduvONnEBERUUMSQRAEsYMgIiIiIiIiottxpZ2IiIiIiIjISrFoJyIiIiIiIrJSLNqJiIiIiIiIrBSLdiIiIiIiIiIrxaKdiIiIiIiIyEqxaCciIiIiIiKyUizaiYiIiIiIiKwUi3YiIiIiIiIiK8WinYiIiIiIiMhKsWgnIiIiIiIislIs2omIiIiIiIisFIt2IiIiIiIiIiv1/4CI+kmTfTdRAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dados_brasil = df[df['Nome do País'] == 'Brazil']\n", + "\n", + "plt.figure(figsize=(12, 6))\n", + "sns.lineplot(x='Ano', y='Índice de Felicidade', data=dados_brasil, marker='o')\n", + "\n", + "plt.title('Evolução do Índice de Felicidade no Brasil ao Longo dos Anos', fontsize=16)\n", + "plt.xlabel('Ano')\n", + "plt.ylabel('Índice de Felicidade')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 130, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWcAAAMQCAYAAABL2ddfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1gU19fA8e8CS0dARVCxUAQbKIoVG2pssUTUGGOLmtg1scWSvOnRJPaWaGKLJWoS09Soib33LjYECzZQkF4Wdt4/CPsTAV0QWMr5PI+PMDM7e/YyC3fP3HuuSlEUBSGEEEIIIYQQQgghhBAFysjQAQghhBBCCCGEEEIIIURJJMlZIYQQQgghhBBCCCGEMABJzgohhBBCCCGEEEIIIYQBSHJWCCGEEEIIIYQQQgghDECSs0IIIYQQQgghhBBCCGEAkpwVQgghhBBCCCGEEEIIA5DkrBBCCCGEEEIIIYQQQhiAJGeFEEIIIYQQQgghhBDCACQ5K4QoscLCwrhx4wZJSUmGDkUIIYQQQgghhBAlkCRnhRAlUnJyMgEBAUyfPh0TExNDhyOEEEIIIYQQQogSSJKzQogS6ZdffsHKyoq5c+dibGxs6HCEEEIIIYQQQghRAqkURVEMHYQQQgghhBBCCCHEy1IUBZVKZegwDEraQIiiRUbOCmEgU6ZMwdPTM9t/fn5+efp8x44dw9PTk2PHjuXpeSMiIggICKBGjRrUrFmTmjVr4ufnR1RUVJ4+T7rffvsNT09PQkNDX+o8edkez8a0cOFCPD09X/q8uREaGoqnpye//fZbnpwnu3+dO3fOdUw5/Rnqc3xevW4w7M9PX+kxPv2vbt26dOvWjQ0bNhRYHM/+bPr370///v0L7PmFEELoR/qduZNX/c6s/m7XrFmTRo0aMWrUKK5fv647Nqs+TevWrTM8tnr16jRq1Ijhw4dz5cqVl4qtqHu27/HLL7/w9ddf59n5Q0ND8ff3JyIiIk/7m3nJ09OThQsXAmml26ZPn87mzZsL5LmPHDlCt27d0Gg0BfJ82cnq/dW0aVPGjx/P3bt3CyyO1q1bM2XKFCD/fg+K4kkKLQphQA4ODixatCjLfWq1uoCjyR0zMzO++uorEhMTMTExwdTUFGdnZ8zNzQ0dmsH06tWL5s2bGzqMPDFixAhatWqVafvL/HxbtWrFxo0bKVeuXL4cX5Js3LgRAK1WS2xsLPv37+fjjz/G2NiYXr165fvzy89GCCGKDul3Gl76322A1NRU7t27x9y5c+nbty9bt27FwcEh28e2bNmSkSNHApCSkkJYWBgrVqxg4MCB/P3335QpUybf4y+MPv744wzff/fddzRs2DBPzq0oClOnTmXgwIGULl2a+Pj4PDlvXtu4cSNOTk5A2oLHP/74IzNmzCiQ527SpAkVK1bk22+/5d133y2Q58xOz549df1fjUbD3bt3+e6773jrrbfYunUrpqam+R7DokWLsLa2zvfnEcWPJGeFMCBTU1Pq1q1r6DBeipWVFR4eHoYOo1BxcnLSdZCKusqVK+f5NVq6dGlKly6db8eXJM/+bFq0aMGVK1fYsGFDgSRn5WcjhBBFh/Q7De/Z9q9fvz7ly5enb9++/P777wwdOjTbx5YuXTrT4728vGjbti3bt2+nb9+++RBx4efu7p5v5/7333+5du0ay5cvz7fnyAuGfl+PGDGCN998kz59+hj0hr2Tk1OGtmjQoAFOTk4MHDiQw4cPZzngJK/VrFkz359DFE9S1kCIQm7JkiXUrl0703StVatWUatWLR4/fgzAzZs3GTt2LH5+ftStW5f+/ftz6tSpbM87ZcoUWrdunWFbVlN1wsLCmDx5Mk2aNMHHx4f+/ftz5swZ3f6IiAg+/fRT/P39qV27Ng0bNmTUqFGZpn/9/fffBAQE4OPjg5+fHx999NELp6BptVq+/fZbWrVqRZ06dRg5cmSWj7lw4QJDhgyhUaNG1KtXj+HDh2eYHqaP9Ne+bds2xo4di4+PDw0bNuTDDz/McJdcn5iymhb/xx9/0L17d+rUqUOrVq2YPXs2ycnJuv3Xrl1j2LBh1KtXj3r16jFq1Cju3Lnzwrj/+ecfunbtire3N927d89yatuTJ0/46KOPaNq0KV5eXrz++uscOXIkR+3zPDk9f1ZTBPft28cbb7xB3bp1adasGR999BHR0dHZHq/P675y5QqjR4+mcePG1KpVi+bNm/PFF1+QmJioOyYpKYkZM2bg5+eHj48PU6dOJSkpKdO5Tp48Sb9+/ahTpw4NGzZk8uTJREREPLdd+vfvzwcffMD3339Pq1at8PLy4o033uD8+fMZjsuL6/dppUqVylBjbOHChbzyyissWrSIhg0b0qxZM6KiokhMTGT27Nm0a9eO2rVrU69ePQYNGsTly5d1j42IiGDChAn4+fnh5eVFt27d+OOPP3T782q6pxBCiMJB+p0F0+98Wu3atQFyNfXa1tb2hcekT60+ePAgffv2xdvbm3bt2vHTTz9lOE6r1fL999/zyiuvULt2bdq3b8+aNWsyHNO/f38mTpzI2LFjqVu3LoMGDcr2ec+ePcvgwYOpV68ejRs3Zvz48Tx8+FC3X59+mqenJ2vXrmXy5Mn4+PjQtGlTvvzyywx9tafLGrRu3Zq7d+/y+++/Z+ifnDhxgiFDhtCgQQNq165N69atWbhwIVqt9rltt3TpUtq3b//cEZf6vBfCwsIYN24cDRs2pEGDBnz00UfMnTs3w3tCn37ZlClTGDhwIB9//DH16tWjU6dOpKam6soahIaG0qZNGwCmTp2qO/+UKVMYMmQIGzdupG3btnh7e/PGG28QEhLCnj176NKlC3Xq1KFXr14Zng/g0KFDvPnmm9SvX59GjRoxYcIE7t+/n+EYLy8vKlSowMqVK7Ntp/Tr8MiRIwwePJg6derg5+fHzJkzSU1N1R2XlJTE4sWL6dChA15eXrRr147vv//+hT+r7KS/R57uG3t6erJo0SICAgLw9vbWzSjQ5zrZsmWL7jNI48aNmThxYobr+umyBkLkhCRnhTCwlJSULP+lr9XXpUsXUlJS+OeffzI8buvWrTRr1owyZcoQFBREQEAAoaGhfPjhh8yaNQuVSsXAgQM5fvx4rmOLi4ujT58+HDt2jEmTJrFo0SJMTU0ZPHgwt2/fRlEUhg0bxqFDh5g4cSLLly9n9OjRHDlyJMMUo2+//Zbx48dTt25dFixYwKhRo9ixYwf9+/fP0AF71syZM1m8eDE9e/Zk0aJF2NnZMXv27AzHHD16lD59+gAwffp0vvjiC+7fv88bb7zBjRs3cvyaP/74Y93UnCFDhvDrr7/y3Xff5SimZ61bt47JkydTq1YtFi1axNChQ1mzZg1ffPEFACEhIbzxxhs8fvyYr7/+mi+//JI7d+7Qp08f3YegrOzevZuxY8fi6enJ4sWL6dixI5MmTcpwTFJSEgMHDmTXrl2MGzeORYsW4eTkxNtvv61Xglar1Wa6Np/tQL3M+QH27NnDsGHDKFOmDPPmzWPixIns3LmTcePG5fp1h4WF0bdvXxISEvjqq6/44YcfePXVV1mzZg2rV6/WHTdp0iR+/vlnhg0bxrx584iKimLVqlUZznXixAneeustzM3NmTdvHtOmTeP48eMMGDDgudcvwI4dO9i1axcffvghc+bM4dGjR4wZM0bXhi97/T79c4mOjmbLli3s37+ffv36ZTju3r177Nu3j7lz5zJ16lRsbW15//332bRpE0OHDmXFihVMnTqV69evM2HCBN3vn0mTJnHjxg0+/fRTfvjhB2rWrMnkyZM5evToC2MTQghR+Ei/s3D1OyGtHwhps5WeR1EU3c8rOTmZe/fu8eWXX1K2bFk6duz4wucZN24cNWvWZPHixTRt2pRPP/00Q4L2k08+YcGCBXTt2pUlS5bQoUMHpk+fzuLFizOcZ9u2bVhZWfHdd9/x9ttvZ/lcgYGB9OvXj6SkJL755hs+/fRTLl68yJAhQ3QlGfTppwHMnz+fx48fM2/ePN5++202btzI5MmTs3zeRYsW4eDgQMuWLXVll65cucJbb72FnZ0dc+fO5bvvvsPX15dFixaxbdu2bNsrODiYixcv0q5du2yP0ee9kJyczMCBAzl9+jTTpk1jxowZXLlyhRUrVmQ4lz79MkgbMHD//n0WL17MhAkTMDY21u0rV66cLtE4YsSIDGVMzpw5w9q1a5kyZQozZszgxo0bDB06lBkzZjBs2DDmzJnD/fv3mThxou4xf/zxB4MHD6Z8+fLMmTOHqVOncubMGXr37p3pM0qHDh3YsmVLtm2VbuLEidSvX58lS5bQuXNnli1bxi+//AKkXePDhw9n2bJl9OrVS3cdzps3L1P5iqw8/bklOTmZkJAQZs+ejaurK02aNMlw7JIlS+jSpQsLFiygffv2el0np06d4v3336ddu3b88MMPTJ06laNHjzJhwoQXxibECylCCIOYPHmy4uHhke2/ZcuW6Y7t16+fMmDAAN33t27dUjw8PJStW7cqiqIo7777rtKoUSMlJiZGd4xGo1Hat2+v9OjRQ1EURTl69Kji4eGhHD16VPf8/v7+GWK6c+eO4uHhoWzatElRFEVZs2aN4unpqQQGBuqOiY+PV9q1a6f8+uuvyoMHD5T+/fsrJ06cyHCezz//XKldu7aiKIry5MkTpXbt2sr//d//ZTjmxIkTioeHh7J27dos2ycqKkqpVauWMnPmzAzbhwwZonh4eCh37txRFEVRevbsqXTq1ElJSUnJ8NiGDRsqY8eOzfLcWbVH+mufOHFihuP69++vdO7cOUcxLViwQPHw8FAURVFSU1OVJk2aKCNHjszwmGXLlindu3dXkpOTlfHjxytNmzbN8POLjIxU6tevr3z11VfZvoaAgAClV69eGbYtXbo0w89w48aNioeHh3L27FndMVqtVunbt68SEBCQ7bnT2yOrf+k/W33P/+x1tWnTpgzt1b17d+W1115TtFqt7hxbt25V2rVrp4SHh2c6Xp/XfeDAAaVv374Z2lRRFKVz587K4MGDFUVRlGvXrikeHh7KTz/9pNufmpqqdOrUSffzUxRF6d27t9K5c+cM11hwcLBSo0aNbK9fRUl739apUydDDL///rvi4eGhXLhwQVGU3F+/6ddYVv+GDx+uJCUlZTr26fdpUlKSMnjwYN3vkHQrVqxQPDw8lLCwMEVRFKV27drKd999l6F9vvrqK+XUqVOKomT+Wfbr10/p169ftnELIYQwDOl3Grbfmf63WKPR6P7FxMQoJ06cULp3767Ur19f97f32XZRFEXx9/fP8ufm6emp/PXXX9k+r6L872cxderUDNtHjBih+Pn5KVqtVgkODlY8PT2VpUuXZjhm7ty5ipeXlxIREaEoyv/6Nk/3M7IyZswYxc/PT0lMTNRtO336tOLv768EBgbq1U9TFEXx8PBQ2rVrp2g0Gt22lStXKh4eHkpQUJAupqf7Hv7+/srkyZN13//+++/K22+/raSmpuq2paamKvXr1890nTxt3bp1ioeHhxIVFaXb9uzPRp/3wi+//JKh76coihITE6M0atRI957Qt1+W/j6+f/9+huM8PDyUBQsWZBnj049LbzNFUZSPPvpI8fDwUA4fPqzbtnz5ct1rTk1NVfz8/DL8PBQl7fdBrVq1lK+//jrD9n///TfTczwt/TqcO3duhu2tW7dWhg0bpiiKouzdu1fx8PBQtmzZkuGYxYsXKx4eHsq1a9eyPHd6G2T3ueXIkSOZjh04cGCGbfpcJ0uXLlV8fHwyXP979+5VFi5cqPsc8/T19+zvQSGeR2rOCmFADg4OGUZlPq18+fK6r7t27crHH39MeHg4Dg4ObN26FWtra91UlePHj+Pv75+h+LiJiQmvvvoqixcvJi4uLlfxnTp1CmdnZ2rUqKHbZmFhwY4dO3Tfr169GkVRCA0N5datWwQHB3P69GndlP2zZ8+SnJxM586dM5zb19eXihUrcvz48SxrZJ09exaNRoO/v3+G7R07duTAgQMAxMfHc+HCBUaPHp3hrnGpUqXw9/dn3759OX7Nz9ZscnJy0k0z0yemZ4WEhPD48WNeeeWVDNuHDBnCkCFDgLRRGA0bNsTc3JyUlBQArK2t8fX15fDhw1meNzExkUuXLmUqvN+xY8cMozyOHDmCg4MDtWrV0p0bwN/fn2+++YaoqKjnTokbPXp0pvpMRkb/m3Shz/mfJzExkcDAQMaMGZNhulGnTp3o1KlTrl93s2bNaNasGRqNhqCgIG7dusW1a9eIiIjAzs4OSBt5AGSYUmZkZET79u0JCgoCICEhgXPnzjFkyBDdiBWASpUq4ebmxqFDh55b483d3T3D+9LR0VF33ry4fn/99Vfd1wkJCVy4cIElS5YwZMgQVq1aleG8T7+PTU1NdfXTHj58SEhICDdv3mTPnj0Auvdvo0aNWLhwIYGBgTRv3pyWLVtmO1pFCCFE4Sb9TsP3O2vVqpVpW7Vq1XQjPp/H39+fUaNGAWkjDCMiIti2bRsTJ04kISGB119//bmP7969e4bv27Vrx65duwgJCeHYsWMoikLr1q0z9Odat27Nd999x6lTp2jbti0Arq6uL1xY6dSpU7Rs2RIzMzPdNh8fH3bv3q37/kX9tHRdunTBxOR/aYv27dszY8YMTpw4gZub23PjAHjttdd47bXXSEpKIiQkhFu3bnH58mVSU1PRaDTZPu7OnTuUKlWKUqVKZXuMPu+Fo0ePUqlSJV35Ckjr5/v7+3Ps2DFA/34ZgJ2dXa7WtrC1tc3QXmXLlgWgTp06Gc4NEB0dTXh4OOHh4ZlGhVauXBkfH59Mo+SdnZ2BtHIlz/u5+Pj4ZPjeyclJV0Lu+PHjmJiY0KFDhwzHdO3alfnz53P8+HGqVauW7blff/113ftAq9USHh7OL7/8wttvv83ixYtp2bKl7tinf8+AftdJgwYNmDt3Lp07d6Z9+/a0bNmSZs2aZTivELklyVkhDMjU1BQvL68XHtehQwc+//xztm3bxoABA9i6dSvt27fXrUwbFRWl+wP7tLJly6IoCrGxsbmK78mTJy9c+fWvv/7STYOxs7OjRo0aGVbMTU/OZRdfTExMludNf5y9vX2G7U93XGNiYlAUJcfnfh4LC4sM3xsZGemmEukT07OePHkC8Nx2fPLkCX///Td///13pn3ZLbYUFRWFoiiZYnm2CP+TJ08IDw/P8sMAQHh4+HOTsxUrVnzuNarP+Z+3gnL669B3hWF9X7dWq2XOnDmsW7eO+Ph4ypcvj7e3d4YPCfr8PKOjo9Fqtfzwww/88MMPmeJ5+nxZyep6So8vL67fZ382DRs2xMHBgUmTJrFr164MU/GsrKwyHHvgwAGmT59OcHAwVlZWVK9eHUtLSwDdNT937lyWLFnCtm3b2LFjB0ZGRjRt2pTPPvuMihUrvjA+IYQQhYf0Ow3f73z6pqparcbBwUHvPpCdnV2mn1+rVq0ICwtj5syZ9OjRI0PS+FnpN4jTpT9vVFSUrr/66quvZvnYp2tqPtufyMqLfpb69NP0iVsfiYmJfP755/z555+kpKTg7OyMj48PJiYmGcoFPCs2NjZTP+5Z+rwXIiMjs2yLZ7fp0y8D/do/K08nkJ+W/hzPSr8msnt9gYGBGbalt9WL3gfPfi549rOWvb19pus4/X34onOXK1cu03vE39+fV199lVmzZmVIoj77uvW5Tnx8fPj+++9ZtWoVK1eu5Pvvv6ds2bIMHz5cV/dYiNyS5KwQRYCNjQ2tW7dm27ZtNG7cmOvXr/N///d/uv22trY8evQo0+PCw8OBtI7mzZs3M+xTqVQZaocCGRa+Sn/erBb6OXXqFHZ2dkRGRjJ58mT69+/PkCFDdJ2nb775RlcIPz3x9+jRI1xdXTPFV6lSpSxfc3rn+PHjxxkel95RSI9PpVJl+9qfvfP+svSJ6Vnpd9ufXTwqMjKSwMBAfHx8sLGxoWnTplkuqvD0SIGn2dnZYWRklOm1PxuLjY0NVatWZdasWVmeJ/0ud27pc/6sfj7prK2tUalUmdonKSmJo0ePZribD/q/7vSO06effkq7du2wsbEBoGfPnrpj0n+ejx49okKFClmey8rKCpVKxVtvvZXlB5YXddqfJ7+u3/SRGc++5592+/ZtRo0aRdu2bVm6dCmVKlVCpVKxbt26DKPAbWxsmDRpEpMmTSI4OJhdu3bx7bff8umnn/L999/nKj4hhBCFm/Q786/fqU9yPKdq167N4cOHiYyMzDKRli4yMjJDXdv0mqFlypTR9Vd//PHHLJN/T/eT9GFjY5Plwqn79u2jRo0a/Pbbby/spz0d99PS2z+7AQzP+vLLL9mxYwfz5s2jadOmuqTcszVIn2Vvb//CZKA+7wVHR8cs+2RP12zVt19WkNKv5+xe37M3MrK7wZETtra2REZGkpqamiFBGxYWlutzGxsbU7NmTXbu3Pnc4/S9Tpo3b07z5s1JSEjg6NGjrF69mi+++II6derg7e2d4/iESCcLgglRRHTr1o2zZ8+yfv16KlSoQMOGDXX7GjRowJ49ezKMVEhNTWXr1q14eXllOfXIysqKyMjIDKudPruyqK+vL3fu3MmwAm1iYiKjR4/mt99+48yZM2i1WsaMGaPrIKempuqm4mu1WurUqYOpqWmmAvEnT57k3r171KtXL8vX6+Pjg7m5Odu3b8+wPX16D6Td8axduzbbtm3L0OGPiYlh79691K9fP8tz55Y+MT3L1dUVe3v7TMf8+eefDB06FI1GQ8OGDQkKCqJGjRp4eXnh5eVF7dq1WbVqFf/++2+W5zUzM8PHx4d//vknw930p6eLQdpIyvv371OmTBndub28vDh06BDLli177ggLfbzs+a2srKhRo0am9tm/fz9Dhw7VdcZy+rpPnTqFu7s7PXr00HX4Hz58yLVr13QrrjZu3BjguT9Pa2tratasSXBwcIbXV61aNRYuXKibjpYb+XX9nj9/HoCqVatme8zFixdJSkpi6NChVK5cWVdSIv0DgKIo3L17l5YtW+rax9XVlXfeeYemTZty7969XMUmhBCiaJB+ZxpD9jv1deHCBWxtbV+YuHo2ObV9+3YqVqxI5cqV8fX1BdISoU/3dyIiIpg/f/5zByJkxdfXl0OHDmWYjh8YGMjQoUO5dOmSXv20dM/28Xbs2IFKpdL14571dPktSLvOGjVqRNu2bXUJt4sXLxIREZHpuZ5WoUIF4uPjnztCV5/3QsOGDQkNDeXy5cu6YxITEzMkXfXpl+nrZfv26VxcXHBwcMj0Xrpz5w5nz57N9F5KH12d00T+0xo2bEhKSkqm9+Fff/0FkKv3mEajITAwkCpVqjz3OH2uk6+//poePXqgKAoWFhb4+/vryn1J31i8LBk5K4QBJScnc/bs2Wz3e3p66kbmNW/eHDs7OzZu3Mjbb7+doT7n6NGj2b9/PwMGDGDo0KGo1WrWrl3LnTt3WLZsWZbn9vf3Z82aNXzwwQf07NmTa9eusXLlygx/0AMCAlizZg0jRoxg7Nix2Nvbs3r1alJTU3nzzTd1oxs+++wzevToQVRUFOvWrePKlStA2ogIOzs7hg4dyuLFi1Gr1fj7+xMaGsr8+fNxd3fPVP8qnZWVFSNHjmTevHlYWFjQuHFj9u3blymJN2HCBIYMGcLQoUN588030Wg0fP/99yQnJ+vqcuUVfWN6mrGxMWPGjOGzzz6jTJkytG7dmpCQEBYsWEDfvn2xtbVl5MiRvPHGGwwbNow+ffpgZmbGxo0b2blzJwsWLMj23OPHj2fgwIGMHj2a3r17ExISwpIlSzIcExAQwNq1axk0aBDDhw+nfPnyHD58mB9++IF+/fqhVqtfqk3y4vxjx45lxIgRjB8/ntdee41Hjx4xZ84c2rZti4eHBxcvXszx6/b29ubbb7/l+++/p27duty6dYulS5eSnJxMQkICAFWqVKF3797MnTuXlJQUatSowZ9//snVq1czPd/QoUOZMGECXbt2JTU1lRUrVnDu3DlGjhz5Uu33stfv078/UlNTuXTpEgsWLMDDwyNTreCn1apVCxMTE2bOnMngwYNJTk7mt99+Y+/evUDae9fT0xMnJye++OILYmNjqVy5MhcvXmTfvn0MGzbspV63EEKIgif9zqLV73xWREREhp9fQkICf/zxB0eOHGH8+PEvTMqtXLkSMzMz6tatyz///MOePXt09fo9PT3p2rUr//d//8fdu3epXbs2ISEhzJ07F2dn5+fe8M3KyJEj6d27N8OGDWPAgAEkJiYyb948vL298fPz4+LFiy/sp6U7e/YsEydOpFu3bly5coWFCxfy+uuvZzsKulSpUgQGBnL8+HG8vb3x9vZm27ZtrF+/Hjc3N65cucJ3332HSqXK9FxP8/PzA9KSdk+vT/A0fd4LnTt35vvvv2fUqFG8++67lCpVipUrV/L48WNdIlOffpm+0pPdR44cwc3NLdMsNH0ZGRkxfvx4pk6dqusDR0ZGsmjRImxtbTPN+EuvGe3i4pKr5wNo0aIFjRo14sMPP+Thw4dUr16d48eP88MPP9C9e3fc3d2f+/gHDx5keI9ERUXx008/ERISku0sv3T6XCeNGzdm5cqVTJkyha5du6LRaFi2bBl2dnbZ3iwQQl+SnBXCgMLDw+ndu3e2+//44w9dsfL04vJr1qyha9euGY6rVq0aP/30E3PmzGHq1KmoVCq8vb1ZvXq17k74s/z8/Jg8eTJr1qxhx44d1KpVi0WLFvHGG2/ojrG2tmbt2rV88803TJo0CUgr3r969WoqVqxIxYoV+eijj1i5ciXbt2+nbNmyNGrUiEWLFjFq1CjdYgBjxoyhbNmyrF27lo0bN2JnZ0eHDh147733sq1zBDBs2DAsLS358ccf+fHHH/Hx8WHy5Ml88sknumOaNGnCypUrWbBgAePHj8fU1BRfX1++/vrr5xaMzy19YnpW3759sbS0ZPny5WzcuBEnJyfeeecd3nnnHQCqV6/OunXrmDt3Lu+//z6KouDh4cHixYtp06ZNtuf19fXlhx9+YM6cOYwePRpnZ2emT5/O8OHDdcdYWlqybt06Zs+ezcyZM4mJiaFixYpMmDCBwYMHv3R75MX5/f39WbJkie66KV26NF26dGHMmDG5ft3Dhg0jMjKS1atXs3jxYsqXL0+3bt1QqVQsXbqU6OhoSpUqxccff6y7NqOiomjevDnDhw9n3rx5unM1a9aM5cuXs2jRIsaOHYtaraZWrVqsXLky0wJyOfWy1+/Tvz/UajXlypWjU6dOvPvuu89drKNKlSrMnj2bRYsWMWLECGxtbalbty5r1qyhf//+nDx5Ek9PTxYtWsScOXOYP38+kZGRlC9fntGjRzN06NCXet1CCCEKnvQ7i16/82n79u3LsOiYpaUlLi4ufPzxx7z55psvfPy0adP4/fffWbp0Ka6urixYsID27dvr9s+YMYOlS5eyYcMGHjx4QJkyZejUqRPvvfdejkdj1qxZkzVr1jB79mzee+89rK2tadmyJRMnTsTU1FTvfhrAwIEDefjwIaNHj8be3p7hw4c/9ybx4MGDmT59OkOGDNEl0jQaDfPmzSM5ORlnZ2dGjBhBUFAQu3fvzjSFPl2lSpWoVasW+/btyzY5q897wcTEhOXLl/Pll1/yySefYGJiQteuXbGzsyMkJATQv1+mD2trawYNGsTGjRvZt28fhw4d0utxWQkICMDKyoqlS5cyatQorK2tad68OePHj8+05saBAwcyLeSVU+k//wULFrBq1SoiIiJwdnZm/PjxWZZ/e9avv/6qq+usUqmwsrLCw8ODefPm0bFjx+c+Vp/rpGXLlsyaNYsVK1YwevRoVCoV9evXZ/Xq1XleTk+UPColJ2PkhRAlkqIotGrVCl9fX6ZNm6b3wgVCCCGEEELkhPQ789axY8cYMGAAq1evplGjRoYOJ0c8PT0ZPXp0tjfs89uOHTuYNm0a+/fvz/VCXNevXyc4OJh27dplGIHes2dPnJycWLRoUV6FazAnT55k8ODB7Ny5M9MivUII/UjNWSHEC125coXPP/+cffv2sX79ekOHI4QQQgghiinpd4rCol27dlSrVu2lrsP4+HjeffddPv/8c44cOcLBgweZNm0aFy9epF+/fnkYreEsW7aMgQMHSmJWiJcgZQ2EEC/07rvv8vDhQ7y8vAgICDB0OEIIIUSBSUpKIiYmBjs7O0xMpOssRH6TfqcoLFQqFd988w39+vUjICCA0qVL5/gcderUYd68eSxfvpw//vgDRVGoWbMmy5YtKxZ1So8cOcK9e/eeu06GEOLFpKyBEEIIIYQQT9m3bx+bN2/m6NGjPH78GEj7kF62bFmaN29Ox44dadasmYGjFEIIIYQQxYEkZ4UQQgghhACOHj3KjBkzuH79OnXr1sXLy4uKFStiYWFBdHQ0Dx484NSpU1y9ehVPT08mTJigW9FbCCGEEEKI3JDkrBBCCCGEKPE+/fRTdu/ezcCBA3n11VdxdHTM9tjw8HB+/vlnNmzYQJs2bTKs5i6EEEIIIUROSOEsIYQQQghR4tnb27Njxw7Mzc1feKyDgwOjRo3irbfe4ocffiiA6IQQQgghRHElI2f1cObMGRRFQa1WGzoUIYQQQogSQ6PRoFKp8PHxMXQoRZr0ZYUQQgghCp6+fVkZOasHRVEo6TlsRVHQaDSo1WpUKpWhwymUpI30I+2kH2kn/Ug76UfaST/STi9W0G1k6P7X/v37OX78ONHR0djb2+Pr60vz5s0NGlNulPS+rLy39SPtpB9pJ/1IO+lH2kk/0k4vJm2kn8Lal5XkrB7SRxl4eXkZOBLDiY+P5/Lly7i7u2NpaWnocAolaSP9SDvpR9pJP9JO+pF20o+004sVdBtduHAh358jK8nJyYwcOZKDBw9ibGyMvb09kZGRfP/99zRu3JilS5diampqkNhyo6T3ZeW9rR9pJ/1IO+lH2kk/0k76kXZ6MWkj/RTWvqxRPschhBBCCCFEkbJw4UJOnTrFN998w/nz5zl48CDnzp1jxowZnD17lu+++87QIQohhBBCiGJCkrNCCCGEEEI8ZcuWLYwePZquXbtibGwMgImJCa+99hqjR49m8+bNBo5QCCGEEEIUF5KcFUII8UKJySloUrQ8iU1Ck6IlMTnF0CEJIUS+iYiIoGbNmlnuq1mzJg8fPizgiIQQQrwM6csKIQozqTkrhBDiuZI1qWzaE8TmA8HEJWiwslDTtbkrPVtXw1RtbOjwhBAiz1WuXJlTp07RpEmTTPtOnDhB+fLlDRCVEEKI3JC+rBCisJPkrBBCiGwlJqewaU8QG/65qtsWl6Bh/X/fB/i7Y24qf0qEEMXLG2+8wVdffYW5uTmvvvoqZcuW5dGjR2zZsoUffviB0aNHGzpEIYQQeigKfVlzc3ODPr8QwvDkE7UQQohsGRsZsflAcJb7/joQTK82HgUckRBC5L8+ffoQGBjIrFmzmD17tm67oih0796doUOHGjA6IYQQ+npRX7Zn62pcCn6EpbmaUlam2FiaFtho2sTkFNSm5pR3dkVtakZicorBE8VCCMOQd74QQohsxSVqiEvQZL0vQUN8ogZba7MCjkoIIfKXkZERX375JYMGDeL48eNER0dja2tLw4YNcXNzM3R4Qggh9BATn0yyJvW5fdnImCS+23SeWw9idNvNTI2xsTSllKUpNlZqbCxNsbFK/z4tgZuWyFXrtluaqzEyUukdm5RaEEI8TZKzQgghsmVlrsbKQp1lp9bKQo2ludoAUQkhRMFwd3fH3d3d0GEIIYTQk1arcO56OP8cu0VgyGOWTmn73L6snbUpFmYm2FqbEhOvQatVSEpOJSk5gUdPEvR+XiMjFdYW6qcSt/9L7P7v+7RErrOjNX8fusmGfwtvqQUhRMGSd7wQQohspWq1dGnumqFOV7rOfi5cuPEItYkRXm5lDRCdEELkj6ioKBYsWMDp06eJjo7OtF+lUrFz504DRCaEECIr4ZEJ7Dxxm53HbxEW+b+k6rU7kXRp5sKGf69lekzX5q4owMyxLYC00jVxiSnExCUTE59M9H//x8QlE/3f/zHxmv99/9+2xORUtFqF6Li0x9wNzz7OUlamLP/gFTYflLJhQoj/keSsEEKIbJmpjdM6rlqFLYdCdNOuujRzpUtzFyYvOkhoWCydmlblrc61sDCTPytCiKLv//7v/9i1axfNmzenevXqhg5HCCFEFjQpWk4EPuCfY7c4fTUMRUnbbmWhxr+eM680qoJrRVuqVymNSqXirxeUEFCp0ka/WluoKY9VDuJI/S+Rq3kmkft0gldDTHwy1pYmRMUlS9kwIUQG8ilaCCFEts4HPWLJb+d569WarPmkA/GJGizN1aRqtWi1CrVcyxAaFsvfh29y8vJDxrxel7oe5QwdthBCvJTDhw/z4Ycf0qdPH0OHIoQQ4hl3Hsbw7/Hb7Dl5hyexSbrtXm5ladeoMk28K2D2VNLVVG1MgL87vdp4ZOjL5lVtV7WJMWVsLShja6HX8ZoUrZQNE0JkIMlZIYQQWVIUhfX/XCU0LJYz18JpVLu87i6+GiMARveqS7M6FVj481nCIhP4v6VHaN+4CoM618LKQjqWQoiiycrKCmdnZ0OHIYQQ4j+JSSkcOn/vv1qyEbrt9jZmtG1YmbYNK1OhrHW2j0+v4fpsX9YQUrVaujZ31dWYfVpnPxfCn8Q/97UIIYqfXCdnb9y4waFDhwgLC6N///7cuXOH6tWrY20tv0SEEKI4OH/9EZeCH6M2MaJXm2rZHlfXoxwLJ/qz+u/LbD0Uwo6jtzh1+SGjetXFt4ZjAUYshBB5o2/fvixfvpx69ephZaX/1FYhhBB5R1EUgkKf8O+x2+w7E0p8YgoARirwreFEu0aV8a3hiLGx4RKtuWFuakLP1ml966dLLXTxc6Fzc1emLD5Ig5pODHy1JsZGKgNHK4QoCDlOzmq1Wj766CM2bdqEoiioVCo6duzIt99+y+3bt1m7di1OTk75EasQQogCoigKP/1zBYD2jau8cJqWpbma4QHe+NWpwMKNZ7n/OI5Plx2ltW8l3ulWG2tL04IIWwgh8kS/fv34/fffadmyJS4uLlhYZPwdqFKp+PHHHw0UnRBCFG+x8cnsPR3KP8duEXLvf4syOpWx5JWGVWjToJLeJQQKq6dLLcTGJ2FtaUZqqpZ/jt0iNCyW0LAgbj2IZlI/X6xlNpoQxV6ObzF9++23bN68mS+++IJDhw6h/Fd1e9KkSWi1WubOnZvnQQohhChY566HExgSgdrESHdnXx9ebmVZMLEV3Vq4oVLB7pN3GDVzN8cu3s/HaIUQIm999NFHhISEUK5cOczNzVEUJcM/rVZr6BCFEKJYURSFC0GPmL3uFAM+3cHS3y8Qci8atYkRLX2c+XJEU5ZOacvrbT2KfGI2nbmpCZrkRO7dCUaTnIi5mQldW7jxfn9fTNXGnL4SxsT5+wgNizF0qEKIfJbjkbObNm1i7Nix9OjRg9TUVN32GjVqMHbsWGbNmpWnAQohhChYiqLw0460GlgdmlTNcQfY3NSEt7vVxs+7AvM3nuFueCxfrDxOSx9nhnb3opSVjKIVQhRuu3fvZsKECbzzzjuGDkUIIYq1iOhEdp24zb/Hb3P/UZxue9XypWjXqAqt6jtjU8xnYCUmJmb4vnndilQoa8UXK49zNzyOCfP3M6mfr5QLE6IYy3Fy9tGjR9SoUSPLfY6OjkRHR2e5TwghRNFw9lo4l29GYJrDUbPPquFSmvkTWrF+xxV+3xvEvjOhnLsezvAe3vh5V8jDiIUQIm+ZmppSu3ZtQ4chhBBFmrm5eZbbU1O1nLoSxj/HbnHi8kO02rTZuBZmJrSs58wrDStTrZIdKlXJrbfq5mzH3PdaMuPH4wSGRPDZ8qO89WpNurdyL9HtIkRxlePkbJUqVdi3bx9NmzbNtO/48eNUqVIlTwITQghR8NJGzabVmu3QpCqlS2XdqdaXmdqYtzrXoul/o2hvP4jhqx9P4OddgeEB3tjZmOVF2EIIkae6devG+vXradSoEUZGRWuhGSGEMLTE5BTUpuaUd3ZFbWpGYnIK5qYm3H8Ux7/Hb7HrxG0iopN0x9eoWpp2jarQrE4FzM1yvWZ5sWNnY8YXw/1Y+vt5dhy9xcotgYTci2b063UxUxsbOjwhRB7K8W++gQMH8tFHH6HRaPD390elUnHr1i2OHTvGihUrmDJlSn7EKYQQ+SIxOQVjIyPiEjVYmatJ1WoxNy25ncIzV8O5cisSUxMjerzEqNlneVS2Z964lmz89xq/7L7OofP3OB/0iGHdvWjhU1FGAAghChUbGxt+/fVXWrdujbe3N1ZWVhn2q1Qqpk+fbqDohBCi8ErWpLJpTxCbDwQTl6DBykJNl2YudG3hxmfLjxIaFgtAKStTWvtWol2jKlRytDFw1IWX2sSIUT3r4FK+FN//eZG9p0MJDY/lw0ENi03tXSFELpKzvXr1IiIigu+++47169ejKArjx49HrVbz9ttv06dPn/yIUwgh8lxWnceuzV3p2boapiXwbrSiKPz0z3+jZpu+/KjZZ6lNjOnXsQZNvMozf+MZQu5FM2vdKQ6cvcvInnXy/PmEECK3fvvtN2xtbQG4ePGigaMRQoiiITE5hU17gtjwz1XdtrgEDRv+vYaiwMBXa7LtyE3aNapCw5pOqE1kZoI+VCoVrzZzpZKTDV/9eJKgO08YN3cf0wY1pHqV0oYOTwiRB3I1PGzYsGH07duX06dPExUVRalSpahTpw52dnZ5HJ4QQuSP7DqP6//7PsDfvcSNoD19NYyrtyIxVRvT0z/vRs0+y83ZjtnvtuTX3df5eedVjl16wMXgx7zTrTatfSvJKFohhMHt3r3b0CEIIUSREBmdSPC9KO6Gx9G+URU2HwjO8rgth0JY80kHGtcuX8ARFh/e7g7Mea8FX6w4xq0HMUxdfIhRPevQtmFlQ4cmhHhJuc48WFtb06JFi7yMRQghCoyxkVG2nce/DgTTq41HAUdkWIqisH5HWmK6U9Oq2OfzKFa1iRF92nmmjaLdcJqg0CjmbTjDwXP3GNWzDmXtZJqWEMJwpk6dysiRI6lUqVKmfcHBwXzzzTcsWbLEAJEJIYRhpKZqCQ2PJeReNCF3owi5F0XIvWiexKbVjq3iZEOjmo7EJWiyfHxcgob4RA221rLewMtwKmPFzLEtmLv+NEcu3Gf+xjPcvB/NoM41MTaWkchCFFV6JWcHDBiQo5OuXr1a72OPHTuW7fmdnZ3ZtWtXpu1JSUl89dVXbN++ncTERFq3bs0HH3xA6dL/G9J/5MgRZs6cyY0bNyhfvjxjxozh1VdfzdHrEEIUX3GJGuk8PuXUlTCu3k4bNRvg715gz1u1fClmjW3Bb3uD+GnHVU5efsiombsZ3KU27RpVllG0QogCc+/ePd3Xv//+O23btsXYOHOJm/3793P48OGCDE0IIQpUXIKGm/ejCdYlYaO49SAGTYo207FGKqjgYE31KqWxL2WOlYU6yz62lYUaS3N1QYRf7FmYmTBlQAM2/HuV9f9c5c/9N7j1IJrJ/X2xtjQ1dHhCiFzQKzmrKEqG78+cOYNKpaJu3bo4ODjw5MkTzp49i6Io+Pv75ygAHx8fDh48mGHb2bNnGTNmDCNHjszyMZ988gknT55k4cKFmJqa8vHHHzN27FjWrl0LwI0bNxg2bBiDBg1i5syZ7N27l/fff5/SpUvTpEmTHMUnhCieLM1MpPP4H0VR+GlHWq3ZTk2rYm9TsLVfjY2N6NXGg8a102rRXr0VyaJfznLw7F1Gv14Xx9KWBRqPEKJk+vTTT9m/fz+QVt9v9OjRWR6nKAp+fn4FGZoQQuQLRVEIi0xIS8DejSLkv4Tsw4j4LI+3MDOmanlbXCqUwrWiLS4VbKnsZKMrBZaYnELX5q66MmFP69rclVStFjUyujMvGBmpeLN9daqUL8Xc9ac5ey2c8fP383+DG8kCa0IUQXolZ9esWaP7etWqVURERLB8+XKcnJx02yMiIhg6dCjOzs45CsDU1BQHBwfd9/Hx8cyYMYPu3bvTo0ePTMc/fPiQP/74gyVLluDr6wvAnDlz6NChA2fOnMHHx4cff/wRT09Pxo0bB4CbmxuBgYEsW7ZMkrOixEhMTsHYyIi4RA1W5mpStdoSV0M1K1qtwoZ/r+Ja0ZbOfi5s3Hkt0zElrfN46koY1+88wVRtTI98rDX7IpUcbfh6dHP+2n+Dtdsuc/Z6OGNm7Wbgq7Xo2KQqRkYyilYIkX8+++wzDh8+jKIoTJs2jREjRlC5csY6fkZGRpQqVYpGjRoZKEohhMhI3z5/siaV2w9jMiRhb96LIi4xJcvzlrWzwLVCWiLWpaItrhVscSxt+dz+mLmpCT1bp/Ul/5IFdwuEn3cFKpS14osVx7j/KI4J8/czsV99GtZ0evGDhRCFRo4zNcuWLeOjjz7KkJgFKF26NMOHD+eDDz5g/PjxuQ5oyZIlJCQkMHny5Cz3nzp1CoDGjRvrtrm4uODo6MiJEyfw8fHh5MmTtG3bNsPjGjduzJdffomiKDJNVhR7yZpUNu0JYrN0ijJITE5h3oYzHDp3D+dy1swa2wIjI1WGzmNnPxe6tnArMYlsRVFY99+o2Vf9XLCzMWwpB2MjFd1budOolhMLfj7LpeDHLPntPIfO3WPM63UpX9bKoPEJIYovR0dHunfvDqSNnG3VqhX29vYGjkoIIbKXXZ+/R+tq3Ah9wpWbkbqyBHfCYtFqlUznMDFWUdmxFFV1o2FL4VLBFptcTo9PL5HVq40HsfFJWFuakarVlujPIPnNpYItc95ryVerT3DxxmO+WHGM/h1r0LN1Ncl9CFFE5Dj7kJiYmKnMQbq4uLiXCiYiIoJVq1YxYcIE7Ozssjzm4cOH2NvbY2aWMYFQrlw5Hjx4AMCDBw8yJY/LlStHQkICkZGRGWrTClHcJCansGlPEBuemk4Ul6DRTS8K8HcvMYnHpz2OSuCLFccICo3CxFhFQCt3rCzUus5jfKIGS3MTTl4OY9KC/Yzo4Y23u8OLT1zEnbz8kKA7TzAzNSagVcHVmn2RCg7WTB/hx9ZDIfz4dyAXbjxizOw9DOhYg87NXDOM2jA3L9gyDEKI4unEiRPUrFkTKysrnJ2dCQoKeu7xDRo0KKDIhBAis+f1+bVaBfdKdqzccinDY2ws1bhUSCtH4FoxLQnrXM4GtUnezhYzNzUhPj6ee3dCcHFxwdJSSlTlN1trMz4f1pTv/7jAtsM3Wf33ZW7ej2bM63VL5Gc/IYqaHL9LGzduzJw5c6hWrRqurq667ZcuXWLevHm0bNky18H89NNP2NjY0Lt372yPSUhIwNQ08108MzMzkpLSVopMTEzMdEz698nJybmKTVEU4uOzrr1TEiQkJGT4X2RWWNpIbWrO5gPBWe7760BwWiLSgNeyIdopKDSKWT+dJTImGRtLNeP71KFmVXtdO2gBU2MVmuQkTgTeIzQsloUbzzBzdBOD3eUviHZSFIW12y8D0K6hM6bGqYXu91yb+k7UdinF0j8CuRQSyQ9/XmT/mVDG9PTCobQ1alMzyju7ojY1JT4hGRWp2d5ALMkKy++nwk7a6cUKuo0KcsZT//79+fnnn/H29qZ///6oVKpMv0/St6lUKi5fvlwgcQkhRFaMjYyy7fNvORTCqo/a0bZBZZzKWqYlYyvYUsbWvEBHUiYmJhbYcwkwMTZiZI86uJQvxdLfL7D/zF3uhsfywVuNcLC3MHR4QojnyHFy9oMPPqBv37507tyZSpUqYW9vz+PHjwkNDaVatWpMmzYt18H88ccfvPbaa88dBWVubp5lgjUpKQkLi7RfOGZmZpmOSf8+/Zic0mg00gkHbt68aegQCj1DtpG5uTnlnV2zXOQK0u6mx8Ynce9OiME7SwXVThdvxfPH0QhSUsHB1oQ+LcugSnjA5csPsjy+fmUtRy8Y8SAigaW/nqBtXdsCiTM7+dlOV0MTCL4bjdpERfVyyYX6d1yPxpa4lFX450xabTQ7Wyt+33uDzYdCdNP4ujRzIcDfjZCg6wa/vgsr+R2uH2mnFyvINsrqpnx+WL16NW5ubrqvhRCisHoSk4gmVXlunz8pOZV33/Ap4MhEYdCxqQuVHG2Y8eMJboRGMX7+PqYNbEgNF5lBLERhlePkbPny5dm6dSu//fYbp06dIioqiooVKzJs2DC6deuGWp27Fc6vXLnCnTt36NKly3OPc3Jy4smTJyQnJ2forIeFheHo6KiLMSwsLMPjwsLCsLS0xMYmdysXqtVq3N0Lz5TfgpaQkMDNmzepWrVqrhPcxV1haSO1qRlWFuosO2tWFmoszdWUKlMel1KGmQpeUO2k1Sps2hvMr4dCAfDxKMvYXl5Ymr/4194wUwdm/XSOI1di6dKqFlXLF/yKp/ndToqi8OPeYwB0alIFXx/DLQSmr1o1oWOLBGISFTYfCM6wmFtcgoYN/15DpVLxWotqoGS9uEVJVVh+PxV20k4vVtBt9KLSAnmpYcOGuq83b95Mz549qVOnToE9vxBCvEhCUgq/7w1i54nbfDup9Qv7/KLkqu1WljnvteSLFce4eT+aad8dZESPOrRrVMXQoQkhspCr4iMWFhb07duXvn375lkgJ0+epEyZMlSvXv25x9WvXx+tVsupU6do0qQJACEhITx8+FBX+8vX15fjx49neNzRo0epV68eRka5q6ejUqmkVg5pP3tph+czdBuFP0mgs59LhsRVus5+Lpy5Fs6cn07zTrfatG1Y2WBF4vOznRKTU1jw38JfAK+1dOOtzrUwfs7qsk9rWb8qhy+Gcfj8fZZtvsLMsS30fmxey692OnbxPiH3YjA3NaZX2+pYWhp2ITB9Vba0RJOi5fMVx7Pcn166Q21SMCPtihpD/34qKqSdXqyg2shQf6P++usvOnbsaJDnFkKIZ6VqFXaduM267ZeJiE4r5Xf9zhO6NHfNUHM2XdfmrqRqtajJ21qyomhxLG3JzDHN0xZEPn+PhT+fJeReFG93rY2xsVwbQhQmuUrOnj9/nmPHjpGcnKyrxZVek/XUqVP8/PPPOT5nYGAgnp6eWe4LDw/H0tISKysrHB0defXVV/nwww+ZPn06FhYWfPzxxzRs2JC6desCaTXDunfvzqxZs+jevTv79u1j+/btLFu2LDcvV4gi49GTBGauOcEHgxqhUsHmgyEZV271d2fBxjMkJKWw4OezHLl4n9G96lLaQKNo88OzC3/l9g7xsO7enLsWzvU7T9hyMJhuLdzyIVrDUBSFn/7ryHdu5oqtddFIzKaLS9Q8dxpffKKmyL0mIUTh4uPjw7Fjx2jatKmhQxFClHCnr4axcvMlbt6PBsCpjCVvvVqL2m5l8Kxij4q0m9NP9/l7tq5msHUTROFibmbC5AG+bNx5jXXbr7DlYAh3Hsbwfv8GlLKSwQxCFBY5Ts6uW7eOL774IssFV4yMjGjWrFmuAgkPD8fOzi7Lfc2aNWP06NGMGTMGgM8//5zp06czevRoAFq0aMGHH36oO75atWp8++23zJw5kx9//BFnZ2dmzpypG2krRHGkSdHy1eoTXL0VyaJfzjKuTz1eb+tJfKIGS3M1qVotZqYmjO/ri2vFINZuv8KJwIeMnrmbEQF1aO5T0dAv4aVdvxPJFyuOERGdhI2lKdPeakBtt7K5OlfpUuYM6lKLRb+cY+22yzSpXZ5ypYvHSLpjlx4QfDcKCzNjXmtZ9JLOVuZqmcYnhMhXnp6eLF++nO3bt1O9evVMo4RVKhXTp083UHRCiJLg1v1oVmy5xOkraeX6rC3U9H7Fk1f9qqI2SUu8mqqNCfB3T1vw96k+vyRmxdNUKhVvvOJJFScb5vx0mnPXHzFh/j4+HNyIKk6lDB2eEIJcJGfXrl1LixYt+Oabb1i6dCmxsbFMmzaNffv2MWXKFLp27ZqrQH744Yds9129mnGqhqWlJV988QVffPFFto9p0aIFLVq0yFUsQhRFK/66yNVbkViZmzC4S21dgip9BGH6tCZjIxU9WlfDt4Yjc9afJvhuFN+sPcnhC/cYHuBdZEccHjh7l3nrT5OcoqWSow0fDWmEUxmrlzrnKw2rsOdUKJeCH/PtpnN8/HZjg02xzSuKorB+R9EdNQuQqtXStbkr62UanxAin/z777+UK1cOjUbDhQsXMu0v6n8LhBCFV2R0Iut2XOHfY7fQKmBirOJVP1d6v+KBjWXmkY7mpmkf6Z/t8wvxrCZeFZg51povVhzjweN4Ji3Yz/g369O4dnlDhyZEiZfj5GxoaChTpkzB1taW2rVrs3jxYszNzWnfvj3BwcGsXr2azp0750esQohs7D11hy2HQgAY37c+5cu+OClZpXwpZr/bgp93XmPjzmscPHePi8GPGdOrLg1rOeV3yHlGq1XY8O9VXaLOt4Yjk/rVz5PRk0ZGKkb3qsPY2Xs5dSWMfWfu0qqe80uf15COXnxA8L30UbNFc5FDc1MTerZOW8Ds6Wl8nf1cCPB3131IEUKI3Nq9e7ehQxBClDCJySn8se8Gm3ZfJzE5FYCm3uUZ+GpNKpS1NnB0orioWr4Uc95ryderT3A+6BFfrjxOv47Veb2Nh9x4FMKAcvwJVq1WY26eVp+ySpUq3Lp1C41Gg1qtpn79+qxcuTLPgxRCZO/m/WgW/nIOgNfbetCwpv6JVRNjI95sX52GNZ2Ys/40dx7G8PmKY7RpUIl3unlhZVG4p4cnJqekFbjP5cJf+nAuZ0PvVzxYu+0Ky/68QD3PckW2PpNWq7D+nytA2qjZovo6IOM0vtj4JCzNTTl9NYzFv55jfJ960rkUQuSr4OBgXF1dDR2GEKIY0GoV9py6w5ptl3kclQiAZ2V7BnetRU2XMgaOThRHpaxM+XRoE5b/eZEth0JYu+0KIfeiGfeGDwpgbGREXKIGq//KZMjAByHyX47fZTVq1GDPnj00atQIFxcXtFot586dw9fXlwcPHuRHjEKIbMQlaJi+6jjJmlTqejjwZvvquTqPeyU75o1rybrtV/h9XxC7Ttzh3PVHvNu7LnU9yuVx1Hkjrxb+0kdAq2ocOHOXWw9iWP7XRcb1qZcvz5Pfjl68T8i9aCzMTOjeqmiOmn2auakJ8fHx3LsTgm3ZCsxae5LkFC1NvSrQxEumZwkhcu/JkyfMmzeP48ePZ7kAblRUFJcvXzZwlEKIou7c9XBW/HWJ4HtRAJQrbclbnWrSrG4FudEs8pWJsRHDArypWqEUS347z6370SRrtPx1IJjNB2WBOSEKWo6Ts4MGDWL06NFER0czffp02rRpw/vvv0+7du3YvHkz9evXz484hRDPUBSFeRtOc/9RHA72FkzsW/+lRoyaqo0Z1KUWjWo7MW/9Ge4/juP/lh6hU9OqDOpcC3OzwnPHNC8X/tKH2sSIMa/XZdLCA+w+eYdW9Zzx8SycSevspI2aTSv90LW5a5Y1y4qqxMREXGzM6NbSjV92XWfVlks0qOmIibHUXBNC5M6MGTPYunUrzZs3Jzg4GAsLC6pWrcqpU6eIjo7ms88+M3SIQogi7M7DGFZuucSJwIcAWJmb8HpbDzo3c5UkmChQ7RtXxbmcDQlJKfy5/wYbd17T7YtL0Og+P0jpMCHyV44/ubZt25YlS5bg5pa2wvdnn31G1apV2bBhA66urnz00Ud5HqQQIrNNe4I4evEBJsZGTBnQIM8WdqrpUoYFE1rRqWlVAP4+fJOxs/cSGPI4T87/sg6cvcuURQeJiE6ikqMNc95rka+J2XSeVUrTuVnaFNZvN50jMTkl358zLx25eJ+b96OxNDehW0s3Q4eTL3q2roadtRn3HsWx/chNQ4cjhCjCDhw4wJgxY/juu+/o3bs3Tk5OzJs3j+3bt+Pp6UlQUJChQxRCFEFPYpL4dtM5Rs/aw4nAhxgbqejczIWlU9sS4C+jE4Vh1HItQ51qDro1TJ7114FgjI1k0IMQ+SlX77BWrVoxZMgQAOzt7VmxYgVnz55lzZo1lC8vU0mFyG/nroez5u9AAIZ298Kjsn2ent/czIQRPerw2dAmlLU15/7jOKYsPsjKzZdI1qTm6XPpS1EUftpxhW/WpE1d963hyKyxzXEq8+LFz/JKvw7VKWtnwYPH8azfcbXAnvdlabUKG/67692lmI2afZqluZo323sC8NOOq8QlaAwckRCiqIqOjsbHxwcANzc3Ll68CICVlRWDBw9m7969BoxOCFHUJGlS+WXXNYbO2Mm2wzfRahUa13Zi8futGdbdO88GWQiRW3GJmmz7znEJGuITpV8tRH7Sa1z6vXv3cnTSChUq5CoYIcSLPXqSwMy1J9Eq0Nq3Eh0a50+dVQAfz3IsmtSaH/68wK4Td/htbxAnLj9kfJ96uFeyy7fnfVZicgrzN5zhYD4u/KUPS3M1I3t489nyY/yxL4jmPhVxd7Yr0Bhy48iF/42afa1F8Rw1m65doyr8dSCY0LBYftl1jbc61zJ0SEKIIsje3p6YmBgAqlatyuPHj3ny5Al2dnY4Ojry8OFDA0cohCgKtFqFfWdCWf33ZR49SQDA3dmWwV1r41UAM7+E0JeVuRorC3WWCVorCzWW5oV7oWghijq9krOtW7fOUUFyWSBBiPyhSdHy1eoTRMUm41KhFCN6eOf7YgFWFmree6MeTWqXZ9Gv57jzMIYJC/bTu60Hr7f1yPe6no+jEvhi5XGC7jzJ94W/9NGgphPN61bkwNm7LPz5LHPebYFxIa5tmlZr9goAXZu7YV1MR82mMzY2YlCXWny+/Bh/HQimY1MXHEtbGjosIUQR06RJE5YsWUL16tWpXLkytra2/P777wwaNIg9e/Zgb5+3M1aEEMXPhRuPWPHXRYJC0xb7KmtnwcBONWjh44xRAQ8wEOJFUrVaujZ31dWYfVpnPxciYxIpZy99aiHyi17J2enTp+sSQFFRUcyaNYsmTZrQsWNHHBwcePLkCbt372bv3r1MmTIlXwMWoiRb/tdFrt6KxMrchKkDGxZoUfZGtctTvWppvvvtPIfO3WP9P1c5dukB4/vUo0r5UvnynAW98Je+3nmtNmeuhhF8N4o/9wcT4O9u6JCydfjCPW49iMGqGNeafVaDGo54u5flfNAj1vx9mYn9ZKFKIUTOvPvuu/Tv35/Jkyezdu1ahg0bxtdff82SJUuIjo5m1KhRhg5RCFFIhYbFsGpLIMcuPQDAwsyEXm2q0bWFG2ZSU1YUUuamJvRsXQ1IqzEbl6DBykJNZz8XujR3ZcrigzSrU5E32nkW+OxFIUoCvTI7AQEBuq9HjRrFa6+9xhdffJHhmC5duvDll1+ybds2evfunbdRCiHYe+oOW/8r0j6+b33Kly24WqvpbK3NmDKgAQfO3OW7384RfDeK9+buo1+H6rzWyj1P/1AfOHuXeetPk5yipZKjDR8NaVSg9WWfx97GnCFdazF/41nW7bhCU+/yhSa2p6WNmk27+921hRvWFiVjOpJKpWJwl1qMm7ePfWdC6drCNc/rMgshireKFSvy999/c/PmTQAGDRpE2bJlOX36NN7e3nTv3t2wAQohDMrc3DzTtqjYJDb8c5VtR26SqlUwMlLRoXEV+rSrjp2N1JQVhZ+p2pgAf3d6tfEgPlGDpbmalFQtf+6/QWhYLBv+vcq1O5FMeLM+payK92w8IQpajufiHjp0iI4dO2a5r1WrVpw5c+algxJCZHTzfjQLfzkHQO+2HjSs6WTQeJr7VGTRpNb41nAkJVXLqq2BTF18kHvhsS997mcX/qpfvVyBL/yljzYNKuPtXpZkTSqLfzmHoiiGDimTQ+fvcfu/UbNdi3mt2We5OdvhX78SACs2XyqUPx8hROFmbm5O9erVdd936dKFjz/+WBKzQpRgickpqE3NKe/sitrUnMTkFJI1qWzafZ2hM3ay5VAIqVqFBjUdWTTRnxE96khiVhQp5qYmqE2MsLU2Q21ihIWZCW+84sm4PvUwVRtz+koY4+buJejOE0OHKkSxkuM50fb29pw/fx4/P79M+44ePYqjo2OeBCaESBOXoGH6quMka1Lx8XCgT/vqL35QAShdypyPhjRi14nbfP/HRS7fjGDM7L0M6lyTTk1dclVL69mFv7q1cGNQl4Jf+EsfKpWKUb3qMGbmHs5eD2fPqTu09q1s6LB0Up8aNdutpXuJGTX7tH4danDw7F0uBT/m6MUHNPEqb+iQhBBFxNSpU7PdZ2RkhKWlJVWrVqVTp05Sf1aIEiJZk8qmPUFsfmrKd5dmaVO+d564TXxiCq4VbRncpRZ1qjkYOlwh8lRr30q4VCjFjFUnuP84jvcXHWBEgDevGHAtECGKkxwnZ3v16sXixYtJTEykVatW2Nvb8+jRI7Zv38769euZNm1afsQpRImkKArzNpzm/qM4HOwtmNC3fqFKVKpUKto2rIK3uwPzN57hfNAjlv5+gaMX7zO2t0+OisYXtoW/9FGhrDV92lfnx62BLPvzIvU8HQvN6IhD5+5y52EMVhZqujZ3NXQ4BuFgb0G3lm78sus6q7ZcokFNx3xfwE4IUTw8ePCA06dPk5SURMWKFSlbtiyPHz8mNDQUY2Nj3fffffcd69evp1KlSoYOWQiRjxKTU9i0J4gNTy2WFJegYcO/11AUeLtbbZ7EJOFfv5Is9iWKLZcKtswZ15K5P53meOADFvx8lqu3Ixn6mhemUk9ZiJeS40+pI0aMoH///ixfvpw333yTjh070q9fP3799Vfeffdd+vbtmx9xClEibdoTxNGLDzAxNmLKgAbYWheOxN+zypW25PNhTRnWPe0P87nrjxg9cw87j9/Sazr59TuRjJ+3n6A7T7CxNOXzYU0LfWI23Wst3XCpUIqYeA3L/rxo6HCAtFGzG/5N+/DwWks3rErgqNl0PVtXw87ajHuP4th+5KahwxFCFBH+/v7Y2NiwYcMGdu3axcaNG9m5cye//fYbjo6OjBw5kiNHjlC5cmXmzJlj6HCFEPnM2MiIzQeCs9y35VAI3u4OtGlQWRKzotiztlDzwaCG9OtYHZUKdhy9xeRFBwiLiDd0aEIUaTlOzqpUKiZPnsyRI0dYunQpM2fOZPny5Rw+fJihQ4fmR4xClEjnroez5u9AAIZ29yr0CxoZGano3MyVhRNaUb2KPQlJKczfeJbPVxwjIjoxw7FPL6Jw4Oxdpiw+RER0IpUcbZjzXgtqu5Ut6PBzzcTYiDGv18VIBfvOhHLy8kNDh8TBs3e58zD2v+l2JXPUbDpLczVvtvcE4KcdV4lN0Bg4IiFEUbBq1SomTJhA3bp1M2yvWbMm7777LkuXLsXGxoZBgwZx7NixF54vNjaWjz/+mGbNmtGwYUMmTpzI48ePX3h848aNqV+/PsOHD+fOnTsv+7KEELkUl6ghLps+RFyChvhE6V+IksPISEXvtp588k4TbCxNCQqN4r25ezl9JczQoQlRZOV6fqeNjQ0tWrSgc+fO+Pn5YWmp//RlIcTzPXqSwMy1J9EqafV9OjQuGqNIASo4WPPV6Oa89WpNTIyNOBH4kNEzd3My8OEziyiYcfNeFD/tuEKyJrXQLvylj2qV7HULbn276RwJSSkGi+XpUbPdS/io2XTtGlXBuZw1MfHJ/LrrmqHDEUIUAZGRkZQuXTrLfba2trrEqr29PfHxLx4t9O6777Jv3z6+/PJL1q1bR0JCAgMGDCA5OTnL48eMGcOxY8dYvHgx69atIyYmhhEjRqDVanP/ooQQuWZlrs62T2VlocbSXPpbouSp51mOeeNa4l7Jjph4DZ8sO8LGf6+i1cpCvELklF41Z9u0acPixYupXr06rVu3RqXKfrqGSqVi586deRagECWNJkXLV6tPEBWbjGsFW0b2rPPc91xhZGykokfravjWcGTO+tMka1KpVtmOX3ddZ8uhEN0iCp39XPhqVDP+PXab7v7uhaqebk71bV+dwxfuExYRz9rtl3mnm5dB4jhw9i6hYbFYW6jpUkJrzT7L2NiIQV1q8fnyY/x1IJiOTV1wLC03FIUQ2atZsybLli2jSZMmmJqa6rYnJyezYsUKatSoAcClS5coX/75iw1evnyZgwcP8sMPP9CiRQsAvvnmG1q1asXWrVvp3r17huOPHTvGkSNH+PPPP/H0TBv5/+mnn/LOO+9w8+ZNXF3ld7sQBe1JTCKd/VzYuDPzTd6uzV1J1WpR537ckxBFVrnSlnw9qhnf/3GBHUdvsXb7Fa7ejmT8m/VL5ILEQuSWXsnZhg0bYmVlpfu6qCWKhChKlv91kau3IrGyUDP1rQaYFeHi6lXKl2L2uy0IDYth84HgDB3auAQNG3deQ6WCHq2rFenELIC5mQmjetTh4x+OsOVAMC19nAu8FEWqVtEtVPFaKzcZxfGUBjUc8XYvy/mgR6z5+zIT+9U3dEhCiEJs4sSJDBo0iDZt2tCyZUvKlCnDo0eP2L9/P7GxsSxbtoyTJ08yZ84cRowY8dxz3bx5EwBfX1/dNisrK6pUqcLx48czJWcPHjyIh4eHLjEL4O7uzp49e/LuBQoh9HbzfjTzN5zhk3cao1LB5oP/G2jQtbkrPVtXk8WQRIlmqjZmdK+6eFa257vfznMi8CHj5+5j6lsNcKlga+jwhCgS9ErOzpgxQ/f1V199lWl/SkoKJiZ6nUoI8Rx7T91h66EQAMa/Wa9ITvF/lomxERUdbNjy3+t61uaDIbze1jPLfUVNverlaFXfmb2nQln481nmjmuJiXHBjaI4cCaUu+Gx2FhKrdlnqVQqBnepxbh5+9h3JpSuLVwLfR1nIYTh+Pj4sGnTJpYuXcqBAweIiIjAycmJ5s2bM3z4cCpXrsyRI0cYO3YsQ4YMee65ypUrB8D9+/dxc0srgZOamsqDBw8oU6ZMpuNDQkKoUqUKP/30E+vWrSM6Opr69eszdepUHB0dc/2aFEXRqwRDcZSQkJDhf5E1aafMImOS+OSH4zyOSmTZH+cZFuDN6209iI1PxtrSlGRNKqkpycRrZBr3s+R60k9xaic/LwfKl2nAnPXnuP84jokL9vN2lxq09Knw0ucuTu2UX6SN9FPQ7aQoil4DXHOVUf3+++85efIk33//PQCnTp1iwoQJDB8+nH79+uXmlEKUeDfvR7Pwl3MA9G7rQcOaTgaOKO/os4iCrbVZAUeVP97uWptTl8O4eT+a3/cG0auNR4E8b2qq9n+1Zlu5y6jZLLg52+FfvxK7T95hxeZLzBjpJzNBhBDZcnNz45tvvsl2f5MmTWjSpMkLz+Pl5YWrqysff/wxs2fPxtbWlgULFhAZGYlGk/lvY2xsLJcuXSIyMpJPP/0UgFmzZjFgwAD++usvzMxy9/dSo9Fw+fLlXD22uEgfxSyeT9opTXKKllU7w3kcpaGMjQkNXeHq5YuYmJhgYmJCSkoKKSmGW2egqJDrST/FqZ0GtbHnt8MRBN1P4tvfLnH8wk061LPDxPjl+93FqZ3yS2Fqo8L8+7Ig2+npElnZyXFydsWKFcybNy9DErZy5cp06NCBr776CjMzM3r16pXT0wpRosUlaJi+6jjJmlR8PBzo0766oUPKU+mLKGSVoC1uiyjYWpvxzmu1mfPTadb/cxU/7wpUcLDO9+fdd+Yud8PjsLE05VU/l3x/vqKqX4caHDx7l0vBjzl68QFNvJ5fK1IIUXJFRESwYsUKjh8/TnR0NPb29vj6+vLWW29lOeI1O6ampixatIj333+fFi1aoFar6dKlC/7+/hgZZZ5dYWJiQlJSEosXL8bWNm066KJFi2jevDm7d++mY8eOuXo9arUad3f3XD22qEtISODmzZtUrVoVCwsLQ4dTaEk7/Y9WqzBnw3nuRWiwsVTz0ZCGOJVJq1cv7aQfaSf9FNd28vFW2LQ3mE17gzl5PY4nCSaMf8ObMrbmuTpfcW2nvFSY2kilUqFgjFptQlxCMlYWpmg0KahIRVEMO9OgoNspKChIr+NynJzdsGED7733HkOHDtVtK1++PB9++CFly5Zl1apVkpwVIge0WoW5609z/1EcDvYWTOhbv8jXX31WqlZL1+aurP+vHurTiuMiCq3qpZU2OH01jEW/nOPLEU3zdYRmaqqWjbpRs1Jr9nkc7C3o1tKNX3ZdZ9WWSzSo6VigpSeEEEXDgwcP6N27NxEREdStW5eaNWsSHh7OypUr+eOPP/j1119zVGLAzc2NTZs28eTJE0xMTLC2tqZnz540btw407FOTk44OjrqErMAZcuWxc7OjtDQ0Fy/JpVKhaVlyV4M0cLCosS3gT6knWDl5kucuByGibERHwxqhGulzDdkpJ30I+2kn+LYTgM7e1HLrRyz1p0iKDSKqUuOMamfL3WqOeT6nMWxnfJaYWijZE0qv+y+zuYDwYW2RndBtZO+eYAcfyJ9+PAhXl5Zr0Jep06dl+o0ClESbdpznWOXHmBibMSUAQ2KzfT+p5mbmtCzdTX6tPPE6r9VO60s1PRp50nP1tUwNy1eNatVKhUjenhjZmrMhRuP+Pf47Xx9vn1nQrn3SEbN6qtn62rYWZtx71Ec24/cNHQ4QohCaObMmZiYmPD333+zZs0a5syZw5o1a9i2bRvm5ubMnTtX73PFxsbSr18/rly5gp2dHdbW1oSGhhIYGIifn1+m4xs0aMC9e/cICwvTbQsLCyMyMpIqVarkyesTQmRvx9Gb/LY3baTTu73rUstV/5HyQoiMfGs4Mm9cS1wr2BIVm8xHSw+zafd1g4+eLK7MzXM3MjkvJSan8Mvu62z456pu5mxcgob1/1zl193XSUwuXOUNCoscJ2crVqzIkSNHstx34sQJnJyKT51MIfLbuWvhrN2WVv9tWHevYr1AkanamAB/d9Z80oHVH7djzScdCPB3LzR3zvKaUxkr+v5XnmLF5ktERifmy/Ok1Zq9BkCAv9Sa1YeluZo326ctQvfTjqvEZlMPWQhRch08eJCxY8dSqVKlDNsrVarEqFGj2L9/v97nsra2RlEUvvzyS65fv86FCxcYMWIEjRs3pkmTJiQnJxMeHk5ycjIAHTt2pGrVqrz77rtcvHiRwMBAxo8fj4uLC61atcrLlymEeMaZq2F8u+k8AG+286RV/UoveIQQ4kWcyljxzdjmtPathFaBVVsDmfHjiWzXJBE5l5icgtrUnPLOrqhNzQskAZqqVYiNTyYsIp6b96MJDHnM2WthGKlUbD4QnOVj/joQjHEWJZ1ELsoavP7668ycORONRkPbtm0pU6YMERER7Nmzh5UrVzJhwoT8iFOIYufRkwRmrjuJVoE2DSrRvnHxHw1jbmpCfHw89+6E4OLiYvDpFvmta3NX9p8JJSg0iu//uMDkAQ3y/Dn2ng7l/qM4SlnJqNmcaNeoCn8dCCY0LJZfd13jrc61DB2SEKIQSU1Nxd4+6xumpUuXJjY2NkfnmzNnDp9//jl9+vTB1NSUdu3aMWnSJADOnDnDgAEDWL16NY0aNcLU1JRVq1bx1VdfMXDgQBRFwc/Pj9mzZ+u1oIQQInduP4jmq9Un0GoVWtV35o12noYOSYhiw0xtzHtv+FC9amm+//0CRy7c59b9aKa91ZAq5UsZOrwiLVmTyqY9QXqXEEjVKiQmpRCXqCEhMYX4xBTikzTEJ/z3f2LGfbqv/9sXn5j2f2JyaqZzV3Gy4f8GNyoxi4HnpRwnZ9966y0ePnzImjVrWLVqlW67sbExAwcOZNCgQXkZnxDFkiZFy1erTxAVm4xrBVtG9KhTolaNT0zMn1GkhY2xsRFjXvdh3Lx9HDx3D/9LD2hYK+9mF6TVmv1v1GwrdyzMild5iPxkbGzEoC61+Hz5Mf46EEzHpi44li7eNwuEEPrz9PRk8+bNtGjRItO+P//8Ew8Pjxydz9HRkUWLFmW5r1GjRly9mrEmu4ODA7Nnz87Rcwghci8yJpFPlx8jPjGFmi6lGft63RLVNxeiIKhUKjo2qYpbRVtm/HiCe4/imLBgP2N61aVlPWdDh1fkKIpCfGIKf+y7wYZ//9ePSC8hoGgV6ng6sGpzYIbEakJS5qTqy1CbGGFpboKluRpbGzPsbMxLzGLgeSlXn+QnT57MyJEjOXPmDFFRUZQqVQpvb+9sRxgIITJa/tdFrt6KxMpCzdS3GmBWTKf2C3CtaEv3lm5s2hPEd5vOUdutTJ79QdpzKpT7j2XUbG41qOGIt3tZzgc9Ys3fl5nYr76hQxJCFBIjR45kyJAhREVF0alTJxwcHAgPD2fr1q0cPHiQBQsWGDpEIUQeSdKk8uWK44RFxFO+jBXT3mqI2kT65kLkF4/K9swb15JZa09x9no4s9ad4trtSAZ1qSUL9f5HURTiElN4/CSB8CcJPI767/8niTx6ksCjqASSNaksntSazQezLiGw+VAIPVpX4/7jOKLjkjPtNzE2wsrCBEszNRbmJliZq7E0N8HC3ARLMxOsLNRYmKUlXS3/25++L32bpblJpt+Xickp2S4G3qUYLgaeV3I9zMrGxibL0QS58ccff/D9999z584dKleuzOjRo+nYsWOm43777TemTp2a5TkaNWrE6tWrAfjwww/55ZdfMuyvWLEiu3fvzpN4hXgZe0/dYeuhEADGv1kPpzJWBo5I5Lc32nly+Px97j+OY83flxkW4P3S50xJ1bJxZ9ofvB7+7pjLqNkcU6lUDO5Si3Hz9rHvTChdW7gW67rPQgj9+fn58dVXXzFr1qwM9WXLli3L9OnTeeWVVwwYnRAir2i1CnPXn+bq7UisLdR8/E5jmW4rRAGwtTbjk6FNWLf9Mr/sus5fB4K5fucJkwf4UsbWwtDhvVBicgrGRkbEJWqwMleTqtXqvch1+ojX9CTroycJPHoq6frov2Tsi0a4VnGyISo26fklBJJSmNzfF5VKlSEBm1VSNa+kLwYOaTVm00stdPZzoUszFxKTUordguB5Qa8WadOmDYsXL6Z69eq0bt36uVM8VCoVO3fu1DuAP//8kw8++IBp06bRvHlztm7dyvjx43FycsLHxyfDsZ06daJ58+YZtm3fvp0ZM2YwfPhw3barV68yfPhw+vXrp9tmbCx3P4XhhdyLYuEv5wDo3daDhjVlAb2SwNzUhFE96/Dh0sNsPRxCy3rOVK9a+qXOuffUHR48jsfO2oxOTWXUbG65OdvhX78Su0/eYcXmS8wY6SfTGIUQALz22mt069aN4OBgoqKisLW1xdXVVX5HCFGMrN1+mUPn7mFirGLaoIZUdLA2dEhClBjGRioGdKqJR2V75q4/zeWbEbw3dx+T+/tS262socPL1otqvMYlaDIlXXUjX//brm9pARtLU8ramVPWzoKythZp///3fTk7C0rbWjy3hICNpSne1RzyugleKH0x8F5tPIhP1GBpruZS8CMmLzqIjaUp00f6ySjpZ+iVnG3YsCFWVla6r/OqU6ooCvPnz2fAgAH07dsXgBEjRnDy5EmOHz+eKTlrbm6Oubm57vsHDx4wf/58Ro4cSdOmTXXnDAoKYujQoTg4FPxFKER2YhM0zPjxBMmaVHw8HOjTvrqhQxIFqI6HA20aVGLXiTss/OUs88a1Qm2Suz9IKalaNqTXmpVRsy+tX4caHDx7l0vBjzl68QFNvMobOiQhhAHcu3cvy+0WFhZYWKSN4rl//75ue4UKFQokLiFE/th5/Ba/7LoOwOhedfEqxMkgIYqzxrXLM/e9lkxfdZxbD2L4YMlhBnWuSbcWbhlyT0/nggxBk6IlMSmFvw7c0H0Wg//VeNVqFTwq2/P5imN6nc/GUk0ZXcL1v6TrU9+XsTV/4QjT55UQ6GrgEgLpsafPRihX2pKI6ERCw2JZtSWQt7vVNkhchZVen+hnzJih+/qrr77KsycPCQnh7t27dOnSJcP25cuX6/X4mTNnUq5cOYYOHarbdvv2beLj43F1dc2zOIV4WVqtwrz1p7n/KA4Hewsm9K2PsZGMvClpBnepzanLYdx+EMOmPdd545XcrQK8++QdHkakjZrt2KRq3gZZAjnYW/BaK3d+3nmNVVsu0aCmo9zJFaIEetHssGddvnw5H6MRQuSn80HhLPpvNtvrbT1o06CygSMSomSr4GDNrLEtWPTLOfadCWX5X5e4ciuSd3unLc6nNjWnvLMralMzEpPzblp8qlYhJi6ZyJhEImOSeBKTyJOYJCJjkoiMTnpqexIqFSz/4BU2HwzJ8lxbDoWwqnU1SlmZotUqTyVdLShr+9ToV3sLypQyz5MBNtmVEHh6JG9hUaGsNe+9UY/pq47z5/4b1KhaGr86cqM7nV5XQ3YjCbKj70iCkJC0izo+Pp4hQ4YQGBiIs7MzI0aMoHXr1s997NWrV9myZQuLFy/G1NRUt/3atbQ7GGvWrGH//v0YGRnRokULxo0bh42NTY5ex9MURSE+Pj7Xjy/qEhISMvwvMnteG/2xP4Rjlx5gYqzivde9UBulltjrqSRfSyYqGNDRgwW/XGDjv1epV80e53JZT5/Lrp1SUrVs+OcKAF2aVUGbmkx8fOYC7yVFXl1PnRpXZMeRm9x7FMef+67RsXHx+pBWkt93OSHt9GIF3UaKohRYGYHp06dLyQIhSoA7D2OYvuoEqVqF5nUr0ldmswlRKJibmTChbz2qV7Vn2Z8XuXU/Gk2KwuYDN9h8UP/Eo6IoxCVodEnV9ARrZHQiT2LTEq9P/ku8RsUmoVX0i0+fGq+Jyams+PAVzAqwpurTJQRi45OwtjQjVastVInZdE28yhPQyp3f9gYxf+MZqlYoJeVk/qPXFZNfIwliY2MBmDx5MqNHj2bixIns2LGDkSNHsnLlSpo0aZLtY1etWoWnpydt2rTJsP3atWsYGRlRrlw5lixZwu3bt/nmm2+4fv06P/74I0ZGuRsNpdFoZIQEcPPmTUOHUOg920bBDxLZsOcRAB3q26KJucflyzm74VEcldRryd5EoVoFc67fS2T+hlO81dYBo+f8fn22nU4FxRH+JBErcyMqlYqV30v/yYvrqVlNS7aeSGbjzus4WsRgYVr8Rs+W1PddTkk7vVhBttHTN+HzU0BAQIE8jxDCcKJik/hs+VHiEjRUr2LPe2/4YCSz2YQoNFQqFZ2bueJW0Y74JA1/7b/Bxp2ZSwgoCrSsV5G9p0PTErDRSTyJTdSNeE1J1ebgOaGUlSn2NubYWZthV8oMextz7G3MsLcxw87mf99bmKufW+PVykKd69J1L8Pc1IT4+Hju3QnBxcUFS0vLAo9BXwM61eDq7UguBT9mxqrjzBrbQsr0oWdyNr9GEqjVagCGDBlC9+7dAahRowaBgYHPTc4mJiayfft2Jk2alCmuESNG8Oabb2Jvn7bitoeHBw4ODrz++utcuHCBOnXq5DpWd3f3XD22OEhISODmzZtUrVpVV3dNZJRVGz2OSmTOn0fT/nj4VKBf55olflSOXEvwXoUExi88wu3wZO7FleKVBs6ZjsmqnVJStCz++xAAPfzdqeNVpUDjLozy8nry8NBy9uZR7obHcfmBKX3bV8ujKA1P3nf6kXZ6sYJuo6CgoHx/jnT9+vXjww8/pHp1/UfRXbhwgenTp7N+/fp8jEwIkReSNal8ufI4Dx7H41jakg8HNyqUI8uEEFDDpTSaFC0z157Kcv/mg8H08Hdn2+GbRMdlPYvQytwEOxtz7J9KttrpEq7/+97W2kzvkmaFucYrpOXKCjtjYyPe7+/Lu3P2cutBDN9uOse4PvVKfJ5Er+Rsfo0kcHR0BNISqE9zd3dn79692T7u0KFDaDQaOnbsmGmfkZGRLjGbrlq1tA/YDx48yHVyVqVSFeq7DwXFwsJC2uEF0ttIk6Jl/i8niY7T4FrBljG962EmHUCdknwtVba0ZECnGvzwx0V++uc6zepWooxt1kmOp9tpx9GbhD9JxN7GjK4tPeR6ekpeXU9Dutbms+XH2Hb0Nl1bVsOxdPG6Rkvy+y4npJ1erKDaqCA76v3792fIkCF4e3vTpUsX/P39s0xAx8bGcuDAATZu3Mjly5f5+OOPCyxGIUTuKIrC/I1nuHwzAitzEz5+u7FukRohROEUl6h5bgmB2AQNXZq7oihkSLza25hjZ2OWLzdfilKN18KsdClz3u/vy4dLDrPnVCg1XMqU+LVUcjV2OCIiguXLl3P48GHCw8NZtmwZO3fupHr16rRt21bv89SqVQsrKyvOnTuHr6+vbvu1a9eoXDn7en8nT56kevXqmZKwAO+//z5hYWGsWrVKt+3ChQsAJXrkqyh4y/+6yNVbkVhZqJn6VgNJpIkMXvVzZf/pu1y9HcnS3y8w7a2Gzz1ek6LVTenp0bqaXE/5xLeGI97uZTkf9IjVfwcyqZ/vix8khCgW2rdvT4MGDfj222/54IMPSElJwd3dHWdnZywsLIiOjubBgwdcv34dExMTevXqxaxZsyhbVlZ4F6Kw+2nHVfafuYuxkYqpAxtSyTH3a5EIIQqG1QtKCNham+V6geWX8XSN1/hEDZbm6kJb47Uw83Iry4CONVi1NZDvf7+Au7Mt1SplzvGVFDkeb33nzh26du3Kzz//jKOjI48fPyY1NZWQkBDGjh373BGvzzI3N+ftt99m8eLFbNmyhdu3b/Pdd99x6NAhBg0aBEB4eDhxcXEZHhcYGJjtlLP27dtz5MgRFi1axO3bt9m3bx/Tpk2jc+fOuLm55fTlCpEj5ubmAOw5dYeth9IWvBv/Zj2cylgZMixRCBkbqRj9el2MjVQcuXCfw+efX4d414nbhEcmULqUGR1K+F3F/KRSqRjcpRYqFew/c5drtyMNHZIQogCVLl2aDz/8kF27dvHBBx9QtWpV7t+/z7lz53jy5Alubm58/vnn7N27lw8//FASs0IUAbtP3mHDv2lTkEf2rEMdDwcDRySE0EeqVkvX5q5Z7ksvIWAo5qYmqE2MsLU2Q21ihHkBLgBWnAT4u9OolhMpqVq++vEEMSV4oescX0Fff/01ZcqUYc2aNVhaWlK7dm0AZs+eTVJSEkuWLKFVq1Z6n2/kyJFYWFgwd+5cHj58iJubGwsXLqRRo0YANGvWjNGjRzNmzBjdY8LDw/Hy8sryfG3atGHevHl8//33/PDDD9jY2NClSxfee++9nL5UIfSWmJyC2tSc8s6uqE1NsTRX41zOGr86FWhY08nQ4YlCqmr5UvRoXY2fd15j6e/n8a7mgLWFOtNxmhQtP++SUbMFxc3ZDv/6ldh98g4rNl9ixki/El8DSYiSpnTp0rzxxhu88cYbhg5FCPESLt54xMKfzwBp9frbNZJ6/UIUFVJCoPhTqVS816ce4+bu5cHjeOb8dJr/G9yoRC7UmOPk7JEjR5g+fTqlSpUiNTU1w77evXvnKgk6aNAg3UjZZ129mrnQ8t9///3c83Xs2DHLerRC5IdkTSqb9gSx+ak/GJ39XPhmTHMszTMn2oR4Wu+2Hhw6d5e74XH8uDWQUT0z18XeefyWbtRs+8ZVCz7IEqh/xxocPHuXS8GPOXrxAU28yhs6JCGEEELkwL3wWKavOk5KqoKfdwUGdKpp6JCEEDn0dAmB2PgkrC3NpIRAMWNtoWbKgAZMWniAk5cf8uvu67ze1uPFDyxmcrWMnIlJ1jnd5ORkGV0kSpTE5BR+2X2dDf9c1dXCiUvQsHHnNTYfCEaTkvqCM4iSzlRtzKhedQHYfuQml4IfZ9ifNmr2OgA9W8siYAWlrJ0Fr7VKq1O+asslNCmGmzYlhBBCiJyJjkvm02VHiYnX4FHZjnFv1iuRI7GEKA7MTU3QJCdy704wmuREKSFQDLk52zE8wBuAddsvc+5auIEjKng5Ts76+vqydOlS4uPjddtUKhVarZb169dTr169PA1QiMLM2MiIzQeCs9z314FgjI1ydf9DlDBebmVp3zhtmt3Cn8+SrPlfUn/P6bs8epJA6VLmumNEwejh746dtRn3HsWx/chNQ4cjhBBCCD1oUlKZvuo49x7FUc7egg8HN5Kb20IUA4mJiYYOQeSjdo2q0LZBZbQKzFx3ksdRCYYOqUDlOHM0YcIEbty4Qbt27Xj//fdRqVQsX76cgIAATp06xbhx4/IjTiEKpbhETZarR0LaCNr4xKz3CfGstzrXwt7GjLvhsbr6smpTc3adCAWgVxupq1TQLM3VvNk+bQXY9f9cJTab97oQQgghCgdFUVj481kuBT/G0tyEj4Y0xt7G3NBhCSGE0MPwHt64VChFVGwyX68+SUpqyZm9mOPkrIeHB5s2baJRo0YcO3YMY2NjDh8+TOXKldmwYQM1atTIjziFKJSszNVYZbGAE4CVhVpqzgq9WVuoGdbdG+dy1lSrZIfa1IwKlVyYObYln7zTWBawMJB2japQydGamPhkfv0vaS6EEEKIwmnjzmvsORWKkZGKyQMaUKV8KUOHJIQQQk9mamOmDGyApbkJl29GsGpLoKFDKjC5KtZRtWpVZs+endexCFHkpGq1dGnmwoZ/MydtujZ3JVWrRZ270s6iBGrqXZ461cryx74bzF1/RrfAXJdmLni5lTV0eCWSsbERgzrX4rPlx/hzfzAdm7rgWNrS0GEJIQrAw4cPOXXqFMnJybptWq2WhIQETp48ydy5cw0YnRDiWftOh7Ju+xUAhgd4U8+znIEjEkIIkVMVylrz3hv1mL7qOH/uv0GNqqXxq1PB0GHlO72Ss1988QWDBw+mQoXi3yBC5ERsvIbOzVxRFNhyKESXTOva3JWerWUausiZJE0qf+4PZuPO/yX74xI0bPj3GiqVigB/dymAbwC+NRzxdi/L+aBHrP47kEn9fA0dkhAin23fvp2JEyeSkpKiW+xWURTd166uroYMTwjxjMCQx8zbcAaA11q60bFJVcMGJIQQIteaeJUnoJU7v+0NYv7GM1StUIqKDtaGDitf6TWkb926dTx69Ej3vaIovPPOO9y+fTvfAiupEpNT0KRoeRKbhCZFS2JyiqFDEtlQFIX5G84wZfFB6ng4sOaT9qz+uB1rPulAgL+7JGZFjhkbGbH5oCwwV9ioVCoGd6mFSgX7z9zl2u1IQ4ckhMhnS5YsoVatWvz2228EBATQrVs3tm7dyqRJkzA2NmbatGmGDlGIfGFuXvTqs95/FMeXK4+TkqqlcW0n3upcy9AhCSGEeEkDOtWglmsZEpJSmLHqOIlJxTs3ptcnfUVRMnyv1Wo5cOAAMTEx+RJUSZWsSWXTniD6f7Kd/h9vp/8n2/ltT1CGldtF4bHz+G3OXg8nLCKeMqXM0SQnce9OMJrkRBndKHJFFpgrvNyc7fCvXwmAFZsvZfq7KIQoXkJCQnjnnXeoWbMmjRo14sqVK7i5uTF48GAGDBjAkiVLDB2iEHkqMTkFtak55Z1dUZuaF5kBIrHxyXy67CjRccm4O9sy4c36GBupDB2WEEKIl2RsbMT7/X2xszHj1oMYvt10rlh/BpNhWIVEYnIKv+y+zoZ/ruqSM3EJGtb/c5Vfd18vMh2kkuJxVALL/7oIQN8O1anw3xD7xMREQ4YlijhZYK5w69+xBqYmRlwKfszRi/cNHY4QIh8ZGRlha2sLQJUqVQgODkarTVsxuEWLFgQFBRkyPCHy1NMDRAZ+9k+RGSCiSdEy48cT3A2PpaytOR8OboS5mQyQEEKI4qJ0KXPe7++LkZGKPadC2X70lqFDyjeSnC0kjI2M2HxApjMXBYqi8N2m88QlpuBeyY5uLdwMHZIoJlK1Wro2z7qOYfoCc8JwytpZ8FordwBWbglEkyI/DyGKK1dXV06fPq37Ojk5mStX0hYaio6OzrBImBBFWVEdIKIoCt/+eo7zQY+wMDPmo7cbU8bWwtBhCSGEyGNebmUZ0LEGAN//foHrd4pniTnJ+BUSMp256Dh47h7HLj3A2EjFu719MDaWt5HIG+amJvRsXY0+7Tx1I2itLNT0aedJz9bVpFxGIdDD3x07azPuP4pj+5Gbhg5HCJFP3njjDebPn8/cuXOxsbGhcePGTJ06lTVr1jB79mxq1ZKalqJ4eNEAESOViocRcYVuKumvu6+z88RtjFTwfv8GuFSwNXRIQggh8kmAvzuNajmRkqrlqx9PEBNf/G6S6/1JPzw8nHv37gGQmpo2xeXRo0e6bU+rUKFCHoVXcqRPZ84qQSvTmQuPqNgklv5+HoBebTyoWr6UgSMSxY2p2pgAf3d6tfEgNj4Ja0szUrVaWWCukLA0V/Nmh+p8++s51v9zFX/fSlhnU4pCCFF09erVi+TkZEJDQwH4/PPPeeedd/jyyy+pWLGiLAgmio0XDRCJjEni8+XHiIhOxN3ZDvdKdlSrZEe1SvaUsTVHpSr4+q4Hz91l9d+XARj6mhe+NRwLPAYhhBAFR6VS8V6feoybu5cHj+OZ89Np/m9wI4yKUY1xvZOzo0ePzrRt+PDhWR57+fLl3EdUQqVPZ17/z9VM+zr7uRB89wlOZaywtTYzQHQi3bI/LxIVm0xlJxteb+th6HBEMWVuakJ8fDz37oTg4uKCpaWloUMST2nXsDKbD9zgzsNYftl5jUFdZASdEMVR3759dV9XqlSJbdu2ERkZSenSpXUDFYQoymITNFiYmjx3gIidtSkx8cnExGs4cy2cM9fCdfvtbMxwd7bDo1Ja0ta9kh32Nub5GvOVWxHM/Smt5EjX5q682izrclBCCCGKF2sLNVMGNGDSwgOcvPyQX3dfL1Y5Gb2SszNmzMjvOEq89OnMkDaFKC5Bg5WFmi7NXOjczJUpiw8SE5/M8ABv/LwrGOQudUl3IvABe0+HYqSCd3v7oDaRcgYif8kCc4WTsbERgzrX4rPlx/jrQDCd/FxwLC0JdCGKkzZt2rB48WKqV6+u26ZSqShdujTnz5/nnXfe4dixYwaMUIiXc+12JF+vOck73WrT2c+FjTuvZTqma3NXFGDZB69w8340QXeecP2/f7cfxvAkJomTlx9y8vJD3WPK2llQrZId7s5pI2zdK9lhY2maJzE/jIjnyxXHSU7R0qCmI4O71s6T8wohhCga3JztGB7gzcKfz7Ju+2U8K9tTx8PB0GHlCb2Ss927d8/vOAQZpzPHJ2qwNFeTqtXy4FEcRkYqomKT+Xr1SZp4lWdEgDf2pfL3zrT4n7gEDYt/PQdA1xZueFS2N3BEQghD8q3hiLd7Wc4HPWL134FM6udr6JCEEC9py5YtpKSkLX509+5d/vnnH90iYE87cuQIGo2sBSCKJkVR+HP/DVZtCSRVq7D1YAgfDG6IkZEqwwCRrs1d6dm6mq6sUrVK9lSrZE/H/86TmJzCzXvRXLsTSdCdJwSFPiE0LJZHTxJ49CSBIxfu657TqYwl1SrZ6xK2bs62epVsS0xOwdjIiLhEDVbmau4/isXaUk3pUuZM6ueLcTGaziqEEEI/7RpV4XJIBDtP3GbmupPMH9+qWCwIKavLFDLpC/6kly9QY0TVCrbMG9eSn3de55dd1zhy4T4Xgh7xzmu18a9fSUbRFoBVWwN5HJVI+bJW9O1Q/cUPEEIUayqViiFda/Pe3L3sP3OXbnLTRogi78KFC/z4449A2nv822+/zfbYQYMGFVRYQuSZ6Lhk5m04zYnAtJGuft4VGPN6XcxNTXJc797c1ITqVUtTvWpp3bb4RA037kalJWv/G2F7/3EcDx7H8+BxPAfO3gVApYKKDtZp9Wud0+rXulQslWHh02RNKpv2BLH5qYRxZz8Xvh7djNRUBQsz+RgrhBAl1fAe3ty4+4SQe9F8vfok00f6YVLEF2qXv2pFhNrEmL4dqtPUuzzzN57hRmgUc9efYf+Zu4zqWRcH+6J/p6CwuhD0SLcqe3oHVgghXCva4l+/ErtP3mHF5kvMGOknN8uEKMImTJjAgAEDUBSFtm3bsmjRImrUqJHhGGNjY6ytrbG2tjZQlELkzqXgx8xae5JHUYmoTYx4u1ttOjapqvu7lRf17i3N1Xi5lcXLraxuW0x8MjdC/1cOISj0CeGRCYSGxRIaFsveU2mL7hmpoLJTKapVsiPA3519p0PZ8O//Si3EJWjYuPMaKiMVPfzdX7I1hBBCFGVmamOmDGzAuLn7uHwzglVbAnm7W9EudSNZpiLGpYIts8e24Le9Qaz/5yqnroQxauZuBnWpRftGVYrVanWFQWJyCgt/PgtAxyZVM3Q2hRCif8caHDx7l0vBjzl68T5NvCoYOiQhRC6ZmppSsWJFAHbt2kW5cuVQq1889VqIwkyrVdi05zprt19Bq1Wo6GDF+/0b4FrRNsvj87revY2lKXU9ylHXo5xu25OYJIL+S9imjbCNJDImiZv3o4mITmToa15sPhiS5fk2Hwjm9TbFZwEYIYQQuVOhrDXvvVGP6auO8+f+G9SoWhq/OkX3s5gkZ4sgY2MjerXxoHHt8izYeIYrtyL59tdzHDx7l9G96lK+rJWhQyw21m2/wv3HcZS1NeetzjUNHY4QopApa2fBa63c+XnnNVZuCcS3hpMsFihEEbVo0SJ69eqFo6Mjv//++3OPValUjBo1qoAiEyJ3ImMSmfvTac5cCwegVT1nRvTw1qvea36yszHDt4YjvjUcgbQ6uBHRiVy/84RHkQnExCcTl5B1Xee4BA3xiRpdCTghhBAlVxOv8gS0cue3vUHM33iGqhVKUdGhaM5ukuRsEVbJ0YavRjdn68FgVm+7zPmgR4yetYcBnWrQuZmrFMl/SVdvRfDX/hsAjOpV1+AdWSFE4dTD351/jt7i/qM4th+5SZfmroYOSQiRC4sWLaJFixY4OjqyaNGi5x4ryVlR2J27Hs7sdaeIjEnCVG3MiAAv2jSoXCjL76hUKsrYWugWdNGkaLGyUGeZoLWyUEufXAghhM6ATjW4ejuSS8GPmbHqOLPGtsC8CNYlz1XEERERLF++nMOHDxMeHs6yZcvYuXMn1atXp23btnkdo3gOYyMVXVu40bCWEwt/Psv5oEcs+/MiB8/eZWxvHyo52hg6xCJJk5LK/I1n0SrQqr6z7s6+EEI8y9JczZsdqvPX/huUL2uFJkWrW1k6VauVOtVCFBFXrlzJ8mshipJUrcKGf66ycedVFAUqO9nwfn9fqjiVMnRoekvVauna3JX1/1zNtK9rc1dStVrUyCwVIYQQaTPL3+/vy7tz9nLrQQzfbjrHuD71CuXNyOfJ8V+1O3fu0LVrV37++WccHR15/PgxqamphISEMHbsWPbu3ZsPYYoXcSpjxefDmjKqZx0szEy4ciuSd+fs5Zdd10hN1Ro6vCJn485r3HkYg521Ge908zJ0OEKIQq5dw8p8Pbo5V25G0P+T7fT/eDv9P9nOb3uCSNakGjo8IcRLuHnzJufOnSM0NNTQoQjxXI+jEvi/JYfZ8G9aYvaVhpWZ/W6LIpWYhbTFyXq2rkafdp5YWaSNkrWyUNOnnSc9W1eTm55CCCEyKF3KnPf7+2JkpGLPqVC2H71l6JByLMd/2b7++mvKlCnDmjVrsLS0pHbttBXRZs+eTVJSEkuWLKFVq1Z5HafQg5GRig5NqlK/uiOLfz3LqSthrP77MofO3+Pd3j64VMi68L/IKOReFL/uug7AsAAvSlmZGjgiIURhp0nVsvnADTbuzLiydPqonwB/d/kwKUQRs2HDBr799lvCw8N12ypUqMCECRPo1KmTASMTIrNTVx4y56fTRMclY2FmzMgedWhVv5Khw8o1U7UxAf7u9GrjQXyiBsv/ZqOYqo0NHZoQQohCyMutLAM61mDV1kC+//0C7s62VKtkb+iw9JbjkbNHjhxh5MiRlCpVKtMw4d69e3P9+vU8C07kjoO9BR+/3ZhxfephbaHmRmgU4+buY+32y2hSZATX86Smalmw8QypWoUmXuXx8y66q/0JIQqOsZFRtitL/3UgGGMjmX4pRFGyfv16PvnkE7y8vPjqq6/44YcfmDFjBtWqVWPChAns3LnT0CEKAUBKqpZVWy7xyQ9HiY5LxrWCLXPHtSrSidl05qYmqE2MsLU2Q21iJDc5hRBCPFeAvzuNajmRkqrlqx9PEBOfbOiQ9JarT4smJln/YUxOTi5ydR2KK5VKRWvfSnz7fmuaeJUnVauw8d9rvDd3H9duRxo6vELrj303CAqNwspCzfAAb7mehRB6iUvUvHBlaSFE0bFq1SrefPNNFi9eTLdu3WjWrBmvvfYaS5YsoVevXixevNjQIQpBWGQ8UxcfZNOeIAA6Na3KzLHNi+xK1UIIIcTLUKlUvNenHk5lLAmLTGDOT6fRahVDh6WXHCdnfX19Wbp0KfHx8bptKpUKrVbL+vXrqVevXp4GKF6OfSlzpg5swOQBvtham3L7QQyTFuxn5eZLJEkdxAzuhsfy0460BUDe7lqb0qXMDRyREKKosDJX6+riZdonK0sLUeQ8ePCANm3aZLmvffv2BAcHF3BEQmR07OJ93p29lyu3IrE0N2HKgAaM6FFHpv0LIYQo0awt1EwZ0AC1iREnLz/k191FY3Z/jpOzEyZM4MaNG7Rr1473338flUrF8uXLCQgI4NSpU4wbNy7HQfzxxx906tQJLy8vXn31VbZt25btsadOncLT0zPTv2PHjumOOXLkCAEBAdSpU4cOHTqwdevWHMdUnKhUKprVqcjiSa1pVc8ZrQK/7Q1i7Kw9XAp+bOjwCgWtVmHBxjMkp2jx8XCgTYOiPxVMCFFw0leWzkpnPxeu3IzgYUR8lvuFEIWPl5cXBw4cyHLfmTNn8PT0LOCIhEijSdHyw58X+GLlcWITNFSrZMf88a3wqyOluIQQQggAN2c7hgd4A7Bu+2XOXQt/wSMML8eFezw8PNi0aRMLFy7k2LFjGBsbc/jwYRo0aMDXX3+d487qn3/+yQcffMC0adNo3rw5W7duZfz48Tg5OeHj45Pp+KtXr1K5cmV++umnDNttbdMWu7px4wbDhg1j0KBBzJw5k7179/L+++9TunRpmjRpktOXW6zYWpsxoW99mtetyOJfz3HvURxTFh+ks58LA16tiYVZya3jtO1wCIEhEZibGjOqV10pZyCEyJH0laUhrcZsXIIGKws1XZq50LmZK1MWHyQiOpERAd7Fog6gEMXdiBEjGD9+PHFxcXTr1g1HR0ciIyPZtWsXK1euZNq0aZw4cUJ3fIMGDQwYrSgpHjyO4+s1Jwm68wSA11q6MaBTTdQmUtdcCCGEeFq7RlW4HBLBzhO3mbnuJPPHt6KMrYWhw8pWrrJxVatWZfbs2S/95IqiMH/+fAYMGEDfvn2BtM7wyZMnOX78eJbJ2WvXruHu7o6Dg0OW5/zxxx/x9PTUjeB1c3MjMDCQZcuWlfjkbLqGtZyo6VqGFX9d5N/jt9lyKITjlx8yplcd6nqUM3R4BS4sIp4f/w4EYOCrNXEsbWngiIQQRVF2K0vHxCdjY2lKaFgss386zakrYQwP8M62DIIQwvCGDBkCwC+//MKvv/6q264oaXXLPv30U933KpWKy5cvF3yQokQ5eO4uC38+S3xiCjaWat57ox4NazkZOiwhhBCi0Brew5sbd58Qci+ar1efZPpIPwDMzQtfCUu9krP37t3L0UkrVNBvWk1ISAh3796lS5cuGbYvX74828dcvXqV+vXrZ7v/5MmTtG3bNsO2xo0b8+WXX+o60CKtDsfY3j40r1uRRb+cJSwinv9beoRXGlZmcNfaWJeQpIGiKCz+9RwJSanUdClNp6Yuhg5JCFGEpa8kbWttBoCatNWlZ4z04+ed19jw71X2ng4l8GYEE9+sTw2X0oYMVwiRjdWrVxs6BCEASNaksuyvi2w7fBOAGlVLM6mfLw72hXf0jxBCCFEYmKmNmTKwAePm7iMmPplb96Op7FSK8s6uqE3NSExO0X1+MzS9omjdunWOkpr6jh4ICQkBID4+niFDhhAYGIizszMjRoygdevWWT7m+vXr2NvbExAQwMOHD/Hw8GDcuHF4e6fVk3jw4AFOThnvIpcrV46EhAQiIyMpXTp3H4QVRcmwCFpx4VnJmpmjGvPTv0HsOHaHf4/f5uTlh7zTtQb1q/9vdHJCQkKG/4uLfWfucfpqGGoTI97pUp3ExNy/vuLaRnlN2kk/0k76KUrt1K15ZapXKcWiXy8SFhHP5MUH6NHKlYCWLhgb5++U1KLUToYk7fRiBd1Ghrqx3rBhwwJ/TiGeFRoWw9erT3LzfjQAvdpU48321THJ578ZQgghRHFRoaw1Uwc2xKVCKTYfCOaDJYd1Jei6NnelZ+tqhWIxTb2Ss9OnT9d1jKOiopg1axZNmjShY8eOODg48OTJE3bv3s3evXuZMmWK3k8eGxsLwOTJkxk9ejT/z959hzV5tWEAvwOEjYCKuAdiQBkyFAciuEcVlbr3qtbZFrVa29phta2r7m1r3bvOqnXiqHsPFBFQURHZM6yc7w8+UiKoAYEw7t91cSnvfN4ng5Mn5z1n8uTJOHr0KMaOHYs//vgjxzAEL1++RHx8PJKSkvDNN99AW1sbmzZtwsCBA7Fnzx5YW1tDLpdDV1dXZb+s31NTU9WO7U1paWml+pa1ZnWBqiYW2HcpGlHxKZiz+SYcahmgo6sZjPT/e6KGhIRoLsgCFp+cgd8PhQEAPO2NERvxFLERH37c0pSjwsQ8qYd5Uk9JytPwtub4+4oEt0OSsOtUEC7eCcXHzcvD3Ljwv7UtSXnSJObp/YoyR2+264rK7du3cenSJaSmpiqHM8j6sv7atWvYsWOHRuKisuHUtWdYvusW5KkZMDXWhW8/V7jYlr3hx4iIiD6UbW1z7D7xCNuPByiXJSanYes/DwEAPq2sNd6DVq2z+/j4KP8/btw4dO/eHT/99JPKNl27dsWsWbNw+PBh9OnTR62TS6WZt86PGDECPXr0AADUr18f9+/fz7U4W6VKFVy5cgUGBgbKfR0cHHD//n1s3LgRP/zwA/T09HIUYbN+NzDI/+0/UqkU1tbW+d6/JKhfH2jdPAM7Tj7GwfNPcOdJMp5EpGN4l/poaGWCJ0+eoHbt2h+Ux+Jk/tZbkKcKWFU1wfDujT+451pycjJCQkJKVY4KA/OkHuZJPSU1T86OwPnbL7Fm/wOERqRi9dHXGNGlPjycqhTK+Upqnooa8/R+RZ2jwMDAQj9HbjZv3oyffvpJWZTNTktLCy1atNBAVFQWyFPSseqvOzh+5SkAwNG6IiYNcEX5csVvfDwiIqKSQFtLCwfOB+e6bv/ZIPRqIyviiHLKc2n4/PnzWLZsWa7rvLy88tSLwNLSEgAgk6kmwtraGqdPn851n3Llyqn8rqWlhbp16+LVq1cAMgu44eHhKtuEh4fD0NAQJiYmasf2JolEAkPD0j9RlCGAUT2c4OVaC4u238DTsHgs3H4bjetXQktbbRgYGJSKPJy/9QKX74dDW0uCz/u5wsTEuMCOXVpyVNiYJ/UwT+opiXlq17QuHGVVsGDLNdwPjsLS3XdxJygGYz4uvMnCSmKeNIF5er+iypGm5grYtGkTWrZsiTlz5mDVqlVISEjA9OnT4efnh2nTpsHb21sjcVHp9iQsc8KSZ6/ioSUB+ra3Re+2Mmhrcc4MIiKi/EqUpyExOS33dclpSJKnKecM0ZQ8dxU0NzfH7du3c1138eJFZcFVHXZ2djAyMsKtW7dUlgcEBKBmzZo5tj9z5gycnZ3x7Nkz5bL09HQ8ePBA2au1UaNGuHz5co64XFxcoKXF8ZnUJatpjoVfeKJvOxtoa0lwxT8cyw6Fwe/Gi1x7kZQkcYmpWLkn8zncs3U91KlqquGIiKissixviNlj3DGgoy20tCTwuxGKifNP4V5QpKZDIyrTQkND0b9/f5iamsLe3h7Xrl2Dvr4+OnTogFGjRnHCMPog8tR0pKUrEJOQgrR0BeQp6Th/6zl8F57Bs1fxKF9ODz996o5+7W1YmCUiIvpARvrSt3Z+MTKQwlC/cDrG5EWee8726tULy5Ytg1wuh5eXF8zNzREREYEjR45g69atmD59utrH0tfXx8iRI7Fs2TJYWlrC0dERhw4dwvnz57F+/XoAwOvXr2FoaAgjIyO4uLjA3NwcU6dOxfTp0yGVSrF69WrExMRg6NChAIBBgwahR48emDdvHnr06AE/Pz8cOXIEa9euzeullnlSHW0M6GiL5o5V8NvWawh+EY/le+7h0v3XGNfTqcTOErtu/13EJKSghqUJ+rTTfPd1IirbtLW10LedDZxkFpi36RpeRSVh+vJz6NVWhn7tbAp9sjAqvuSp6dDW0kKiPA1G+lJkKBQaHw+rrJBKpdDXz7yNvFatWnjy5AnS0tIglUrh6uqKP/74Q8MRUkmVmpaB3acCceBskHJCkq7uddDFwwqVzA1QydwQX/RzgZmJZnvwEBERlRYZCgW8PayUY8xm5+1hhQyFAtK8910tUHlu4Y8ZMwbx8fFYt24dVq9eDSBzcgR9fX189tlnGDBgQJ6ON3bsWBgYGOC3337Dq1evULduXSxZsgRNmjQBALRo0QLjx4/HhAkTYGxsjPXr12PevHkYMWIEUlJS4Orqik2bNqFixYoAgHr16mH58uWYO3cu/vzzT1SvXh1z587NMX4tqa9OVVPMGuWGdX9dwZl7Cbj2IBzj5p7EsK526NCkFrRK0Df6V/1f4eTVZ5BIgIl9nCDV0fysfEREAGBbqzwWT/LCqr/u4OTVZ9h+LAA3A15jUn9XVKlopOnwqIjlVsApTjPKlnb169fHqVOn0KRJE9SpUwcKhQK3bt1Co0aNEBYWpunwqISSp6Zj96lAbMv24TAxOQ3bjgdAAJg2pDFqVDIpUW1rIiKi4k5fVwc9W9cDkDnGbHFsW+e5OCuRSDB16lSMHTsWN2/eRGxsLMzNzeHs7JzvsceGDRuGYcOG5bru4UPVynbNmjWxePHidx6vZcuWaNmyZb5iodxpa2vBw64cOre0w5r9D/DgSTSW77qFczefY3wvpxJROEiSp2HZrswhNLw96sK2VnkNR0REpMpQX4ov+rnA1bYSlu+6hYdPovHZglP41McRrVxraGz8TSpabyvgFKcZZUu7YcOGYfz48YiLi8Ps2bPRpk0bfPnll2jfvj0OHDgAV1dXTYdIJZC2lhYOnA3Kdd3B88Ho086GhVkiIqJCoCvVhk8ra/RqI0NCUgqMDfWQoVAUi8IskI8xZ7OYmJjAw8MDXbp0gbu7OyfOKCOqVzLGL+M9MLKbPXSl2rgdGIHx805h35nHyFAU77Fo1x+6j4iYZFSuYIiBnWw1HQ4R0Vu1dK6OxZNawc6qApJTMvDb1huYu+kaEt4ykD2VLu8q4Ow/GwRtjqFf6Nq2bYuVK1eibt26AIAff/wRtWvXxrZt22BlZYUZM2ZoOEIqidSZkISIiIgKh76uDtJS5XjxLAhpqfJi1dmh+ERCJYa2lgTdWtaFW4PKWLrzJm4HRmDtvrs4d/M5JvZxRg1LE02HmMOdxxE4/G8IAGBCb6di9SIkIspNpfKGmDXGHbtOBmDL0Yc4e/M5HjyJwqT+rrCzqqDp8KgQlYQZZcsCLy8veHh4AMicEHfZsmVIT0+HiUnxa+dQyWCorwMjA2mur+/iMiEJERFRaSeXyzUdQg7sekH5VqWiEWaObo6xPRvCQE8HD55E47MFp7HzRAAyMhSaDk9JnpqOJTtuAgA6NK0FR2sLzQZERKQmbS0J+rS1wZzxLVClghFeRydj+vJz2HTYH+nF6H2WCpahnk6xn1G2tEtLS8N3332H3r17K5fduHEDzZo1w6+//gqFgq8/Ul9qWgbW7L2D6w/C0cW9Tq7bZE1IQkRERGUPi7P0QbS0JOjUrDaWTWkNV9tKSEtXYMPf/pi0+AyCX8RqOjwAwNajD/EyIhEVTPUxrIudpsMhIsozm1rlsdDXE20a14BCANuPB2Da0nN4GZGo6dCogPldD8X1hyzgaNqSJUuwf/9+dOnSRbmsQYMGmDx5Mnbs2IG1a9dqMDoqSZ6ExWHSojPYfzYIfx66jx5e1ujX3kb5BYyRgRT92tugZ+t6vLOLiIiojGILgAqEhbkBvhvZFKeuPcOavXfxODQWX/zmh15tZOjdVgapjma+Bwh4Go29foEAgLE9G761JxIRUXFnqC/F531d4GpriWW7buHh08zJwkZ1d0SbxpwsrDS46v8Kv229jioVjTBvYktoaUlUZpTt4l4HPbzqsoBTBA4cOICpU6eib9++ymVmZmYYOnQodHR0sGHDBowaNUqDEVJxJ4TA3+eD8fuBe0hNV8DMWA8jvO1hZCBVTkiSJE+Dob60WE1IQkREREUv3617Pz8//PvvvwgPD4evry/8/f1hZ2eHatWqFWR8VIJIJBK0blQTzrJKWLHnNi7ceYltxx7iwp0XmNjHGbKa5kUaT1q6Akt23IRCAJ7O1eHWoHKRnp+IqDB4OFWDTS1zLNhyHfeCIrFo+w1ce/AK43o2hLGhrqbDo3y6FxSJn/+8ggyFQN1qZjDQ01Ep4Bjo6eDag3BMX/4vpg5uhMoVjDQdcqkWHR2NGjVq5LrOysoKYWFheTpeQkIC5s6dixMnTiA1NRUtW7bEV199hQoVch8/esWKFVi4cGGO5Q8fPszTeUkzYuJTsHjHDVy5/woA4GpbCZ/1dYa5iT4AKL9gyRo7WsqbGYmIiMq0PLcEkpOTMXz4cIwePRq7d+/GkSNHEBcXh61bt8LHxwePHj0qjDipBDEvp4+vhjTG1MGNYGqsiydh8Ziy+Az+OHAPKWkZRRbHrhMBCHkZB1NjXXzS3b7IzktEVNgqmWdOFja4c31oa0lw7tYLTJh/GnceR2g6NMqH4BexmLnuIlLTMtCoviU+7+cMLS0J9HV1INXRgqmxHrS1tbDXLxCBoTFYsOV6sRrbvTSysrLC0aNHc1138uRJ1KpVK0/H++yzz+Dn54dZs2Zh8+bNSE5OxuDBg5Gamprr9g8fPkS3bt1w7tw5lR8q/q4/CMeE+adw5f4rSHW08El3e3w3sqmyMEtERET0pjwXZxcsWIB79+5h/fr1uHjxIoQQAIBff/0VlpaWWLRoUYEHSSWPRCJBi4bVsGxKa3g6V4dCAHtOB2LivFO4FxRZ6Od/8jIOO04EAABGd3fkrNZEVOpoa0nQq40McyZ4oEpFI0TEJOPrFeex4e/7nCysBHkRkYAZqy8gUZ4OO6sKmDq4EXS0czbPtLUk8O3vCkN9HfiHRGHnSX4ZXpgGDx6MHTt2YOLEidi/fz/Onz+PAwcOwNfXF5s3b8aIESPUPpa/vz/OnTuHH3/8EZ6enqhXrx7mzJmD8PBwHDp0KNd9AgIC0KBBA1hYWKj8UPGVmpaBNfvu4Ls1FxATn4KalU2w4HNPeHvU5bAzRERE9E55Htbg8OHD8PX1RdOmTZGR8V8vyEqVKmHMmDH48ccfCzRAKtlMjfUweaArWjpXw7Jdt/AiIhHTlp1DF/c6GPxRAxjoFfy4eRkZCizafgPpGQJN7CqjhVPVAj8HEVFxIatpjkW+Xliz9w6OXX6KnSce4WbAa0we4IqqFsbK7fT12WuruImMTca3qzILOVZVTfHt8CbvHE/WsrwhPvVxxIIt17H1n4dwllnAplb5Ioy47OjevTsSExOxfPly/PPPP8rl5ubm+Pbbb9G9e3e1jxUSEgIAaNSokXKZkZERatWqhcuXL6NHjx4q26empiIkJARWVlYfdA1UdJ6GxWHupmsIeRkHAOjiXgdDu9pBj+PIEhERkRryXBmLi4t767iypqamSEpK+uCgqPRxs6uMBlYV8Pv+uzh2+SkOng/GZf9XmNCrIZxklQr0XPvOBOHRsxgY6etgzMeO7K1ARKWegZ4OJvZxhottJSzdeQuPnsXgswWn8UVfZ7jYWkKqq48q1a0g1dWDPDWdE0oVA3GJqfh21QWERyWhSkUjfD+qqVqTVnq5VMfV+69w5uZzzN9yHYt8vQrli04CBgwYgP79+yM4OBgxMTEoV64crKysoKWVtxvPKlXKbOe8fPkSdevWBQBkZGQgLCws1zFnAwMDkZGRgaNHj2LWrFlISUlB48aNMWXKFOWxqHgQQuDvf0Pw+/67SE1XwNRYF5/1cUZjznNAREREeZDn1ny9evVw4MABtGjRIse6kydPol69egUSGJU+xgZSTOzjDA+nali68ybCo5Lw7aoLaOdWE8O97WGsxofS93kRkYDNR/wBACO87VHB1OCDj0lEVFK0aFgNNjXL47et1xEdL4dd3YrYdfIRDp4PRmJyGowMpPD2sELP1vU4M7gGJaek44e1F/DsVTwqmOpj5ujmao9HKZFIMKZnQ9wPicLLiESs2XsHE/s4F3LEZZdEIvngHqwODg6wsrLCd999h/nz58PU1BSLFy9GdHQ00tLScmwfEJA5LJOBgQEWLVqEyMhILFiwAIMHD8bevXvz3QteCFFmO1EkJyer/FsQ4hJTsfKve7j2MHOsb6d6FTCmhx3MTPRKbJ4LI0+lEfOkHuZJPcyTepin92OO1FPUeRJCqNVhMM/F2TFjxmD8+PGIiYlBq1atIJFIcOXKFezZswfbtm3D/Pnz8xUwlR3ONpWwdEprbDh0HwfPB+PY5ae49iAc43o2hJtd/nsaKBQCS3bcRGq6Ak71LNDWrWYBRk1EVDJYmBtg5qfNERoejwNng7D9eIByXWJyGrb+kznbu08ra/ag1YC09AzM+uMSAp7GwMRQih9HNYNlecM8HcPYQArf/i74esV5HLv8FI0bWKKZA4fwKa50dXWxdOlSfPnll2jZsiWkUim6du2KVq1a5doLt3v37mjZsiXKl/9vyIp69eqhZcuWOHnyJDp37pyvONLS0uDv75/v6ygNsoaY+FCBL+XYeyEKCXIFtLWAtk6maGKjj5ehQXhZIGfQrILKU2nHPKmHeVIP86Qe5un9mCP1FGWedHV137tNnj+VtW3bFnPnzsX8+fPh5+cHAPjll19QoUIFfP/99+jYsWPeI6Uyx0BPB6N9HNHCqRoWb7+BFxGJmPn7JXg6V8cn3e3zNYHX0YshuPs4Enq62hjXqyGHMyCiMktbS4KqFY1x8Hxwruv3nw3Cx63qYfMRf1iWN0KtKiaoYWnCYm0hy1AIzNt8DbceRcBATxvff9IMNSuXy9exHOpWhI+XNXafCsSSHTchq2nOu0WKsbp162L37t2IiYmBjo4OjI2N0bNnTzRt2jTX7bMXZoHMoRHMzMwQFhaW7xikUimsra3zvX9JlpycjJCQENSuXRsGBvl/naSlK7D12CMc+jezt2x1CyNM6OWA2lVMCipUjSqoPJV2zJN6mCf1ME/qYZ7ejzlST1HnKTAwUK3t8vUprGvXrujatSuCgoI+aAwuIjurClg8uRW2HHmAvX6B8LsRipuPwvGpjyPcHauqXWB9HZ2MPw7eBwAM7lwflSsYFWbYRETFXqI8DYnJOW+ZBjJ70MYkpODCnZd4EhYPAJBIgMoVjFC7SjnUqlwOtaqYoFblcqha0Qja2vz7/qGEEFi28yb+vf0SOtpa+HpoE8hqmn/QMQd0rI+bj17jcWgsFm67gR8+aQYtLX4xWdwkJCTg008/xTfffANbW1sAQGhoKO7fv49Jkybl2P63337DkSNHcOTIEWU7KDQ0FNHR0R9UXJVIJDA0zFsv7dLGwMAg3zl4GhaHeZuvIfhF5qRfnZvXxnBv+1I56deH5KksYZ7Uwzyph3lSD/P0fsyReooqT+rWtPJVnP37779x8eJF/PjjjwCA69evo3fv3hg7dixat26dn0NSGaYn1cawrnZwb1gVi7bfwNOwePy64SqaOVTBGB9HmJd799hqQggs23UTySnpqF+7PLq4c3ZjIiIjfSmMDKS5FmiNDKQwN9GDm11lmBrrIeRlHOISU/EyIhEvIxJx4c5/N+ZKdbRQo5KJslhb6//F24pm+rxDIQ/WH7yPY5efQksCfDnIFQ1lFh98TKmOFib1d8Xnv/nhZsBrHDgXhG4t6xZAtLR8+XJ06NBBOYHXhzA2NoYQArNmzcKMGTMgl8sxffp0NG3aFM2aNUNqaipiY2NhamoKXV1dtGvXDuvWrcP333+PoUOHIiIiArNnz4aLiws8PDwK4OooL4QQOHwhBOv2ZU76Vc4oc9KvDxmKi4iIiCi7PBdn9+7di2nTpqF9+/bKZWZmZrCwsMD48eOxePFitG3btkCDpLJBVtMcC7/wxI7jj7DzRAAu3HmJO4ER+KS7PVq51nhrEeDUtVBcexAOqY4WJvR2Yq8hIiIAGQoFvD2slGPMZuftYQWFEBjcuYFyWXS8HE9fxiMkLA5PXsbhSVgcnoTFIyU1A0EvYhH0IlblGEYGUtSqnL1ga4LaVcrB2PD9YyrJU9OhraWFRHkajPSlyFAoSvWQCrtOPsKe05m3NI3v5VSg48PWsDTBCG87rNh9G38euo+G9SxQu0r+hkqg/6xatQp2dnYFUpwFgAULFmDmzJno168fdHV10b59e0yZMgUAcOPGDQwePBgbNmxAkyZNYG9vjzVr1mDRokXw8fGBrq4u2rRpg6lTp/ILkSIWm5CCJTtu4tK9zOEknGUW+LyfC8q/p+MAERERUV7k+ZPQunXrMGzYMEydOlW5zMrKCitWrMCvv/6K5cuXszhL+SbV0caAjrZo7lgFC7fdQNDzWPy29QbO3HiOcT2dYGGuOiZITIIca/fdAQD0a2+DGpalY8wvIqIPpa+rg56t6wHIHGM2MTkNRgZSeHtYoWfretB941ZccxN9mJvoq/ToVCgEwqOTEJJVrH0Zj5CXcXj+OgGJyWm4HxyF+8FRKsepYKqvUrCtVaUcaliaKG/9TU3LwO5TgTigRkylwZELIfjzUOawO8O72qFdk1oFfo5OzWrjqv8rXLn/CvM2XcWCzz1LZS6LkrW1NYKDg+Hp6Vkgx7O0tMTSpUtzXdekSRM8fKj6JUqzZs3QrFmzAjk35c+Nh+H4bet1RMenQEdbC0O7NEDXFlbsBEBEREQFLs/F2adPn761odqyZUts3br1g4MiqlPVFPM/a4m/Tgdiy9GHuPYgHOPmnsT43k5wq28Jbe3MHlcGulJM7OOMk1efoYdX2ZzkgojobXSl2vBpZY1ebWRISEqBsaEeMhQKtQt3WloSVK5ghMoVjNDUvopyeVp6BkLDE/AkLB5PXsYh5GUcnobFITw6GZGxckTGynH9Yfh/x5EAVSoa4fO+Lrj24BW2HQtQrktMTlP27vVpZV2qetCevfkcy3ffAgD0alOv0P5OSSQSTOztjAnzTuFJWDz+/Ps+PunmUCjnKitatWqFBQsW4OzZs7CxsckxJplEIsG4ceM0FB0VprT0DGz42x97/R4DyOydPmWgK+pUNdVwZERERFRa5fkTkIWFBW7fvp3r7LIPHjyAufmHTW5BlEVHWwu92sjQ1L4KFm+/gYTkNDS0rohdJx/h4PlgZY+rLu514NvfBTqcsIaIKAd9XR0kJSXhxbNg1KlTp0AGvpfqaKNOVdMcxYokeRqehmX2rs0cGiHz//FJqYhPSkPtKuXw/dqLuR5z/9kg9Goj++DYiovrD8KxYMs1CAF0bFYbgzrVL9TzmZno4bO+zvhh7UXsPxMEV1tLuNhUKtRzlmZZvVzPnz+P8+fP51jP4mzp9OxVPOZtuqYcxqVz89oY1tWuVH1pRERERMVPnlsaXbp0wYoVK2BoaIh27dqhfPnyiIqKwqlTp7BkyRIMGjSoMOKkMqyGpQl+Ge+BF68TcOBsELYfV+1xtf14ALS0JKWuxxURUUGSy+WFfg5DfSlsa5eHbe3yymVCCMTEpyAsMhGJ8rRcJygDMt/Pk+RpMDXWK/Q4C9uDkCjM/vMy0jMEPJyq4VMfxyIZK7RRfUt0bl4bf/8bgkXbrmPxpFalIp+a8ODBA02HQEVICIEjF0Kwdv89pKZloJyRLib2dkKTbHcMEBERERWWPFeyxo0bh6CgIPz000+YNWuWcrkQAh07dsSECRMKNEAiAND+/621B88H57q+tPW4IiIqLSQSCczL6cO8nD7S0hUwMpDmWqA1MpDCQE8HGRkKaJfgOyFCXsbh+7UXkZKaARfbSviinwu0i3CMymFd7XA7MAKh4QlYtusWvhrSmJNIfaD4+HiEh4ejRo0a0NbWhrY2x/MtTd6c9MtJZoEvOOkXERERFaE8F2elUikWL16MgIAAXLt2DbGxsTAxMYGrqytsbW0LI0YiACgzPa6IiEqrDIUC3h5WyjFms+viXgfXH4Zj42F/jO7hAEdri1yOULyFRSZixqp/kZichvq1y+OrwY0h1SnaQrO+rg4mD3DF5MVncOHOSxy7/BTtC2ESsrLg0qVLmDdvHu7evQuJRIKdO3dizZo1qFy5MqZNm6bp8KgA3AzInPQrKi5z0q8hH9WHt0ddTvpFRERERSrf94DLZDLIZOypSEXHSF/6zh5XhvpSDURFRETq0tfVQc/W9QBk3vGQNXa4t4cVunvWxYzVF/A0LB5fr/gX7g2rYnhXO1Qy//AxcotCVJwc3676F9HxKahdpRxmjGgCfT3NDLVTt7oZBnasj/WH7mPN3juwt6qAqhbGGomlpLpw4QI++eQTODs7Y/LkyZg3bx4AwNbWFosXL4alpSWGDRum4Sgpv96c9Kt6JWNMGdgIVtU46RcREREVPbU+NQwePBjfffcd6tati8GDB79zW4lEgj///LNAgiPK7l09rrw9rJChUECKknsrLBFRWaAr1YZPK2v0aiNDkjwNhvpSZCgU0NfVwXcjm2LzkQc4/G8wzt96gSv3X6F3m3ro4WUNXWnxvZU8ISkVM1b9i7DIJFSuYIgfRjWDsaGuRmPq7mWNaw/CcedxBOZtvoY5Ezw4cWYeLFy4EG3atMGiRYuQnp6OuXPnAgA+/fRTJCUlYefOnSzOllDPXsVj3uZrCHqeOelXp2a1Mdybk34RERGR5qjVShdCqPz/XT8KhaLQgqWyLavHVb/2NjAyyOwla2QgRb/2NujZuh4b1UREJYS+rg6kOlowNdaDVEdL+f5tYqiLT30csdDXC3ZWFZCaloFNRx5g7JyTuHj3pUp7pLiQp6Tjh7UX8SQsHuXL6WHm6ObFYqxKbS0JvujnAiMDKR49i8G2XL7YpLfz9/fHxx9/DAA5xux1d3fH8+fPNREWfQAhBI5dCcXnv/kh6HksTAx18fUwN4zt2ZBtSCIiItIotVoiGzduzPX/REXtbT2uinOPKiIiyps6VU3x81h3nL35HL8fuIdXUUmY9cdluNhUwshu9qhhaaLpEAEAaekKzF5/GQ+eRMPYQIofRzVH5QpGmg5LycLcAON6NsScjVex80QAnG0qwc6qgqbDKhFMTEzw+vXrXNe9fPkSJibF4zlI6olPSsX2s5F4EJpZVHeqZ4HP+zmjgqmBhiMjIiIiUrPnbFHYu3cvOnfuDAcHB3z00Uc4fPjwW7d9+fIlfH194e7ujsaNG2PEiBF49OiRyjbt27eHjY2Nyg8nbygd3tbjioiISg+JRIKWztWxYmob9GpTDzraWrj+MBwT5p3C7wfuIUme+wSRRSVDIbBgyzXcCHgNPV1tfDeyKWpVKafRmHLj4VQNrRvVgEIAC7Zef+vEmqSqTZs2+O2333Dnzh3lMolEgrCwMKxcuRJeXl6aC47y5FbAa0xZehEPQuXQ1pZgeFc7/DCqGQuzREREVGyoVdVq3bp1jlu63uXEiRN5CmLfvn34+uuvMX36dHh4eODQoUPw9fVF5cqV4ezsrLJtamoqRo0aBTMzM6xcuRL6+vpYsmQJhgwZgoMHD6J8+fJISkrCs2fPsGrVKtjZ2Sn31dfX/G2GREREpD4DPR0M7twAbd1qYu2+u7hy/xX+Oh2I09eeYWgXO3i5VC/ymdWFEFix+xbO3XoBHW0Jpg91g23t8kUaQ16M7uGAe0GReBWVhFV/3YZvf1dNh1TsTZo0Cbdu3ULv3r1RsWJFAICvry/CwsJQpUoV+Pr6ajhCep+0dAU2HfbHX36BEAKoWE4Hkwe4ws66sqZDIyIiIlKhVnHWzc1NWZxVKBQ4dOgQTExM4OnpCQsLC8TExOD8+fOIiopCnz598hSAEAKLFi3C4MGDMWDAAADAmDFjcPXqVVy+fDlHcfbq1asICAjAmTNnYGlpCQCYO3cumjRpgpMnT6Jnz54IDAyEQqGAs7MzTE056yoREVFJV7WiMWaMaIqr/q+wZu8dvIhIxG9br+Pwv8EY7eMI6+pmRRbLxsP+OHrxCSQSYNIAV7jYVCqyc+eHob4Uvv1d8NWyczh1LRSN61eGh3M1TYdVrJmammLnzp3Yu3cvLl68iJiYGJiYmGDQoEHw8fGBgQF7XRZnb0761bZxNbjVEahTtfj1biciIiJSqzj7yy+/KP8/b948ODo6Yt26dSoN07S0NIwZMwZJSUl5CiA4OBjPnz9H165dVZavW7cu1+3r1auH1atXKwuzAKCllTk6Q1xcHADg4cOHqFixIguzREREpUyj+pZoWK8i9p0JwvZjD/HgSTR8F/qhfZNaGNSpPkyN9Qr1/HtOBWLnicyhlMb1bIgWDUtGkbNBnQro1VaG7ccCsGz3LdjWLg8LcxYY30VXVxe9e/dG7969NR0KqUkIgaMXn2DNvrtITcuAiaEuJvR2QsO6pvD399d0eERERES5yvOYszt37sQnn3ySo8eAVCrFoEGD8Pfff+fpeMHBwQCApKQkjBgxAs2aNUOvXr1w8uTJXLe3sLCAp6enyrKNGzdCLpfD3d0dQGZx1tDQEBMnTkSLFi3QtWtXrF+/HgqFIk+xERERUfEj1dFGz9b1sHJaG3g6V4cQwNGLTzD6lxM4eC4IGRmF8/f+n0tP8MfBewCAIR81QIemtQvlPIWlbzsbyGqaITE5Db9tvY4MhdB0SMXagwcPMGnSJHh4eMDR0RGtWrXC9OnT8ezZM02HRrmIS0zFz39ewbJdt5CaloGG9SpiyWQvNHOoounQiIiIiN4pXzMpxcbG5rr8xYsX0NPLW4+VhIQEAMDUqVMxfvx4TJ48GUePHsXYsWPxxx9/oFmzZu/c/9ixY5g/fz6GDh0KGxsbAMCjR48QFxeHDh06YNy4cbh27Rrmzp2L2NhYfPbZZ3mKL4sQIs+9gkuT5ORklX8pJ+ZIPcyTepgn9TBP6imteTKQAmN96qO1a2X8cfAhQsLiseqvOzj8bzCGfWSDBnXyNg7su/J06d4rLN15GwDQtUUtdG5arUS2C8b52OHL5Rdx53EEdhzzRzeP2nnav6ifS0KIPM17UFAuX76MESNGwNTUFJ6enqhQoQIiIiJw5swZHD16FFu3boVMJivyuCh3twJeY8HW64iKk0NHW4JBnRqgu2fdIh+PmoiIiCg/8lycbd26NebNmwcLCwtlT1UhBI4fP46FCxfmGJ7gfaRSKQBgxIgR6NGjBwCgfv36uH///nuLs1u3bsXMmTPh7e2NL7/8Url8zZo1SElJgYmJCQDAxsYGCQkJWLFiBSZMmKAcBiEv0tLSeDsUgJCQEE2HUOwxR+phntTDPKmHeVJPac7TYK9yuPZYGydvxeHpqwT88Ps12NcyQDtnU5ga5q2582aeHofJseV0BIQAnOsawqVGeoluE3RwLof9l6Kx7fgjGGvFomp53TwfoyifS7q6eY/vQ82fPx+urq5YtWqVSscDuVyOkSNHYs6cOVi7dm2Rx0Wq3pz0q5qFMSYPdC3SMaiJiIiIPlSei7NfffUVAgMDMWLECOjq6sLU1BTR0dHIyMiAu7s7pkyZkqfjZY0d+2bvA2tra5w+ffqt+82dOxdr167FsGHDMHXqVJVeFbq6ujka8jKZDElJSYiNjYW5uXmeYgQyi8jW1tZ53q+0SE5ORkhICGrXrs1JMN6COVIP86Qe5kk9zJN6ykqe7OyAHm1Tsf3EYxy/Eoq7T5Lx6EUKenha4aPmNaEr1X7n/rnl6dGzWOw4dw0ZCqBJg0r4vI9jie+NZ2sr8DLuNq74h+Pg1UT8MsYeerrvzk2Won4uBQYGFvo5cvPw4UMsWrQoxx1h+vr6GDFiBHx9fTUSF/0nNDwe8zdfQ2Bo5h19HZrWwkhve+jr5evGQCIiIiKNyXPrpVy5ctixYwf8/Pxw9epVxMXFwdzcHE2bNn3vEAS5sbOzg5GREW7duoVGjRoplwcEBKBmzZq57pNVmJ06dSqGDx+usk4IgXbt2qF79+4YP368cvmdO3dgYWGRr8IsAEgkEhgaGuZr39LEwMCAeXgP5kg9zJN6mCf1ME/qKQt5MjQ0xMQ+rujSwhqr/rqN+8FR2HY8EH43XmJkd3u4Naj83mNk5elJWBx+3XQDKakZcKpngalD3CDVUa+IWdx93s8VE+adxIuIRGw7EYQxHzfM0/5F9VzSxJAGAFClShWEhobmui4qKgrly+dtyAwqOEII/HPpKdbsu4OU1AyYGEoxobcTmjlU1XRoRERERPmSr6+WJRIJvLy84OXl9cEB6OvrY+TIkVi2bBksLS3h6OiIQ4cO4fz581i/fj0A4PXr1zA0NISRkREuXbqEtWvXYtCgQejatStev36tPFbWNu3atcO6detgZWUFe3t7XLhwAWvXrsXXX3/9wfESERFR8WdVzRS/jGsBvxvP8ceBe3gZmYiZ6y6hUX1LjOxmj2oWxu/c/1VUEmasuoD4pDTY1DTH9GGlpzALAOWMdPF5XxfMWH0Bf/8bgkb1LdFYjcJ1WTF16lRMnToV5cqVw0cffaQcEuv8+fNYuHAhvv/+e80GWEbFJ6ViyY6buHDnJQDA0boifPu7oIJp6b0jgIiIiEq/fBVnz58/j1OnTiE5ORkKheqMyBKJBLNnz87T8caOHQsDAwP89ttvePXqFerWrYslS5agSZMmAIAWLVpg/PjxmDBhAg4ePAgA2LhxIzZu3KhynKxtJk2aBGNjYyxYsABhYWGoXr06vv76a/Tu3Ts/l0tEREQlkEQigZdLdbg1sMSO4wHYd+Yxrvq/ws2AcHRrWRe928pgqC9V2UdfXx9xiamYsfYqouLkqGFpghkjm8KgFN4q7WxTCd4trbD/TBAWb7+JJZNbwcwkbxO7llY//vgjUlNT8eWXX+Krr76ChYUFYmJiIJfLIYRQuTtLIpHg/v37Goy2bLgd+BoLtlxHZGzWpF/10d3TusQPM0JERESU508av//+O+bMmQM9PT2UL18+x+1m+b39bNiwYRg2bFiu6x4+fKj8/8yZMzFz5sx3HktHRwfjxo3DuHHj8hULERERlR6G+lIM7WKH9k1qYc2+u7jq/wq7TwXi1LVQDOvSAJ4u1ZGSlgGprj6qVLeCoYEUw7va4eC5YHzRzxnljIp+QqqiMqRzA9x+FIGQl3FYtP0GZoxoorGhBIoTHx8fTYdA/5eWrsDmI/7Yczpr0i8jTB7QCNY1zDQdGhEREVGByHNxdtOmTejatStmzZqlkdlziYiIiPKjqoUxvhvZFJfvh2Ht3rt4GZmI7ccD4FrfEvvPPMaBc8FITE6DkYEUXdzr4NvhbtDTLX09ZrPTlWpj0gBX+C70w1X/Vzh8IQSdm9fRdFgal71nLGnO89cJmLfpKif9IiIiolItzy2biIgI9OzZk4VZIiIiKpHcGlSGUz0L7PV7jNpVy2Gf32NsPx6gXJ+YnIbtxwOgpSWBTytr6JfyAm3tKuUw5KMGWLvvLtbtvweHuhVRw9JE02FRGSaEwLHLT7F673+Tfo3v5YTmjpz0i4iIiEofrbzu0KBBAzx69KgwYiEiIiIqErpSbfRuK4OzrBIOng/OdZv9Z4OgrZXnplKJ1LWFFZxkFkhNy8D8LdeQlq54/05EhSA+KRW/bLiCJTtuIiU1A47WFbFkcisWZomIiKjUynNXkOnTp+Pzzz+HoaEhGjZsCAODnLOjVq3KxhMREREVf4nyNCQmp+W+LjkNSfI0mBqX/kmytLQk+LyvMybMO43HobHYfMQfQ7vYaTosKmOyT/qlrZU56VcPL076RURERKVbnouz/fr1g0KhwPTp0986YYS/v/8HB0ZERERU2Iz0pTAykOZaoDUykMJQX6qBqDSjgqkBJvRuiNnrr2DP6UC42lrCwbqipsOiMiAtXYEtRx9g96lHnPSLiIiIypw8F2d/+umnwoiDiIiIqMhlKBTw9rDC1n8e5ljn7WGFDIUC0ryPAlViNXOoinZuNXHs8lMs2HodSyZ5wdiQ8wxQ4XnxOgFzN19D4LMYAED7JrXwSTdO+kVERERlR55bPT169CiMOIiIiIiKnL6uDnq2rgcgc4zZxOQ0GBlI4e1hhZ6t60FXqq3hCIveJ90dcDcoEi8jErFi921MHuj61rulSqPHjx8DAOrWrQsg846wJUuW4MmTJ6hduzZGjBgBFxcXTYZYKgghcPz/k37JUzNgbCDF+N5OcOfYskRERFTG5FqcDQkJwdGjRzF69OiijoeIiIioSOlKteHTyhq92siQkJQCY0M9ZCgUZbIwCwAGejqY1N8FXy49hzM3n6NRA0u0cq2h6bAKXXR0NCZMmIBr164BAJo1a4bp06dj4MCB0NbWhpWVFa5evQo/Pz+sW7cOTZo00XDEJVdCUiqW7ryF87dfAAAcrSvii34uqGiWcy4LIiIiotIu1+KstrY2Fi5ciIcPH2LBggWwtbVVu8eERCLB/fv3CzRIIiIiosKkr6uDpKQkvHgWjDp16sDQ0FDTIWmUTa3y6NfeBpuPPMDKPbfRoE4FWJYv3Tn57bffEBISglmzZqFcuXJYsWIFBg4cCJlMhnXr1sHQ0BDx8fH45JNPsHr1ahZn8+nO4wgs2HwNEf+f9Gvg/yf90uakX0RERFRG5VqcrVGjBv766y+sXLkSADBu3LgydTsbERERlU1yuVzTIRQbvVrXw/UH4fAPicKCLdcwe2wLTYdUqPz8/DBx4kT4+PgAAKpXr47u3btjyJAhymK9iYkJRo4cia+//lqToZZI6RmZk37tOpk56VfVikaYNMAVsprmmg6NiIiISKPeOuasra0tFi5cCACYMGFCUcVDRERERMWAtrYWfPu7YOL807gfHIVdJwPQtXkN6Ovrazq0QhEZGYk6deoof8/6f5UqVVS2s7CwQEJCQpHGVtK9iEjAvE3X8Oj/k361c6uJT7o7wICTfhERERHlfUIwIiIiIiobKlcwwqc+jth5IgC1K5eDVFcPVapbQaqrB3lqOvR1S09TMj09HXp6esrfdXR0VP7NTqFQFFlcJYk8NR3aWlpIlKfBSF+KjAwFrj98hd+23oA8NQNGBlJM6OUE94ac9IuIiIgoS+lpURMRERFRgWvlWh1uDSyx1+8xftt2A4nJaTAykMLbwwo9W9crsxOnkarUtAzsPhWIA2eDlM+Rru510MXDChXNDGBmogfffq6wMOekX0RERETZsThLRERERG+VkpaBfWeDsP14gHJZYnIatv7zEADg08q61PSg9fPzQ1BQEIDM3rESiQSnT5/Go0ePlNs8ffpUU+EVW/LUdOw+FYht/39OAJnPkW3HAyAATBvSGNUrmXDSLyIiIqJclI6WNBEREREVCm0tLRw4G5Truv1ng9CrjayIIyo8y5Yty7FsyZIlOZZxolxV73qOHDwfjD7tbFiYJSIiInoLFmeJiIiI6K0S5WlITE7LfV1yGpLkaTA11st1fUly4sQJTYdQYpWV5wgRERFRYWBxloiIiIjeykhfCiMDaa7FNyMDKQz1pRqIquBVq1ZN0yGUWGXlOUJERERUGFicJSIiIqK3ylAo4O1hpRxjNjtvDytkKBSQQksDkRWsFy9e5Gn7qlWrFlIkJU9ZeY4QERERFQYWZ4mIiIjorfR1ddCzdT0AmWPMJianwchACm8PK/RsXQ+6Um0NR1gwWrdunaexZP39/QsxmpKlrDxHiIiIiAoDi7NERERE9E66Um34tLJGrzYyJCSlwNhQDxkKRakqus2ePZsTfX2A7M+RJHkaDPWlpe45QkRERFQYWJwlIiIiovfS19VBUlISXjwLRp06dWBoaKjpkAqUj4+PpkMo8fR1Mz9aZE3+xaEMiIiIiN6PxVkiIiIiUptcLtd0CIXq9u3beP78OWrWrAk7OztNh0NEREREpZxECCE0HURxd/36dQghoKurq+lQNEYIgbS0NEilUt7y9xbMkXqYJ/UwT+phntTDPKmHeXq/os5RamoqJBIJXFxcCv1ccXFxGD16NG7evAkhBCQSCZydnTF//nxUqVKl0M9fmMp6W5avbfUwT+phntTDPKmHeVIP8/R+zJF6imtblvcaqUEikZT5J7dEIoGurm6Zz8O7MEfqYZ7Uwzyph3lSD/OkHubp/Yo6R0XZBlu4cCHu37+PCRMmYPXq1Zg6dSqCgoIwY8aMIjl/YSrrbVm+ttXDPKmHeVIP86Qe5kk9zNP7MUfqKa5tWfacJSIiIqIyr1WrVhg6dCiGDBmiXHb48GFMnjwZV65cKXVj7BIRERFR8cCes0RERERU5r1+/TrHGLNNmjRBRkYGXr58qaGoiIiIiKi0Y3GWiIiIiMq89PT0HGOympqaAgBSUlI0ERIRERERlQEszhIRERERvQNHASMiIiKiwsLiLBERERHRO3ByDSIiIiIqLJwQjIiIiIjKPFtbWzRo0ADGxsbKZUIIXLlyBXZ2djAyMlIul0gk+PPPPzURJhERERGVMjqaDoCIiIiISNMaN24MIOcQBrktZ98GIiIiIioo7DlLREREREREREREpAEcc5aIiIiIiIiIiIhIA1icJSIiIiIiIiIiItIAFmeJiIiIiIiIiIiINIDFWSIiIiIiIiIiIiINYHG2DImJicGMGTPQsmVLuLi4oF+/frh69apy/YULF+Dj44OGDRuiY8eOOHTokMr+KSkp+OGHH9CsWTM4Oztj0qRJiIqKUtkmODgYo0aNgrOzM9zd3fHjjz8iOTm5SK6voBRFnv799198/PHHcHJyQtu2bbFu3boiubaC9KF5ym7GjBmYNm1ajuV5OUZxVRR52r17N7p27QonJye0b98eq1evRkZGRqFcT2EoihxlEUJgxIgRGDRoUIFeQ1EoijzxPVzV2/LE93Dg5cuX8PX1hbu7Oxo3bowRI0bg0aNHKtscPnwYnTt3hqOjI7p3744LFy4UybVR6cW2rHrYllUP27Lvx3asetiWVQ/bsuphW1Y9pa4tK6jMGDZsmOjSpYu4cuWKCAoKEj/88INwdHQUjx8/FoGBgcLBwUEsWLBABAYGirVr14oGDRqIf//9V7n/tGnTRNu2bcWVK1fErVu3RPfu3cWAAQOU66OiokTz5s3FmDFjxKNHj8T58+dFixYtxHfffaeBq82/ws7T48ePhb29vViyZIl4+vSpOHTokHB0dBSbNm3SxOXm24fmSQghMjIyxPz584VMJhNTp05VWafuMYq7ws7Tvn37hJ2dndi2bZt48uSJOHTokHBxcRFLliwpysv8IIWdo+z++OMPIZPJxMCBAwv7sgpcYeeJ7+H/eVee+B4uREpKiujSpYsYOHCguH37tggICBATJkwQzZo1E5GRkUIIIS5cuCDs7OzEn3/+KQIDA8Uvv/wi7O3tRWBgoCYvm0o4tmXVw7asetiWfT+2Y9XDtqx62JZVD9uy6iltbVkWZ8uIkJAQIZPJxNWrV5XLFAqFaNu2rVi4cKH49ttvRc+ePVX28fX1FcOHDxdCCBEWFiZsbW3F6dOnleuDgoKETCYT169fF0IIsXjxYtGyZUshl8uV2+zYsUP06NFDKBSKwry8AlMUefrjjz+Em5ubyjHGjRsnRo8eXViXVeA+NE9CZDZY+/TpI5o2bSq8vLxy/NFQ5xjFXVHkqW/fvuLrr79WWbZ06VLh6elZ8BdUCIoiR1kePHggGjVqJHr37l3iGrRFkSe+h2d6X574Hi7E+fPnhUwmE2FhYcr1crlcNGzYUOzcuVMIIcTw4cPFZ599pnKMPn36iG+//baQropKO7Zl1cO2rHrYln0/tmPVw7asetiWVQ/bsuopjW1ZDmtQRpibm2P16tVwcHBQLpNIJJBIJIiLi8PVq1fRrFkzlX2aNm2Ka9euQQiBa9euKZdlqVOnDiwtLXHlyhUAwLlz59CuXTvo6ekpt+nVqxf27NkDiURSmJdXYIoiTxUqVEBMTAwOHjwIIQQePnyIa9euoWHDhkVwhQXjQ/MEABcvXkTdunVx8OBBVK9ePcc51DlGcVcUeZo8eTJGjBihskxLSwuxsbGFcEUFryhyBGTeojl58mRMnDgRderUKbwLKiRFkSe+h6uXJ76HC9SrVw+rV6+GpaWlcr2WVmaTMi4uDgqFAtevX89xjCZNmij/FhLlFduy6mFbVj1sy74f27HqYVtWPWzLqodtWfWUxrYsi7NlRLly5eDp6QldXV3lsqNHj+LJkyfw8PBAWFgYKleurLJPpUqVkJycjOjoaLx69Qrm5uYqb3RZ24SFhQHIHN+lUqVK+Pnnn+Hl5YV27dphzpw5SElJKfwLLCBFkadOnTqhV69emDJlCuzs7ODt7Q13d3d8+umnhX+BBeRD8wQAAwYMwKxZs1ChQoVcz6HOMYq7osiTq6urSgMtPj4eW7duhYeHRyFcUcErihwBwNy5c1GpUiUMHDiwcC6kkBVFnvgerl6e+B4eDQsLC3h6eqqs37hxI+RyOdzd3REXF4ekpKRcj5H1t5Aor9iWVQ/bsuphW/b92I5VD9uy6mFbVj1sy6qnNLZlWZwto65fv46vvvoK7du3h5eXF+RyucoTG4Dy99TUVCQnJ+dYDwB6enrKN7uEhASsWbMGKSkpWLp0KaZMmYIDBw7gm2++KfwLKiSFkafIyEg8f/4cEydOxK5duzBr1iz4+flhyZIlhX9BhSSveVJHQRyjuCmMPGWXmJiIsWPHIiUlBV9++WWBxFzUCiNHZ86cwYEDBzB79uwS8635+xRGnvgerl6e+B6eM0/Hjh3D/PnzMXToUNjY2EAul6vskyX730KiD8W2rHrYllUP27Lvx3asetiWVQ/bsuphW1Y9paEtq1MoR6Vi7fjx45g8eTJcXFwwb948AJlPsjefpFm/GxgYQF9fP9cncUpKCgwMDAAAOjo6qFOnDr7//nsAgL29PTIyMvD5559j2rRp7/wmsDgqrDx9/fXXqFKlCsaMGQMAaNCgAYQQ+P777zFw4ECUL1++MC+rwOUnT+ooiGMUJ4WVpyyvX7/G6NGjERoainXr1r31lqjirDByFBUVhenTp+P7779XuW2lJCus5xLfw9XLE9/DVfO0detWzJw5E97e3soP01k97t48Rva/hUQfgm1Z9bAtqx62Zd+P7Vj1sC2rHrZl1cO2rHpKS1uWPWfLmE2bNmHChAlo1aoVVq5cqXzSValSBeHh4SrbhoeHw9DQECYmJqhcuTJiYmJyPDnDw8OVfyQqV66MevXqqazP+v358+eFdUmFojDzdO3aNZWxUQDAyckJ6enpCA0NLcSrKnj5zZM6CuIYxUVh5gkAHj9+jN69eyMyMhKbN2/O8fwqCQorR35+fnj9+jWmT58OZ2dnODs748CBA7h69SqcnZ3x4sWLQrmewlKYzyW+h6uXJ76H/5enuXPn4vvvv8fgwYPx888/K8fqMjMzg6GhYa7HKC0fLElz2JZVD9uy6mFb9v3YjlUP27LqYVtWPWzLqqc0tWVZnC1DtmzZgpkzZ2LAgAFYsGCBShftRo0a4fLlyyrbX7x4ES4uLtDS0oKrqysUCoVykgAgc0yXV69eoXHjxgCAxo0b4/bt2yoD3AcEBEBbW7tEfftZ2HmytLTEw4cPVY7x8OFDSCQS1KpVqxCvrGB9SJ7UURDHKA4KO0/Pnj3DkCFDYGBggG3btuVokJQEhZmjdu3a4Z9//sHevXuVP61bt4a9vT327t2LSpUqFfj1FJbCfi7xPVy9PPE9PDNPc+fOxdq1azF16lRMmzZN5TZLiUQCFxeXHMe4dOkSGjVqVIhXRaUd27LqYVtWPWzLvh/bsephW1Y9bMuqh21Z9ZS6tqygMiEoKEjY2dmJcePGifDwcJWfuLg4ERAQIOzs7MTcuXNFYGCgWLdunWjQoIH4999/lcfw9fUVrVu3FhcvXhS3bt0S3bt3FwMHDlSuf/z4sWjYsKH49ttvRVBQkDhz5oxo2bKlmDZtmiYuOV+KIk/btm0TDRo0EH/++ad4+vSpOHbsmHB3dxc//PCDJi45XwoiT9kNHDhQTJ06VWVZXo9RHBVFngYOHCgaN24s/P39c5yjJCiKHL1p6tSpKq/JkqAo8sT38JxyyxPfw4W4ePGikMlkYubMmTn2T0hIEEIIcfbsWVG/fn3x+++/i8DAQPHrr78KR0dHERgYqMlLpxKMbVn1sC2rHrZl34/tWPWwLasetmXVw7asekpjW5bF2TJixYoVQiaT5fqT9WL18/MTXbp0Efb29qJjx47i0KFDKsdITEwUX3/9tWjUqJFo1KiR8PX1FVFRUSrb3Lp1SwwYMEA4ODiI5s2bi19++UWkpKQU2XV+qKLK019//SW8vb1Fw4YNRfv27cWyZctEampqkV3nhyqIPGX3tkZIXo5RHBV2nsLCwt56fJlMVujXVxCK6rmUXUls0BZVnvgerupteSrr7+HffPPNW/dfvHixcru//vpLtGvXTjg4OIgePXqUmIIEFU9sy6qHbVn1sC37fmzHqodtWfWwLasetmXVUxrbshIhsvX5JiIiIiIiIiIiIqIiUTIGuyEiIiIiIiIiIiIqZVicJSIiIiIiIiIiItIAFmeJiIiIiIiIiIiINIDFWSIiIiIiIiIiIiINYHGWiIiIiIiIiIiISANYnCUiIiIiIiIiIiLSABZniYiIiIiIiIiIiDSAxVkiIiIiIiIiIiIiDWBxloioBJs0aRJsbGzw+++/azoUIiIiIqI8YVuWiAiQCCGEpoMgIqK8i4+PR4sWLVCzZk2kpqbiyJEjkEgkmg6LiIiIiOi92JYlIsrEnrNERCXUwYMHAQBff/01QkJCcPHiRQ1HRERERESkHrZliYgy6Wg6ACIiyp/du3ejWbNmaNq0KWrVqoVt27ahWbNmyvWDBg1CzZo1UatWLWzZsgWRkZGws7PD9OnT4ejoqNzuzp07WLhwIe7evYu0tDS4ublh0qRJqFevniYui4iIiIjKALZliYgysecsEVEJ9OjRI9y5cwfdu3cHAHTv3h0nTpxARESEynZHjx7FiRMn8M0332DBggWIiIjAhAkTkJGRAQC4ePEi+vXrBwCYPXs2fvrpJ7x8+RJ9+/bF48ePi/SaiIiIiKhsYFuWiOg/LM4SEZVAu3fvhpmZGVq3bg0A6NGjBzIyMrBr1y6V7dLT07Fu3Tq0bdsW7dq1w/jx4xEWFgZ/f38AwPz581GrVi2sXr0abdq0QefOnbFx40bo6Ohg8eLFRX5dRERERFT6sS1LRPQfFmeJiEqYtLQ07N+/H23btoVcLkdcXByMjIzg6uqKHTt2QKFQKLe1traGsbGx8ndLS0sAQHJyMpKSknDnzh106tQJ2traym3KlSuHVq1a4fLly0V3UURERERUJrAtS0SkimPOEhGVMKdPn0ZkZCR27dqVo3cBAJw9exaenp4AAAMDA5V1WlqZ38kpFArEx8dDCIGKFSvmOEbFihURHx9fCNETERERUVnGtiwRkSoWZ4mISpjdu3ejRo0amDVrlspyIQTGjx+Pbdu2KRu072JiYgKJRJJjbC8AeP36NczMzAoqZCIiIiIiAGzLEhG9icVZIqIS5PXr1zh79ixGjhyJJk2a5FjfsWNH7NmzB69evXrvsQwNDWFvb4/Dhw9jzJgxytvB4uPjcfr0aTRt2rTA4yciIiKisottWSKinDjmLBFRCbJ3716kp6fjo48+ynV99+7dkZGRgR07dqh1vEmTJiE4OBijRo3CiRMncOTIEQwZMgSpqakYN25cQYZORERERGUc27JERDmxOEtEVILs2bMH9erVg0wmy3W9q6srqlevjp07dyIjI+O9x2vWrBn++OMPyOVy+Pr64ttvv4WlpSV27Njx1nMQEREREeUH27JERDlJhBBC00EQERERERERERERlTXsOUtERERERERERESkASzOEhEREREREREREWkAi7NEREREREREREREGsDiLBEREREREREREZEGsDhLREREREREREREpAEszhIRERERERERERFpAIuzRERERERERERERBrA4iwRERERERERERGRBrA4S0RERERERERERKQBLM4SERERERERERERaQCLs0REREREREREREQawOIsERERERERERERkQawOEtERERERERERESkASzOEhEREREREREREWkAi7NEREREREREREREGsDiLBEREREREREREZEGsDhLREREREREREREpAEszhIRERERERERERFpgI6mAyAiIiIiKm6uXLmSp+0bN25cSJEQERERUWkmEUIITQdBRERERFSc2NraQiKRvHc7IQQkEgn8/f2LICoiorzLep8qqv2IiChvOKwBURkxbdo02NjYvPXH3d29QM936dIl2NjY4NKlSwV63KioKPj4+KB+/fpo0KABGjRoAHd3d8TGxhboebLs2bMHNjY2CA0NLZDjnT9/HjY2NujatWuBHO9dWrdujWnTphXIsfbs2YO+ffvCxcUFDRs2xEcffYRFixYhISGhQI6f3bRp09C6des87TNo0CAMGjSowGNRR2hoaI7Xk52dHVq2bIkZM2YgKiqqyGKxsbHBkiVLABT8c5eorNmwYQP+/PPP9/5kbUdUmNiOy5+C+luYdZx3/Tx+/LiAoi44cXFx+PLLL3H16tU87RcWFoZRo0bh+fPnymUF2a7Mq4J4HFesWAEbGxvcvn37rdvMnDkTzs7OSEhIUKttuWTJEtjY2OQ7puyeP3+Or7/+Gp6enrC3t0fTpk3x6aef4vLlywVyfHW9qx3u5+cHGxsbLF++vFDOnb0dW9Rye407OjqiU6dOWLlyJTIyMookjjffe/PzuYhKJg5rQFSGWFhYYOnSpbmuk0qlRRxN/ujp6eGXX36BXC6Hjo4OdHV1Ub16dejr62s6NLXs3r0bMpkMAQEBuHbtGlxdXQvtXEuXLoWxsXGBHGflypUYPnw4xowZA6lUirt372Lt2rU4e/Ystm7dWqDPn7Fjx2Lw4MEFdryiMmbMGHh5eQEAUlJSEBwcjCVLliAwMBBbtmwpkhi2b9+OypUrF8m5iEo7Nze3t65LSUmBrq4ue5RRkWI7TvOWLl0KCwuLXNdVr169iKN5P39/f+zbtw8ff/xxnvb7999/4efnp7KsoNqVmtKjRw8sXrwYBw4cgKOjY471qampOHjwIDp27AhjY2N89913RRbb69ev0adPH1haWsLX1xdVqlRBVFQUdu7ciSFDhmDRokVo3759kcXzNkuWLEHXrl0xduxYTYdSaLJe40IIJCcn4/r161i8eDHkcjk+//zzQj+/nZ0dtm/fDmtr60I/FxUvLM4SlSG6urpwcnLSdBgfxMjICDKZTNNh5EtcXByOHz+OH374AatWrcK2bdsKtTjboEGDDz5Gamoq1qxZgxEjRuCLL75QLm/evDmsrKwwbtw4HD9+HJ06dfrgc2WpWbNmgR2rKNWsWVPl9dWkSRNIpVJMnz4djx49Qr169Qo9hpL++iYqzoKCgrB48WL8+++/SEhIwM6dO7Fr1y5YWVlprOc+lS1sx2le/fr1i2URtigURLtSkypXrowWLVrg77//xrRp06Ctra2y3s/PDzExMejZsycAFGlxbMeOHYiLi8ORI0dUCuDt2rVDr169ikVxNiMjA7/++itq1Kih0TgK25uv8ebNm+PZs2fYtm1bkRRnjY2NS/z7POUPhzUgIhUrV66Evb19jtvL1q9fDzs7O0RGRgIAQkJCMHHiRLi7u8PJyQmDBg3CtWvX3nrc3G7JyLodfM+ePcpl4eHhmDp1Kpo1awZnZ2cMGjQIN27cUK6PiorCDz/8gFatWsHe3h5ubm4YN25cjtuc/v77b/j4+MDZ2Rnu7u6YMWPGe2+ZUygUWL58Oby8vNCwYUOMHTs2133u3LmDESNGoEmTJnBxccGnn36KR48evfPYAHDgwAGkp6fDw8MD3t7eOHr0KGJiYlS2ybql5tatW+jRowccHR3RtWtXHDlyRGW7+Ph4/Pzzz2jbti0cHBzQpUsX7Nq1S2WbN28/U2efNyUkJEAul0OhUORY5+npiS+++EKlkabOOYQQWL9+PTp16gRHR0e0a9cO69atQ9YQ6G8+V+RyOebPn4/27dvD3t4eLi4uGDZsWJ7Gd9yzZw8aNGiAW7duoU+fPnBwcECrVq2wbt06le3yk6N3MTU1BQBl77qs5/wff/yBjh07omHDhti9ezcA4Pjx4+jfvz+cnZ1hb2+Pjh07YvPmzSrH+/PPP9GxY0c4ODjAw8MD33//vcrQEpq8HYyoNPP390fPnj1x7949dO3aVfl+pa2tjdmzZ+Ovv/7ScIREmdiOe387Tp2/t/mVkJCAVq1aoWPHjkhNTQWQ2e4ZPHgw3N3dERUVpczboUOH8Omnn6Jhw4bw8vLCsmXLcrS3du7ciY8++gj29vbw8vLCkiVLctxe7efnh759+8LJyQktWrTAjBkzEBcXh0uXLinvRBo8eLDyS6SMjAysXr0aXbp0gaOjI5ycnNC3b19cvHgRQGab6auvvgIAtGnTRtmWzN6u7NChAyZOnJjj+rt164YxY8aodZ63UfdxDAgIwOjRo+Hi4gIXFxeMGzcOz549e+exP/74Y0RERODChQs51v3111+wsrJSdpx4c1iDlJQU/Pzzz3B3d4ezszO++uorpKSk5DjOzp074ePjAycnJzg6OqJbt244fPjwO+OKiIiARCLJ8dhqa2tj0qRJ6NOnT57O8bbhFt5sJ8bGxuKrr76Cm5sbGjdujLlz5+Z4DmY9jt26dUOPHj3g5uam8jhev34dNjY2OHXqlMp+/v7+sLGxwbFjx5T5mzNnjnLYhq5du+Lvv/9+Z17eNG3aNAwdOhS7d+9Ghw4dYG9vj27duuHMmTMq2+X1/e19ypUrp3KnTNbnip07d8Ld3R1ubm4IDAxU6zkvl8vx/fffo2XLlsr3n+yfRwprSBkq/licJSpj0tPTc/3J+qDZtWtXpKen459//lHZ79ChQ2jRogUqVKiAwMBA+Pj4IDQ0FN988w3mzZsHiUSCIUOGfNC4SImJiejXrx8uXbqEKVOmYOnSpdDV1cXw4cPx9OlTCCEwevRonD9/HpMnT8a6deswfvx4XLhwQeXWo+XLl8PX1xdOTk5YvHgxxo0bh6NHj2LQoEGQy+VvPf/cuXOxbNky9OzZE0uXLoWZmRnmz5+vss3FixfRr18/AMDs2bPx008/4eXLl+jbt+97xxrbvXs3PDw8ULFiRXTv3h1paWlv/UA/evRotGnTBkuXLkWdOnXw+eefK28vk8vl6N+/Pw4cOICRI0di+fLlcHV1xddff42VK1fmerz87AMA5cuXR8OGDbFu3TpMnToVx48fV46hKpVK8emnn8Le3j5P55gzZw7mzJmD1q1bY+XKlejZsyfmzZuH1atX5xrDl19+id27d2PUqFH4/fff8dVXX+HRo0eYNGkS8jKnpUKhwOeff47OnTtj9erVcHFxwZw5c3D27NkPylH242e9nuRyOR48eIDly5ejadOmOXpfLFmyBJ988gnmzJkDd3d3nD59GuPGjYOdnR2WL1+OJUuWoEaNGvjxxx9x69YtAMDBgwcxd+5cDBgwAOvWrcO4ceOwb98+zJw5U+0cEFH+/Prrr7C3t8fhw4fx1VdfKd97vvnmG/Ts2RMbNmzQcIRUVrAd92HtOHX+3r5L9r/12X+yClrGxsaYNWsWQkJClG2HDRs24NKlS5g9ezbKly+vPNb3338PY2NjLFmyBN26dcPSpUtV4l21ahW+/fZbNGvWDCtXrsSAAQOwZs0afPvtt8ptTp06hdGjR6NChQpYuHAhJk+ejOPHj+OLL76AnZ0dZsyYAQCYMWOGMsfz5s3D8uXL0adPH6xduxYzZ85ETEwMPvvsMyQnJ8PLy0tZYF26dGmut7B7e3vDz89P5Qvix48f48GDB+jWrZta5/mQxzE4OBh9+/ZFZGQkfv31V8yaNQvPnj1Dv379lF9A5KZ169YwNzfHgQMHVJZHRUXhzJkzyl6zuZkyZQp27NiB0aNHY+HChYiNjcX69etVttm8eTNmzJiBtm3bYtWqVZg3bx50dXUxefJkhIWFvfXYXl5ekMvl6N27N9atW4f79+8rC7Xu7u4qw33l9xxvUigUGDlyJPz8/DB16lT88ssvuH79eo6C6fseRxcXF9SsWROHDh1S2e/gwYMwMzODp6cnhBAYN24ctm3bhmHDhmHFihVwdnbGF198gb1796odMwDcvXsX69atw8SJE7Fs2TJoa2tjwoQJygL+h76/ZX+NJyQk4MyZM9i3bx8GDBigsl1GRgZ+//13zJo1C1999RXq1q2r1nN+9uzZOHPmDKZOnYp169ahTZs2mDNnjrKzBpVhgojKhKlTpwqZTPbWn7Vr1yq3HThwoBg8eLDy9ydPngiZTCYOHTokhBDis88+E02aNBHx8fHKbdLS0kSHDh3Exx9/LIQQ4uLFi0Imk4mLFy8qz9+qVSuVmJ49eyZkMpnYvXu3EEKIjRs3ChsbG3H//n3lNklJSaJ9+/Zi165dIiwsTAwaNEhcuXJF5TgzZ84U9vb2QgghYmJihL29vfj2229Vtrly5YqQyWRi06ZNueYnNjZW2NnZiblz56osHzFihJDJZOLZs2dCCCF69uwpOnfuLNLT01X2dXNzExMnTsz12EII8eDBAyGTycSRI0eUy4YOHSo6dOigst3u3buFTCYTS5cuVS5TKBSiW7duolevXkIIITZv3ixkMpm4fv26yr7Tp08XDg4OIjo6WgghRKtWrcTUqVPztE9uXr58KQYNGqR8rtjY2IguXbqIRYsWiZiYGOV26pwjNjZWNGjQQMyaNUtlm5kzZ4oRI0YIIVSfKykpKWL48OHK516W33//XchkMhEeHi6EyHzODhw48K3XkJXXHTt2KJelpKQIBwcH8eOPP35QjrKex7n9uLm5iYcPH+bYdvr06SrHWLNmjfKxyhIdHS1kMplYtWqVEEKIb7/9VnTo0EFkZGQot9m3b5/YsGGD8neZTCYWL16scs1Zz10iyr+GDRuKEydOCCGESE9PFzY2NuLu3btCCCH+/fdf4eTkpMnwqAxgO65g2nHq/L3NTdbf1Lf9jBo1SmX7GTNmCDs7O3H69Gnh6Ogofvjhhxx5GzJkiMo+P/30k7CzsxPx8fEiLi5OODo6ihkzZqhss2PHDiGTyURAQIAQQogePXqI7t27C4VCodzm0KFDon379uL169c5HkchhPD19RXr169XOe7Ro0eFTCYTN27cULne7G2I7O3Kp0+fChsbG/HXX38p1y9cuFA0atRIpKSkqH2eN6n7OPr6+ormzZurPIejo6OFq6ur+OWXX3I9dpZZs2YJZ2dnkZycrFy2YcMGYWdnJyIiIpTLsrctAwIChEwmE1u2bFGuz8jIEJ07dxYymUy57Oeff84R+927d4VMJhMHDx58Z1ybNm0SLi4uyueUi4uLGDdunDh37pzKduqcY/HixSpxZcneTjx16pSQyWTCz89PuT4xMVE0adJE5bWuzuO4ePFi4eTkpMypQqEQXl5eyufvuXPnVN6DskyePFm4u7uLtLS0HPHlJut98MmTJ8plly9fVvmMpc77W27e9Rr/+OOPRVxcXI5t9+7dq3IMdXLVoUMH8c0336hss3TpUnHq1CkhhHrvvVQ6ccxZojLEwsICK1asyHVdlSpVlP/39vbGd999h9evX8PCwgKHDh2CsbGx8na2y5cvo1WrVipjIuno6OCjjz7CsmXLkJiYmK/4rl27hurVq6N+/frKZQYGBjh69Kjy9w0bNkAIgdDQUDx58gRBQUG4fv268taxmzdvIjU1FV26dFE5dqNGjVCtWjVcvnw5xzefWfulpaWhVatWKss7deqk7FmZlJSEO3fuYPz48SrjVJUrVw6tWrXKMXFCdrt370a5cuXQqFEjxMXFAci8Jey7777DxYsX0bRpU5Xte/Toofy/RCJBu3btsGTJEsjlcly+fBnVqlWDs7Ozyj7e3t7YtWsXbt26BU9PT5V1+dknS+XKlbFhwwYEBgbizJkzuHTpEq5cuYJly5Zhx44d2LRpE2rXrq3WOSQSCdLT03OMm/XNN9/kem5dXV3lrT6vXr1CcHAwQkJClLdOZT3u6soem66uLsqXL4+kpCQAH5YjABg/frxyQrD09HS8fPkSGzZsQN++fbFx40bY2dkpt83+HAeAkSNHAsjsdRQcHIynT5/izp07KtfYtGlTbN++HT4+Pmjbti08PT3RtWtXTkhEVAT09PTe2mMvJiYGurq6RRwRlUVsx31YOw5Q7+/tu6xYsSLXCcHKlSun8vuXX36Jc+fO4dNPP0WdOnXw5Zdf5tine/fuKr936NABGzZswI0bNyCEgFwuR+vWrZGenq7cJusxPH/+PGrUqIH79+9jwoQJKm2Bzp07o3PnzgCQ611dWb1Qo6KiEBQUhCdPnuS5XVWjRg24uLjg77//Vl7HoUOH0LFjR+X7YX7Oo+7jePHiRbi5uUFfX1+ZH2NjYzRq1Aj//vvvO2P/+OOP8eeff+LkyZPKPP3111/w8vJChQoVct3n6tWrAKAytIeWlhY6dOiAwMBA5bKsYR/i4uKU15x1e/r7cjtgwAD4+Pjg3LlzuHDhAi5fvoxjx47h2LFjGDZsmPLYH3KON69JKpXCw8NDuczQ0BCenp64cuWKcpk6j6O3tzeWLl2KU6dOoVOnTrh+/TpevHih7EV94cIFSCQSeHp65ng+79+/H48ePcrRNn6b8uXLq8xPkTURblbPVHXe34yMjN56/Oyv8ZSUFDx69AgrVqxA3759sX37dpXjvhmzOrlq0qQJtm3bhrCwMHh6esLT0xPjxo1T69qpdGNxlqgM0dXVhYODw3u369ixI2bOnInDhw9j8ODBOHToEDp06KCcSTc2NhYVK1bMsV/FihUhhFC5xSkvYmJi3tooyrJ//34sWLAAL1++hJmZGerXr68yw2/WLS1viy8+Pj7X42btZ25urrI8ewM8Pj4eQog8HzstLQ379+9HXFwcmjdvnmP9tm3bchRnK1WqpPJ7hQoVIIRAXFwcYmNjc/1gkBVXVvH3zevL6z5vsra2hrW1NYYPH460tDTs2bMHP/74IxYsWIDFixerdQ7x/9sus9/W9z5nz57F7NmzERQUBCMjI9ja2sLQ0BAA8jSsAYAcs0FraWkpj/GhOapWrZrK68vZ2Rmenp7KMeKyD42QFX+WqKgofPfddzh+/DgkEglq1aqFRo0aAfjvGjt37gyFQoEtW7Yob8WsVq0aJk+erPxwQUSFw93dHYsXL4aLi4vyfUIikSAxMRG///57ru/tRAWN7bgPa8cB6v29fReZTKbWhGBGRkZo3749fv/9dzRr1ixH+wMALC0tVX7PahvFxsYqh0kYNWpUrscPDw9HbGwshBDvzfmb7ty5gx9++AF37tyBgYEBrK2tUbVqVQB5a1d169YNM2fORHR0tLLYPnv27A86j7qPY0xMDP7+++9cxyx9XxvTxsYG9vb22L9/Pzp37ozAwEDcu3cPn3322Vv3UTeup0+fYsaMGbhw4QKkUimsrKxga2sLQL3cGhgYoF27dmjXrh0A4MmTJ5g+fTr++OMP+Pj4QCaTffA5sl+TmZlZji/537wmdR7HWrVqwdnZGYcOHUKnTp1w6NAh1KxZEy4uLgAyHy8hhPL3N4WHh6tdnDUwMFD5PSv+rNeMOu9v7yrOvvkab9SoEWQyGfr374+dO3di2LBhynVvtufVydXXX3+NypUrY//+/Zg5cyZmzpwJZ2dnfP/998rHkcomFmeJKAcTExO0bt0ahw8fRtOmTfHo0SOV8a1MTU0RERGRY7/Xr18DyGy4hISEqKzLbZD7rB6L2c/75oQQQGZPDDMzM0RHR2Pq1KkYNGgQRowYoWzUzpkzRznIe9YETBEREbCyssoR39tmGM1qbEVGRqrsl33CLhMTE0gkkrdeu5mZWa7HPnXqFKKjozFz5kzUqlVLZd3WrVtx/PhxREZGqjSuY2JiVBoWERER0NbWhpmZGUxNTfHkyZNcY8h+LdnlZx8gcwKqFStW4NSpUyqNIalUij59+sDPz0/ZY0Cdc2R9Wx4VFaWS5xcvXuDp06fKSRiyPH36FOPGjVOOq1WjRg1IJBJs3rxZpQdFQchvjt7FyMgIVlZWuR43u8mTJyMoKAjr16+Hs7MzdHV1kZycjB07dqhs16VLF3Tp0gXx8fE4d+4c1qxZgylTpsDV1TXHhzwiKjhTpkxBnz590LFjR9ja2kIikeCXX35BcHAwhBBYsGCBpkMkUmI7Lvd2HKD+39sPFRAQgI0bN6J+/frYunUrvL290bBhQ5VtoqOjVX7PGiu1QoUKyomm5s2bh9q1a+c4fsWKFWFsbAyJRKKcCyBLSkoKLl68mON8QOaEZSNHjlROSGZlZQUtLS34+fmp9HBWR6dOnfDTTz/h+PHjCAoKQrVq1ZTtuPyeR93H0cTEBM2bN1cplGXR0Xl/iaNnz56YNWsWYmJisHfvXlhaWqJFixbvjSsiIkJZbHszLoVCgVGjRkEqlWLXrl2oX78+dHR0EBgYiH379r312BkZGWjXrh26d++eY5K1WrVq4ZtvvkH37t0RGBgIa2trtc6RVbDMyMhQ3u33Zo94c3NzREdHq2zz5jXl5XH09vbGzz//jPj4eBw5ckQ5RweQ+XgZGhq+dXz2Nz8ffQh13t/yKutLsTffF7NTN1e6uroYM2YMxowZgxcvXuDUqVNYvnw5Jk2alGPcXipbOCEYEeWqW7duuHnzJrZu3YqqVavCzc1Nua5x48Y4deqUSs+KjIwMHDp0CA4ODrne3mlkZITo6GiVWU3fnDWzUaNGePbsGR49eqRcJpfLMX78eOzZswc3btyAQqHAhAkTlA36jIwM5e1LCoUCDRs2hK6uLg4ePKhy7KtXr+LFixdv/cbW2dkZ+vr6OHLkiMry7DOPGhoaKieEyf4BJT4+HqdPn85RWMyye/duVK5cGb169UKTJk1UfgYNGoS0tLQcg8AfP35c+X8hBP755x+4urpCV1cXjRs3xvPnz1VmPwYye6NIpVI4OjrmiCE/+wCZvWWjo6OxcePGHOsyMjLw7NkzyGQytc/h6OgIqVSaY0bX33//Hb6+viqNQyBz0P+UlBSMGjUKNWvWVDY2swqzee05+y75zdG7xMfHIzg4+L2NzmvXrqF9+/Zo0qSJ8vWTNfNsVk+Azz//XHnbk4mJCTp16oSxY8ciPT0d4eHheY6NiNRXpUoV7Nu3D0OGDIEQAjVr1kRSUhK6dOmCPXv2vLVgRKQpbMdlerO9oc7f2w+Vnp6OadOmoWbNmti2bRtsbW0xdepUldwBqm09ADh69CgMDAzQsGFDNGzYEFKpFK9evYKDg4PyR0dHBwsWLEBoaCiMjIxQv379HNd45swZjBo1CuHh4TnaVUFBQYiJicHgwYNhbW0NLS2tXHOQtfxdsob1OnHiBI4ePQpvb29lO03d87xJ3cfRzc0NgYGBqF+/vjI39vb2WL9+PY4dO/be2Lt06QJtbW2cOnUKhw8fRo8ePXLkKrusO9zeFVd0dDSCg4PRs2dP5WOlzjVra2ujUqVK2L17d46CPZA5+RmQ2aNT3XNk3XqffYKwN1+vzZo1Q3p6usrzMDU1FefPn1f+npfHsXPnzhBCYNGiRYiMjIS3t7dynZubG5KSkiCEUHk+BwQEYNmyZSpDHXyo/Ly/vc/t27cBINcvSrKokyu5XI4OHTrg999/BwBUrVoVAwYMwEcffYQXL17kOS4qXdhzlqgMSU1Nxc2bN9+63sbGRtk70sPDA2ZmZti+fTtGjhypcsvL+PHjcebMGQwePFj57e2mTZvw7NkzrF27Ntdjt2rVChs3bsTXX3+Nnj17IiAgAH/88YdKQ8jHxwcbN27EmDFjMHHiRJibm2PDhg3IyMhA//79lb0xfvzxR3z88ceIjY3F5s2b8eDBAwCZPTjMzMwwatQoLFu2DFKpFK1atUJoaCgWLVoEa2trlbFcszMyMsLYsWOxcOFCGBgYoGnTpvDz88vRGJw0aRJGjBiBUaNGoX///khLS8Pq1auRmpqa63hB4eHhOHv2LIYMGZLr2KCurq6oWbMmtm/fjk8++US5fM6cOUhJSUGdOnWwc+dOPH78GH/++acyT1u2bMG4ceMwceJEVK9eHSdPnsTu3bsxfvz4HOOe5XcfIPNW3i5dumDBggV4+PAhOnTogPLlyyMsLEw5XtLChQvzdI7Bgwdj/fr10NXVhZubG27duoWtW7fiyy+/zPFhwM7ODjo6Opg7dy6GDx+O1NRU7NmzB6dPn1Y+5gUlvznK8vTpU5XXV0REBNauXav8Jv1dHB0dceDAAdjZ2aFy5cq4fv06Vq9eDYlEohxDq2nTpvjuu+/w66+/omXLloiLi8PSpUtRu3Zt3gZFVMiioqJQvnx5fPHFF5oOhcowtuM+vB2nzt/bd/H398+1Vx6QObyRhYUFVq5cifv372PLli3Q19fHzJkz0atXL/z222/K8UIB4PDhw6hQoQI8PT1x+fJlbN68GV988QUMDQ1haGiIkSNHYtGiRUhISECTJk3w6tUrLFq0CBKJRPl3f+LEiRgzZgx8fX3RvXt3REREYMGCBWjbti1kMhkePnwIADh9+jRMTU1Rp04dGBsbY+XKldDR0YGOjg6OHj2KXbt2Afhv3M6sNs+xY8fQsmVL1K1bN9dr9vb2xsSJE5GRkaEcXxSA2ud5k7qP49ixY9G3b1+MHj0a/fr1g56eHrZv347jx49j8eLF734Qkfkld7t27bBy5Uo8f/4cPXv2fOf2tWrVQp8+ffDbb78hPT0d9evXx759+5T5BTJ7PFerVg2bN29G5cqVUa5cOZw9e1bZW/Rdz69vvvkGgwYNgo+PDwYPHoz69etDoVDgypUrWL9+Pfr27Qtra2sAUOscnp6e+PnnnzFjxgyMGDECL1++xLJly1Ru52/WrBlatGiBb775BpGRkahWrRo2bNiAqKgo5d18eXkczczM4OnpiS1btsDZ2VmlY4KnpycaN26MsWPHYuzYsahbty5u376NxYsXw8PDI0/Dnb1Pft7fssv+GlcoFHj8+DGWLFkCCwuLt77/AOrlSl9fH3Z2dli6dCmkUilsbGwQHByMv/76Cx06dCiYBFDJVUQTjxGRhr1vll+ZTKYyu64QmbPnymQy8ejRoxzHu3//vhg5cqRwcnISzs7OYsiQISqz7+Y2O+y6deuEl5eXsLe3F3369BF3794V9vb2yll+hRAiLCxM+Pr6KmMaPny48Pf3V67ftGmTaNOmjbC3txdeXl5i6tSp4tixY0Imk4nTp08rt9uyZYvo3LmzsLOzE+7u7uL7778XMTEx783Thg0blMcfNGiQ2LJlS47Zai9evCj69+8vHB0dRaNGjcSnn36qnDX3TatWrRIymUzcvn37redcsmSJcrbUrNk/9+3bJzp37iwcHBxEnz59VPIohBCRkZFi+vTpomnTpsLe3l54e3uLnTt3qmyTfVZddffJTUZGhti2bZvo37+/aNy4sbCzsxMeHh5i2rRp4unTp3mOS6FQiLVr14q2bdsKe3t70bFjR7F161bl+jdnJT18+LD46KOPhIODg2jRooUYP368uHz5srCxsVHO2px9Rt3c5DbrcEHlKGvW5ew/tra2onHjxmLo0KHi33//zbFt9ue8EEKEhoaK0aNHC1dXV+Hq6io+/vhjsW/fPjFixAiVmWU3bNggOnfuLBwdHYWbm5v47LPPRGhoqHJ99llu33bNRJR3dnZ24tNPPxWHDx9WzkROVJTYjiuYdpy6f2/f9K6Z3LN+/vjjD+Hv7y/s7OzE999/r7L/zz//LGxtbcXVq1eVbYEVK1aIYcOGCQcHB9G+fXuxZcuWHOfdtGmTMg/NmzcXkyZNEs+fP1fZ5tSpU+Ljjz8W9vb2omXLluKXX34RiYmJQojMNpyvr69wcHAQH330kfKx9fHxEY6OjqJZs2Zi+PDh4urVq8LZ2Vn8+uuvQgghEhISxNChQ4WdnZ345JNPhBA520xCCJGamirc3NxyzZ0658nv4yiEEHfv3hUjRowQzs7OwsnJSfTu3VscP378ncfN7sKFC0Imk4nBgwfnuv7NtmV6erpYtGiR8PDwEI6OjmLcuHFi+fLlQiaTKbfx9/cXAwcOFE5OTsLNzU30799fnDlzRnTs2FFMnDjxnfGEhISIr776SrRu3Vo4ODgIJycn0bNnT7Fjxw6hUCjyfI6//vpLtG/fXtjZ2Qlvb29x7tw50aFDB2U7UQghkpKSxI8//iiaNGkinJycxPTp08VPP/2k0g7Py+N49OhRIZPJlO3z7BITE8Xs2bNFy5YthZ2dnWjdurWYP3++kMvlym2yt2Nz8+ZnBCFyb1u/7/0tN7m9xhs0aCDc3d2Fr6+vePLkSY5t32xjq5Or+Ph4MXPmTOHl5SXs7OyUr9nk5GTlMbK/9+Z2zVQ6SYQowHtCiYgKgBACXl5eaNSoEaZPn57niQ5Ksj179uCrr77CiRMn1JpwgoiICt/69evx999/4/bt2zAxMUGHDh3QvXt35URCRPSfstyOU0doaCjatGmDn3/+GT4+PpoOh4iIigGOOUtExc6DBw8wc+ZM+Pn5YevWrZoOh4iIyrihQ4dix44dOHbsGIYPH45bt25h4MCBaN26NRYuXIjHjx9rOkSiYoPtOCIiorzhmLNEVOx89tlnygkQ2KOAiIiKixo1aihnWX706BG2bt2KNWvWYNWqVfD399d0eETFAttxREREeVMshjVQKBRYunQpdu7cifj4eDRu3BgzZsx468y3ISEhmD17Nq5fvw5DQ0P07NkTY8eOVc5WKJfLsWzZMhw6dAjR0dGoU6cOxo0bhzZt2hTlZRERERFRKRMZGYnDhw/j8OHDuHHjBszMzNC5c2d88803mg6NiIiIiEqgYlGcXbp0KTZt2oRffvkFlStXxty5cxEaGooDBw5AV1dXZdvY2Fh07twZVlZWmDZtGpKTk/Htt9/C2dkZs2fPBpA52+G5c+fwww8/oHbt2jh06BCWLFmC9evXo0mTJpq4RCIiIiIqoeLj43H06FEcOnQIV65cgba2Nlq3bo1u3brBw8NDZcZ6IiIiIqK80HhxNjU1FU2bNsXkyZPRv39/AEBcXBw8PDwwa9YsdOnSRWX79evXY9GiRThx4gTKly8PALh27Rr69++PEydOoEKFCmjcuDFmz54Nb29v5X5DhgyBpaUl5syZU3QXR0REREQlnr29PRQKBVxdXdGtWzd07NgRxsbGmg6LiIiIiEoBjY85++DBAyQmJqJZs2bKZeXKlUODBg1w5cqVHMXZJ0+ewMrKSlmYBYAGDRoAAK5evYqOHTti5cqVsLe3V9lPS0sLcXFxhXglRERERFQaTZgwAV27dkXVqlU1HQoRERERlTIaL86GhYUBAKpUqaKyvFKlSsp1by4PDw9HRkaG8hay58+fA8gcA0xfXx8tWrRQ2ef27du4ePFivscCu3HjBoQQkEql+dqfiIiIiPIuLS0NEokEzs7OGo1j9OjRb12XlJSEq1evomXLlkUYUd6wLUtERERU9NRty2q8OJucnAwAOcaW1dPTQ2xsbI7tO3XqhOXLl+Pnn3+Gr68vkpKS8NNPP0FHRwdpaWk5tg8KCsK4cePg6OiI3r175ytGIYTyp6wSQiA9PR06OjqQSCSaDqdYYo7Uwzyph3lSD/OkHuZJPczT+xV1jopL2+vFixf47rvvcPnyZaSmpua6jb+/fxFHpT62YwXS0tIglUr52n4H5kk9zJN6mCf1ME/qYZ7ejzlST1HnSd32l8aLs/r6+gAyx57N+j8ApKSkwMDAIMf2tWvXxqJFizBjxgxs3rwZhoaGmDBhAgIDA2FiYqKy7fXr1zF27FhUrlwZK1euzHdvAalUitTU1FyLv2VNenq6pkMo9pgj9TBP6mGe1MM8qYd5Ug/z9H5FmSNN9fa8fPky3NzcAACzZ8/G9evX0atXL1y/fh0GBgZwcnLC+fPnERAQgCVLlmgkRnVl5dDBwUHDkWhGUlIS/P39YW1tDUNDQ02HU2wxT+phntTDPKmHeVIP8/R+zJF6ijpPd+7cUWs7jRdns4YzCA8PR82aNZXLw8PDYWNjk+s+rVu3RuvWrREeHg4zMzOkp6fjl19+QY0aNZTb/PPPP5g8eTIaNmyI5cuX5yjc5pVUKoW1tfUHHaMkS05ORkhICGrXrp1r0ZyYI3UxT+phntTDPKmHeVIP8/R+RZ2jwMDAQj/H2wwfPhw//PADPv74Y1y5cgVffPEFBg4ciE2bNuHkyZOYMmUKfH19MXz4cJw4cQJt2rTRWKxEREREVHJpvDhra2sLY2NjXLp0SVmcjYuLw/379zFw4MAc21+9ehWLFi3CH3/8gUqVKgEA/v77bxgYGMDFxQUAcPLkSXzxxRdo06YN5s2bl2PIhPyQSCT89gGAgYEB8/AezJF6mCf1ME/qYZ7Uwzyph3l6v6LKkSZvyxsyZAhmzZqFxo0bIzExUdlpwMrKCkuXLgUAaGtro3///vj11181FicRERERqS/7XfvFhcaLs7q6uhg4cCDmzZuH8uXLo1q1apg7dy4qV66M9u3bIyMjA1FRUTAxMYG+vj6srKzw8OFD/Prrrxg8eDAePnyIn376CaNHj4axsTFiY2MxdepU2NnZ4euvv1YZt1YqlcLMzExzF0tExY48NR3aWlpIlKfBSF+KDIUC+roaf2skIiINmzJlCkaMGAE9PT1UqlQJERERAIBatWohNjYWr1+/hoWFBczMzBAZGanhaImIiIjoXeSp6ZDq6qNKdStIdfUgT00vNp/9i0UUEydORHp6Or755hvI5XI0btwY69atg1QqRWhoKNq0aYOff/4ZPj4+KF++PFauXIlffvkFXbp0gYWFBcaPH4+hQ4cCAM6cOYO4uDjcunUrx6y5bm5u2LhxowaukIiKo9S0DOw+FYgDZ4OQmJwGIwMpvD2s0LN1PehKtTUdHhERaVj58uUBAJ6enli4cCEqV64MZ2dnVK5cGb///jvGjRuH3bt3w9LSUsOREhEREdHbFPfP/sWiOKutrY0pU6ZgypQpOdZVr14dDx8+VFnm4uKCHTt25Hqsrl27omvXroUSJxGVHvLUdOw+FYht//z3/pKYnIat///dp5V1sfkWjYiINGvixIm4e/cuFi1ahPXr1+OLL77AtGnTsH79egDAjBkzNBsgEREREeWqJHz2Z+WBiMokbS0tHDgblOu6/WeD0KuNrIgjIiKi4src3Bw7d+5EeHg4AMDb2xtVq1bFzZs34ejoCDc3Nw1HSERERERvEkJAW0tS7D/7szhLRGWOQiEQn5iKxOS0XNcnJqchSZ4GU2O9Io6MiIiKs6zJaAGgUaNGaNSokQajISIiIqLshBAIDU/AvaBI3AuKREy8HON7ORX7z/4szhJRmaFQCFy8+xIHzgbhu5FNYWQgzfVN2shACkN9qQYiJCKi4uKrr77K0/Y///xzIUVCRERERLlRKASehMXhXlAk7j7+f0E2IUW5vpyRLkxN9Ir9Z38WZ4lKKXlqOrS1tJAoT4ORvhQZCoXGx1HRFCEELt4Nw9Z/HiD4RRwA4M7jCHRtUQfbjgXk2L5rizrIUCgghVZRh0pUaPT19TUdAlGJcunSJZXfw8PDkZ6ejqpVq8LCwgIxMTF49uwZdHV1YWtrq6EoiYiIiMqOjAwFgl7EqhRjE94oukp1tGBTyxz2VhVhX7cCFAoBbw8r5Riz2Xl7WBWLz/5ls1JDVMoV95kIi4oQApfuhWHr0YcIehELADDQ04F3Sys0qFMeDetZQCKRYH+2PHVxr4MuLawQFStHVQtjDV8B0YeTp6ZDqquPKtWtINXVgzw1vcx+UUOUFydPnlT+/8CBA5g3bx6WLFkCR0dH5fLAwECMHTsWnTp10kSIRERERKVaWroCgc9icDcoAneDIuEfHIXklHSVbfR1tVG/dnnY1a0Ae6uKkNU0g1RHte7Rs3U9AFD57F+caiT8dEZUypSEmQgLmxACl++FYcs/DxH0PKsoq42uHnXR3bMuTAx1ldv6tLJGrzYyJMnTYKgvxcMnUZi27BwkEmD+Z54w0CvduaLSjV/UEBWM3377Db6+viqFWQCwtrbG559/jp9//hlDhgzRUHREREREpUNKWgYCnkTjblAk7j6OwIMn0UhNy1DZxkhfBw2sKsDeqgLs61aEVTVT6Gi/u+errlRb+dk/ISkFxoZ6yFAois1nIlYdiEoZbS2tYj8TYWERQuDK/VfY8s8DPA79ryjbpYUVuntao5yRbo59sgrVWQOAV69kgiR5OqLi5Fi68yYmD3CFRCIpuosgKiD8ooao4ERHR6NcuXK5rtPR0UFSUlIRR0RERERUfKk7zGJySjr8Q6Jw93EE7gVFIuBpDNIzFCrblDPShV22YmytKuWgrZX3z+j6upltthfPglGnTh0YGhrm+/oKGj+VEZUyifK0d85EGBUnx16/QDSoXQGN7SxLRXFGCIGr/q+w5Z+HCHwWAyDz1oauHlbo1rJunmZeNDPRw9TBjfDV8vM4c+M57KwqoHPzOoUUOVHhKctf1BAVNCcnJ6xYsQIuLi4wNTVVLg8PD8eSJUvQpEkTDUZHREREVHy86+69tAxFtvFiIxAYGguFQqjsX76cHuytKv5/mIIKqGFpUqAdpuRyeYEdq6CU/KoMEakw0pe+cyZCUyNdnLnxHAfPBUNfVxtNHarA07k6nGQW770VoLgRQuDag3BsOfoAj7IVZT9yr4MeXtZ5Kspm16BOBQzr0gDr9t/Dmr13YV3dDLKa5gUYecnDCeZKhtiEFNwLisTz8AR4ulR/5xc1SfK0fL9GiMqaqVOnYtCgQWjVqhWcnZ1hZmaGyMhI3LhxA6amplixYoWmQyQiIiLSuHfdvadQCFjXMMOsPy6r7FPJ3AD2dStm9o6tWwFVKhiVubtX+cmaqJTJUCjQtUUdbDsWkGOdt4cV5Knp6NisNvyuh+JVVBJOXwvF6WuhKGekixYNq8LTpTpsa5WHVj5uEygqWUXZrf88QMDTGACAnq42unxgUTa7bi3r4n5wFC7ceYlfN1zBQl8vlbFqyxKOW1p8xSel4u7jCNx5HIk7gREIeRkHIPPWn64eVu/8okZPVxtLd96Em11lOMsqQapTsr6cISpKtra2OHjwINavX4/r168jNDQU5ubmGD58OIYMGQIzMzNNh0hERESkce+6e+/g+WCs/7Y9ZDXMULuqqXKogkrli8/wAprC4ixRKRMdl4IuLawgROabX27FtEGd6mNgR1s8fBoNv+uhOHfzBWISUvD3vyH4+98QVDI3QEvn6vB0qY7aVXIfY08ThBC4/jAcW48+xMOn0QAyl+2eEwABAABJREFUi7IfNa8Dn1YFU5TNIpFI8FkfZ4S8iMPLyEQs2HId3w5vUqyL1oWB45YWL5nF2Mj/F2Qzi7FC9S4g1KxsAoe6FRGTkAJvDyvlY5VdF/c6uBnwGkcvPsHRi09gYiiFe8Nq8HSuhgZ1KpS55zmROiwtLTF16lRNh0FERERUbLyKSsK9oAjcfRyJ6Hg5Pu3h+M679+SpGZj/uWcRR1n88RM1USmzeu8dhEUmYkJvJ/RpZ4MkeRoM/38bevZejhKJBLa1ysO2VnmM9LbHrcAI+F0PxYU7LxEenYxdJx9h18lHqFXZBJ4u1dHSuTosNfSNlhACNwJeY8vRB3j4JLMoqyvVRufmtfFxq3owMymcW7ONDKSYNqQxpiw+g6v+r7D71KMyN04nxy3VrISkVNwLisTtxxG4GxiJ4JexOYqxNSyN4VC3IhysK8LeqqLK66Fn63oAMh+rN7+oefE6Ad4eVjhz8zli4lNw5EIIjlwIQUVTfeWXM3WqlitztxQR5ebKlSvv3aZx48ZFEAkRERGRZggh8CIiEXcfR+BuUCTuBUXidXSycn05I12YGuu98+49IwNpUYZcYrA4S1SKXH8Qjqv+r6CjLYGZsR6kOlrK3qRSvP2WZW1tLbjYVIKLTSWM7ZmBq/dfwe9GKK7cf4UnYfHY8Lc/Nvztj/q1y8PTpTpaNKxaJGNVCiFwM+A1tv7zEP4hUQD+K8r6tLKGuYl+ocdgVc0Un/o4YvGOm9h02B82tczhaG1R6OctLt43wRzHLS1YCclpuB8UiTuPI3A7MALBL3IWY6tXylaMrVvhna8DXak2fFpZo1cbGRKSUmBsqKf8oqZ2VVN80t0Bw73tcSfwNfyuP8e/d14gIlaOPacDsed0IGpYGsPTOfPLmSoVjQr56omKr0GDBkEikUBke0G++cWFv79/UYdFREREVGgUCoFnr+JVirHR8Skq22hpSVCvuhns61aAnVUFZCjEW+/e8/awQoZC8c7aRFnF4ixRKZGRocDa/XcBAB+5W6GqhXG+jqMn1YZ7w6pwb1gVCclpuHD7BfxuhOJ2YAT8Q6LgHxKF1XvvwFlmAU+X6mhiVxmG+gX77ZcQArcevcaWo9mKsjpa6NS8Dj5uZQ3zcoVflM2uXZNauB8cheNXnmLuxmtY6OuJCqYGRRqDprxvgjkDPR0IIdi7Mp8Sk9NwLzhzvNi7jyMQ9DwWb0xWimoWxnCwrgiHuhXgULdinp//+ro6SEpKwotnwahTpw4MDVV7wGtrSeAkqwQnWSWM+dgRV/3/+3Lm2asEbDryAJuOPIBNTXO0dKkGD6dqRfLFCFFxsmHDhhzLkpKScPXqVezbtw9LlizRQFREREREBSdDIRD8IhZ3H0fiXlAE7gVFIT4pVWUbHW0t2NQyh71VZjHWtnZ5GOiplhbfdfce5yzJHYuzRKXE0UtP8OxVPEwMddG3XcHcam5sIEW7JrXQrkktRMYm4+zNzEJt4LMYXHsQjmsPwqEr1UYTu8rwdK4GF1vLD5pUSAiB24ER2HL0Ae4H/1eU7fj/4QvKF3FRNrvRPg4IDI1ByMs4zN10DbM+bQ5t7dL9jV+SPA2PQ2PQxb0Oth/POcFcF/c6uP4wHAfOBmF0DwfUrFx8xifWFHlqOrS1tJAoT4PR/4cTyT4mb5I8DfeDo3A7MHPM2KDQmBzF2KoVjf5fjM3sGVtQXwTI5fL3bqMr1UZzx6po7lgViclpuHDnZeaXM49e4+HTaDx8Go11++6iYb3ML2eaOVQp8C9niIojNze3XJd7eXnB0NAQK1aswKpVq4o4KiIiIqL/6Ovn7fNyeoYCgaEx/y/GRuJ+cCSS5Okq2+jpaqN+rfKwq5s5eZespvl7C6zZ79572zCLpIrFWaJSICE5DZsOPwAADOhoC2ND3QI/RwVTA3T3rIvunnXx/HUCzlwPhd+NUDx/nYizN5/j7M3nMDaQwr1hVXg6V4ed1dsnFcrtj8btwMyesveCIgEAUh0tdGxWGz1ba7Yom0VfVwfThjTGF7/54V5QJDYe9sfQLnaaDqvQJMnT8N3qC0hITsMv41pAoiXBgTe++ezuWRfTlp1D8Is4TJx/Gt0966JPO5sc35yWFalpGdh9KjBHnnp4WePIhWCcvfkCj3MpxlapaKQcpsChAIuxH8rIQIq2bjXR1q0mouPkOHvrOc5cf46HT6NxI+A1bgS8xrJdt+DWoDI8XarB1daSDS4qkxo1aoQ1a9ZoOgwiIiIqo+Sp6ZDq6qNKdStIdfUgT03PddLm1LQMBDyNzhyi4HEk/J9EISU1Q2UbQ30dNKiT2SvWvm4F1K1mlq8OWFnnV2eYRWJxlqhU2H7sIeKTUlHD0gQdm9Yq9PNVszBGvw626NveBo9DY+F3IxRnbjxHVJxcOft7BVN9eDhVg6dLddStZgqJRJLrH42nL+Pxx6F7uPv4v6Jsh6a10LN1vWJTpMpSzcIYn/Vxxi8brmD3qUDY1i6PpvZVNB1WgUuSp+H7NRfx4Ek0jA2kiElIwcetrNH7jW8+9XV18PWwJliz9w4u3QvD7lOBOH09FCO72cPdsWqZGupAnpqO3acCsS3b2EqJyWnY+s9DKBQC1jXM8OhZDACgSgUj2NetoOwdW9GseD3Pc2NeTh/eHnXh7VEXLyIScPbGc5y+HorQ8AScv/0C52+/gJG+Dpo7Zn45Y29dEdpv+XKGqLQ5efIkjIw4JjMREREVvbd1EOnZuh6EEPAPicLdx5G4GxSJgKfRSEtXqOxvYiiFnVUF2Fll3rVXp6op2/EawOIsUQn34nUCDp4LAgCM9LYv0lvtJRIJrGuYwbqGGYZ2scO9oAj4XX+O87dfIDJWjr1+j7HX7zFcbSthyqBG2Hv6MQ6c+++PRhf3OujqYYWY+BToaGuhY9Na6Nmm+BVls3NvWBXeLa2w/0wQFm69joW+XqhcofR8KM8qzPqHRMHIQIqZnzZHrWzDFbz5zadleUN8M7wJrtwPw6q/7uBVVBJ+3XAVTjILjO7hgOqVTDRyHUVNW0sLB84G5bru4Plg/PldB3w5qBFsa5WHhXnxfX6ro2pFY/RpZ4PebWUIeh4LvxvPceZGKCJj5Th2+SmOXX4KcxM9eDhXg6dzddSrYZajUP++4R+IipvBgwfnWKZQKBAWFobnz5/jk08+0UBUREREVJap00Fk1h+XVfYxM9GDvVXmEAX2dSuihqXJW+94paLDT0JEJdwfB+8hPUPA1bYSXGwraSwObS0JHK0t4GhtgU99HHDtQTj8rofi8r0wdGxWG3+dClQZtzQxOU35+6T+LjAz0S8RPQgBYOhHdgh4Eo0HT6Lx859XMHeCR6m4nTtJnoYf1v5XmP1pdHNYVzdTa9/GDSrDsZ4F9px8hJ0nH+FmwGtMmHcKPbwye9zql9KhDhKSUnH+9gs4ySrlOmkakPlcl6ekw8OpWhFHV7gkEgnqVjdD3epmGPpRA9wLjoTf9VCcv/UC0fEp2H8mCPvPBKFKRSN4OleHp0s1VK9k8s5v90vD64hKJyFEjmVaWlqQyWQYPXo0Pv74Yw1ERURERGXZ+zqIrP+2PepULYdaVcopi7FVKxqVqTscS4rS+WmZqIy49eg1Lt4Ng5aWBCO87TUdjpJURxtN7augqX0VJMnToKOthYXbbuS67cHzwejTzuaDJhIralIdLXw5qDE+/+00gp7HYvXeOxjfy0nTYX2Q5JR0/LD2Iu4HR8FIXwczRzeDdQ2zPB1DT6qNfh1s4eVaA6v33sFV/1fYeeIRTl8PxSfd7NHUvkqpaQiERSZi/9kgHLv0BLpSbXg6V4eRgTTXAq2RgbTUT5qlpSXJHDe3bkWM7uGIGw8zv5y5eC8MLyMSse3YQ2w79hCzPm2OO48jsO2Y6hc1W///bb9PK2v2oKViaePGjZoOgYiIiMq4qDg57j2OxN2gCETFyTHS2/7dHURSM7B4UqsijpLyg5+AiEqoDIXA2n13AQCdm9VGDcviefu4oX7mmKXv+qORJE9T3i5fUliYG2DSAFd8v+YCjl58ggZ1KqB1oxqaDitf3izM/ji6OerVMM/38apUNMKMEU1w6V4Y1uy9g/DoZMxefwWutpUwqocDqlY0LsDoi9bDJ1H4y+8xLtx+oZzYq3IFI0THy+HtYaUsMmbn7WGFDIWizAyCL9XRgptdZbjZVUZySjou3X0JvxvPERgaA1lNc8z+80qu++0/G4RebWRFHC1R3kRGRiI1NVXZk1ahUCA5ORlXr15Fv379NBwdERERlSbh0Um4+zgS94IicfdxBF5EJCrXlTPShamx3js7iBgZlO4OIqUJi7NEJdTxy08R8jIORgZS9Otgq+lw3slIX1oqexW62FRCv3Y22PLPQyzffQt1q5miVpVy79+xGJH/vzB7LygShv8vzMpq5r8wm0UikaCpfRU4ySyw68Qj7D4ViGsPwjFuzil83NoavdrIoFdCbmFXKAQu3w/DX6cDcT84SrncxaYSenjVRcN6FpBIJOjZuh6AzCIjb9fPZKCnAy/XGvByrYH4pFQkytNK3Rc1VDY8ePAAkydPxuPHj3NdL5FIWJwlIiKifBNC4GVkokoxNjw6WWUbiQSoU8UUdnUzx4xNVyjYQaSUYHGWqARKkqdh02F/AEC/9jYoZ6Sr4YjeLaMU/9Ho3c4G/iFRuBHwGj//eQULPm9ZYorN8pR0/LAuW2F2VLMCKcxmp6+rg4Gd6qNVoxpYtec2bgS8xvZjATh1LRSjuzvAza5ygZ6vIKWkZeDk1WfY5xeI568zv6XW0ZagpXN1dPesizpVTVW215Vqw6dVZuE5SZ4Gw/9PdFVWC7NvMjHURVq6olR+UUOl35w5cxAbG4upU6fi1KlT0NXVRatWrXDmzJn/sXfnYVGVbx/AvzPDDAz7PqCg7MhmLqCS4Z5ZPyUzbdM00yyXzEzfNMtWy1JTy8rMrTQ1l1LRMsvMzFzAHUGUTVHZkXVmmGHmvH+gkwTqgMCwfD/X1SWec+bMfe7G4Zl7nnM/+Ouvv/Ddd9+ZOkQiIiJqRgRBQEZ2CeJT82+0KshHQbG6yjFisQh+HnYI8XFGqK8Tgr0cYW1Z9bM/J4i0DCzOEjVDW/ZdRGFpOdq6WOGR+71NHc5dWcjMWuwvDYlYhNdGdsW0T//E1dxSfL75FP7v2fAm31tVXV6B91YdRXxKPuTmZnh3QiQC2zs22PO1dbHGuxMi8c/ZTKzcfhY5BUq8v/ooIoIVmDA0DG5OVg323LVVVFqO3YfSsPtQGorLNAAAKwszPHy/NwY/4A0nu9svXHezX+rN2Z/N9UuHhtKSv6ihlu306dOYPXs2hg8fDrlcjpiYGDzzzDN45plnMHXqVKxbtw7h4eGmDpOIiIiaKJ1ewKXMYsSn5FUWZFPzDZ81bjKTiBHQzh6hvs4I8XFCh/YOd528cOsEkVJlOawtzTlBpBlicZaomcnKL8P2A5W3VT4/JLTZLKTVkn9p2Fmb4/XREZj1xd/4+/Q1hPikYfADPqYO67bUmgq8v/oozqbkQW5uhvdejESHBizM3iQSidCzYxt0DXTFD79fwPYDyYhNyMbpC7kY3j8Aj/f1M+nr4UpOCXb8lYo/Yi9DU6EHALg6yPFoL18M6NaOszrrwe2+qBnc0xtDonwglTSP9zNqfTQaDby8vAAAXl5eOH/+vGHfsGHD8Pbbb5soMiIiImpsak0FJGIxytRaWN24W+6/i9pW6PRIvVpkKMYmpOajTF1R5RiZVIIO7R0Q6uuMUB8nBLR3qFPrNwuZGZRKJa5lpMHb2xuWlpb3dH3U+JpEcVav12PZsmXYsmULSkpKEBERgblz58LTs+bFddLT0/Hhhx/ixIkTsLS0xPDhwzFp0iSYmf17Od9//z1Wr16N3NxchIaG4s0330RwcHBjXRJRg1m7OwEVOj06+bsgIlhh6nBqpSX/0ujg5Yjnh4Tgmx3xWLUzHv6e9g06E7Wu1JoKvL/qKM4k50FuLsF7ExqnMHsrC3MzjPlfMPqFe+Lrn87g9MU8bPj1PPbHZWDCY2EID2q817UgCEhIK8BPfybjWEIWbqzxAz9Pewzr44f7w9whYcGwXlVv/2CGE+dz8H+fH0RHP2e8NKxjk595Tq1PmzZtkJGRgfDwcHh5eaG0tBRXrlyBh4cHZDIZioqKTB0iERERNQKNVodt+5MRU8MdoZeySnAiKRvnUvKRmF4AtUZX5bFyczMEeTsi1McJoT7O8PO0r9fJVmq1+u4HUZPUJIqzX375JTZs2ID58+fDzc0NCxYswPjx4xETEwOZrGo/jaKiIowcORI+Pj749ttvoVKp8NZbbyErKwsffvghAOCnn37CJ598gvfffx/BwcFYsWIFxo4di19++QWOjk2vWEJkrHOp+Th0+hrEImDco6HNtoDRUn9pDInyQUJaAQ6duYb538Vh6fQ+TaofsFpTgQ9W/1uYffeF+9HBy3TviZ4KG7z/4v34+/Q1rNwRj8z8Mry78gh6hLrhhUfD4OrYcMV7nU6Pw/GZ+OnPZFy4XGjY3i3YDY/18UWIj1Oz/ffVHPy3/UOFXsDV3FJcySmFu7MVhvb2M2V4RNUMHDgQixYtgqWlJR566CH4+PhgyZIleOGFF7B69erbTiggIiKilkOtqcC2/cnYdEuLrjKVFhv3JkGvF+DnaY/1v/x7d421XIoQHyeE+johxMcJPm3sOPGDamTy4qxGo8Hq1asxY8YM9OnTBwCwePFiREVFYe/evRg8eHCV43/66ScolUosXbrUUGj94IMP8Mwzz2DSpEnw8PDA8uXLMWrUKERHRwMAPvzwQwwYMABbtmzBiy++2KjXR1Rf9HoBK3ecBQAM7OEFL3dbE0dE/yUSiTD1yU5Iu1aEa3llWLThON4e1wNisemLfOVaHeatPobTFysLs++8EIkgb9N/WSUSiRDVqS26dnDFpt8uYOdfKTgSn4UTSbl4ckAAHuvjC6lZ/bU6UJVX4Ldjl7Dzr1RkFygBAFIzMfqFe+LRXr7wVNjU23OR8Xp2bIOxg0OwOuYcVsecg4uDJXp2bGPqsIgMpkyZgkuXLmHr1q146KGHMHv2bEyZMgW7d++GRCLBp59+auoQiYiIqAEp1VqYmYkRczC1xv27DqVh7dyBGBDRDr4edgjxcUJ7N9sm8VmQmj6TF2fPnz+PsrIyREZGGrbZ2toiODgYsbGx1Yqzly5dgo+PT5UZsDfbFcTFxUEulyM9Pb3K+czMzBAeHo7Y2FgWZ6nZ2n88A8lXimBpYYaRD3UwdTh0G5YWUswaE4EZS//CifM52LLvAp58MNCkMZVrdfhg9VGcupgLC5kEb4+PRLC3k0lj+i9LCymeHxKC/hGeWP7jGcSn5GPdL4nYF3sZLw7riC6Brvd0/oJiNXb9nYqf/0lHmUoLALCxlOF/Pb3xv57esLcxr4/LoHswtLcvsvLL8PM/6fj0++NwtrNokq1BqHUyNzfHZ599Bq228v0jKioKu3btQnx8PEJCQtCuXTsTR0hERET1qUSpwbkbC3fFp+RBp9Njztjuhs8S/1Wm0qJco8MrT3Vu5EipJTB5cTYrKwsA4O7uXmW7q6urYd9/t+fk5ECn00EiqZxNdfXqVQBAfn7+Hc936+INRM2JqrwC3/2cAAB4ckAAC0lNnHcbO0x8/D4s/eEkvv/1PALbO6BTwL0VF+uqcsbsUZy6UFmYfeeFSIT4NK3C7K3au9niw4k9ceDkVazeGY9reWV4e8Vh9OzYBuOiQ+HiIK/2GAsLi9ue71JmMbYfSMGfJzJQoatsKFt527wv+oV7VmvcT6YjEokwYWgYcq6rEJeYjfdXH8XCqb3g5mRl6tBMxpjFJqhxSaX/LgxoZWWFhx9+2ITREBERUX25XqKuLMam5CM+NR/pmcVV9ttayWBnYw4rubTGAq2VXMoFhKnOTD7CV6lUAFCtt6y5uXmNiys8/PDD+PLLL/HRRx9h+vTpUCqV+OCDD2BmZgatVnvH85WXl9c5TkEQoFQq6/z45u5mXm/+SdU1ZI4270tGQXE5FA5y9O/q3qxfi63ltXR/qDPOJLfB/uPXsGB9HD6e1AOOtrcvIv5XfeRJo9Vh4YbTOJ2cD3OZBK8/2xnebvJm8frp1sERoV73Y8sfKdhzNAOHzlxDXGIWHu/jg//d3x5SqQQCJJDKzOHu4QOpTAalSgMRdNDr9YhPLcCuQ5dw6mK+4ZyB7ewxpGd7dO3gArFYBH2FBsoKjQmvsvE0p393Lz8ejLdXKZGeWYK3V/yD91/oBmvLxhnoNpU8iUQiSMxkt11sQlehgXBz9bpG1tg5EgTBpP2fMzIysHbtWtx///3o378/AOD333/HO++8g/z8fDg7O2P27Nl45JFHTBYjERER1V5eoQrxKXmIT81HfEo+ruaWVjvGw9Uaob7OlX1jb0xwiY7ywcZbes7eFB3lA51eDynYU5Zqz+TF2ZsznjQaTZXZT+Xl5ZDLq8+Q8vLywtKlSzF37lx8//33sLS0xMsvv4zk5GTY2NhUOd+tbnc+Y2m1WiQmJtb58S1Fenq6qUNo8uo7R4VlFdhxsHJGeO9QSyRfrP6LoDlqDa+l+31FSEiRIrtQiw/XHsVz/V0gqWXPobrmSasT8MNfeUjOLIdUIsLTvRwhUmUhMbH6HQlNWTdvoJ29C36OK8TlXA02/JaMsyl5ePP5SPx0IAUxf6cZCldDHvDG0N6+mP/dMZxKLgQAiERAkIcckUHW8HQ2B5CPpKT8Oz5nS9Zc/t0N626NlXuVuJanxHur/sGzfV1gJmm8Ap2p89SuvQ/2xqVj028XDNtuLjYhCAIeDFcg41KaCSNs3Bz99wv3xpKRkYERI0agvLzc0EIrLS0N06ZNg6OjI2bNmoXU1FTMmDEDrq6uCA8PN0mcREREdGeCICC7QFmlGHtz/YmbRKLKu/hCfZ0Q6lNZkK3pjtXh/fwBADtr+AJdJq2/tTKodTF5cfZm+4GcnJwq/bpycnIQGFhzn8Z+/fqhX79+yMnJgb29PSoqKjB//nx4enpWOZ+vr2+V8ykUijrHKZVK4efXelePVqlUSE9Ph5eX1z0VuVuyhsrRZ1vOokIHBHs5YNiDnZv9CvKt7bX0RhsvzPrqKDJyNTiZYYZnBwUY9bh7yZNGq8OijaeRnFkOc6kYs57tjOAmsPhXXQUB6BMp4K9Tmfj+14uI7h2AH/9MwQ+/Vy1cbfrtAgQB+F9UABIvxaFPl7Z45P52cHO0NF3wTURz/Hfn1rYEb6+MxaUcDQ6c12Py4yEN/v7XVPIklVkg5u/DNe6L+TsNTwwIhLVlUCNHVamxc5ScnNzgz3E7y5cvh6OjI7799lu4uLgAANasWQOdToeFCxeiW7duAConBHzzzTe1Ls5u374dK1asQEZGBtq1a4cpU6YY2iSUlpZiwYIF+PXXX6HVahEREYE5c+bA09Ozfi+SiIiombhTK7P/EgQBV3JKEW9oU5CH/CJ1lWPEIsDHwx6hN2bFBvs4wcby7l8Iy6QSDOvrhxH9A6BUa2F5o/UUC7N0L0xenO3QoQOsra1x9OhRQ3G2uLgYCQkJGDVqVLXj4+LisHTpUqxZswaurpU9HH/++WfI5XJ06dIF1tbW8Pb2xtGjRw2LglVUVCAuLg7PPPNMneMUiUSwtOQHfLlczjzcRX3m6PylAhw6kwWRCJjwWEdYWbWc3out5bXkY2mJV5/ujA/XxmLXoUsI83PF/bVYhb62edJW6LBgQyxOXcyHTCrB2+N7IMzPuS6hNzkP9/RDVJf2kJqJsWTTyRqP2XUoDd+9/RDWzn0I1kYMrlqb5vTvLsjHErPGdMO7K4/g4OlMtHW1xchBjbMYoqnzVFCsvuNiE0q1FnbWpv3/2Fg5MuUXkv/88w+mTJliKMwCwF9//QVXV1dDYRYABg4ciNmzZ9fq3Dt27MCcOXPwxhtvICoqCrt378b06dPh5uaGzp074+WXX0ZmZia++OILWFlZ4f3338fEiROxc+dOiMW8XZKIiFoPtaYCUpnFjVZm5lBrKqr14NfrBVzKKkb8jULsudR8FJVWvZvaTCKCv6cDQn2dEOLjhCAvxzr3iL35/HbWlTNr2cqA7pXJi7MymQyjRo3CwoUL4ejoiLZt22LBggVwc3PDwIEDodPpUFBQYGhZ4OPjg6SkJHz88ccYPXo0kpKS8MEHH+DFF1+EtbU1AOD555/HvHnz0L59e4SFhWHFihVQq9UYPny4ia+WyHiCIGDl9ngAwICIdvD1sDdtQFRnkWFtMLS3L7YfSMHSH07Cq40t2jhb1/vzaCt0+HBtLOISs28UZru3mMLsTdZyKQpLy+9YuFKVVxgGStS8dQl0xaTHO2LZltPY9FsS3Jws0T+i3d0f2IwdOJGB7iHuXGyiCcjLy6tyV1dGRgaysrIQHR1d5TgbGxuUlZUZfV5BELB06VKMHj0aI0eOBABMnDgRcXFxOHbsGDQaDQ4fPowdO3YY7iJ799138cILLyA9PR0+Pj71cHVERERNn0aru20P/mu5pTh5IRfxKfk4l5ZfbdwkMxMjsL2joRgb2N6BC6tSk2XUK3P79u21OunQoUNrdfzUqVNRUVGBN998E2q1GhEREVi1ahWkUimuXLmC/v3746OPPsKwYcPg6OiI5cuXY/78+Rg8eDBcXFwwZcoUPPfcc4bzPfHEEygpKcGSJUtQWFiI0NBQrFmzBo6Ozfe2Xmp9Dpy8iqTL1yE3l2DUw6a5fZXqz5j/BSPp0nUkphdg/rexWDC1F8zr8daX/xZm547rjo5+Lnd/YDNkZSFl4aoVeaiHF7Lyldj6x0V8vvkUnO3luM+/5b229XoB635JxNY/LmLO2G4Y0tMbm25p3XETF5toPFZWVigu/nel5mPHjkEkEqFHjx5VjsvIyIC9vb3R501LS8PVq1cxZMiQKttXrVoFAFi0aBECAgKqtPfy8/PD/v3763AVREREzZNaU4Ft+5Ox6ZbFt2724NfrBfh52mN1zDnDPrm5BEFelYXYEB8nBLSzh9SMrQaoeTCqODtr1iyjTygSiWpdnJVIJJg5cyZmzpxZbZ+HhweSkqougNSlSxds3rz5juccN24cxo0bV6s4iJoKtaYC3+5OAAAM7xcAR1vj++tQ02QmEeP10eF45dM/kXatGF//eAZTn+xcL+fWVugw/9u4ysKsmRhzn+/eIotXN+n0eq6S2so8+3AQsguUOHjqKj5aewyfvByFdm62pg6r3pRrdVi88QQOnb4GAMi5rsSIAQEQiUVcbMKEOnXqhJ9//hn9+/cHUNmKQCKRoHfv3oZjBEHA5s2b0bFjR6PPm5ZWuZibUqnEuHHjkJCQAA8PD0ycOBH9+vVDWloa2rdvjw0bNuD7779HcXExunbtitmzZ9/T+gmCIECpVN79wBZIpVJV+ZNqxjwZh3kyDvNkHOapZtoKPeRyOWIOpta4f9ehNKydOxBR97mhvZsNgrwc4O1uA4nk388AWk05tJoaH94i8bVknMbOkyAIRrXpMqo4u2/fvnsOiIiMt/1ACvIKVXB1kOPR3r53fwA1C052cswcGY63VvyD345dRrC3IwZ0a39P59RW6DH/2zgcS8iCzEyMt8Z1x30BLbcwC1T2eOIqqa2LWCzCtKc6I69QhcT0Ary78ggWTu0FhxbwxdX1EjXmrT6GpMvXYSYR4eUnOqFfeOWt9DcXmygoVsPOSoYKLjbRqF544QWMGTMGWVlZ0Ov1OHnyJJ588kk4OTkBAA4fPoxvv/0Wp06dwpo1a4w+b2lpKQDg9ddfx5QpUzBjxgz8+uuvmDRpEtasWYPS0lKcO3cO169fx7vvvgsAWLhwIUaPHo2dO3fC3LxubVu0Wi0SExPr9NiWIj093dQhNAvMk3GYJ+MwT8Zp7Xkq1+qRkavBpdxypOeUw0xqjjnPdb9zKzO1Fv/rag21WgVtiQoXSho56Caqtb+WjNWYeZLJ7r4WilHF2bZt2xr9pDcHnERUN/lFKmz94yIA4Ln/hdTrre9kevcFuGDkQx2wfs95fLXtDHw97OHdxq5O59JW6PHxd7GGwuybz3dHpwDXeo64abp1ldRSZTmsLc25SmoLJ5NKMGdsN8z8/CAy88rw3uqj+GhiT1iYN9/eYZeyivHeyiPIua6CjaUUbzzXDaG+//aJvtkXbdWOsziXVoAJQ8PQu4uHqcJtdbp27YpvvvkGX3/9NfLy8jB+/Hi88sorhv0zZsyAUqnEO++8U63VwZ1IpZWtV8aNG4fHHnsMABAUFISEhASsWbMGZmZmKC8vxxdffAE7u8rfD8uWLUNUVBT++OMPPPzww3W6HqlUCj8/vzo9trlTqVRIT0+Hl5cX5HK5qcNpspgn4zBPxmGejNNa81Sq0iLpUiES068jIf060jJLoNcLhv22VoCdjfkdW5lZW5rD29u7McNu0lrra6m2GjtPycnJRh1X6080Go0G3377rWHBAkGo/Ad081ap5ORknD59uranJaIbvvs5EeUaHYK8HPFApzamDocawIj+AUhML8Dx8zmY/20sFr/au9Z9Um8WZo+ey4LUTIw5z3dH58DWUZi9yUJmBqVSiWsZafD29m6UlePJtOyszfHO+B6Y8dlBJGcUYuH3xzH7uW6QiO9+q1BTczIpB/O/i4VSXQF3Zyu8M74H2rjUvFBgGxdrHI7PQlxiNouzjSwyMhKRkZE17vvqq6/g5eUFW9vatdi42ZogICCgynY/Pz/8+eef6NKlCxQKhaEwCwDOzs6wt7fHlStXankF/xKJRK3+fVIul7f6HBiDeTIO82Qc5sk4LT1PhSXlOJeWj3Op+YhPyUN6ZjEEoeoxro6WCPVxqvzP1xkQcNdWZi05Z3XV0l9L9aWx8mRMSwOgDsXZTz75BOvXr0dAQAAKCgpgbm4OR0dHXLhwAVqtFlOmTKl1sERU6WLGdfwRlwEAGP9oqNH/kKl5EYtFmP5MV7zy6Z+4lleGz344hddHhxv9/7tCp8eC9XGGwuybY7ujSysrzN5KrVabOgRqRG1crPHm893w5vJ/cPRcFlbHxOOFR8NMHVat7Dmcjq9+PAO9XkCIjxPeeK4bbK1uf7tTeJAC2/Yn4/j5HOj0QrMsRrdEtekze6uQkBBYWVnh9OnTCA8PN2y/cOEC2rVrh4iICPz000/IycmBq2vle3tOTg6uX7+O9u3vrRUOERFRY8gvUiE+JR/xqfk4l5qHjOzqd1i3dbFCqK+zYQEvV4fqhTK2MqPWotbF2b1792Ls2LF4/fXXsXz5ciQmJmLp0qXIzs7GqFGjoNfrGyJOohZPEASs3BEPAOjb1QMB7RxMHBE1JFsrGWaNDsesL/7GoTPXEHMwFdG97t5fuEKnxyfr4nD4bGbljNmx3dClQ+stzFLrFOzthFef6oJP1sdh51+pcHO0wpAoH1OHdVc6vYC1u85h+4EUAJXv9S8/0emuKwkHeTnCSi5FiVKDC5euI8jbsTHCpQZiYWGB8ePH44svvoBCoUDHjh2xe/duHDp0CGvXrkXnzp2xYsUKvPLKK5gzZw7EYjE+/PBDeHt7o0+fPqYOn4iIqApBEJBdoLwxK7Zydmxmflm149q72RiKsaE+TkatHcBWZtRa1Lo4W1BQgF69egGovB1r8+bNACpv0ZowYQLWrFnD2bNEdXDozDUkpBVAJpVg9CPBpg6HGkFge0c8PyQUK7afxeqYcwho54AOXrcvutycMXv4bCbMJGK88Vw3dO1Q95W7iZqzqM5tkVVQhu9+TsTKHWfh6iBH91B3U4d1W+ryCizacBxH4rMAACMHdcCTAwKMmjEvkYjRJdAVB09dRWxiFouzLcCkSZMgl8uxePFiZGdnw9fXF59//jm6d+8OAFi7di3mz5+PMWPGQBAE9OzZE4sWLTJqQQkiIqK6UmsqIBGLUabWwspCCp1eb+iBf5MgCLiaW2ooxsan5iOvUFXlGLEI8GlrhxCff2fG3ukuoTthKzNqDWpdnLWxsYFGowEAtG/fHpmZmSgtLYW1tTW8vLyQmZlZ70EStXQarQ5rdiUAAIb39YOzPRt4txaDH/BGQlo+/j59DR9/F4sl0/vAzrr6StwVOj0Wrj+Of85UFmbnjO2G8CAWZql1G97PH1n5Suw9egkLvj+O+ZMegJ+nvanDqia/SIUPVh9F8pUimEnEmPZU51r3jg0PUuDgqauIS8zmF3gtxNixYzF27Nga97m4uGDRokWNHBEREbVmGq0O2/YnI6aGFgK5hSqcSsrB2dTKmbGFJeVVHisRi+DvaV85K9bX2XDXT31iKzNqyWpdnA0PD8e6devQrVs3tG/fHnK5HL///juGDh2KkydPwtq65sUsiOj2dvyVgpwCJZztLPBY39a5knJrJRKJ8PITnZB2rRhXc0ux6PvjePuFysVnLCwqb/Wp0Omx8PvjOHTm2o0ZsxEszBKh8t/PxMc7Ive6Eicv5OK9VUewcGovuDo2nRkVadeK8N7KI8grUsPWSoY5Y7sh2Nup1ufp2sEVIhGQdq0YeYUqfolHRERE9UatqcC2/cnYdMviW2UqLTbuTYJeL8DP0x7Lfzpr2Cc1EyOwvQNCfJwQ5uOMwPYOsDCvdXmJiG4Q1/YBU6ZMwalTpzBhwgSYmZnhmWeewVtvvYVhw4Zh6dKleOihhxoiTqIW63qxGlv2XQQAjP5fcLXbRqjls7SQYvaYCMikEuQWqpCRXQypzALuHj6QysyRnFGIS5nFMJOIMPu5CEQEu5k6ZKImw0wixqwxEfByt8X1knK8u+oIylRaU4cFAIhLzMbryw4ir0iNti7WWDi1V50KswBgZ21u6EUel5hdn2FSLeTn5yMzMxPXrl3DtWvXcOXKFVy8eBEbN240dWhERER1JhGLEXMwtcZ9uw6loVOAC+7v6I5Rgzpg/uQHsOmDR/DRpAcwalAQ7gtwYWGW6B7V+l9QYGAgfvnlF1y4cAEA8Nprr8Ha2honTpxAv379MGHChHoPkqglW7/nPFTlFQhoZ4/enWt3myu1HO3dbTFzVFcEeTki5mAqdh1KM9xONLinN+ZPfgCXMovR0d/F1KESNTmWFlLMHdcDMz47gMtZJfjo22N4e3wkpGa1/g663uz6OxXfbD8LvQB09HPG7DERsLa8t36hEUEKJF26jrjEbAyK9KqfQMko58+fx4wZM5CSklLjfpFIhKeffrqRoyIiIqq74jINjp3LQsrVQgzt7XvbL7fLVFqUa3SYPaZbI0dI1HrU6esNFxcXuLhUFghEIhFeeumleg2KqLVIvVqE345dAgCMjw6DWHz3hWGo5eoU4IJt+y7ih98vGLaVqbT44fcLEIlEeLwfW14Q3Y6Lgxxzx/XArC/+xumLefhy62lMfbKTUQtu1SedXsCqnfGG2ScPdmuHiY/fVy+F4vAgBdbvOY/TF3OhrdBBasaVihvLJ598gqKiIrz++uvYv38/ZDIZ+vbti7/++gt//fUXvvvuO1OHSEREdFd5hSocic/E4bOZiE/Nh14vwNZKhjGPBMNKLq2xQGsll8LSon77xxJRVUYVZ5ctW4YRI0ZAoVBg2bJldzxWJBJh8uTJ9RIcUUsmCAJW7oiHIAC9OrXl6ttUeTvRobQa98X8nYonBgQ0ckREzYuvhz3+79lwfLD6KH6PvQw3Z0s8OSCw0Z5fqdZiwfrjhrYDox8JwvB+/vVWIPZpawdHWwsUFKtxNiUfXQJd6+W8dHenT5/G7NmzMXz4cMjlcsTExOCZZ57BM888g6lTp2LdunUIDw83dZhERETVZGSXGAqyFzMKq+zzbmOLyFB3qDQViI7ywcZbes7eFB3lA51eD2ntu2ISkZGMLs726tWLxVmienQkPgtnU/IgMxNjzP+48jYBZWrtHW8nUqq1sLM2b+SoiJqXiGA3THisI5b/eAbrfzkPhaMV+nRp+JYxeYUqvLfqCNKuFUNmJsarz3TBA/e1rdfnEIlECA9SYO/RS4hLzGZxthFpNBp4eXkBALy8vHD+/HnDvmHDhuHtt982UWRERERVCYKA5CuFOHw2E0fiM5GRXWrYJxIBHdo7IjLMHZFh7nBzsjLsG97PHwCw82Cqob1adJQPhvfzh0zKu3WIGpJRxdlbB6C3/kxEdaOt0GFNzDkAwNA+fk1qZXEyHSsLKW8nIqoH/+vpjaz8Mmw/kIKlm07C2c4Cob7ODfZ8yVcK8f6qoygoVsPe2hxvPt8Nge0b5m4IQ3E2IRsvPBra6G0bWqs2bdogIyMD4eHh8PLyQmlpKa5cuQIPDw/IZDIUFRWZOkQiImrFdDo9EtIK8M/ZazgSn4W8QpVhn5lEhI5+LogMc0f3EDc42FrUeA6ZVIJhff0won8AlGotLC2k0On1LMwSNYI69Zy9fPkyjh07huHDhwMAUlJSsG3bNowaNQpt2rSp1wCJWqJdf6chM78MDjbmhm8oiXR6PW8nIqonYweHILtAicNnMzFvzTEsmBoFD1eben+eI/GZWPj9cZRrdPBU2ODt8T2gaMAv3DoFuMBMIkZmfhmu5pY2yDVRdQMHDsSiRYtgaWmJhx56CD4+PliyZAleeOEFrF69Gp6enqYOkYiIWhmNVodTF3Nx+Ewmjp7LQolSY9hnLpOgawdXRIa1QXiQAtZy4yZ5WMgqS0Q379bjZw+ixlHr4uypU6fw/PPPQ6FQGIqzxcXF2LlzJ7Zt24Z169YhIIB9EYlup6i0HD/8Vll8G/1IEOTmdfqOhFogC5kZbyciqidisQjTn+mCN7/6B0mXr+PdlUewcGqvemsNIggCdvyVitUxlb3DOwW4YNboCFgZ+eGnruTmZgj1dcKpC7mIS8xmcbaRTJkyBZcuXcLWrVvx0EMPYfbs2ZgyZQp2794NiUSCTz/91NQhEhFRK6BUaxGbkI3D8Zk4cT4bqnKdYZ+NpRTdQtwQGeqOToGuMOdnB6Jmo9ZVoUWLFqFLly5Ves927twZ+/btw5QpU/DJJ59g5cqV9Rok0a3UmgpIxGKUqbWwunGrxc1v+JqD7389jzJ1BXza2qFfeDtTh0NNzK23E5Uqy2Ftac7biYjqyEJmhjef744Zn/2FrHwl3l99FPMm9rznDys6nR5f/3QWvxxOBwAMivTCi4+FwUzSOLNLwoMUOHUhF7EJ2Rja269RnrO1Mzc3x2effQattrLtTFRUFHbt2oX4+HiEhISgXTv+PiciorqxsKi5zcBN10vUOHYuC4fPZuL0xVxU6ATDPic7C0SGuqNHmDtCfZwgaaSxCBHVr1pXtM6dO4cvvvii2huIubk5xowZg1dffbXegiP6L41Wh237kxHTTGcVXsosxq83PsyPfzQUYjF7BVJ1FjIzKJVKXMtIg7e3Nywt2ZOYqK7sbczx9vgemPn5QSRduo7FG07g/54Nr/P7r1KtxcffxeFEUg5Eosr2CUN7+zZq79eIIAVW7ojHudR8Q084ahxS6b+59vT0ZDsDIiKqM7WmAlKZBdw9fCCVmUOtqTBMOsrKL8OR+EwcPpuJxPQCCP/WY9HWxdqwoJefhz0/UxK1ALUuzlpYWCA7O7vGfdevX4dYzG9qqP7p9AJU5RXYcSAFm377tx9nmUpr6M85rK9fk55BKwgCVu2Mh14A7u/ojrAGXJyGWga1Wm3qEIhaBE+FDeaM7Ya5X/+DQ2eu4dvdCRg7JKTW58kpUOK9VUdwKasE5jIJXnumKyLD3Bsg4jtr42KNNs5WuJZXhpMXctGzI/v9N4TRo0fX6vjvvvuugSIhIqKWpqZJR0OifDC0ty+WbjyJw/GZVY7387BDZFgbRIa5w1PBlkZELU2tK1lRUVH47LPPEBQUhMDAQMP2lJQUfP755+jVq1e9Bkgtj7ZCj1KlBsVlGhQrNSgpq/y5RPmfP2/5WSwWYeUbDyLm79Qaz7nzYCpG9G/avY6Pn8/ByQu5MJOIMXZw7YsCRERUd2G+zpj6ZGd8uuEEfvwzGW5Olnj4fm+jH3/h8nW8v/ooCkvK4Whrjree7wE/T/uGC/guwoMV2PlXKuISslmcbSDCrdOUAJw8eRIikQidOnWCi4sLCgsLcerUKQiCgL59+5ooSiIiam7Umgps25+MTXurTjratDcJgl5AvwhPHD2XiRAfZ/QIc0OPUHe4OvBOOqKWrNbF2RkzZuCpp57CY489Bg8PDzg6OuL69evIyMiAh4cH/u///q8h4qQmSq2pqFJILSnTorisHMVKbWVhtfRGgfWWgquqvKLWz9PezQZFpeUoU2lr3F+m0qKwRI3E9AJ07aBo8AVZaqtCp8fKHfEAgEd7+cDNycrEERERtT59u3oiK1+JDb+ex/Ifz8DFwRLhQYq7Pu7QmWv4dMMJaLQ6eLnbYu64HnBxkDdCxLcXEXSjOHs+G3q9wFsaG8C6desMP69duxYFBQVYtWoV3NzcDNsLCgowYcIEeHh4mCJEIiJqZip0eojFIsQcrHnS0a5Dafju7Yew7p1BsK2nRUyJqOmrdXHWxcUFMTEx+PHHH3HixAkUFhZCoVBg1KhRGDZsGKysWHS6F6Za7EoQBCjVFVVmrhYbCq4aFBQrcTUrH+Ijx1Gm/rcgq6nQ1+n5RCLAWi6DrZUUNpYy2FqZw8bwc+V/NpYy2Nz42c5KBiu5DFZyaY0FWit55WO//uksyrWn0KtTWwyK9IK/p32j9gG8nZ//ScPV3FLYWcvwxICmPcOXiKgle+rBAGTll+GPuAx8si4W8ydHwaetXY3HCoKAH/cnY+3uBACVC3HNHNW1SfR4DfFxhtxcgsKScqRcLYS/p4OpQ2rRVq5ciblz51YpzAKAo6MjXnrpJcyZMwfTp083UXRERNSUqTUVOJmUg3/OZiIrX4kZz3S546QjVXkF7FiYJWpV6lT1s7S0xKhRozBq1Kj6jqdVq6/FrnR6wdA2oKSGtgGG7crKWa4lZZWzXHV64e4nh6raFjOJqEoh9WaB9b9/2lpVHmNjWVlkldRylo9aU4HoKB9Dj9lbRUf5ILdQBTtrc2Rkl+C3Y5fx27HL8Gljh0GR7dG7i4fJPkyXKDXY+GtlzKMGBTWJD/VERK2VSCTClBGdkFeowpnkPLy78ggWvdILzvaVM2FvLnhaodPjy62n8duxywCAwT29Mf7R0CazCrLUTIxOAa44fDYTcQnZLM42MLVaXa3NwU1lZWWNHA0RETV1JUoNYhOycPhsJk4k5UKj1QFA5cQjG/M7Tjri50Wi1qdOxdm0tDR89tlnOHbsGIqLi+Hg4IDw8HBMmjQJfn5+9R1jq3C7vjM3C5EP3++FK9mlVfq0/rfYenM2a5lai9t8frgrc5mksphqeWsxVQq5TIyyknz4eXvC2cG6StFVbm7WKLNTLWRmGN7PH0Blj9maCthfzOyLhLQC7DmSjkOnryH1WhG+3HYGq2POoXcXDwzq4dXoPQI37k1CqUoLL3dbPNi9faM+NxERVSc1E2P2c93wf58fREZ2CZb/eAbTn+5yy4rJMpy/VIDE9AKIRcD4R8MwJMrH1GFXEx6kqCzOns/G0w91MHU4LVqPHj3w6aefwt/fHz4+/74Wzp07hyVLlqB3794mjI6IiJqC/CIVjsRn4cjZTJxJyYP+lslPro6WiAx1R2SYOwQBd5x0pNPrIUXT+DKYiBpHrYuzycnJeOqppyCRSNCvXz84OzsjNzcX+/fvx59//oktW7bA19e3IWJt0SRi8W37zuw8mIphffww/7tYFJdpjD6nlYVZldmsN3+2tfx3But/WwiY32aGrlKpRGKiBkFB7rC0NF0zcplUgmF9/TCifwCUai0sb7R+uDmzWCQSIcTHCSE+Tnjh0TD8EZeBPYfTcTW3FL8euYRfj1yCn4cdBkV6oVdnD8jNG7ZlREZ2CX4+lAYAGB8dWuvZwkRE1DCs5VK8Pb4HPt1wHC8/0Qk//pmMXYfSDF/8De7pjfmTH8DlrGKE+bmYOtwa3eyXezGjEIUl5bC34S2QDWXOnDkYOXIkBg8eDE9PTzg4OCA/Px9XrlyBv78/3njjDVOHSEREJnA1txSHz2biyNlMJF2+XmVfezcb9Ahzx/1hbeDdxrbKhKa7TToiotal1pWphQsXwsPDA+vWrYONjY1he0lJCcaMGYPFixdj2bJltTqnXq/HsmXLsGXLFpSUlCAiIgJz586Fp6dnjcfn5+fjww8/xKFDhyAIAu6//37MmjULCsW/i3rs3r0bX331FTIyMtC2bVtMmDABQ4cOre3lNpoytfaOfWeKyzTo0N4BJUpt1ZYB1YqsUsM2syZy62V9u9mD92Yfntt9q2hrJcPQ3r54tJcP4lPzsedwOv45k4nkK0VYtuU0Vu2MR+8unhjUoz18PewbJNbVMeeg0wvoFuyG+wKa5od7IqLWSuFoiddHhyPmYCp++P2CYXuZSosffr8AkViEx/s23TuCHG0t4Othh5QrRTh+Phv9I9qZOqQWy93dHbt378aPP/6I48ePo6ioCG3btsWLL76IRx99FFIpb0ElImoNBEFA6tUiHD6bicPxmbicVVJlf2B7B8MM2TYu1rc9z62TjkqV5bC2NK8y6YiIWpdaF2djY2Mxb968KoVZALCxscGECRPw9ttv1zqIL7/8Ehs2bMD8+fPh5uaGBQsWYPz48YiJiYFMJqt2/LRp01BRUYE1a9ZAEAS8++67mDx5MrZu3QoAOHLkCP7v//4Pb731Fnr27Im//voLs2fPhoODQ5O97czKQnrHvjMOthZ4a1wPE0TW/IlEIoT5OiPM1xlFpeXYF5uBX4+k41peGfYcTseew+nw97SvnE3bqS0s6mk27YmkHMQlZkMiFuH56JB6OScREdUvG0tz7Lpxh8N/xRxMxRP9m/YijuFBCqRcKUJsIouzDU0ul2PkyJEYOXKkqUMhIqJGpNMLSEzLx+H4yhmyOdf/XYdFIhYhzM8ZkWHu6B7iBic7udHntZCZQalU4lpGGry9vU16hyoRmVatq1BmZmYwN6/5tjmZTAaNxvjb7gFAo9Fg9erVmDFjBvr06QMAWLx4MaKiorB3714MHjy4yvHFxcU4duwYvvrqKwQFBQEAJkyYgEmTJqGwsBD29vbYt28fAgMD8dRTTwEARo4cia1bt+LgwYNNtjir0+vZd6YR2FmbY1hfPzzWxxdnU/Kw5/AlHD57DRczCnEx4xRW7YxHny4eGBTpBe82Na/ebQydTo9VO+MBAIMf8EHbO3xrSkREpnO3O1eUam2TXjE5IkiBH367gJNJOajQ6VvsXTOmsGzZMowYMQIKheKud4WJRCJMnjy5kSIjIqKGpq3Q4fTFPBw+m4mj5zJRVPpvnUMmlaBrB1f0CHVHt2AFrC2rTyirDbVafa/hElEzV+vibFhYGDZs2IA+ffpU6ZkiCAK+//57hIaG1up858+fR1lZGSIjIw3bbG1tERwcjNjY2GrFWQsLC1hZWWH79u3o1q0bAGDHjh3w9vaGra0tAMDJyQkXL17EkSNH0L17dxw7dgwpKSkYO3ZsbS+30Riz2BXVH5FIhI5+Lujo54LCknLsi72MX49cQmZ+GX7+Jx0//5OOwPYOGNTDCw90amNopWCsvUcv4XJWCWwsZXjqwaY964qIqDW7250rTX3FZH9PB9hZy1BUqkFiWgHC/JxNHVKLsWzZMvTq1YvFWSKiVkKp1uJ4Yg4Ox2ciLjEbqvIKwz4ruRTdghWIDGuDzoEutf58SER0J7V+R3nllVfw9NNPIzo6GoMGDYKLiwtyc3OxZ88epKWlYc2aNbU6X1ZWFoDKXl63cnV1Ney7lUwmw/z58zF37lyEh4dDJBLB1dUV69evh1hcOVvk2WefxZkzZzBmzBhIJBLodDq89NJLiI6Oru3lNqq7LXZFDcPexhyP9/PHY338cCY5F3sOX8KR+EwkXbqOpEvXsXLHWfQN98SgHl5o72571/OVqbRYv+c8AGDkQ4H3/E0qERE1nOZ+54pYLEKXQFfsP34FsYnZLM7Wo/Pnz9f4MxERNT9qTQUkYjHK1FpY3ficbSEzQ1FpOY6ey8Lhs5k4fTEX2gq94TGOtubocaN/bKivM+9OIaIGU6eZsytXrsSiRYuwbNkyCIIAkUiE0NBQfPPNN4iIiKjV+VSqyn4t/+0ta25ujqKiomrHC4KAxMREdO7cGePHj4dOp8PixYsxadIkbNy4EdbW1sjMzMT169cxd+5cdOnSBUeOHMHixYvh6emJ4cOH1/aSDc+rVCrr9Nja0gOQSUTQaipvb1BW1K5VREO4+f/p5p8tVYCHNQJGhGD0ID/sP3ENfxy/ipzrKuz6Ow27/k5DQDs7DAj3QGSoolrRXK1Ww8LCAjv/TkNxmQZtXazQ6z7XRnvdNBet5bV0r5gn4zBPxmGebk8kEt3xzhVdhQZKpel/D99JR18H7D9+BcfOZeKp/t4N+lyN/Vq6Oc40hWeffRYjRozAQw89dNuWXkRE1PRptDps25+MmFt+zw95wBvRvXzxxpd/43J2qeFYd2cr3B/mjh5h7gjwdIBYbJrfQUTUutRpLn6PHj2wZcsWqFQqFBcXw9bWFnK58Y2vb2VhYQGgsvfszZ8BoLy8vMZz/vLLL1i/fj32798Pa+vKPp7Lly9H3759sXXrVjz33HN4+eWXMXjwYMOCDUFBQSgqKsKCBQswbNgwwwzb2tBqtUhMTKzLJbYo6enppg6h0XRwBQIGOSI1sxxxyaVIuqrGhctFuHC5CKt3JeA+byuE+1nBU2EDV0Ub2NnZwU1igZF+MoT4KlCQm4kLF6rPxKJKrem1dC+YJ+MwT8ZhnmpmYWGBAV3dMbyfP8pUGljJZSgsKsLFC+ebRR84C70eIhFwNbcM/8SehYN1w99q2ZivpZoWh20MhYWF+L//+z+8//77GDx4MIYPH46QEC7wSUTUnKg1Fdi2PxmbbrlDpkylxabfLkAQgGcfCcbGvUmIDHNHZKg72rnZmOxLQSJqvWo1ehcEARqNxjB7QC6X49ixY0hOTkZgYCAeeOCBWgdws51BTk4O2rX7d5XhnJwcBAYGVjs+Li4O3t7ehsIsANjZ2cHb2xuXLl1CQUEBUlNTERYWVuVxnTp1wldffYXCwkI4OjrWOk6pVAo/P79aP66lUKlUSE9Ph5eXV50L8c1VSDAwpD9wvaQc+49fxR/HryK3UI2jSaW4eh345OUu2PlXCmL+Pmz4JnZwT288MeA+6Co0EATB1JfQpLTm11JtME/GYZ6MwzwZp7SkCJmZmXB3d4e1pQWsvRt2Fmp96hCnRGJ6IYp1drg/qN3dH1BHjf1aSk5ObvDnuJ2YmBicO3cOP/30E37++Wds2rQJgYGBGDFiBIYMGWJY64CIiJoevV5A6tVCtHOzRczB1BqP2XUoDeveGYQeoe417iciaixGF2fXrVuHzz77DJMmTTIsrPXKK69g7969huJTnz59sGzZMpiZGV/z7dChA6ytrXH06FFDcba4uBgJCQkYNWpUtePd3Nywe/dulJeXG4rESqUSV65cQXR0NOzs7CCXy5GUlIRevXoZHpeUlARbW9s6FWaBytseLS0t6/TYlkQul7faPFhaWmLUIw54elAITiblYM/hdDzYrR12HEjBD79fMBxXptLih98vQCwWYVhfP8jZLL5Grfm1VBvMk3GYJ+MwT3d3s0VNc8tT95A2SEwvxOmU6xjWr0ODP19jvZZMPXspJCQEISEhmDVrFg4cOIDt27dj/vz5+OSTTzBgwACMGDECPXr0MGmMRERUqUKnx7mUfByOz8SR+ExYy6V46/nuNS76CVR+blOqtbCzZusaIjIto6pGv//+O+bNm4cBAwYYesru2bMHv/76KwYOHIh58+YhNTUVEydOxLp16wzFW2PIZDKMGjUKCxcuhKOjI9q2bYsFCxbAzc0NAwcOhE6nQ0FBAWxsbGBhYYGhQ4di1apVmDZtGl555RUAwJIlS2Bubo5hw4ZBIpFg9OjR+Oqrr+Di4oKuXbvi+PHj+Prrr7mKLtULiViE8CAFwoMU0FbosXjTyRqP23kwFSP6BzRydERE1BqFByuwdncCzibnQV1eAQtzfjFYn8zMzNC/f3/0798fRUVF2LVrF3bu3InnnnsOnp6eePzxx/HSSy+ZOkwiolanXKvDyaQcHD6biWPnslB6SyFWIhHB3sYCVnJpjQVaK7kUlhbSxgyXiKhGRo3c169fjyFDhmDBggWGbVu3boVEIsFbb70FGxsb3HfffRg7dix27NhRq+IsAEydOhUVFRV48803oVarERERgVWrVkEqleLKlSvo378/PvroIwwbNgyurq7YsGEDFixYgDFjxkAsFiM8PBwbNmyAjY0NgMoZvQ4ODvj666+RmZkJDw8PzJw5E0899VSt4iK6mzK1lt/EEhGRybVT2MDVQY6c6yqcSc5DtxA3U4fUYtnZ2WHkyJEYOXIkYmNj8dZbb2Hp0qUszhIRNZJSlRZxCVn452wmTiTloFyjM+yztZKhe4gbIsPccZ+/C/SCgOgoH2zcW30tkOgoH+j0ekhR+zVpiIjqk1HF2cTERIwePdrw94qKCsTFxSEoKAguLi6G7R07dsSXX35Z6yAkEglmzpyJmTNnVtvn4eGBpKSqb6S+vr5Yvnz5Hc83duzYWheJiWrLykLKb2KJiMjkRKLKuzp+/icdsYnZLM42oNzcXOzevRu7du3CuXPn4O7ujkmTJpk6LCKiFq2gWI2j8Zk4fDYTZ5LzoNP/u66Hi4MckaHu6BHmjmAvR0gkVYutw/v5A6i8s/HmGiHRUT4Y3s8fMqmkUa+DiKgmRhVnlUqlYVYqAJw7dw5qtRrdunWrcpxer6/f6IiaOJ1ez29iiYioSYgIdsPP/6QjLjEbgiCYvF9rS1JWVoa9e/ciJiYGR48ehUQiwYABA/Dqq6/i/vvvZ66JiBpAZl4ZDp+t7B97/lIBbl1n2VNhg8gwd0SGusPXw+6O78MyqQTD+vphRP8AKNVaWFpIodPrWZgloibDqOKsm5sbLl26ZOg3e/DgQYhEIvTs2bPKcSdPnoS7O1c6pNbDQmbGb2KJiKhJCPNzhkwqQV6hCpeySuDlbmvqkJq1iooKHDhwADExMfjzzz+hVqsRFBSE2bNnY8iQIbCzszN1iERELYogCEjPLMbhs5UzZNMzi6vsD2hnj8iwNogMc0dbF+tandvixiLNN1vOcQINETUlRhVn+/Xrh5UrV6J79+7Q6XTYvHkznJycqqxOm5GRge+++w7R0dENFixRU3TrN7GlynJYW5rzm1giImp05lIJOvo5Iy4xG7EJWSzO3qOePXuiuLgYtra2ePzxx/H4448jODjY1GERETUbFhYWdz1Grxdw/lKBYYZsVr7SsE8sFiHM1wmRoe7oHuoOZ3t5Q4ZLRGQyRhVnJ06ciIMHD2LgwIEAKnu6LlmyBBJJZfHpjTfewJ49e2BtbY0XX3yx4aIlaqIsZGZQKpW4lpEGb29vWFpamjokIiJqhSKCFYhLzEZcYjZG9A8wdTjNWkhICB5//HE8+OCDkMlk9X7+7du3Y8WKFcjIyEC7du0wZcoUPPzwwwCAr776CkuWLKn2mP+uw0BE1BSpNRWQyizg7uEDqcwcak2FYeYqAGgr9DibnId/zl7D0XNZKCwpN+yTmYnROdAVkWHuiAh2g61V/b//EhE1NUYVZ+3t7fHTTz/hl19+QX5+PqKiohAQ8O+APzU1Ff369cOrr74KJyenBguWqKlTq9WmDoGIiFqx8A4KAMD59AKUKDWwseSH2rpavXp1g517x44dmDNnDt544w1ERUVh9+7dmD59Otzc3NC5c2ckJSXh0UcfrXGxXCKipkyj1WHb/mTE1NDyLT4lH3/EZSAuMQtl6grDY6wszBAR7IYeYe7oGugKC3OjyhRERC2G0e965ubmGDp0aI37Nm3aVF/xEBEREVEduTpaop2bDS5nleDE+Rz07uJh6pDoPwRBwNKlSzF69GiMHDkSQOVdanFxcTh27Bg6d+6MCxcu4IknnoCLi4uJoyUiMp5aU4Ft+5Ox6ZbFkstUWmzcmwS9XoCfpz0OnLwCAHCwMUf3UHdEhrkjzNcZUjP2gCWi1otfSRERERG1IBFBClzOKkFcYjaLs01QWloarl69iiFDhlTZvmrVKgCARqNBeno6fHx8TBEeEVGdScRixBxMrXHfrkNpWDt3IJ4eGIjOAa4IbO8AsVjUyBESETVNLM4SERERtSDhQQps25+M4+dzoNMLkPDDb5OSlpYGAFAqlRg3bhwSEhLg4eGBiRMnol+/fkhOToZOp8Ovv/6KefPmoby8HBEREZg5cyZcXV3r/LyCIECpVN79wBZIpVJV+ZNqxjwZh3mq7lpuGZIyihAR0gZlKm2Nx5SptFBrdHisV3sIggC1mvkD+HoyFvN0d8yRcRo7T4IgQCS6+1icxVkiIiKiFiTIyxFWcilKlBpcuHQdQd6Opg6JblFaWgoAeP311zFlyhTMmDEDv/76KyZNmoQ1a9YgOzsbACCXy7F06VLk5+fj008/xejRo7F9+3ajVj+viVarRWJiYr1dR3OUnp5u6hCaBebJOK05T4Ig4FqBFuevqJCYoUJecQVsrWToH+EFK7m0xgKtlVwKS3MzJCbEo6Kiooaztm6t+fVUG8zT3TFHxmnMPBmzsCyLs0REREQtiEQiRpdAVxw8dRWxiVksztajAwcO4J9//kFOTg6mT5+OxMREhISEoG3btkafQyqVAgDGjRuHxx57DAAQFBSEhIQErFmzBitWrECvXr3g6Pjv/zd/f3/06tULf/zxBx555JE6xS6VSuHn51enxzZ3KpUK6enp8PLyglwuN3U4TRbzZJzWmiedTo/zlwsRm5CD2MQ85BX9uxCyRCKCTxsb5BYqMSTKp0rP2Zuio3xQUaGDv79/Y4bd5LXW11NtMU93xxwZp7HzlJycbNRxLM4SERERtTDhQQocPHUVcYnZGP1IsKnDafZUKhUmT56Mf/75B9bW1igrK8P48eOxceNGJCQkYP369UYXHBQKBQAgICCgynY/Pz/8+eefAFClMAsArq6usLe3R1ZWVp2vQSQSwdLSss6Pbwnkcnmrz4ExmCfjtIY8abQ6nLqYi8NnMnH0XBZKlBrDPguZBF07KNAjzB0RQQpYySu/eBrRzwoiADsPpqJMpYWVXIroKB8M7+cPmVQC4O4zyFqj1vB6qg/M090xR8ZprDwZ09IAqGNxNi0tDZ999hmOHTuG4uJiODg4IDw8HJMmTWq138gTERERNRVdO7hCJALSrhUjr1AFZ3vOoLgXn376Kc6dO4e1a9ciPDwcoaGhAICPP/4Y48ePx9KlS7Fs2TKjzhUSEgIrKyucPn0a4eHhhu0XLlxAu3btsHjxYuzZswd79uwxDOivXLmC69evc5xNRA1OqdYiNiEbh+MzceJ8NlTlOsM+G0spuoW44f6wNrgvwAXmUkm1x8ukEgzr64cR/QNQqiyHtaU5dHr9jcIsERHVpNbF2eTkZDz11FOQSCTo168fnJ2dkZubi/379+PPP//Eli1b4Ovr2xCxEhEREZER7KzNEdDOAUmXriMuMRuDIr1MHVKz9ssvv2D69Ono0aMHdLp/CxWurq6YOHEi3nvvPaPPZWFhgfHjx+OLL76AQqFAx44dsXv3bhw6dAhr166FlZUVVq1ahXfeeQfPPfcc8vLy8OGHH6JLly6IiopqiMsjolausKQcR89l4vDZTJy+mIsKnWDY52xngR5h7ogMc0eItxMkEvFdz2chM4NSqcS1jDR4e3tzFh8R0V3Uuji7cOFCeHh4YN26dbCxsTFsLykpwZgxY7B48WKjZw4QERERUcOICFKwOFtPiouLb9tX1s7ODkqlslbnmzRpEuRyORYvXozs7Gz4+vri888/R/fu3QEA33zzDZYuXYphw4ZBJpOhf//+eP31142+NY6I6G6yC5Q4fDYTR+IzkZCWD+Hfeiw8XK0RGeaOHqHu8Pe0r/N7j1qtvvtBRERU++JsbGws5s2bV6UwCwA2NjaYMGEC3n777XoLjoiIiIjqJjxIgfV7zuP0xVxoK3SQmvGW0rry9/dHTEwMHnjggWr7/vjjjzotcDN27FiMHTu2xn2RkZGIjIys9TmJiG5HEARczirBP2czceRsJlKvFVXZ7+dpj8jQyhmyngqb25yFiIgaQq2Ls2ZmZjA3N69xn0wmg0ajqXEfERERETUen7Z2cLS1QEGxGmdT8tEl0NXUITVbEydOxJQpU1BYWIi+fftCJBIhNjYWP/74IzZt2oRFixaZOkQiaqXUmgpIxGKUqbWwspBCp9fDQlb5MV+vF3Dh8nUcPpuJw/GZyMwrMzxOLAJCfJwNM2RdHNibnIjIVGpdnA0LC8OGDRvQp0+fKrc3CIKA77//3rBAAhERERGZjkgkQniQAnuPXkJcYjaLs/dgwIABWLBgARYtWoQDBw4AAObPnw8nJye88847GDRokIkjJKLWSKPVYdv+ZMQcTEWZSgsruRTRUT54rI8fth9Ixp7D6SgoLjccLzUTo3OAKyLD3BAR7AY765onXRERUeOqdXH2lVdewdNPP43o6GgMGjQILi4uyM3NxZ49e5CWloY1a9Y0RJxEREREVEuG4mxCNl54NJQ9S+/BkCFDMGTIEKSmpqKwsBC2trbw8fGBWHz3xXGIiOqbWlOBbfuTsWlvkmFbmUqLjXuToNcL8PO0R0FxOSwtzBAepEBkmDu6dlBAbl7rEgARETWwOs2cXblyJRYtWoRly5ZBEASIRCKEhobim2++QUREREPESURERES1dJ+/M8wkImTml+Fqbik8XNlH8F75+PiYOgQiIkjEYsQcTK1x365Dafj27YfwwUuRCPZ2Ys9xIqImrk5fm/Xo0QNbtmyBSqVCcXExbG1tIZezRw0RERFRU2JpIUWojzNOXcxFXGI2i7O10K9fv1rNNN63b18DRkNEBOQXqXAkPgtpV4swor8/ylTaGo8rU2mhLq/Aff5sZ0NE1BwYVZyNjY1FcHAwrKysEBsbe9fjOXuWiIiIqGkID1bg1MVcxCZkY2hvP1OH02x069bNUJzV6/XYvXs3bGxs0Lt3b7i4uKCwsBCHDh1CQUEBnnzySRNHS0Qt1bXc0soFvc5mIunydQCArZUM4x8NhZVcWmOB1kouhaWFtLFDJSKiOjKqOPvss89i8+bN6NixI5599lmIRCIIggAAhp9v/TMxMbFBgyYiIiIi40QEKbByRzzOpeZDqdbyA7uR5s+fb/h54cKF6NixI1atWlXlbjGtVouJEydCqVSaIkQiaoEEQUDq1aLKgmx8Ji5nlVTZ36G9AyLD3FGu1SE6ygcbb+k5e1N0lA90ej2kYE9sIqLmwKji7HfffQdfX1/Dz0RERETUPLRxsUYbZytcyyvDyQu56NmxjalDana2bNmC+fPnV2vjJZVK8eyzz2L69Ol4//33TRQdETV3Or2AxLR8HI7PxJGzmci5rjLsk4hF6OjnjMgwd3QPdYejrYVh3/B+/gCAnQdTUabSwkouRXSUD4b384dMyj6zRETNhVHF2W7dutX4MxERERE1feHBCuz8KxVxCdksztZRUVFRjduvXbsGc3PzRo6GiJo7bYUOpy/m4fDZTBw9l4miUo1hn7lMgi6BrogMc0dEkALWlrIazyGTSjCsrx9G9A8w3Bmh0+tZmCUiambqtCBYWloaPvvsMxw7dgzFxcVwcHBAeHg4Jk+ebJhhS0RERERNQ0TQjeLs+Wzo9QLEYuMXuqLKxcEWLlwIFxcX9OzZE0Dlrce///47lixZgiFDhpg4QiJqDpRqLY4n5uBwfCbiErOhKq8w7LOWS9EtxA09Qt3ROdAFFjLjPqrfPM7OuvJLIrYyICJqfmpdnE1OTsZTTz0FiUSCfv36wdnZGbm5udi/fz/+/PNPbNmypVYFWr1ej2XLlmHLli0oKSlBREQE5s6dC09PzxqPz8/Px4cffohDhw5BEATcf//9mDVrFhQKheGYM2fO4OOPP8bZs2fh4OCAxx9/HFOmTIFYzF9URERE1PqE+DhDbi5BYUk5Uq4Wwt/TwdQhNSuzZ89GcnIyxo0bB5lMBjs7O1y/fh06nQ49e/bEzJkzTR0iETVRRaXlOHouC4fPZuL0xVxoK/SGfY62FugR6ob7w9ogxNcJZhJ+XiUiao1qXZxduHAhPDw8sG7dOtjY2Bi2l5SUYMyYMVi8eDGWLVtm9Pm+/PJLbNiwAfPnz4ebmxsWLFiA8ePHIyYmBjJZ9ds3pk2bhoqKCqxZswaCIODdd9/F5MmTsXXrVgCVs3pHjx6N6OhozJs3D0lJSZg9ezbkcjleeOGF2l4uERERUbMnNROjU4ArDp/NRFxCNouztWRra4vNmzfjwIEDOH78OIqKiuDg4IAePXogMjLS1OERUSOzsLC44/6cAiWOxFcu6JWQmg+98O++Ns5WiAxzR2SYO/w9HXgnAxER1b44Gxsbi3nz5lUpzAKAjY0NJkyYgLffftvoc2k0GqxevRozZsxAnz59AACLFy9GVFQU9u7di8GDB1c5vri4GMeOHcNXX32FoKAgAMCECRMwadIkFBYWwt7eHl9//TX8/Pzw7rvvQiQSwcvLC0lJSThx4kRtL5WIiIioxQgPUlQWZ89n4+mHOpg6nGZHJBKhT58+hjErEbU+ak0FpDILuHv4QCozh1pTAQuZGQRBQEZ2CQ6frSzIplyp2qPa18MOkaHu6BHmjnYKG4hELMgSEdG/al2cNTMzu+2iBzKZDBqNpsZ9NTl//jzKysqqzDiwtbVFcHAwYmNjqxVnLSwsYGVlhe3btxsWJtuxYwe8vb1ha2sLAPj7778xfvz4Kr/wpk6danRMRERERC1ReFBlC6iLGYUoLCmHvQ0XsSIiMpZGq8O2/cmIOZiKMpUWVnIphkT5YGgvXyxYH4vj53MNx4pFQJC3EyLD3NEj1B0KR0sTRk5ERE1drYuzYWFh2LBhA/r06VOlACoIAr7//nuEhoYafa6srCwAgLu7e5Xtrq6uhn23kslkmD9/PubOnYvw8HCIRCK4urpi/fr1EIvFKC0tRW5uLmxsbPDGG2/gr7/+gq2tLYYOHYpx48ZBIuGqlURERNQ6OdpawNfDDilXinD8fDb6R7QzdUhERM2CWlOBbfuTsWlvkmFbmUqLTXuTIOgFDIr0xumL+egU4ILIMHd0D3EzLNBFRER0N7Uuzr7yyit4+umnER0djUGDBsHFxQW5ubnYs2cP0tLSsGbNGqPPpVKpAKBab1lzc3MUFRVVO14QBCQmJqJz584YP348dDodFi9ejEmTJmHjxo0oLS0FAHz88ccYPXo0vvnmGyQmJmLevHlQKpWYNm1abS+3ynMrlco6P765u/n/6uafVB1zZBzmyTjMk3GYJ+MwT8ZpDXnq5OeIlCtFOHL2GiJDnGv9+MbOkSAIvP2XiEyqoFgFa7kMMQdTa9y/61Aavnv7IXz/3iBYWkgbOToiImoJ6jRzduXKlVi0aBGWLVtmGDSHhobim2++QUREhNHnutlIXaPRVGmqXl5eDrlcXu34X375BevXr8f+/fthbW0NAFi+fDn69u2LrVu3Gtog3H///ZgyZQoAICgoCAUFBfjiiy/wyiuv1HmAr9VqkZiYWKfHtiTp6emmDqHJY46MwzwZh3kyDvNkHObJOC05T/aycgDAyQs5iD+XAEkdF6JpzBzVtEAsEVFD0ekFXMy4jriEbMQmZkOn0+Ot57ujTKWt8fgylRaq8grOlCUiojqrdXEWAHr06IEtW7ZApVKhuLgYtra2NRZT7+ZmO4OcnBy0a/fvrXU5OTkIDAysdnxcXBy8vb0NhVkAsLOzg7e3Ny5dugQHBweYm5sjICCgyuP8/f2hVCpRUFAAJyenWscJAFKpFH5+fnV6bEugUqmQnp4OLy+vOv2/bg2YI+MwT8ZhnozDPBmHeTJOa8hToF7A5r8PoESphcjSDUHejrV6fGPnKDk5ucGf414plUrExcWhV69epg6FiOqoVKXFyfM5iE3MwvHzOSgu+3cdFTtrGextzGEll9ZYoLWSSzljloiI7kmdirPl5eXYvn07jh07hqKiIjg5OSEyMhKDBw+GmZnxp+zQoQOsra1x9OhRQ3G2uLgYCQkJGDVqVLXj3dzcsHv3bpSXlxsWJVMqlbhy5Qqio6MhkUjQpUsXnD59usrjkpKSYGtrC3t7+7pcLoDKFXotLdnIXS6XMw93wRwZh3kyDvNkHObJOMyTcVp6nsKDFNh//ArOphYhIsSjTudorBw1lZYGV69exTvvvINjx47ddvFb3mFF1HwIgoDL2SWG2bGJ6QXQ6wXDfksLM3QOdEVEkAJdOyggAIiO8sHGW3rO3hQd5QOdXg8pxI14BURE1JLUujh77do1jB49GleuXIGnpyecnJyQnp6OHTt2YO3atfj2229hZ2dn1LlkMhlGjRqFhQsXwtHREW3btsWCBQvg5uaGgQMHQqfToaCgADY2NrCwsMDQoUOxatUqTJs2Da+88goAYMmSJTA3N8ewYcMAABMnTsTYsWPx+eef49FHH0V8fDxWrFiB5557jguCERERUasXEeSG/cevIC4xC88PCTF1OM3CRx99hBMnTmDEiBE4ceIE5HI5OnXqhEOHDuHChQv4/PPPTR0iEd1FuVaHs8l5iE3IQlxiNnKuV+2d7amwRniQGyKCFAjydoSZpGqxdXg/fwDAzoOpKFNpYSWXIjrKB8P7+UMm5edMIiKqu1oXZ+fNmwe9Xo+ffvoJQUFBhu3x8fF4+eWX8cknn2DevHlGn2/q1KmoqKjAm2++CbVajYiICKxatQpSqRRXrlxB//798dFHH2HYsGFwdXXFhg0bsGDBAowZMwZisRjh4eHYsGEDbGxsAADdu3fH119/jcWLF+Prr7+Gi4sLJkyYgPHjx9f2UomIiIhanM4dXCEWi5CRXYqs/DK4OVmZOqQmLzY2Fq+++ipGjRqF9evX448//sDMmTMxffp0PP/889i3bx/69+9v6jCJ6D9yrisRl5iN2IRsnEnOg0arM+yTmonR0c+5cnZskOKu74UyqQTD+vphRP8AlCrLYW1pDp1ez8IsERHds1oXZ48ePYr33nuvSmEWAEJDQzFt2jR89NFHtSrOSiQSzJw5EzNnzqy2z8PDA0lJVW8d8fX1xfLly+94zqioKERFRRkdAxEREVFrYS2XIsjLEedS8xGXmI3BD/iYOqQmr6yszLAego+PD5YtWwagchz7zDPP4OOPPzZleER0g06nR2J6QWVBNjEbl7NKqux3tpcjIkiB8GAFOvo5w0JWu4/DFjIzKJVKXMtIg7e3d4tugUNERI2n1sVZc3Pz27YHsLa2hiAINe4jIiIioqYhIkiBc6n5iGVx1iiurq7Iy8sDALRv3x5FRUXIzc2Fi4sL7O3tkZ+fb+IIiVoetaYCErEYZWotrCyk0On1NRZTi0rLcfx8DuISs3EiKafKol1iEdDByxHhQQpEBLuhvZtNvfSyVqvV93wOIiKim2pdnB09ejQ+/fRThIaGom3btobtRUVFWL58OUaPHl2vARIRERFR/QoPVmDt7gScTc6DurwCFuZ1WiO21ejduzeWLFkCNzc3dO7cGW5ubli9ejUmT56Mbdu2QaFQmDpEohZFo9Vh2/5kxNTQ31VqJkbq1SLD7NgLl6/j1vlBNpZSdO2gQHiQAl06uMLGUma6CyEiIjJCrUfi6enpuH79OgYNGoSuXbtCoVDg+vXrOH78OFQqFSwsLHD06FEAlSvsfvvtt/UeNBERERHVXTuFDVwd5Mi5rsKZ5Dx0C3EzdUhN2tSpUxEfH4+lS5di7dq1ePXVVzFr1iysXbsWADB37lzTBkjUgqg1Fdi2Pxmb9v7b3q5MpcXGvUkQBAGB7R3x7sojVR7j3ca2cnZskBsC2jtAIr732bFERESNpdbF2StXrhh6bul0Oly7dg0AEBwcDABV2hqwxQERERFR0yMSiRAepMDP/6QjLjGbxdm7cHBwwJYtW5CTkwMAiI6ORps2bXDq1Cl07NgR3bp1M3GERC2HRCxGzMHUGvfF/J2Gx/v6w8VBDp82dggPqpwh62wvb+QoiYiI6k+ti7Pr1q2rcXtOTg42b96MrVu34s8//7zXuIiIiIioAUUEu+Hnf9IRm5gNQRDqpQ9jS/Xtt99iyJAhcHV1NWwLDw9HeHi4CaMialm0FXqkXimEk728St/YW5WptFCVV+Dr1/tDKq15HRQiIqLm5p4bjB08eBCbNm3CgQMHUFFRAU9Pz/qIi4iIiIgaUJifM2RSCfIKVbiUVQIvd1tTh9RkLViwAAsWLMD999+PoUOHon///jA3Nzd1WETN3vVitaF37KkLuZCaibFqzoOwkktrLNBayaWwtpRBaiY2QbREREQNo07F2YKCAmzduhWbN2/G1atXYW1tjcceewyPPvooZxAQERERNQPmUgk6+jlXFkYSslicvYODBw/il19+wc8//4zXXnsNlpaWGDhwIB599FH06NHD1OERNRt6vYDkK4WITchGXGIWkq8UVdlvLjXH5ewSDHnAB5t+S6r2+OgoH+j0ekjB4iwREbUctSrOHjlyBD/88AN+//136HQ6dO3aFVevXsUXX3zBXltEREREzUx4kAJxidmIS8zGiP4Bpg6nyXJwcMAzzzyDZ555BpmZmfj555/x888/Y+zYsVAoFBgyZAhee+01U4dJ1CSVqbQ4eSEHsQnZOHE+B4Wl5VX2+3naI+JG71g/D3uIxSJ4udtCJAJ2HkxFmUoLK7kU0VE+GN7PHzK2MyAiohbGqOLs2rVr8cMPPyAtLQ3t27fHpEmT8Nhjj8HS0hLdunVjjzIiIiKiZigiSIHlAM6nF6BEqYGNpczUITV57u7uGDduHB588EF899132LhxI1auXMniLNENgiDgSk7pjdmx2UhIy4dO/+9C0XJzM3QOdEFEkAJdOyjgYGtR7RwyqQTD+vphRP8AKNVaWFpIodPrWZglIqIWyaji7Pz58xEYGIjvvvuuygzZkpKSBguMiIiIiBqWq6Ml2rnZ4HJWCU6cz0HvLh6mDqlJy8rKws8//4xdu3YhMTERTk5OGDVqFB599FFTh0ZkUhqtDmdT8hCXUNk/NrtAWWV/WxdrRARXzo4N9nYyqmeshazyo6qddWV/Z7YyICKilsqo4uz//vc/7Nu3Dy+++CIiIyPx2GOPoW/fvg0dGxERERE1sIggBS5nlSAuMZvF2dv4/vvv8fPPP+PkyZOQyWTo378/pk2bhgceeABiMQtG1HJYWFSfxXo7eYUqxCZmIy4hG6eTc1Gu0Rn2mUnECPN1QniwAhFBbnB3tmqIcImIiFoEo4qzixYtQmlpKWJiYvDjjz/i5ZdfhoODAwYMGACRSMS2BkRERETNVHiQAtv2J+P4+Rzo9AIkYo7r/mvevHno1q0b5s2bh4EDB8LK6t4LTdu3b8eKFSuQkZGBdu3aYcqUKXj44YerHffVV19hyZIlSEqqvjgSUX1RayoglVnA3cMHUpk51JoKw8zVm3R6AUmXCm4sIpiN9MziKvud7CwQHqRARJACHf1dIDev09rTRERErY7RvzGtra3x9NNP4+mnn8bFixexbds2xMTEQBAEvPHGG/jf//6H//3vf/Dz82vIeImIiIioHgV5OcJKLkWJUoMLl64jyNvR1CE1Ofv374dCoai38+3YsQNz5szBG2+8gaioKOzevRvTp0+Hm5sbOnfubDjuzJkzWLZsWb09L1FNNFodtu1PRkwNi29pK3SITcxBXEI2TiRlo0SpNTxOLAIC2ztWFmSDFTcW8eKXO0RERLVVp68z/f39MWvWLMyYMQP79+/Htm3b8M0332D58uXw9/fHzp076ztOIiIiImoAEokYXQJdcfDUVcQmZrE4e8P27dvRu3dvODg44PDhw3c9fujQoUadVxAELF26FKNHj8bIkSMBABMnTkRcXByOHTtmKM4qlUrMnDkT4eHhOHLkSJ2vg+hO1JoKbNufjE17/52ZXabSYuPeJOj1Avw87bHo++OGfdZyKbp0cEVEkAKdA10N/WCJiIio7u7pXhMzMzM8+OCDePDBB5GXl4effvoJP/30U33FRkRERESNIDxIgYOnriIuMRujHwk2dThNwqxZs7B582Y4ODhg1qxZdzxWJBIZXZxNS0vD1atXMWTIkCrbV61aVeXv8+bNQ0BAAPr27cviLDUYiViMmIOpNe7bdSgNa98aiFAfJ3Twqpwh26G9AyQS9lkmIiKqT/XWCMjZ2RkvvPACXnjhhfo6JRERERE1gq4dXCESAWnXipFXqIKzvdzUIZncvn374OLiYvi5vqSlpQGonBk7btw4JCQkwMPDAxMnTkS/fv0AAHv37sWBAwcQExOD/fv318vzCoIApVJZL+dqblQqVZU/Cci5rkLylWLcF6BAmUpb4zFlKi3UmgrMfb4rBEEAAJSXqxszzCaJryfjME/GYZ6MwzzdHXNknMbOkyAIRrX8YZd2IiIiolbOztocAe0ckHTpOuISszEo0svUIZlc27ZtDT/HxsYaWhz8V25uLrZv3270BIXS0lIAwOuvv44pU6ZgxowZ+PXXXzFp0iSsWbMGPj4+mDt3Lj755JMan6+utFotEhMT6+18zVF6erqpQzAZnV7A5dxyXLymxoWrauQVV8DWSoZVnTxhJZfWWKC1kkthaSFFYkI8KioqTBB109aaX0+1wTwZh3kyDvN0d8yRcRozTzKZ7K7HsDhLRERERIgIUrA4exuzZ8/GDz/8UGOxNDExEZ999pnRxVmpVAoAGDduHB577DEAQFBQEBISErBmzRpotVo8/PDD6NWrV/1dwI3nba0L96pUKqSnp8PLywtyeeuZFV5UqsGpi3k4kZSHMyn5UKr/LbCKxSJ4uFghu6AMQ6J8qvScvSk6ygcVFTr4+/s3ZthNXmt9PdUW82Qc5sk4zNPdMUfGaew8JScnG3Uci7NEREREhPAgBdbvOY/TF3OhrdBBaiYxdUgmNWHCBKSkpACovCVt8uTJNc58yM/PR7t27Yw+r0KhAAAEBARU2e7n54c9e/bg6tWrOHHiBLZv3w4AhhmLnTt3xrvvvovo6Oi6XA5EIhEsLS3r9NiWQi6Xt+gc6PUCUq8WITYxG3GJWbiYUYgb3QgAAHbWMnTtoED4jcW8rOWVXxS4O1tDBGDnwVSUqbSwkksRHeWD4f38IZNKANx9xk9r1NJfT/WFeTIO82Qc5unumCPjNFaejGlpALA4S0REREQAfNrawdHWHAXF5Tibko8uga6mDsmkXnrpJWzZsgUA8NNPPyE4OBiOjo5VjhGLxbC1tcWwYcOMPm9ISAisrKxw+vRphIeHG7ZfuHABvr6+WLNmTZXj9+7di4ULF2L79u1wcnK6hyuilkip1uLUhVzEJWYjLjEb10vKq+z39bBDeJACEUEK+Hs6QCyu/iFRJpVgWF8/jOgfgFJlOawtzaHT628UZomIiKihsThLRERERBCJROjaQYHfjl1GXGJ2qy/OdunSBV26dDH8fdKkSfD09Lzn81pYWGD8+PH44osvoFAo0LFjR+zevRuHDh3C2rVr0b59+yrH3yzI/nc7tV5Xc0sRm1A5O/Zcaj4qdP9Oj5WbS9ApwBXhQZUzZB1tLYw6p4XMDEqlEtcy0uDt7c1ZV0RERI2IxVkiIiIiAgBEBN8oziZk44VHQ42+Faul++ijj267T6lUIi4urlY9YidNmgS5XI7FixcjOzsbvr6++Pzzz9G9e/f6CJdaGG2FDmdT8g2zYzPzyqrsb+NshfDgytmxIT5O99SSRK1W32u4REREVEsszhIRERERAOA+fxeYSUTIzC/D1dxSeLjamDqkJuHatWt4++23cezYMWg0mhqPSUxMrNU5x44di7Fjx971uGHDhtWqbQI1fWpNBSRiMcrUWlhZSKHT62Ehq/qxLL9IhbjEbMQmZOP0xVyoNTrDPjOJCKE+zoaCbBsX68a+BCIiIqpHLM4SEREREQDA0kKKUB9nnLpY2cOSxdlKH374IU6cOIERI0bgxIkTkMvl6NSpEw4dOoQLFy7g888/N3WI1ExotDps25+MmBoW37qSU4JDZzIRl5CN1GtFVR7naGuOrh0UiAhW4D5/F1haSE10BURERFTfWJwlIiIiIoPwYAVOXcxFbEI2hvb2M3U4TUJsbCxeffVVjBo1CuvXr8cff/yBmTNnYvr06Xj++eexb98+9O/f39RhUhOn1lRg2/5kbNqbZNhWptJi494k6PUC/Dztsfn3CwAAkQgIaOeAiBu9Y33a2rHNCBERUQvF4iwRERERGUQEKbByRzzOpeZDqdZyhh6AsrIyBAYGAgB8fHywbNkyAIBEIsEzzzyDjz/+2JThUTMhEYsRczC1xn27DqVh7dyBGNi9PUJ8nNC1gyvsrM0bOUIiIiIyBbGpAwAAvV6Pzz77DFFRUejUqRNeeOEFZGRk3Pb4/Px8vPbaa+jRowe6d++OV199FdnZ2TUeq9FoMGTIEMyaNauhwiciIiJqMdq4WKONsxV0egEnL+SaOpwmwdXVFXl5eQCA9u3bo6ioCLm5lbmxt7dHfn6+KcOjJkytqUBsQhY2/ZaEgmI1ylTaGo8rU2lRrtHh5Sc6oV+4JwuzRERErUiTKM5++eWX2LBhA95//31s2rQJer0e48ePv+2CC9OmTcO1a9ewZs0arFmzBteuXcPkyZNrPPaTTz7BhQsXGjJ8IiIiohYlPFgBAIhLqPnL79amd+/eWLJkCU6ePIm2bdvCzc0Nq1evRmlpKbZt2waFQmHqEKkJySlQYvehNLy78ghGvvUL3lt1FDEHU2FnJYOVvOaZ6FZyKWepExERtVImL85qNBqsXr0aU6dORZ8+fdChQwcsXrwYWVlZ2Lt3b7Xji4uLcezYMbzwwgsICgpCcHAwJkyYgLNnz6KwsLDKsQcPHsQvv/wCf3//RroaIiIiouYvIuhGcfZ8NvR6wcTRmN7UqVNha2uLpUuXAgBeffVVfPvtt4iIiEBMTAzGjh1r4gjJlHQ6PeJT8rB21zlMXvAHxs37Dct/PIO4xGxoKvRwcZCj531tUKzUIDrKp8ZzREf5QKfXN3LkRERE1BSYvOfs+fPnUVZWhsjISMM2W1tbBAcHIzY2FoMHD65yvIWFBaysrLB9+3Z069YNALBjxw54e3vD1tbWcFxBQQFmz56N999/H2vWrGmciyEiIiJqAUJ8nCE3l6CwpBwpVwvh7+lg6pBMysHBAVu2bEFOTg4AIDo6Gm3atMGpU6fQsWNHw5iUWo+i0nIcP5+DuMRsnEjKqdKuQCwWIcjLEeFBCkQEKdDOzcawmNfwfpWTRnYeTEWZSgsruRTRUT4Y3s8fMqnEJNdCREREpmXy4mxWVhYAwN3dvcp2V1dXw75byWQyzJ8/H3PnzkV4eDhEIhFcXV2xfv16iMX/TgSeM2cO+vbti379+tVLcVYQBCiVyns+T3OlUqmq/EnVMUfGYZ6MwzwZh3kyDvNkHOapqlAfJ8Qm5uDwmSto61TZ/7KxcyQIQpNYoX7ZsmUYMWJElfYF4eHhCA8Px5UrV/Dee+9h7ty5JoyQGpogCEi9WoS4xGzEJmbjwuXrEG6ZVG5jKUPXIFdEBCnQJdAV1payGs8jk0owrK8fRvQPMCy4p9PrWZglIiJqxUxenL05uJfJqg5gzM3NUVRUVO14QRCQmJiIzp07Y/z48dDpdFi8eDEmTZqEjRs3wtraGps2bUJKSgoWLVpUb3FqtVokJibW2/maq/T0dFOH0OQxR8ZhnozDPBmHeTIO82Qc5qmSu23lTMB/TmcgxK3qOgCNmaP/jhFN4YsvvkCvXr1q7C17+vRpbNmyhcXZFkip1uL0xVzEJVbOkC0oVlfZ79PGDuHBlbNj/ds5QCI27osEC1nlR7Cbi35JTd9pjoiIiEzI5MVZCwsLAJW9Z2/+DADl5eWQy+XVjv/ll1+wfv167N+/H9bW1gCA5cuXo2/fvti6dSt69eqFBQsWYNWqVbC0tKy3OKVSKfz8/OrtfM2NSqVCeno6vLy8avz/QsyRsZgn4zBPxmGejMM8GYd5qkrRVo2dRw/iWoEWbTx9YWcta/QcJScnN/hz3M5TTz2F06dPA6icHPDkk0/e9tiwsLDGCosa2LXcUsQmZiMuIRvxqfmo0P3bB9ZCJsF9/i6ICFYgPEgBJzu+TxAREdG9M3lx9mY7g5ycHLRr186wPScnB4GBgdWOj4uLg7e3t6EwCwB2dnbw9vbGpUuX8PPPP6OsrKzKwgxqtRonTpzAr7/+ipMnT9YpTpFIVK/F3uZKLpczD3fBHBmHeTIO82Qc5sk4zJNxmKdKlpaW8Glrh9SrRUi4VIz+Ef+O0xorR6ZsafDBBx9gz549EAQBX3zxBR5//HG4ublVOUYsFsPW1hYDBw40UZR0r7QVepxLzTMUZK/llVXZ7+5khfAbxdgwXydIzdh+gIiIiOqXyYuzHTp0gLW1NY4ePWoozhYXFyMhIQGjRo2qdrybmxt2796N8vJymJtX3gqkVCpx5coVREdH49FHH8WQIUOqPGbGjBlwc3PDjBkzGv6CiIiIiFqIiCAFUq8WITYxu0pxtjXw8/PDlClTAFQWif/bc7aiogJmZiYfSlMdFBSrEZeYjbjEbJy6kANVuc6wTyIWIcTHyTA7tq2LdZPoe0xEREQtl8lHlDKZDKNGjcLChQvh6OiItm3bYsGCBXBzc8PAgQOh0+lQUFAAGxsbWFhYYOjQoVi1ahWmTZuGV155BQCwZMkSmJubY9iwYbCxsYG9vX2V57CwsICVlRXat29vgiskIiIiap7CgxX44fcLOJmUU+X27tZmypQpWLFiBeLi4rBixQoAwPHjx/Haa6/hpZdeqnFCATUder2AK3nlOLsvGaeSC5Bypeq6FvY25gjvoEB4sAKdA1xgaSE1UaRERETUGpm8OAsAU6dORUVFBd58802o1WpERERg1apVkEqluHLlCvr374+PPvoIw4YNg6urKzZs2IAFCxZgzJgxEIvFCA8Px4YNG2BjY2PqSyEiIiJqMfw9HWBrJUNxmQaJaQXwbdM62z2sXr0aS5YsqVKEbdeuHQYNGoT58+fD3NwcI0aMMGGE9F+lKi1OJuXcmCGbheIyLYBcw35/T3tEBFUWZH3b2kNs5GJeRERERPWtSRRnJRIJZs6ciZkzZ1bb5+HhgaSkpCrbfH19sXz5cqPPv27dunuOkYiIiKi1kYhF6NrBFfuPX0FsYjZ823ibOiST2LRpE6ZNm4YJEyYYtrm7u+PNN9+Es7Mz1q5dy+KsiQmCgIzsEsQlZiM2MRsJaQXQ6wXDfnOpCJ0DXNEjrA26dHCFg43FHc5GRERE1HiaRHGWiIiIiJqmiCA37D9+BXGJWXiqf+sszmZnZyMsLKzGfffddx+++uqrRo6IAKBcq8PZ5DxDQTanQFllv6fCGuFBbgjzsYOgzEJoSDAX+yMiIqImh8VZIiIiIrqtzh1cIRaLkJFdipzrKlOHYxJt27bF4cOHERkZWW1fbGws3NzcTBBV65RzXYnjN4qxpy/mQaP9dzEvqZkYYX7Ole0KghRwc7ICULl4cGJitqlCJiIiIrojFmeJiIiI6Las5VIEeTniXGo+TiTlor2dqSNqfE888QQWLFgArVaLAQMGwMnJCQUFBdi/fz/WrFmD1157zdQhtlg6nR7nL11HbEIWjp/PQXpmcZX9znYWCA92Q0SQAh39nGFhzo83RERE1Lxw9EJEREREdxQRpMC51HycvJCH9hFyU4fT6J577jlkZ2dj3bp1WLt2rWG7RCLBmDFjMHbsWNMF1wIVlZbjRFIO4hKycSIpB6UqrWGfWAQEtndERHDl7Fgvd1uIRFzMi4iIiJovFmeJiIiI6I7CgxVYuzsB59Ku45HO5qYOxyRef/11TJo0CadOnUJhYSFsbW3RsWNHODg4mDq0Zk8QBKRdK0ZsYhbiErJx4fJ13LKWF2wspegSqEB4sAJdAl1hayUzXbBERERE9YzFWSIiIiK6o3YKG7g6yKHW6FBQJjF1OCZjZWUFFxcXCIKALl26oKKiwtQhNVuq8gqcvpiLuMRsxCVmI79IXWW/l7utYXZsYHtHSMScHUtEREQtE4uzRERERHRHIpEIs8dEwMPVBiVKDaQyC6g1FbCQtZ6h5I4dO7Bo0SLk5uZCJBJhy5Yt+PzzzyGVSrFo0SLIZJzNqdZUQCIWo0ythZWFFDq9vsprJDOvzDA79mxKPip0esM+c5kE9/m5IDxYgfAOCrg4tL72GURERNQ6tZ4RNRERERHViUarw9FzWXjz68MoU2lhJZciOsoHw/v5QyZt+TNpf/75Z7z++uuIjo5G37598eqrrwIAHnzwQbz77rv48ssvMW3aNNMGaWIarQ7b9icj5mBqldfIsD5+2HUoDb8fu4yruaVVHqNwtEREUGW7gjBf51bxWiIiIiL6LxZniYiIiOi21JoKbNufjE2/XTBsK1NpsXFvEgBgWF+/Fj+Ddvny5XjqqafwzjvvQKfTGbY//vjjKCgowObNm1t1cdbwGrnxmgD+fY3o9QL8PO1xNbcUErEIwd5OCA9SICJYAQ9Xay7mRURERK2e2NQBEBEREVHTJRGLEXMwtcZ9Ow+mQiJu+cPJtLQ0PPjggzXuu++++5Cdnd3IETUtd3qN7DqUhs4Brpgzthu+f+9hfDipJ4b19YOnwoaFWSIiIiKwOEtEREREd1Cm1qJMpa15n0oLpbrmfS2Jk5MTUlJSatyXkpICJyenRo6oabnba0StqUCPUHdYyaWNHBkRERFR08fiLBERERHdlpWF9LZFNSu5FJYWLb/g9sgjj+Czzz7Dnj17oNFoAFQukhYfH48vv/wSgwYNMnGEpsXXCBEREVHdsThLRERERLel0+sRHeVT477oKB/o9PpGjqjxTZs2DZ06dcK0adPQtWtXAMCzzz6LESNGwMvLC6+88oqJIzQtvkaIiIiI6q5lr95ARERERPfEQmaG4f38AVT2mC1TaWEllyI6ygfD+/lDJpWYOMKGJ5PJsHLlShw6dAiHDx9GUVERbGxs0K1bN/Tu3bvV907la4SIiIio7licJSIiIqI7kkklGNbXDyP6B6BUWQ5rS3Po9PpWV3Tr2bMnIiIiUFxcDDs7O0ilvF3/pltfI0q1FpYW0lb5GiEiIiKqLbY1ICIiIqK7spCZQatR41pGKrQaNSxkres7/r/++gtPPfUUOnXqhKioKHTu3BljxozBiRMnTB1ak2EhM4PUTAw7a3NIzcSt7jVCREREVBccMRERERGR0dRqtalDaHS//vorpk2bhg4dOmDKlClwcnJCbm4ufvvtN4wePRpr165FeHi4qcMkIiIiomZIJAiCYOogmroTJ05AEATIZDJTh2IygiBAq9VCKpW2+r5qt8McGYd5Mg7zZBzmyTjMk3GYp7tr7BxpNBqIRCJ06dKlwZ/rTqKjo+Hj44MlS5ZU2/fyyy8jLy8PGzdubPzAjNTax7L8t20c5sk4zJNxmCfjME/GYZ7ujjkyTlMdy7KtgRFEIlGrf3GLRCLIZLJWn4c7YY6MwzwZh3kyDvNkHObJOMzT3TV2jprKGOzSpUsYPnx4jfueeOIJJCYmNnJEtdNU8mgq/LdtHObJOMyTcZgn4zBPxmGe7o45Mk5THcuyrYEROnfubOoQiIiIiMhEfH19cfbsWTzwwAPV9qWlpcHDw8MEURmPY1kiIiKipovFWSIiIiKiO3jnnXfw0ksvQSQSYejQoXB1dUVhYSF+//13fPbZZ3jnnXdw7do1w/Ft2rQxYbRERERE1Jyw5ywRERER0R106NDB8POtt6bdHEb/93a1pt7mgIiIiIiaDs6cJSIiIiK6gw8//JA93IiIiIioQXDmLBERERHRPSguLoatra2pwyAiIiKiZkhs6gCIiIiIiJqycePGITc3t8Z9f/75JwYPHtzIERERERFRS8HiLBERERHRHSQkJGDIkCH47bffDNtKS0sxe/ZsvPTSS1AoFCaMjoiIiIiaM7Y1ICIiIiK6g4KCArz11lvYt28fhg0bhr59++KDDz5ASUkJpk2bhmeffZY9aYmIiIioTlicJSIiIiIywk8//YQ5c+ZAEAR06NABy5cv56xZIiIiIronbGtARERERHQXR48exTfffAOxWIyQkBAkJibiiy++QElJialDIyIiIqJmjMVZIiIiIqI7mD17Np577jlIpVJs3boVW7duxbvvvovdu3fj4Ycfxt69e00dIhERERE1U2xrQERERER0B6GhoXjhhRcwefJkmJmZGbZfvXoVc+bMwdGjR5GYmGjCCImIiIioueLM2VaksLAQc+fORa9evdClSxc8/fTTiIuLM+w/fPgwhg0bhvvuuw+DBg3C7t27qzy+vLwc7777LiIjI9G5c2e89tprKCgoqHJMWloaJkyYgM6dO6Nnz5547733oFKpGuX66ktj5Omff/7B448/jk6dOmHAgAFYtWpVo1xbfbrXPN1q7ty5mDVrVrXttTlHU9UYedq2bRuGDBmCTp06YeDAgVixYgV0Ol2DXE9DaIwc3SQIAsaNG4dnn322Xq+hMTRGnvgeXtXt8sT3cCAzMxPTp09Hz549ERERgXHjxuHixYtVjvnll1/wyCOPoGPHjhg6dCgOHz7cKNfWEH744Qe88sorVQqzANC2bVusXbsWb731lokia104ljUOx7LG4Vj27jiONQ7HssbhWNY4HMsap8WNZQVqNcaOHSsMHjxYiI2NFVJTU4V3331X6Nixo5CSkiIkJycLYWFhwqeffiokJycLK1euFIKDg4V//vnH8PhZs2YJAwYMEGJjY4XTp08LQ4cOFUaOHGnYX1BQINx///3CxIkThYsXLwqHDh0SHnjgAeHtt982wdXWXUPnKSUlRQgNDRU+//xz4fLly8Lu3buFjh07CuvXrzfF5dbZveZJEARBp9MJixYtEgICAoTXX3+9yj5jz9HUNXSeduzYIYSEhAibNm0SLl26JOzevVvo0qWL8PnnnzfmZd6Ths7RrdasWSMEBAQIo0aNaujLqncNnSe+h//rTnnie7gglJeXC4MHDxZGjRolnDlzRrhw4YLw8ssvC5GRkUJ+fr4gCIJw+PBhISQkRPj222+F5ORkYf78+UJoaKiQnJxsystuEGq1WkhMTDR1GK0Cx7LG4VjWOBzL3h3HscbhWNY4HMsah2NZ47S0sSyLs61Eenq6EBAQIMTFxRm26fV6YcCAAcKSJUuEt956Sxg+fHiVx0yfPl14/vnnBUEQhKysLKFDhw7Cn3/+adifmpoqBAQECCdOnBAEQRA+++wzoVevXoJarTYcs3nzZuGxxx4T9Hp9Q15evWmMPK1Zs0bo1q1blXNMnjxZePHFFxvqsurdveZJECoHrE8++aTQo0cPoU+fPtV+aRhzjqauMfL01FNPCXPmzKmybdmyZULv3r3r/4IaQGPk6Kbz588L4eHhwhNPPNHsBrSNkSe+h1e6W574Hi4Ihw4dEgICAoSsrCzDfrVaLdx3333Cli1bBEEQhOeff1545ZVXqpzjySefFN56660Guqr617NnTyEhIaHKttWrVxsG7TedOnVK6NChQ2OG1ipxLGscjmWNw7Hs3XEcaxyOZY3DsaxxOJY1Tkscy7KtQSvh4OCAFStWICwszLBNJBJBJBKhuLgYcXFxiIyMrPKYHj164Pjx4xAEAcePHzdsu8nb2xsKhQKxsbEAgL///hsPPvggzM3NDceMGDECP/74I0QiUUNeXr1pjDw5OTmhsLAQu3btgiAISEpKwvHjx3Hfffc1whXWj3vNEwAcOXIEvr6+2LVrFzw8PKo9hzHnaOoaI08zZszAuHHjqmwTi8UoKipqgCuqf42RI6DyFs0ZM2Zg6tSp8Pb2brgLaiCNkSe+hxuXJ76HC/D398eKFSugUCgM+8XiyiFlcXEx9Ho9Tpw4Ue0c3bt3N/wubA7y8vKg1WoNf9fpdPjkk0+QmZlpwqhaL45ljcOxrHE4lr07jmONw7GscTiWNQ7HssZpiWNZFmdbCVtbW/Tu3Rsymcyw7ddff8WlS5cQFRWFrKwsuLm5VXmMq6srVCoVrl+/juzsbDg4OFR5o7t5TFZWFoDK/i6urq746KOP0KdPHzz44IP45JNPUF5e3vAXWE8aI08PP/wwRowYgZkzZyIkJATR0dHo2bMnXnrppYa/wHpyr3kCgJEjR2LevHlwcnKq8TmMOUdT1xh56tq1a5UBWklJCTZu3IioqKgGuKL61xg5AoAFCxbA1dUVo0aNapgLaWCNkSe+hxuXJ76HX4eLiwt69+5dZf+6deugVqvRs2dPFBcXQ6lU1niOm78Lm6vmUFBpqTiWNQ7HssbhWPbuOI41DseyxuFY1jgcyxqnJY5lWZxtpU6cOIHZs2dj4MCB6NOnD9RqdZUXNgDD3zUaDVQqVbX9AGBubm54systLcU333yD8vJyLFu2DDNnzkRMTAzefPPNhr+gBtIQecrPz8fVq1cxdepUbN26FfPmzcOBAwfw+eefN/wFNZDa5skY9XGOpqYh8nSrsrIyTJo0CeXl5fi///u/eom5sTVEjv766y/ExMTgww8/bDbfmt9NQ+SJ7+HG5Ynv4dXz9Ntvv2HRokV47rnnEBgYCLVaXeUxN936u5DoXnEsaxyOZY3DsezdcRxrHI5ljcOxrHE4ljVOSxjLmt39EGppfv/9d8yYMQNdunTBwoULAVS+yP77Ir35d7lcDgsLixpfxOXl5ZDL5QAAMzMzeHt745133gEAhIaGQqfTYdq0aZg1a9YdvwlsihoqT3PmzIG7uzsmTpwIAAgODoYgCHjnnXcwatQoODo6NuRl1bu65MkY9XGOpqSh8nRTbm4uXnzxRVy5cgWrVq267S1RTVlD5KigoABvvPEG3nnnnSq3rTRnDfVa4nu4cXnie3jVPG3cuBHvv/8+oqOjDR+mb864++85bv1dSHQvOJY1DseyxuFY9u44jjUOx7LG4VjWOBzLGqeljGU5c7aVWb9+PV5++WX07dsXy5cvN7zo3N3dkZOTU+XYnJwcWFpawsbGBm5ubigsLKz24szJyTH8knBzc4O/v3+V/Tf/fvXq1Ya6pAbRkHk6fvx4ld4oANCpUydUVFTgypUrDXhV9a+ueTJGfZyjqWjIPAFASkoKnnjiCeTn5+P777+v9vpqDhoqRwcOHEBubi7eeOMNdO7cGZ07d0ZMTAzi4uLQuXNnXLt2rUGup6E05GuJ7+HG5Ynv4f/macGCBXjnnXcwevRofPTRR4ZeXfb29rC0tKzxHC3lgyWZDseyxuFY1jgcy94dx7HG4VjWOBzLGodjWeO0pLEsi7OtyIYNG/D+++9j5MiR+PTTT6tM0Q4PD8exY8eqHH/kyBF06dIFYrEYXbt2hV6vNywSAFT2dMnOzkZERAQAICIiAmfOnKnSj+3ChQuQSCTN6tvPhs6TQqFAUlJSlXMkJSVBJBKhffv2DXhl9ete8mSM+jhHU9DQecrIyMCYMWMgl8uxadOmagOS5qAhc/Tggw9i79692L59u+G/fv36ITQ0FNu3b4erq2u9X09DaejXEt/DjcsT38Mr87RgwQKsXLkSr7/+OmbNmlXlNkuRSIQuXbpUO8fRo0cRHh7egFfVOFrKLaXNEceyxuFY1jgcy94dx7HG4VjWOBzLGodjWeO0uLGsQK1CamqqEBISIkyePFnIycmp8l9xcbFw4cIFISQkRFiwYIGQnJwsrFq1SggODhb++ecfwzmmT58u9OvXTzhy5Ihw+vRpYejQocKoUaMM+1NSUoT77rtPeOutt4TU1FThr7/+Enr16iXMmjXLFJdcJ42Rp02bNgnBwcHCt99+K1y+fFn47bffhJ49ewrvvvuuKS65TuojT7caNWqU8Prrr1fZVttzNEWNkadRo0YJERERQmJiYrXnaA4aI0f/9frrr1f5N9kcNEae+B5eXU154nu4IBw5ckQICAgQ3n///WqPLy0tFQRBEA4ePCgEBQUJq1evFpKTk4WPP/5Y6Nixo5CcnGzKS6+VwMBA4YEHHhD69etn+C8wMFCIioqqsu2BBx4QOnToYOpwWzyOZY3DsaxxOJa9O45jjcOxrHE4ljUOx7LGaYljWZEgcNnZ1mD58uVYvHhxjfsee+wxzJ8/H3/99RcWLFiA9PR0eHh44OWXX8YjjzxiOE6pVOLDDz/Er7/+CgDo1asX3nzzTTg4OBiOOXPmDD755BOcOXMGNjY2iI6OxquvvlrjwgJNUWPlafv27VizZg0uXboEhUKBRx99FC+88AKkUmnDXmA9qY883erZZ59F27ZtMX/+/Crba3OOpqih85SdnY1evXrd9vn/+41oU9RYr6VbzZo1C1evXsW6devq5RoaQ2Plie/hVd0uT639Pfytt97C5s2ba3z8lClT8PLLLwOozNOXX36JrKws+Pn5YebMmYiMjGyYi2oAs2fPrtXxH330UQNFQgDHssbiWNY4HMveHcexxuFY1jgcyxqHY1njtMSxLIuzRERERERERERERCbQPJrdEBEREREREREREbUwLM4SERERERERERERmQCLs0REREREREREREQmwOIsERERERERERERkQmwOEtERERERERERERkAizOEhEREREREREREZkAi7NEREREREREREREJsDiLBFRM/baa68hMDAQq1evNnUoRERERES1wrEsEREgEgRBMHUQRERUeyUlJXjggQfQrl07aDQa7NmzByKRyNRhERERERHdFceyRESVOHOWiKiZ2rVrFwBgzpw5SE9Px5EjR0wcERERERGRcTiWJSKqZGbqAIiIqG62bduGyMhI9OjRA+3bt8emTZsQGRlp2P/ss8+iXbt2aN++PTZs2ID8/HyEhITgjTfeQMeOHQ3HnT17FkuWLEF8fDy0Wi26deuG1157Df7+/qa4LCIiIiJqBTiWJSKqxJmzRETN0MWLF3H27FkMHToUADB06FDs27cPeXl5VY779ddfsW/fPrz55pv49NNPkZeXh5dffhk6nQ4AcOTIETz99NMAgA8//BAffPABMjMz8dRTTyElJaVRr4mIiIiIWgeOZYmI/sXiLBFRM7Rt2zbY29ujX79+AIDHHnsMOp0OW7durXJcRUUFVq1ahQEDBuDBBx/ElClTkJWVhcTERADAokWL0L59e6xYsQL9+/fHI488gnXr1sHMzAyfffZZo18XEREREbV8HMsSEf2LxVkiomZGq9Vi586dGDBgANRqNYqLi2FlZYWuXbti8+bN0Ov1hmP9/PxgbW1t+LtCoQAAqFQqKJVKnD17Fg8//DAkEonhGFtbW/Tt2xfHjh1rvIsiIiIiolaBY1kioqrYc5aIqJn5888/kZ+fj61bt1abXQAABw8eRO/evQEAcrm8yj6xuPI7Ob1ej5KSEgiCAGdn52rncHZ2RklJSQNET0REREStGceyRERVsThLRNTMbNu2DZ6enpg3b16V7YIgYMqUKdi0aZNhQHsnNjY2EIlE1Xp7AUBubi7s7e3rK2QiIiIiIgAcyxIR/ReLs0REzUhubi4OHjyI8ePHo3v37tX2Dxo0CD/++COys7Pvei5LS0uEhobil19+wcSJEw23g5WUlODPP/9Ejx496j1+IiIiImq9OJYlIqqOPWeJiJqR7du3o6KiAv/73/9q3D906FDodDps3rzZqPO99tprSEtLw4QJE7Bv3z7s2bMHY8aMgUajweTJk+szdCIiIiJq5TiWJSKqjsVZIqJm5Mcff4S/vz8CAgJq3N+1a1d4eHhgy5Yt0Ol0dz1fZGQk1qxZA7VajenTp+Ott96CQqHA5s2bb/scRERERER1wbEsEVF1IkEQBFMHQURERERERERERNTacOYsERERERERERERkQmwOEtERERERERERERkAizOEhEREREREREREZkAi7NEREREREREREREJsDiLBEREREREREREZEJsDhLREREREREREREZAIszhIRERERERERERGZAIuzRERERERERERERCbA4uz/s3ffcVWW7wPHPwc4B5Ahw4GKA0TcKA6ciJipmZqileXeuUfOMjX7ZubeWq5ym1rOTHOkZi5cuVBxggtBlswD5/n9QZyfCCggcACv9+vlS33Wuc591v1cz/1ctxBCCCGEEEIIIYQQQhiAJGeFEEIIIYQQQgghhBDCACQ5K4QQQgghhBBCCCGEEAYgyVkhhBBCCCGEEEIIIYQwAEnOCiGEEEIIIYQQQgghhAFkKTl7+vRpLly4AMDDhw/57LPPaNu2LYsXL87O2IQQQgghhBBCCCGEEKLAynRydvv27fTo0YM///wTgEmTJnHq1CnKli3LsmXL+PHHH7M9SCGEEEIIIYQQQgghhChoMp2c/emnn+jQoQNjxozh6dOn/PPPPwwZMoRFixYxcuRItm3blhNxCiGEEEIIIYQQQgghRIGS6eTs7du3ad++PQBHjhxBURTeeecdAKpXr86jR4+yNUAhhBBCCCGEEEIIIYQoiDKdnLW2tub58+cAHDt2jJIlS1KuXDkA7t+/j62tbbYGKIQQQgghhBBCCCGEEAWRSWZ3qFevHosWLcLf35+DBw/Sq1cvAPbt28f8+fNp3LhxtgcphBBCCCGEEEIIIYQQBY1KURQlMzs8e/aMMWPGcObMGerVq8fcuXOxtLSkadOmODg4sHjxYuzt7XMqXiGEEEIIIYQQQgghhCgQMl3WwM7OjpUrV/Lvv/+yfPlyLC0tAdiwYQObNm2SxKwwuPHjx1OxYsV0/zRq1ChbH+/UqVNUrFiRU6dOZetxnz17ho+PD5UrV6ZKlSpUqVKFRo0aER4enq2Pk+zXX3+lYsWKBAYGvtFxFi5cSMWKFTP1WOPHj6dZs2Zv9LhZUbFiRRYuXPjGx8mutsurkp9fen+mTp1q6BDTFRgY+MrYK1asyMaNG3M1ppff782aNWP8+PG5GkNuSP5ufPFPtWrVeOedd5gxYwYxMTG5Ekfye+DXX38FMvYdJYQQ+ZX0g7Mmt/pyaf02VqpUiVq1atG5c2cOHTqUo49vKHv27KFevXpUqlSJKlWqULlyZb755huDxZPdfYE7d+4wZcoUmjdvjpubG02bNmXUqFH4+fll22PkBWvWrKFWrVopXselS5caOqxXSutcoGrVqjRp0oRJkybx7NmzXIvlxXPPgn7+KDIv02UNkoWEhBAfH0/ywFudTsfNmzfx9fXlk08+ybYAhciKokWLsmjRojTXqdXqXI4ma0xNTZk+fTqxsbGYmJig0WhwdHTEzMzM0KG9saZNm7J582aKFStm6FBEJixatIiiRYumWl6kSBEDRJM5AwcOpGnTpmmuK126dO4G85aZNGkSVatWBSAmJgY/Pz8WLFjA06dPmTlzZo4/frFixdi8eTNlypTJ8ccSQoi8QPrBed+Lv42KohAeHs6qVasYNGgQP/zwA15eXgaOMHvVqlWLn376Ca1Wi0ajwcLCosD0v/bv38/YsWOpUKECAwcOxNHRkcePH/Pzzz/z0UcfsXTp0my/KGIo3t7e1K5dm8TERDQaDTY2Njg4OBg6rAx58VwgLi6OO3fusHDhQvz9/dmwYUOuxLB58+Z8014i92U6Oevn58fo0aO5detWmutVKpUkZ4XBaTQaatasaegw3oiFhQWurq6GDiNH2NnZYWdnZ+gwRCZVrlwZR0dHQ4eRJWXKlMn33wn5lYuLS4q2b9CgAZGRkSxdupTJkyfr78DJKQXh90AIITKjIHzvFeR+MKT+bQSoU6cOTZs2Zc2aNQUuOVuiRAlKlChh6DCy3f379xk3bhyenp7MmzcPY2Nj/boWLVrwySefMG7cOA4dOoRGozFgpNkjPyfUXz4XqFevHmq1mi+++IKbN29SoUKFHI8hv38vi5yV6bIGM2bMIDw8nHHjxuHh4UHjxo356quv8PLyQqVSsWbNmpyIU4hst2zZMqpVq5bq9qiffvqJqlWrEhISAsDdu3cZNmwYjRo1ombNmnTr1o2zZ8+me9y0btF/+bZagKCgIMaNG0eDBg1wd3enW7dunD9/Xr/+2bNnfP3113h7e1OtWjU8PDwYPHhwqlsffv/9d3x8fHB3d6dRo0ZMmjTptbd86XQ6lixZQtOmTalRowaDBg1Kc58DBw7w6aef4u7uTrVq1WjVqhXr169/5bEzIr3bODZv3kzTpk1xc3OjR48eXL16NcX6hw8fMmrUKDw8PKhRo0aqbZLbefXq1bRq1YoaNWqwbds2AE6fPs3HH39MjRo1aNmyJf/880+quAIDAxk7diyNGzematWqNGjQgLFjxxIaGqrfJqNtd+PGDQYMGECtWrWoVasWgwcPJiAg4JXtMn78eLp168bWrVvx9vbG3d2dHj16pLol6syZM/Tp04e6detSrVo1mjVrxsKFC9HpdK9th5x6TZO97vivut3yxc/Hli1beP/996lWrRpNmzZl4cKFJCYmpjhOjx49mDx5MrVq1aJ169Yp1mfVzz//TKtWrahevTqenp5MmTKF58+f69fHx8czb9483nnnHdzc3GjTpg2//fZbimNk5TOp1WqZMWOG/numd+/e3Lt3L8U2W7ZswcfHh5o1a+Lm5sYHH3zA3r179et1Oh1z586lWbNm+vfF7Nmz0Wq16T7uwoULeffdd/nrr79o27Yt1apVo2XLlmzfvj3FdkFBQUyYMAEvLy/c3Nzo1KkTBw8efF1zpsva2jrF/5Nv89y0aRPe3t7UqlWL48ePZ8vzTuv7Vwgh3nbSD86efvDr+g2ZYWlpiZOTEw8fPtQvCwsLY9KkSTRs2JDq1avz0UcfceLEiRT7VaxYkUWLFuHj44Obm5t+1PTt27cZMmQIHh4e1K1blwEDBqQYYBUXF8eMGTPw8vKiWrVqtG3blt9//z3FsZs1a8bcuXOZNm0adevWpV69eowdO5awsLAU2x05coTOnTtTs2ZNGjduzOTJk4mMjNSvz8j7KCPxXL58mR49elC7dm3c3d3p2bMnFy5ceGW7xsXF8d1339GoUSPc3d2ZMGECcXFxqbbz9fWla9eu1KhRAw8PD8aNG/faW97Xrl1LfHw8EydOTJGYBTA3N2fcuHF07Ngxxfvrde/Z5L7ZokWL9PmW8PBwmjVrxrRp0+jRowdubm58+eWX6Z5TvVwyq2LFiqxbt45x48bh7u5Ow4YN+fbbb1O1w/bt22nfvj01atTA29ub2bNnEx8fr1+fkc9EVvqMv/76K1WqVOHixYt8/PHHVK9eHW9vb1auXJliu8jISL777juaN29O9erVadOmDVu3bn3lsV+lcOHCQNIAQ3jzc6jXfR9kV0k9UTBlOjl78eJFhg8fTs+ePWndujUxMTF8+umnLFu2jObNm7N27dqciFOITEtISEjzT3IpjrZt25KQkMD+/ftT7Ldnzx4aN26Mvb09/v7++Pj4EBgYyMSJE5k1axYqlYoePXpw+vTpLMcWFRXFJ598wqlTpxgzZgyLFi1Co9HQu3dv7t+/j6IoDBgwgOPHjzN69GhWrlzJkCFDOHHiBJMnT9YfZ8mSJYwaNYqaNWuyYMECBg8ezL59++jWrRuxsbHpPv7MmTNZvHgxnTp1YtGiRdjY2DB79uwU2/z1118MHjyYqlWrsmTJEhYuXEjp0qWZOnUqFy9ezPJzT8/jx49ZtGgRI0aMYM6cOYSHh9OtWzd9B/XZs2d07tyZK1eu8NVXXzF79mx0Oh1dunRJNZJ/4cKF9OvXT5/sunLlCr1798bKyooFCxbQvXt3Ro0alWKfmJgYunfvzq1bt5g8eTIrV66ke/fu7Nmzh7lz52aq7e7cuUPnzp0JCQnh+++/59tvvyUgIIBPPvlEf7KTnmvXrjF37lyGDBnCzJkzCQ0NpWvXrgQFBQFJdy/07NkTGxsb5s6dy9KlS6lTpw6LFi1KkbBKqx3e9DXV6XSpPk/JCWHI2Htm0KBBbN68Wf9nw4YNlCtXjuLFi+Pp6QnADz/8wFdffUWDBg1YtmwZXbp0Yfny5Xz11Vcp4vH19eXRo0csXryYzz//PFWn+HWxJyQkpEjo7t69m5kzZ9KlSxdWrlzJ4MGD2bFjR4qaaKNHj2b16tV8+OGH/PDDDzRu3Jjx48eze/duIOufyd9//52bN28yffp0Jk+ezOXLlxk5cqR+/fr165k0aRLNmzfnhx9+YNasWWg0GkaPHs3jx48BWL58ORs3bmTw4MGsWrWKTz75hJUrV762FtjTp0+ZOnUq3bt358cff8TR0ZFx48bpP1fBwcF06tQJX19fRo4cycKFCylVqhSDBw9m586drzz2y20fExPDuXPnWLNmDe3bt081anbRokWMGzeOSZMm4e7unqPPWwghCjLpB+d8Pzgj/YbMiI+PJzAwUF+GJy4ujh49enDw4EFGjhzJokWLcHBwoG/fvqkStMuWLaNt27YsWLCAli1b8uTJEz7++GPu3r3LlClTmDlzJsHBwfTo0YOwsDAURWHw4MFs2rSJXr16sXTpUtzd3Rk5cmSqC7QbNmzg3LlzfPfdd3z++eccOXKEAQMG6N9Lhw8fZsCAARQpUoT58+czevRo/vzzT31fOyPvo4zE8/z5c/r27YutrS0LFy5k7ty5xMTE0KdPnxSJ4JeNGTOGX375hQEDBjBv3jzCw8P56aefUmxz5swZevbsiZmZGfPmzeOLL77g9OnTdO/e/ZXvpWPHjlGlShWKFy+e5voGDRowcuRIfVmwjL5nHz58yJEjR5g7dy4TJkzQJxHXr19P9erVWbJkCZ06dUo3rrTMnz+fkJAQ5s2bR9++fdm8eTPjxo3Tr1+/fj3jxo2jWrVqLFq0iH79+rF27VqmTZsGZOwz8SZ9Rp1Ox4gRI2jdujU//vgjtWrVYsaMGRw7dgyA2NhYPv30U3bt2kXfvn1ZsmQJtWvX5ssvv2TZsmWvff4v9kdjY2Px8/NjyZIl1K9fHxcXlxTbZuUcKru/D8RbSMmkatWqKWfOnFEURVFOnjyp1K5dW7/u8OHDSpMmTTJ7SCGy1bhx4xRXV9d0/6xYsUK/bdeuXZXu3bvr/3/v3j3F1dVV2bNnj6IoijJ8+HClXr16SmRkpH4brVartGzZUunYsaOiKEmfA1dXV+XkyZP6x/f29k4RU0BAgOLq6qps27ZNURRFWbt2rVKxYkXl6tWr+m2io6OVFi1aKFu3blUeP36sdOvWTf9ZS/bNN98o1apVUxRFUcLCwpRq1aopX331VYptzpw5o7i6uirr1q1Ls33Cw8OVqlWrKjNnzkyxvE+fPoqrq6sSEBCgKIqiLF++XBk3blyKbUJDQxVXV1flhx9+SPPYiqIoCxYsUFxdXdNdryiKsm3bthSPlfyaXbx4Ub9NUFCQ4ubmpkyfPl1RFEWZM2eOUr16dSUwMFC/TVxcnPLOO+8oQ4cOVRTl/9v5iy++SPF4Q4cOVZo0aaLEx8frl+3Zs0dxdXVVFixYoCiKoly9elX55JNPlPv376fYd8CAAUrLli0VRcl4240aNUpp2LBhivdNaGioUrt2bf3zSUtyO7z4uj958kSpXr26/jF/++03pW/fvkpiYqJ+m8TERKV27dr690J67ZDV1zT59UrrT+/evd/o+P/73/+UatWq6V/7iIgIxc3NTZk0aVKK7X755RfF1dVVuXHjRoq2evToUbpxv9gW6f2pWbOmftuvvvpKadmyZYq23bFjh7JmzRpFURTl+vXriqurq/LTTz+leIwhQ4YoEydOzPBn8uXvCG9vb8XLyyvF+3Pu3LmKq6ur/j303XffpXrfXb58WXF1dVV2796tKIqi9O7dW+nVq1eKbdauXats37493fZJ/rz+888/+mUPHjxQXF1dlZUrVyqKoigzZsxQqlatmuKzpyiK0qNHD6VRo0Yp2utFyd+Naf1p1qyZ8vjx41TbLl68OMUxsuN5v/z9m5HvKCGEyK+kH5x7/eDX9RvSktxe//zzj6LVahWtVqvExMQo/v7+yqhRoxRXV1flyJEjiqIoyubNmxVXV1flwoUL+v11Op3SpUsXxcfHR7/M1dVV6dGjR4rHmT59uuLm5qYEBQXplz169Ehp2rSp8tdffyl///13itc62ejRo5VGjRopWq1WUZSkPoqHh4cSERGh3+bPP/9MEWeHDh2U9u3bKzqdTr/Nnj17lBYtWighISEZeh9lJJ7z588rrq6uytmzZ/Xr7927p8yYMSPd/uCNGzcUV1dXZcOGDfpliYmJSuvWrVP0BT7++GOlTZs2SkJCgn7Z7du3lcqVK6f7XlIURalRo4YyYsSIdNe/KKPv2eR+ysvvf29vb6V58+Yplr18TvXiti++f11dXZUWLVroX1dFUZTVq1crrq6uir+/v5KYmKg0aNBAGTRoUIrjrFixQunQoYOi1Woz9JnIap8x+Xn88ssv+mVxcXFK9erVlalTpyqKoijr169XXF1dlXPnzqXY94svvlCqV6+uhIaGpnnsV50LeHh4KNevX0+1bVbOoTLyffDiuWd6r514e2W65mzJkiUJCAigTp06lCtXjufPnxMYGIijoyMajSbHZtAUIjOKFi2a7qipF+sdtWvXjsmTJ/P06VOKFi3Knj17sLS01N+Odfr0aby9vVOM7jIxMeH9999n8eLFREVFZSm+s2fP4ujoSOXKlfXLzM3N2bdvn/7/a9asQVEUAgMDuXfvHrdv3+bcuXP6W0suXLhAfHw8bdq0SXHsOnXqUKpUKU6fPk2XLl1SPfaFCxfQarV4e3unWP7ee+/pr0wC9O3bF0ga3XDnzh3u37/PpUuXAFLc3pJdSpcujZubm/7/RYsWpWbNmpw5cwaAEydOULlyZYoXL05CQgIARkZGNGnSJNWV2BfbFZLa29vbO8UkGC1atEgx0rJy5cps2LABnU7H3bt3uXfvHv7+/ty+fVv/eBltu5MnT+Lh4YGZmZl+X0tLS+rUqZNmOYUXOTo6UqdOHf3/ixUrhru7u74d2rdvT/v27fWF7O/du8e1a9dITExMdfv6y+3wpq/p0qVLU00IZmVlleXjb9myhTVr1jBt2jT9a3/+/HliY2Np1qyZvu0A/Wfy+PHj+ppQmZmEYMiQIWlOCPbie6B+/fps3rwZHx8fmjdvjpeXF23bttXf6pR8+12LFi1SHCP59qQjR45k6TMJ4ObmluL9mVzbNyIiAktLS/2taREREdy+fZt79+7pZ8ZObtt69eoxe/ZsPv30U5o1a0bTpk3p2rVrhtrnxRpYyW0aHR0NJH0Puru7U6pUqRT7tGvXjgkTJnD79u1UIw5e9PXXX+snPYmPjycgIIAff/yRTp06sXnzZkqWLKnf9uX3bE4/byGEKIikH5w7/eDX9RtepWfPnqmW2dvbM3HiRJo0aQIk9X2LFi1K1apVU/SJvL299aUGk0dUptX3rVmzZop+m4ODA4cPHwbQj1718vJK1d/auXMnN2/e1B+zWbNmKfp7zZo1w8TEhDNnzuDh4cHVq1cZOnRoiufdunVrWrduDWTsfXTixInXxlOhQgXs7Oz47LPPaNWqFZ6enjRq1IgxY8ak286+vr764yQzMjKiZcuW+Pv7A0l3z128eJE+ffqgKIr+8UuXLk358uU5fvx4uv03Y2PjDJfVyux79uXXNL1lGdW2bVtMTP4//dOyZUu+++47/TlGSEgI7777bop9+vTpQ58+fYCMfSbetM/o7u6u/7dGo8HOzi5Ff7RUqVIptkk+9tatW7l48eIrazW/eC6QkJDAo0ePWLNmDZ07d2bt2rX6vipk7RzqTb4PhIAsTAjWokULZs+eTaFChWjZsiXOzs7MmzePfv36sWrVqnxdJFoUHBqNhurVq792u1atWvHNN9+wd+9e/S3sLVu21M8EGx4enuZM9EWKFEFRlCzXlAoLC8Pe3v6V2+zcuZM5c+bw6NEjbGxsqFy5cooZapMvhKQXX3q39yTvZ2trm2L5y0m3Z8+eMXnyZA4cOIBKpaJs2bL6pKHy321M2Smt52Fvb8+jR4+ApDa7d+9eih/OF8XExOj/XahQoRTrwsPDUz1fExOTVMtWr17NsmXLCAsLo0iRIlSrVg1zc3N9W2a07cLCwvj9999T1ckCXjsRWlq3Rdnb23PlyhUg6Zaeb775hh07dpCQkICjoyPu7u6YmJikel1eboc3fU1dXV1fOSFYZo7v6+vL119/TdeuXenYsaN+eXINs/79+6f5GMnlHSBpspCMKlWq1Gu/E1q3bo1Op2PDhg36W5ZKlSrF6NGjad26tT629D67Wf1MQurXysgoqepQctmI+/fvM2nSJE6cOIFarcbZ2ZlKlSoB/9+2ffv2xcLCgm3btjFr1ixmzpxJhQoVmDhxIvXr13/lczc3N0/12MnHDQ8PT/O3Pfl5RkREvPLYTk5OKdq+du3aeHh40Lx5c1atWsXEiRPTbYecft5CCFEQST84d/rBr+s3vMqLFy6NjY0pXLgwJUuWTJHICQsL4+nTp+n2fZ8+fapPzr78+xkWFvbKPltyaYNatWqluT4oKEifoHq5b2pkZIStrS3h4eGEh4ejKMorX8+MvI8yGs/69etZunQpe/fuZfPmzZiZmfHBBx8wceLENCfcysjrHRERgU6nY/ny5SxfvjzVMUxNTdN9biVLlkxRI/hlWq1W//wz+55Nq5/78uucGS+/jsmvWXh4+Gv7uJCxz8Sb9hlf/IxD0nvtxWO//DnNzLFfPhdwd3fHy8tLP7fFi6URsnIO9SbfB0JAFpKzQ4YM4d69e2zdupWWLVsyYcIEhgwZwp49ezA2NmbOnDk5EacQOcLKyopmzZqxd+9e6tevz82bN1PUtSxcuDDBwcGp9nv69CmQ9EN/9+7dFOtUKlWqK6jJV/xefNyXC7dD0lVuGxsbQkNDGTduHN26daNPnz76H9MZM2boR+8ld8aCg4NxdnZOFV96F0qSOychISEp9nu5sP/o0aO5ffs2P/30E+7u7mg0GmJiYvjll1/SPO6bSmvU/dOnT/XJTCsrKzw8PBg7dmya+79qBlQbG5tUr6OiKCkec9euXUyfPp0xY8bg4+Ojf9zhw4frr4xmtO2srKxo2LAhvXr1ShXLi1es0/Li5GPJgoOD9Z2lb7/9ln379jFv3jwaNmyo7zw0aNDglceFnH9NM3r8wMBAhgwZQs2aNZkwYUKKdckTRc2aNYty5cqleoy0OrTZqU2bNrRp04bIyEj+/vtvli9fzpgxY6hdu7Y+tmfPnqUYsXvr1i3CwsKy/Jl8HZ1OR//+/VGr1WzdupXKlStjYmKCv78/O3bs0G9nZGREly5d6NKlCyEhIRw5coRly5YxdOhQjh8/nuVZggsXLqz/znv5OUHqE56MKFmyJHZ2dqm+P1+UXc9bCCFE2qQf/Ob94Ff1G9KrQwqpL1ymxcrKinLlyjFr1qw0178q+WplZZXmZFYnTpzA0dERKysrChUqlO5k3mXLltX/++W+aWJiIqGhodjZ2WFpaYlKpUr1WDExMZw5c4YaNWpk6H2U0XicnZ2ZOXMmiYmJ/Pvvv+zYsYONGzdSpkwZ/ejGFyW/3sHBwSnu1Hnx9bawsEClUtGzZ0/ef//9VMd48QL2yxo3bszPP/+sH33+siNHjjB48GAWLVqUI/3E5GT+i3NAAGmOan/5dUx+Tezs7FL0cV/07Nkz/Pz8cHd3z9BnIif6jC8e++XJct/02BYWFjg7O6d53Bfl9PeBEJCFCcFMTU1ZsGABS5YsAcDT05Ndu3YxZ84cfv/991S3ewqR133wwQdcuHCBjRs3UrJkSTw8PPTr6taty+HDh1OMDEhMTGTPnj1Ur149zWSHhYUFoaGhKWa/fHk20jp16hAQEMDNmzf1y2JjYxkyZAi//vor58+fR6fTMXToUP0XeWJiov6WeJ1OR40aNdBoNPqJiJL5+vry8OHDdK88u7u7Y2Zmxh9//JFiefJtTi/G3KJFC+rVq6d/nkePHtU/fnZLvkUk2aNHjzh//jz16tUDwMPDgzt37ug7s8l/duzYwdatW185GVSDBg04evRoitG1x44dS1EG4OzZs1hbW9O3b199YjYqKoqzZ8/qn29G287DwwN/f38qV66sj7NatWr89NNP/Pnnn69sh7t376aY4OzJkyecP39en3w9e/Ys9erVo3nz5vrE7OXLl3n27NlrX5ecfk0zcvyoqCgGDhyImZkZ8+fPT5WsrlGjBmq1midPnqR4nU1MTJgzZ06aJ3PZZcSIEQwePBhIOql57733GDRoEAkJCQQFBVG7dm0ADh06lGK/WbNm8e2332b5M/k6oaGh3Llzh06dOunbAlK3befOnfnf//4HJI188PHxoUuXLkRERGR5dBMkfQ+eP3+eBw8epFi+c+dOihYtmuIELqMCAwN59uxZmgn4ZIZ+3kII8TaQfnCSrPSDX9dveFMeHh48evQIe3v7FH2i48ePs2LFilf2fevUqcPFixdTJNtCQkLo27cvR44cwcPDg+joaBRFSXHsGzdusHjx4hSlBY4ePZqiPNXBgwdJSEigQYMGWFhYULly5VTtd/ToUfr160dwcHCG3kcZieePP/6gfv36PH36FGNjY9zd3ZkyZQrW1tbpjl5NvoPmVa+3paUlVapU4fbt2ykeu0KFCixcuFBfTiktXbp0Qa1W8+2336Z5UWLBggXY2trSpEmTHOknJpeKSJ4kFf5/0MDLXu6/7tu3D5VKRf369XF2dsbW1jbV67h9+3b69+9PQkJChj4TOdFnTFa3bl0ePHjA+fPnUx1brVanKI+XUZGRkdy5c+e1ceWF7wNR8GV65GyyF2vjlSlTRj+rpBB5QXx8PBcuXEh3fcWKFfVXQT09PbGxsWHz5s307ds3xe1EQ4YM4ejRo3Tv3l0/gmvdunUEBASwYsWKNI/t7e3N2rVr+fLLL+nUqRM3btxg9erVKTpQPj4+rF27loEDBzJs2DBsbW1Zs2YNiYmJfPrpp/oE1NSpU+nYsSPh4eGsX78ePz8/IOnH3sbGhv79+7N48WLUajXe3t4EBgYyf/58XFxc6NChQ5rxWVhYMGjQIObNm4e5uTn169fnyJEjqX6M3dzc2LVrF1WrVsXBwYFz587x448/olKpUiQ50/PyLKiQNCrSx8cnze1NTU0ZOHAgI0eOJDExkfnz52NjY0OPHj2ApNpcO3bsoGfPnvTu3RtbW1t+//13fvnll1SjL182ePBgDhw4QJ8+fejbty/Pnj1j3rx5Kb7H3Nzc2LhxI9OnT8fb25ugoCBWrlxJcHCw/kp3Rttu0KBBdO7cmQEDBvDJJ59gamrK5s2bOXDgAAsWLHhlrIqi8NlnnzFy5EiMjY31V9q7deumj3Pv3r1s3LiR8uXL4+fnx9KlSzP0urzpa/o6GTn+6NGjuXXrFtOnT+fBgwcEBATo97ezs9OPfJg/fz7Pnz+nXr16PHnyhPnz56NSqfS3tGfW/fv30/1OKFy4ME5OTtSvX5/Jkyfz/fff06RJEyIiIli0aBHlypWjUqVKqNVqWrVqxcyZM4mNjaVy5cocPXqUw4cP62d7zspn8nXs7e0pVaoU69evx8HBAWtra44dO6YfXZLctnXr1mXVqlUUKVIEd3d3njx5wurVq/Hw8HhtOY1X6dWrFzt37qRnz54MGTIEGxsbtm/fzsmTJ5k2bZq+DEJ6/P399bcEKorCw4cPWbx4Maampq+sDZtdz/vlEVtCCFHQST84d/rBr+s3vCkfHx/WrVtHr169+OyzzyhRogT//PMPy5cvp2vXrin6sS/r2bMn27dvp2/fvgwYMAC1Ws3SpUtxcHCgbdu2WFlZUbduXQYNGsSgQYMoX748//77LwsWLMDT0zNFv+HRo0cMHDiQ7t278+jRI+bMmYOnp6d+AMWwYcMYOHAgo0aNon379gQHBzNnzhxatGhB+fLlM/Q+8vLyem08tWrVQqfTMXjwYPr374+FhQV79+4lMjIy3QFiZcuW5eOPP2bu3LkkJCRQuXJlduzYwfXr11NsN2rUKPr378/nn39Ou3btSExMZNWqVVy8eJFBgwal286Ojo5MmTKFL7/8ki5dutC5c2dKlCjB/fv3Wb16NQEBAaxcuRJTU1NMTU2zvZ9Yr149zMzMmD59OsOHDycqKooFCxZgY2OTatsLFy4wevRoPvjgA/z8/Fi4cCEfffSRfsTu0KFDmTp1Kvb29jRr1ow7d+6waNEiunbtipWVVYY+E2/aZ3wVHx8fNmzYwODBgxk2bBiOjo4cOnSIbdu2MWTIEP3o3/S8fC4QHBzMihUreP78eZqjrl+UF74PRMGX6eRsTEwMCxcu5OTJk0RGRqYabaVSqThw4EC2BShEVjx9+pSPP/443fXbt2/X11FKLki/du1a2rVrl2K7ChUqsGHDBubMmcOECRNQqVS4ubmxZs2aFJM2vahRo0aMGzeOtWvXsm/fPqpWrcqiRYvo3LmzfhtLS0vWrVvHjBkz9EXsGzduzJo1ayhVqhSlSpVi0qRJrF69mj/++IMiRYpQr149Fi1axODBgzl79ixeXl4MHTqUIkWKsG7dOjZv3oyNjQ2tWrVixIgRr6xJNGDAAAoVKsTPP//Mzz//jLu7O+PGjWPKlCn6baZPn84333zDN998A0C5cuX4+uuv2blzp764/qt89913qZaVKVMm3eRslSpVaNmyJVOmTCEyMpIGDRrwxRdf6DuHxYsXZ9OmTcyePZspU6YQFxdHuXLl+Pbbb+nUqdMrYylXrhzr1q1j+vTpjBw5Ent7e8aNG8f06dP123To0IHAwEC2bdvGhg0bKF68OF5eXnz66ad89dVX3Lp1i/Lly2eo7SpVqsT69euZO3cuY8eORVEUXF1dWbx4Me+8884rYy1ZsiS9e/dm2rRpxMTE0LBhQ5YuXarvZI0fPx6tVsu8efOIj4/H0dGRgQMH4u/vz6FDh145KcGbvqavk5HjJ1+1T2vyhg4dOjB9+nRGjBhB0aJF2bBhAytWrKBw4cI0aNCAUaNGpZiQIjOWLl2a7uQo77zzDkuWLKFz585otVo2bdrEhg0bMDMzo0GDBowZM0Z/AjRz5kwWLVrEzz//TGhoKOXLl2fBggU0b94cIMufyddZsmQJ3377LePHj0ej0eDi4sLSpUuZNm0avr6+dOvWjeHDh6PRaNi2bRuLFy/W3676+eefZ/lxIaku28aNG5k9ezb/+9//0Gq1VKpUiSVLlrz2/QxJJ9fJjIyMsLGxoWbNmsycOfOVI2cN/byFECK/kn5w7vSDM9JveBOFChVi/fr1zJ49m5kzZxIZGUmpUqX4/PPP6d279yv3LVGiBBs2bGDmzJn639B69eoxd+5c/aCDH3/8kfnz5/PDDz8QEhJC8eLF6dWrl370X7L3338fa2trfbt26NCBkSNH6td7e3uzbNkypk+fzp49eyhevDht27Zl6NChQMbeR0ZGRq+Np1ixYqxYsYL58+fz5ZdfEhMTox/d+qoa85MnT9a/T8LDw/H09OSzzz5j3rx5+m0aN27MypUrWbRoEcOGDUOtVlO1alVWr16dYtLUtHTo0IGyZcvy888/M2/ePEJCQihatCi1atVi4cKFlC9fXr9tdvcTra2tWbhwIbNnz2bw4MGUKlWKIUOGsH379lTb9ujRgydPnjBkyBBsbW357LPPGDBggH59ly5dKFSoEFOnTmXdunWULl2afv360a9fPyBjn4k37TO+irm5OWvXrmX27Nn6QRzOzs4ZOheElOcCRkZGWFlZUbVqVVauXJnu91myvPB9IAo+lZLJmX0mTZrEL7/8Qu3atXF0dEzz6kdaSRkhRGqKotC0aVPq1KnDF1988drJEUTBNn78eE6fPp3qtiMhhBDZKz4+nm3btnH69GkiIiKwtbWlTp06tG/fPtWEJEKInCH94LyvWbNmeHh4pBjQkJ4jR44wduxYhg0bRpcuXXIhOpFRFStWZMiQIfqE+ats2rSJZcuWMXbsWJnISohclOmRs/v27WP48OEMHDgwJ+IR4q3i5+fHN998w6hRo3BycmLIkCGGDkkIIYQo0CIiIujevTt+fn6ULFmSokWLcufOHXbv3s369evZsGFDlkfpCyEyTvrBBcfz58+xtrbm008/ZerUqTRt2pRSpUoZOiyRSc+ePcPV1RVPT0/GjBlDixYtXjuZsRAie2T6k6bVarM8qYkQIqXhw4frJz5K73Z/IYQQQmSf2bNn8/jxY9atW5fiVkZfX1+GDRvG/PnzmThxogEjFOLtIP3gguPSpUsMGDAAc3Nz+vTpI4nZfOrw4cNMmTKFwoULM2bMGEnMCpGLMl3WYPjw4ZQsWZJx48blVExCCCGEEELkiMaNGzNkyJAUNTCTbdq0iSVLluhnYRZCCCGEECKnZehSyIsFpatWrcqCBQsICgqidu3aaRaubt++fXbFJ4QQQgghRLaJiorSz079stKlSxMWFpa7AQkhhBBCiLdahkbOVqpUKeMHVKm4du3aGwUlhBBCCCFETujYsSPu7u5pli743//+x6lTp9i1a5cBIhNCCCGEEG+jDI2cPXjwYE7HIYQQQgghRI7r06cPn3/+OYmJibz//vsUKVKE4OBgdu/ezS+//MLkyZMzdTydTseiRYvYsmULkZGR1K1bl0mTJqU7OjckJIRp06Zx/PhxFEWhYcOGjB8/nuLFi+u32bt3LwsXLiQwMBBnZ2fGjRtHgwYN3uh5CyGEEEKIvCnTNWeFEEIIIYTIz5YsWcKyZcvQarUAKIqCRqOhf//+mZ4xftGiRaxbt47p06fj4ODAzJkzCQwMZNeuXWg0mlTbd+vWjYSEBCZNmoSiKHz99dckJiaydetWAE6ePEnfvn0ZO3YsjRo1YuvWraxbt47t27dTvnz5N3/yQgghhBAiT8lQcnbChAkZP6BKxbRp094oqLzm/PnzKIqCWq02dChCCCGEEG8NrVaLSqXC3d09248dERHB+fPniYiIoHDhwtSoUYPChQtn6hjx8fHUr1+f0aNH8+mnn+qP6+npybfffkubNm1SPWbdunVZunQpzZo1A5LuUBs0aBCnTp3CxsaGPn36YGVlxbx58/T7de7cGVdXV6ZOnZql5yp9WSGEEEKI3JfRvmyGyhqcOnUqww+sUqkyvG1+oSgKb/sAY0VR0Gq1qNXqAvkaZwdpo4yRdsoYaaeMkXbKGGmnjJF2er3cbqOc7H9ZW1vj5eWVYll0dDS+vr40adIkQ8fw8/MjKioqRckBa2trqlSpwpkzZ1IlZ83MzLCwsGD79u14eHgAsGPHDpycnLC2tkan03Hu3DnGjx+fYr969eqxf//+rDxNQPqy8tnOGGmnjJF2yhhpp4yRdsoYaafXkzbKmLzal81QcvbQoUNvFEx+lzzKoHr16gaOxHCio6O5du0aLi4uFCpUyNDh5EnSRhkj7ZQx0k4ZI+2UMdJOGSPt9Hq53UaXLl3KluNERkZiZWUFwIMHD5gyZQqnT58mPj4+ze0zOrnt48ePAShRokSK5cWKFdOve5FGo2H69OlMmjSJOnXqoFKpKFasGOvWrcPIyIiwsDCio6NxcHDI0PEySq1WoyjKW1sWISYmhrt371KqVCnMzc0NHU6eJe2UMdJOGSPtlDHSThkj7fR60kYZk9vt5O/vn6EkcIaSs2m5desWp0+fJjIyEltbW2rXro2zs3NWDyeEEEIIIUSOeO+99zh06BAajYbvvvuOc+fO8eGHH3Lu3DnMzc2pWbMmx48f58aNGyxcuDDDx42JiQFIVVvW1NSU8PDwVNsrisK1a9dwd3enb9++JCYmMnfuXAYNGsTGjRuJjY1N93hxcXGZfdopaLXaDCedC6q7d+8aOoR8QdopY6SdMkbaKWOknTJG2un1pI0yJjfbKa05CF6W6eSsoihMnjyZLVu2pBieq1Kp6NChQ4GrNyuEEEIIIfK30NBQAgICKF++PGfOnGHkyJF07dqVdevWcejQIcaMGcOoUaPo3bs3Bw8e5J133snQcc3MzICk2rPJ/waIi4tLczTG3r17WbduHYcPH8bS0hKAZcuW4e3tzdatW/nggw/0x3tResfLDLVajYuLyxsdI79KHiVTrlw5GU30CtJOGSPtlDHSThkj7ZQxebWdVCpVnikblFfbKK/J7Xby9/fP0HaZTs6uWLGCbdu2MWzYMNq1a0fRokUJCgpix44dLF26FFdXV3r27JnZw4r/xMYnYGxkRFSsFgszNYk6HWaaLA9wFkIIIYQQJI0cBYiKiqJixYoAODs7s2jRIgCMjY359NNP+f777zN8zORyBkFBQZQpU0a/PCgoSP8YL/L19cXJyUmfmAUoXLgwTk5O3Lt3DxsbGwoVKkRQUFCK/YKCgihevHiG40qLSqV668t1mJubv/VtkBHSThkj7ZQx0k4ZI+2UMXmlnfJy3iavtFFel1vtlNG6tpl+92zdupW+ffsycOBA/TJHR0cGDx6MVqvll19+keRsFsVrE9l22J9dx24TFaPFwlxNO09nOjWrgEZtbOjwhBBCCCHypeTJHyCpfmtwcDAAZcuWJTw8nKdPn1K0aFFsbGwICQnJ8HErVaqEpaUlp06d0idnIyIiuHr1Kl27dk21vYODA3v27CEuLg5TU1MgqY5vYGAg7dq1Q6VSUatWLU6fPs2HH36o3+/UqVPUqVMny89fCCGEENlD8jYiJxhldodHjx5Rv379NNfVq1ePwMDANw7qbRQbn8CWQzfZtP86UTH/jeyI0bJx/3W2HrpJbHyCgSMUQgghhMifKlWqpL91zcvLi3nz5nH+/HlKlSqFg4MDq1at4vnz52zbti1TI1Q1Gg1du3Zl1qxZHDx4ED8/P0aOHImDgwMtWrQgMTGRp0+f6mvJtm/fHoARI0bg5+eHn58fo0aNwtTUFB8fHwB69erFnj17WL16Nbdu3WLGjBlcu3aNHj16ZG+jCCGEECJTJG8jckqmk7OlSpXi+vXraa7z8/PDzs7ujYN6GxkbGbHr2O001+08dhtjo0y/VEIIIYQQgqSyXCVLlgRg2LBhWFtbM3/+fABGjhzJzz//TN26ddm1axe9evXK1LGHDRtGp06dmDhxIp988gnGxsasXLkStVrNo0ePaNy4Mb///juQNGp3w4YNKIpCjx496NWrF2q1mg0bNmBlZQVA48aNmTZtGhs3bqRDhw6cPHmSZcuWUb58+WxsESGEEEJkxpNnURipVJK3ETki02UN2rRpw8KFCylevDitWrXSF0Deu3cvixYt4uOPP86JOAu8qFit/spLqnUxWqJjtRS2NM3lqIQQQggh8r8XBw/Y2tqyZcsWfV3Xdu3aUapUKc6fP4+bmxseHh6ZOraxsTFjxoxhzJgxqdY5OjqmGtRQvnx5li1b9spjtm/fXj/KVgghhBCGEfAkkn/+fcg//z4iUafjq971JG8jckSmk7P9+vXD19eXkSNHMmbMGGxtbQkNDSUhIYF69eoxfPjwnIizwLMwU2Nhrk7zg25hrqaQmdoAUQkhhBBCFDwBAQH4+vrSoUMHAGxsbAgPD6d06dIGjkwIIYQQhqIoCncfRXD84kP+ufSQgCfP9etsrEyxsTKTvI3IEZlOzmo0GlavXs3Ro0c5ffo04eHhFC5cmLp16+Ll5ZUTMb4VEnU62nk6s3F/6pIR7TydSdTpUGe+CoUQQgghhHjBhQsX6N27N8WLF9cnZ8PDw9m2bRu//PILa9euxdXV1cBRCiGEECI3KIrCzYAw/QjZRyFR+nUmxipqVChKQ7eS1KvqgIKSbt6mTSMnrt4JoYS9BcXsCuXmUxAFQKaTswD3798nKCiI0aNHA3Dr1i22bdtGhQoV9PW8ROaYaUzo1KwCkFSrJHnWvzaNnGjr6YyJsSRmhRBCCCHe1OzZs6lVqxaLFi3SL6tVqxaHDh1i6NChzJw5k++//56NGzfSsWNHHBwcDBitEEIIIbKbTqdw7e6zpITspUcEh8Xo12lMjKhVqRgN3UpSt4oDluYpR8Omlbdp29iZto2dGLf4b8Kfx/F5l9rUrpTxCUaFyHRy9sXRBp06dQIgIiKCnTt3sm3bNhlt8AY0amN8vF348B1XomO1FDIz4fz1p4xdeIz61UrQ4/0qhg5RCCGEECJfu3LlCosXL8bMzCzFcjMzM3r06EG/fv2YNm0aR44c4dSpU6xZs8ZAkQohhBAiuyQm6rh8K4Tjlx5y8tIjQiPj9OvMNMbUqVychm4lqVO5OOam6afKUudt1CTqdERFazE3NSEw6DlfrzjJJ+9W5ON3K2JkpMqNpyfyuUwnZ9MabeDu7s7BgwcZMmQIM2bMYMWKFdka5NvETJP0kiQXkdYm6AgMes7WQzep6mxPncpy9UUIIYQQIqvMzMx48uRJmutCQ0NRFIWzZ88yZ84chg0blsvRCSGEECK7aBN0XLz5lH/+fcjJy4+JjI7Xr7MwM8GjqgMN3UriXrEYpmrjDB/35byNGiPMNCZ8P6Qxy7dfZu+Ju2zYfx2/+6F8/mltrC002fvERIGT6eRseqMNTE1N6dGjByNHjsy24AQ0qlGS9xs5sef4HeZsOMeCz5tSxMbc0GEJIYQQQuRLnp6eLFiwgMqVK1OxYkX98lu3brFw4ULatm3LzJkz8fPzo1ixYgaMVAghhBCZFadN5JxfEP9cesjpK4+Jjk3Qr7MqpKF+NQca1SiJm0tR1CbZWz5SbWLMoE41qFTOlsVb/+WcXxAj5v7F+O51cS1jm62PJQqWTCdnXzfawMhIaqNmt95tq+J37xm3AsOZsdaX7wY1wlhq0AohhBBCZNro0aPp3LkzHTp0wNHRETs7O0JDQwkICMDR0ZGxY8cCUKlSJfbt22fgaIUQQggBpBog+KKYuAR8rz7h+KWHnL32hNj4RP06WytTGlQvQUO3klRzts+VXEqzOmVwKlmY734+w6PgKMYt+psBHarTsn5ZVCopcyBSy3Ry9nWjDZo0aZKtAYqkmibjutVlxNy/uHb3Gev+8JP6s0IIIYQQWVC0aFF27drFr7/+yrlz5wgLC6N48eJ07doVHx8fLCwsDB2iEEIIIf4TG5+AWmNGCUdn1BpTYuMTMNOY8DxGy+krj/nn34ecux6ENkGn36eorTkNqpegkVtJKpW1M0jdV6eShZkzwot5G89x6spjFm+9yLW7zxjY0U1fFkGIZJl+R2R0tIHIXiWKWDD0o5p8v8aXrYduUq28vcz+J4QQQgiRBYUKFaJr16507drV0KEIIYQQIh3x2kS2HfZn17HbRMVosTBX07axE+2alOeLJX9z91GkftsSRSxo+N8I2QqlbfLECFVLczVf9vLg18P+rPn9Kod8A7j9IJwJPetSsoilocMTeUimk7My2sBwGtcoxaWGwfz+z13mbDjH/FFSf1YIIYQQIrP8/PxYvnw5p0+fJjw8HHt7exo0aMDAgQMpXbq0ocMTQggh3nqx8QlsO+zPpv3X9cuiYrRs+vMGigJdWlVm7d5rNKxekoZuJShXwjpPJGRfplKp6NisAq5lbJmx1pe7jyIYNfcIIz6pRf1qJQwdnsgjsjSWWkYbGE6fdtXwuxfK7QfhzFzny7SBUn9WCCGEECKjTp8+TZ8+fShcuDBeXl7Y29sTHBzM0aNH2bdvHxs3bsTV1dXQYQohhBBvHUVRePD0OdfvhdK4Ril2Hbud5na7j99h7ZSW+Sq5Wd2lCPNGefH9Gl+u3X3Gt6tP06lZBbq2qiQ5HZG15Oxvv/2GnZ0dXl5eXL9+ndGjR/PgwQNatWrFlClT0Gg02R2n+I9Gbcy47nUYMecIV+88Y/0+P7q3lvqzQgghhBAZMXv2bGrXrs0PP/yAqampfnlsbCx9+/ZlxowZrFixwoARCiGEEG+H5GTspVshXPYP5tKtYEIj4yjrYEU1Z3uiYrRp7hcVoyU6NoHClsa5HPGbsS9szrRBjVi9+wo7j95m66Gb3LgfyuiutbG1Sn/CM1HwZTo9v2rVKr744guuXr0KwOTJkwkNDeXDDz/kwIEDLFiwINuDFCmVLGLJ0I9qArDl4E3O+j0xbEBCCCGEEPnE9evX6dWrV4rELCTNAt2nTx/Onj1roMiEEEKIgk1RFAKDItl74i4z1/rS4+t9DPz+EEu2XuTohQeERsahNjGihL0FttZmWJir0zyOhbmaQmZpr8vrTIyN6PdBdcZ2q4OZxph//YMZMecI1+48M3RowoAyPXJ2y5Yt9O3bl4EDBxIYGMiFCxeYNGkSn376Kc7OzixbtozRo0fnRKziBZ41S3H51v/Xn13weVPsC0v9WSGEEEKIVylRogSBgYFprnv27Bl2dna5HJEQQghRMKU3MvZFahMjKpW1o3p5e6q5FKFiGVs0amNi4xNo5+nMxhdqziZr5+lMok6HOvPjDfMMz5qlKFfCmu9+Pk3Ak+dMWPI3vdtVpW1j5zxZO1fkrEwnZwMDA2nSpAkAR44cQaVS0axZMwCcnZ0JCQnJ3ghFuvq0q4bf3VBuPwxn5rqzfPtZQ6lVIoQQQgjxCuPGjWPcuHFYW1vz/vvvY2SU1Hc6fvw48+bNY8qUKYYNUAghhMinkkbGPufyrWAu3Qrh0q1gwjKYjH2ZmcaETs0qALDz2G2iYrRYmKtp5+lMp2YV0twnvyld3IrZw71Y+MsFjl14wPLtl/G7G8rQj2pibpqlKqQin8r0q21nZ0dwcDCQlJx1dnbGwcEBSLpNrEiRItkboUiXvv7s3CNcuR0i9WeFEEIIIV5j6tSpxMfHM3bsWCZMmEDRokUJCwsjNjYWRVEYMmSIfluVSqUv5SWEEEKIlDKajK1czo5q5YtQvbw9rukkY9OiURvj4+3Ch++48jw6DstCpiTqdAUiMZvM3NSEMV1rU6mcLat2XuHYhQfcfRTOhB4elC5uZejwRC7JdHLW29ub2bNnc+LECY4ePcrIkSMBWL16NYsXL8bHxyfbgxTpK1nUkqEf1mTGOl+2HLxJNeci1KpUzNBhCSGEEELkSdJXFUIIIdIWG5+AsZERUbFaLMzUJOp0mGn+P22U08nYtJhpTIiOjuZhwB2cnJwoVKhQlo+VV6lUKtp5lqeCoy3T15wh4MlzPp9/hKEfueNZs5ShwxO5INPJ2QkTJvDtt99y5swZOnfuTO/evQHYtGkTXl5ejBgxIrtjFK/h6V6KS7eD2fvPXWZvOCv1Z4UQQggh0vHiyFghhBBCJInXJrLtsD+7Xioh0NHbhVNXHnPy8uNcScamJzY2NtuPmddUdrJj/qimzFzny7/+wcxY64vfvWf0alMVEylhWaBlOjlramrK1KlTUy3fuXNnqllvRe7p264a16X+rBBCCCHEKz18+PC125QsWTIXIhFCCCHyhtj4BLYd9mfTC5NvRcVo2bj/OjqdgktpG45deACAxsSISrmQjH1b2ViZMrV/A9b94cfWQzfZefQ2N++HMa57HRmEV4BlKDl7584dSpUqhUajSXcbU1NTgoOD+f333+nevXu2BSgy5v/rz/7FldshbNh/nW7vVTZ0WEIIIYQQeUqzZs1eOwvytWvXcikaIYQQwvCMjYzYdex2mut2H7/Dz5Na0rttVVzL2OJaxga1iSRjc5KxsRE93q9CxbK2zN14jmt3nzFizhHGdqtDdReZ56kgylBytnXr1mzevBk3Nzcgqc7IwIED+fLLLyldurR+uwcPHvDdd99JctZASha1ZMiHNZm57ixbDt6gqpO91J8VQgghhHjBtGnTUiVno6Oj8fX15dSpU0ybNs1AkQkhhBCGERWrJSpGm/a6GC2x8Ql0aOqSy1GJ+tVKMHekF9/9dIa7jyKYuOw43VtXwcfb5bUXmkX+kqH73hVFSfF/nU7HX3/9RURERI4EJbKuibsj7zUoh6LAnI1nCQmPMXRIQgghhBB5ho+PDx06dEjxp0uXLsydO5e2bduya9cuQ4cohBBC5CoLMzUW5uq015mrKWSW9jqR80oWsWTmME+a1SmNToGf9lxl2k+n002mi/xJipIWQH0/qIZTSWvCn8cza/1ZEhN1hg5JCCGEECLPa9asGX/99ZehwxBCCCFyVWhkLG0aOaW5rp2nM4k6ySkYkpnGhBGd3RncqQYmxkacvPyYkfOOcOdheMrtzMwMFKF4U3kiOavT6ViwYAGenp7UrFmTfv36ERAQkO72ISEhfP7559SvX5969eoxcuRInjx5kmKbFi1aULFixRR/xo8fn9NPJU/QqI0Z370u5qbGXL4VwsYXinoLIYQQQoi0Xbx4EROTTM+XK4QQQuRbUTFa5m08R1tPZzq/66ofQWthruaTFhXp1KwCZhr5bTQ0lUpFqwblmDG0McVszXkUHMXoBcc4efkRsfEJqDVmlHB0Rq0xIzY+wdDhikzKE5+wJUuWsGHDBqZPn46DgwMzZ86kb9++7Nq1K81JyEaMGEFCQgKrV69GURS+/vprBg8ezNatW4GkumEBAQH88MMPVK1aVb/f23QV4cX6s78cvEEVZ3tqVZT6s0IIIYR4u02YMCHVMp1Ox+PHjzlz5gydOnUyQFRCCCGEYazefYVLt0KYvf4s43vU5aPmFYmO1VLITE2iTodGLZN/5SUVStsyd2RTZq8/S1BoNJXL2bHt4E12Hb9DVIwWC3M17Tyd6dSsgkFfu9j4BIyNjIiK1WLx33tJkvzpM3jLxMfHs2rVKkaPHk3Tpk0BmDt3Lp6enuzfv582bdqk2D4iIoLTp0+zdOlSKleuDED//v0ZNGgQYWFh2NjY4O/vj06nw93dncKFC+f2U8ozmrg7culWCH+cuMucDWeZP6op9oXNDR2WECKD3qYLSkIIkVtOnTqVaplKpcLS0pJ+/frx2WefGSAqIYQQIvddvPGUfSfvAfDhO6762rKFLU0BUOeNm63FS6wtNEzqW5+AJxHsOnabzQdu6NdFxWj1d0/7eLsYJCEar01k22F/dh27nacSxnlZhl+lp0+f8vDhQwASExMBCA4O1i9L3iaz/Pz8iIqKokGDBvpl1tbWVKlShTNnzqRKzpqZmWFhYcH27dvx8PAAYMeOHTg5OWFtbQ3A9evXKVKkyFudmE3W94NqXL/3jDsPI5i1/iz/G9AQY2P5ghUiL0t5W4opsfEJcpVRCCGyyfLlyylfvryhwxBCCCEMKiYugYVbLgDwXsNyVHcpYtiARKYYG6koVdSK3cfvpLl+57HbdPSuwLxN50hIUDAxUWFibITaxEj/t9rYCBOTlMtMjF/494vbvPC3fruX9jU2UhH3X2J20wvlNfNCwjivy3CLDBkyJNWyl0cWKIqCSqXKVACPHz8GoESJEimWFytWTL/uRRqNhunTpzNp0iTq1KmDSqWiWLFirFu3DiOjpKTj9evXKVSoEMOGDePcuXPY2trSsWNHunfvrt/mbWGqNmZc97qMnPtXUv3ZP6/TtVVlQ4clhEiHXGUUQoic9emnnzJhwgTat29v6FCEEEIIg1m79xpPnkVT1Nacnu9XMXQ4IguiYrVExWjTXhejJex5HP4BYdx7HJkr8VhbaFg58V12Hbud5vqdx27z4TuuuRJLfpOh5Ox3332XYwHExMQApKota2pqSnh4eKrtFUXh2rVruLu707dvXxITE5k7dy6DBg1i48aNWFpacvPmTSIiImjZsiWDBw/m7NmzzJw5k/DwcIYPH56lOBVFITo6Okv7GpqthRH92lVmwZbL/HLgBi4lLXFzsc/UMZJfp+S/RWrSRhkj7fQKKhN+O3o73auM7Zs4gyLF3V8k76eMkXbKGGmn18vtNsrKhf/XUavV2NraZusxhRBCiPzkyu0Qdv+dlEAb0qmmvpyByF8szNRYmKvTTNBamKuxtTLlgybliYpNICFRR0KiDm2CjoQEHdrEpL+TlyX/X//3C+tS7PvSMRTl/x/T1sqU8Mi4VyaMo2O1+rIZ4v9lKDnboUOHHAsguaZifHx8ivqKcXFxmJunro+6d+9e1q1bx+HDh7G0tARg2bJleHt7s3XrVnr27Mny5cuJi4vDysoKgIoVK/L8+XOWLl3K0KFDszR6VqvVcu3ataw8xTzBTg21XSw46x/F3E0X+Oy94lgXyvwovLt372Z/cAWMtFHGSDulZGJiQuUq1V55lbFTswpcu3qNhARJ0L5M3k8ZI+2UMdJOr5ebbZTW5LBvYvjw4cyYMYPIyEgqVapEoUKFUm1TsmTJbH1MIYQQIq+I0yay8JfzKAq861GGWpVk4vD8KlGno52ns34wz4vaeTqjUxTerVc2Z2NIfCHRq9NhYaZ5ZcJYLgSkzeCFHpLLGQQFBVGmTBn98qCgICpWrJhqe19fX5ycnPSJWYDChQvj5OTEvXtJhaw1Gk2qjryrqyvR0dGEh4dnabSEWq3GxcUl0/vlJeVdEvnyh9Pcf/KcPy7EMrFnrQzXn42JieHu3buUK1cuzaS5kDbKKGmnlOLiEzl19QnXboTh4Bj7yquMMXEJuLq6orx4efItJ++njJF2yhhpp9fL7Tby9/fP9mNOmTKFxMRExowZk+42+fmCvBBCCPEqG/f58eBpFHbWpvRuV83Q4Yg3YKYxoVOzCkDSYB5DlMUzNjZKyiv9l4KLjU9IN2HcppETfnef4VjcElsrmfz6RQZPzlaqVAlLS0tOnTqlT85GRERw9epVunbtmmp7BwcH9uzZQ1xcHKamSUOho6OjCQwMpF27diiKwrvvvkv79u1T1Mm9dOkSRYsWzfJtbCqVKs2RFflJIWBCTw9GzTvC1buh7DgekOn6s+bm5vm+HXKatFHGvM3tpCgK1++HcuD0fY6ef0BMXALWFhoG+tR87VVGtcnbVTc7o97m91NmSDtljLTT6+VWG2V3SQOA//3vf9l+TCGEECI/uHE/lN/+SrrwOahjDSzNZRRjfqdRG+Pj7cKH77jyPDoOy0KmJOp0BpuvJL2EcdvGzrRp7MT4xX8TG5/IV73r4VyqsEFizIsMnpzVaDR07dqVWbNmYWdnR6lSpZg5cyYODg60aNGCxMREnj17hpWVFWZmZrRv356VK1cyYsQIff3YefPmYWpqio+PDyqVinfffZeVK1fi7OxMtWrVOHHiBCtWrODLL7808LM1PMdiVgzuVJNZ68/yy4EbVHO2p6ar3MYgRG4IjYjl8NkADpy5T8CT5/rlDvaFaF63DPEJr74tJVGnQ40kZ4UQ4k08evSIli1bUr58eUOHIoQQQuQabUIi8zefR6eAl7sj9aqVeP1OIl8w05gQHR3Nw4A7ODk5GXyQwYsJ4+hYLYXM1CTqdIRFxqHTKQSHxTB20TFGflKLRm5SSgryQHIWYNiwYSQkJDBx4kRiY2OpW7cuK1euRK1WExgYyDvvvMN3332Hj48PxYoVY8OGDcycOZMePXpgZGREnTp12LBhg77G7Oeff46lpSVz5szh8ePHODo68uWXX/LRRx8Z+JnmDV61HLl0K5h9J+8xe/055n/eFDtrGVIuRE5ISNRx5uoTDpy+j6/fE3S6pJIEGrUxjWuUpLlHGao62WNklDQ6LK2rjG0aOdHO0xkzTZ74yhZCiHzthx9+oGrVqpKcFUII8Vb55cBN7j+OpLClhn7tpZxBQRQbG2voEPSSz12TJ/9SY4SDvQmzhzfh+7W+XLjxlOk/n+HTlpXo/K5rjtwtlZ9k+kz/q6++olOnTtSoUSPbgjA2NmbMmDFp1v5ydHTk+vWUo8jKly/PsmXL0j2eiYkJgwcPZvDgwdkWY0HTr311rt8L5e6jCGatO8s3nzXE2Ojt/jAIkZ3uPY7gwOn7/HU2kLDncfrllcra0tyjLJ41S6ZZDD31bSkafK8FMWbhMfq1r06tijLSXQgh3oSLiwt37tzBy8srW46n0+lYtGgRW7ZsITIykrp16zJp0iRKly6datuFCxeyaNGiNI/j4+PDd999B0CvXr34559/Uqz38PBg7dq12RKzEEKIt8udh+FsOXgDgM983PQJMyFym2UhDVP61mfVrivsPHabDfv8uPc4ghEfu2Nm+vYORsr0M9+5cyfvvfdeTsQicpGp2phx3eswcu4RLt0KZtP+63RpVcnQYQmRrz2P0XLsfCAHztznxv0w/XIbK1PeqVOad+qWoXRxq9ce5+XbUi7fDiYw6DnLtv3LwjHemBqofpAQQhQE3t7ezJkzh2PHjlGxYsVUt/6pVKpMXeBfsmQJGzZsYPr06Tg4ODBz5kz69u3Lrl27Uk1Q27t3bzp37pxi2erVq9m4cSM9e/bUL7t+/TpTpkyhefPm+mVqtdQFFEIIkXkJiTrmbTpPok6hQfUSchu5MDhjYyP6ta9O2RLWLN12keMXH/IoOIove3lQzPbtnPch08lZd3d3Tp06RcOGDXMiHpGLkurP1mD2hnNsPnCdas721HAtauiwhMhXdDqFS/7B/Hn6PicuPSQ+QQeAsZEKj6oONK9bhlqVimFinPlascm3pXRpWYm/LzzkUUgUWw/elAspQgjxBpJHrh4/fpzjx4+nWp+Z5Gx8fDyrVq1i9OjRNG3aFIC5c+fi6enJ/v37adOmTYrtLSwssLCw0P//6tWrrFmzhm+++YaKFSsCEBISQkhICDVq1KBoUemXCSGEeDO//eXP7QfhWJqrGejj9tbfPi7yjhb1ylKqqCXf/Xya2w/C+XzeUb7o6UFlJztDh5brMp2crVixIitXruSPP/6gUqVKaY42mDZtWrYFKHJW09qluXw7hH0n7zFrw1kWjGqKrdSfFeK1njyL5uCZ+xw8c5+g0Bj98jIOVrzrUZamtRyxscqe24UKmanp174a36/xZeuhmzSt7UipopbZcmwhhHjb+Pn5ZeuxoqKiaNCggX6ZtbU1VapU4cyZM6mSsy+bOnUqderUoUOHDvpl169fR6VS4eTklG1xCiGEeDsFPIlkw76kMpH92leXc32R51R1tmfOcC++WXWKu48i+GLpcQZ3qkFzjzKGDi1XZTo5++eff1KsWDG0Wi2XLl1KtV6uwuQ/KerPrj/L1AFSf1aItMRpEznx70MOnLnPxZvB+uUWZiY0qeVI87plqFDaJke+Bxu5laRWpWKc8wti2bZ/mTqggXzfCiHEG7p16xaRkZHY2dlRpkzmTwIeP34MQIkSKWe8LlasmH5deg4fPsz58+fZvn17iuU3btzAysqKqVOncvz4cQoVKkSrVq0YNGhQqjIJmaEoCtHR0VnePz+LiYlJ8bdIm7RTxkg7ZYy0U8bkZDvpdApzN54lIVGHu2sR6lW2y7e/A/J+er383EaWZvB1n9os2naFM9eCmL/5PLcCn9GlRQX9xNnZJbfbSVGUDJ23Zzo5e+jQoSwFJPKuF+vP/usfzOY/r/NpS7ltWghI+jK9GRDGn6fvc+x8IFGxCfp1NSsU5R2PMjSoXiLH68CqVCo+6+DGkJmHuHDzKUfPP8CrlmOOPqYQQhRUu3fv5vvvvyc4+P8vtBUpUoTPP/+c9u3bZ/g4yR37l5OmpqamhIeHv3Lf1atX4+3tTeXKlVMsv3HjBnFxcbi5udGrVy+uXbvGjBkzePjwITNmzMhwbC/TarVcu3Yty/tnlImJCSYmJiQkJJCQkPD6HXLR3bt3DR1CviDtlDHSThkj7ZQxOdFOJ/wiuRkQjqlaRdMqJtl654ihyPvp9fJzG71XU425sRVHL0ey+/g9/G4/plMje8w0mS8R+Dq52U4Zubie5anQdDodN27cICgoiFq1apGQkICNjU1WDycM7MX6s5v+vE5VJ6k/K94OsfEJGBsZERWrxcJMTaJOh5nGhNDIWP46mzS51/3Hkfrti9kVonmd0jSrW4bidrlbrLxEEQs+bO7K+j/8WLnzMnUqF8fCXCaIEUKIzDh06BBjxoyhfv36jBo1iiJFihAUFMTOnTuZMGECNjY2+vqxr2NmlnR7aHx8vP7fAHFxcZibm6e738OHDzl16hQ//vhjqnVTp05l3LhxFC5cGABXV1fUajUjR45k7NixFClSJBPP9v+p1WpcXFyytG9GqFQqFIxRq02IionHwlyDVpuAikQURcmxx82ImJgY7t69S7ly5V75urztpJ0yRtopY6SdMian2ulxSDSHt5wAoEfrStSvnb8Hdcj76fUKShtVrQK1qjxmyW9X8H8Ux5q/whnbtQYl7C1ev3MG5HY7+fv7Z2i7LCVnd+zYwezZswkKCkKlUrF161YWLlyIWq1m9uzZb3TLlTCcprVLc+lWCPtPSf1Z8XaI1yay7bA/u47dJipGi4W5mraNnfmgiTNfLfuHe/8lZTUmRjSsUZLmdctQvXyRbL+1IjM6ervw19kAHjyNYt3eawzwcTNYLEIIkR8tXbqUVq1aMXfu3BTLO3bsyMiRI/nhhx8ynJxNLmcQFBSUoixCUFCQfoKvtBw4cAA7OzsaNWqUap2JiYk+MZusQoUKQFIZhawmZ1UqVaq5IrJTvDaRLYdupvhNbefpTKdmFdDk8N0lGWVubp6jbVBQSDtljLRTxkg7ZUx2tpNOp7B81znitTpqVChCG88KBaYcmryfXq8gtNE79ZwpW8qOb1ed4mFwFBN/OMO47nWo6Vos2x4jt9opo5+9TI8N/v333xk3bhz169dn7ty5+ivh7777LkeOHGHJkiWZPaTIQ/p3qE65EtaERcYxa/1ZEnWGHekgRE6JjU9gy6GbbNp/nagYLQBRMVo2/Xmd7Udu0fW9ylQsY8ugTjVYM6UVn39amxoViho0MQugNjFmYMcaAOz55w43A0INGo8QQuQ3N27cSDEB14s6dOiQqds+K1WqhKWlJadOndIvi4iI4OrVq9StWzfd/Xx9ffHw8MDEJPU4iW7dujFhwoQUyy5duoRaraZcuXIZji03pfebunH/dbYeuklsfN4qbyCEEAXZHyfvcvlWCKYaY4Z8WLPAJGbF28XF0YY5I7yoWNaW5zFaJi8/ya5jtw1+N05OyXRydtmyZXTu3JkZM2bQokUL/fKOHTsydOhQ9uzZk60BitxlqjZmbLc6mGmM+dc/mF/+vG7okITIEcZGRuw6djvNdbuP36F2pWLMGt6E9xqUy3OlA2pUKIqXuyOKAku2XpSLKEIUULHxCWgTdIQ9j0OboJMEVzaxtbVNtx5sWFhYpu4A02g0dO3alVmzZnHw4EH8/PwYOXIkDg4OtGjRgsTERJ4+fUpsbGyK/a5evUqlSmnX92/ZsiU7duxg48aNBAQE8PvvvzNjxgz69OmDpaVlxp9oLnrVb+rOY7cxUql4FPwcnfxeCSFEjgp6Fs1Pu68A0KN1FRyy6VZwIQzB1tqMaQMb0axOaXQ6hR+3X2Lx1otoE3SGDi3bZbqswZ07dxg3blya62rUqMHChQvfOChhWKWLWzGoUw3mbDjHxj+vU8XZngql5EtdFCxRMfH60T2p12mJjk2gsGXeuA0zLX3aVcX32mP8A8PZ+88d2jR2NnRIQohslFbZlbx2i3h+1aBBAxYtWkTdunVxcHDQL3/06BGLFy9Os9TAqwwbNoyEhAQmTpxIbGwsdevWZeXKlajVagIDA3nnnXf47rvv8PHx0e/z9OnTdOdq6Nq1KyqVirVr1zJt2jSKFi1Kz5496d+/f5aeb26IitW+8jc1NDKOb1efJjg8lgqlbahYxhbXMrZUKGODrZWU0BJCiOygKAqLtlwgJi6RyuXseL+Rk6FDEuKNadTGjOjsTlkHa37ac4V9J+8RGPScCT3qUtjS1NDhZZtMJ2ft7e25detWmh3XW7duYW9vny2BCcPyrl2aS/7B/Hn6PrPWn+X7gfUMHZIQ2eaS/1MqlLHFwlyd5smkhbmaQmZ5a7Tsy2ytzejWugrLfv2XtXuv0dCtJHZSI1qIAiE2PoFth/3ZtP//715JvkUcwMfbBTNNlud0feuNGjWKjh070qJFC9zd3SlSpAjBwcGcP3+ewoUL8/nnn2fqeMbGxowZM4YxY8akWufo6Mj166nvQrp48eIrj9mlSxe6dOmSqTgMycJM/crfVBtLDVExSQncCzeecuHGU/36YrbmVChji2tpWyqWtaV8qcKYmcr7WwghMuvgmfucv/EUjYkRwzu7G7wcmxDZRaVS4ePtQhkHK2au8+XK7RBGzT/KxF4eOJUs/PoD5AOZLmvQunVrFixYwB9//EF8fDyQ1FCXL19myZIltGrVKtuDFIbRv0N1yjpYERYZx8Ktl+VWNJHvaRMSWbnzMl8s/YcLN57SJp2rye08nUnU5f1bJVo1KIdLaRuiYxNYufOyocMRQmST190ibmyU6e6beEHRokX57bff6NatGzExMVy+fJmYmBi6devGb7/9RqlSpQwdYr6TqNPRzjPtOzjaeTqjAMu/fJe5I70Y1NGNd+qWpnRxK1QqCAqN4fjFh6zefYXxi//m44m/M2z2YRZtucC+k/e4+yhCyvcIIcRrhITHsGJH0vlAl1aVKFU0b5bBEeJN1KlcnFnDmlDC3oKgZ9GMXXiMk5cfGTqsbJHpy9IjRozgxo0bjBgxAqP/Tg66detGdHQ0derUYfjw4dkepDAMM40J47rXZdS8I1y+/YwiFtZUrWroqITImvuPI5i57ix3H0UAcPdRBB81d8XISMXOfHrbsLGRisEda/D5/CMcPf+A5nXL4F4x+2awFEIYxutuEY+O1Rao27gMwd7ePs2RriJrzDQmdGpWAeCVv6kujja4ONrwXsOki6PRsVpuBoRx434oNwPCuH4vlGcRsdx5GMGdhxHsO3nvv+MbU94xZTmEojbmMsmNEEKQVM5gydZ/iYpNoEJpGz5oUt7QIQmRY0oXt2L2iCZ8v+YMF28G8+3q03R9rxIfveOar/sFmU7OajQaVqxYwfHjxzl58iRhYWFYWVnh4eGBl5dXvm4MkdqL9Wf/uhSBZ51neFQrZOiwhMgwRVH4/Z+7rNp5mfgEHYUtNQz72B2PKkl1Bn28XfjwHVeiY7UUMlOTqNPli8RsMpfSNrRu5MTuv++w7Nd/WTjaO1/FL4RI7XW3iOf1sit5VUJCAps2baJ48eK8++67+uWJiYl06tSJDz74gO7du+sHH4jM0aiNM/2bWshMTY0KRalRoah+WUh4DDfuh3L9XlLC9mZAKDFxiVy5HcKV2yH67WytTPWJ2oplbHEpbYtlHpvAUwghcsPR8w84ffUxJsYqhn/sjrGx/I6Jgs2qkIYp/Rqwcsdldh+/w7q9ftx/FMnQj2vm29JfmY764cOHlChRgkaNGqWqO/vs2TOOHj1K+/btsys+kQd41y7Neb/HHD73kAVbLrGwTBFspbalyAfCIuOYv/k8vteeAFCrUjFGfOye4v2b/OWdPApNnflqLwbXtVVljl98yMPgKLYd9ueTFhUNHZIQ4g0k6nS0beTEpgM3Uq1LLruSH7+rDEmr1TJ48GCOHTtGr169UiRnnz17hk6nY/r06Zw+fZqFCxdibCwXubIiO35T7Qub06C6OQ2qlwQgUacQGBTJzfuh3LgfxvX7odx9FEFoZBynrjzm1JXH+n0di1niWsYW19I2uJa1pVyJwqhN5LMihCi4wiLj+OG3SwB8/G5FypawNnBEQuQOE2MjBvi4UbaENct+/ZejFx7wMPg5E3vXw76wuaHDy7RMJ2ebNWuGp6cnc+bMwcrKKsW6gIAAJkyYIMnZAqjX+5W4fCuIp+HxzN5wlq/7N8RYCoyLPMz32hPmbzpP2PM41CZG9GxThbaNnQvk6H4LczX9PqjOjHW+bDl4A69apShZROpMCZFfhUbE0ea/Op27j9/R3yLeppET7ZqUx1RGx2fa5s2bOXnyJLNmzeL9999Psa5o0aLs2LGD7du3M3HiRLZt28ZHH31koEjFy4yNVJR1sKasgzXNPcoCSZPm3XkQwfX7oUlJ24BQHodEExj0nMCg5xzyDQCSTtzKlyqMc0lLzFXR2BSLwtlcyiEIIQqOH377l8joeJxKWuvLywjxNmnVoBylilny3U9n8A8MZ+TcI3zZy4OKZe0MHVqmZGm875kzZ+jUqROLFy/GxcUlu2MSeZCpxpiPGtuzYv9TLt4MZsvBG3R+V0bnibwnTpvIT7uvsPvvOwCUdbBidNc6lCvgV5Eb1yzJ/tNFuXDjKcu2/cvX/RvIyacQ+dT6P/y49SCMYR/V5ON3KxIdq8Xc1ISzfkGMWXCUBtVL0L11FUOHma/8+uuv9OzZM1Vi9kXt27fn4sWLbNmyRZKzeZyZxoTKTnZUdvr/E6/w53H6urU3ApKStpHRWq7fD+X6/VAAfj3xD5bm6qTRtWVscS1jg2sZW6nhLITIl/759yF/X3yIkZGKYR+7YyLlDMRbqnr5IswZ0YT/rTrFvceRTFhynKEf1cS7dmlDh5ZhWUrOzpo1ix9//JGPPvqI77//PsWtYaLgKlpYTZ+2lVny6xU27vOjipMdbi5FX7+jELnk7qMIZq3z5d7jSADaejrT8/0qb0UNVpVKxUAfN4bMOsz5G0/5++JDPGvKjONC5DcBTyI5eiEQRUmq4ak2MdInjp5HxxMY9JwtB29iZ21Gm8bOBo42/7h37x6jR49+7XZeXl7s3r07FyIS2a2wpSl1KhenTuXiQFLN+UchUdy4H8bV20+5dOMxT8ITeB6j5dz1IM5dD9LvW9yuUIpkrXOpwvm2Zp0Q4u0QGR3P0l//BaCjtwsujjaGDUgIA3Owt2DGUE/mbDjHqSuPmbPhHPceRdCtdZV8cdd3lnodxYoVY926dXz55ZcMGzaMAQMGMGLECBml9Rbwci/JzcBI/jx9n1nrzjL/86bYWkn9WWFYOp3C7r9v89Oeq2gTdNhYmTL8Y3f9CdrbomRRSz5sVoEN+6+zYsclalcqJhMHCZHP/HLgBooC9ao6UP6lE61365UlJCKW9X/48eP2S9hZm9HQraRhAs1nTExM0GpTT7CW1nbSny0YVCoVJYtYUrKIJR6V7LjmpKNChYoEhSdw/X4oN+6HcjMglIAnz3nyLJonz6I5duEBAEZGKso5WONa9r/6tWVscSxulS9O7oQQb4cVOy4TFhlH6eKWckerEP8pZKbmi54erPvjGlsO3mTbYX/uPY5kTNfaef68OMuXhDUaDTNnzqRChQrMmzcPPz8/+vfvn52xiTyqf4fqXL8fyv3HkcxZf44p/RtIZ1UYzLOIWOZvOq8fAVO3SnGGfeSOjdXbeYtix2YVOHwukEfBUaz7w4/+7asbOiQhRAYFBkVy9HwgAJ3Tmdjv4+auhITH8seJu8xaf5ZvLE2p6myfm2HmSxUqVODUqVN4eXm9crvTp0/j6OiYS1GJ3GZiYoRLaRtcStvwfiMnAKJitPgHhOkTtjfuhxIaGcfth+HcfhjOHyeS9jU3NcbF8f9H17qWsaWITf6bcEQIkf/5XnvCId8AVCoY9rH7W3GXoBAZZWSkonvrKpR1sGbBf5ODj15wjK9616NEEQsAzMzy3gDDN75fp3///ri4uDBmzBiuXLmSHTGJPM5MY8K4bnUYNf8oF24+ZevBG3wsV+uEAZy+8pj5m88TERWPxsSIPh9U470G5d7qUU8atTEDfdyY9OMJ9vx9m2Z1SsttTkLkE5sP3ED336jZ9D63KpWKz3zcCI2I5dSVx3yz6hTfD2lMWYeCXVf7TX3wwQdMmzaNVq1a4ebmluY2V65cYf369Xz22We5HJ0wJAtzNTVci1LDNalUl6IoBIfF6uvWXr8fin9AGDFxiVy6FcylW8H6fe2szVIkayuUtsnzI3OEEPlbVIyWxVsuAPBBk/JUymeTHgmRW7xqOVKiiAXfrj5NwJNIZm/wZXx3DwpbmlHC0Rm1xpTY+IQ8U8Yo01GULFkSjUaTYlmzZs3YuHGjdGbfImUcrBnU0Y25G8+zYZ8fVZzsqe5SxNBhibdEbHwCq3ZdYe8/dwFwKmnN6C61KSPJCQDcKxajSc1SHL3wgCVbLzJzWBMZ3S5EHvfg6XOOnvtv1OxrLngaG6kY060OXy37h2t3nzHlxxPMHNZERvG9QqdOndi9ezfdunWjU6dONG3aFEdHR3Q6HQ8ePODo0aP88ssvVKxYkW7duhk6XGFAKpWKorbmFLU1p9F/ZUMSdQqBTyL/vxzC/TDuPo7gWUQsJy8/5uTlx//tC47FLP9/wrHStpQraZ1qkp7Y+ASMjYyIitViYaYmUafLMyeHQoi8bfXuKwSHx1LC3oIurSoZOhwh8jTXMrbMGdGEFTsu85mPG7uO3Wb38TtExWixMFfTztOZTs0q5InR55nuBRw6dCjN5a6urvz2229cv379jYMS+UOzOmW45B/CgTP3mbnOV+rPilxxKzCMWevPEhj0HID2XuXp3royahPDf6HmJX0+qIav3xNuBoSx7+RdWjd0MnRIQohX2PzndXQKeFRxwKW0zWu3N1Ub81WfeoxdeIzAoOdMWX6C6UM8sTSXUXtpUalU/PDDD0ybNo3NmzezYcMG/TpFUTAxMeHDDz9k1KhRefJWN2FYxkYqypawpmwJa1rUKwtAbFwCtx6EczMglOv3QrkREEbQs2gCnjwn4MlzDp4JAEBjYoRzqcK4lrWlZoWiuLkUYdthf3Ydu50nTw6FEHnXxRtP2XfyHgBDP64pF3WEyAD7wuYM/agmvx72Z/OBG/rlUTFaNu5Pyl/6eLsY/POUpUePi4vj+vXrxMfHoygKADqdjpiYGHx9ffHw8MjWIEXeNcCnOjcCpP6syHk6ncL2I7dYu/cqCYkKdtamjOhcC/eKxQwdWp5kZ21Gt/cq88Nvl1iz5yoNqpeQiydC5FEPnj7nyH+jZj9Jp9ZsWqwKafi6XwPGLDzGvceR/G/VKab2byAJnnSYmZkxdepURowYwcmTJ3n06BHGxsaUKlWK+vXrY2VlZegQRT5iZmpCVWf7FDWfQyNjuRkQllS79r+EbVSMFr97ofjdC6V6+SJsOXgzT58cCiHyppi4BBb+V86gdcNyVC8vd60KkVFqE2N2H7+T5rqdx27z4TuuuRxRapn+9T916hTDhw8nPDw8zfUWFhaMHj36jQMT+YPUnxW5ISQ8hrkbz3HxZlKdt/rVHBjyYU0KW76dk35l1HsNnTh45j7+geGs2nmFz7vUNnRIQog0/PJfrdm6VYpnaNTsi4rZFWJKv/qMX/w3V26HMGfDOcZ0qyMXSl/Bzs6O1q1bGzoMUQDZWpnhUcUBjyoOQNKo7EfBUf9NpBuBu2tR5m06n+a+eeXkUAiRN63de40nz6IpamtOj/erGDocIfKVqFgtUTHatNfFaImO1Ro8t2D0+k1Smjt3Lra2tixYsIDmzZvTokULli1bxqeffopKpWL58uU5EafIw8o4WDPQJ2lyjQ37/FJMlCDEmzpx6SFDZx3m4s1gTDXGDPmwBl/09DD4l2d+YGykYlCnGqhU8Ne5QC7efGrokIQQL3n49Dl/nU26/Tkzo2Zf5FSyMF/09MDEWMXxfx+yYscl/Z1NQgjDUalUlCxqiXft0vR4vyox8YmvPTkU/y82PgFtgo6w53FoE3TExicYOiQhDOLK7RB2/30bgCEf1pSJB4XIJAszNRbplP6yMFfnic9UppOz169fZ8iQIbz77rt4e3vz6NEjvLy8+Oqrr+jUqRNLly7NiThFHvdO3TK8U7c0OgVmrfMlLDLO0CGJfC42LoGFv1xg2k9niIzW4uJYmHkjvWhZvxwqlYwIy6gKpW319WaXbvsXbUKigSMSQrxo83+jZutULk6F0rZZPk6NCkUZ+UktAHb/fYdfD/tnV4hCiGySH04O84p4bSLbDvvTbcofdJv8B92m/MGvh/2J10o/Rrxd4rSJLPzlPIoC73qUoZaUdBMi0xJ1Otp5Oqe5rp2nM4k6XS5HlFqmk7M6nY7ixYsDULZsWW7evKlf17JlS65evZp90Yl85bMObpQubsWziDhmbziLTiejdkTW3AwIZcTcv9h/6h4qFXT0dmHG0CY4FpN6gFnR9b3K2FiZ8uDpc0nYCJGHPAx+zl9ZqDWbnibujvRpVw2An/Zc5ZBvwBsfUwiRfV51ctimkRM37j8jTpKPxMYnsOXQTTbtv64faZxcm3froZsygla8VTbu8+PB0yjsrM3o/d9vvBAic8w0JnRqVoFPWlTUXyS1MFfzSYuKdGpWIU/Ue890crZMmTJcv55UtN7JyYmYmBhu304aYp+QkEBUVFT2RijyDTNTE8Z3r4OpxpgLN56y5dCN1+8kxAsSdQpbDt5gzIJjPHgahX1hM/73WUN6tqmK2iTTX1fiP5bman3C5pcDN3gcIt/TQuQFvxy4gU6nUKdycVzLZH3U7Ivae5WnvVd5ABZsPs+560HZclwhxJtL7+Swc4uKtPV0ZtGWi3y76tRbn6A1NjJi17Hbaa7beew2xkbSJxRvhxv3Q/ntr6SBFYM/rIFlOiPvhRCvp1Eb4+PtwtoprVgzuQVrp7TCx9slz0ykm+lftrZt2zJr1izWrVuHnZ0d1apV45tvvuHQoUMsXrwYFxeXnIhT5BNlHKz5rMN/9Wf/kPqzIuOehsYwcdlx1vx+jUSdQiO3kiwc7Y2bS1FDh1YgeLmXokaFIsQn6Fj6679Sj/ItZGZmZugQxAseBUdx+Gz2jZp9Ua82VfFydyRRpzD959P4B4Zl6/ELCp1Oh5+fH0ePHuX58+eEhYUZOiTxFnjx5HDd161YO6UVHb1dCHoWTXBYDOdvPH3rE7QZmbhFiIJOm5DI/M3n0SnQtJajfqJBIUTWmWlM0MbH8jDgNtr42DwxYjZZppOzffv2pXPnzly8eBGAyZMnc+3aNQYNGsTt27cZO3Zstgcp8pfmHmVoVie5/uxZqT8rUnk5SfT3xQcMnX2Yy7dCMNMYM/zjmozrXgerQhoDRVjwqFQqBnasgYmxEef8gvjn30eGDknkktj4BNQaM0o4OqPWmMntoHlE8qjZ2pWKZduo2WRGRiqGd3anRoUixMQl8vXykzJi/iU7duygadOmtG/fns8++4x79+4xfvx4hg4dSnx8vKHDEwWcmcYEtYkRhS1NUZsYYaYxoUIZWyb3rY+ZxvitT9BamJlIbV7x1vvlwE3uP47ExtKUfu2rGzocIQqU2NhYQ4eQSqaTs0ZGRowbN46ZM2cCUL16dQ4cOMAvv/zCX3/9Rd26dbM9SJH/DPRxo3RxS55FxDJH6s+K/7ycJIqO0fLz71f5fo0vUTFaXMvYMP/zpjT3KCuTfuWAUkUt6dgs6e6G5TsuyciTt8CLE6r0mLpfJlTJIx6HRHHobFI92OweNZtMbWLEFz09cCppTdjzOCb9eILw53KxFOD3339n3Lhx1K9fn7lz56L7bxKId999lyNHjrBkyRIDRyjeVtXKF0mRoP3fW5ig9bv7jIs3g2nTyCnN9Xll4hYhctKdh+FsOZhUIvAzHzesLWTAihAFXYaSs/v37yciIiLd9ZaWlri5uWFpaZltgYn8zczUhHHd66JRJ2dAxWYAAHRaSURBVHUutx66+fqdRIGWZpLoL3/aNylP6eKWfNTcle+HeFKyiHyP5KQP33GlhL0FIeGxbNh33dDhiBwkE6rkXcmjZmtVLEbFsnY59jiFzNRM6deAYrbmPAqO4usVJ4mNk9d92bJldO7cmRkzZtCiRQv98o4dOzJ06FD27NljwOjE2+7FBO2FtyxBe/zfh3y59Dgrd17mgyblU9Xm/bi5Kx28yuep21CFyG4JiTrmbTpPok6hoVsJGtUoaeiQhBC5IEPJ2eHDh3P37t0Uy5YvX05ISEhOxCQKiLIO1gz0Sao/u/6Pa1yW+rNvrfSSRJsP3GDXsdtM7d+Qbu9VxsRYJnjIaaZqYz7773O569gtbj8IN3BEIrspisLjkOcYqVQyoUoe9DgkikO+OTtq9kV21mZ83b8BVoXU3AwI4/u1viQmvt2jzu7cucO7776b5roaNWrw5MmTXI5IiJSqlS/ClH4N3qoE7Y6jt/h+zRniE3SUKGKBRm2UojbvmsktKe9ow+TlJ3ieTj1aIQqC3/7y5/aDcKwKqfVzuQghCr4MnZm9PHFMYmIic+bM4fHjxzkSlCg4Xqw/O3PdWbml8i31qll3dx+/Q2FL01yO6O1Wq1IxGtUoiU6BJdsuStmRfExRFIKeRXP84kN+2n2FicuO88lXe/nfqtOERsTKhCp50C8HbpCoU3B3LUqlcjk3avZFjsWsmNSnPhq1Mb7XnrB468W3elJAe3t7bt26lea6W7duYW9vn8sRCZFaVWf7tyJBm6hTWL79Eit2XEZR4L2G5fiypwemGpMUtXlVKhVrfr/KtbuhrP/jmqHDFiJHBDyJ1N/Z1q99dWytZTJXId4WWR42k52dep1Ox4IFC/D09KRmzZr069ePgICAdLcPCQnh888/p379+tSrV4+RI0emGuWwd+9eWrdujZubG+3bt+fEiRPZFq/InJT1Z89JIugtJLPu5j39PqiGuakJ1++Fsv/UPUOHIzJAURRCwmM4efkR6/ZeY/LyE3Sd/Ad9vv2T6WvOsO2wPxdvBhMVoyUyWouNlalMqJLHpBw1WylXH7tSOTvGdq2NkQr+PH2f9fv8cvXx85LWrVuzYMEC/vjjD/3kXyqVisuXL7NkyRJatWpl4AiFSFLQE7Sx8Ql8v+YMO/+7gN/z/SoM9HHDOI07qdQmRvpRhL8fv8Odh3LnjyhYdDqF+ZvPk5Coo07l4jSt5WjokIQQuShP3NO4ZMkSNmzYwDfffMOmTZvQ6XT07ds33dlyR4wYwcOHD1m9ejWrV6/m4cOHDB48WL/+5MmTjBkzhs6dO/Pbb7/RoEED+vfvn+4oCZGzzExNGNctqf7suetBbDss9WffNhZmakkS5TH2hc3p2iopOfTTnquERcqo9rwmNDKWM1cfs3GfH1NXnqTH1/voOXU/364+zeYDNzjnF0REVDzGRirKOxamZf2yDPmwBvNGerHiy3dRSJo4JS1tGzvJhCoGsOXgTRJ1CjVdi1LZKXdGzb6oXrUSDOpUA4DNf95g74m7uR5DXjBixAhq1qzJiBEjqF27NgDdunXjww8/pFy5cgwfPtzAEQrx/1IlaFcWjARt+PM4Ji79hxOXHmFibMTYrnXo2KzCKyeEreFaVH/nz7Jf/32r7wAQBYuZmRkHzz7g+r1QCpmZMLhTDZkcWYi3jMGrqcfHx7Nq1SpGjx5N06ZNAZg7dy6enp7s37+fNm3apNg+IiKC06dPs3TpUipXrgxA//79GTRoEGFhYdjY2LB8+XKaN29O9+7dARg3bhznz5/n559/ZurUqbn6/ESSsiWsGehTnfmbL7Bu7zWqONlT1VluG3wbxMYl4B8YRptGTmw+cCPV+uRZd9V541rRW+X9Rk4cPBPA7YfhrN59hZGf1DJ0SG+tiKh4/APD8A8I42ZAKP4BYQSHx6bazkgFZRyscXG0oUIZG1wcbShXwhqN2jjVtmqM6NSsApBUYzYqRouFuZo2jZxo09iZ01ef0KRmqRx/biLJk2fRHDxzH8idWrPpaVm/HCHhsWzcf51l2y5iY2lKg+olDBaPIWg0GlasWMHx48c5ceIE4eHhWFlZ4eHhgZeXl5wQizwnOUE7ZfkJLtxMStBO7FMP0zS++/ODh0+fM2X5SR6FRGFprmZi73oZPi/o07YavteecPXOMw6fDaRZndI5HK0QOSc2PgG1xgwHRyfKV9BQ3N6KhAQdRWzMDR2aECKXvVFyNjs6r35+fkRFRdGgQQP9Mmtra6pUqcKZM2dSJWfNzMywsLBg+/bteHh4ALBjxw6cnJywtrZGp9Nx7tw5xo8fn2K/evXqsX///jeOV2TdO3XLcOlWCId8A5ix1pcFnzeVWqMFXExcAl+vOEn48zimD26MyihpgqLkJFE7T2c6NauQZmJJ5DxjYyMGdXJjzMJjHPINoHndMlR3KWLosPK12PgEjI2MiIrVYmGmJlGnSzWr9PMYLbeSE7H//f3kWXSqY6lU4FjMEhdHG1xK21DB0RanUtaZmqVaozbGx9uFD99x5Xl0HJaFTAl4Esn4xX/z4OlzFJ2Cl9w2lyu2HEyqNVuzQlGqOBn24uQnLSoSEh7L/lP3mLXOl28+a2jwmAyhUaNGNGrUyNBhCJEhBSVBe+3OM75ZdYrI6HiK2RViSt/6lC5uleH9i9qa83FzV9b8fo3Vu69Qr6pDundnCZGXxWsT2XbYP8W5UZtGTnzU3NXQoQkhDCDDZ3iDBw9Go9GkWPbZZ5+hVqf8MVSpVBw4cCDDASRPKlaiRMpRG8WKFUtzwjGNRsP06dOZNGkSderUQaVSUaxYMdatW4eRkRFhYWFER0fj4OCQoeOJ3KNSqfjMx40b90MJDHrOnI3nmNynPkZGMkKlIIqO1fL1ipNcvfOMQmYmPAuPoaO3Cx+9kCRK1OkkMWtgFcva0ap+OfaeuMvSXy8yf5Q3ahMZxZwVaXWy23k649PUhb//fcj560H4B4TxMDgqzf1LFrFISsKWThoR61yqcLaU/DDTmBAdHc3DgDs4OTnhVNIaN5ciBAY9Z+7GcxQyM6FuFYfXH0hkWdCzaA6cTho129mAo2aTqVQqBnV0+690xhO+WXmKGUM9M5UgyW8WLVqUqe2HDBmSQ5EIkXVpJWi/7O2RqYt2hnT834fMXn8WbYIOl9I2TOpTD1urzE941N7LhYNn7vPgaRQb9vvR74PqORCtEDknNj6BbYf92bT/un5ZVIyWzQduYGSkwsfbJd98roUQ2SNDn/gOHTrkWAAxMTEAqRK/pqamhIenLvSuKArXrl3D3d2dvn37kpiYyNy5cxk0aBAbN24kNjY23ePFxWW9pqKiKERHpx7Z9LZIfp2S/34Twz+qzpc/nOKcXxCb9l+lfROnNz5mXpCdbZTfxcQl8N2a81y/H0YhMxO+7FGL4rYadAnxRMfG8ujRI0qUKIGZmRnRCWnXln7b5eb7qZN3Of759yEBT57zy5/X6OCVfz6TeeZzpzLht6O3U3WyN+6/jk6n4FLahqPnH+jXFbUxw7mUNeVLWlPesTBOJaxSj/zRaYmOzp7J8mJiYoiNjdW3U7eWLkQ8j+Xvfx/z3c9n+KK7O1UMUAM1r8mp99PG/VdJ1ClUc7bDycE8z/QnhnSsyjcRsfgHhjPph3/4pn9d7F4zM3Ruf+YURcmWO7VeTs6qVCoURcHY2BhbW1vCw8PRarWo1WoKFy4syVmRZ72coP121ek8n6BVFIUdR2+zatdlFAU8qjgwpmttzEyzFrPaxIj+HdyY/OMJdv99h3c9ylKuhHU2Ry0Kmozc3ZQdEnUKz6PjiYyOJzJKS0RUHJHR8UREaYmMjkebkEi396qw67+J8F6289htPnxHRs8K8bbJ0LfRd999l2MBmJklnQTEx8fr/w0QFxeHuXnqWit79+5l3bp1HD58GEtLSwCWLVuGt7c3W7du5YMPPtAf70XpHS+jtFot165dy/L+BcXdu3ez5TitahVm56lQNh3wx0wJp2yxglPeILvaKL+K1epYfziYgOB4zNQqunjZoY18yLVrD1Nsd+fOHQNFmL/k1vupmZsFv52IZ+thf4oXeo6tZd49yUuLIT93JiYmVK5SLd1O9u7jd/h5Ugver2uPrYWKEnZqLMySR4zHQlws9+8+yZVYX2wn7yrGBIWYceNBLN+tOUePd4pSyl6T/s5vkex8P4VFJXDobNKdO3WdjfNcX6KDRyFWhUcRHB7LlOUn6dW8KGaa14+ez83P3MsX3LPCz89P/+8TJ04watQovvrqK1q2bImxcdLn8ejRo3z55ZepSmMJkdckJ2i/XpH3E7SJOoUVOy6x+++kfl/rhuXo38EN4ze8c65WxWI0qF6CE5cesezXf/luUCOpFy3Sld7dTa8rr6ZNSCQiKp6IqBeSrdHxRL6w7P/XJf07KlbLq+aqK+tgRdvGsUTFpH0BPipGS3SsVsr/CfGWMfgveHI5g6CgIMqUKaNfHhQURMWKqW/98/X1xcnJSZ+YBShcuDBOTk7cu3cPGxsbChUqRFBQUIr9goKCKF68eJbjVKvVuLi4ZHn//C4mJoa7d+9Srly5N0pyJ6tUSSE09grHLj5ix+kIvh9UH2uL/J0UyO42yo+iY7VMW3OegOB4LMxNmNijNs6lUo5kkHbKmNxup0qVFG48PsuVO6Ec80tgbNdq+eIkJy+8n1QqFdGx2ld2smPjE+nxQW2DzSydXju5uiYyfe15rtwJZdOxUKb0qYNjMctXHKlgy4n304qd19DpoJqzHa28ambLMbNbmXIxfPXjaZ6ExbPrbAwTutdKt7xJbn/m/P39s/2YU6dOZdiwYbRu3TrF8iZNmjB8+HDmzp3L+++/n+2PK0R2qupsz+S+eTtBGxufwOz1Zzl5OekCVa82VenQtHy29S/6tqvGWb8grtwO4cj5BzSVGuoiDemVENi4/zqKotDQrST7Tt5LSq6+lGyNjU/M8uNamJlgZaHBqpAGKwsN1oU0WFtoKGJjjq21GRbm6jT7jhbm6mwpayWEyF8M/utdqVIlLC0tOXXqlD45GxERwdWrV+natWuq7R0cHNizZw9xcXGYmiZdTYqOjiYwMJB27dqhUqmoVasWp0+f5sMPP9Tvd+rUKerUqZPlOFUqFYUKFcry/gWFubl5trXD0I9rcefREQKDnrN0+7UCU382O9soP3keo+W7tWe4GRCOpbmabz5riIujTbrbv63tlFm52U6DP3Rn2OzDnLsRzL+3w2lQvWSuPG52MPT7ySRB99pOdl6o5ftyOxUCJvVtwMRl/3AzIIxvfz7P90Ma42BvYbgg84Dsej8FhUZz+FxSOYsurSrn2e+8coUKMaVfAyYsOc6VO6H8sMOP0V1qv/I3Obc+czlxkejRo0eUKlUqzXX29vaEhIRk+2MKkRNeTtD+b9UpJvaulycStGGRcfxv1Smu3w/FxNiIUZ/WwrNm2p+7rCpmV4iP3qnAuj/8WL3rMh5ViktSS6RibGSU7t1Nu/6+Q0fvChy78ICIqLRLrRkZqbAqpMbqv+Tqi39bvfD/pGVq/TIT4/T7fbHxCbTzdGbjCwnjZO08nUnU6VBj+H6jECL3GPyXW6PR0LVrV2bNmoWdnR2lSpVi5syZODg40KJFCxITE3n27BlWVlaYmZnRvn17Vq5cyYgRIxg+fDgA8+bNw9TUFB8fHwB69epF//79qVKlCk2aNGHbtm1cu3aNb7/91pBPVbzE3NSEcd3r8vm8I5zzC+LXv/zp1KyCocMSWfA8RsukH5KSO1aF1HwzoCHlX5GYFXlT6eJW+HhX4JcDN/jxt0vUdC2GeRbrwb1tEnU62jZyYtOBG6nW5fVOdiEz9X+Jub+5/ziSST+cYPqQxq+tPSpeb+uhmyQkKri5FKFa+SKGDueVyjva8EXPuny94iTHLjzAztqMvh9UM3RYOaJSpUqsX7+eRo0a6UsaQFIJrBUrVuDm5mbA6ITInBcTtBdvBueJBO2Dp8+ZsvwEj0OisTRXM7F3Pao62+fIY3Vo6sLBMwE8Coli4/7r9GlXML+3RNZFvebupucxWj55tyKJivJC4lWNtYUpVhYaCpmaZPsAIjONif68d2cmSy0IIQqmPHGmOGzYMDp16sTEiRP55JNPMDY2ZuXKlajVah49ekTjxo35/fffAShWrBgbNmxAURR69OhBr169UKvVbNiwASurpFmGGzduzLRp09i4cSMdOnTg5MmTLFu2jPLlyxvyaYo0lCthzQCfpJOgtXuvceW2jFbJb55Hx/OVPjGr4duBjSQxm4991NyV4naFCA6PZcM+v9fvIAAIfx5HG09nPm7uqp/Yy8JczSctKtKpWYU8MYrpVawtNEzt34DidoV4FBLFpB/+ITJaJut7E09DY/jz1D0AOrdIXaYpL6rpWozhH7sDsOPoLX77K/tLCuQFo0aN4p9//qF58+ZMmjSJuXPn8uWXX/LOO+/g5+eX6ZqzOp2OBQsW4OnpSc2aNenXrx8BAQFpbrtw4UIqVqyY5p8JEybotztx4gQ+Pj7UqFGDVq1asWfPnjd6zqJgS65Ba25qrE/QxsYnGCSWq3dCGLPgKI9DoiluV4iZwzxzLDELoFEb079DdQB2HbvN/ccROfZYIn+yMFOnnnQ1eZ25msKWprTxdOaDJuVpVqc0dSoXp2JZO0oUscDSXJ1jd3Zq1Mb4eLuwdkor1kxuwdoprfDxdpHErBBvqTyRnDU2NmbMmDGcOHGC8+fP8+OPP+LomFQzyNHRkevXr+tHxQKUL1+eZcuWcerUKU6cOMHChQv12ydr3749+/fv599//+XXX3+lQYMGufqcRMa961GGprUd0ekUZq7zJfx5nKFDEhkUGR3PxB/+wT8gDGsLDd8ObIhTycKGDku8AVO1MZ/9d8Fk57Hb3HkYbuCI8octB28yfvHf1KpUjLVTWrHu61b5rpNtX9ic/33WEDtrU+49jmTK8hNEx6Y90kS83tZDN0hIVKhevgjV8/io2Rc1rV2aXm2qALBq1xX+Ohdo4Iiyn4eHB5s2baJ69eocOnSIlStXcvToURo2bMivv/5K5cqVM3W8JUuWsGHDBr755hs2bdqETqejb9++qSanBejduzd///13ij99+vShUKFC9OzZE4Bbt24xYMAAPD09+fXXX/nwww8ZO3YsJ06cyI6nLwqoKk6GT9D+ffEBE5f9Q2S0lgqlbZg5zBPHYlY5/rh1KhenXlUHEnUKP/x2yWD13UXelKjT0baxU5rrku9uMhQzjQna+FgeBtxGGx+b5y/mCyFyTpaSs3Fxcfz777/4+vpy5swZzpw5w6lTp/jrr7+YNWtWdscoCjiVSsWgjjUoVdSSkPBY5m48h04nnaq8LiIqnonL/uFWYDiFLTVMG9hIErMFRJ3KxWnoVgKdTmHJ1ovyeXyN0IhYDp4JIDDoOYoCahMjCluaojYxynedbAd7C6YOaIhVITU37ofx7erTxGuzPhnG2yo4LIb9p+4D8Ek+GTX7og5NXWjn6QzA/E3nuHjjqYEjyn5Vq1ZlwYIF/P3331y+fJljx44xY8YMypYtm6njxMfHs2rVKoYNG0bTpk2pVKkSc+fO5fHjx+zfvz/V9hYWFhQtWlT/5+nTp6xZs4ZJkybpJ8L9+eefqVixIiNHjqR8+fL06dOHVq1asWLFimx57qLgejlB+83K3EnQKorCb3/58/0aX7QJOupVdWDawEbYWuVeeZy+H1RDY2LEv/7B/H3hYa49rsj7tFodbRrn7bubYmNjDR2CEMLAMp2cPXXqFF5eXnz88cd069aN7t270717d3r27MnAgQPZtGlTTsQpCjhzUxPG96iLxsSIs//VnxV5V/jzOCYuO87tB+HYWJry7cBGlC1hbeiwRDbq90F1zE2N8bsXyp+n7xs6nDxt19+3SUjUUamsLVWc7Awdzhsr62CtP7n/1z+YGWt9SUw03KiS/Cip1qyOauXtqe6Sf0bNJlOpVPRpV43GNUqSkKjw7U+nuf1ARtGnxc/Pj6ioqBR3aFlbW1OlShXOnDnz2v2nTp1KnTp16NChg36Zr69vqju+6tevz9mzZ2VEoHitFxO0//rnfII2Uafw42+XWLXrCgBtGjkxoacHZrlcs97B3kJfw3PlrsvExBmmrIPIe3Ycu8X4xX9T3aVIvr27SQhR8GX6V3Pu3LnY2tryzTffsHPnToyMjPDx8eHo0aNs3LiR5cuX50Sc4i1QroQ1/Tu4sWjLBdbuvUYVJzuqOOVcjSqRNUmJ2X+4+ygCGytTvv2sIWUcJDFb0BSxMefTlpVYufMKP++5Qv1qDhS2NDV0WHlOdKyW34/fAaBjswo5MrO8IbiWseWr3vWZvPwEp648Zv7m84zoXCvH6q4VJMFhMew7mVRrNj+Omk1mZKRi1Ke1CH8ez6VbwUxZfoKZw5pgZQZmZjJZXLLHjx8DUKJEiRTLixUrpl+XnsOHD3P+/Hm2b9+e6pgODg6pjhcTE0NoaCh2dlm7CKQoCtHR0VnaN7+LiYlJ8XdBV664OeO71eK7Nef41z+Yr5efYGyXmphqXp2Iymw7xcUnsmDLJXz9kkbXd21VgTYNyxIXa5h2fq9+KQ6cuU9QaAzr917h0xY5M9Hw2/Z+yqq80E7RsQnsPnabqNgEnoU9RxtvgcZYhTY+aaRqdILh6+vnhXbKD6SdXk/aKGNyu50URcnQOWKmk7PXr1/nf//7H++++y6RkZFs2rQJLy8vvLy80Gq1LF26lB9//DFLQQvRol4ZLt8K5q9zgcxc68u8UU0lIZSHvJiYtbVKGjFbunjO1xIThtG2sTOHfAO48zCC1buvMKJzLUOHlOfsO3mPqNgEHItZ4lHF4fU75CPVXYowvntdvv3pNIfPBmJhpqZ/h+oFJgGdU7b9N2q2qrN9vqo1mxa1iTFf9vJg/OK/SUjU8TD4OdWc7Snh6IxaY0psfEKeuB3UkJI79hqNJsVyU1NTwsNfPdp49erVeHt7p6pxGxsbm+p4yf9Pq45tRmm1Wq5du5bl/QuCu3fvGjqEXPWplx3rDgdz+fYzJv94nE+87NGYvP7GyYy00/PYRP6vvfsOa+ps/wD+TULYCCLLBYKCyHIBijhxW3dtX61aZ+uorW+trbOWarXO1qqtrXW1+lPfOiuuWreCAzdVHAytigxBNiEkOb8/0FQqaoIJIfD9XBdX9ZyTh/s8jSd37vOc59l8/BEepBdBIgb6t7JHA/sC3Lhh2MVEO/pbYvOJAkRE3kFd2wI4VCt9IShdqGrvp7IyZD+dup6DPJkCDtVMYC1KR2xshsFieRW+nzTDfno19pFmyrOf/p3XlUbrjFqlUsHZ2RkA4Obmhtu3b6v3de3aFVOmTNG2SSI1kUiE8QMa4/a9TDxIy8XSLZfw+cgWHK1VAWTmFE9lcDc5B/bViguz5bHIAxmORCLG+Dcb47v/XUJLv5ooUiiRJ1PAylwKpUpV5YsyRQoVfj8RDwDo375BpbxOBfu64ONBzfDNpgvYE5kIKwsphnTXbrGkqiQ9qwB/nP1n1GxlKGRbWUgxZ0wIxGIRdp9IwIJfzyOvoAhWFlL0buOBAWGeVfqx0KejiOVyeYkRxYWFhbCwsHjh65KSknD27NlSBzSYmZk9V4R9+veXtfkqUqkUDRo0KPPrjVlBQQHu3LmDevXqvVYfGptGjYB69TIx75eLSEwpxO7zspeOoNW0n5LS8vDDhktIfVwEawspPh3cBN5udno6C+00agTcTL6Ei7ce4URsEaYP0/1Nxar6ftKWoftJXqTEt7tPAQDe7tQQvj61yj0GTRi6n4wF++nV2EeaKe9+iovTbMpOrb9Zu7q64ubNmwgMDIS7uzsKCgqQkJAADw8PKBQK5OXlaR0s0bMszEww5d1ATP7uBM7HpmDnsTi8Gaafx5JIM49zZJixMgr3UnJgX80c88aHorajtaHDonLgXc8eiz5qi13H4rB0yyUWZZ5x/OJ9pGfJYF/NHO2b1zF0OHrTvlkd5MuKsHL7Vfzv0C1YWUjRr33VLPC8yrYjt1GkKB41G2CEc82+iLmZCbYficP/Dt1Sb8srKMLmgzcBAP07NDD6mzUKhQK5ubmws7PT6nVPpzNITU2Fq6urentqaqp6ga/SHDp0CPb29ggNDS21zdTU1BLbUlNTYWlpCRubst8UFYlEsLS0LPPrKwMLC4sq1wdNvS0x+31zfPFzFP5KyMDizVfx+agWL/03+7J+upaQjrnropGTXwSXGpYIfy+kwuWEY99sgg8WHcHV+Axcjs9CaIB+inJV8f1UFobqp6ORicjKlcOxugU6t/SAiaRMa6GXG76fNMN+ejX2kWbKq580vUGo9RWqV69eWLx4MTZu3Ah7e3v4+flhzpw5OHLkCL7//vsqe0eedMu9li3e7xcAAPh1fyxiEyvuIyjPqozz8D3OlmHGykjcS8lBDVtzfM3CbJUikyvw+4l4/O/QLeQVFAH4pyiz7cjtclkFuiJSqQTsOFb85Eifth6QmlTuInWPVu54t0fxiNm1EdfUc6rSP9KznplrtnPlGDX7lEQsRsSphFL37T6ZAIm4Yn/h/TeFQoEVK1YgIiICQPFit6GhoQgJCcGwYcNeOR3Bs7y9vWFtbY2zZ8+qt2VnZ+P69esICgp64evOnz+P4OBgmJg8XyALDAzEuXPnSmw7c+YMmjVrBrGR9TVVDI3c7fHle61ee5GwU1ce4POfopCTX4SGrtWx6MO2FTInrOlghf4dir+Trv79L8i4OFiVo1CqsONocZ72ZvsGFb4wS0Sk9VVq9OjRGDhwIK5cuQIA+OKLLxAbG4vx48cjISEBn332mc6DpKqpSwtXtGtaByqVgIUbopGdZ/gJ219EJldAamr+ZB4+80pTsMrIlmH6ykjcS8mFg23xiNlaFTAJJ/2RiMWIOFl5ijK6cj42BfdScmFpboKuLesZOpxyMSDME28++bL7/bbLOHn5gYEjqli2H41DkUIFH3d7BHhWnlGzAJAnK1LfnHluX0ER8mWl76uoli1bhpUrVyI7OxsA8NVXX8HOzg7Tpk3D33//jSVLlmjclqmpKYYMGYLFixfj8OHDuHHjBj7++GO4uLigS5cuUCqVSEtLg0wmK/G669evw9vbu9Q2hw4diqtXr2Lx4sWIj4/H2rVrceDAAYwePbrsJ01V3j8FWhOtC7SCIGDH0Tgs+PU8ihQqtPB1wVfjWsHOpuKuCzEgzBNO1S3wKLMAvx2+9eoXUKVy4tJ9pD4ugJ21GTq1cDN0OEREr6T1t+rExERMmTIFixYtAgD4+/vj0KFD+O2333Ds2LGXjhIg0kbx/LMBqO1ohUdZMny7+SJUKsHQYT1HXqTE9qNxGBp+AMNmH8TQ8APYcTQO8iKloUN7LelZBZj+wyncT82Fg50F5o1vjVoOLMxWNZWtKKMr244Uj8boHlIPVhb6W2ykIhGJRBj2hg+6tnSDIADfbLqACzdSDB1WhZCRLcMfp+8AqDxzzT7Lylz6wve5lYUUlubG9W9g7969mDRpEgYPHoz4+Hjcvn0b48aNw7vvvouPP/4YR44c0aq9jz76CAMGDMDMmTMxaNAgSCQSrFmzBlKpFA8fPkTr1q2xb9++Eq9JS0t74RQKnp6e+OGHH3D8+HH07dsXW7duxaJFixASElLWUyYC8LRAG1KyQPuKUaVKlYCfdsZg3Z5rAICerd0xbXhwhZ/KxNzUBKP7+AMAdh6LR1JaroEjovKiUgnYevjJ003t6sOsCk/BRUTGQ+vi7DvvvINdu3aV2GZtbY2AgABYW7NwQ7plaS7FlHeDYGoixvnYFOw6rtlkyuUlX1aErYdvY8vBm5Xqke/iwmwkHqTlwbG6Bb4eH4qaDlaGDosMoLIVZXThemI6Yu9kwEQiRq82HoYOp1yJRCKMe7Mx2japDYVSwLz10biWkG7osAxu+5HbkCtUaFTPHo09HQ0djs4pVSr0fsF7vXcbDyhVqnKO6PWkpqaicePGAIBjx45BLBajbdu2AAAXFxfk5ORo1Z5EIsGnn36K06dP49KlS1i1ahXq1Cmeh7pOnTq4efMm+vfvX+I1V65cwaBBg17YZtu2bREREYGYmBjs378fPXr00Comohd5rkC7tmSB9tkpumSFCsxbdw57IxMhEgGjevvh/b7+kBjJApgt/VzQzNsJCqUKP+2KgSBUvEEepHtn/nqI+6m5sDI3QY9W9QwdDhGRRrQuzkqlUlSvXl0fsRCVqnj+2eI737/sK9/5Z4sUKiQ9ysWlm6n448wd/LrvOhZtOI/Jy05g/MLDEItElWoePgB4lFmAaT9EIulRHpyqW2DeuFC41GBhtqqqbEUZXdhxtPgmUYfmdVDDtuqthCoRi/DxO80Q2MgZ8iIlZq85g7j7mYYOy2AysmU4UIlHzQLFI9AGhHliUJeG6ps1VhZSDOrSEAPCPCv8CLp/c3Jywv379wEAR44cQaNGjWBvbw8AuHTpElxcXAwZHpHe/btA++OOq8iXFZWYois3X46lWy7h3PVkSE3EmDI0CH3b1Teqa5xIJMKYvv4wkYhx8UYqzvyVbOiQSM8EQcDWJ9NY9GztUSUHERCRcdI6m544cSIWLlyInJwceHt7l7q6Wa1a+lkRk6quLi3cEBOXjvgHmSgoLEKRQoU8WRGszKVQqlRl/mKoVKrwKEuGlIw8pGbkIzkjH6kZ+Uh58t/0bBledJPdzcUGWbmFL33kOyNbhj/O3EHThk7w86hR4RPatMcFmLEyEg/T8+Bkb4l540LhbM+VHquyp0UZoPiGQ15BEawspOgZ6o5+7Y1/hXZt3UvJwdlryRCJoF5spCoykYgx5d1AhP98BtcS0vHFqtOY/0Fr1HUu+0ryxmr70X9GzTbxqnyjZp8ylUrQv0MDvNXRC7n5hbC2NINSpYKpET4u2rNnT3z99deIiIjAhQsXMGvWLADA3LlzsXnzZowdO9bAERLpXyN3e8x+PwQ/7YzBiF6+2HE0DnsiE0t8zo97MwCPsgowqpcfGrnbGzrkMqnlaI1+7etj6+HbWP17DJo2dKxyuUtVculWGuLuZ8HMVFLlnm4iIuOm9SdTeHg4lEolPv300xceExsb+1pBEf2bSCTCB28FoEghYPeJeCzceEGdPPZu44EBYZ6lfkFUqQRkZMuQ8rTg+jgfKenF/03OyMejzIJXzmNrKpXA2d4CzvZWcKpe/F9ne0vUdLCCva0FrCykpRZorSyksLUyxR9n7mLr4dtwqWGJTkGuCAt0hWP1ijfaLvVxPmasjERyej6cnxRmnViYJZQsyuTLimBuZoKLN1Kx5P8uYNrwYKN5vFEXno6abeHrgjpOVa8Q+SxzUxPMGtUCM1ZGIu5+Fmb9FIUFE9pUqevG42wZDkTdAQAMrKSjZp9lbmqC/Px8JN1LhLu7e6k36I3Bf//7X1haWiI6OhqffPIJ3nnnHQBATEwMRo4cifHjxxs4QqLy4V3PHp+PDEbEyQT879A/i2blFRSp//75yBawta64C39p4u2OXjh6oXiBqG1HbmNIt0aGDon05Omo2a4t3Yz+fUtEVYvWxdmvvvpKH3EQvZJIJELEybjnksfNB29CABDWvC5OXXmgLsSmZOQj7XEBFMqXP3ZtIhE/KbpawsneEs7P/DjZW8LO2uyFX7hlcgV6t/HA5oM3n9vXu40H8mRFCPGviROXHiA5PR8bD9zA//1xA008HdE52A0t/FwqxKij1Ix8TF8ZiZSMfLjUsMTccaFwqm6cX7pJP56OMrG1NkNuvhzf/e8S8gqKcCT6b3SuIqvgpmcV4NjFewCAN5+MJq7qLM2lCH8vBNN+OIV7Kbn4/KcozJ/QGtVtzF/94kpg+9E4yBUqNHSrjqaVeNTsv8lkMkOH8FpEIhHGjBmDMWPGlNi+ZcsWA0VEZDg2VmbYE5lY6r49kYn4T+eG5RyR7pmbmWB0Hz/M/yUaO47GoWOgK9dSqISuJ6bjr/h0mEhE6Neu6j7dRETGSevibL9+/fQRB9ErScRiRJwqPXmMOJmAN9s3wK7j8cjOk5fYJxaL4GhnUaLg6mxvCafqlnCpYYnqNuYQl3Hk34se+X52NO+Et5pgdG8/RMUk4dC5e4iJf4RLt9Jw6VYarC2kaNesDjoFu6J+bVuDjLpKeVKYTc3IR80aVpg3PhQOdhVvZC9VHNaWpvhPJy+sjbiGjQdi0aZJbZibVf5HBH8/kQCFUoCvRw14uxnn4536YGtthjljWuGzFaeQ9CgPX6w6jXnjQmFtaWro0PTqcbYM+5/MNftOF+9KP2q2spHL5di2bRuioqKQlpaGefPm4dy5c/D19UVAQIChwyMqN3myopdO0ZUvK6oUIxBb+ddEEy9HXL6VhlW7YvDF6JaGDol0bOvh2wCAsEBXfpchIqNTpm/TKSkpuHDhAuTyf4pgKpUKBQUFOH/+PL799ludBUj01KuSx5x8Obq2cIVE8s80BM72lqhhaw6JRH8Lc2kyD5+5mQnCAounNHj4KA+Hz/+Nw9H38CizAHsjE7E3MhH1alZD52BXtGtWp9yS4OT0PMxYGYnUxwWo5VBcmK2KCxyR9nq2dseeyESkZuRj14l4DKwEI2teJregSL3o05tVeK7ZF6lha4E5Y0IwZcUpJCZl48vVZzBnTKtKXbTfcSwO8iIlGrpWR9OGVWfUbGWQkZGBYcOGISEhAR4eHoiLi4NMJsPRo0cxf/58rF+/Hk2bNjV0mETlwspc+tIpuirLgkoikQhj+vnjw8VHcT42BeeuJSPYl4v/VRYJD7JwPjYFYhHzNCIyTlp/azpw4AAmT54MhUKhHiUiCIL6zx4enHib9ONVyaOdjTnefcPXAJFpNw9fTQcrDOnWCIO6eOPq7TQcOvc3Tv/1EHceZuPn3//Cuj3XEOzrgs7Bbmjq5ai3wnJyeh6mr4xE2uMC1Ha0wtxxLMyS5qQmEgzv4YOFG89j+5Hb6NrCDdWrVd5H2Q+cvoOCQgVcXWzQ3NvZ0OFUSLUcrDFnTCtM+/4Ubtx9jHnrz+HzUS0gNTH81C269jhHhn1P5pod1LXyzzVb2SxcuBB5eXnYt28fateuDT8/PwDA8uXLMWrUKCxbtgzr1q0zcJRE5UOpUr10ii6lSgUp9DfIoTzVcbJBn7b1sf1oHFbtikFjL0eYVYDpxej1bTtSPGq2dePaqOVobeBoiIi0p/Un7Y8//ghfX1/s2LED/fv3R58+fbB37158+umnkEgkmD59uj7iJFInj6V5mjwamjbz8EnEIjRt6IRPhwbi1y+6Ymz/ADSoYwuFUkDU1Yf4cvUZjPzqIH7Zex0P0nJ1GufDR3mY9v2pJ4VZaxZmqUxaN6mFhq7VIZMr8X9/3DB0OHojL1Ji94l4AMWjMco6DUpVUK9mNXzxXkuYm0pw6VYaFv/fBShfMe+3Mdp5LB7yIiW8XO3QrKGTocMhLR09ehQTJ06Em5tbicK6mZkZRo4ciWvXrhkwOqLy9XSKrkFdGsLKoniUrJWFFIO6NMSAME/1nPOVxX86N0QNW3OkZORjx5OCHhm3B2m5OHXlAQBgQEeuCUBExknr4mxiYiLee+89+Pj4oEWLFrhx4wbq16+PkSNH4t1338WPP/6ojziJKnXyaG1pijdC3fHtx+2x7JP26N3WAzaWpsjILsS2I7cxdv5hfLb8JP48exf5stKndtBU0qNcTPvhFB5lyVDHyZpTGVCZiUQijOhVPFr9z7N3cTc528AR6cfRC/fxOKcQDrbmaNOkjqHDqfC83ewxc0QLmEjEiLr6EMu3XoZKJRg6LJ3JzCnE3ieL5wziXLNGqbCwEHZ2dqXuk0gkKCp6vc9ZImPzdIquDeHd8OsXXbAhvBv6d2hQIRat1TULMxOM6lU8Wn7bkdtITs8zcET0urYfuQ1BAIJ8nOFey9bQ4RARlYnWxVmxWAxb2+KLnpubGxISEqB6MmKxbdu2iIuL022ERM94Nnnc+GW3Spk8uteyxXt9/PHLF10xbVgQAhs5QywCYu9kYNlvlzHsyz+wdMtFXEtIhyBoV/BISsvFtO8jkZ4lQ11nG8wbHwr7SvwoOumfr0cNhPjXhEoA1u+5buhwdE6pErDzWPHImj7tGkBqUjke7dS3xl6O+GxoIMRiEQ5H38OaiL+0vl5VVDufzDXrWdcOzb05atYY+fv7Y9OmTaXui4iIUE9zQFSVmJuaoEguQ9K9BBTJZUY96OFVWjephYAGDpArVFj9+1+GDodeQ9rjAhy9cA8A8HZHLwNHQ0RUdlp/y/Tw8MDFixfVf5bL5bhxo/hx1uzs7BKLhBHpg7mpCaQmYtham0FqIq60yaPURIxWAbXwxeiWWPt5Fwx7wwe1Ha0gkytxOPoepn5/CmPmH8Zvh27hUWbBK9u7n5qDaT+cQka2DK4uNpg7rhWq27AwS69v2Bs+kIhFOB+bgiu30gwdjk6du/YQD9LyYGUhRZcWroYOx6iE+NfExP80AQDsPpGALX/eMmxAOpCZU4i9UcWjZt/pylGzxmrixImIjIxEnz598N1330EkEmHPnj0YO3YsDhw4gA8++MDQIRIZjDZTdBmrp4uDScQinL2WjPOxKYYOicpo1/E4KJQC/Os7wLuevaHDISIqM62LswMHDsR3332Hb7/9FjY2NmjZsiWmTZuGDRs2YMmSJfD1NcyCTESVWQ1bCwwI88TKKR2xYEJrdA52hYWZBA8f5WHD/liM+uogvvj5NE5deYAihRIAIJMrUKRQITO3EEUKJZLT82FpLoWbiw3mjg1lYZZ0prajNbq3qgcAWBtxrdI8wi4IArYfKX4a5I1Q90qzYnV5Cgt0xft9/QEAm/64oZ6711jtOh6HQrkSDThq1qgFBgZi3bp1sLCwwOrVqyEIAtavX4+0tDT89NNPaNmypaFDJCI9c3Wphl5P1rJYtTMG8iKlgSMibWXlFuLAmbsAgLc41ywRGTmthxy+9dZbkMvluH//PgBg9uzZeP/99zF37lzUrl0bM2bM0HmQRFRMJBLBx70GfNxr4L2+/oi8koRD0X/jWkI6Lt5IxcUbqWjoZocv32uFXcfjEHEqEXkFRbCykKJnqDsWTmgDALCxMjXwmVBlM7BzQxw5fw8JSVk4dvEewgKNf5TptYR03Pz7MaQmYvRs7W7ocIxWrzYeyJcVYeOBG/j597/gYGeBZt5OkIjFyJMVwcpcCqVKVeGfgsjKLcSeJ3PNvtOlIUfNGrmgoCBs2bIFMpkMWVlZsLa2hpWVlaHDIqJyNKhLQ5y4dB8P0/Ow81gc/tO5oaFDIi3sPpkAeVHxDdMmXo6GDoeI6LWU6ZvQ4MGD1X92dXXF/v378fjxY9jb81ECovJiYWaCTsGu6BTsiqRHuTgcfQ+Ho//GgDAv7DwWh/8d+ucR4ryCIvzv0C2IxSL079DAgFFTZWVrbYa3O3ph/d7r2LAvFq0CalX4YturbD9aPGq2Y5ArR5q/prc7eSG3oAjnY1Pg61ED24/cLnHzqHcbDwwI86zQ84fvPPbPqNnARs6GDod04MSJEzh37hyys7Nhb2+P5s2bo02bNoYOi4jKiaW5FCN6+WHJ/13Ab4dvo0PzunCytzR0WKSBvIIi7D2VAAB4u6Mnb5gSkdEr8zfnU6dOITo6GpmZmXBwcEBISAiLs0QGUsvBGkO7N8I7Xb2hVKmwdMulUo/bfTIBb3GyfNKTXm08sDcqEWmPC7D7RALe7mS877U7D7NxPjYFIhHQr319Q4dj9EQiEUb28kXbprURcTLhuZtHmw/eBAD079CgQhb1s3ILsffJqNlBHDVrlB48eIDatWsDAORyOcaPH49Tp05BIpGgevXqePz4sXpKg59++gmmpnzChKgqaNe0Nv44cwd/xadj9e6/MH14sKFDIg3si0pEnkyBus7WaOFb09DhEBG9Nq3nnM3KysLAgQMxevRorFmzBocPH8ZPP/2EoUOHYsyYMVwQjMiAJGIR8mUK5BUUlbo/r6AI+bLS9xG9LlOpBO92bwQA2HbkNjJzCg0cUdntOHobANDKvxZqOVgbOJrKQSQSoV5NW/XUAP+2+2QCJGKt05Jyset4PGRyJRrUsUUQR80apb59+6KgoHjxzOXLl+PChQtYuHAhrl69ilOnTuHKlSv4+uuvcfnyZaxcudLA0RJReRGJRBjbLwBisQinYx7i4s1UQ4dEryCTK/D7kznsB4R5QSzmDVMiMn5afwuaN28eEhMTsWLFCsTExODUqVO4evUqvvvuO1y+fBnffvutPuIkIg1ZmUthZVH6wkVWFlIuakR61bZpHTSoY4uCQgU2H7xh6HDKJPVxPk5cegAAnAZEx/JkRUZ38ygrtxB7njw6OaiLN0fNGqn8/HwkJSUBAPbs2YMJEyagd+/ekEiKp9IwMTFB3759MWHCBERERBgyVCIqZ241q6nnll+186p6cV2qmA6d+xtZuXI42VuibdPahg6HiEgntC7OHjt2DJMnT0anTp3UX1DEYjG6dOmCjz/+mAktkYEpVSr0frL67L/1buMBpUpVzhFRVSIWizCylx8A4MCZu7iXkmPgiLT3+4l4KFUCAho4wMu1uqHDqVRedfPIzFSC/zsQi/j7mRAEoZyjK93vJ4pHzdavY4sgH46aNVaCIKif7srIyICPj0+px/n4+CAlJaU8QyOiCuCdLt6wszHDg7Q87Doeb+hw6AWKFCr1mgBvdmgAE0nFfOKGiEhbWl/NBEGAg4NDqftq1qyJ/Pz81w6KiMrO3NQEA8I8MahLQ3URxMpCikFdGmJAmGeFnM+RKhf/Bg5o4esClUrAL3uvGzocreTky3HwzF0AwJsdPA0cTeXzsptHPUPdcflWGrb8eQv//fY4Plh0BP87dBPJ6XnlHOU/svPk6lGzAztzrlljJhKJoFAoABQvZnvhwoVSj4uOjkbNmpy/kKiqsbKQYkRPXwDA/w7dQtrjAgNHRKU5fvE+HmUWwM7GDJ2CXA0dDhGRzmhdpenXrx9WrlyJ4OBgWFlZqbcrFAps3LgR/fr102mARKQ9U6kE/Ts0wFsdvZAvK4KluRRKlapCr4ROlcuwN3wQHZuCs9eSERP3CP4NSr+pV9Hsi0yETK6Ee61qaNrQ0dDhVDpPbx4BxXPM5hUUwcpCit5tPDAgzBPX72QgtHEtnLuWjHspudi4/wY27r+BRvXs0b55HYQG1IKttVm5xbvreBwKCpXwqGWLFr4u5fZ7SfeaN28OCwsLAMDAgQMxf/58mJub44033oCDgwMePXqEPXv24Oeff8aECRMMHC0RGUKH5nXwx5k7uJ6YgTURf2Hqu0GGDomeoVQJ2HakeE2Afu3q83sNEVUqWhdnLSwscOfOHXTs2BEdO3aEs7MzHj9+jOPHjyM5ORm2traYNm0agOJRCvPmzdN50ET0ak9HyD4tZEi1HyhPVGZ1nW3QtaUb9kfdwdqIv7BkYrsKv2BDYZESEU9GSfbv4MlRknrysptHTTwd0cTTEXkFRTgdk4RjF+/jatwjxN7JQOydDKzaGYNm3k5o36wOgn1d9PokQPGo2eLFywZ24ahZY/fzzz+r/x8OGjQI169fx+LFi7FkyRL1MYIgoF+/fnj//fcNFSYRGZBIJMLY/gH47zfHEHklCZdvpaKJl5Ohw6InzsQ8xIO0XFhZSNEtpJ6hwyEi0imtv9Xs3r0b1tbFK1efPn26xD4XFxdcvHhR/Xd+kSEiqrre6eKNYxfuI+5+Fk5cfoD2zeoYOqSXOhL9ZIGJ6hZo07iWocOp1F5188jKQopOwW7oFOyG9KwCnLz8AMcu3kf8/SxEX09B9PUUWJhJ0NKvJto3q4vGng6Q6Hjeud9PxKOgUAGPWrZo6cdRs8bOzOyfEddisRhz587FyJEjce7cOWRlZcHW1hbBwcGoX7++AaMkIkNzr2WLHqHu2HMqET/tjMGyTzpAasIBDoYmCAJ+O3wLANCrtQcXOCaiSkfr4uyRI0f0EQcREVUydjZmGBDmiQ37Y/Hrvuto5V+zwj6CplQJ2HmseAGQvu0a6LzQR2VXw9YCfds1QN92DXAvJQfHLt7H8Yv3kZKRj6MX7uPohfuwszFD2ya10a5ZHXjWtXvtm8O5+UWIOPlkrtkuXrzZXAldvnwZZ86cwdixYwEAsbGx+P777zFq1Cj4+voaODoiMqTB3Rrh1OUk3E/NRcTJePTnHPQGd/FmKhIeZMHcVIJeL5i7nojImPHbJxER6U3vth5wsDVH2uMCdbGrIjodk4SH6XmwsZSiczAXmKio6jrbYGj3Rvh5eicsnNAGPVrVg42lKTJzCrH7ZAI++e4Exs4/jM1/3EDSo9wy/569UXdRUKiAe61qaOHLxaEqm+PHj2PIkCE4fvy4epsgCIiLi8OgQYNw/vx5A0ZHRIZmbSHFsDd8AACbD95EehYXBzO0rYeL55rtFlIP1axMDRwNEZHusThLRER6Y25qgiHdGwEAfjt8C1m5hQaO6HmCIGD7kwUm3gj1gLmZ/uYxJd0QiURo5G6PcW82xq/hXTFrVAu0bVobplIJkh7lYdPBmxjz9WF88t1x7D4Zj8c5Mo3bzi9UYf+ZewCAgZ0bVvi5kkl7y5cvxxtvvIFNmzapt/n4+GD37t3o3r07vvnmG9y7dw/Tp0/HjRs3DBgpERlKWGBdeLtVh0yuxNrd1wwdzkvJ5AoUKVTIzC1EkUIFmVxh6JB06lpCOq4lpMNEIkbfdpx6hogqJ4N/A1WpVFixYgW2bt2KnJwcBAUFYdasWahbt+5zxy5fvhwrVqwotZ3+/fvj66+/BgCMGDECUVFRJfYHBwdjw4YNuj8BIiJ6qfbN62L3iQQkJGVhy583MaZfgKFDKuFq3CPE3c+CqVSCnq3dDR0OaclEIkaQjwuCfFxQUKjAmb8e4tiF+7h8KxW3/s7Erb8zsWb3NTTxdET75nXQ0q8mLF5SgI9LVUFqIoazfTW09OOo2cooPj4ekydPLnW6ir59+2LEiBH48ssvcefOHdy6dQvbtm0zQJREZEhicfHiYJOWHseJyw/QNcQNAQ0cDR3Wc+RFSmw/GoeIkwnIKyiClYUUvdt4YECYZ4WdSkpbW5/MNdsxqC5q2FoYOBoiIv0weHH2hx9+wKZNmzB//ny4uLhg0aJFGD16NCIiImBqWvKRhZEjR2LgwIEltq1btw6bN2/G8OHD1dtu3ryJ8PBwdOrUSb1NKuWk4UREhiARizCyly9m/hSF/VF30Ku1B2o5Whs6LLWno2Y7B7uqF6gi42RhZoIOzeuiQ/O6eJwjw8nLD3D84n3c+jsTF2+m4uLNVJiZStDC1wXtm9VB04ZOMHkyv7BMroDU1Aw92vphUHczZOYWctRsJWVjY4PExES0bNnyuX337hWPmi4oKMBXX32FMWPGlHd4RFRB1K9jh24h9bAv6g5+3BGDZZ+0V39mVAQyuQLbj8Zhy8Gb6m15BUXY/OTv/Ts0UC/Aaazi72fiwo1UiEXAm5z7l4gqMYN+usjlcqxduxYfffQR2rdvD29vb3z77bdITk7GwYMHnzveysoKjo6O6p+0tDT8+uuvmDVrFho2bAgASE9PR3p6Oho3blziWDs7u3I+OyIieqqxlyMCGzlDqRKwfu91Q4ejlvAgC5dupUEsAh+Vq2Sq25ijd5v6WDKxHX6a2hHvdGmImg5WKJQrceLSA8xecxbDvvwDmw/egKyw+Avu0PA/MHruIQyfcxBHzt+DvEhp6NMgPejcuTOWLl2Ko0ePlth+8uRJfPfddxg0aBD+7//+D46OjmjWrJmBoiSiimBo90aoZmWKeyk52HOq4sydr1QJkIhFL5zPf/fJBEjEFaeQXFZbn9xAb9OkDmo6WBk4GiIi/SnzrbTjx48jKioKqampmDRpEmJjY+Hr64vatWtr3MaNGzeQl5eHkJAQ9bZq1arBx8cH0dHR6Nmz50tfP3v2bAQGBqJfv37qbTdv3oRIJIK7Ox9NJSKqSIb39MHFGyk4HfMQ1xLS4etRw9AhYfvR4qS/dePacKnBpL+yquVojUFdvTGwS0PcvpeJYxfv4+SlB8jMLYR7LVtsO3Ib/zt0S318ZRt5RCV9/PHHiImJwbhx4yCVSmFnZ4fMzEwoFAo0btwYn3zyCQCgfv36WLdunYGjJSJDsrY0xbA3fLD8t8vY9MdNtG1aB+bl9JEgCAKycuV4kJaLB2m5SHry3wdpuZCaSDB9WBDyCopKfW1eQRHyZUVG/UTQ/dQcRF1NAgAM6MhRs0RUuWn90VJQUIAPPvgAUVFRsLa2Rl5eHkaPHo3Nmzfj+vXr2LhxIzw9Nbt4JicnAwBq1iw5p5uTk5N634scPXoUly5dwq5du0psv3XrFmxsbDB79mxERkbC0tIS3bp1w/jx45+bJoGIiMqPm0s1dG7hhj/O3MXaiL+w+KO2pc75WF6S0/Nw6kpx0t+/QwODxUHlRyQSwcu1Orxcq2NUL19cS0hHQzd7LN1yqdTjd59MwFsdvco5StI3a2trbNmyBcePH8eFCxeQlZUFGxsbBAYGon379hBXgtFmRKQ7nYJccfDMXdz8+zHWRVzDuH6NYG5urrP2ZYUKJD3KUxdg76sLsXkvLL5WszKFrY0ZrCykpR5jZSGFpblxT+u3/UgcBAFo4euCejWrGTocIiK90ro4+8033+DatWtYv349AgMD4efnBwBYsGABRo8eje++++6Fi3b9W0FBAQA8VzQ1MzNDVlbWS1+7bt06dOjQAY0aNSqx/datWygsLERAQABGjBiB2NhYLFy4EElJSVi4cKGmp/kcQRCQn59f5tcbu6f/r57+l57HPtIM+0kzlbWf+rd1w7Enc4AePpeIVv4ur9Xe6/TTtsM3oVIJCKhvj5r2ppX6Gl9Z30+vy7OONQoKi1458shUooIgCOUcXcVU3u8lQRD0chNHLBajQ4cOCA0NRXZ2Nmxtbbk+ARGVSiwWYUx/f3y7+SJCG9eCidQMNet4QGpqBplcodHTFUqlCqmPC9QjXx+k5eJBanER9lGW7IWvE4kAx+qWqO1ghdqO1qjtZI1ajtao42gNCEDvNh7qJz2e1SvUHQpl8QKXxij1cT6OXiieA5yjZomoKtC6OLt//35MmjQJLVu2hFL5z1xsTk5OGDduHGbPnq1xW0/vOMrl8hJ3HwsLC2Fh8eKVGJOSknD27FmsWrXquX2zZ8/GlClTYGtrCwDw8vKCVCrFxx9/jM8++wwODg4ax/esoqIixMbGlum1lcmdO3cMHUKFxz7SDPtJM5Wxn0IaWuFYTDZ+2XsdNqIMmEhev/CibT/lyZQ4fL74CY0mbuIqc32vjO+n12FiYoJGPn4vHXlkYWaC2Ot/QaFQGCDCiqs830v6ePLpxIkT+OGHH3D16lUIggCJRILmzZtj4sSJnGeWiJ7jWbc6Fn3YFjuPxWHplkvIKyiClYUUvdt4YECYJ0ylEgiCgMzcQiSl5amLr08LscnpeVAoX3yTz8bSFLUdrVDbybq4CPvkx8XBCmZSyQtfNyCsuHC5+2SCOqaeoe7o2cYDGw/EYkRP3wq1iJmmdh6Lg1IlIKCBA7zd7A0dDhGR3mldnM3Ozn7hvLK2trZajTx6Op1BamoqXF1d1dtTU1PVC3yV5tChQ7C3t0doaOhz+0xMTNSF2aeeTrOQnJxc5uKsVCpFgwZV97HXgoIC3LlzB/Xq1Xtp4bwqYx9phv2kmcrcT+71lbhy5xQe58hxN8sKPUPdytxWWftp65F4KJQC3GvZoEf7JgadXqE8VOb30+tSKJQvHHnUu40HFAqlxtM1VQXl/V6Ki4vTeZt//PEH/vvf/8Lb2xsTJkxAjRo1kJaWhj///BPvvvuu+ukwIqKnZHIFdp2IL3V+ckElwL+BA+atP4c82Ytv5JmaiFHL0Rq1HK1KFGBrOVqjmlXZbkKZSiXo36EB3urohXxZESzNpUjPKsDMHyNx52EOUjPy8dnQQEhNXlzgrWgycwpx8MxdAMDbnFqIiKoIrYuznp6eiIiIQOvWrZ/bd+TIEa2+wHh7e8Pa2hpnz55VF2ezs7Nx/fp1DBky5IWvO3/+PIKDg2Fi8nz4Q4cORZ06dfD111+rt8XExEAqlaJevXoax/ZvIpEIlpaWZX59ZWFhYcF+eAX2kWbYT5qpjP1kaQkM7e6DZb9dxo7jiegeWh82lq83Mk6bfpIVKvDH2fsAgLc6NoSVVdVZCKwyvp90obSRR8+OhgI4Z/2/ldd7SR83Tr7//nt07doVS5cuLbF9woQJ+PDDD7FkyRJs3rxZ57+XiIyXRCxGxMmEUvdFRCbizTBPSCRi9TQEdUopwjrYWUAs1v017em0Ck8X/3KpYYV3e/jg61+iceavZMxbH41pw4KefJ5VfLtPxkOuUMHL1Q4BnmUbWEVEZGy0Ls6OGzcOEyZMQGZmJjp06ACRSITo6Gjs2LEDW7ZswZIlSzRuy9TUFEOGDMHixYthb2+P2rVrY9GiRXBxcUGXLl2gVCqRkZEBGxubEtMeXL9+HW+++WapbXbt2hXz5s1DQEAAWrdujZiYGCxcuBCjRo2CtbW1tqdLRER6EBbkit0nE3DnYTb+9+ctjO7jV26/+89zfyMnXw6XGpZo5V/z1S+gSu/ZkUe5+YWwtjSDUqUymi+ypJ27d+/is88+K3Xf22+/jQ8//FCr9lQqFVasWIGtW7ciJycHQUFBmDVrFurWrVvq8UVFRVi2bBl27dqFnJwc+Pn5YcaMGSXWURgxYgSioqJKvC44OBgbNmzQKjYi0o082SvmJy9UYNFHbeBga1EhPjuCfFwwc2QLzF17FudjU/DV2rOYPiJYo/lxDSm3oAh7IxMBAG919Kr0TzYRET2l9QQ0nTp1wqJFi3Dz5k2Eh4dDEATMnz8fBw4cQHh4OLp166ZVex999BEGDBiAmTNnYtCgQZBIJFizZg2kUikePnyI1q1bY9++fSVek5aWBjs7u1LbGzJkCGbMmIENGzagR48eWLx4MYYPH46JEydqe6pERKQnErEII3r6AgD2Ribg4aO8cvm9SqUKu44XPybdt10DSIxwHjbSD3NTExTJZUi6l4AiuazCf4Glsqtfvz5iYmJK3ZeYmIg6depo1d4PP/yATZs2Yc6cOdiyZQtUKhVGjx4NuVxe6vHh4eHYsWMH5s2bh+3bt8Pe3h7vvfcecnJy1Mc8zbNPnTql/lm+fLlWcRGR7liZS2FlUfqigVYWUthYmqKWg3WFKMw+1ayhE754ryXMTCW4dCsNc9achaywYs+fvi8yEfkyBVxdbBDs83qLxhIRGZMyffPo1asXevXqhYSEBGRmZqJatWrw8PCAWKz9l1yJRIJPP/0Un3766XP76tSpg5s3n58D7sqVKy9tc/DgwRg8eLDWsRARUflp5u2Epl6OuHQrDb/su46p7wbp/XeeupKE1McFsLU2Radg11e/gKocmezFq2ZT5RAeHo6xY8dCJBKhb9++cHJyQmZmJg4dOoRly5YhPDwcSUlJ6uNr1ar1wrbkcjnWrl2LyZMno3379gCAb7/9Fm3atMHBgwfRs2fPEsffu3cP27dvx48//og2bdoAAL766iv07dsXf/31F0JCQpCeno709HQ0btwYjo6Ouu8AItKaUqV66fzkSpUKUu3HPeldQANHfPleCL5cfQZX4x7hi59P44vRLWFpXnqh2ZBkcgV+PxEPAHgrzFMvU0AQEVVUrzUsxMPDQ1dxEBFRFTSily8uf3MMkVeScONOBrzr6W9FXkEQsP3obQBAz9YeL139mIgqr7fffhsAsHTpUnz33Xfq7YJQvJL6vwcMxMbGvrCtGzduIC8vDyEhIept1apVg4+PD6Kjo58rzkZGRsLGxgZt27YtcfyRI0fUf7958yZEIhHc3d3LcHZEpA/mpiYazE9eMfl61MDsMSEIX3Ua1xMzMGvVaYS/FwLrF4wENpSDZ+8iO08OZ3tLtGlS+gLkRESVlUbF2bCwMK3mezl8+HCZAyIioqrDvZYtOgW54s9zf2NtxDUsmNBab/OLXbqVhsSkbJiZSvBGKIseRFXVvHnzdHadSU5OBgDUrFly/monJyf1vmclJiaibt26OHjwIFatWoWUlBT4+Phg6tSpqF+/PgDg1q1bsLGxwezZsxEZGQlLS0t069YN48ePh6lp2RenEwQB+fn5ZX69MSsoKCjxXyod++nlRCIR+rb1wFsdPZGbL4e1pSnkRUooFXLkFwmGDu+lXB3NMXN4c3z1ywXcvPsYM344iRnDmsPaUn8FWm3eTwqFCjuOFN9A79XaDYWFVecpFv670wz76dXYR5op734SBEGjvFOj4mxwcLC6MZVKhb1798LGxgbt2rWDo6MjMjMzERkZiYyMDPznP/95vciJiKhKGdzNGycuP0DsnQxExTxEaMCLHyF+HdufJP1dW7jBxrLsBQ4iMm79+/fXWVtPE/t/F03NzMyQlZX13PG5ubm4e/cufvjhB3z22WeoVq0aVq5ciXfeeQf79u1DjRo1cOvWLRQWFiIgIAAjRoxAbGwsFi5ciKSkJCxcuLDMsRYVFb10FHBVcOfOHUOHYBTYTy9nYmICExMTKBQKKBQVew7Xfxva3h6/HnmEhKQcTF8ZiXfDHGBlrt9Rv5q8ny7G5yE9uxDWFmI4W2RXyWsV/91phv30auwjzZRnP2lyc12j4uz8+fPVf168eDECAgKwZs0aWFhYqLcXFRVh3LhxVfaOPBERlU0NWwv0bVcf//vzFn7Zcx3BPi6Qmuh23rbb9x7jatwjiMUi9GlXX6dtE5Hxkcvl2LZtG6KiopCWloZ58+bh3Llz8PX1RUBAgMbtmJubq9t7+mcAKCwsLJEnP2ViYoLc3Fx8++236pGy3377Ldq1a4edO3di9OjRmD17NqZMmQJbW1sAgJeXF6RSKT7++GN89tlncHBwKNM5S6VSNGjQoEyvNXYFBQW4c+cO6tWrV+r/FyrGftKMMfdTIwAN6udizvoLSMmUY/OpbHw+vDnsbMx0/rs07SeVSsBPf0QBAPq2q48Av3o6j6UiM+b3U3liP70a+0gz5d1PcXFxGh2n9ZyzW7duxfz58587CalUiqFDh2LSpEmYM2eOts0SEVEV1r99A/xx5i4epudhf1QierfVbQF1+9HiD8W2TWvDqbqlTtsmIuOSkZGBYcOGISEhAR4eHoiLi4NMJsOxY8cwf/58rF+/Hk2bNtWorafTGaSmpsLV9Z9FBlNTU9GwYcPnjndxcYGJiYm6MAsUF3jr1q2L+/fvAygu4D4tzD7l6Vk812VycnKZi7MikQiWllX7+mdhYVHl+0AT7CfNGGs/NXS3xPwPWmPGyijcT83D7HUXMXdcK9Sw1U+R4lX9dPLSAzxMz4e1hRS923rBwuy1lsUxWsb6fipv7KdXYx9pprz6SdOptMo0NKm0x7QAICkpCWZmur/rRkRElZuluRSDu3oDALb8eRO5BUU6azvpUS5OXy1eef3NDp46a5eIjNPChQuRl5eHffv2YefOneqFwJYtWwZ/f38sW7ZM47a8vb1hbW2Ns2fPqrdlZ2fj+vXrCAoKeu74oKAgKBQKxMTEqLfJZDLcu3cPbm5uAIChQ4di2rRpJV4XExMDqVSKevXqaXOqRESlquNkg68/CIWDnQUepOVi2g+RSHtc/vNUCoKA3w7fAgD0buNRZQuzRERaF2fDwsKwePFiREZGqrcJgoA///wTS5cuRY8ePXQaIBERVQ2dg11R19kGOflF2Hrols7a3XUsHioBaO7thHo1q+msXSIyTkePHsXEiRPh5uZWYjSDmZkZRo4ciWvXrmnclqmpKYYMGYLFixfj8OHDuHHjBj7++GO4uLigS5cuUCqVSEtLg0xWvLhNYGAgWrVqhSlTpuD8+fOIi4vDZ599BolEgj59+gAAunbtit9//x2bN2/GvXv3sG/fPixcuBCjRo2CtbW1bjuDiKqsWg7WmP9BazjZW+LhozxM/eEUktPzyjWG87EpuPMwG+amEvRs41Guv5uIqCLRujg7bdo01KxZE6NGjUJAQADatGkDf39/fPTRR/D398enn36qjziJiKiSk0jEGNnLFwCw+2QCUjJefw7zxzkyHIr+GwDwZhhHzRJR8XywdnZ2pe6TSCQoKtJu5P5HH32EAQMGYObMmRg0aBAkEgnWrFkDqVSKhw8fonXr1ti3b5/6+OXLlyM4OBgTJkzAgAEDkJubi19//RX29vYAgCFDhmDGjBnYsGEDevTogcWLF2P48OGYOHFimc+ZiKg0zvaWmD++NWo6WCE1Ix/TfohE0qPccvndgiDgtyc347u3cudirURUpWn93EC1atXw22+/4fjx4zh//jyys7NRvXp1tGzZEiEhIfqIkYiIqojm3k4IaOCAq3GP8Ou+6/h0SOBrtbfnVCKKFCp4udrBz6OGjqIkImPm7++PTZs2oV27ds/ti4iIgJ+fn1btSSQSfPrpp6UOUKhTpw5u3rxZYpu1tTXCw8MRHh7+wjYHDx6MwYMHaxUHEVFZOFa3wNfjQzHzxyjcT83FtO9P4auxoajrbKPX3/tXQjpu3H0ME4kYfblYKxFVcWWa1EUkEqF9+/Zo3779c/sEQdB4wlsiIqJniUQijOzli4+XHseJSw/Qp219eLlWL1NbBYUK7I1MBAD07+DJzyYiAgBMnDgRw4cPR58+fdCuXTuIRCLs2bMHy5cvx6lTp7B69WpDh0hEVK5q2Fpg3vhQfP5jFO4m52D6ykh8NaYV3PQ4HdTTKaw6B7vCvpq53n4PEZExKFNxdt++fTh37hzkcrl6EQVBEJCfn4/Lly/jxIkTOg2SiIiqjvp17NCheV0cOX8PayOu4evxoWUqrP5x5i7yCopQy8EKLf1q6iFSIjJGgYGBWLduHZYsWYLVq1dDEASsX78ePj4++Omnn9CyZUtDh0hEVO6q25hj7rhQzPrpNBKSsooLtGNbwb2Wrc5/1+17j3HpVhrEYhH6d2ig8/aJiIyN1sXZFStWYMWKFbCxsYFCoYBUKoWJiQkyMjIgFovx1ltv6SNOIiKqQoZ0a4RTlx/gWkI6zl5L1rq4qlCq8PvxOABAv/YNIBFz1CwR/SMoKAhbtmyBTCZDVlYWrK2tYWVlZeiwiIgMytbaDF+Na4VZq04j7l4mpv8QidljQuBZt2xPMb3I1sO3AQBtm9aGSw1ee4mItF4QbOfOnejbty/OnTuH4cOHo0OHDoiKisK2bdtgZ2cHT08uuEJERK/HsboF+jyZf2z9nmtQKFVavf7Epft4lCWDnY0ZwgLr6iNEIjJiq1atwvvvvw9zc3M4Ozvjr7/+QuvWrbFx40ZDh0ZEZFA2lqb4akwreLtVR25BEWb+GIUbdzN01v7fydk4HfMQADCAi7USEQEoQ3E2JSUFvXr1gkgkQqNGjXDp0iUAgJ+fH8aOHYutW7fqPEgiIqp6BoR5wtbaFA/S8vDH6Tsav04QBGw/WjxqtncbD5hKJXqKkIiM0dq1a7F06VLUq1dPvc3V1RXdunXD/PnzmcsSUZVnZSHFl++HwNejBvJlCsz6KQrXEtJ10vbTHK2lnwvcXPQ3py0RkTHRujhraWmpnvvPzc0N9+/fh0wmAwA0atQI9+/f122ERERUJVmaSzGoizcAYNPBm8grKNLodRdupOLv5BxYmEnQvZW7PkMkIiO0ZcsW/Pe//8X06dPV22rWrImZM2diwoQJWL9+veGCIyKqICzNpQgf3RIBDRxQUKjEFz+fxtW4tNdqMyUjH8cuFtcL3uropYswiYgqBa2Ls/7+/ti1axcAwN3dHRKJBKdPnwYAxMfHw9TUVKcBEhFR1dW1pRtqO1ojO0+ObUdua/Sap8d1bVkP1hZSfYZHREYoJSUF/v7+pe5r3LgxBxoQET1hbmaCWaNbollDJxTKlfjy5zO4eDO1zO3tOHobKpWAJp6O8HLV7Ty2RETGTOvi7NixY7Fv3z6MHTsWpqam6N27N6ZMmYIPP/wQCxYsQOvWrfURJxERVUEmEjFG9PQBAOw+EY/Ux/kvPf7G3QxcS0iHiUSEPm3rl0eIRGRkateurR5Y8G/R0dFwcXEp54iIiCouM6kEM0YEI8jHGXKFCnPWnEX09WSt23mcLcOf5/4GALzViXPNEhE9S+vibFBQELZt24bu3bsDAGbNmoWuXbsiISEB3bp1w8yZM3UeJBERVV3Bvi7wq18DcoUKG/fHvvTYHU/mMWvXrA4c7CzKIzwiMjJvv/021qxZgwULFuDChQu4c+cOLl68iCVLlmDVqlUYOHCgoUMkIqpQTKUSTBsWjBD/mlAoVZi3/px6US9N/X4iHkUKFRq6VYd/fQc9RUpEZJxMyvIib29veHsXzwNoZmaGOXPm6DQoIiKip0QiEUb28sWkpSdw9MJ99G5bHw3q2D133P3UHJz5q/iLQv/2Dco5SiIyFsOHD0dKSgo2bNhQYn5ZiUSCYcOGYcSIEYYLjoiogpKaiPHZ0EB8s+kiTl5+gAW/RmPykOZo3bj2K1+bmy/HvqhEAMDbHb3Ua9gQEVExjYqz0dHRWjUaFBRUpmCIiIhK41m3Oto1rYPjl+5j7e5rmDuu1XOJ/c5j8RAEINjHBa5c/ZeIXiAnJwdTpkzB+PHjcfnyZWRmZqJatWoICAhA9eqcA5GI6EVMJGJ88k4zmEhEOHrhPhZtOA+FQoX2zeu+9HV7IhNRUKhEvZrVENjIuZyiJSIyHhoVZ4cOHfrCu1uCIABAif2xsS9/7JSIiEhbQ3s0QlRMEmLiHyE6NgXBPv/MC/k4pxBHzt8DAPTvwFGzRPRiPXr0wLRp09CjRw+0adPG0OEQERkViUSMiQObwUQixp/n/sY3my9CoRTQKdi11ONlhQrsPhEPABgQ5gmxmKNmiYj+TaPi7K+//qr+c1JSEj7//HO8+eab6N69OxwdHZGZmYkjR45gy5YtmD17tt6CJSKiqsvZ3hK923hg+9E4rN9zDc0bOqn37T/9NxRKFRrVs4evRw0DRklEFZ1cLucIWSKi1yARizDhrSYwMRFjf9QdfPe/S1AoVegWUu+5Yw9feICc/CLUrGGF1o1rlX+wRERGQKPibHBwsPrPQ4cOxfDhw/HJJ5+UOKZZs2YwNzfHunXr0KNHD91GSUREBGBARy8cPPs37qXk4uC5v9GusRPEJmY4fe3JXLMcNUtEr/Duu+9i6dKlMDc3h7e3NywsuHggEZG2xGIRxvUPgFQixu6TCfh+2xUolCr0bO2hPkZqao5jF5MAAG+GNYBEovV65EREVYLWC4JdvXoV48aNK3Vf06ZN8fPPP792UERERKWxtpBiUJeG2BeVCEc7C0hNzVDH1QPfT/ZG7J0MNPZ0NHSIRFTB/f7770hKSsI777xT6n6RSITr16+Xc1RERMZHJBJhdB8/mEjE2HEsDj/tjIG5qQStm9SG1NQcteq6Y8nEhvgrIR2NPR0MHS4RUYWldXHWxcUFJ0+eRKtWrZ7bd+DAAbi6lj7XDBERkS50C6mHds3qYPeJeCz+vwvIKyiClYUUvVq7w9ejBkzFEkOHSEQVWO/evQ0dAhFRpSESiTC8pw+kJmJEXk1CkI8Lth+5jYhTiSVytIAGLM4SEb2I1sXZESNGIDw8HKmpqejQoQOqV6+OR48e4cCBAzh27Bi++eYbfcRJREQEAFCqVIg4GY//Hbql3pZXUIQtf96CSCRC/w4NYG6q9ccbEVUREyZMMHQIRESVikgkwpDujdCmSW1EnExgjkZEpCWtr4wDBw6EQqHAypUrsXfvXvX2mjVrYvHixejevbtOAyQiInqWRCxGxKnEUvftPpmAtzp6lXNERGSMjh8/jqioKKSlpeHjjz9GbGwsfH19Ubt2bUOHRkRklGo5WmNPJHM0IiJtaV2cjY+Px5AhQzBkyBAkJCQgKysL1atXR7169fQQHhERUUl5siLkFRSVvq+gCPmyItham5VzVERkLAoKCvDBBx8gKioK1tbWyMvLw6hRo7B582Zcv34dGzduhKenp6HDJCIyOszRiIjKRuvlEt955x3s2rULAODh4YGmTZuyMEtEROXGylwKKwtp6fsspLA0L30fEREAfPPNN7h27RrWr1+PM2fOQBAEAMCCBQvg7OyM7777zsAREhEZJ+ZoRERlo3VxViqVonr16vqIhYiI6JWUKhV6t/EodV/vNh5QqlTlHBERGZP9+/dj0qRJaNmyJUQikXq7k5MTxo0bhwsXLhgwOiIi48UcjYiobLSe1mDixIlYuHAhcnJy4O3tDUtLy+eOqVWrlk6CIyIi+jdzUxMMCCt+5Hj3yQT1SsC923hgQJgnTKUSA0dIRBVZdnb2C+eVtbW1RX5+fjlHRERUOTBHIyIqG62Ls+Hh4VAqlfj0009feExsbOxrBUVERPQyplIJ+ndogLc6eiE3vxDWlmZQqlRM+onolTw9PREREYHWrVs/t+/IkSOcb5aI6DUwRyMi0p7WxdmvvvpKH3EQERFpxdzUBPn5+Ui6lwh3d/dSn+QgIvq3cePGYcKECcjMzESHDh0gEokQHR2NHTt2YMuWLViyZImhQyQiMmrM0YiItKN1cbZfv376iIOIiKhMZDKZoUMgIiPSqVMnLFq0CEuWLMHx48cBAPPnz0eNGjUQHh6Obt26GThCIqLKgTkaEZFmRMLTJWq1IJfLsW3bNkRFRSEtLQ3z5s3DuXPn4Ovri4CAAH3EaVAXL16EIAgwNTU1dCgGIwgCioqKIJVKSyyeQf9gH2mG/aQZ9pNm2E+aYT9phv30auXdR3K5HCKRCM2aNdNL+wkJCcjMzES1atXg4eEBsVjrtXKNQlXPZflvWzPsJ82wnzTDftIM+0kz7KdXYx9ppqLmslqPnM3IyMCwYcOQkJAADw8PxMXFQSaT4dixY5g/fz7Wr1+Ppk2bljnwiohv7OI+qKoJvabYR5phP2mG/aQZ9pNm2E+aYT+9Wnn3kUgk0mkedvXqVTx48ACurq7w9fWFh0fpq4pXNlU9l+W/bc2wnzTDftIM+0kz7CfNsJ9ejX2kmYqay2o9cnbq1Kk4d+4c1q1bh9q1a8PPzw/bt29HgwYNMGrUKEilUqxbt67MgRMRERER6VJ2djbGjBmDy5cvQxAEiEQiNG3aFEuWLEHNmjUNHR4RERERVWFaP7t19OhRTJw4EW5ubiWqv2ZmZhg5ciSuXbum0wCJiIiIiF7H0qVLcf36dXz44YdYtWoVpkyZgoSEBMyaNcvQoRERERFRFaf1tAaFhYWws7MrdZ9EIkFRUdHrxkREREREpDNHjx7FpEmTMGzYMABA27Zt4ezsjMmTJyM/P58riRMRERGRwWg9ctbf3x+bNm0qdV9ERAT8/PxeOygiIiIiIl1JS0uDr69viW0tWrSAUqnEw4cPDRQVEREREVEZRs5OnDgRw4cPR58+fdCuXTuIRCLs2bMHy5cvx6lTp7B69Wp9xElEREREVCYKheK5xR9sbW0BFD8VRkRERERkKFqPnA0MDMS6detgYWGB1atXQxAErF+/Hmlpafjpp5/QsmVLfcRJRERERKRzWq6NS0RERESkU1qPnAWAoKAgbNmyBTKZDFlZWbC2toaVlZWuYyMiIiIi0qtnF7glIiIiIipvIqEMwwUEQcCJEycQHR2N7Oxs1KhRAy1atOCoWSIiIiKqcLy9veHj4wNra2v1NkEQEB0dDV9f3xKDDEQiEX755RdDhElEREREVZDWxdmMjAyMGTMGMTExMDExgZ2dHTIzM6FUKhEaGooVK1bA3NxcX/ESEREREWll6NChWh2/YcMGPUVCRERERFSS1sXZqVOn4tixY5g7dy7CwsIgEomgUqlw4MABfPHFF+jTpw9mzpypr3iJiIiIiIiIiIiIKgWti7NBQUGYMmUKBgwY8Ny+TZs2YdmyZThz5ozOAiQiIiIiIiIiIiKqjMTavkAkEqFGjRql7nN3d4dcLn/toIiIiIiIiIiIiIgqO62Ls71798bq1atRWFhYYrtKpcKGDRvQs2dPnQVHupWZmYlZs2ahbdu2aNasGQYNGoTz58+r958+fRr9+/dH48aN0a1bN+zdu7fE6wsLC/Hll18iJCQETZs2xSeffIKMjIwSxyQmJuL9999H06ZNERoaitmzZ6OgoKBczk9XyqOfoqKi8Oabb6JJkybo1KkT1qxZUy7npkuv20/PmjVrFqZOnfrcdm3aqKjKo5+2b9+OXr16oUmTJujSpQtWrVoFpVKpl/PRh/Loo6cEQcCoUaO0nn+yIiiPfuI1vKQX9ROv4cDDhw8xadIkhIaGIigoCKNGjcLt27dLHLN//3706NEDAQEB6Nu3L06fPl0u50aVF3NZzTCX1Qxz2VdjHqsZ5rKaYS6rGeaymql0uayggalTp6p/Jk+eLPj4+AihoaHCjBkzhG+//VYIDw8XOnfuLDRp0kRYsGCBJk2SAYwYMULo2bOnEB0dLSQkJAhffvmlEBAQIMTHxwtxcXGCv7+/8M033whxcXHC6tWrBR8fHyEqKkr9+qlTpwqdOnUSoqOjhStXrgh9+/YVBg8erN6fkZEhtGrVShg3bpxw+/ZtITIyUmjdurXwxRdfGOBsy07f/RQfHy/4+fkJy5cvF/7++29h7969QkBAgLBx40ZDnG6ZvW4/CYIgKJVKYcmSJYKXl5cwZcqUEvs0baOi03c//f7774Kvr6+wZcsW4e7du8LevXuFZs2aCcuXLy/P03wt+u6jZ61bt07w8vIShgwZou/T0jl99xOv4f94WT/xGi4IhYWFQs+ePYUhQ4YIV69eFW7duiV8+OGHQkhIiJCeni4IgiCcPn1a8PX1FX755RchLi5OmD9/vuDn5yfExcUZ8rTJyDGX1QxzWc0wl3015rGaYS6rGeaymmEuq5nKlstqVJzt0KGDxj9hYWF6CZRez507dwQvLy/h/Pnz6m0qlUro1KmTsHTpUuHzzz8XBgwYUOI1kyZNEkaOHCkIgiAkJycL3t7ewrFjx9T7ExISBC8vL+HixYuCIAjCsmXLhLZt2woymUx9zG+//Sb069dPUKlU+jw9nSmPflq3bp0QHBxcoo0PPvhAGDNmjL5OS+det58EoThh/c9//iO0bNlSaN++/XMfGpq0UdGVRz8NHDhQmDFjRoltK1asENq1a6f7E9KD8uijp27cuCEEBgYKb7/9ttEltOXRT7yGF3tVP/EaLgiRkZGCl5eXkJycrN4vk8mExo0bC1u3bhUEQRBGjhwpTJw4sUQb//nPf4TPP/9cT2dFlR1zWc0wl9UMc9lXYx6rGeaymmEuqxnmspqpjLmsRtMaHDlyROOfw4cP62+YL5VZ9erVsWrVKvj7+6u3iUQiiEQiZGdn4/z58wgJCSnxmpYtW+LChQsQBAEXLlxQb3vK3d0dzs7OiI6OBgCcOnUKnTt3hpmZmfqYt956Czt27IBIJNLn6elMefRTjRo1kJmZiT179kAQBNy8eRMXLlxA48aNy+EMdeN1+wkAzpw5g/r162PPnj2oU6fOc79DkzYquvLop8mTJ2PUqFEltonFYmRlZenhjHSvPPoIKH5Ec/Lkyfjoo4/g7u6uvxPSk/LoJ17DNesnXsMFeHp6YtWqVXB2dlbvF4uLU8rs7GyoVCpcvHjxuTZatGih/iwk0hZzWc0wl9UMc9lXYx6rGeaymmEuqxnmspqpjLms1nPOknGqVq0a2rVrB1NTU/W2P/74A3fv3kWbNm2QnJwMFxeXEq9xcnJCQUEBHj9+jJSUFFSvXr3Ehe7pMcnJyQCK53dxcnLC119/jfbt26Nz585YuHDhc/MTV2Tl0U/du3fHW2+9hU8//RS+vr7o3bs3QkNDMXbsWP2foI68bj8BwODBgzF37twXLjCoSRsVXXn0U/PmzUskaDk5Odi8eTPatGmjhzPSvfLoIwBYtGgRnJycMGTIEP2ciJ6VRz/xGq5ZP/Ea/hiOjo5o165dif0bNmyATCZDaGgosrOzkZ+fX2obTz8LibTFXFYzzGU1w1z21ZjHaoa5rGaYy2qGuaxmKmMua6LJQR07dsT3338Pb29vhIWFvfSug0gkwqFDh3QWIOnHxYsXMW3aNHTp0gXt27eHTCYr8cYGoP67XC5HQUHBc/sBwMzMTH2xy83Nxc8//4w33ngDK1asQFJSEubMmYO0tDQsWrRI/yelB/rop/T0dDx48AAfffQR2rVrh+vXr2PBggVYvnw5PvroI/2flB5o20+a0EUbFY0++ulZeXl5GD9+PAoLC/HZZ5/pJObypo8+OnHiBCIiIrB7926juWv+KvroJ17DNesnXsOf76c///wTS5YswfDhw9GwYUN10vrvNp79LCR6XcxlNcNcVjPMZV+NeaxmmMtqhrmsZpjLaqYy5LIaFWeDg4NhZWWl/nNluSBUVYcOHcLkyZPRrFkzLF68GEDxm+zfb9Knf7ewsIC5uXmpb+LCwkJYWFgAAExMTODu7o7w8HAAgJ+fH5RKJf773/9i6tSpL70TWBHpq59mzJiBmjVrYty4cQAAHx8fCIKA8PBwDBkyBPb29vo8LZ0rSz9pQhdtVCT66qen0tLSMGbMGNy/fx9r1qx54SNRFZk++igjIwPTp09HeHh4icdWjJm+3ku8hmvWT7yGl+ynzZs3Y86cOejdu7f6y/TTEXf/buPZz0Ki18FcVjPMZTXDXPbVmMdqhrmsZpjLaoa5rGYqSy6rUXH266+/Vv95/vz5egmEysfGjRsxd+5cdOvWDQsWLFDfCahZsyZSU1NLHJuamgpLS0vY2NjAxcUFmZmZkMvlJe4epKamqj8kXFxc4OnpWaKNp39/8OCBUV0M9dlPFy5ceO5ucJMmTaBQKHD//n2juhiWtZ80oYs2Kgp99hMAxMfHY/To0VCpVPi///u/5/4dGgN99dHx48eRlpaG6dOnY/r06QCKP2RVKhWaNm2KvXv3olatWro/IT3R53uJ13DN+onX8H/6adGiRVi9ejVGjBiBKVOmqG/e29nZwdLSstQ2KssXSzIc5rKaYS6rGeayr8Y8VjPMZTXDXFYzzGU1U5lyWZ3OOXv69Gl8/vnnumySdGjTpk2YM2cOBg8ejG+++aZEwhUYGIhz586VOP7MmTNo1qwZxGIxmjdvDpVKpV4kACie0yUlJQVBQUEAgKCgIFy9erXEBPe3bt2CRCIxqruf+u4nZ2dn3Lx5s0QbN2/ehEgkgpubmx7PTLdep580oYs2KgJ999O9e/cwbNgwWFhYYMuWLUaZ0Oqzjzp37oyDBw9i165d6p+wsDD4+flh165dcHJy0vn56Iu+30u8hmvWT7yGF/fT02R2ypQpmDp1aomnqkQiEZo1a/ZcG2fPnkVgYKAez4oqO+aymmEuqxnmsq/GPFYzzGU1w1xWM8xlNVPpcllBh9avXy94e3vrsknSkYSEBMHX11f44IMPhNTU1BI/2dnZwq1btwRfX19h0aJFQlxcnLBmzRrBx8dHiIqKUrcxadIkISwsTDhz5oxw5coVoW/fvsKQIUPU++Pj44XGjRsLn3/+uZCQkCCcOHFCaNu2rTB16lRDnHKZlEc/bdmyRfDx8RF++eUX4e+//xb+/PNPITQ0VPjyyy8Nccploot+etaQIUOEKVOmlNimbRsVUXn005AhQ4SgoCAhNjb2ud9hDMqjj/5typQpJf5NGoPy6Cdew59XWj/xGi4IZ86cEby8vIQ5c+Y89/rc3FxBEATh5MmTQqNGjYS1a9cKcXFxwoIFC4SAgAAhLi7OkKdORoy5rGaYy2qGueyrMY/VDHNZzTCX1QxzWc1UxlyWxdkqYuXKlYKXl1epP0//sR4/flzo2bOn4OfnJ3Tr1k3Yu3dviTby8vKEGTNmCIGBgUJgYKAwadIkISMjo8QxV65cEQYPHiz4+/sLrVq1EubPny8UFhaW23m+rvLqp507dwq9e/cWGjduLHTp0kX4/vvvBblcXm7n+bp00U/PelESok0bFZG++yk5OfmF7Xt5een9/HShvN5LzzLGhLa8+onX8JJe1E9V/Ro+c+bMF75+2bJl6uN27twpdO7cWfD39xf69etnNAUJqpiYy2qGuaxmmMu+GvNYzTCX1QxzWc0wl9VMZcxlRYLwzJjv1/TLL79g/vz5iI2N1VWTRERERERERERERJWScUx2Q0RERERERERERFTJsDhLREREREREREREZAAmmhz07rvvatRYcnLyawVDREREREREREREVFVoVJzVdFpaZ2dnODs7v1ZARERERERERERERFWBThcEIyIiIiIiIiIiIiLNcM5ZIiIiIiIiIiIiIgNgcZaIiIiIiIiIiIjIAFicJSIiIiIiIiIiIjIAFmeJiIzYJ598goYNG2Lt2rWGDoWIiIiISCvMZYmIuCAYEZHRysnJQevWreHq6gq5XI4DBw5AJBIZOiwiIiIioldiLktEVIwjZ4mIjNSePXsAADNmzMCdO3dw5swZA0dERERERKQZ5rJERMVMDB0AERGVzfbt2xESEoKWLVvCzc0NW7ZsQUhIiHr/0KFD4erqCjc3N2zatAnp6enw9fXF9OnTERAQoD4uJiYGS5cuxV9//YWioiIEBwfjk08+gaenpyFOi4iIiIiqAOayRETFOHKWiMgI3b59GzExMejbty8AoG/fvjh8+DAePXpU4rg//vgDhw8fxsyZM/HNN9/g0aNH+PDDD6FUKgEAZ86cwaBBgwAA8+bNw1dffYWHDx9i4MCBiI+PL9dzIiIiIqKqgbksEdE/WJwlIjJC27dvh52dHcLCwgAA/fr1g1KpxLZt20ocp1AosGbNGnTq1AmdO3fGhAkTkJycjNjYWADAkiVL4ObmhlWrVqFjx47o0aMHNmzYABMTEyxbtqzcz4uIiIiIKj/mskRE/2BxlojIyBQVFWH37t3o1KkTZDIZsrOzYWVlhebNm+O3336DSqVSH9ugQQNYW1ur/+7s7AwAKCgoQH5+PmJiYtC9e3dIJBL1MdWqVUOHDh1w7ty58jspIiIiIqoSmMsSEZXEOWeJiIzMsWPHkJ6ejm3btj03ugAATp48iXbt2gEALCwsSuwTi4vvyalUKuTk5EAQBDg4ODzXhoODA3JycvQQPRERERFVZcxliYhKYnGWiMjIbN++HXXr1sXcuXNLbBcEARMmTMCWLVvUCe3L2NjYQCQSPTe3FwCkpaXBzs5OVyETEREREQFgLktE9G8szhIRGZG0tDScPHkSo0ePRosWLZ7b361bN+zYsQMpKSmvbMvS0hJ+fn7Yv38/xo0bp34cLCcnB8eOHUPLli11Hj8RERERVV3MZYmInsc5Z4mIjMiuXbugUCjwxhtvlLq/b9++UCqV+O233zRq75NPPkFiYiLef/99HD58GAcOHMCwYcMgl8vxwQcf6DJ0IiIiIqrimMsSET2PxVkiIiOyY8cOeHp6wsvLq9T9zZs3R506dbB161YolcpXthcSEoJ169ZBJpNh0qRJ+Pzzz+Hs7Izffvvthb+DiIiIiKgsmMsSET1PJAiCYOggiIiIiIiIiIiIiKoajpwlIiIiIiIiIiIiMgAWZ4mIiIiIiIiIiIgMgMVZIiIiIiIiIiIiIgNgcZaIiIiIiIiIiIjIAFicJSIiIiIiIiIiIjIAFmeJiIiIiIiIiIiIDIDFWSIiIiIiIiIiIiIDYHGWiIiIiIiIiIiIyABYnCUiIiIiIiIiIiIyABZniYiIiIiIiIiIiAyAxVkiIiIiIiIiIiIiA2BxloiIiIiIiIiIiMgA/h+Nxk8Hd7l05AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plotar o Índice de Felicidade ao longo dos anos\n", + "plt.figure(figsize=(14, 8))\n", + "\n", + "# Índice de Felicidade\n", + "plt.subplot(3, 2, 1)\n", + "sns.lineplot(x='Ano', y='Índice de Felicidade', data=dados_brasil, marker='o')\n", + "plt.title('Evolução do Índice de Felicidade no Brasil')\n", + "plt.xlabel('Ano')\n", + "plt.ylabel('Índice de Felicidade')\n", + "\n", + "# PIB per capita (logaritmo)\n", + "plt.subplot(3, 2, 2)\n", + "sns.lineplot(x='Ano', y='PIB per capita (logaritmo)', data=dados_brasil, marker='o')\n", + "plt.title('Evolução do PIB per capita (logaritmo) no Brasil')\n", + "plt.xlabel('Ano')\n", + "plt.ylabel('PIB per capita (logaritmo)')\n", + "\n", + "# Apoio Social\n", + "plt.subplot(3, 2, 3)\n", + "sns.lineplot(x='Ano', y='Apoio Social', data=dados_brasil, marker='o')\n", + "plt.title('Evolução do Apoio Social no Brasil')\n", + "plt.xlabel('Ano')\n", + "plt.ylabel('Apoio Social')\n", + "\n", + "# Expectativa de vida saudável ao nascer\n", + "plt.subplot(3, 2, 4)\n", + "sns.lineplot(x='Ano', y='Expectativa de vida saudável ao nascer', data=dados_brasil, marker='o')\n", + "plt.title('Evolução da Expectativa de Vida Saudável no Brasil')\n", + "plt.xlabel('Ano')\n", + "plt.ylabel('Expectativa de Vida Saudável')\n", + "\n", + "# Liberdade para fazer escolhas\n", + "plt.subplot(3, 2, 5)\n", + "sns.lineplot(x='Ano', y='Liberdade para fazer escolhas', data=dados_brasil, marker='o')\n", + "plt.title('Evolução da Liberdade para Fazer Escolhas no Brasil')\n", + "plt.xlabel('Ano')\n", + "plt.ylabel('Liberdade para Fazer Escolhas')\n", + "\n", + "# Percepções de corrupção\n", + "plt.subplot(3, 2, 6)\n", + "sns.lineplot(x='Ano', y='Percepções de corrupção', data=dados_brasil, marker='o')\n", + "plt.title('Evolução das Percepções de Corrupção no Brasil')\n", + "plt.xlabel('Ano')\n", + "plt.ylabel('Percepções de Corrupção')\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Índice de generosidade - Brasil vs Top 20" + ] + }, + { + "cell_type": "code", + "execution_count": 131, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABEQAAALECAYAAAAB5eXBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD2o0lEQVR4nOzdeVxN+f8H8NetLt2UQlkmSyNum6jsO2GQPcyQCtnHMraxjWXsBoPEjF1k7GLIkiX7EsoooqjIlrJLN93q/P7wu+frqrQot/R6Ph4euuee+znvcz7nnnvu+34WiSAIAoiIiIiIiIiIihAtTQdARERERERERPS1MSFCREREREREREUOEyJEREREREREVOQwIUJERERERERERQ4TIkRERERERERU5DAhQkRERERERERFDhMiRERERERERFTkMCFCREREREREREUOEyJERFToCIKg6RCIiIiIqJDT0XQARPQ/ycnJOH78OP7991/cvXsXcXFxKF68OKpXr4527dqhV69eKF68uKbDLFJOnz6N2bNnIy4uDpUrV4aNjQ3evHmDgIAA7N69G7a2tl89pt69eyM4OBibN29G/fr187x8R0dHPHr0KN1yLS0t6Orqoly5cqhfvz4GDBiAypUr5/n2s+Ln54cTJ05g6dKlX33bOZGcnIyJEyfi1KlT0NXVhZWVFczMzHD06FHY2Nhg9erVXz2mCxcuoH///qhXrx58fHzydVtKpRJnzpzBgQMHEB4ejqdPnyItLQ1lypSBvb09OnbsiBYtWuRrDN+CwMBAuLu7w8HBAdu2bcty/ZSUFNjY2AAAwsPD8yWmr3kefUx1LDJiYGCA7777Di1btsSgQYOgr6//1eLKyqRJk7B3717MmTMHPXv2BAC4ubnh8uXL2LhxIxo1aqThCHMmOjoaa9aswcWLF/Hs2TPo6enB1tYW/fr1Q9OmTdOtn5aWBl9fX2zduhX37t2DVCpF7dq18fPPP6NGjRrZ3q6FhUWGy7W1taGrqwtTU1M0adIEHh4eMDExyfX+qQQFBcHFxQXFihWDj48P7OzsvrjMr+Hjz/BJkyahf//+n11/wIABOHfuHAB80fn48OFDtGrVCuXKlcOZM2dyVUZmvLy8sGLFimyt+yX3Rqpz7ObNm9DR+fA1WXU8jx49iipVquSqXCrYmBAhKiDu3r2L0aNH486dO5DJZLCwsICNjQ3i4uJw48YNBAcHY8eOHfD29kbZsmU1HW6RMWXKFOjp6aFFixZ48OABjh07BgBwd3fXSDLka2rUqBHKlCkjPhYEAQqFArdu3cL27dvh5+eHjRs3ombNml8tpitXrmDcuHFwcHD4atvMrT179uDw4cNo0aIFlEolIiMjcfnyZZiZmeGXX37RdHj5KiwsDGPHjkV0dDQkEgksLS3RsGFDAMC9e/dw4MABHDhwAA0bNoSnpycMDQ01HDEVJnp6emjVqpX4WBAEvH37FmFhYVi1ahWOHDmCHTt2wMjISHNBfqOCgoIwcOBAJCYmwszMDM2bN8fTp09x7tw5nDt3DhMmTMCAAQPUXvP7779jx44dMDQ0RKNGjfDs2TOcOHECZ86cwapVq9CkSZMcxdC6dWvIZDLxsSAIePfuHUJCQrBhwwYcOHAA27ZtQ6VKlb5oX1euXAkAmD59eqFJhnzK39//swmRFy9e4NKlS18xoi9TqVKlLOvC2Nj46wRD3wwmRIgKgPv37+PHH3/Eu3fv4ObmhuHDh6NUqVLi87GxsZg8eTIuXLiAvn37Ys+ePdDT09NgxEXH+fPnNR2CxgwdOjTDX1lSUlLw22+/Yd++fZg6dSr279//1WJKS0v7atv6Ur1790bv3r01HcZXFxERAVdXV7x79w4dO3bEuHHj8N1336mtEx4ejunTp+PixYuYOHEiVq1apaFoC76aNWvi0KFDal8Ai7pSpUph8eLF6ZYnJydj/Pjx8Pf3h6enJ2bMmKGB6NIbO3YsBg0aVOh/zEhJScGECROQmJiIcePGYdCgQZBIJAA+fFYOGTIEixcvRtOmTSGXywEAJ06cwI4dOyCXy7F582bx3sbf3x9jxozBpEmTcOzYsRyd35MnT0bFihXTLU9KSsKwYcNw4cIFzJs3D3///Xeu9/W///7D+fPn0bt3b7FVT2FTsmRJ/Pfff4iNjUX58uUzXOfo0aNISUmBVCqFUqn8ou2VK1cOhw4dglQq/aJyPqdOnTpYsGBBvpWfEW9vbyiVynSfY/Tt4BgiRBomCALGjRuHd+/eYciQIZg6dapaMgQAypcvj5UrV8LMzAxRUVHYuXOnhqIlAnR0dDBlyhRoa2sjPDwcMTExmg6JCoi0tDRMnDhRTO7++eefGd5EWlhYYP369ShfvjxOnjyJkJAQDURbOMhkMpibm/NmPBuKFSsmtr5SteYrCMqWLQtzc3MYGBhoOpQvcvnyZTx8+BC2trYYPHiwmAwBgMaNG+Onn35CWloaDh06JC7fsGEDAGDChAlq9zZt27ZFp06dEB8fj4MHD+ZJfLq6upg4cSIA4MyZM0hOTs51WXZ2dggPD8fvv/+eJ7FpQuvWrSEIAo4cOZLpOgcPHoSRkVGetHiVSqUwNzfXSFfa/FS5cmWYm5vna6KHNIstRIg0LCgoCKGhoTAxMcHPP/+c6Xp6enoYNmwYdu7cqXYTonLgwAFs374dt27dQkpKCqpUqQInJyf069dP7ZcXVR/Ptm3bYsqUKVi6dCnOnDkDhUIBuVyOUaNGoUmTJrhz5w4WL16Mq1evonjx4rC3t0/3q4yqX/Tu3bsREhKCzZs348mTJyhbtiycnJwwePDgdP24U1JSsHfvXvj5+eH27dtISEhAiRIlYGFhgV69eqFDhw5q6zs6OuLNmzfYunUrJk2ahIiICJiYmGDRokWoU6cOkpKSsG3bNvj7+yMqKgrv3r2DgYEBbG1t0bdv3wyb4sbHx2PDhg0ICAhAbGwsSpcuDXt7ewwfPhzm5uZq6964cQObNm1CUFAQ4uPjoa2tjQoVKqBVq1YYPHgwSpYsmeu6yMqNGzfw119/4dq1a0hKSkKdOnXw66+/Zrr+06dP4e3tjXPnzuHhw4dQKpUwNjZG/fr1MWTIEFStWjXb286KoaEhDA0N8eLFCzx//lztBujatWtYv349goKC8PbtW5iYmKBZs2YYOnQoKlSooFaOqn4vXLiA1atX48CBA3j8+DHKlCmDNm3aqLWWUp1vABAcHAwLCwtxDANfX19MnjwZnTp1yvCX44z6BQO5q99jx45h27ZtCAsLQ3JyMszMzNC9e3f8+OOPajdMuTk3nzx5gtWrV+PMmTOIi4uDvr4+ateujUGDBuWoyXZycjK8vb2xb98+PHr0CCYmJvjxxx9hZWWV6Wvi4uKwevVqnDx5EnFxcShZsiTq16+PYcOGib/2ZiUwMBBhYWEwNTXFhAkTPruuvr4+xowZg5s3b2b4vrhx4wbWrFmDK1eu4O3btyhXrhxat26NIUOGoHTp0mrrWlhYwNLSElu2bIGXlxeOHj2KZ8+eoXz58ujYsSOGDBmS4TYOHTok1mVKSgrMzMzQrVs39OnTR60uVWNXuLu7o3Llyvj777/x7t072NjYYMuWLdDS0kJSUhI2btyIQ4cO4f79+9DR0YGlpSV69eqFzp07p9v2f//9h7Vr1+LWrVuIi4uDkZERHBwc4OHhoVbXnxtD5PDhw9i0aRMiIiJQrFgx/PDDD5/tjpXT8z2/z6OPxwTJq/FOVL+Ev3v3Tm256vrh4+MDHx8fnD59Gnp6ehg6dCj69esHADhy5Ah8fX1x8+ZNvH79GsWLF4e5uTm6dOmC3r17Q0vrf78jpqWl4Z9//sGBAwdw7949vH//HhUrVkTLli0xYMAAtS//GY0hkl2LFi3CunXrMHToUIwZMybd88eOHcOIESPwww8/wMvLC0D2z62cevfuHWxtbdGsWbMMnzczMwPw4RwAgLdv3yI4OBh6enpil7mPtWnTBvv27cOpU6fQo0ePXMf1MdUYDykpKXj16pXYKien1+PMPlNyUu8q2b3OAEBkZCT++usvhISE4MmTJ9DX10fNmjXRp08fNG/ePEfHol27dvD19YW/v794jn8sLi4OV69eRc+ePREdHZ1hGa9fv8bmzZtx8uRJ3L9/H+/fvxfPp4EDB6p1mc1sDJGnT59i5cqVuHLlCh49egRdXV1YWlqiR48eGV4b89q9e/ewatUqXLhwAS9evEDp0qXRtGlT/PzzzzA1Nc3y9Z+OIZKd8UxMTU0REBAgPk5NTcXu3buxe/du3L17FwAgl8vx008/oVu3bunu6/PrPUwZY0KESMNUv6S0bt0aurq6n123a9eu6Nq1q9oyQRAwYcIE7N+/H8WKFUPdunWhp6eHK1euYNmyZThy5Ai8vb3TfUg/fvwY3bt3R2pqKmrXro0HDx7g+vXrGDx4MGbOnIl58+bB2NgYDRs2xI0bN3D8+HHcuHEDR44cSffFYuXKlTh58iQsLCzQokULBAUFYfXq1Th9+jQ2b94sjg8gCAJGjhyJgIAAGBoaolatWihevDju3r2Ly5cv4/Lly3j+/Hm6QfOUSiUGDx4MHR0dNG/eHLdu3YKlpSXev38PV1dXMaHk4OAAiUSC8PBwnDlzBmfPnsWKFSvQunVrsayIiAh4eHggPj4eFStWRPPmzfHo0SMcPHgQAQEB2Lx5s/gBf/jwYYwbNw5paWmws7NDjRo18Pz5c/GD6uLFi9i1a5d4k5zbusjI6dOnMWLECCQnJ8POzg7lypVDUFAQevfuneFggVFRUejTpw9evHiBatWqoUmTJkhMTERISAj27duHEydO4MCBA+kSErn1/PlzvHjxAgDUfrnetm0bZs2ahbS0NNSqVQvly5fH7du3sX37dhw5cgRr165NN+ZIWloahgwZgsuXL8Pe3h7m5ua4dOkSfHx8EBQUhF27dkFHRwf29vZ4+vQpLly4gNKlS6Nx48bpElg5kdP6BYDZs2djy5YtkEqlqFOnDmQyGYKCgjBr1ixcuXIFS5cuhUQiydW5GRISggEDBuDNmzeoUqUKHB0d8fTpUxw/fhwBAQH4/fff8dNPP2W5X0qlEoMGDcKlS5dgZGSEZs2a4cWLF1iyZEmmx+v27dvw8PDA8+fPUaVKFbRo0QJPnz7FoUOHcOLECXh5eWXrZvzAgQMAgA4dOqBYsWJZrp/RNQ0A/v33X0yZMgWpqamwsbGBqakpbt26BW9vbxw7dgybN29O12ReoVCgT58+iImJgZ2dHapXr46LFy/i77//xu3bt9N1y5k+fTp27NgBXV1d1KxZEwYGBggKCsL8+fPFsQ0+3YczZ87g/v37qFevHiQSCb777jtoaWnh5cuXcHd3R0REBIyMjNC0aVMkJSXh8uXLCAoKwvnz57FgwQLxpvfSpUsYOHAgUlNT4eDggBo1auDBgwfw9/fHiRMnsGbNGjRu3Pizx87T0xN//fUXpFIpGjRoAG1tbfz7778ICgrKcP2cnu+aPI++xM2bNwEA9vb2GT4/bdo0vHjxAk2bNsXdu3fFZOmcOXPg4+MDmUwGBwcH6Ovr4/79+7h+/TquX7+OmJgYTJ48Wa2c3bt3w8jICPb29tDW1sb169exdu1anDhxAvv27cuTQdC7dOmCdevW4fDhwxkmRFTvuS5dugDIm3MrM23atEGbNm0yfV7V0kuVlIqMjERaWhqqVq2qlohWUZ1HERERuYonI3fu3AHwoWWV6rM2N9fjzOS03nNynYmMjETPnj3FxJOVlRXi4uJw+vRpnD59GvPmzUP37t2zfSzMzMxgZWWFa9eu4enTpyhXrpza80eOHEFaWho6dOiQ4Rf858+fo1evXoiJiUHFihXRoEEDKJVK3Lx5E/7+/ggICMC2bds+27rk+fPn6NGjB+Li4iCXy9GiRQu8fv0aV65cQWBgIO7fv4+RI0dme59y6uLFi/j555+RmJgIuVwOOzs7REdHY/fu3Th+/DjWr1+fo4F9gQ8J+E6dOmX43Llz5/Dy5UtUq1ZNXJaSkoIRI0bg5MmTMDAwgIODA3R0dHD58mVMnjwZly9fVusGlJ/vYcqEQEQa1bdvX0Eulwu+vr65ev3mzZsFuVwutGnTRoiJiRGXv337Vhg8eLAgl8uFESNGiMsfPHggyOVyQS6XC66urkJCQoIgCIKQlpYm/Pzzz+Jz06ZNE1JSUgRBEISEhAShTZs2glwuFw4fPiyWNXHiRHH9NWvWiMsTEhKEfv36CXK5XJg1a5a43N/fX5DL5UKPHj3E7aqsXr1a3I+PtWzZUpDL5UK3bt2E9+/fC4IgCKmpqYIgCMKGDRsEuVwuDBs2TEhOThZfk5KSIvz++++CXC4X+vXrJy5PTU0VunbtKsjlcuGPP/4Q908QBGHbtm2CXC4XOnToIAiCILx//16oX7++YGNjI1y5ckUtprt37woODg6CXC4Xrl69muu6yExCQoLQuHFjwcLCQjhw4IC4/N27d4KHh4d4zC9duiQ+N2TIEEEulwtr165VK+vNmzdCjx49BLlcLvz1119ZblsQ/nfMPy7/Y4mJieL2+vTpIy6/deuWYGlpKdSsWVM4c+aMuDw1NVXw8vIS5HK50KxZM0GhUKTbVuPGjYXbt2+Lyx8+fCjUq1dPkMvlwsmTJ8Xlly5dEuRyudCrVy+1mPbs2SPI5XJh3LhxGcasOmZKpVIQhNzV79GjRwW5XC40bdpUuHv3rrj85cuXgpOTk9r7I6fnZlJSktC0aVNBLpcLK1euFNLS0sTnTp06Jdja2grW1tbCzZs3M9y/j61fv16Qy+VCz549hdevX6uVY2NjI773VZKTk8X398aNG9W2feLECcHGxkaoW7eu8Pz58yy33bFjR0Eulwtnz57Nct3MREZGCjVq1BDs7e2FwMBAcXlqaqqwZMkSQS6XC71791Z7jap+O3ToIDx8+FBcfuPGDXGfIyIixOWq86VTp07CgwcPxOVv374V32NLliwRl6vOu0/fY6pr0YgRIwS5XC4MHTpU7dp27949oVWrVoJcLhc2b94sLnd3d8/wOG3cuDFd/WR0zl+/fl2wsLAQ6tWrJ4SHh4vLY2JihBYtWoixquTmfP8a51FiYqJw9+5dtffT56iORcuWLdWWp6amCq9fvxZOnToltGzZUqhRo4YQEhKito7q88rOzk68PqelpQlpaWlCaGioIJfLBUdHRyE+Pl7tdQcOHBDkcrlQq1Yt8b386NEjQS6XCz/88IPw9u1bcV2FQiH8+OOPglwuF/bs2ZNu2zt37hSXubq6CnK5XDh//nyW+6363Pp0n96+fSvUrFlTqFevnvj5mJNzKy/dvn1bsLKyEiwsLIRbt24JgvC/z/whQ4Zk+Jq3b98KcrlcsLe3z9Y2VOf1x+/Zj7148UL8vJswYYK4PKfXY0HI+DMlp/We0+vM5MmTBblcLmzfvl0tFtVnz6fnfWZUn6v37t0T7602bdqUbr2ffvpJaNKkiZCamprh+Th79mzxPu7j93NSUpIwbNgwQS6XC7/99pu4XHV/2bRpU3HZihUrBLlcLvz5559q275+/bpgY2Mj1KxZU+2eIDPLly8X5HK5MHHixGwdA0H4cD7Uq1dPsLKyEg4dOqT23Pbt2wW5XC60atVKfO8IQvp7BUFQP56fo7pWtGzZUu06p4rd3d1dbXl8fLz43v742qCp93BRxjFEiDQsPj4eANRm88gJb29vAB9+3fp4RHV9fX0sXrwYBgYGOHr0KO7fv5/utRMnTkSJEiUAABKJROyuUrx4cUyYMAHa2toAgBIlSojZ6IzGi2jcuDEGDRokPi5RogQWLFgAHR0d7NmzB+/fvwfw4RdHR0dHjB8/XtyuimrwyYcPH2a4nz/++KP4K4rqF0ypVIrmzZtj3Lhxas1OtbW1xV/SPy7v2rVrCAsLQ/Xq1fHrr7+K+wcAvXr1Qr169aCvr49nz57h2bNnaNKkCfr37486deqoxWJubo4GDRqkK/9L6uJjx48fR3x8PFq3bo2OHTuKy/X09LBgwYIM+7FWqFABrVu3TjeavIGBgVhGZsc2M6tWrcL48ePFf+PGjYOHhweaNGmCkydPokyZMpg9e7a4/qZNm5CWloZBgwapTb2opaWFESNGoF69eoiNjRV/0fzY4MGD1aZUNDU1haOjI4C8/fVQJTf1u3XrVgAfmr9//Au5kZERxowZg++//16c6jCn5+bhw4fx9OlT1KtXDz///LNa89nmzZtj8ODBSElJwcaNG7Pct+3btwMAZs2apdYFonnz5ujVq1e69Y8dO4b79++jZcuW6Nevn9q2HR0d0atXL7x+/Rq7d+/OcttPnjwBgHS/RKp8fD59/O/jwQ83bdqE5ORkjBw5EvXq1ROXa2lpYfTo0bCwsEBQUBD++++/dOWPGTNGrQm0jY2NOCOR6pdjAFi7di0AYP78+WotTfT19TF//nxIpVL8888/6cYg0NbWhouLi1pMqqbUBgYGWLRokdq1rUqVKpg3bx4AYN26deJy1XX/03FBXFxcMHnyZAwcODDD46eyY8cOCIKA4cOHq3VDqVSpklorBpXcnO9f4zxSjY+S05Zejx49goWFhfjPysoKdevWxeDBgxEbG4vly5dn+qt1y5YtxeuzRCKBRCLBmzdv0LZtW4wdOzbdDBUdO3ZEyZIloVAo8Pz5cwAfjifwYXDXj1vs6erqYurUqZgzZw5q1aqVo336HFXrj0/H2jh+/DiSkpLQvn178fPxS8+t3Hj+/DlGjRqF1NRUdOvWDZaWlgCAxMREAMi0q6iqVaxCocjR9ubPn692/Rg7dizc3NzQokULhISEwMzMTBxLBMj59TgzOa33nF5nMqu7Nm3aYPr06Zg4cWKOBxZv3749AKQbR+Tx48f477//0L59e7VWkB8zNDRE06ZNMWrUKLX3c/HixeHs7Awg6+OW2T7VrFkTc+bMwbx583K0T3v37lV773/6782bN+K6u3btwqtXr+Di4iIeB5WffvoJLVu2VJs98Etcv34dU6ZMgUwmw8qVK8VuncnJydi0aROkUikWLVqk1t3T2NgYc+bMAQCsX79eXK6J93BRxy4zRBqmakaampqa49c+efIEDx8+ROnSpdW+OKgYGBigWbNmOHjwIC5fvqw2f3qxYsVgbW2ttr7qQl2xYsV03TJUN8Sq5MbHPh33A/jwhahmzZoIDg7G9evXUa9ePXTo0CHduklJSYiKisK1a9cAfDgOqampaskKAOIN1sdcXV3h6uqqtiwhIQGRkZE4ffo0AKh9obl8+TIAoEWLFhmOw+Lj46P2+NOxKARBwKNHjxAWFibeBKjK/5K6+NSVK1cAIMN+2iYmJqhVqxauXr2qtjyj2RSeP3+O8PBwsQl9TgeYu3DhgtpjbW1tlChRAlWqVEGTJk3g5uYGExOTdHG3bds2w/I6dOggdo36tB99Rn1iVX2/c3qznB3fffddjupXEARcuXIFWlpaaNmyZbryWrdurdbcOrfnZrt27TKM18nJCV5eXuJ6mXn69Cnu37+PsmXLZvieadWqVbrzXDXloupL8aeaNm0KHx8fBAYGYvDgwZ/dvuo6JghChs9nlAwDgHr16mHYsGEAPowrASDDGY4kEgmaNGmC8PBwXL58Od1587nzSPXlLD4+HlFRUTAwMICNjU2G61taWiI0NBRhYWFqZVauXDndDF+q875Ro0YZdmerV68eTExMEBsbi5iYGFSuXBl16tRBZGQk3Nzc0K1bNzRr1gz29vYoVqxYhn39P/W5a0SLFi2go6ODlJQUcVlOz3dNn0dZyWjaXYVCgXv37iEyMhKjR4/G1KlTMxyvI6P9adSoERo1aqS2LDk5Wewyo/rCpjo+1atXh5GREa5du4bevXvDyckJTZs2hZmZGWxtbfN8SvaOHTti0aJFOHz4MCZOnCh+fvn5+QH4X8IEwBefWzn19OlTeHh44N69e6hRowamT58uPqf6HM/o8/ZjaWlpEAQhy/VUjh8/rvZYR0cH+vr6sLKyQosWLeDq6qr2Xszp9TgzOan33Fxn6tatizNnzmD06NFi3dWrVw+6urro06dPto7NpypVqgQbGxtcu3YNcXFx4vXw0KFDEARB7UeXT2XUleX169eIiIjAuXPnAGR93OrWrYtt27Zh7ty5CAkJQcuWLdGwYUPo6+tn2F0yO/vzuTE0Ph37Ccj4swT4cE06efIkAgMDM7yPza4nT55g+PDheP/+PZYuXao2xlJYWBjevn0LCwuLDGeZsrGxQZkyZRAdHY34+HiYmJh89fcwMSFCpHEmJia4ffu2OB5DTqgGLvvc7AOqXyVUGWcVAwODdL8KqG5GVGN+ZFdmX+5V41Wo4gQ+3ITs2LEDZ8+eRWRkJOLj49PdCGX0ZSqzmJ49e4Zt27bh0qVLiIqKEo+jqryPy1Idg5yMo3H69Gns3bsX4eHhePDggTgt3ac3bl9SF59SlZXZr+wVK1ZMlxABPgxKuG3bNoSEhODevXvioIIZHYvs2Lx5c6Y3Ep+LO7NByj63/xkNXqpKFubnVLvZrd+XL19CqVSidOnS2R4YNyfnZnaPneoXysw8ffoUwOfPnU+pWnXMnz8f8+fPz7Ts2NjYz25btd3o6Gg8e/Ysw4FYPx0488KFC+laNani6dat22e3pVrvY587j1THW/U61U1qVtv4+ObbyMgo3TpZ1R3w4bjHx8cjLi4OlStXxq+//oqHDx/i/PnzWLt2LdauXQs9PT00adIEXbp0yXIsg89dI4oVK4ayZcvi8ePH6Z7L7vmu6fMoK5lNuwt86MM/fPhwTJ06FXK5PF1Ljcw+S96/f499+/bh+PHjuHv3LmJjY8Vrz6fvWZlMBk9PT4wfPx7BwcEIDg4G8OHLWqtWrdCrVy98//33X7yfKsbGxmjcuDFOnz6Nq1evom7dunjx4gUuXryIKlWqqI2X8qXnVk5ERERg6NChePToEWxtbbF+/Xq166MqeZiUlJTh61XL9fT0sp0MAT5M5ZvROfg5ObkeZyYn9Z6b60z//v0RERGBAwcOiIP/FitWDPXr10fHjh3RqVOndD8WZYeTkxNu3ryJo0ePiomhQ4cOoVKlSunG9PrUgwcPsHXrVgQFBeHevXt4/fo1gOwftw4dOuDGjRvw9vbGnj17sGfPHnFMsPbt26N79+5Zjp/3sZxMu6uqgxEjRnx2vS+5JiUmJmLYsGGIj4/HoEGD4OTkpPa86jocHh6erfPAxMTkq76H6QMmRIg0zMbGBmfPnsX169ezHCwrISEBf//9N+rVq4dGjRpl6wNc9Yvtp4MDZjTAWW5l9gGtik/1/J07d9C3b188f/4cpUqVQs2aNdGxY0dYWFigfv36aNGiRabbyKhJZ2BgIIYOHYrExESUK1dOHJDTysoKFStWTPfr4Me/mGYlLS0NP//8M06ePAmpVApra2t07doV1apVg4ODA3x8fLB///50+/o5mdXFp7K6MczoeK9btw6LFi0C8KEJfMuWLWFubg5bW1vExMRg1qxZWcb3pbI6Bp/b/5zcDOdURq2vclq/OW3BldNzM6tjp/piltW0f1kdx4ze96qy69evn+EvWCqfzuySESsrK0RHRyM4ODjdL+7ZpTrWHTp0yLQpN5DxL/3ZOY9U5asGP/2cj1tAZbf8z21Tde4bGBhgw4YNCA0NxfHjx3Hx4kXcuHEDR48exdGjR9G2bVssX7480/Jyeo3I6fmu6fPoSzRp0gQ9evTAli1bsHv37nQJkYzOqbi4OLi6uuL+/fvirB6tWrUSZ7Lq169fugRTgwYNcPz4cZw6dQqnT5/GpUuX8ODBA3h7e+Off/7B0qVLPzsAaU517doVp0+fxsGDB1G3bl0cPnwYKSkp6Wbp+NJzK7vOnz+PUaNGISEhAU2aNMHy5cvTdYVVJdQyS+SqkuOfvs/yWk6vx5+T3XrPzXVGKpVi8eLFGDZsGI4ePYoLFy7g2rVrOHv2LM6ePYsdO3Zg06ZN2Rqw+mPt27fHokWLcOTIEfE8v3nzJoYMGfLZ1/n5+WHixIlISUlBpUqV0LBhQ1StWhU1atQQu+xlx8SJE+Hq6opjx47h7NmzCA4OxpUrV3DlyhX4+Phg27Zt2RpsPqdUddCyZcsMW++pfDwAak4IgoBff/0Vt27dQrNmzTB27Nh066iui9999x1q16792fJU75+v9R6m/2FChEjD2rRpg1WrVuHkyZN4//79Z0elP3r0KNatW4fdu3fj/Pnz4k2natyCjDx48AAA0vWLzkuqXxM/pbqBVLXImDVrFp4/f46BAwdi7Nixajftql8dsksQBPz2229ITEzE9OnT0zUnDQsLS/ca1fHKLN7AwEDExcWhXr16uHDhgjhzztq1a9P9UpqQkJBh2XlRF6ptZVbWxy1uVOX++eefMDAwwKpVq9KNEaAa2yS/lS1bFg8fPsSjR49QvXr1dM+rmuXndrycz1F9ycmoNcnHfYpV/v333xzVr5GREaRSKV6/fo2kpKR0v2glJydj165d+P7779GwYcNcn5uZ1bnq3Mnq2Kn2I6PWAUD6cwf43814p06dcjwl6Ke6dOmCQ4cO4cCBAxgyZEiWCZyMlC1bFo8ePcIvv/zy2a5luaXa3+LFi2fayiAnsvPeV537n773Vc3sx4wZg7dv3+Lw4cOYO3cu/P39cfXq1XTv5Y+3ee/ePTx+/Djd+BtpaWnpvoDm9HzX9Hn0pVRfcDJqRZSRpUuX4v79++jUqRPmzp2b7nM4o2sI8GHsiHbt2old3SIjI7Fq1Srs378fCxcuzNOESKtWraCvr4+jR49i+vTp4gx1mU1bmttzKzsOHDiASZMmISUlBT169MDMmTMznUVGS0sLUVFRSEtLS5eM+nj60fySm3uFrGSn3r/kOmNubo5hw4Zh2LBhUCgUOHXqFGbOnIng4GAcPnxYrYtUdpiamqJmzZridNuqc+dz3UTevXuH6dOnQxAErFy5Ml2rhJyOu2Fqaop+/fqhX79+UCqVuHjxImbPno3o6Ghs27YNP//8c47Kyw7VddLd3T3XCfrP+fPPP3H8+HGYmZnhzz//zDDZqjoPypcvn+PzID/fw6SOg6oSaViNGjVQr149xMXFqQ0s+KlXr16Jz//444/Q0dHBd999B1NTU7x8+TLDsQXevn2L8+fPA/jQjzO/qPrgfiw2NhahoaEwMjIS+9WqBkEcOnRoul8wVXEC2esi8ezZMzx48AAlS5bMsG+tqn/rx2WpBlc8c+ZMhmUuXboU48ePR1xcnDimSffu3dN9eXj37p34/MfZ/7yqi4YNGwLI+Ibj7du36abVDAkJQVpaGurXr5/hB6TqWOS0y0xOqfbL398/w+cPHz4MIPP+vNmR2S/XqqbZqkEPP3b9+vV0y3Jav1KpFLa2tkhNTRWP58euXLmCWbNmYdOmTbk6N1XH7tOB71RUxy6j8Wk+VrZsWVSrVg3Pnz/PcPrVU6dOpVum2nZG72PgQ9epTp06YeXKlZ/dNvChT3bNmjVx7949scXS56imSM1JPOPGjUP37t1x4sSJLMvPSMWKFfHdd9/h6dOnuH37drrnFQoFOnfujD59+mRroMXatWtDIpHg/Pnz6RILwIexNV68eCFu9+XLl3B2dk43baOBgQF+/PFHNGnSBMDnm3Grbu6PHj2a7rnAwMB04+7k9HzX9Hn0pVQDV2e3e6Rq/wcOHJguGXL9+nWxXlXHZ//+/WjTpg3++usvtXXNzc3FMTSym4zJruLFi6Ndu3Z4/vw5jh07hqCgINjb26Ny5criOnlxbmUlICBAbDUwcuRIzJ07N9MWpzKZDHXr1sXbt2/F8Rw+pvqMy8+pmHNzPc5MTuo9p9eZ1NRUuLm5oUmTJmpdjGQyGdq3by8mvnJbd05OTkhLS8PRo0dx+PBhVKtW7bNdOO7cuYN3795BLpdn2EUju/cVo0ePRv369dUSxlKpFM2aNRO77+RFN7qMZHVNWrhwIbp27YqdO3fmuOx9+/Zh7dq1KFGiBFauXJlhd03gQ1JDV1cXt2/fzjCR/PTpU7Rt2xb9+vXDu3fvvsp7mNJjQoSoAPj9998hk8nw999/Y8GCBelaSzx48ABDhw4VB+T7uJlj3759AQBTp04Vf0UGPtzk/vrrr0hISEDLli0/27/9S+3bt0/ty3tCQgImTJggfsCrkh+qptKffpG5cuWK2mwl2RnczMDAAFKpFG/evEk3nsbRo0fFG5aPy2rQoAHMzc1x69YtrFixQu2DfMeOHbh27ZrYzUQV65kzZ9S62rx8+RJjxozBy5cvAagPMptXdeHo6IjKlSvjwoULaq07kpOTMXXqVHFwSBVVrNevX1dLCCiVSixbtgxnz55NF2t+cHV1hba2NtauXauWNBAEAStWrMCVK1dQrly5L+r/qvqy8ukXT1X3iatXr6p9yY6Njc3wi3lu6ld18zZ//ny1L8ovXrzAH3/8AeBDC4ncnJvt27dH2bJlcfnyZfz9999q5+aZM2ewbt06aGtri7MxfY5q0LVp06aptYa6evVqhrPUODk5wcTEBMeOHcPGjRvVth0SEoLly5cjIiIiy/7PwIeuGkuXLoWRkRE2bdqE4cOHIzIyMt164eHhGDVqlPiL2cfdKFTXDE9PT1y8eFHtddu2bYOfnx/u3LnzRbN4qN6rEyZMUJs5Kzk5Gb///jvCw8ORmJiYrXEKVOMHJCQk4NdffxXH7gE+XLunTp0K4H/nT6lSpZCamoqIiIh0rbcePnyI4OBgaGlpoUaNGplus0+fPpBKpVizZo3aORYXF5dh97jcnO9f4zxSKBSIjIzM8BzJrWvXrmHHjh0AkO5LRWYy+2yKiIjAr7/+Kj5WHZ/q1asjJiYGmzdvRlRUlNprVF2PshqbITdUg1DOmzcPgiCkaymQm3Pr8ePHiIyMzNY4Zs+ePcPkyZORmpqKYcOGZTk2A/Dh/QwAs2fPVhs/6ujRo/Dz84OJiUmOWzzkRG6ux5nJab3n5Dqjra0NAwMDxMfHY8mSJWrdNF+9eiX+kJPb86pdu3aQSCTw8fFBeHh4loOIqt4T0dHRavsqCAK2bdsmJhGyuq8wMTHBq1evsHDhQrVjnJSUJN435vUgxCo//fQT9PT0sGXLlnQzNAUEBGDz5s24fft2jrcfFBSEadOmQVtbG0uWLPlslxs9PT38+OOPSExMxK+//qp2j/bu3TtMmjQJ9+7dQ4kSJVCiRIk8+XygnGOXGaICwNzcHJs2bcKQIUOwceNGbNu2Dba2tjA2NkZsbCxCQkKQmpqKatWqYfXq1Wp9Id3c3HDt2jUcPnwYTk5OqFevHmQyGa5evYqXL1/CwsICc+fOzdf4y5YtixEjRsDBwQEmJia4cuUKXrx4gUaNGqnNJtC/f3/Mnz8fEydOxI4dO2BiYoKYmBjcunULRkZGMDExQXx8POLj4z/b3xP40GS1V69e8PHxgbu7O+rWrYuSJUvizp07iI6OFltrvH37VuzioKWlhSVLlqBfv37w8vKCn58f5HK5GEOJEiXg6ekJAOjRowd8fHxw7tw5/PDDD7CxsUFCQgKCg4ORlJSEatWq4e7du2pN0/OqLlRNbAcOHIj58+dj3759qFy5MkJCQvDixQtYW1urNfOtV6+euKxt27ZiK5GQkBA8f/4c1atXx507d7IckPNL1ahRA5MnT8bcuXMxYMAA2NnZoXz58rh9+zbu3bsHIyMjLF26NMu6/RzVjWNERAT69u0LCwsLTJkyBZUrV8YPP/yAo0eP4qeffhJb2QQGBqJatWqQy+Vq0/fmpn47dOiAixcvYteuXWL9amtrIzg4GG/evIGzs7M4oFpOz03VYH2DBw/GsmXLsG/fPlhaWuLp06e4du0atLW18dtvv2XrZrhHjx64dOkS/Pz80K5dOzRs2BCJiYm4fPkyatasKf4ariKTybB8+XIMHjwYCxYswJYtW2BhYYFXr14hODgYgiCgb9++2U5kVaxYEXv37sWECRNw/PhxHD9+HObm5qhcuTIkEgmio6MRHR0N4MOXlUGDBmHAgAHi62vUqIEpU6Zgzpw56NevH6ytrVGxYkVER0fjzp070NbWxqJFi76oG6C7uzuuX7+OQ4cOoWPHjrC1tYWRkRFCQkIQFxeHMmXKYMmSJdkub9asWbh37x4CAgLQqlUr1KlTBwqFApcvX0ZycjI6duwofjkCgJkzZ8LNzQ3z58/Hzp07YW5ujoSEBAQFBeH9+/cYNGgQzMzMMt1etWrVMGXKFMyaNUs8x0qUKIFLly7B2NgYpUuXVvuCm5vz/WucRyEhIXB3dweQfsDdz3n58iXGjx+vtiw1NRUPHz5EaGgoBEGAm5tbli2qVPr164egoCAsX75cHLDz6dOnuH79OnR1dVGxYkU8fPhQPD5WVlZwd3cXW704ODigVKlSuH//Pm7fvg09Pb0Mpz/+UnXq1IGpqSkePXoEqVSabipRIOfn1sSJE3H58mWMGDEiw1lFPrZx40a8evUKOjo6ePDgQbo6UHFwcBCnp27Tpg26dOmCf//9F+3atUODBg3w8uVLBAcHQyqV4s8//8zxmBg5kZt7hczktN5zep2ZNGkSgoKCsGnTJhw/fhxWVlZITk5GcHAwEhIS4OTkJH625VSFChVgZ2cnvm+zSohUrlwZjo6OCAgIQNeuXVGvXj0UL14cYWFhePz4cYbXjIyoxi46cuQIgoKCxC/yqvuTOnXq5FtCrFy5cvjjjz8wduxYjB07FitXrkTVqlXx5MkT3LhxAwAwZcoUtVlhsmPEiBFITk6GmZkZTp8+DX9/f3GA6o8NGzYM5ubmGDduHG7duoVLly6hTZs2sLW1hUwmw7Vr1/Dq1SuYmZmpJbK/9POBco4JEaIColatWjh06BC2bt2KM2fOIDw8HMHBwShRogQcHBzQvn179OzZM92Ng5aWFpYuXYpmzZph165d4qjnVapUwcCBA+Hm5vbZcUnyws8//4w3b95g+/btuHnzJqpUqYIhQ4bA1dVVrSltv379YGxsDG9vb0RERODGjRv47rvv4ObmhkGDBmHt2rXw8fHByZMnszVC/+TJk/H9999jx44dYreRihUrYujQoRgwYAAmTJiAkydP4vTp0+JUsJaWlti7dy9WrVqF7du3Izo6GqVLl0bHjh0xYsQIcbsVK1bErl27sGzZMvz3338ICAiAoaEh6tevj759+8LIyAjOzs44efKkOJBWXtZFrVq1sHPnTqxcuRIXL17EvXv3YGNjgyVLlmDnzp1qCRFtbW14e3vjr7/+wsmTJ3Hu3Dno6urC3Nwco0aNQvfu3dGoUSOEhITg2bNn+TqejJubG6ysrLB+/XoEBwcjLCwM5cuXR9++feHh4YHy5ct/UfllypTB3LlzsWLFCgQFBeHx48eYMmUKgA/TJK9ZswYHDhzAxYsXYWxsjD59+mDEiBHpZjLJTf0CwJw5c1CvXj2sX79ebHljaWmJ0aNHq7XeyM256eDggL1792LNmjU4e/YsTpw4gVKlSsHJyQn9+/fP9i+DEokEixcvRt26dbF9+3acP38ehoaG8PDwgLOzc4ZfohwcHMQmwGfPnsWZM2dgZGSE+vXrw83NLceter777jv4+PiIX6hDQkIQHBwMhUKBMmXKoGXLlmjatCm6dOmSYYLM1dUVVlZW2LhxI4KCgnDnzh2ULVsWTk5OGDRoULopw3NKlRxt3rw5du3ahdu3byMlJQWmpqbo0KEDPDw8Pjsw6KfKlCmDHTt2wNvbG4cPH8aZM2cgk8lgb2+PXr16pZt5wM7ODlu3bsXatWsRHByMgIAA8Vrfq1evTKdf/piLiwvMzMywZs0a3LhxAxKJBM2bN8ekSZPStSTKzfleEM6jzCQmJqabwrlYsWIwNjZG69at4ezsDEdHx2yX98MPP2D9+vVYtWoV7ty5g4iICJQtWxbdunXDoEGDcPr0aSxYsAAnT54Um6xPnjwZVatWxd69e3Hjxg0olUoYGxuje/fuGDp0qFpXlrwikUjQuXNn/P3332jRokWGsx7lxbmVGVUrhZSUFHHK38yoEiIAsGDBAtSsWRM7d+7E2bNnUbJkSTg6OmLkyJE5/jKaG7m5Hn+urOzWe06vM5UrV8b27duxatUqBAYG4tSpU9DV1UX16tXh7OyMHj16fNFxaN++Pa5duwYbG5tsjc+0dOlSrF+/HgcPHsTly5ehra0NMzMz9O7dG3379kWPHj3Ee7nMWiyUKlUKW7duxd9//42zZ8/i3LlzkEqlMDMzg4eHB9zd3fM1IfbDDz9gz549WLduHS5duoRTp06Jn0H9+/fPVRdeVbL53r17uHfvXqbr9ezZE+bm5tDV1cWGDRuwfft27N+/HyEhIQA+XJfd3Nzg7u6u1uUmP9/DlDGJkN+dyonomzVp0iTs3bsXc+bM0fggernRqVMnvH//HlOmTPnsDDdEnzp69ChGjhwJd3d3DB06NF8GiiUiIiKi/MUxRIioyJo+fTpq166NIUOGZDqYJVFGbG1tsWLFCvz7779qXSGIiIiIqPBglxkiKnJevnyJuXPn4v3792K3lo8HMCP6nJ07dyIwMBCxsbF4/fq12oCgRERERFR4MCFCREXOixcvxCkyy5cvj3HjxmU5wBiRSmhoKI4fP47ixYujadOmmDRpkqZDIiIiIqJc4BgiRERERERERFTkcAwRIiIiIiIiIipymBAhIiIiIiIioiKHY4hQvrl27RoEQYBUKtV0KERERERERFQEKJVKSCQS2NvbZ7kuW4hQvhEEARyipuARBAHJycmsm0KEdVb4sM4KF9ZX4cM6K3xYZ4UL66vwYZ39T06+h7KFCOUbVcsQW1tbDUdCH0tMTMStW7dQrVo16OnpaTocygbWWeHDOitcWF+FD+us8GGdFS6sr8KHdfY/oaGh2V6XLUSIiAoBqVQKiUSi6TAomyQSCWQyGeuskGB9FT6ss8KHdVa4sL6oqGALESKiAk4ikcDa2ho6OrxkFxYymQzW1taaDoOyifVV+LDOCh/WWeHyrdZXWloatLTYJoD+h3fXRESFgI6ODnx9fREfH6/pUIiIiIgKHRMTEzg7O2s6DCpgmBAhIiok4uPjERsbq+kwiIiIiIi+CWwvRERERERERERFDluIEBEREREREWVDamoqlEqlpsNI5/379+L/3/I4KVKpFNra2nlWHhMiRERERERERJ8hCAJiY2Px6tUrTYeSobS0NOjo6ODx48ffdEIEAIyMjFC+fPk8mQWJCREiIiIiIiKiz1AlQ8qWLQs9Pb0CNyVxamoq3r9/j+LFi+dpC4qCRBAEJCYmIi4uDgBQoUKFLy6TCZE8lJCQgMaNG6NEiRI4ffo0pFJpnpWtVCrxzz//oF+/fl9UjqOjI7p164aRI0fC19cXkydPRnh4eN4ESURERERE9I1JTU0VkyFlypTRdDgZSk1NBQDo6up+swkR4MOU0AAQFxeHsmXLfvG+ftttab6ygwcPokyZMnj79i2OHTuWp2X7+flh/vz5eVqmk5MTzp07l6dlEhERERERfUtUY4bo6elpOBIC/lcPeTGWCxMieWjPnj1o2rQpGjRogO3bt+dp2YIg5Gl5wIfsoYmJSZ6XS0RERERE9K0paN1kiqq8rAcmRPJIZGQkrl+/jsaNG+OHH35AYGAgoqOjxecdHR3h5eWl9pqPl6WmpmLRokVo3rw5atSogXbt2mHbtm0AIHZtAQALCwsEBgbCy8sLrq6uGDNmDBwcHDB79mwAwK5du9CpUyfUrFkTdnZ2cHFxQWhoaIYx+/r6wsLCQnwcERGBIUOGoG7duqhRowZatWqFDRs25N1BIiIiIiIioq8mP35Y/5YwIZJHdu/eDT09PTRr1gxt2rSBVCrNUSuRrVu34siRI1i6dCn8/f3h6uqK33//HVevXoWTkxOmTJkCADh37hzs7e0BAFeuXIGxsTH+/fdfuLm54dixY5g1axYGDhyIw4cPw9vbG+/fv8fUqVOz3L5CoYCHhweMjIywfft2+Pn5oV27dvjjjz9w69at3B0UIiIiIiIigpubGywsLMR/lpaWsLe3h7OzMzZv3oyUlJQ83d6bN28wYcIEXL16NU/L/dZwUNU8kJKSgv3798PR0RG6urrQ1dVFkyZNsG/fPowdOxbFixfPsoyYmBjo6emhYsWKKFu2LFxdXVG1alV8//330NXVhYGBAQCk6+IyatQo8bn4+HjMnTsXnTt3BgCYmpqiR48emDVrVpbbVygUcHd3R58+fVCiRAmx7HXr1iE8PBxWVlY5OiZERERERET0P9bW1pgxYwaADz0EXr9+jTNnzmD+/Pm4evUqli1blmdT5t66dQv//vsvunfvniflfauYEMkDp0+fxrNnz9ChQwdxWYcOHXDy5EkcPnwYXbt2zbKMPn364Pjx42jevDmsrKzQuHFjdOjQ4bOjGJcpU0ZMhgBA3bp1ERkZiZUrVyIqKgr3799HeHg40tLSstx+6dKl4eLiAj8/P4SFhSEmJga3b98GgGy9noiIiIiIiDKnr68POzs7tWWOjo6oWrUq5s6dCz8/P/HHbfo62GUmD/j6+gIARowYAWtra1hbW2PixIkA8NluMx83izIzM8PRo0exbt06NGjQAKdOnULXrl2xd+/eTF+vq6ur9vjAgQPo3LkzHjx4AAcHB0ycOBGTJk3K1j7Ex8ejc+fO2LVrF8qVKwcXF5fPbpuIiIiIiIi+nKurK8qVK6f23XHXrl3o0KEDatSogRYtWsDLy0ucWhcAXrx4gXHjxqFx48awtbVFt27d4OfnBwAIDAyEu7s7AMDd3R1ubm4APrRKWbNmDTp27CiOOdmrVy9cunRJLZ5Lly7hxx9/RK1atdC+fXucOHECbdq0Ece/DAwMFMe2/Jibm5u4rezuh6axhcgXev78OU6fPg1nZ2f0799f7Tlvb2/s2bMHERERkEqlSEhIEJ9LSEjA8+fPxcebN29GmTJl0KFDBzRu3BgTJkxA//79cejQIXTr1i1bI+muWbMGPXr0wMyZM8VlJ06cAPBhMJ3PleHn54dXr17B398fUqkUABAeHi6+loiIiIiIiPKelpYWGjZsiIMHDyIlJQXr16/H0qVL4erqismTJ+PWrVvw8vLCkydPMG/ePADAr7/+iufPn2PmzJnQ19fH3r17MX36dFSqVAk1a9bE9OnTMWvWLEyfPh3169cHACxevBjbtm3DuHHjYGFhgadPn2LlypX45ZdfcOrUKchkMty8eRMDBw5EvXr1sHz5csTExGDKlClITk7O8X6tXr06y/3QNCZEvtD+/fuRkpKCQYMGoWrVqmrPDR06FHv37sX27dthZ2eHQ4cOoW3btihZsiSWL18ObW1tcd0XL15g5cqV0NXVhaWlJaKionDr1i0xs6eaa/nGjRuoVq1ahrFUqFABwcHBuHnzJgwMDBAQEIAtW7YAAJKTkz87lkn58uWhUChw5MgR1K5dG1FRUZg/f774WiIiIiIiIsofxsbGUCqVePr0Kf766y/89NNP4uQYTZo0gZGREaZOnYr+/fujevXquHz5MoYPH47WrVsDAGrXrg0DAwMUK1YM+vr64nfGatWqiX/HxcVhzJgxaq04ihcvjpEjRyI8PBx2dnZYvXo1SpcujVWrVqFYsWIAAENDQ/z666852p+3b99maz80jQmRL+Tr64tGjRqlS4YAQOXKldG6dWvs378fBw8exKtXr9C/f38YGBjAw8MDb968EdcdMWIElEol5syZg/j4eJiYmKB3794YMmQIAKBBgwaoVasWevXqhUWLFmUYy7Rp0zB9+nS4urqiWLFisLS0xMKFCzFmzBiEhoaiTp06me5Hu3btcPPmTSxYsAAJCQkwNTVFz549ceLECYSGhqJ3795feKSIiIiIiIgoI6pW+VeuXEFSUhIcHR3VhlhwdHQEAJw/fx7Vq1dH/fr14eXlhbCwMDRt2hRNmzbFmDFj0g2r8LE///wTwIcf41VjTp48eRLA/34Ev3r1Klq2bCkmQwDAyckJkydPztH+XLt2LVv7oWlMiHyhAwcOfPZ5VT8r4EOToY95eHiIf+vo6ODXX3/NNPNmaGiInTt3qi0bOXKk2uNKlSph48aN6V7r5OQk/h0QECD+7ezsDGdnZwCARCLB+PHjMX78eLXXftoNiIiIiIiIiPLW06dPoaurK84yM3jw4AzXi4uLAwAsXboUq1atwuHDh+Hv7w8tLS3Ur18fs2bNQuXKlTN8bWhoKGbOnInQ0FDIZDJUq1YN3333HYD/JWRev36N0qVLq71OR0fns5N9ZOTVq1fZ2g9NY0KEiIiIiIiISENSUlIQGBgIBwcHlCxZEsCH8T7MzMzSrWtsbAwAMDAwEH9Qj4qKwvHjx/HXX39h9uzZWLt2bbrXJSQkYODAgbCwsMDBgwdRtWpVaGlp4fTp0/D39xfXK1WqFJ49e5bu9a9fvxb/Vo1N+elspO/evUOJEiUAINv7oWmcZYaIiIiIiIhIQ3bs2IH4+Hj07t0btWrVglQqxdOnT2Frayv+09HRwZIlS/Dw4UM8evQIzZs3x5EjRwAAVatWxYABA9CgQQM8fvwYANTGqwSAqKgovHr1Cu7u7qhWrZrYEuXMmTMA/pfcaNiwIc6cOQOFQiG+9sKFC0hKShIf6+vrAwBiY2PFZa9fv0ZkZKT4ODv7URCwhQgRERERERFRPktISMB///0H4EMC4uXLlzh37hx27NiBzp0744cffgAADBw4EJ6enkhISED9+vXx9OlTeHp6QiKRwNLSEgYGBihfvjzmzJmDhIQEVK5cGSEhITh37hwGDRoE4EMLEgA4deoUDA0N8f3330NfXx+rVq2Cjo4OdHR04O/vj927dwOAmAAZPnw4AgICMGDAAAwcOBCvXr3CkiVL1PbDwsICFSpUwMqVK6Gvrw+JRILVq1dDJpOJ65QqVSrL/SgImBAhIiIiIiIiymdhYWH46aefAHzodlKiRAnI5XL8/vvv6Nmzp7je6NGjYWJigq1bt2LdunUwNDREw4YNMXbsWDHRsWLFCixZsgSenp54+fIlypcvj8GDB2PYsGEAgOrVq6Njx474559/cPbsWfj5+eGvv/7CwoUL8csvv6BEiRKwsrLCli1bMGjQIFy9ehWOjo4wMzPDP//8g/nz54txTJw4UW2sSW1tbSxfvhzz5s3D2LFjYWxsjL59+yIqKgrR0dE52g9Nkwiq0VOI8lhoaCgAwNbWVsOR0McSExNx69YtWFlZidM5U8GmUCggk8ng6+uL+Ph4TYdDREREVOiYmJiIE0rkVFJSEqKjo/H9999/dhYXTUpNTUVSUhJ0dXXTdZfJCxYWFhgxYkS6iT00Iav6yMn3ULYQISIqBFJSUnL9IU5EREREH7qpqMbOIAI4qCoRUYEnCALCwsLUBreigk2hULDOChHWV+HDOit8WGeFy7daX0yG0KfYQoSIqBBQKpVgD8fCQxAEKBQK1lkhwfoqfFhnhQ/rrHBhfdGnwsPDNR1CvmCKjIiIiIiIiIiKHCZEiIgKAalUColEoukwKJskEglkMhnrrJBgfRERERVN7DJDRFTASSQSWFtbQ0eHl+zCQiaTwdraWtNhUDaxvtRx0EEiIioqeHdNRFQI6OjocNpdIsp3XzItJRERUWHDhAgRUSERHx+P2NhYTYdBRERERPRNYHtIIiIiIiIiIipymBAhIiIiIiIioiKHCREiIiIiIiKiXEhLSyt0201NTcXWrVvRo0cP2Nvbo06dOujVqxd2794NQRCyXY5SqYS3t3eu4ygIOIYIERERERERUS5oaWl99YHvv2QAbKVSieHDhyMkJAQjRoxAkyZNkJqairNnz2LBggUICAiAl5cXtLW1syzLz88P8+fPR79+/XIVS0HAhIgGJSQkoHHjxihRogROnz4NqVSaZ2UrlUr8888/nz05fX19MXnyZISHh+fZdomIiIiIiIqSwjTw/erVq3H16lXs3r0bVatWFZebm5ujXr16+PHHH7F+/XoMHjw4y7Jy0pqkoGKXGQ06ePAgypQpg7dv3+LYsWN5WrYqW/c5Tk5OOHfuXJ5ul4iIiIiIiAqetLQ0+Pj4wNnZWS0ZomJtbY0uXbrAx8cHDx48gIWFBQIDA8XnHz58KC5T/bgOQFzm5eUFV1dXjBkzBg4ODpg9ezYA4Nq1a3B3d0ft2rVRv359TJ48GS9fvhTLDQkJgYuLC+zt7VG3bl2MHDkSjx8/zuej8QETIhq0Z88eNG3aFA0aNMD27dvztOzsZOt0dXVhYmKSp9slIiIiIiKigic6OhqvXr2Cg4NDpus0bNgQcXFxWY5R4uTkhClTpgAAzp07B3t7ewDAlStXYGxsjH///Rdubm4ICQmBm5sbqlevjp07d8LT0xPXr1/HgAEDkJqaitTUVAwZMgR169bF/v374e3tjcePH4tl5zcmRDQkMjIS169fR+PGjfHDDz8gMDAQ0dHR4vOOjo7w8vJSe83Hy1JTU7Fo0SI0b94cNWrUQLt27bBt2zYAyHa2ztfXFxYWFmL5ERER4slYo0YNtGrVChs2bMjvQ0FERERERET57PXr1wCAUqVKZbqO6rkXL158tixdXV0YGBgA+DCmSbFixcTnRo0ahUqVKsHMzAwbNmyAhYUFpk2bBnNzczRo0ABLlizBzZs3ce7cOSQkJODly5coW7YsTE1NYWNjg2XLlmH06NFfuLfZw4SIhuzevRt6enpo1qwZ2rRpA6lUmqNWIlu3bsWRI0ewdOlS+Pv7w9XVFb///juuXr2a7WzdxxQKBTw8PGBkZITt27fDz88P7dq1wx9//IFbt27l3Y4TERERERHRV6dKdrx9+zbTdVRJk9KlS+dqG2XKlBETJcCHH90/bZFiaWkJAwMDhIeHw9DQEAMHDsTs2bPRsGFD/PLLL7hy5YraD/f5iQkRDUhJScH+/fvh6OgIXV1dGBkZoUmTJti3bx/ev3+frTJiYmKgp6eHihUrwtTUFK6urti4cSO+//77bGfrPqZQKODu7o7p06fD3NwcZmZmGDVqFABw0FUiIiIiIqJCrnLlyjAxMcGVK1cyXefy5cswMTGBRCJJ91xqamqW29DV1VV7nNlQDoIgiJOKjB8/HgEBARg9ejQEQcDs2bPRvXt3JCcnZ7m9L8WEiAacPn0az549Q4cOHcRlHTp0wKtXr3D48OFsldGnTx8kJCSgefPmcHZ2xp9//onSpUujTJkymb7m02zdx0qXLg0XFxf4+flhxowZ6N+/P1q0aAFAc3NrExERERERUd7Q1tZGv379sHv3bkRGRqZ7/s6dO9i3bx9cXV1RvHhxAB9mRlW5d++e2voZJU0+ZWFhgaCgILVlt2/fRkJCAszNzREVFYUZM2agTJky6N27N5YvX45169YhMjISt2/fzsVe5gyn3dUAX19fAMCIESPSPbd9+3Z07do1w9elpKSIf5uZmeHo0aO4fPkyzp8/j1OnTmHt2rWYP38+unXrluHrP83WfSw+Ph4//fQTSpcuDUdHRzRp0gS2trZo3rx5DvaMiIiIiIiICioPDw+EhoaiT58+GDlyJJo0aQLgw1ALy5cvR4MGDTBo0CBoaWnB1NQUmzZtgpmZGV69egVPT0+1JIienh4A4MaNG6hWrVqG2+vfvz9cXFwwe/ZsuLi44NmzZ5g9ezasra3RsGFDJCQk4ODBg0hKSsLgwYOhpaWFvXv3wtDQMMOZcPIaEyJf2fPnz3H69Gk4Ozujf//+as95e3tjz549iIiIgFQqVcvGJSQk4Pnz5+LjzZs3o0yZMujQoQMaN26MCRMmoH///jh06BC6deuWrWzdx/z8/PDq1Sv4+/uLTZdUXWW+hfmliYiIiIiI8sPXnrnzS7anpaUFT09P7Nu3Dzt27MDSpUshCAKqV6+O8ePHo0ePHuJ3yYULF2LevHno0qULqlSpgsmTJ2Pw4MFiWQ0aNECtWrXQq1cvLFq0KMPt1apVC+vWrcOyZcvQtWtX6Ovro3Xr1hg3bhykUilKlSqFtWvX4s8//8SPP/6I1NRU2NnZYePGjdDX18/1fmYXEyJf2f79+5GSkoJBgwaly3gNHToUe/fuxfbt22FnZ4dDhw6hbdu2KFmyJJYvXw5tbW1x3RcvXmDlypXQ1dWFpaUloqKicOvWLbi7uwPIXrbuY+XLl4dCocCRI0dQu3ZtREVFYf78+QDwVfpuERERERERFTZpaWlwdnbWyHa1tHI/AkbXrl0z7ZmgUqdOHbF3g0pYWJj4t6GhIXbu3Kn2/MiRI9OV07BhQzRs2DDT7djb22PLli3ZiDrvMSHylfn6+qJRo0YZNv+pXLkyWrdujf379+PgwYN49eoV+vfvDwMDA3h4eODNmzfiuiNGjIBSqcScOXMQHx8PExMT9O7dG0OGDAGQvWzdx9q1a4ebN29iwYIFSEhIgKmpKXr27IkTJ04gNDQUvXv3zruDQERERERE9A34kqREYdzut0YisD8E5ZPQ0FAAgK2trYYjoY8lJibi1q1bsLKyElsSUcGmUCggk8mwevVqxMbGajocIvqGlS9fXvxxpSDjZ1nhwzorXFhf6pKSkhAdHS3O6FkQpaamIikpCbq6umo9C75FWdVHTr6HMq1EREREREREREUOEyJEREREREREVOQwIUJERERERERERQ4TIkRERERERERU5HCWGSKiQuJrz3FPREUPrzNERFSUMCFCRFQIpKSkaGSOeyIqetLS0jidIxERFQn8tCMiKuAEQUBYWBgUCoWmQ6FsUigUrLNChPWljskQIiIqKviJR0RUCCiVSgiCoOkwKJsEQYBCoWCdFRKsLyIioqKJCREiIiIiIiKiXEhN1UwyPbfbdXR0hIWFhfivRo0aaNu2LdatW5fHEarz9fWFhYWF+NjCwgK+vr75us3s4BgiRERERERERLmgrS3B6NHxuHtX+dW2Wa2aFMuW5X4QbA8PD3h4eAAAkpKSEBISgqlTp0Imk6FPnz55FaYaJycnNG3aNF/K/hJMiBARFXASiQRSqVTTYRARERFRBu7eVeLmzWRNh5Ftenp6arOKVapUCYGBgdizZ0++JUR0dXWhq6ubL2V/CXaZIaJCLS0tTdMh5DuZTAZra2tIJBJNh0JERERE36CPkxVubm6YNm0aevbsiTp16mD//v1ITk7GH3/8AUdHR9SoUQP16tXDL7/8ghcvXoiv27dvHzp06ABbW1s0bdoUc+fORXLyh0TRp11mCgq2ECGiQk1LSwu+vr6Ij4/XdCj5xsTEBM7OzlAqv15TTCIiIiIqGkJCQuDn54eRI0eKy3bt2oVFixbBwsICJiYmWLhwIU6ePIkFCxbA1NQU4eHhmDx5Mv7++2/89ttvuH37NqZOnYrFixejZs2aiIyMxLhx41CqVCn8/PPPGty7z2NChIgKvfj4eMTGxmo6DCIiIiKiAm/16tXYsGEDgA8zGSqVStSqVQudOnUS17GyslJ7bGtri3bt2qFOnToAAFNTUzRq1AgREREAgIcPH0IikcDU1BTfffcdvvvuO6xfvx76+vpfcc9yjgkRIiIiIiIioiKiV69ecHNzAwCkpKTg/v37WLp0Kfr06YNdu3YBAKpUqaL2mi5duuDChQtYvHgx7t27h6ioKERHR4sJkqZNm8Le3h49evRAxYoV0bhxY7Rq1Qo1atT4ujuXQ0yIEBERERERERURhoaGagkPc3NzGBoawsXFBRcuXACAdAOgTp8+Hf7+/ujatSscHR0xfPhwrF+/Hk+fPgUAFC9eHJs3b0ZYWBjOnTuHc+fOYejQoejatSvmz5//9XYuh5gQISIiIiIiIirCBEEAkPGEBS9fvsSOHTuwdOlSODk5icujoqKgp6cHADh9+jRCQ0MxYsQIWFtbY/Dgwfj777+xatUqJkSKGkdHRzx69Eh8LJVKYWpqip49e2LgwIHZKiMwMBDu7u44ceIEKlasmOfrExERERER0ZerVk1aqLaXmJgoTkggCAJiYmIwb948lC1bFg0bNsTGjRvV1tfX14eBgQFOnDgBGxsbJCUlYcuWLbh58yZq1aoF4MN33pUrV0JfXx+tWrXC69evcerUKdjb239RrPmNCZF84uHhAQ8PDwBAUlISQkJCMHXqVMhksnyZ29ne3h7nzp1D6dKl87xsIiIiIiIiSi81VcCyZSYa2a62tiRXr92wYYM4qKqWlhaMjIxQp04dLF68GDKZLN36UqkUnp6eWLBgATp16gRDQ0PUr18fY8eOxerVq6FQKNCoUSPMnTsXGzZswNKlS6Grq4vmzZtj0qRJX7Sf+Y0JkXyip6cHE5P/vTEqVaqEwMBA7NmzJ18SIsWKFVPbHhEREREREeWv3CYlNLXdgICALNfx8fFJt6xx48Y4cOBAuuVDhgwR/3Z2doazs3OGZX76XHh4eHbCzXdamg6gKPl4YBpBELB27Vq0atUKtWrVQpcuXbB///5MX5uamoqlS5eiSZMmsLOzw6hRozB37lxxdODAwEBYWFjg4cOHAD502/Hy8lIr4+Nlvr6+aNOmDbZv344WLVqgVq1aGDVqFJ4+fYrx48fD3t4ezZo1w+7du/P6MBARERERERFpHBMiX0lISAj8/PzQs2dPAMDSpUuxbds2TJs2DQcOHIC7uzt+//13/PPPPxm+fvHixdixYwdmzJiBPXv2wMTEJMPMXU48fvwYR44cwZo1a7B8+XKcOHECnTp1go2NDfbs2YNmzZrh999/x8uXL79oO0REREREREQFDbvM5JPVq1eL/bKUSiWUSiVq1aqFTp06ITExEd7e3liyZAlatGgBAKhcuTIePXqE9evXp+tSo1AosHXrVkyePBlt2rQBAEydOhXXrl37ohhTUlIwbdo0mJubQy6Xw9LSElKpFP379wcA9O/fH7t27cK9e/dQqlSpL9oWERERERERUUHChEg+6dWrl9idJSUlBffv38fSpUvRp08fzJo1C+/fv8e4ceOgpfW/RjopKSlITk5GUlKSWlmRkZFISkqCnZ2duEwikaB27dq4ffv2F8VZuXJl8W89PT1UqFBBfFy8eHEAQHJy8hdtg4iIiIiIiKigYUIknxgaGqJKlSriY3NzcxgaGsLFxQVnz54FACxbtgxVq1ZN99pixYqpPdbR+VBNqrmhcyslJSXdMqlUfcqmjxM0RERERERE9MGXfh+jvJGX9cBvv1+RquIsLS2ho6ODx48fo0qVKuK/06dPY/369emSElWqVIGuri7+++8/teXXr1/PdFtSqRQJCQni44SEBDx//jzvdoaIiIiIiKgIUP2InJiYqOFICPhfPXz6435usIVIPklMTER8fDyAD4mQmJgYzJs3D2XLlkXjxo3Rq1cveHp6Ql9fHw4ODggMDMSiRYvUpi1SkclkcHNzw/Lly2FiYgJzc3Ps3LkT169fR7169TLcvp2dHQ4dOoS2bduiZMmSWL58ObS1tfN1n4mIiIiIiL412traMDIyQlxcHIAPQw1IJJqZbjczqampeP/+PQB8s9/7BEFAYmIi4uLiYGRklCf7yYRIPtmwYYM4qKqWlhaMjIxQp04dLF68GDKZDJMnT0apUqXg6emJuLg4VKhQAaNGjcLAgQMzLO+XX36BUqnE1KlToVAo0LJlS7Rq1Uo86T81duxYvHr1Cv3794eBgQE8PDzw5s2bfNtfIiIiIiKib1X58uUBQEyKFDRpaWlISUmBjo7ONz8MgpGRkVgfX0oisCNUoXDs2DHUrl0bpUuXFpd5eHigfPnymDdvngYjy1xoaCgAwNbWVsOR0McSExNx69YtWFlZQU9PT9Ph5InVq1cjNjZW02Hkm/Lly2PIkCFQKBSQyWSaDoey4Vt8n33LWF+FD+us8GGdFS6sr8ylpqZCqVRqOox0FAoFoqKiULVq1W/6flEqlWbZMiQn30PZQqSQWL9+PbZu3YoJEyZAX18fJ06cwKVLl8RWKERERERERJS/tLW1C2SXlLS0NAAfZgrV1dXVcDSFx7fdluYbsnjxYpQoUQL9+vVDx44dceDAAXh6eqJBgwaaDo2IiIiIiIio0GELkUKiYsWKWLFihabDICIiIiIiIvomsIUIERERERERERU5bCFCRIWeiYmJpkPIV9/6/hERERERaQITIkRUqKWlpcHZ2VnTYeS7lJQUTYdARERERPRNYZcZIirUvvV51oEP06iFhYWBs6QTEREREeWdb/+bBBFRIScIQoGc756IiIiIqDBjQoSIiIiIiIiIihwmRIiIiIiIiIioyGFChKiIkUgkkMlkkEgkmg6FskkikUAqlWo6DCIiIiKibwpnmSECkJoqQFu7aCQIZDIZrK2tNR0G5YBMJoOVlQ1SUpI1HQoRERER0TeDCREiANraEoweHY+7dzlwJRU81apJsWyZCTjzLhERERFR3mFChOj/3b2rxM2b/AWeiIiIiIioKOAYIkRERERERERU5DAhQkRERERERERFDhMiRERERERERFTkMCFCREREREREREUOEyIFlKOjIywsLMR/NWrUQNu2bbFu3bp83a6XlxccHR0BAA8fPoSFhQUCAwPzdZtEREREREREXxtnmSnAPDw84OHhAQBISkpCSEgIpk6dCplMhj59+uTbNvOrbCIiIiIiIqKCggmRAkxPTw8mJibi40qVKiEwMBB79uzJt6RFiRIlUKJEiXwpm4iIiIiIiKigYEKkkNHV1RX/dnNzg5mZGW7fvo3o6GhMnz4d7dq1w9KlS+Hv74+4uDjo6emhYcOGmDFjBkqXLo1JkyZh79696co1NTVFQEAAvLy8sHfvXgQEBHzN3SIiIiIiIiL6qjiGSCESEhICPz8/9OzZU1y2a9cuuLu7Y+vWrWjatCkWLlyIo0ePYsGCBfD398eCBQtw6dIl/P333wCA3377DefOnRP/eXp6QltbGyNHjtTUbhERERERERF9dWwhUoCtXr0aGzZsAAAolUoolUrUqlULnTp1EtexsrJSe2xra4t27dqhTp06AD60/GjUqBEiIiIAAAYGBjAwMAAAxMTEYMaMGfDw8EC3bt2+1m4RERERERERaRwTIgVYr1694ObmBgBISUnB/fv3sXTpUvTp0we7du0CAFSpUkXtNV26dMGFCxewePFi3Lt3D1FRUYiOjhYTJCqvX7/G4MGDUbduXYwbN+7r7BARERERERFRAcGESAFmaGiolvAwNzeHoaEhXFxccOHCBQDqY4oAwPTp0+Hv74+uXbvC0dERw4cPx/r16/H06VNxHaVSiREjRkAmk2HhwoWQSCRfZ4eIiIiIiIiICggmRAoZQRAAAGlpaemee/nyJXbs2IGlS5fCyclJXB4VFQU9PT3x8fTp0xEdHY3du3erLSciIiIiIiIqKpgQKcASExMRHx8P4EMiJCYmBvPmzUPZsmXRsGFDbNy4UW19fX19GBgY4MSJE7CxsUFSUhK2bNmCmzdvolatWgA+jEty6NAhrF69GlKpVCwfAEqXLv31do6IiIiIiIhIg5gQKcA2bNggDqqqpaUFIyMj1KlTB4sXL4ZMJku3vlQqhaenJxYsWIBOnTrB0NAQ9evXx9ixY7F69WooFArs2LEDSUlJ6Nu3b7rXnzhxIt/3iYiIiIiIiKggYEKkgAoICMhyHR8fn3TLGjdujAMHDqRbPmTIkGyVO3LkSHEK3ooVKyI8PDw74RIREREREREVKlqaDoCIiIiIiIiI6GtjQoSIiIiIiIiIihwmRIiIiIiIiIioyGFChIiIiIiIiIiKHA6qSvT/qlWTajoEogzx3CQiIiIiyntMiBABSE0VsGyZiabDIMqUUpmq6RCIiIiIiL4p7DJDBEBbW6LpEL4ahUKBsLAwKBQKTYdC2aRQKHDr1k0IgqDpUIiIiIiIvhlMiBAVMYIgQKFQ8Mt1ISIIApRKpabDICIiIiL6pjAhQkRERERERERFDhMiRESFgFQqhURSdLp2FXYSiQQymYx1Vkiwvgof1lnhwzojooKIg6oSERVwEokE1tbW0NHhJbuwkMlksLa21nQYlE2sr8KHdVb4FOQ6S0tLg5YWfycmKop4d01EVAjo6OjA19cX8fHxmg6FiIjom2FiYgJnZ2dNh0FEGsKECBFRIREfH4/Y2FhNh0FERERE9E1g2zAiIiIiIiIiKnKYECEiIiIiIiKiIocJESIiIiIiIiIqcpgQISIiIiIiIqIihwmRfJaSkoJNmzbB2dkZ9vb2aNCgATw8PHDp0iVNhwYvLy84OjpqOgwiIiIiIiKir46zzOSj9+/fo3///njy5AlGjRoFe3t7JCUlYc+ePejfvz8WLlyITp06aTpMIiIiIiIioiKHCZF85OnpifDwcPj5+aFChQri8t9++w0JCQmYM2cOHB0dUaJECQ1GSURERERERFT0sMtMPlEqldizZw+cnZ3VkiEqo0ePxtq1a6Grq4uIiAgMGTIEdevWRY0aNdCqVSts2LBBXNfLywv9+vXDmjVr0KxZM9ja2sLV1RWRkZHiOlmVAQA7duxAmzZtULNmTQwdOhSvX79Wez47ZRARERERERF9C5gQyScPHjzAq1ev4ODgkOHz5cqVQ82aNZGcnAwPDw8YGRlh+/bt8PPzQ7t27fDHH3/g1q1b4vpXr15FUFAQ1qxZg61bt+L58+eYOXMmAEChUGRZhp+fH2bNmoV+/frh33//hYODA/755x+x/OyUQURERERERPStYEIkn6haXxgaGn52PYVCAXd3d0yfPh3m5uYwMzPDqFGjAADh4eHieikpKVi4cCEsLS1ha2uLXr16ITg4ONtl+Pj4wMnJCX369MH333+PwYMHo2XLljmOg4iIiIiIiOhbwDFE8knp0qUBAK9evcpyPRcXF/j5+SEsLAwxMTG4ffs2ACAtLU1cz9jYWC25YmBgAKVSme0yIiIi0KFDB7Vt29vbi+tlNw4iIiIiIiKibwFbiOSTSpUqwdjYWGzF8anIyEh4eHggKCgInTt3xq5du1CuXDm4uLhg79696dYvVqxYptuKj4/PVhmfJjakUmmOyyAiIiIiIiL6FrCFSD7R0tJCjx494OPjgwEDBqQbWHXdunUIDQ3F5cuX8erVK/j7+4sJClUXFUEQsrUtPz+/LMuwsrJCcHAw+vXrJ74uNDQ0R2UQERERERERfSvYQiQfDR06FGZmZnBxccG+ffsQExODkJAQTJ48Gfv27cPs2bNhZmYGhUKBI0eO4PHjxzh37hzGjh0LAEhOTs7WdsqXL59lGYMHD8axY8ewbt063Lt3Dz4+PvD3989RGURERERERETfCrYQyUcymQxbtmzBhg0bsHbtWjx+/Bi6urqwtraGj48P6tSpA0EQcPPmTSxYsAAJCQkwNTVFz549ceLECYSGhqJ3795Zbqddu3ZZltGiRQv8+eef8PLygqenJ+zs7ODh4QE/P79sl0FERERERET0rZAI7A9B+UTVJcfW1lbDkdDHEhMTcevWLVhZWUFPT0/T4VA2KBQKyGQyrF69GrGxsZoOh4iI6JtRvnx5DBkyRNNhFDi8Xyx8WGf/k5PvoewyQ0RERERERERFDhMiRERERERERFTkMCFCREREREREREUOEyJEREREREREVORwlhkiokLCxMRE0yEQERF9U/jZSlS0MSFCRFQIpKSkwNnZWdNhEBERfXPS0tKgpcWG80RFEd/5REQFnCAICAsLg0Kh0HQolE0KhYJ1Voiwvgof1lnhU5DrjMkQoqKL734iokJAqVRCEARNh0HZJAgCFAoF66yQYH0VPqyzwod1RkQFERMiRERERERERFTkMCFCREREREREREUOEyJERAWcRCKBVCrVdBhERERERN8UJkSIiAqwtLQ0yGQyWFtbQyKRaDocIiIiIqJvBhMiREQFmJaWFs6cOQMdHc6STkRERESUl5gQISIq4F69eqXpEIiIiIiIvjlMiBARERERERFRkcOECBEREREREREVOUyIEBEREREREVGRw1H6/l9KSgr++ecf/Pvvv4iOjkbx4sVhbW2NwYMHo0GDBnm2ncTEROzduxd9+vTJdRmTJk3C3r171Zbp6OigVKlSaNiwISZPnozSpUsDANzc3GBqaooFCxZ8UdxERERERERE3xImRAC8f/8e/fv3x5MnTzBq1CjY29sjKSkJe/bsQf/+/bFw4UJ06tQpT7a1YcMG+Pr6flFCBADs7e3h5eUlPk5KSsK1a9cwa9YsvHr1CmvXrgUAeHl5QVtb+4u2RURERERERPStYUIEgKenJ8LDw+Hn54cKFSqIy3/77TckJCRgzpw5cHR0RIkSJb54W4IgfHEZACCVSmFiYqK2rFKlSoiJiYGXlxfevn0LAwMDGBkZ5cn2iIiIiIiIiL4lRX4MEaVSiT179sDZ2VktGaIyevRorF27Frq6ugA+TH85c+ZMNG/eHDVr1kSvXr0QGBgorq9QKPDbb7+hcePGsLW1RdeuXXH06FEAH1prrFixAo8ePYKFhQUePnyI5ORk/PHHH3B0dESNGjVQr149/PLLL3jx4kWu9qd48eKQSCRiqxA3NzdMmjRJfD4kJAT9+vWDvb09GjVqhBkzZkChUAAAXr9+jalTp6Jp06awsbFBw4YNMXXqVPF5IiIiIiIiom9FkU+IPHjwAK9evYKDg0OGz5crVw41a9aEtrY2UlNT4eHhgatXr2LRokXw9fWFXC7HgAEDEBISAuB/rU3WrFmDQ4cOoVmzZhgzZgwePnwIDw8PeHh4oHz58jh37hwqVKiAhQsX4ujRo1iwYAH8/f2xYMECXLp0CX///XeO9kMQBAQHB2PTpk344YcfoKenl+G+9u3bF2XLlsWOHTvg5eWF8+fPY+bMmQA+jE0SFhaGFStWwN/fH5MnT8a+ffuwY8eOHB5VIiIiIiIiooKtyHeZef36NQDA0NAwy3XPnTuHmzdv4sCBA5DL5QCAmTNnIjQ0FOvXr4enpydiYmJQokQJVKpUCSVLlsQvv/yCunXrwtDQECVKlICenh60tbXF7i62trZo164d6tSpAwAwNTVFo0aNEBER8dlYrl69Cnt7e/Hx+/fvUbp0aTg5OWH06NEZvmbnzp0wMjLCvHnzoKPzoernzJmDa9euAQAaN26MunXrwsLCAgBQsWJFbNmyJctYiIiIiIiIiAqbIp8QUc3G8urVqyzXjYiIgIGBgZgMAQCJRII6derg3LlzAIBBgwZh6NChaNiwIWrWrInGjRujU6dOMDAwyLDMLl264MKFC1i8eDHu3buHqKgoREdHiwmSzNSoUQOLFy8GAERGRmL27NmwtLTEL7/8kmHrEFX8NjY2YjIEABo0aCDOouPi4oKAgADs3bsX9+7dw927d/Hw4UNUrVo1y2NDREREREREVJgU+S4zlSpVgrGxMYKDgzN8PjIyEh4eHrhz506mA6IKgiAmGezt7XH69GksX74cNjY22LdvH5ycnHDx4sUMXzt9+nSMGTMGSqUSjo6O+PPPP9GhQ4cs49bV1UWVKlVQpUoVODo6Yu3atbh06RLGjh2baZwfJ0I+lZaWhiFDhmDOnDnQ0dGBk5MTVq9enWlXIiIiIiIiIqLCrMgnRLS0tNCjRw/4+vriyZMn6Z5ft24dQkNDYWpqCgsLC7x9+1atC4kgCAgKCkK1atUAAMuXL0dQUBBatWqFqVOnwt/fH5UqVYK/vz+ADy1KVF6+fIkdO3ZgxowZmDx5MpydnWFlZYWoqKgcz0ZTrVo1jB8/HqdOncL27dszXScsLAypqanismPHjsHR0RH//fcfzpw5A09PT4wfPx6dO3dG5cqVERMTk2cz4xAREREREREVFEU+IQIAQ4cOhZmZGVxcXLBv3z7ExMQgJCREHFR09uzZ0NPTQ5MmTWBlZYVx48bh8uXLiIyMxKxZsxAREYG+ffsC+DBw6YwZM3Dx4kU8evQI/v7+ePz4sTjeh56eHl6/fo3o6Gjo6+vDwMAAJ06cwP379xEeHo5p06bh5s2bSE5OzvF+uLi4oE6dOli8eDGePn2a4fMvX77EjBkzEBkZiStXrmDhwoVo0KABTE1NoaOjg8OHD+PBgwcIDQ3F6NGjER8fn6tYiIiIiIiIiAoyJkQAyGQybNmyBd27d8fatWvRpUsXDBkyBHFxcfDx8UG7du0AANra2tiwYQOsra0xYsQIdO/eHXfu3IG3tzfs7OwAADNmzEDDhg3x66+/om3btmKLiy5dugAAfvjhB5iYmKBz584ICwuDp6cnIiIi0KlTJwwcOBAKhQJjx47F3bt3czzdrUQiwZw5c6BUKvH777+ne75cuXLYsGEDoqKi0LVrV4wZMwYtW7bE9OnTUa5cOSxYsAABAQFwcnLCL7/8gnLlyqFfv364cePGFx1fIiIiIiIiooJGIrA/BOWT0NBQAB9m0qGCIzExEbdu3YKVlVWmA/BSwbJ//3507twZCoUCMplM0+FQNvB9Vriwvgof1lnhwzorXFhfhQ/r7H9y8j2ULUSIiIiIiIiIqMhhQoSIiIiIiIiIihwmRIiIiIiIiIioyGFChIiIiIiIiIiKHCZEiIgKOCMjI02HQERERET0zWFChIioAEtLS0OzZs2QkpKi6VCIiIiIiL4pTIgQERVgWlpaUCgUCAsLA2dJJyIiIiLKO0yIEBEVcIIgQKlUajoMIiIiIqJvChMiRERERERERFTkMCFCREREREREREUOEyJERIWAVCqFRCLRdBiUTRKJBDKZjHVWSLC+Ch/WGRER5QUdTQdARESfJ5FIYG1tDR0dXrILC5lMBmtra02HQdnE+ip8CmudpaWlQUuLv0cSERUUvLsmIioEdHR04Ovri/j4eE2HQkREuWBiYgJnZ2dNh0FERB9hQoSIqJCIj49HbGyspsMgIiIiIvomsM0eERERERERERU5TIgQERERERERUZHDhAgRERERERERFTlMiBARERERERFRkcNBVXPJ0dERjx49Eh9LpVIYGxujefPm+OWXX1C6dGkNRpc7bm5uMDU1xYIFCzQdChEREREREVG+YkLkC3h4eMDDwwMAkJSUhIiICCxatAiurq7YsWMHDAwMNBwhEREREREREWWEXWa+gJ6eHkxMTGBiYoJKlSqhVatW2LBhA548eYJ169ZpOjwiIiIiIiIiygQTInnsu+++Q5s2bXDw4EEAwNu3bzFt2jQ0aNAAtWvXhru7O0JDQ8X1vby80K9fP6xZswbNmjWDra0tXF1dERkZKa5jYWGBHTt2wMXFBba2tmjfvj2Cg4OxY8cOtGjRAg4ODhg9ejSSkpLE1+zatQudOnVCzZo1YWdnBxcXF7XtOjo64o8//oCTkxPq16+Py5cvq+1HSkoKRo0ahRYtWiAmJia/DhcRERERERGRRjAhkg/kcjkePHiAhIQEDBo0CA8ePMDq1auxc+dO2NnZoXfv3ggLCxPXv3r1KoKCgrBmzRps3boVz58/x8yZM9XKXLp0KQYOHIh///0XBgYGGDp0KPz9/bFmzRrMnz8fx48fx65duwAAx44dw6xZszBw4EAcPnwY3t7eeP/+PaZOnapW5pYtWzB16lSsW7cOdnZ24vLU1FRMmDABN27cgI+PDypXrpx/B4uIiIiIiIhIA5gQyQclS5YEAAQEBOC///7DsmXLUKtWLZibm2Ps2LGws7PD5s2bxfVTUlKwcOFCWFpawtbWFr169UJwcLBamd27d4ejoyOqVq2KLl264PXr15g+fTrkcjnatm0LKysr3LlzBwBgZGSEuXPnokuXLjA1NYWdnR169OiBiIgItTKbN2+ORo0awdbWFsWKFQMApKWlYfLkybh+/Tp8fHxQqVKl/DxURERERERERBrBQVXzwdu3bwEADx48gCAIaNmypdrzycnJeP/+vfjY2NgYhoaG4mMDAwMolUq111SpUkX8WyaTAYBayw1dXV0kJycDAOrWrYvIyEisXLkSUVFRuH//PsLDw5GWlpZpmSqHDx+GUqmEubk5TExMcrTfRERERERERIUFEyL54ObNmzAzM4NUKoW+vj58fX3TraNqkfHp35nR0UlfVVpaGTfwOXDgACZNmoROnTrBwcEBvXr1QkREBGbNmqW2nq6ubrrXli1bFkuWLIGHhwdWrFiBsWPHZhkbERERERERUWHDLjN5LDY2FidOnECnTp0gl8uRkJAApVKJKlWqiP/Wrl2LEydO5FsMa9asQY8ePbBgwQL06dMHdevWxYMHDwAAgiB89rV169ZFrVq1MH78eKxfvx43btzItziJiIiIiIiINIUJkS+QmJiI+Ph4xMfH48GDBzh+/DgGDhyIihUron///mjatCmsrKwwZswYXLp0Cffv38f8+fPh6+sLc3PzfIurQoUKCA4Oxs2bNxETEwNvb29s2bIFAMRuNVnp1asXatasicmTJ2f7NURERERERESFBRMiX2DDhg1o0qQJmjRpgvbt2+OPP/5Aq1atsHXrVpQoUQLa2trYsGEDatSogdGjR6Nz5864cuUKVqxYgYYNG+ZbXNOmTYOxsTFcXV3Rs2dPnDx5EgsXLgQAtal3P0cikWDOnDmIjo7GX3/9lW+xEhEREREREWmCRMiqDwVRLqmSL7a2thqOhD6WmJiIW7duwcrKCnp6epoOh7JBoVBAJpNh9erViI2N1XQ4RESUC+XLl8eQIUM0HYbG8P6jcGF9FT6ss//JyfdQthAhIiIiIiIioiKHCREiIiIiIiIiKnKYECEiIiIiIiKiIocJESIiIiIiIiIqcnQ0HQAREWWPiYmJpkMgIqJc4jWciKjgYUKEiKgQSElJgbOzs6bDICKiL5CWlgYtLTbQJiIqKHhFJiIq4ARBQFhYGBQKhaZDoWxSKBSss0KE9VX4FNY6YzKEiKhg4VWZiKgQUCqVEARB02FQNgmCAIVCwTorJFhfhQ/rjIiI8gITIkRERERERERU5DAhQkRUCEilUkgkEk2HQURERET0zeCgqkREBZxEIoG1tTV0dDK+ZHOQPiIiIiKinGNChIioENDR0YGvry/i4+PVlpuYmHD2GSIiIiKiXGBChIiokIiPj0dsbKymwyAiIiIi+iawjTURERERERERFTlMiBARERERERFRkcOECBEREREREREVOUyIEBEREREREVGRw0FVvxI3Nzdcvnw5w+c8PDxw48YNmJqaYsGCBdkqz9HREd26dcPIkSPzMkw1vr6+mDx5MsLDw/NtG0RERERERESawITIV9S+fXv89ttv6ZbLZDKkpKRAW1tbA1ERERERERERFT1MiHxFurq6MDEx0XQYREREREREREUexxApINzc3DBp0iQAH7qqtGnTRvy/Ro0acHZ2RlBQUKav37VrFzp16oSaNWvCzs4OLi4uCA0NFZ93dHTE+vXrMXLkSNjb26N+/fqYM2cOUlJSxHWOHTuGTp06wdbWFi4uLnj8+HH+7TARERERERGRBjEhUkA9efIE27dvx6JFi7B3717IZDJMmjQJgiCkW/fYsWOYNWsWBg4ciMOHD8Pb2xvv37/H1KlT1dbz9PRE3bp1sX//fkyYMAFbtmyBn58fACA4OBgjR45E27ZtsX//fnTr1g1r1qz5KvtKRERERERE9LUxIfIVHThwAPb29mr/Bg4cmOG6SqUSM2fOhJ2dHapXr47+/fsjJiYG8fHx6dY1MjLC3Llz0aVLF5iamsLOzg49evRARESE2npNmjSBu7s7KlWqhO7du8PS0hLBwcEAgC1btsDBwQEjRozA999/j549e+Knn37K+4NAREREREREVABwDJGvyNHREePHj1dbpqurm+n65ubm4t8GBgYAPiRKPlW3bl1ERkZi5cqViIqKwv379xEeHo60tLRMy1OVqSovIiICjRs3Vnve3t4emzdvzsaeERERERERERUuTIh8RSVKlECVKlWyvX6xYsXSLcuoy8yBAwcwadIkdOrUCQ4ODujVqxciIiIwa9asbJcnkUjSJVCkUmm2YyUiIiIiIiIqTJgQ+QasWbMGPXr0wMyZM8VlJ06cAPAh4SGRSLIsw9LSEteuXVNbduPGjbwNlIiIiIiIiKiA4Bgi34AKFSogODgYN2/eRExMDLy9vbFlyxYAQHJycrbK8PDwwO3bt/HHH38gOjoa+/fvF8sgIiIiIiIi+tYwIfINmDZtGoyNjeHq6oqePXvi5MmTWLhwIQCoTb37OVZWVli7di0CAwPRuXNneHt7Y+jQofkZNhEREREREZHGsMvMV+Lj45Pt552dneHs7Kz2fP369REeHi4+DggIEP+uVKkSNm7cmK5MJyenDNfPLKaGDRvC19dXbdmgQYM+GzcRERERERFRYcQWIkRERERERERU5DAhQkRERERERERFDhMiRERERERERFTkMCFCREREREREREUOB1UlIiokTExMsrWMiIiIiIiyxoQIEVEhkJKSkm72KZW0tDRoabHBHxERERFRTvAOmoiogBMEAWFhYVAoFBk+z2QIEREREVHO8S6aiKgQUCqVEARB02EQEREREX0zmBAhIiIiIiIioiKHCREiIiIiIiIiKnKYECEiKgSkUikkEommw6BskkgkkMlkrDMiIiKiAoyzzBARFXASiQTW1tbQ0eElu7CQyWSwtrbWdBiFCmdLIiIioq+Nd9dERIWAjo4OfH19ER8fr+lQiPKciYlJptNKExEREeUXJkSIiAqJ+Ph4xMbGajoMIiIiIqJvAtumEhEREREREVGRw4QIERERERERERU5TIgQERERERERUZHDMUS+gCAI2Lt3L/bu3Ys7d+4gISEBFSpUQIsWLTB48GCYmJhoOkQiIiIiIiIiygBbiORSWloahg8fjgULFqBly5bw8fHB0aNHMXXqVISGhqJ79+54/vy5psMkIiIiIiIiogywhUgueXt74/Tp09i5cydsbGzE5d999x3q16+PDh06YP369ZgwYYIGoyQiIiIiIiKijLCFSC4IgoAtW7agc+fOaskQFV1dXWzevBmjR48GADx9+hRjxoxBnTp1UL9+fQwdOhT37t0T1580aRJGjRoFDw8PODg4YO3atfDy8kK/fv2wYsUKNGrUCPb29pg+fTqePHmCIUOGoFatWmjTpg1OnTollvP48WOMGTMGDRs2hI2NDZo1a4ZFixYhLS0NAODr64s2bdqI/9eoUQPOzs4ICgoCAGzatAn29vZQKBRimWlpaWjWrBn++eefvD+QRERERERERBrChEguPHz4EI8ePUKjRo0yXcfU1BTFihVDYmIi3NzcAABbtmyBj48PSpUqhR9//BFPnz4V1/f390ejRo2wZ88edOzYEQBw9epVREdH459//sHUqVOxY8cO9OjRA+3bt4evry/Mzc0xadIkCIIAABg2bBjevn2LjRs34siRI/Dw8MC6desQEBAgbufJkyfYvn07Fi1ahL1790Imk4lldOrUCUqlEkePHhXXv3DhAl6+fCnGRERERERERPQtYEIkF549ewYAKF26tNryoUOHwt7eXvzXoUMHHDx4EG/evMGiRYtgaWkJuVyOuXPnQl9fHzt37hRfa2hoiIEDB+L7779HhQoVAHxonTFz5kx8//336N69O0qVKoUGDRqga9euMDc3R+/evfHy5UvEx8cjKSkJXbp0wezZs2FpaYlKlSqhX79+MDY2Rnh4uLgdpVKJmTNnws7ODtWrV0f//v0RExOD+Ph4lC5dGo6Ojti/f7+4/t69e+Ho6AhDQ8P8PKREREREREREXxXHEMmFUqVKAQBev36ttnzmzJlISkoCAPj4+CAgIABhYWF4/fo16tatq7bu+/fvERkZKT6uUqVKuu2UKVMG+vr64mM9PT1UrlxZfKyrqwsASE5Ohq6uLlxdXXHkyBGEhITg/v37CA8Px7Nnz8QuMyrm5ubi3wYGBgA+JEoAoHv37hg2bBji4uKgp6eH48ePY/ny5dk8MkRERERERESFAxMiuVCpUiWYmJggMDAQTk5O4vJy5cqJf6taVKSlpeH777/H33//na4cPT098W9VcuNjUqk03TItrYwb9SQmJsLV1RVJSUlo164dunXrhpo1a6JPnz7p1i1WrFi6ZapuN02aNIGxsTH8/PxgZGSEkiVLokmTJhluk4iIiIiIiKiwYkIkF7S1teHu7o6VK1eid+/esLS0TLfOkydPAAByuRz//vsvDAwMxC42SqUS48aNQ7t27dQSKl/i3LlzuHnzJs6fPw9jY2MAwKtXr/D8+XMx2ZEd2tra6Nq1K44dO4aSJUuiS5cu0NbWzpMYiYiIiIiIiAoKjiGSSwMHDkTLli3h4uKCVatW4fbt23j48CECAgLg4eGBPXv2oEGDBujcuTMMDQ0xatQoXL9+HZGRkZg0aRLOnDkDCwuLPIunfPnyAID9+/fj0aNHuHr1Kn7++WcolUokJyfnqCxnZ2dcv34dFy5cQLdu3fIsRiIiIiIiIqKCgi1EcklLSwvLli3D4cOHsWfPHmzevBlv3ryBsbEx6tSpgy1btojjhmzZsgULFy7EgAEDkJqaChsbG2zYsEFtLI8vVbNmTUyePBne3t5YtmwZypUrBycnJ1SoUAGhoaE5KsvMzAy1atVCWlpansZIREREREREVFBIhJz0p6AiQRAEtG7dGkOHDkXPnj1zXY4qEWNra5tXoVEeSExMxK1bt2BlZaU2jg0VXAqFAjKZDKtXr0ZsbKymwyHKc+XLl8eQIUM0tn1eFwsf1lnhwzorXFhfhQ/r7H9y8j2ULURIpFQqERAQgEuXLiExMREdOnTQdEhERERERERE+YIJERJJpVLMmTMHALBo0aIin1kkIiIiIiKibxcTIqTm7Nmzmg6BiIiIiIiIKN9xlhkiIiIiIiIiKnLYQoSIqJAwMTHRdAhE+YLnNhEREWkCEyJERIVASkoKnJ2dNR0GUb5JS0uDlhYbrhIREdHXwzsPIqICThAEhIWFQaFQaDoUyiaFQsE6yyEmQ4iIiOhr490HEVEhoFQqIQiCpsOgbBIEAQqFgnVGREREVIAxIUJERERERERERQ4TIkRERERERERU5DAhQkRUCEilUkgkEk2HQdkkkUggk8lYZ4UE66vwYZ0VPqyzwoX1RUUFZ5khIirgJBIJrK2toaPDS3ZhIZPJYG1trekwKJtYX4UP66zwYZ0VLnlZX5xFjAoy3l0TERUCOjo68PX1RXx8vKZDISIiIsoWExMTODs7azoMokwxIUJEVEjEx8cjNjZW02EQEREREX0T2HaJiIiIiIiIiIocJkSIiIiIiIiIqMhhQoSIiIiIiIiIihwmRIiIiIiIiIioyGFC5CuaNGkS3Nzc8qQsNzc3TJo0KU/KykxgYCAsLCzw8OHDfN0OERERERER0dfGhAgRERERERERFTlMiBARERERERFRkcOEiIYolUp4enqiZcuWqFWrFpydnXH+/Hnx+cjISAwaNAj29vZo0qQJxo0bh/j4+EzLO378OHr27Ak7OzvY2trC2dkZZ8+eFZ93c3PD4sWLMWXKFNSpUwcODg4YN24cEhISxHWuXr2Knj17ombNmujcuTNu376dPztPREREREREpGFMiGjI3LlzsX37dkycOBEHDhxA06ZNMXToUERFReHp06dwcXFBlSpVsHv3bqxatQoJCQn46aefkJiYmK6sGzduYOTIkejQoQMOHDiAnTt3onTp0pgwYQKSk5PF9by9vWFsbIzdu3dj0aJFOHHiBLy9vQEADx48gIeHB6ysrLB3714MHz4cf/3119c6HERERERERERflY6mAyiKEhISsHv3bkybNg3t2rUDAIwZMwaCICAhIQH79+9H+fLlMXXqVPE1y5YtQ4MGDXDkyBE4OzurlaetrY1p06bBxcVFXObu7o5Bgwbh+fPnqFChAgCgWrVqGDt2LADAzMwMjRs3xrVr1wAAO3fuhLGxMWbMmAFtbW2Ym5vjyZMnmD9/fr4eCyIiIiIiIiJNYEJEA6Kjo6FUKlGrVi215apkxYoVK3Dnzh3Y29urPf/+/XtERkamK8/KygqGhoZYs2YNoqKicP/+fbG7S2pqqrhe1apV1V5nYGCAN2/eAAAiIiJgbW0NbW1t8XkHB4cv2EsiIiIiIiKigosJEQ2QSqWffT4tLQ0NGjTAjBkz0j1nYGCQbtnly5cxYMAAtGjRArVr10anTp2gUCgwfPhwtfWKFSuW6TYlEgnS0tLUluno8PQgIiIiIiKibxPHENGAKlWqQCqVIjQ0VG35jz/+CG9vb1SvXh2RkZGoUKECqlSpgipVqsDQ0BDz5s1DREREuvI2bNiA+vXrw8vLC/369UPjxo3x5MkTAIAgCNmKydLSEjdu3FAbc+TGjRtfsJdEREREREREBRcTIhogk8ng6uoKT09PnDhxAjExMViyZAkiIiLQrFkzuLi44O3btxg/fjxu376N27dvY8yYMQgNDYVcLk9XXoUKFRAeHo6rV6/i4cOH2LNnDzw9PQFALcHxOb1794ZCocCUKVMQGRmJkydPwsvLK0/3m4iIiIiIiKigYJ8IDRk7diy0tbUxY8YMvH37FpaWllizZo04zseWLVvw559/onfv3tDW1oaDgwM2b96M0qVLpytr1KhRePbsGYYOHQrgw+Cp8+bNw6+//orQ0FCYm5tnGU+5cuWwadMmzJs3D926dUOFChUwbNgwzJw5M293nIiIiIiIiKgAkAjZ7VNBlEOqLkG2trYajoQ+lpiYiFu3bsHKygp6enqaDoeyQaFQQCaTYfXq1YiNjdV0OERERETZUr58eQwZMkTTYRQJvMf/n5x8D2WXGSIiIiIiIiIqcpgQISIiIiIiIvq/9u47rsr6///48yAguDNJza0JioAMF44U1ByZA82NGZlajlwl5so9c6Epjr65Kkc4s9Q0rdwjV2jucoSRJi4UhOv3hz/PxxNoaODxcB73242bnOt6X+/rdZ3XOXB4+X6/L9gdCiIAAAAAAMDuUBABAAAAAAB2h7vMAICNcHNzs3YIAAAAacZnFzzrKIgAgA24e/euQkJCrB0GAADAY0lOTpaDAxMT8GzilQkAzzjDMBQdHa34+Hhrh4I0io+PJ2c2hHzZHnJme8iZbUnPfFEMwbOMVycA2IDExEQZhmHtMJBGhmEoPj6enNkI8mV7yJntIWe2hXzBXlAQAQAAAAAAdueJ1xC5ceOGbt68qfz58ysxMVELFy7UxYsXVa9ePVWsWDE9YwQAu+fk5CSTyWTtMJBGJpNJrq6u5MxGkC/bQ85sDzkD8Cx6ohEiBw8eVFBQkBYtWiRJGjlypMaPH6/Vq1frjTfe0KZNm9I1SACwZyaTSZ6ennJ1dbV2KEgjV1dXcmZDyJftIWe2h5xlrOTkZGuHANikJxohMmXKFJUqVUotW7ZUfHy8Vq1apbZt22rIkCEaMmSIZs2apdq1a6d3rABgtxwdHRUVFaXY2FhrhwIAAJ4hbm5u3IkOeEJPVBA5ePCgJk+erCJFiui7777TnTt31KRJE0lSw4YNtXr16nQNEgAgxcbGKiYmxtphAAAAAJnCE02ZcXBwUNasWSVJP/74o3LlyiUfHx9J99YWcXFxSb8IAQAAAAAA0tkTjRDx8vLSsmXL5OLiom+//Va1atWSyWTS5cuXNWfOHHl5eaV3nAAAAAAAAOnmiUaIvP/++9q+fbtat26tLFmy6J133pEkNWrUSGfPnlWvXr3SM0YAAAAAAIB09UQjRMqVK6eNGzfq1KlTKl26tLJlyyZJ+uijj+Tv7y83N7d0DRIAAAAAACA9pXmEyLhx4ywe58iRQ+XLlzcXQySpXr16FEPSKDw8XKGhoU98/K5du+Th4aHz58+nY1QphYaGKjw8PEPPAQAAAADA05bmESL/93//p7Nnz2rq1KmaPXv2I9uaTCZ169btPwcHAAAAAACQEdJcEPn88881depUnT9/XtOnT39kWwoiAAAAAADgWZbmgoi/v7/mz58vSTp27FiGBWSPgoODVa9ePW3dulWXL19WRESEKlasqLlz5+rLL7/UX3/9peLFi+utt95S48aNU+0jLi5OEyZM0NatW3XlyhXlypVLtWvX1sCBA+Xq6qpdu3bpzTff1MyZMzVhwgSdPXtWhQsXVr9+/VSnTh1JUkJCgiZOnKg1a9YoISFBrVu3VnJy8tN8KgAAAAAAeCqeaFFVpL9FixYpMjJSOXPmlIeHhyZPnqy1a9dqyJAhKlmypPbs2aOPPvpI169fV7t27VIcHx4erkuXLmn69Ol6/vnntX//fn344Yd66aWX1LFjR0lSUlKSJkyYoIEDB6pgwYKaNGmS+vfvrx9++EHZs2fXyJEjtXnzZo0dO1YvvviiZs2apb1796pIkSJP+dkAAAAAACBjPXFB5M6dO/r111+VkJAgwzAkScnJyYqPj9fevXvVr1+/dAvSHtSsWVNVq1aVJN26dUufffaZJk2apFq1akmSihYtqgsXLmjevHmpFkSqVaumihUrysPDQ5JUuHBhLVq0SMePH7do16tXLwUGBkqS3n33Xa1fv17Hjx9X6dKlFRUVpaFDh6pmzZqSpNGjR2vnzp0ZdckAAAAAAFjNExVEdu3apffee09xcXGp7s+ePTsFkcdUrFgx8/cnT57UnTt31LdvXzk4/O9GQHfv3lVCQoJu376d4vi2bdtq8+bNWrFihc6ePauTJ0/q/PnzKlmypEW7Bx/nyJFDkpSYmKgzZ84oMTFR3t7e5v1Zs2aVp6dnul0jAAAAAADPiicqiEyePFnPPfecRowYodWrV8vBwUEhISH64Ycf9MUXX2jOnDnpHWem5+LiYv7+/oibKVOmpChoSJKzs7PF4+TkZHXp0kUnTpxQo0aN1LBhQ5UrV06DBw/+12Pvn89kMlmc+z5HR2ZVAQAAAAAynyf6a/fXX3/VyJEjVbduXV2/fl1ffvmlatasqZo1ayoxMVEzZ87811vz4uFKliwpR0dHXbx4UUFBQebtCxYs0MmTJzV8+HCL9kePHtUPP/ygpUuXqnz58pLujfr4/fff07z+R4kSJZQ1a1bt379fZcuWlXRvRMqxY8dUuXLldLoyAAAAAACeDU9UEElOTlb+/Pkl3ZvqceLECfO+evXqqX///ukTnZ3KmTOnWrduralTpypHjhzy9/fXrl27NGHCBHXp0iVF+3z58snR0VHffPON8ubNq6tXr2rWrFmKjY1VQkJCms6ZPXt2tW/fXtOmTZObm5tKlSqlTz/9VJcuXUrvywMAAAAAwOqeqCBStGhR/frrr6pQoYJKlCih+Ph4nT59WiVLltTdu3d18+bN9I7T7gwYMEDPPfecpk6dqj///FMFCxZUz5491alTpxRt8+fPr7FjxyoiIkKLFy+Wm5ubatWqpY4dO2rz5s1pPmffvn2VNWtWDR8+XDdv3lSDBg0UHBycnpcFAAAAAMAzwWT8c9GINJg9e7Zmzpypvn37qn379mrRooVy5syp0NBQzZo1S4ZhaNmyZRkRL2zI4cOHJclioVZY361bt3T06FGVLVtW2bJls3Y4SIP4+Hi5uroqMjJSMTEx1g4HAAA8QwoUKJDqKPL/gs+Ltoec/c/j/B3q8K8tUtGpUye1bt1aBw8elCQNHTpUR48e1bvvvqvTp0/rgw8+eJJuAQAAAAAAnorHnjJz6NAhXbhwQY0aNVK5cuUk3au8fPfdd+ZpM/dv5woAAAAAAPAsSnNB5Nq1a+rSpYsOHDhgvk2rn5+fPv74YxUsWFA5cuSQj49PRsYKAAAAAACQLtI8ZWbKlCmKjo5Wjx49NHv2bPXv31+nT5/WkCFDMjI+AAAAAACAdJfmESLff/+9+vTpozfeeEOS9PLLLyt//vzq16+fbt26ZfcLtwBARnNzc7N2CAAA4BnD5wPgyaW5IBIbG2teM+S+ypUrKykpSX/88YdKlSqV7sEBAO65e/euQkJCrB0GAAB4BiUnJ8vB4YnulwHYtTS/a+7evStnZ2eLbblz55Yk3blzJ32jAgCYGYah6OhoxcfHWzsUpFF8fDw5syHky/aQM9tDzjIWxRDgyaTLO8cwjPToBgDwEImJifystSGGYSg+Pp6c2QjyZXvIme0hZwCeRelSEDGZTOnRDQAAAAAAwFOR5jVEJOmjjz5Sjhw5zI/vV3gHDx6s7Nmzm7ebTCbNnz8/nUIEAAAAAABIX2kuiFSsWFFSyukxqW1nKBwApC8nJydG49kQk8kkV1dXcmYjyBcAAPYpzQWRhQsXZmQcAICHMJlM8vT0lKPjYw3qgxW5urrK09PT2mEgjTJLvrjLBAAAj4dP1wBgAxwdHRUVFaXY2FhrhwLgGeTm5satuQEAeEwURADARsTGxiomJsbaYQAAAACZAuMqAQAAAACA3aEgAgAAAAAA7A4FEQAAAAAAYHcoiDzDwsPDFRoaatUYPDw8FBUVZdUYAAAAAABIbxREAAAAAACA3aEgAgAAAAAA7A4FERtx6NAhtW3bVn5+fqpYsaJ69OihixcvSpLOnz8vDw8PRUZGqlq1aqpdu7Zu3Lih48ePq0uXLqpYsaK8vLxUu3Ztffrppxb9fv/99woJCZGPj4/q1q2rKVOmKCEhwRqXCAAAAADAU0NBxAYkJSWZCxurV6/WZ599posXL+rDDz+0aLdixQrNnz9fU6ZMUZYsWRQWFqY8efLoyy+/1Nq1a1W/fn2NGzdOR48elST98MMP6tWrl1q2bKm1a9dq6NCh+uabb/T+++9b4zIBAAAAAHhqHK0dAP7djRs39Pfff+uFF15QoUKFVKRIEU2ZMkWXL1+2aNe2bVu99NJLkqQrV66oQ4cOateunbJnzy5J6tmzp+bOnatff/1VZcuW1axZs9SyZUu1bt1aklS0aFENGzZMb7zxhs6fP6/ChQs/3QsFAAAAAOApoSBiA3Lnzq1OnTppxIgRmjZtmqpUqaKaNWuqQYMGFu2KFStm/j5v3rxq27at1q5dq+joaP3+++86duyYJCk5OVmSFB0drUOHDmn58uXm4wzDkCSdOnWKgggAAAAAINOiIGIj+vXrp7Zt22rr1q3asWOHRowYoblz52rlypXmNi4uLubvY2Nj1apVK+XNm1fBwcGqXr26vL29VbNmTXOb5ORkderUSc2aNUtxPjc3twy9HgAAAAAArImCiA04ffq05s+frw8//FBt2rRRmzZttG/fPrVt21bHjh1T3rx5Uxyzdu1aXb16VevXr5eTk5Mk6ddff5X0v1EgpUuX1pkzZyxGluzatUsLFizQRx99pGzZsj2FqwMAAAAA4OljUVUb8Nxzz+nrr7/WkCFDdOrUKZ05c0YrVqxQ7ty5VbJkyVSPKVCggOLj4/Xtt9/q4sWL+umnn9SnTx9JMt9F5u2339b69es1ffp0nTlzRjt27NCAAQN0/fp1RogAAAAAADI1RojYgOeee05z5szRxx9/rJYtWyopKUm+vr76v//7P+XIkUNXr15NcUz9+vX1yy+/aOzYsbpx44YKFSqk119/XZs2bdLhw4fVpk0b1a9fX5MnT1ZkZKRmzZqlPHnyKDg4WP369Xv6FwkAAAAAwFNEQeQZNnbsWPP3fn5+WrRoUartChcubJ4Oc5/JZFK/fv1SFDfefPNNi8cNGjRIsTjrg/7ZLwAAAAAAmQFTZgAAAAAAgN2hIAIAAAAAAOwOBREAAAAAAGB3KIgAAAAAAAC7w6KqAGAjuB02gIfh5wMAAI+PgggA2IC7d+8qJCTE2mEAeIYlJyfLwYHBvwAApBW/NQHgGWcYhqKjoxUfH2/tUJBG8fHx5MyGZJZ8UQwBAODx8JsTAGxAYmKiDMOwdhhII8MwFB8fT85sBPkCAMA+URABAAAAAAB2h4IIAAAAAACwOxREAMAGODk5yWQyWTsMAAAAINPgLjMA8IwzmUzy9PSUoyM/sq2Fu3cAAABkPny6BgAb4OjoqKioKMXGxlo7FLvj5ubGLY8BAAAyIQoiAGAjYmNjFRMTY+0wAAAAgEyB8b8AAAAAAMDuUBABAAAAAAB2h4IIAAAAAACwOxREAAAAAACA3cnUBZHg4GBFRERYO4w0i4qKkoeHh7XDAAAAAAAg08vUBREAAAAAAIDUUBABAAAAAAB2x24LIuHh4QoNDX3otk8//VSenp46dOiQJCk5OVlt27ZVSEiIEhISJEnff/+9QkJC5OPjo7p162rKlCnmfZLk4eGhJUuWqG3btvL29laDBg20f/9+LVmyRLVq1ZK/v7969eql27dvW8SxdOlS1ahRQ+XLl1fXrl114cIF877bt29rypQpql27try9vdWkSROtX7/evD+1aTf/3BYcHKxx48apYcOGqly5snbv3q2kpCRNnjxZ1atXl6+vr3r27KlRo0aleI4AAAAAAMgM7LYg8m86duyogIAADRw4UImJiZozZ46OHj2qSZMmydnZWT/88IN69eqlli1bau3atRo6dKi++eYbvf/++xb9TJ48WZ06ddKqVauUM2dOde3aVevXr9fs2bM1ZswYfffdd1q2bJnFMQsXLtTUqVO1ePFi/f333+rWrZsMw5Ak9enTRytXrtTgwYO1evVq1alTR++9956+++67x7q+RYsWadCgQZo7d658fX01ceJELVmyREOHDtVXX30lNzc3LVy48L89iQAAAAAAPKMcrR3As8rBwUFjx45V48aNNXDgQK1bt04jRoxQ8eLFJUmzZs1Sy5Yt1bp1a0lS0aJFNWzYML3xxhs6f/68ChcuLElq3ry5goODJUlNmjTR8OHDNWTIEBUvXlzu7u6aO3euTpw4YXHuCRMmqEyZMpKkcePGqV69etqxY4fy58+vTZs2adasWapVq5YkqUePHjp27JhmzZqlOnXqpPn6atasqapVq0qS4uPj9fnnn2vAgAGqW7euJGnQoEH6+eefn+zJAwAAAADgGUdB5BEKFSqkDz/8UB9++KHq1KmjZs2amfdFR0fr0KFDWr58uXnb/VEcp06dMhdEihUrZt7v6uoq6V7x5D4XFxeLaTbZs2c3F0MkqXjx4sqdO7eOHz+uq1evSpICAgIs4qxYsaImTZr0WNf2YFynTp3S7du35evra95mMpkUEBCgY8eOPVa/AAAAAADYAgoiD7h7926KbUeOHJGjo6MOHz6suLg45c6dW9K9NUU6depkUSS5z83Nzfy9o2PKp9jB4eEzlbJkyZJiW3JyspydnR96jGEYqZ7nvqSkpBTbXFxcUsR4v6ADAAAAAEBmZ7driDg5OenGjRsW23777TeLxz/++KO++OILzZgxQ66urho2bJh5X+nSpXXmzBkVK1bM/BUTE6Px48fr5s2bTxzXtWvX9Pvvv5sf//rrr7p+/brc3d3NC6Pu27fP4pi9e/fqpZdeMl+XJItrO3v27CPPWaxYMbm4uOjAgQMW2w8ePPiklwEAAAAAwDMt048Q+e233/TDDz9YbHNxcZGvr6+WL1+u1atXy8/PT6tXr9bx48fl4+MjSbp69ao+/PBDtWzZUrVq1VKOHDnUvn17BQcHq1GjRnr77bfVq1cvTZ8+Xa+++qpiYmI0cOBAFS5c2GKEyONycHBQr169NGTIEEnS0KFDValSJVWoUEGSFBQUpGHDhslkMqlYsWL6+uuvtWnTJk2ZMkWS5OvrK5PJpIiICIWGhurw4cNasWLFI8/p6uqq0NBQTZs2TW5ubipVqpSWLl2qgwcPqlKlSk98LQAAAAAAPKsyfUFkzZo1WrNmjcW2QoUKaf369Tp69KhGjhypu3fvqkGDBnrjjTfMC4kOHTpUWbJk0QcffCBJqlChgtq2bavhw4erYsWKql+/viZPnqzIyEjNmjVLefLkUXBwsPr16/ef4s2bN6+aNGmid999V/Hx8QoKCtKgQYPM+ydNmqRJkyZp4MCBunbtmtzd3RUREWFeDLVIkSIaNmyYIiMj9fnnnysgIEAffPCB+vfv/8jzvvfee0pMTNSgQYPM561du7bu3Lnzn64HAAAAAIBnkclg4QhI2rhxowICApQ3b17ztrCwMBUoUECjR49+oj4PHz4sSfL29k6XGJE+bt26paNHj6ps2bLKli2btcNBGsTHx8vV1VWRkZGKiYmxdjh2p0CBAurSpctjHcP7zLaQL9tDzmwPObMt5Mv2kLP/eZy/Q+12DRFYmjdvnvr27aujR4/q3Llz+uyzz7Rz5041btzY2qEBAAAAAJDuKIhAkjRx4kRlz55dHTt2VKNGjbRmzRpNnTpVVapUsXZoAAAAAACku0y/hgjSpnDhwpo+fbq1wwAAAAAA4KlghAgAAAAAALA7jBABABvxX27pjSfH8w4AAJA5URABABtw9+5dhYSEWDsMu5WcnCwHBwZVAgAAZCZ8ugOAZ5xhGIqOjlZ8fLy1Q7FbFEMAAAAyHz7hAYANSExMlGEY1g4DAAAAyDQoiAAAAAAAALtDQQQAbICTk5NMJpO1w0AamUwmubq6kjMbQb5sDzmzPeTMtpAv2AsWVQWAZ5zJZJKnp6ccHfmRbStcXV3l6elp7TCQRuTL9pAz20PObIs95YuF0+0bn64BwAY4OjoqKipKsbGx1g4FAAAgU3Bzc+MufnaOgggA2IjY2FjFxMRYOwwAAAAgU2BsEAAAAAAAsDsURAAAAAAAgN2hIAIAAAAAAOwOBREAAAAAAGB37KYgEhwcrODgYN24cSPFvvDwcIWGhqapH8MwtGLFCl2+fFmSFBUVJQ8Pj3SNVZJ27dolDw8PnT9/Pt37flBoaKjCw8Mz9BwAAAAAADxr7KYgIkkXLlzQ+PHj/1Mfe/bsUXh4uOLj49MpKgAAAAAA8LTZVUGkSJEiWrJkibZv3/7EfRiGkY4RAQAAAAAAa7Crgkjjxo0VGBiogQMHpjp1RpKuX7+uwYMHq0qVKgoICFCHDh10+PBhSfemsXTo0EGSVLt2bUVFRZmPi4qKUp06deTt7a2QkBAdPHjQvC8hIUETJkxQjRo15Ofnp5YtW+qnn36yOLZu3boaOXKkAgIC9O6776aIKy4uToMGDVKNGjVUrlw5BQYGatCgQeaRKrt27ZKnp6e2bt2qRo0aycvLS/Xr19d3331nEcfo0aMVGBiogIAATZgwQcnJyRbnmTdvnurUqSMvLy8FBwdrxowZFIEAAAAAAJmOXRVETCaTRo0apbi4OI0bNy7FfsMw9Pbbb+vcuXOKjIzU0qVL5evrqzZt2ig6Olp+fn6KiIiQJC1btkwNGzY0H7t06VJNmjRJX331lZydndWrVy/zvgEDBmjbtm2aOHGiVqxYoQYNGqhr167asmWLuc3vv/+uP//8UytXrlTv3r1TxBYeHq7o6GhNnz5d69ev14ABA7Ry5UotWbLE3CYpKUkTJkzQwIEDtXbtWrm7u6t///66efOmJGnkyJFat26dxo4dqy+//FIxMTHau3ev+fjNmzcrMjJSw4YN04YNG9SvXz/NnDlTq1evfuLnHAAAAACAZ5GjtQN42goVKqT+/ftryJAhqlevnqpXr27et3PnTh04cEA7d+5Unjx5JEl9+vTR/v37tWDBAo0dO1a5c+eWJOXNm1cuLi7mY0eNGqVSpUpJkt566y11795dly9f1o0bN7R27VqtXLlSZcuWlSS9+eabOnbsmObNm6datWqZ+3j33XdVpEgRSfdGfDyoWrVqqlixonkB18KFC2vRokU6fvy4RbtevXopMDDQ3N/69et1/PhxlS5dWlFRURo6dKhq1qwpSRo9erR27txpPvb333+Xs7OzChUqpBdffFEvvviiXnjhBb344otP9mQDAAAAAPCMsruCiCS1atVK69ev16BBg7R27Vrz9l9++UWGYSgoKMiifUJCgu7cufPIPosXL27+PleuXJKk27dvKzo6WpLUtm1bi/aJiYnmdqn18U9t27bV5s2btWLFCp09e1YnT57U+fPnVbJkSYt2Dz7OkSOH+VxnzpxRYmKivL29zfuzZs0qT09P8+PGjRvrq6++Ur169fTSSy+patWqqlevHgURAAAAAECmY5cFEene9JHXXntNY8aMMW9LTk5Wjhw5LNYGuc/Z2fmR/WXJkiXFNsMwzOtvLF68WNmzZ7fY7+BgOWPpwREnD0pOTlaXLl104sQJNWrUSA0bNlS5cuU0ePDgNMVpGIZMJpP5+wc5Ov7vJZA3b16tWrVKP//8s7Zt26affvpJCxYsUI8ePdS9e/dUYwMAAAAAwBbZ1RoiD3rxxRcVHh6u5cuXm9fRcHd3140bN5SYmKhixYqZv+bMmaNNmzZJkrmwkFalS5eWJMXGxlr0GRUVlWrhJTVHjx7VDz/8oKlTp6pfv35q3LixihYtqt9//z3NC56WKFFCWbNm1f79+83b7t69q2PHjpkfr169Wl988YUCAgLUs2dPLV26VK+//rrWrVv3GFcMAAAAAMCzz24LIpL0+uuvq3r16jp37pwkqUaNGipbtqx69+6tnTt36rffftOYMWMUFRVlXh8kW7ZskqRjx46ZFyt9lNKlSysoKEhDhw7V5s2bde7cOc2ZM0eRkZEqWrRomuLMly+fHB0d9c033+jcuXM6fPiwevXqpdjYWCUkJKSpj+zZs6t9+/aaNm2aNmzYoFOnTmno0KG6dOmSuc2dO3c0btw4rVy5UufPn9fevXu1Z88e+fn5pekcAAAAAADYCrudMnPf/akz0r1pL59++qkmTJigXr16KT4+XqVKldL06dPNC5W6u7urZs2a6tWrl/r06WNefPVRJk+erMmTJ2vIkCGKi4tT0aJFNWrUKDVr1ixNMebPn19jx45VRESEFi9eLDc3N9WqVUsdO3bU5s2b03ytffv2VdasWTV8+HDdvHlTDRo0UHBwsHn/66+/rqtXr+qTTz7RH3/8ody5c6tevXrq169fms8BAAAAAIAtMBlpnXMBPKbDhw9LksVCrrC+W7du6ejRoypbtqx5xBOebfHx8XJ1dVVkZKRiYmKsHQ4AAECmUKBAAXXp0sXaYaQLPuP/z+P8HWrXU2YAAAAAAIB9oiACAAAAAADsDgURAAAAAABgdyiIAAAAAAAAu2P3d5kBAFvh5uZm7RAAAAAyDT5bgYIIANiAu3fvKiQkxNphAAAAZCrJyclycGDihL0i8wDwjDMMQ9HR0YqPj7d2KEij+Ph4cmZDyJftIWe2h5zZFnvKF8UQ+0b2AcAGJCYmyjAMa4eBNDIMQ/Hx8eTMRpAv20PObA85sy3kC/aCgggAAAAAALA7FEQAAAAAAIDdoSACADbAyclJJpPJ2mEgjUwmk1xdXcmZjSBftoec2R5yZlvIF+wFd5kBgGecyWSSp6enHB35kW0rXF1d5enpae0wkEbky/aQM9tDzmzLf8kXd22BLeHTNQDYAEdHR0VFRSk2NtbaoQAAAKTKzc1NISEh1g4DSDMKIgBgI2JjYxUTE2PtMAAAAIBMgbFMAAAAAADA7lAQAQAAAAAAdoeCCAAAAAAAsDuZpiASHBys4OBg3bhxI8W+8PBwhYaGPpU4oqKi5OHh8dCviIiIdDuXh4eHoqKi0q2/1ERERCg4ODhDzwEAAAAAwNOWqRZVvXDhgsaPH6/hw4dbLYaGDRuqRo0aKbaPHTtW69evV82aNa0QFQAAAAAAeFCmGSEiSUWKFNGSJUu0fft2q8Xg4uIiNzc3i69NmzZp7dq1GjBggHx8fKwWGwAAAAAAuCdTFUQaN26swMBADRw4MNWpM/ddv35dgwcPVpUqVRQQEKAOHTro8OHDkqTNmzerTJkyunLlirl906ZN1ahRI/PjuLg4eXp6au/evf8a05EjRzRq1Cg1atRI7dq1S1MMkpScnKzIyEjVq1dPXl5e8vf3V6dOnfT777+nep60tPfw8NDy5cvVsWNH+fj4qHr16po+fbpFP0uWLFHdunXl4+Ojrl27Ki4u7l+vEQAAAAAAW5OpCiImk0mjRo1SXFycxo0bl2obwzD09ttv69y5c4qMjNTSpUvl6+urNm3aKDo6WlWrVlXWrFm1c+dOSdKVK1f066+/6sSJE7p8+bIk6aefflLu3Lnl7+//yHiuXbum9957T0WLFtWIESPSHIMkLViwQPPmzVN4eLjWr1+vGTNm6OzZsxo7dmyq50pr+3HjxqlZs2b6+uuv1b59e0VERGjPnj2SpLVr12r48OHq2LGjVq1aJX9/fy1evDgNzzwAAAAAALYlUxVEJKlQoULq37+/li5dqp9++inF/p07d+rAgQOaMmWKypcvr1KlSqlPnz7y9fXVggUL5OLiosDAQPOx27dvl6enp/Lnz69du3ZJkrZs2aJatWrJweHhT59hGOrfv7/+/vtvTZs2TdmyZUtzDJJUtGhRjRs3TkFBQSpUqJACAwNVv359HT9+PNXzpbV906ZN1aRJExUpUkRdu3ZVrly5tH//fknSwoUL1bBhQ7Vr104lSpRQ586dFRQU9BjPPgAAAAAAtiFTLap6X6tWrbR+/XoNGjRIa9eutdj3yy+/yDCMFH/oJyQk6M6dO5Lu3bHmk08+kSRt27ZNgYGBunDhgnbu3Kn69evrxx9/1MiRIx8Zw7x587R582ZNnjxZpUqVeqIYDh48qKlTp+rMmTM6c+aMTp48qfz586d6vrS2/2csOXPmVGJioiTp+PHjevXVVy32+/n56dixY4+8VgAAAAAAbE2mLIhI0siRI/Xaa69pzJgxFtuTk5OVI0eOVG9X6+zsLEmqVauWhgwZolOnTmnHjh0aNWqULly4oHnz5ungwYOKj49XtWrVHnruffv2afLkyerQoYMaNmyYYn9aYpg9e7ZmzJihZs2aKTAwUB07dtSmTZv09ddfp3rOtLa/3/+DDMOwiO1BTk5OD71OAAAAAABsVaabMnPfiy++qPDwcC1fvtxi8VN3d3fduHFDiYmJKlasmPlrzpw52rRpkyTphRdekJeXl7744gtdvnxZAQEBCgwM1NmzZ7VkyRJVrVpVrq6uqZ73ypUr6t27t7y9vfXBBx+k2iYtMcyaNUvdunXTRx99pFatWsnX11dnz561KF486HHbp6Zs2bLm6TP3PbjQKwAAAAAAmUWmLYhI0uuvv67q1avr3Llz5m01atRQ2bJl1bt3b+3cuVO//fabxowZo6ioKIvpJMHBwVqyZIl8fX3l4uKiIkWKqHDhwlq1apVq16790HP269dPt2/f1uDBg3X16lXFxsZafF2/fj1NMRQsWFDbtm3TyZMndfr0aU2ePFkbNmxQQkJCqud93Pap6dy5szZu3Ki5c+fq7NmzWrhwodavX5/m4wEAAAAAsBWZuiAi3Zs6kzNnTvPjLFmy6NNPP5WXl5d69eqlxo0ba8+ePZo+fboCAwPN7YKDg5WQkKAqVaqYt1WtWlWSHrnQ6LZt2xQXF6eQkBBVr149xdeoUaPSFMP48eN1+/ZtNW/eXO3bt9fx48c1bNgwXb58WRcvXkxx3sdtn5patWrp448/1ldffaXXXntNGzZsUFhYWJqOBQAAAADAlpiMx5lTATyG+9NtvL29rRwJHnTr1i0dPXpUZcuWtbj7EZ5d8fHxcnV1VWRkpGJiYqwdDgAAQKoKFCigLl26WDsMu8Rn/P95nL9DM/0IEQAAAAAAgH+iIAIAAAAAAOwOBREAAAAAAGB3KIgAAAAAAAC742jtAAAAaePm5mbtEAAAAB6KzyqwNRREAMAG3L17VyEhIdYOAwAA4JGSk5Pl4MBEBNgGXqkA8IwzDEPR0dGKj4+3dihIo/j4eHJmQ8iX7SFntoec2Zb/ki+KIbAlvFoBwAYkJibKMAxrh4E0MgxD8fHx5MxGkC/bQ85sDzmzLeQL9oKCCAAAAAAAsDsURAAAAAAAgN2hIAIANsDJyUkmk8naYSCNTCaTXF1dyZmNIF8AANgn7jIDAM84k8kkT09POTryI9tWuLq6ytPT09phII3I13/DHSUAALaKT9cAYAMcHR0VFRWl2NhYa4cCAGZubm7cEhwAYLMoiACAjYiNjVVMTIy1wwAAAAAyBcY3AgAAAAAAu0NBBAAAAAAA2B0KIgAAAAAAwO5QEAEAAAAAAHaHgkgGCw4OVnBwsG7cuJFiX3h4uEJDQ60QFQAAAAAA9o2CyFNw4cIFjR8/3tphAAAAAACA/4+CyFNQpEgRLVmyRNu3b7d2KAAAAAAAQBREnorGjRsrMDBQAwcOTHXqjCRdvXpVw4YNU82aNeXj46PWrVtr165d5v0RERFq3769evfuLX9/f4WGhsrDw0O//PKLuU23bt0UEBCgpKQkSVJycrKqVKmiVatWSZKWLVum1157TT4+PvL19VXbtm11+PBhSdL8+fPl5+en+Ph4c3/Jycl6+eWXtXjx4nR/TgAAAAAAsCYKIk+ByWTSqFGjFBcXp3HjxqXYn5SUpLCwMO3du1cTJkxQVFSU3N3d9dZbb+nQoUPmdnv27FG+fPm0atUqjRgxQoUKFdK2bdvMfezatUs3b940F0kOHTqk69evq1atWtq4caOGDx+uTp066ZtvvtFnn32mO3fuaNCgQZKk1157TYmJidqwYYP5fNu3b9fff/+tRo0aZeTTAwAAAADAU0dB5CkpVKiQ+vfvr6VLl+qnn36y2PfTTz/pl19+0ccff6xKlSrppZde0rBhw1S6dGnNmzfPom3Pnj1VpEgRFS9eXMHBweaCyKFDh+Tk5CRfX1/zyJItW7YoICBAuXPnVp48eTRq1Cg1adJEhQoVkq+vr1q0aKHjx49LkvLmzavg4GCtXr3afK4VK1YoODhYuXPnzsinBgAAAACAp46CyFPUqlUrVatWTYMGDbKYOnP8+HHlzJlT7u7u5m0mk0kVKlQwFywk6fnnn1fOnDnNj4OCgrR//37dvn1b27ZtU5UqVVShQgXt3LlTkrR161bVrl1bklSxYkWVK1dOM2bMUN++fdWiRQuNHj1aycnJ5v6aN2+uHTt26M8//9SNGzf03XffKSQkJMOeDwAAAAAArIWCyFM2cuRIXb9+XWPGjDFvMwwj1baGYcjR0dH82MXFxWJ/pUqV5OzsrN27d2vHjh0KDAxUYGCg9u/frwsXLujo0aPmgsiaNWvUuHFjnTt3Tv7+/urfv7/Cw8Mt+qtevbry5cuntWvXasOGDcqVK5eqV6+eXpcOAAAAAMAzw/HfmyA9vfjiiwoPD9egQYNUpEgRFSxYUB4eHrp+/bqOHz9uHiViGIb27dunl1566aF9OTk5qXr16tq0aZMOHjyosWPHys3NTXfv3lVERITc3d1VuHBhSdLs2bPVokULDRs2zHz8pk2bzOcymUzKkiWLmjZtqo0bNypXrlxq0qSJsmTJkoHPBgAAAAAA1sEIESt4/fXXVb16dZ07d07SvZEZZcuWVd++fbV7926dOnVKw4cP1/Hjx/XGG288sq/g4GBFRUXphRdeUJEiReTi4iI/Pz+tWrXKPDpEkgoWLKj9+/frl19+0e+//67PPvtMixYtkiQlJCSY24WEhOjgwYPavn27mjVrlgFXDwAAAACA9VEQsZKRI0ea1wPJkiWLPv30U3l6eqp79+5q3ry5Tpw4oc8++0y+vr6P7KdmzZpKSkpSlSpVzNuqVq2q5ORki4LI4MGDlS9fPrVv316vv/66vv/+e40fP16SzLfelaTixYurfPny8vT0VKlSpdLxigEAAAAAeHYwZSaDbd68OdXtBQsW1N69e82P8+bNm+otee/r0aOHevTokWJ7njx5FB0dbbGta9eu6tq1q8W2IkWK6P/+7/9SHN+wYUOLx4Zh6M8//0xxPAAAAAAAmQkFEUiSEhMTtXnzZu3cuVO3bt3Sq6++au2QAAAAAADIMBREIOneAq0jR46UJE2YMEHZsmWzckQAAAAAAGQcCiIw+/HHH60dAgAAAAAATwWLqgIAAAAAALvDCBEAsBFubm7WDgEALPBzCQBgyyiIAIANuHv3rkJCQqwdBgCkkJycLAcHBh0DAGwPv70A4BlnGIaio6MVHx9v7VCQRvHx8eTMhpCv/4ZiCADAVvEbDABsQGJiogzDsHYYSCPDMBQfH0/ObAT5AgDAPlEQAQAAAAAAdoeCCADYACcnJ5lMJmuHAQAAAGQaLKoKAM84k8kkT09POTpmvh/ZLMYIAAAAa8l8n64BIBNydHRUVFSUYmNjrR1KunFzc+POOQAAALAaCiIAYCNiY2MVExNj7TAAAACATIFxygAAAAAAwO5QEAEAAAAAAHaHgggAAAAAALA7FEQAAAAAAIDdYVHVZ0xSUpKWLFmiqKgonTp1SlmyZNFLL72kFi1aqHnz5jKZTNYOEQAAAAAAm0dB5BmSmJiobt266dChQ+revbuqV6+upKQk/fjjjxo7dqw2b96siIgIZcmSxdqhAgAAAABg0yiIPEMiIyO1d+9eLV++XCVLljRvL1WqlCpVqqSWLVtq3rx56ty5sxWjBAAAAADA9rGGyDMiOTlZCxcuVEhIiEUx5D5PT081adJECxcu1Llz5+Th4aGvv/5aTZs2lbe3t0JCQnTq1CnNmDFDVatWVaVKlTRs2DAZhmHuPzIyUvXq1ZOXl5f8/f3VqVMn/f777+ZzeHh4aPny5erYsaN8fHxUvXp1TZ8+/ak9BwAAAAAAPC0URJ4RZ86c0dWrV+Xv7//QNoGBgfrzzz+VnJwsSZo8ebI+/PBDLVu2TNeuXVObNm109uxZLVy4UL1799bnn3+u77//XpK0YMECzZs3T+Hh4Vq/fr1mzJihs2fPauzYsRbnGDdunJo1a6avv/5a7du3V0REhPbs2ZNxFw4AAAAAgBVQEHlGxMXFSZKee+65h7a5v+/KlSuSpLCwMFWqVEllypRR3bp1devWLQ0fPlylSpVSmzZt9Pzzz+vEiROSpKJFi2rcuHEKCgpSoUKFFBgYqPr16+v48eMW52jatKmaNGmiIkWKqGvXrsqVK5f279+fEZcMAAAAAIDVsIbIM+J+seP69esPbXO/aJI3b15JUrFixcz7smXLpnz58snV1dW8zcXFRQkJCZKk4OBgHTx4UFOnTtWZM2d05swZnTx5Uvnz57c4R6lSpSwe58yZU4mJif/hygAAAAAAePYwQuQZUbRoUbm5uT1yesru3bvl5uZmvvWuo6NlPcvB4eHpnD17tjp06KC///5bgYGBGjZsmMLCwlK0c3Z2TrHt/jokAAAAAABkFhREnhFZsmRRx44dtXz5cp06dSrF/hMnTmjlypVq3779IwsfDzNr1ix169ZNH330kVq1aiVfX1+dPXuWYgcAAAAAwC4xZeYZEhYWpsOHD6tdu3bq0aOHqlevLkn66aefNG3aNFWpUkVvv/22/vjjj8fuu2DBgtq2bZuCg4Pl4OCgVatWacOGDcqXL196XwYAAAAAAM88Rog8QxwcHDR16lSFh4dr7dq1at68uUJCQrRmzRr169dPM2fOVJYsWZ6o7/Hjx+v27dtq3ry52rdvr+PHj2vYsGG6fPmyLl68mM5XAgAAAADAs40RIs+gpk2bqmnTpg/dX7hwYf36668W23r06KEePXpYbNu8ebP5+3LlymnJkiUp+mrdurX5+3/2+c8+AAAAAADILBghAgAAAAAA7A4FEQAAAAAAYHcoiAAAAAAAALtDQQQAAAAAANgdFlUFABvh5uZm7RDSVWa7HgAAANgWCiIAYAPu3r2rkJAQa4eR7pKTk+XgwGBFAAAAPH18CgWAZ5xhGIqOjlZ8fLy1Q0l3FEMAAABgLXwSBQAbkJiYKMMwrB0GAAAAkGlQEAEAAAAAAHaHgggAAAAAALA7FEQAwAY4OTnJZDJZOwykkclkkqurKzmzEeQLAAD7xF1mAOAZZzKZ5OnpKUdHfmTbCldXV3l6elo7DKQR+bIN3JUKAJDe+HQNADbA0dFRUVFRio2NtXYoAPDUubm5ZcpbjwMArIuCCADYiNjYWMXExFg7DAAAACBTYNwhAAAAAACwOxREAAAAAACA3aEgAgAAAAAA7A4FkQy0evVqtWzZUr6+vvLz81Pz5s315ZdfPrXzR0VFycPD46mdDwAAAAAAW8Giqhlk+fLlGjVqlAYOHKiAgAAZhqFt27Zp5MiR+uuvv9S9e3drhwgAAAAAgN2iIJJBPv/8czVv3lwtWrQwbytZsqQuXbqkBQsWUBABAAAAAMCKmDKTQRwcHPTzzz8rLi7OYnvnzp21ZMkS9ejRQ127djVvP3bsmDw8PDRv3jzztoULF6pu3bqSpISEBE2YMEE1atSQn5+fWrZsqZ9++smi740bN+q1116Tt7e32rZtq4sXL1rs/7c+oqKiVLduXfO/Xl5eCgkJ0b59+9LteQEAAAAA4FlAQSSDdOrUSdHR0Xr55ZfVuXNnzZ49W4cOHVLOnDlVokQJBQUFaffu3bp7964kadu2bTKZTNq1a5e5jy1btqh27dqSpAEDBmjbtm2aOHGiVqxYoQYNGqhr167asmWLJGn//v3q0aOH6tWrp9WrV6tZs2aaPXu2RUz/1ock/fHHH/ryyy81YcIErVixQq6urgoPD5dhGBn7hAEAAAAA8BQxZSaD1K9fXwUKFNCCBQu0bds2bd26VZJUvHhxjR49WrVq1dLAgQN14MABVahQQdu3b1ft2rW1Y8cO3b17VwkJCdq9e7e6du2q3377TWvXrtXKlStVtmxZSdKbb76pY8eOad68eapVq5YWLVokf39/81ScEiVK6Pjx41qwYIEkpakPSUpMTNSwYcMs2nTr1k2xsbF64YUXnuZTCAAAAABAhqEgkoF8fX3l6+ur5ORkHTt2TFu3btWiRYv09ttva+PGjSpfvry2bdsmHx8f7d27VwsXLtSWLVt05MgRXb58WdmyZZO/v782bNggSWrbtq1F/4mJicqVK5ck6fjx46pWrZrFfj8/P3NBJDo6+l/7uK9UqVLm73PmzGluBwAAAABAZkFBJAPExMQoMjJSXbp0UYECBeTg4CBPT095enqqTp06atSokfbs2aPg4GB99913qlSpknLlyiUfHx95e3tr165dunDhgoKCgpQlSxbzdJXFixcre/bsFudycLg368lkMik5Odlin5OTk/n7tPRxn7Ozc4prYsoMAAAAACAzYQ2RDODs7Kxly5Zp9erVKfbdH42RL18+BQcH68iRI9q4caMCAwMlSVWrVtXOnTst1g8pXbq0JCk2NlbFihUzf0VFRSkqKkqSVKZMGf38888W5zpy5Ij5+7T0AQAAAACAvaAgkgHy5s2rTp06aerUqZo8ebKOHj2qc+fO6fvvv1f37t1VuXJlVahQQS+99JIKFSqkZcuWmQsigYGB2rlzp65evWqeAlO6dGkFBQVp6NCh2rx5s86dO6c5c+YoMjJSRYsWlSSFhYXp2LFjGjdunM6cOaPVq1dr0aJF5pjS0gcAAAAAAPaCKTMZpFevXipevLiWLl2qxYsX6/bt23rxxRfVoEEDdenSxdwuKChI8+fPV5UqVSTdW3fExcVFlStXVrZs2cztJk+erMmTJ2vIkCGKi4tT0aJFNWrUKDVr1kySVLZsWc2ZM0cTJkzQokWLVLp0aXXt2lUTJ05Mcx8AAAAAANgLk8HiEMgghw8fliR5e3tbORI86NatWzp69KjKli1rUXTDsys+Pl6urq6KjIxUTEyMtcMBgKeuQIECFv+hxO8y20PObAv5sj3k7H8e5+9QpswAAAAAAAC7Q0EEAAAAAADYHQoiAAAAAADA7lAQAQAAAAAAdoe7zACAjXBzc7N2CABgFfz8AwBkBAoiAGAD7t69q5CQEGuHAQBWk5ycLAcHBjcDANIPv1UA4BlnGIaio6MVHx9v7VCQRvHx8eTMhpAv20AxBACQ3vjNAgA2IDExUYZhWDsMpJFhGIqPjydnNoJ8AQBgnyiIAAAAAAAAu0NBBAAAAAAA2B0KIgBgA5ycnGQymawdBtLIZDLJ1dWVnNkI8gUAgH3iLjMA8IwzmUzy9PSUoyM/sm2Fq6urPD09rR0G0ui/5Is7nwAAYLv4dA0ANsDR0VFRUVGKjY21digA/j83Nzduhw0AgA2jIAIANiI2NlYxMTHWDgMAAADIFBjjCQAAAAAA7A4FEQAAAAAAYHcoiAAAAAAAALtDQQQAAAAAANgduy6IrF69Wi1btpSvr6/8/PzUvHlzffnll0/UV3BwsCIiIiRJhmFoxYoVunz5cnqGa+H8+fPy8PDQrl27MuwckhQeHq7Q0NAMPQcAAAAAAE+b3d5lZvny5Ro1apQGDhyogIAAGYahbdu2aeTIkfrrr7/UvXv3x+4va9askqQ9e/YoPDxcmzZtyojQAQAAAADAf2S3BZHPP/9czZs3V4sWLczbSpYsqUuXLmnBggWPXRDJmzev+XvDMNItTgAAAAAAkP7sdsqMg4ODfv75Z8XFxVls79y5s5YsWaIePXqoa9eu5u3Hjh2Th4eH5s2bZ962cOFC1a1bV9L/pszs2rVLHTp0kCTVrl1bUVFRCg4OloeHR4qvAQMGSLpXQJkzZ45q166t8uXLq0mTJlq9erX5PLt27ZKnp6dmz56typUrKyQkJEXRJSEhQePGjVNwcLC8vLxUqVIlvffee7py5Yqk/02xWb9+vV5//XV5eXkpODhYS5YsMfdhGIY++eQTvfzyy/L19dWAAQN0586d9Hi6AQAAAAB4pthtQaRTp06Kjo7Wyy+/rM6dO2v27Nk6dOiQcubMqRIlSigoKEi7d+/W3bt3JUnbtm2TyWSyWLNjy5Ytql27tkW/fn5+5rVEli1bpoYNG2r58uX66aefzF9hYWHKnj27OnbsKEmaPHmyvvjiCw0ePFhr1qxRhw4d9NFHH2nx4sXmfpOSkrR161YtWbJEo0aNkslksjjv+PHjtWHDBo0dO1br16/X2LFjtXPnTs2cOdOi3ZgxY9S1a1d98803qlWrlj766COdO3dOkjR79mzNnTtXH3zwgaKiopQrVy6tW7cufZ5wAAAAAACeIXY7ZaZ+/foqUKCAFixYoG3btmnr1q2SpOLFi2v06NGqVauWBg4cqAMHDqhChQravn27ateurR07duju3btKSEjQ7t27LUaRSJKzs7Ny584t6d40GhcXF7m4uJj3b9y4UQsWLNCMGTPk4eGhW7du6bPPPtOkSZNUq1YtSVLRokV14cIFzZs3T+3atTMfGxYWpuLFi0u6N+LjQd7e3qpfv74qVKggSSpUqJCqVq2q48ePW7Tr2LGjuYjTu3dvLV68WAcPHlThwoW1cOFCdejQQY0aNZIkDRgwIMMXbQUAAAAAwBrstiAiSb6+vvL19VVycrKOHTumrVu3atGiRXr77be1ceNGlS9fXtu2bZOPj4/27t2rhQsXasuWLTpy5IguX76sbNmyyd/fP83nO3z4sN5//329//775uLHyZMndefOHfXt21cODv8bsHO/6HL79m3ztvvFkNQ0adJE27dv18SJE3X27FmdPn1aZ86cMRdI7itVqpT5+5w5c0qSEhMT9ffffys2Nlbe3t4pnqNTp06l+RoBAAAAALAFdlkQiYmJUWRkpLp06aICBQrIwcFBnp6e8vT0VJ06ddSoUSPt2bNHwcHB+u6771SpUiXlypVLPj4+8vb21q5du3ThwgUFBQUpS5YsaTrnH3/8oXfeeUeNGzc2T5WR/rcA65QpU1SyZMkUxzk7O5u/v38Xm9QMGTJE69evV9OmTRUcHKxu3bpp3rx5unTp0kP7ezCG+1Nw/rk2iaOjXb5EAAAAAACZnF2uIeLs7Kxly5ZZLFx6X65cuSRJ+fLlU3BwsI4cOaKNGzcqMDBQklS1alXt3Lkz1fVD7vvn+h43btxQly5dVKpUKQ0ZMsRiX8mSJeXo6KiLFy+qWLFi5q+tW7dq3rx5FqNGHubvv//WkiVLNHToUA0YMEAhISEqW7asTp8+neY73jz33HMqWLCg9u3bZ7H9yJEjaToeAAAAAABbYpf//Z83b1516tRJU6dO1c2bN1W/fn3lyJFDJ0+e1CeffKLKlStbrMWxbNkyDR8+XJIUGBiomTNnysnJSdWqVUu1/2zZskm6d2ea3Llzq0+fPrpz545Gjhypq1evmosUWbJkUd68edW6dWtNnTpVOXLkkL+/v3bt2qUJEyaoS5cuabqeHDlyKGfOnNq0aZPKlSun27dva9GiRfrll19Uvnz5ND8vb7/9tsaNG6eSJUuqQoUKWrVqlQ4dOqSAgIA09wEAAAAAgC2wy4KIJPXq1UvFixfX0qVLtXjxYt2+fVsvvviiGjRoYFGICAoK0vz581WlShVJ99bUcHFxUeXKlc2Fj39yd3dXzZo11atXL/Xp00c//PCDJKlOnToW7QoVKqTNmzdrwIABeu655zR16lT9+eefKliwoHr27KlOnTql6VqcnJw0depUjR07Vq+99ppy586typUrq0+fPoqMjFR8fHya+mnXrp2Sk5M1c+ZM/fXXX6pRo4ZatGihM2fOpOl4AAAAAABshclI65wK4DEdPnxYklIs1ArrunXrlo4ePaqyZcs+tKiHZ0t8fLxcXV0VGRmpmJgYa4cD4P8rUKBAmkdzIn3xu8z2kDPbQr5sDzn7n8f5O9Qu1xABAAAAAAD2jYIIAAAAAACwOxREAAAAAACA3aEgAgAAAAAA7I7d3mUGAGyNm5ubtUMA8ADekwAA2DYKIgBgA+7evauQkBBrhwHgH5KTk+XgwIBbAABsEb/BAeAZZxiGoqOjFR8fb+1QkEbx8fHkzIb8l3xRDAEAwHbxWxwAbEBiYqIMw7B2GEgjwzAUHx9PzmwE+QIAwD5REAEAAAAAAHaHgggA2AAnJyeZTCZrh4E0MplMcnV1JWc2gnzZHnJme8iZbSFftoecPRmTwfhQZJDDhw9Lkry9va0cCR5069YtHT16VGXLllW2bNmsHQ7SID4+Xk5OTnJ0ZB1sAAAAWI8tLCb+OH+H8ukaAGyAo6OjoqKiFBsba+1QAAAAYIfc3Nwy3V0PKYgAgI2IjY1VTEyMtcMAAAAAMoVne6wLAAAAAABABqAgAgAAAAAA7A4FEQAAAAAAYHcoiAAAAAAAALtj9YJIaGiowsPDU90XHh6u0NDQNPcVERGh4OBg8+MTJ05oy5Yt/ym+f/b5Tw+Lcd26dfL09NTgwYOVnJz82NfyJHbt2iUPDw+dP38+Q88DAAAAAICty1R3mQkLC1O7du3Mj7t06aJmzZqpVq1aTzWOdevW6f3331ebNm00aNAgmUwmDRw4UElJSU81DgAAAAAAkLpMVRDJnj27smfPbtUYvv32W73//vspRr7kzJnTilEBAAAAAIAHWX3KzOPw8PDQ8uXL1bFjR/n4+Kh69eqaPn26ef+D01uCg4N14cIFTZ8+3TxV5fr16xo8eLCqVKmigIAAdejQQYcPH7Y4x5IlS1S3bl35+Pioa9euiouLS3N869evV9++ffXWW2+lmAb04JSZXbt2ydPTU1u3blWjRo3k5eWl+vXr67vvvjO3T0pK0uTJk1W9enX5+vqqZ8+eGjVqlMW0m7179+r111+Xj4+PGjdurGPHjlmcMykpSZ999pnq1asnb29v1atXT1988YV5//04Nm7cqHr16snHx0cdOnTQH3/8oZEjR6pChQoKDAzUzJkz0/wcAAAAAABgC2yqICJJ48aNU7NmzfT111+rffv2ioiI0J49e1K0W758uQoUKKCwsDBFRETIMAy9/fbbOnfunCIjI7V06VL5+vqqTZs2io6OliStXbtWw4cPV8eOHbVq1Sr5+/tr8eLFaYprw4YN6tOnj3x9fdWnT59/bZ+UlKQJEyZo4MCBWrt2rdzd3dW/f3/dvHlTkjRx4kQtWbJEQ4cO1VdffSU3NzctXLjQfPy5c+cUFhamsmXLasWKFerWrZs++eQTi3OMHTtWn3zyibp37641a9aoXbt2GjVqlD777DOLOGbOnKmJEydq/vz5OnbsmJo0aSInJyctW7ZMrVu31pQpU/Trr7+m6XkAAAAAAMAW2FxBpGnTpmrSpImKFCmirl27KleuXNq/f3+Kdnnz5lWWLFmULVs25cmTRzt37tSBAwc0ZcoUlS9fXqVKlTIXMBYsWCBJWrhwoRo2bKh27dqpRIkS6ty5s4KCgv41phMnTqhPnz6qXLmy9u7dazHS41F69eqlwMBAFS9eXO+++65u3Lih48ePKz4+Xp9//rl69eqlunXrqlSpUho0aJA8PT3Nxy5dulT58uXT0KFDVapUKdWrV0/vvPOOef+NGzf0xRdfqGfPnnrttddUvHhxdejQQW3bttXs2bNlGIa57XvvvSdvb2/5+fmpSpUqcnV11QcffKASJUqoS5cu5msEAAAAACCzsHpBxNHRUcnJyanuS05OlqOj5TInpUqVsnicM2dOJSYm/ut5fvnlFxmGoaCgIPn5+Zm/fv75Z506dUqSdPz4cXl7e1sc5+fn9699//333+rVq5c+/fRTvfzyyxo4cKBiYmL+9biSJUuav8+RI4ckKTExUadOndLt27fl6+tr3m8ymRQQEGB+fPz4cXl6eipLlizmbf7+/ubvT58+rcTERItjJKlSpUq6fPmyLl++bN5WrFgx8/fZsmVT4cKFZTKZJEkuLi6SpISEhH+9HgAAAAAAbIXVF1XNlSuXrl27luq+uLg45c6d22Kbs7NzinYPjnZ4mOTkZOXIkUNRUVEp9j3Y5z+LM05OTv/at7+/vzp16iRJGj16tBo1aqR+/fpp/vz5FgWLR533PsMwzEWgR12XyWRKEeuDxaOHHXv/mAfb/rPo5OBg9ToZAAAAAAAZyup/+ZYrV05HjhxJMQIhISFBhw4dSjFi40m5u7vrxo0bSkxMVLFixcxfc+bM0aZNmyRJZcuWTTH95p+LrqbmwYKCm5ubRowYoT179qRY0yOtihUrJhcXFx04cMBi+8GDB83flylTJsXzduTIEfP3pUqVkpOTk/bt22fRx969e+Xm5pai0AQAAAAAgD2xekGkRYsWSk5OVvfu3fXzzz/rwoUL2r17t9599105OjqqRYsWT9x39uzZdfbsWf3111+qUaOGypYtq969e2vnzp367bffNGbMGEVFRZmn4XTu3FkbN27U3LlzdfbsWS1cuFDr169/7PO+8soratasmWbOnJnqgq//xtXVVaGhoZo2bZq+++47nTlzRuPGjbMoiLRp00bx8fH68MMPderUKX3//feKiIgw78+RI4datWqladOmae3atfrtt9+0ePFiff755woLCzNPiQEAAAAAwB5ZvSCSN29eLVmyRLly5VKPHj1Ur1499enTR/ny5dPSpUv/00iG0NBQbdmyRWFhYcqSJYs+/fRTeXl5qVevXmrcuLH27Nmj6dOnKzAwUJJUq1Ytffzxx/rqq6/02muvacOGDQoLC3uicw8aNEgFChRQv379dPXq1cc+/r333lPjxo01aNAgNW3aVH/88Ydq165tnmaTP39+zZ8/XzExMWrWrJnGjh1rsaiqJA0YMEAdOnTQxIkT9eqrr+qLL77QkCFDnviaAAAAAADILExGWhbgwFO3ceNGBQQEKG/evOZtYWFhKlCggEaPHm3FyNLu/nSj9Jr2hPRx69YtHT16VGXLllW2bNmsHQ7SID4+Xq6uroqMjEzTgs0AAABAeitQoID5LqTPssf5O9TqI0SQunnz5qlv3746evSozp07p88++0w7d+5U48aNrR0aAAAAAAA2j4LIM2rixInKnj27OnbsqEaNGmnNmjWaOnWqqlSpYu3QAAAAAACweVa/7S5SV7hwYU2fPt3aYQAAAAAAkCkxQgQAAAAAANgdRogAgI1wc3OzdggAAACwU5nxsygFEQCwAXfv3lVISIi1wwAAAIAdS05OloND5ploknmuBAAyKcMwFB0drfj4eGuHgjSKj48nZzaEfNkecmZ7yJltIV+252nlLDMVQyQKIgBgExITE2UYhrXDQBoZhqH4+HhyZiPIl+0hZ7aHnNkW8mV7yNmToSACAAAAAADsDgURAAAAAABgdyiIAIANcHJykslksnYYSCOTySRXV1dyZiPIl+0hZwCA9MBdZgDgGWcymeTp6SlHR35k2wpXV1d5enpaOwykEfmyPeQsfWS2u0UAwOPi0zUA2ABHR0dFRUUpNjbW2qEAADIBNzc3bucOwO5REAEAGxEbG6uYmBhrhwEAAABkCoyRAwAAAAAAdoeCCAAAAAAAsDsURAAAAAAAgN3JFAWR0NBQhYeHp7ovPDxcoaGhae4rIiJCwcHB5scnTpzQli1b/lN8/+wzNYcOHVKXLl1UqVIleXt7q169evr4449148YNc5vExER99tlnj3Xuixcv6uuvv36SsAEAAAAAyLQyRUEkPYWFhWn58uXmx126dNHhw4cz9JwnTpxQaGioXnrpJS1cuFDr1q1T3759tXbtWr377rvmdmvXrtWYMWMeq+/+/fvrxx9/TO+QAQAAAACwadxl5h+yZ8+u7NmzP9VzRkVFqVixYnr//ffN24oUKSIXFxe9/fbbOnbsmMqUKSPDMJ5qXAAAAAAAZFZ2N0LEw8NDy5cvV8eOHeXj46Pq1atr+vTp5v0PTm8JDg7WhQsXNH36dPO0m+vXr2vw4MGqUqWKAgIC1KFDhxQjSJYsWaK6devKx8dHXbt2VVxc3CNjMplMunDhgk6ePGmxvWrVqvr6669VokQJRUVFacCAAeZr2LVrl5KTkxUZGal69erJy8tL/v7+6tSpk37//XdJ96YS7d69WytWrDBfU0JCgiZMmKAaNWrIz89PLVu21E8//WQ+Z1JSkiZMmKCaNWvKy8tL9evX1xdffPEkTzUAAAAAAM8suyuISNK4cePUrFkzff3112rfvr0iIiK0Z8+eFO2WL1+uAgUKKCwsTBERETIMQ2+//bbOnTunyMhILV26VL6+vmrTpo2io6Ml3ZvWMnz4cHXs2FGrVq2Sv7+/Fi9e/Mh4WrVqJUdHRzVq1EitW7fWpEmT9OOPPyopKUkvvfSSsmbNqoYNG+rDDz+UJP3000/y8/PTggULNG/ePIWHh2v9+vWaMWOGzp49q7Fjx0q6V9zx8/NTgwYNzNOABgwYoG3btmnixIlasWKFGjRooK5du5rXSfn888/17bffavLkyVq/fr3at2+vjz76SHv37k2vpx8AAAAAAKuzy4JI06ZN1aRJExUpUkRdu3ZVrly5tH///hTt8ubNqyxZsihbtmzKkyePdu7cqQMHDmjKlCkqX768SpUqpT59+sjX11cLFiyQJC1cuFANGzZUu3btVKJECXXu3FlBQUGPjKdYsWJauXKlQkND9eeffyoyMlKdOnVS9erVtXTpUkmSi4uLcubMKUlyc3OTs7OzihYtqnHjxikoKEiFChVSYGCg6tevr+PHj0uS8uTJIycnJ7m4uChv3rz67bffzOuQVK5cWcWLF9ebb76pV199VfPmzZMk/f7778qWLZsKFy6sQoUKqX379vq///s/lShRIt2efwAAAAAArC1TrCHi6Oio5OTkVPclJyfL0dHyMkuVKmXxOGfOnEpMTPzX8/zyyy8yDCNFgSMhIUF37tyRJB0/flyvvvqqxX4/Pz8dO3bskX0XLFhQAwcO1MCBA3Xu3Dlt375dn3/+uQYPHqz8+fOrZs2aKY4JDg7WwYMHNXXqVJ05c0ZnzpzRyZMnlT9//lTPcX8US9u2bS22JyYmKleuXJKkdu3a6bvvvlPNmjVVtmxZVatWTa+++qqef/75R8YPAAAAAIAtyRQFkVy5cunatWup7ouLi1Pu3Lkttjk7O6dol5YFS5OTk5UjRw5FRUWl2Pdgn/8szjg5OT2y3/Hjx6tGjRoKDAyUdG9B1VatWqlZs2aqW7eutm7dmmpBZPbs2ZoxY4aaNWumwMBAdezYUZs2bXrobXbvX+PixYtTLBzr4HBvsFDx4sW1YcMG7d69W9u2bdOWLVs0Z84cjRkzRs2aNXvkdQAAAAAAYCsyxZSZcuXK6ciRI0pISLDYnpCQoEOHDsnb2ztdzuPu7q4bN24oMTFRxYoVM3/NmTNHmzZtkiSVLVs2xfSbf7tt744dO/Tpp5+m2O7s7CwXFxfz6AyTyWSxf9asWerWrZs++ugjtWrVSr6+vjp79uxDizulS5eWJMXGxlrEHxUVZS7yLFiwQBs2bFC1atX0wQcfaM2aNQoMDNS6devS8AwBAAAAAGAbMkVBpEWLFkpOTlb37t31888/68KFC9q9e7feffddOTo6qkWLFk/cd/bs2XX27Fn99ddfqlGjhsqWLavevXtr586d+u233zRmzBhFRUWZp+F07txZGzdu1Ny5c3X27FktXLhQ69evf+Q5evfure3bt+u9997Tnj17zPF/8MEHunnzplq1aiVJypYtmyTpyJEjun37tgoWLKht27bp5MmTOn36tCZPnqwNGzZYFIayZ8+uCxcuKCYmRqVLl1ZQUJCGDh2qzZs369y5c5ozZ44iIyNVtGhRSdKVK1c0fPhwbdq0SRcuXNCPP/6oo0ePys/P74mfQwAAAAAAnjWZoiCSN29eLVmyRLly5VKPHj1Ur1499enTR/ny5dPSpUtTTJl5HKGhodqyZYvCwsKUJUsWffrpp/Ly8lKvXr3UuHFj7dmzR9OnTzdPd6lVq5Y+/vhjffXVV3rttde0YcMGhYWFPfIcL7/8shYuXKiEhAS99957qlevnnr37i2TyaQvv/xS+fLlkyRVqVJF5cuXV+vWrfX9999r/Pjxun37tpo3b6727dvr+PHjGjZsmC5fvqyLFy9Kklq3bq3jx4+rcePGSkpK0uTJk/XKK69oyJAhatiwoVauXKlRo0aZp8N0795dLVq00MiRI1WvXj0NGTJEbdq0UZcuXZ74OQQAAAAA4FljMtKyeAbwBO5PFUqvKUtIH7du3dLRo0dVtmxZ86gjPNvi4+Pl6uqqyMhIxcTEWDscAEAmUKBAgaf6H158/rAt5Mv2kLP/eZy/QzPFCBEAAAAAAIDHQUEEAAAAAADYHQoiAAAAAADA7lAQAQAAAAAAdsfR2gEAANLGzc3N2iEAADIJfqcAAAURALAJd+/eVUhIiLXDAABkIsnJyXJwYMA4APvFT0AAeMYZhqHo6GjFx8dbOxSkUXx8PDmzIeTL9pCz9EExBIC9MxmGYVg7CGRO+/fvl2EYcnZ2tnYoeIBhGEpMTJSTk5NMJpO1w0EakDPbQ85sC/myPeTM9pAz20K+bA85+5+EhASZTCb5+/v/a1umzCDD2Psb8VllMpkoUtkYcmZ7yJltIV+2h5zZHnJmW8iX7SFn/2MymdL8tygjRAAAAAAAgN1h4iAAAAAAALA7FEQAAAAAAIDdoSACAAAAAADsDgURAAAAAABgdyiIAAAAAAAAu0NBBAAAAAAA2B0KIgAAAAAAwO5QEAEAAAAAAHaHgggAAAAAALA7FEQAAAAAAIDdoSACAAAAAADsDgURAAAAAABgdyiIAJnMnTt3NGzYMAUGBsrPz099+/bVlStXHnnM+fPn1aVLF/n7+6t69eqaMmWKkpKSzPuTkpLk4+MjDw8Pi6+IiIiMvpxMKTk5WdOmTVONGjXk6+urt99+W+fOnXto+7///lt9+/ZVxYoVValSJQ0bNkzx8fEWbb755hs1bNhQPj4+atq0qXbs2JHRl2E3MiJfr7zySor3U3h4eEZfit143Jw9eFynTp1S/dnGeyxjZUTOeJ9lnMfN14kTJ9S5c2dVrlxZgYGB6tmzpy5evGjRZvHixapdu7Z8fHzUtm1bRUdHZ/Rl2JX0zhmfDTPe4+bsl19+0RtvvCE/Pz9VqVJFQ4YM0fXr1y3a8LssFQaATCU8PNyoU6eOsWfPHuPgwYNG06ZNjXbt2j20fUJCgvHKK68YnTt3Nn799Vdj48aNRqVKlYypU6ea25w8edJwd3c3jh49avz555/mrxs3bjyNS8p0IiIijMqVKxvff/+9cfToUSMsLMx45ZVXjDt37qTavn379kbz5s2NI0eOGNu3bzeCgoKMDz74wLx/x44dRrly5Yz58+cbJ0+eNMaOHWt4eXkZJ0+efFqXlKmld75u3rxplClTxvj+++8t3k/Xrl17WpeU6T1uzgzDMO7cuWP079/fcHd3N6ZNm2axj/dYxkvvnPE+y1iPk68rV64Y1apVM3r06GH8+uuvxuHDh4127doZDRo0MG7fvm0YhmFERUUZPj4+xqpVq4wTJ04Y77//vlGpUiXj8uXLT/vSMq30zhmfDTPe4+QsNjbWqFixojFgwADj9OnTxr59+4yGDRsa7777rrkNv8tSR0EEyERiYmKMMmXKGFu2bDFvO336tOHu7m7s378/1WPWrFljeHl5GVevXjVv+/LLLw1/f3/zD9yvv/7a8Pf3z9jg7cSdO3cMPz8/Y/HixeZtcXFxho+Pj7FmzZoU7ffv32+4u7tb/LL68ccfDQ8PDyMmJsYwDMMICwsz3nvvPYvjWrVqZQwePDhjLsKOZES+Dh48aLi7u1u855B+HjdnhmEY+/btM1599VWjdu3aRoUKFVL8cc17LGNlRM54n2Wcx83X0qVLDT8/PyM+Pt687eLFi4a7u7uxfft2wzAM45VXXjHGjx9v3p+YmGjUrFnTmDVrVgZeif3IiJzx2TBjPW7ODhw4YPTu3dtITEw0b/vss8+M8uXLmx/zuyx1TJkBMpF9+/ZJkqpUqWLeVqJECeXPn1979uxJ9Zi9e/eqXLlyyp07t3lblSpVdOPGDR09elSS9Ouvv6pUqVIZGLn9OHbsmG7evKnAwEDztly5csnT0zPVHO3du1dubm4Wz3+lSpVkMpm0b98+JScna//+/Rb9SVLlypUfmnOkXXrnS7r3fsqXL5/Few7p53FzJklbt25VjRo1tHLlSuXMmdNiH++xjJfeOZN4n2Wkx81XYGCgPvnkE7m4uJi3OTjc+xPk2rVrunz5ss6ePWvRn6OjoypUqMB7LJ2kd84kPhtmtMfNWfny5TVp0iQ5OjpKkk6dOqVVq1apWrVqkvhd9iiO1g4AQPq5dOmSnnvuOWXNmtVi+wsvvKCYmJhUj4mJiVGBAgVStJekP/74Q+XLl9fx48d19+5dvfXWWzp27Jjy58+vN954Q02aNMmYC8nE7uehYMGCFtsflqNLly6laOvs7Kw8efLojz/+0LVr13Tr1q1Uc/iwnCPt0jtf0r0PkdmyZVPPnj21f/9+Pffcc2revLk6dOhg/sCJJ/e4OZOk3r17P7Q/3mMZL71zJvE+y0iPm6/ChQurcOHCFttmz54tFxcXVaxY0fyzMbX+jh07lp6h2630zpkkPhtmsCf5uXhfvXr1dPbsWRUqVEjTp0+XxO+yR6EgAtiQ8+fPq3bt2g/d/95778nZ2TnF9qxZs+rOnTupHnP79m3lypUrRXtJ5mNOnDih5ORk9ezZUwUKFNDWrVs1YMAAJSYmqkWLFk96OXbp/uKa/8xT1qxZFRcXl2r7R+X09u3bD+3vYTlH2qV3vqR776dr166pXr166tatm/bt26cJEyYoLi5O7733XgZchX153Jz9G95jGS+9cybxPstI/zVfCxcu1KJFizRo0CDlzZtXp0+ffmh/vMfSR3rnTOKzYUb7LzmbOHGi4uPjNWHCBHXo0EGrVq3id9kjUBABbEj+/Pm1bt26h+7funWrEhISUmy/c+eOXF1dUz3GxcUlxTH3fzBmy5ZNkrR27VolJSUpe/bskqQyZcro4sWLmjdvHr/0HtP94acJCQkWQ1EflqPU8nO/fbZs2czFq9Ry+LCcI+3SO1+SNGfOHN25c8c8zN/Dw0M3btzQzJkz1aNHD/73+j963Jz9G95jGS+9cybxPstIT5ovwzA0depUzZw5U++8845CQ0NT9Pcg3mPpJ71zJvHZMKP9l5+L3t7ekqTp06erZs2a2rhxo2rWrGnu70G8z7jtLmBTnJycVKpUqYd+FShQQFevXk3xw+7PP/9U/vz5U+2zQIEC+vPPP1O0l2Q+xsXFxfwL7z53d3e7H2L3JO4PfUztOU8tR6nlJyEhQVevXtULL7ygPHnyKFu2bGnuD48nvfMl3fvfmX+ueeDu7q5bt2498f+G438eN2f/hvdYxkvvnEm8zzLSk+QrMTFR77//vmbNmqUBAwaoV69e/6k/PJ70zpnEZ8OM9rg5O336tLZs2WKxLX/+/MqTJ48uXbrE77JHoCACZCIBAQFKTk42L94oSWfOnNGlS5fMcz7/qWLFioqOjtaNGzfM23bu3Kns2bOrTJkyunbtmipVqqSoqCiL4w4fPqzSpUtnzIVkYmXKlFGOHDm0a9cu87Zr164pOjo61RxVrFhRMTEx+u2338zbdu/eLelevk0mk/z9/c3b7tu1a5cqVKiQQVdhP9I7X4ZhqE6dOuY5vfcdPnxYbm5ueu655zLoSuzH4+bs3/Aey3jpnTPeZxnrSfL1wQcf6Ntvv9XHH3+sjh07Wux7/vnnVaJECYv+7t69q7179z5R/pFSeueMz4YZ73Fztn37dvXs2dO86K0k/f777/r7779VqlQpfpc9AlNmgEwkf/78evXVVzVo0CCNHj1arq6uGjp0qCpVqiRfX19J9/63Oi4uTrlz55azs7Pq1KmjKVOmqFevXurXr5/Onz+vSZMmKSwsTM7OznJ2dlaVKlU0efJkPf/88ypWrJg2bNig1atXKzIy0roXbIOcnZ3Vvn17TZw4UXnz5lWhQoU0YcIEFShQQK+88oqSkpJ05coV5cyZUy4uLipfvrz8/f3Vu3dvffTRR7p165aGDBmipk2bmiv6b775pjp37ixPT0+9/PLL+uqrr3T06FGNGjXKyldr+zIiX3Xr1tW8efNUsmRJeXl5aceOHZo7d64GDhxo5avNHB43Z2nBeyxjpXfOTCYT77MM9Lj5ioqK0rp16/TBBx+oUqVKio2NNfd1v01YWJhGjRqlYsWKydvbW7Nnz9bt27eZepFO0jtnuXLl4rNhBnvcnDVq1EizZ8/W+++/r379+ikuLk4jR46Uj4+PgoKCJPG77KGse9dfAOnt5s2bxsCBA40KFSoYFSpUMPr06WNcuXLFvH/nzp2Gu7u7sXPnTvO2s2fPGm+++abh7e1tVK9e3ZgyZYqRlJRk3n/9+nVj9OjRRs2aNQ0vLy+jSZMmxsaNG5/qdWUmd+/eNcaPH29UqVLF8PX1Nd5++23j3LlzhmEYxrlz5wx3d3fjq6++Mrf/66+/jB49ehi+vr5G5cqVjaFDhxq3b9+26HPFihVG3bp1DW9vb6NZs2bG9u3bn+o1ZWbpna/ExERj+vTpRu3atY1y5coZ9erVM5YsWfLUrysze9ycPSgoKMiYNm1aiu28xzJWeueM91nGepx8vfnmm4a7u3uqXw/mdO7cucbLL79s+Pj4GG3btjWio6Otcm2ZVXrnjM+GGe9xfy6ePn3a6Ny5sxEQEGBUqlTJGDBggBEXF2fRJ7/LUjIZhmFYuygDAAAAAADwNLGGCAAAAAAAsDsURAAAAAAAgN2hIAIAAAAAAOwOBREAAAAAAGB3KIgAAAAAAAC7Q0EEAAAAAADYHQoiAADAzDAMa4cAAADwVFAQAQDgGRMaGioPDw+LLy8vL9WqVUvDhg1TXFxcup8zISFBo0eP1po1a9K977Se/4033lC5cuVUtmxZeXp6ys/PT2fOnPnPfYeHh8vDw0Mvv/zyQws+EydOlIeHh0JDQ1Pd//nnn8vDw0Nr16791/OdP39eHh4eioqKkiTt2rVLHh4e2rVr15NfRBrP9V8lJSVp2bJlCg0NVbVq1cyvuwEDBujUqVPpco5nUXh4uIKDgx/ZJioqSh4eHjp//vx/Pl9oaOhDX2sAgKfH0doBAACAlDw9PTV06FDz48TERP3yyy+aNGmSjh49qi+++EImkyndzvfnn39q/vz5GjNmTLr1+bgGDhyo27dvK0uWLHJ2dlbBggWVI0eOdOnbwcFBly5d0v79+xUQEJBi/7p16x56bEJCgiIjI/XOO++oUaNGj33ucuXKacmSJXrppZce+9in6caNG3rnnXd08OBBtWzZUm+++aZy5syps2fPauHChWrevLnmzp2rChUqWDvUdPfuu++qQ4cO1g4DAPCUURABAOAZlCNHDvn6+lpsq1ixom7evKlp06bp4MGDKfbbMmdnZ7m7u2dY/wULFpRhGPrmm29SFEQOHDigS5cuPfT8hmHo//7v/1SiRIknOndquXwWjRo1Sj///LMWLVpkEW/FihXVuHFjtW3bVoMHD9Y333xjvSAzSNGiRa0dAgDACpgyAwCADfHy8pIkXbx40bxt3bp1CgkJkZ+fn6pVq6YhQ4ZYTKuJiIhQ3bp1tWXLFr322mvy8vJSvXr1tHLlSkn3pl3Url1bkjRgwADz1IHUhvWnNv1jz549euutt1SxYkV5eXkpODhYERERSk5ONre5ceOGRowYoRo1asjX11fNmzfXli1bzPtv376tjz/+WK+88oq8vLzk7++vN998U0ePHrU4/7Zt29S2bVsFBASocuXK6tu3r/744480PXf169fXhg0bUkybWbdunapWrao8efKkOGbZsmUKCQlR48aNFRQUpIiICCUlJVm02bBhgxo3biwfHx81a9ZMx44d+9fn7LvvvlPbtm3l5+cnLy8v1a9fX4sXL/7Xa/i3c0nS1atXNWTIEFWtWlXe3t5q2bKlduzY8ch+L1y4oBUrVqhDhw6pFm+yZs2q3r17y8vLS9evXzdvP378uLp06SJ/f3/5+/urW7duOnfuXIpr37Fjh8LCwlS+fHlVq1ZNEyZMsHgek5OTNXv2bNWtW9f8+ly4cKFFDKGhoerXr5969uwpX19fvfnmm5Kk69eva8yYMapTp468vb3VqFEjLV++3OLYI0eO6I033lBAQID8/PzUsWNHHThwwLz/n1NmkpOT9cknn6hWrVoqX7683n333VSnqqUljxcvXlT37t0VEBCgatWq6f/+7/9SzcGyZcv06quvmqcppfZaAwCkLwoiAADYkPtrahQpUkSS9Mknn6hPnz7y9fXVtGnT1K1bN61fv16hoaG6ffu2+bjY2FgNHz5cHTp00OzZs1W4cGH1799fp06d0gsvvKDp06dLkt555x3z92lx7NgxdezYUXny5NHkyZM1c+ZMVahQQdOnTzePJEhKSlJYWJjWrFmjrl27aubMmSpZsqS6deum/fv3S5I++OADffXVV+rcubM+/fRTDRgwQCdOnFDfvn3NBYyVK1cqLCxMBQsW1KRJkzRgwAD9/PPPatWqlS5fvvyvsTZs2NA8bea+5ORkffvtt3r11VdTtI+MjNTgwYMVGBioWbNmqV27dpozZ44GDx5sbrN582b17NlTHh4emjFjhho0aKD333//kXFs2bJF3bp1U7ly5fTJJ58oIiJCRYoU0fDhw3Xw4MGHHpeWc925c0dvvPGGNm3apN69e2v69OkqUKCAOnXq9MiiyKZNm2QYxiOnBFWvXl0TJkxQzpw5Jd17LbZu3VqXL1/WuHHjNGrUKJ07d05t2rRJkY9+/fopICBAs2bNUqNGjTR37lwtW7bMvP+jjz7StGnT1LhxY82aNUv169fX6NGjNWPGDIt+vvnmG2XPnl0zZ85Up06ddPv2bbVt21Zr1qxRp06d9MknnyggIEADBw7UrFmzJN0rxnXq1EnPPfecIiIiNHnyZMXHx+utt96yKO48aMKECZoxY4ZatGih6dOnK0+ePPr4448t2qQlj7du3VL79u11/PhxjRgxQoMHD9ayZcv0888/W/SVltcaACADGAAA4JnSvn17o127dkZiYqL566+//jLWrVtnVKpUyWjVqpWRnJxsXL161fDy8jIGDx5scfyePXsMd3d3Y9GiRYZhGMa0adMMd3d3Y/v27eY2Fy5cMNzd3Y158+YZhmEY586dM9zd3Y2vvvrKIo727dtb9L1z507D3d3d2Llzp2EYhrFixQqjU6dORlJSkrlNUlKSERAQYI5r8+bNhru7u7Fx40aLNq1atTJmzJhh3LlzxwgLCzO+/vpri3N9+umnhru7u/Hnn38aSUlJRrVq1YywsDCLNr/99ptRrlw5Y9y4cQ99Pvv3728EBQUZhmEYtWvXNkaMGGHet2vXLsPb29u4fv26xfVeu3bN8PHxMYYMGWLR19KlSw13d3fj+PHjhmEYRkhIiPH6669btImMjLR4Lv/5nM2ZM8fo37+/xTF///234e7ubkRGRj70OtJyriVLlhju7u7GgQMHzG2Sk5ONdu3aGSEhIQ/te8SIEYa7u7tx8+ZNi+1JSUkWr8PExEQjOTnZMAzD6NOnj1G1alXj+vXrFtcREBBgjB071uLaJ0+ebNFvcHCw0aVLF8MwDOP06dOGh4dHimufPHmy4e3tbVy5csUwjHuvx/Llyxt37twxt1m8eLHh7u5u7N+/3+LYDz/80PD29jb+/vtv4+effzbc3d2Nffv2mff/9ttvxvjx440//vjDMAzL10hcXJxRrlw5Y8KECRZ9vvXWW4a7u7tx7tw5wzDSlsdFixYZHh4exokTJ8xtLl68aJQrV+6xX2sAgPTHGiIAADyD9uzZo3Llyllsc3BwUNWqVTV8+HCZTCYdOHBACQkJKf5Xv0KFCipUqJB2796tdu3ambc/OBWiQIECku79D/Z/0bRpUzVt2lR37tzRmTNn9Ntvv+no0aNKSkpSYmKiJGnfvn1ycnKymJLg4OCgL7/80vx43rx5kqRLly7pzJkzOnv2rL7//ntJ9xY1PXPmjGJjY9W3b1+L8xctWlR+fn7avXt3muJt2LChVq5cqYEDB8pkMunrr79WrVq1Uize+vPPP+v27dsKDg7W3bt3zdvvX8O2bdtUpEgR/fLLL3rvvfcsjm3QoEGK0QQP6tSpkyTp5s2bOnPmjH7//XcdPnzYfK2puX37dprOtWPHDrm5ualcuXIWcQcFBWn8+PGKi4tT7ty5U/RvPOTuOx988EGKOw+NGTNGISEh2rlzpypVqiQXFxfzuXLkyKEKFSpo+/btFsf4+flZPC5QoID5tbdz504ZhpHqcz1z5kzt27dPderUkSSVLFlSzs7O5ja7d+9WoUKFUvTfuHFjLV++XAcPHlSFChWUN29ede3aVfXr11eNGjVUrVq1h47kOXDggBITExUUFGSxvUGDBvrxxx/Nj9OSx71796po0aIWC+oWLFjQ4r2Yltda6dKlU40VAPDfUBABAOAZVK5cOQ0bNkySZDKZlDVr1hR3Xbm/pkG+fPlSHJ8vX74U0wFcXV3N3zs43Js1+7A/hNPq9u3bGjFihFatWqW7d++qcOHC8vPzk6Ojo7nvq1evKk+ePOZzpubHH3/U6NGjdfr0aWXPnl1lypRRtmzZzDFevXr1kdcaHR2dpngbNmyoyMhI7d+/X76+vtqwYYM++uijFO3un69z586p9vPnn38qLi5OhmHoueees9j3wgsvPDKGK1euaOjQofruu+9kMplUrFgx851bHpaPtJ7r6tWrio2NTVFMuy82NjbVgsiLL74o6d5aIg/+8f3ee+/pjTfeMB/7zjvvWJxr3bp1qd6hJ2/evBaPXVxcLB47ODhYvD4kpTptSbpXJLsve/bsFvvi4uLk5uaW4pj7r5Nr164pe/bsWrx4sWbOnKlvvvlGS5YskYuLi5o0aaJBgwZZFFju9ykpxXP9z/OkJY9xcXEp+rnf119//WVx/Y96rQEAMgYFEQAAnkHZs2eXt7f3I9vc/8P2r7/+UsmSJS32xcbGmtcZ+S/+uajjP0eUjBo1SuvXr9eUKVNUtWpVcxEjMDDQ3CZnzpy6evWqDMOwuFXwL7/8IpPJpBw5cqhbt26qU6eOIiMjVaRIEZlMJi1evNj8P/L3Fzy9/0fkP681tT86U1OmTBmVKFFC3377rW7fvq07d+6oVq1aKdrlypVLkjRx4kQVL148xf58+fKZizz/jOn+H7gP069fP50+fVqfffaZ/Pz85OzsrPj4eC1duvShx6T1XDlz5lTx4sU1ceLEVPspXLhwqtuDg4M1fvx4ffvttxYFkSJFiphfR+fPn09xrqpVq5oXN32Qo2PaP2Lef67nz5+fouAh/a9Yk5rcuXPrt99+S7E9NjZW0v+KGiVLljQv5Hro0CGtWrVKX3zxhYoWLWoe6XHf/WMuX75s8b7653Odljw+99xzqcb3YF9pea0BADIGi6oCAGCjypcvL2dnZ61du9Zi+969e3Xx4kX5+/unua8sWbKk2JYjRw7FxMRYbNu3b1+Kx5UrV1adOnXMxZAjR47oypUr5rvMVKhQQYmJifrhhx/MxxmGoQEDBmj27Nk6cuSI7ty5o86dO6to0aLmosn9YohhGCpRooTc3NxSXOu5c+d04MCBx7rWhg0basOGDVq3bp3q1q2rrFmzpmhTvnx5OTk56dKlS/L29jZ/OTo6atKkSTp//ryyZs0qPz+/FHeu2bx58yPPv2/fPr3yyiuqXLmyeXTC/efmwTvzPCit56pUqZL++OMPPf/88xZxb9u2TXPnzk01z5JUokQJ82KnD9595UEnTpxIca6TJ0+qbNmy5vN4eXnps88+08aNGx/5HDzo/qiKv//+2yLmK1euaOrUqY8sMFWsWFEXLlxIsUjp6tWr5eTkJB8fH3377beqUqWKYmNjlSVLFvn5+emjjz5Srly5LO7WdJ+fn59cXFz07bffWmy/P4XrvrTksUqVKjp//rx5Ko10b2TJg89xWl5rAICMwQgRAABsVJ48edS5c2fNmDFDTk5OCgoK0vnz5zV16lS99NJLatasWZr7un/nkB07dqhUqVIqX768goKCtHnzZo0ZM0bBwcHau3ev+Va99/n4+Oibb77RF198oVKlSunYsWOaOXOmTCaT4uPjJUm1atWSn5+fwsPD1atXLxUpUkSrVq3S6dOnNXLkSOXOnVuOjo6aMGGCwsLClJCQoKioKPNteW/duiUHBwf16dNHAwYMUN++fdW4cWP9/fffmj59unLnzp3qKIWHadiwoWbMmKFVq1bpk08+SbXNc889p06dOmnq1Km6ceOGKleurEuXLmnq1KkymUwqU6aMJKlPnz5644031L17d7Vq1Upnzpwx393kYXx8fLRmzRqVK1dOBQoU0P79+zV79myL5yw1aTlXSEiIFi1apDfffFNdu3ZVwYIFtX37ds2ZM0ft27eXk5PTQ/sfNmyY4uLi1L59ezVp0kQvv/yy8ubNqwsXLmj9+vX6/vvvVbJkSfn4+EiS3n33XbVu3VpdunRRmzZtlDVrVi1ZskTfffedpk2b9sjn4EEeHh5q3LixBg8erAsXLsjLy0tnzpzR5MmTVbhw4VRHTTx4vZ9//rm6deumnj17qnDhwtq8ebO++uorde/eXbly5ZK/v7+Sk5PVrVs3de7cWdmzZ9c333yj69ev65VXXknRZ/bs2fXuu+9qypQpcnV1VZUqVbR169YUBZG05LFJkyZasGCBunfvrt69eytHjhyaOXOmReErra81AED6oyACAIAN69Gjh/Lly6dFixZpyZIlypMnj+rXr69evXqZR2ykRY4cOfTmm29qyZIl2rp1q7Zt26bmzZvr999/14oVK/Tll1+qYsWKmjZtmtq0aWM+Ljw8XImJiZoyZYoSEhJUuHBhvfPOOzp58qQ2b96spKQkZcmSRXPmzNHEiRM1ZMgQSff+F/7TTz81/3H98ccfa/r06XrnnXeUO3du+fr6auHChQoNDdXevXvl4eGhkJAQZc+eXZGRkerWrZty5MihGjVqqE+fPqmuI/EwL730ktzd3RUbG6uqVas+tF2vXr3k5uamzz//XHPnzlXu3LkVGBioPn36mAtIFSpU0Jw5czRp0iR1795dhQsX1ujRo9W1a9eH9jt27FiNGDFCI0aMkCQVL15cw4YN0+rVq7V3796HHpeWc2XLlk2LFy/Wxx9/rAkTJuj69esqVKiQ+vbtq7CwsEc+Lzly5NCcOXP0zTffaOXKlRoxYoSuXr2q3Llzy9vbW+PHj1eDBg3MRZUyZcpo8eLFmjx5sj744AMZhiF3d3fNmDFDtWvXfuS5/mnMmDGKjIzUl19+qZiYGD3//PNq2LChevXq9dBRLdK9dXEWLlyojz/+2FxQKFmypEaNGqUWLVpIurfOyty5czV16lQNHDhQ8fHxKl26tCIiIlSlSpVU++3SpYuyZcum+fPna/78+fLz81P//v0t1ptJSx6dnZ01f/58jR49WqNGjZLJZFLLli1VpEgRi1sTp+W1BgBIfybjv66mBgAAkEZt2rRRtmzZNHToUBUtWtTa4QAAADvGGiIAAOCpOHXqlHr27KmzZ89q5syZ1g4HAADYOabMAACAp2LEiBHat2+fSpcurQ4dOlg7HAAAYOeYMgMAAAAAAOwOU2YAAAAAAIDdoSACAAAAAADsDgURAAAAAABgdyiIAAAAAAAAu0NBBAAAAAAA2B0KIgAAAAAAwO5QEAEAAAAAAHaHgggAAAAAALA7FEQAAAAAAIDd+X+M+FhDQwl02wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dados_comparacao = df[df['Nome do País'].isin(media_felicidade_paises_top20.index.tolist() + ['Brazil'])]\n", + "\n", + "media_generosidade = dados_comparacao.groupby('Nome do País')['Generosidade'].mean()\n", + "\n", + "media_generosidade = media_generosidade.reset_index()\n", + "\n", + "# Destacar o Brasil no gráfico\n", + "media_generosidade['Destaque'] = media_generosidade['Nome do País'].apply(lambda x: 'Brasil' if x == 'Brazil' else 'Outros')\n", + "\n", + "\n", + "plt.figure(figsize=(12, 8))\n", + "sns.barplot(x='Generosidade', y='Nome do País', data=media_generosidade, hue='Destaque', dodge=False, palette={'Brasil': 'blue', 'Outros': 'gray'})\n", + "\n", + "plt.title('Comparação da Pontuação de Generosidade: Brasil vs. 20 Países Mais Felizes', fontsize=16)\n", + "plt.xlabel('Pontuação Média de Generosidade')\n", + "plt.ylabel('País')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Teste de Hipótese\n", + "\n", + "Hipótese Nula (H₀): O Brasil é um dos países mais felizes do mundo.\n", + "Hipótese Alternativa (H₁): O Brasil não é um dos países mais felizes do mundo." + ] + }, + { + "cell_type": "code", + "execution_count": 132, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Posição do Brasil: 25\n", + "Rejeitamos a hipótese nula: O Brasil não é um dos países mais felizes do mundo.\n" + ] + } + ], + "source": [ + "corte = 20\n", + "\n", + "if posicao_brasil <= corte:\n", + " resultado = \"Não rejeitamos a hipótese nula: O Brasil é um dos países mais felizes do mundo.\"\n", + "else:\n", + " resultado = \"Rejeitamos a hipótese nula: O Brasil não é um dos países mais felizes do mundo.\"\n", + "\n", + "print(f\"Posição do Brasil: {posicao_brasil}\")\n", + "print(resultado)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# SQL" + ] + }, + { + "cell_type": "code", + "execution_count": 133, + "metadata": {}, + "outputs": [], + "source": [ + "import sqlite3\n", + "import pandas as pd\n", + "\n", + "conexao = sqlite3.connect('felicidade_mundial.db')\n", + "cursor = conexao.cursor()\n", + "\n", + "cursor.execute('''\n", + "CREATE TABLE IF NOT EXISTS tabela_felicidade (\n", + " id INTEGER PRIMARY KEY,\n", + " \"Nome do País\" TEXT,\n", + " \"Ano\" INTEGER,\n", + " \"Índice de Felicidade\" REAL,\n", + " \"PIB per capita (logaritmo)\" REAL,\n", + " \"Apoio Social\" REAL,\n", + " \"Expectativa de vida saudável ao nascer\" REAL,\n", + " \"Liberdade para fazer escolhas\" REAL,\n", + " \"Generosidade\" REAL,\n", + " \"Percepções de corrupção\" REAL,\n", + " \"Afeto positivo\" REAL,\n", + " \"Afeto negativo\" REAL\n", + ")\n", + "''')\n", + "\n", + "df = pd.read_csv('world-happiness-report.csv')\n", + "\n", + "df.to_sql('tabela_felicidade', conexao, if_exists='replace', index=False)\n", + "conexao.commit()" + ] + }, + { + "cell_type": "code", + "execution_count": 134, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Os 20 países mais felizes de 2020:\n", + "Empty DataFrame\n", + "Columns: [\"Nome do País\", \"Índice de Felicidade\"]\n", + "Index: []\n" + ] + }, + { + "ename": "KeyError", + "evalue": "'Nome do País'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)", + "File \u001b[1;32mc:\\Users\\sukzw\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\pandas\\core\\indexes\\base.py:3805\u001b[0m, in \u001b[0;36mIndex.get_loc\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 3804\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m-> 3805\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_engine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_loc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcasted_key\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 3806\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m err:\n", + "File \u001b[1;32mindex.pyx:167\u001b[0m, in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n", + "File \u001b[1;32mindex.pyx:196\u001b[0m, in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n", + "File \u001b[1;32mpandas\\\\_libs\\\\hashtable_class_helper.pxi:7081\u001b[0m, in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n", + "File \u001b[1;32mpandas\\\\_libs\\\\hashtable_class_helper.pxi:7089\u001b[0m, in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n", + "\u001b[1;31mKeyError\u001b[0m: 'Nome do País'", + "\nThe above exception was the direct cause of the following exception:\n", + "\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[134], line 24\u001b[0m\n\u001b[0;32m 21\u001b[0m todos_paises_2020 \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mread_sql_query(consulta_posicao_brasil, conexao)\n\u001b[0;32m 23\u001b[0m \u001b[38;5;66;03m# posição do Brasil\u001b[39;00m\n\u001b[1;32m---> 24\u001b[0m posicao_brasil_2020 \u001b[38;5;241m=\u001b[39m todos_paises_2020[\u001b[43mtodos_paises_2020\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mNome do País\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mBrazil\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;241m.\u001b[39mindex[\u001b[38;5;241m0\u001b[39m] \u001b[38;5;241m+\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[0;32m 25\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mO Brasil está na posição \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mposicao_brasil_2020\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m no índice de felicidade em 2020.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 27\u001b[0m conexao\u001b[38;5;241m.\u001b[39mclose()\n", + "File \u001b[1;32mc:\\Users\\sukzw\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\pandas\\core\\frame.py:4102\u001b[0m, in \u001b[0;36mDataFrame.__getitem__\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 4100\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcolumns\u001b[38;5;241m.\u001b[39mnlevels \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[0;32m 4101\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_getitem_multilevel(key)\n\u001b[1;32m-> 4102\u001b[0m indexer \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcolumns\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_loc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mkey\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 4103\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_integer(indexer):\n\u001b[0;32m 4104\u001b[0m indexer \u001b[38;5;241m=\u001b[39m [indexer]\n", + "File \u001b[1;32mc:\\Users\\sukzw\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\pandas\\core\\indexes\\base.py:3812\u001b[0m, in \u001b[0;36mIndex.get_loc\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 3807\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(casted_key, \u001b[38;5;28mslice\u001b[39m) \u001b[38;5;129;01mor\u001b[39;00m (\n\u001b[0;32m 3808\u001b[0m \u001b[38;5;28misinstance\u001b[39m(casted_key, abc\u001b[38;5;241m.\u001b[39mIterable)\n\u001b[0;32m 3809\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28many\u001b[39m(\u001b[38;5;28misinstance\u001b[39m(x, \u001b[38;5;28mslice\u001b[39m) \u001b[38;5;28;01mfor\u001b[39;00m x \u001b[38;5;129;01min\u001b[39;00m casted_key)\n\u001b[0;32m 3810\u001b[0m ):\n\u001b[0;32m 3811\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m InvalidIndexError(key)\n\u001b[1;32m-> 3812\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m(key) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01merr\u001b[39;00m\n\u001b[0;32m 3813\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m:\n\u001b[0;32m 3814\u001b[0m \u001b[38;5;66;03m# If we have a listlike key, _check_indexing_error will raise\u001b[39;00m\n\u001b[0;32m 3815\u001b[0m \u001b[38;5;66;03m# InvalidIndexError. Otherwise we fall through and re-raise\u001b[39;00m\n\u001b[0;32m 3816\u001b[0m \u001b[38;5;66;03m# the TypeError.\u001b[39;00m\n\u001b[0;32m 3817\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_check_indexing_error(key)\n", + "\u001b[1;31mKeyError\u001b[0m: 'Nome do País'" + ] + } + ], + "source": [ + "# 20 países mais felizes de 2020\n", + "\n", + "consulta_20_mais_felizes = '''\n", + "SELECT \"Nome do País\", \"Índice de Felicidade\"\n", + "FROM tabela_felicidade\n", + "WHERE \"Ano\" = 2020\n", + "ORDER BY \"Índice de Felicidade\" DESC\n", + "LIMIT 20;\n", + "'''\n", + "top_20_felizes = pd.read_sql_query(consulta_20_mais_felizes, conexao)\n", + "print(\"Os 20 países mais felizes de 2020:\")\n", + "print(top_20_felizes)\n", + "\n", + "# posição do Brasil em 2020\n", + "consulta_posicao_brasil = '''\n", + "SELECT \"Nome do País\", \"Índice de Felicidade\"\n", + "FROM tabela_felicidade\n", + "WHERE \"Ano\" = 2020\n", + "ORDER BY \"Índice de Felicidade\" DESC;\n", + "'''\n", + "todos_paises_2020 = pd.read_sql_query(consulta_posicao_brasil, conexao)\n", + "\n", + "# posição do Brasil\n", + "posicao_brasil_2020 = todos_paises_2020[todos_paises_2020['Nome do País'] == 'Brazil'].index[0] + 1\n", + "print(f\"O Brasil está na posição {posicao_brasil_2020} no índice de felicidade em 2020.\")\n", + "\n", + "conexao.close()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/exercicios/para-casa/felicidade_mundial.db b/exercicios/para-casa/felicidade_mundial.db new file mode 100644 index 0000000000000000000000000000000000000000..abf9fad403760742eb1875d02b66c616b4b63c7a GIT binary patch literal 200704 zcmeFad3=@CwLYE%GEdA9Aj!#af;d#It=3k%mkP)b!b!jhP7+QaXp}(_R2(~LTh74k z?O$PGLeAULy>H7Z+mp|zL zrVjf5$^LI<%EzwXns0u%U|ov-->I)tGjM7KPR+on88|fqr)J>P44j&QQ!{XC22Rbu zsTuhH!wh^el$tsI?6Xtvo3|#?w7gk=G%t@dE^A)ivZQ5cWa-I&k#+R%PGHX)!LP7R<8@JjI7Xqv0(bu3(m|51j^Sn zM^={yX4Nd1e);q|`#04s%bEk#k)=zU^*`u`tmeO6b#37CX`#T4&8q`TA~&|Ii46M3 z`Ky++M3x6`UVGz>t5&ZW^ba$eBg@xZw=S^U$ZWpt#^xn!A}g1y3+RBlsb%$=>jwSk zjMdG}OINK3tXUOU5xJq6e`U#at6G*c-#qBYE^l7hyn5BmEo;^d`pZ!B>LtxLu4!4d z^5(#*Wq~EDR5&z$WiDzh(`^XiZOsQT=TolT+V z?9`}E7VN!bXF{p|bE|r9+xbs*?C!rFDBpTiZ8M*XFKw*yA7D2Xk(PgdoGRMwRHzg7 zjjyNBGv-0ZsBZmUT9)?;-muTSVC5loY?=L1JOBH=Ur&Ezb2yk+G-#1mUb|{}B=ay8 z@QP7+)-z@WRF8e?sWhkhE&a7c?d7fGZ89>?o}`ZH<kHK}Guc(W>Zsln6TZGy z?J+-n;nm>^AL$2ar2XZasLX82%f6+0cm`d@I{xHr6wys1<_&xC5@DOWqp z9_za|T<#yK9XIRx-+xv|$C;^_t@iM{ z)|cf?8Z__AuWer463OhKQGYY5cL$X}X?LXR#YqU=$IG@CJARE_F^j5BQ01r!i-miCjnJELQb?%}l~33a#V0Y5&o?-_!r(y@a>uG3Qj>rP|F) zy!UIh-R$c7)+>eZ+8@7*gXw4Ari0ev|2Jb0VTshabe z>as7jOm*_{Q`>oCOfP|WJ*AnMmtb;QX>7e&x?8FIcY06G-J!Z!9EBG1+#khU?`6F+ zz1UC8VJf=8Y7r{`sr|1yW|Yl@uTyBI(OOegrxRN(X+HA?Hvjnh?+J;k?r zb|-BAlR9oU+|BB!u}CYwt+wg?rS)$8c)!Qi=YZFQDxjW^+C>>pwP*51J!YQn_}A1I ztik$>>NnbL{`;!S9`*~=PM+-gaem_4Xq3@wFKwW5eq31_sx9KR>9KR2;+eCi?VRez zjynpKw2RM2{a8Qotu!i^tyTFEs|W|gXRwkG`)d#PD-WuEtLz_DN6qMZYwR>H^Iz}O zkMR?Kghs6}zgR})){L%IoyPcn_i+kAJ$JE^_nxs9rovg@E^PGOe5&h5`-wkHqs`fW z^$9B9X#Xq6jY3BA-QK3U%|7qD*Rv0+pSGWWULEBFpmyQhjPetIh(>+FoVpq+|Bcl( z3M!03@7Og_o#vnC?(klO*gjqa)d^L%%jnZltLjJkiPxuII~-aEQ~58g)1!Lr!b9yaOLbzYci2;X zUVVX|_KJQK3dQ(XwVMCDwZ(gd*TDH}ov>!`dg}B2#P6X| ze5k2>CVM5vtnC{`p_}bvsa9=s^v3nvspVs)+HlO?F-B?iQ<1#9ib1w_*|pbcWp=X; z5w!gs#=k-(Z?NIp&zq8F^NXu}My$-B$gLP_4Wkk=$fMv{O3! zMpOcw(u(siyV_2U+G9=dmELc$w8!!ER$*WARke@LK_n;H5N(uh9`bv?a&K{jHy_Q0 zy**%_ecYG57g*V=6MUi->yxX+!CIKjLqIDJny6M9fr*icYGV!hN!5z2@$n(LmZ+!6I$rAR?@{<`7lp5&9-W8rfO$r zNBsh4Ok#@;47JT_fEkhWWJ4UJ0#-Iuvd!#?I@QWnmS(e3Qmt@p-{xbjdSD1(rPVfe zm?FcI4RL@9aD+=R*D}N`Hr#H@ynBT=nC zGZU5iGb?_F{>+Zo>d&0`Y5Frau0K-pVpr+U{McFgvmj=UYGHJt{u~iKM}Lltn%H^N z`mp{Sz5YD?Ic9yX{v7+&#rkvHS3jjc$A7gze@^&Hv;Hjl%0>Ef;#WrL&q-gtUVl#h zGU?CaFOSuqCHI-XDZNkW&%k}=Z_4g9e^Y)h>CcLL$Lr6^FRjp@!7p8=KdZh}q(7&8 zah3i&?TeS|N5(VwS(!MxoWUznpm&-_BU{ygjRChh*Q&xiEq*`GIWch24Vup1(8y?)-D|+Vj4cSDCvhcUf*`&J#JavX5m)v(L=h zlC?6cF!QO*c^M}%;u&YAZ%)5HJ$v{Q!!IA!HSFGDXQaKE)}n>!7uVkt^tXA)iTZnz z{+_JAi}km8%u@Xw(BEbH+dO22{x(Yy)ZbP5dy4)xk2+O~@E_XKT4=N2=HK@9b1HU{<)llx8 ztaqFh?1gLG1%0#IXt3|U(6C{$?*JXnK$RMMq=S9&L8^<4m+*k|pq?_W$B+M^ju}wr zGfPz$g2cC3(>H9GTJHQdjXUv02t%W{Ab;Dbj4J&e#{YTGZUq-@0)dlbQ zRbGUK4dZkm}&ssk?q6rvU-i3mxc{veFr#5quJU~=?VLrsvlNw<|b?Q z)M4I#p7jQF5Z8yPlIV&f+Jc4+V|)iVK%;qMQz@qZL809;_ zJ{rLeHkB|+sIb3j#3fG?0@Vwwb?*t-~4>ThLOGl?4@ir^HjXo zc&UF<$Kc$|7|EWN*tf8O-?!b}N-&KmZmRHWc~}u$u}v2&NKw1D+C^_NLwN>Hs6Q-qQ@Es(v^; za?p10B8N8=48{o;MpiUgU}Us)gQig6Ge993;-cy*_6B=+0@Rbdc?Zrhu+H7QiNhQ6 zeZ+TA4nGwI=3z^+%A`3^6TLtlo(4X6jMa+j=FKm0On5_{kN9>PF_jVhz!lbuS6x`% zIgj(x_gZ+jSUth&Pswo3#&9?k-jM4fzKsg`pY_ulU$cBX(TphV6K&~dNB8Ms_^tchH;Ek57t0@*FF3=;SJe7;*ZeiMtl4y zfEb~RmyAS3!(Mtnz~PeEK>)zL9HWOfWci3cOe3Lv0<#&)>SFy!v%hR+VW#Tkr}yrI z_UYxwOLehbS3B9dhBsvTh(APQu#|zz43ZmCJ=mzT0a*7i!tB&DYk~}cWz-JdQQ-|4 zKH?A3n0!0u6!3PEq=Rs(e$i@3 z)rpuDqp3FF37a|gos+odWNGb`1w01MFIB^`3KS%$#37&*J9+odPuy*!*)RQY{A_KM z!)_v#KwtH;eWp3@S*J*K@V4<@0z7;OZ@!(KviXU-PL|p_V1cka&JB(kKX{93vuTO7 z-ph>EsKdZlw{QY$QQ}S~)y?A($^>{)idl!(L!$gT%t6uc>PDFSV^AZlI4L_>SuRT4 zakBKoRLH3}XV#E)aMF)*u;J2euzdGb1?Zy3dja#+`>u6+Iw(v z9r7%xyKQ`27bVu6Ed3yj_^jO&6kuRQj)Rj9MeA*XLX|xNOiyj)owz7*+sV=oP(IFb z0B0MT$Vtacd9OlEOJ<}M$nAFavrYVeddm6~o!kF(!JdLO1tar+oYS45sa)(HEIqMFj;C%;xUll+gLAlNZVR3B*Xw z0;FUiM$J#Gbr0<@x;-?q$H3|jQecH8feF!_WmB8lh$ZziDWL|w@&0x~m zl`YL{bj^y!CC47NAe5t%gV0B{8JtWw!APSkb`XGDQp>M#GNC?kv!DES8p~)NmGL+V zZ%v`U+Fh-VbE?{V42iB@Chj`8|8>qLoRwH@<=ZY1DJk;&nv>1%Ph}>XpbG{<{T5xU zPu%49Jgqbar>~6j0K!eBP^;ZLsvoN)nLSX*RU1I%w-`U1o4673^%G@g%JUqdG03x( zt>-*jA7{v2@yM@%atbGW3zNB~Csv8PtU>Y))0nFmFD?V#*~^eTgc&z@???I5WdM`}&&sCrKlBt{L;KPpt5hufxR(18hG= zWk|^i+A9SceVnxNo`Z@y#tA^xf!xKjC=> z%U%5*M1gKba+NUJIQw2xpSZzKzNU`KJ{`%akY4;b^f2!Wus|I8FPTQk*==UVWPRd# zKl$2sx~ShZNqQLf_<+HA+mpU*Nfq0c#iS0M%WeXz`Q3m&PLZ62SZSf~F9P zV!rqsDVv7S%ygm6AQvww@%qGde)9LwST32MfaEcdgbaP2vm?imxA-+^4ub!-<2{hu zxgv3`lRs#m@20V+QV9GM&x?$2=vKS`RX^wPRD!7|f^JL3YhGfRDJ9Y(?e~?spzZdx zx>`^Zibg?wyBYZ%Yn~3yfV<=_%5>B|K4J3`&HfTQXiS|^t}9f(JmZsA=LpqXN+l%s zDD2sJiKYG$HDRBTebtZTsO&n)D;zUK3eAwfsTEt%m{>BnfNJ2awO*WQp-n0enuV!$ zERxXI*G$xw-N6-}6sV1*Bjmp!lYEb>~2&9(h5NDITmyKfh z!5$^qKHq{*DGq>9H)R`<{9IHy4=bQ3fgvvE9VK*y2j z1M}lm&X6@G>itJJKoi+*q>9Jv5-ZSYD71>%8Q@rX$bhOIyY*^>)S@tZjft@T2>Yp+ z6Vg<%%23XxLQUq`f@;P?4rqR zjj8-$<2JsgPB8V0Lf5d)6sy$Dv!RZGdA)`A+~UMld1V8v&MR(jYQ8~A4<;~0kjkF1 zmRlW1l37H*3z0jpEnA`R`|$TTAd3@MCK;lgCTz1ip2{AzMn@gzQ%j*4?90j!C~sA* z@Bw9wZHRM!d~xE6Btx`O(J$-Rn^K`tB8`ggV4#*qMYk zn2T_AVu2e%ufd>+YNhf2Ze2YpwYmVDQq=djTK)nO!aMHyL5a{O!8B#rtEyXk<|(IEofdBVio(JW!@uZXk8d~ z0BkT6Qi_&XoCqZu;vh{JZMNUvsEm)AI?mw;%`+3ENed{%^B%>dA3_~eFT#Tt_&_X9 z%u6zaPO<&j9smmb!?+I>Qe#8&IFeDvk)M|elU8U`c%-tmu1?fo2y=)Buk(Hy6S0Sj z0v*;VSN&X3Li5Zi{>}s5LvW&6IoNT96EE}GyE-v9iD>P|=9*|ZNC8X;c!M;Lhg9pa zE5XAMg0FgokF$yYPfJOp6n>}h;{}@wmgfI={lbbxYQW%%5aV%Q&2IcScG23+WB%={om6eb`aW{ST&XN^4HbOMO!3{(H5+|Iydg ziE6h@Lyw_$sD)1PGY+^B7}7j3)XZD+_&*C(7bu{wF^P3?VvZ9%ba{5u7aN>oA^*WQz>Jzh_FKvccz4qF*k#*YRErM;UIAR?krw41Rv5CRF zc^2#-)K5u0vsA6tCuaG{@1Ti%&Zy!)Z7}T)N$m_ihj<^4U#CuWfF<6K800PXo3BjF zWcg4dc>Z=O;`i0^IW__fZMp>O-fv+#j{+=^GC@FP^@+><9$ag01kV*98sjum?S=MS zCZxAwcqDJi)gA2;qm)idN#0)?Atuz7Fp@O|@)z627YGEA^#CX3F@)ESiF=&(R zOy8?dO!t$2geI~{pbB=irQF!n^we^Wh{N!s#7(sl+6YMmi z+?#5%_|JVD4tUR4-~JBO1`?XsxUF0+er1AK{?LuTpC$mDs(^Qab<^~4)~c?uR17mZ z5U4FiM+G+3CzRiV>y9HPyt(BKs*-j$$<9?X|&g9R0i7^>~-6QA{y zzn8|@K&^l(uCgeT>gN}w&gdRH%>xX4fbZW<3au40_sdFnXkD+KN$=Gl9WHMcq} zSn=;7%U8#HBE)C3I6Is)Iv)0R#!KAK|c$S?(hqVeUFa8T61|^ms ze9I+?PbVLxgC=3Fs^ndu^lJ0W>DZz~nZ1NVCHV$H}DMQ5B?0 zKNHkO5!Q0$&^vHvkF;~_*C*y+GrA3hi=B;(MzX+K6rR<@WFKb5hPCE#%|e? z#0AMmX{AXx*1`9UU74Z!+2f+xfZb-QhcR>|GuDmWCFE}G-X)3ilaF$QCb4rx!9N=+ zYKqfS_vDhqCz6kHh$jD&dFsK|SF{VcKpi*s^E(evEu15u)N<}rH`DBuyvtUO zyp|-+OFoK5HdsqgP|Q5s*xJ*rgX8KbHY4bAdkp5ujq>s2qa2{gYps_-K^uAgO&v$v zUV8@XO6j0r-c+}hP+ibra*j~Qyd-gM@=^BFWN66XJB*neXVdRYx8MypeXgBKpH-*} zMZ+&ioRfSMjdDP05a&YlSZ%op11S$VB)x29G7B=%G&NPsReT-}+hgoQW`JU|^mAlpUB=xnq!G37&s(aw6IT~i8j z^`kn@m@(D%+ohH6A!>&;nCD5!pP+bR2bLzPK4h4~GzqX{a4Eo99M0NqD0~dR8^Psa z#(Y#STs-*fOB2Bl8Rig8Vl0t@i&zWF+SInQW|8_qlwYfM-idC~;QE^Qe`?ANDTR*| zURuzh^Z&v8SM!(UXXHJeHzT(z_rBb!oL6&}TC9h*9Ub?QT=& zv|F|d!T3R#e;MXguE|=ODF2XQw0$XNEg7t~iByN&*7EjJ$KVg_Lr8-5T}rGQvH(jH zWgjxkKAI#7XNI+BQus=>8!h7GdfDw_KvPoN4S7T zp>9qg=^jp$$S{LUjTnPnG>PE`z0)kXsNUrrN44u%;lSfi`=Ixv&m*jHQ=&NUlLJ*- zuw<94jx+_PuV`6~;G&2z5vrPGfYeJB43;A{0I60#haTwRSY7SlvbLtga{!KCI!^JDN*#1gJ?^`iDIhy zBm-HF4DuwO`4g-Q)QjwPNv8<)4toPli3uM$h_*AVAgJn0qdC?oG>(p3@~;>p$F}w3ZX?>SV(%UDKSQb z8>WEo>*|<5l=fl!n$o|NLJ#n65!+yO?u4(a9^SIDTdq%xc7qJ~oJN6|UH%~iTugA*hdH2A;stj@zd9UuNE^8; zZde^@S!sI2jJ1)#7%G>*kOK`0Rr9$5fUcxNk91EE>H&%o>k~uz$ccR2rj!*sm1A$A zM<0bQ`E4{3IBxmN7MD^;^;2jxFFpWyZ!vIUICBn`dz!RBysB#xkGR`2-dC9*f>%7kF3`!>_D2gk0)NbR>;Odc2TuM zk-{L?CvyDc>*fRJ1dOVs^8E&io1&07aJe_sB&%oPjG^_j>VVJp4sX!x90x^MaP#cGS*F?4P6nHF(jhbe`W%|iKKw}oLdM`g{-F@jTL-WXb*U|vlLqI2)AJxv0mvZZy;U`}w zCK({7a?hlAZdU!)S-p$q74iBaIPqTR@YyAeTcKZp9MmV${p9bXG0dgV{UuH4I8A{( zKs7jM?AqVtVV@|m@{VQ4YQAALo09&OXwRaKbJ(xi zf#o^2>@Yw1nq|lPOfx*}|B>!QRKp5R9r>QMI0Mg*=iq$P6!A{#6KQ_(b&mreo#n{p{>gNHtw?)f{69{=X&750BPF{FjU71u^qF11uU&RbB4RSOlW*Q~0B z1*@@rq!RFE7uhsnj-{xJD`?uWh=3bO@DCh2+((D(rBiY$mKgpVt*`FED z{8UCq#(f!6)89(JCB10)bHf{lrw#kTuxV*W)9y=~lKOgTOKOf5`v3MT9KXY7CUo<7 zxWXkjStTQI5zU5<5hUHUX~kiX-p%_McnQaE_Yr@H@(paGw?#>WBWieoG<&7}d*^EY zl=(8EBGgfaeiZtQwQ*gwZ$_N2it zLaK0lt&e!!ABRB`DsDHkq&o|8nww^R%F30Nsos;wqDXV)PB6jVX74B*U*jWQmx$Qm zS5WcKEbQux-{rqIk9mjc;uM5ufhaw^^p(Zm3rZV~-|QoPH{~PXk_sS923>wJgC)=i z1C<>7IL{b|n4(mOit>BF;jNh14xF%e4tUwi|*2huD z8T+Q1F81k#GWir@9(0;jXeYifzACA3%?V_sP8FF9>cX#}nx~=MIZvwASU2PjCH?^N z_VeQ_S-5uOb5I?CPi7ofx2@*Tt`ga9bKQWU_S~ z3&+`1UT>oMTOEK}1C_(%&(BC#dgZalTo-RiDs-QNfXe=6wE780DV)nI>HQw+QaU(- z=NFD&H~6HRCv7(TvC&Y2l{eaG$@OmxVJqX%dDgJ${*FDc8GAu9I>`Df9KY5_ymsS^ z@4xyfs=Uki6q}VRX);G#BjISG=x#89qEQFfId-?N#FzPq*R>Ru^ma8>A}7{|EOH2E zMcSwX@fI&q9f18tuk&!c*++aEjay;)fKZp<P}kM-cSaS(0;A|@qW{o+kN;t$g}*27fE3?@k{Q0OWq7{RUZzKty+Pk$I`iM@8G zEeOXWKH?A2X!e<@@?+MG6f~AX)<>GD+E8n8Qtv7rZ*hV4P`GaiKytgHq!+DZc z>3jJt!tn+l@w#-4;|{8L$5`m%fypW2xTTeqp7$DDa`F5-nce3)D#q)5#Os)vu@b6) zTOrMoLTRjPtrUIX&=%fdO3GzB;Gphg7(W~j`-s;eHJ=Zvc#Go}%qh*oaoo>F$3X(P zk-|~Dq?2fTk&k%I9AhP;DTn4fu64?0-V^bWOaS{_VEs@jxQAP z+JL6uxbC7+4D?XNLpCWP-njEuIxy$LP;FzUs6Kwp-~fHWTI~SYhBKqs!J+b7EUK@% z0SHKWDxx*-4M9GQo2}~*2;Q4zP8uk6+~{U%Oa;u@DoLvw$_*hTIA1N@qv?0QZ@%- zp(7f~SrS)qF9S$d#uu=B(eAvyx;&U63M#+XMk<2nUaGnn({MFZ!jlu^XeS@y`uKdm z2iMomK);u3G+(O=byV+e)23SL%z(gpV8e%_OLb8?U6el_>B zoY!>zKRx@g?8~y+v%ZowCG*wH=FF^&pJvqP{(s*{zhL!^Zev%)D=tzd4A;lU0sx*ej8y;8SK+N zaS>HpyE6I7>G2vX-{iRUWm}@Ow1r?pL*+}YEuauwdAOS%Ki&wr2(KkRH}AXw?$m%*(#Y}skvi*}s_nRfNSl6jU(7%?X;@#>En z>kv(_uGTuL{2J%NB;7ObI<^t;Ak~XlpA*8&PlKIfyx(iHO1mIFYQ_t{@| zj?%p8d~SuA^)w>7ekf+S#&07tT3h0?KWePKG?C$cs=S|_Fi8W=0}D*B9oFfi)Coqn z)iL%@6c{co@mU`=mS#{hI7*dJ>{7{G(`Gl75=H+K!-q;*3rpWycy0^hGxNp{+8e9% zX3))Ze`8L-Lsa}ZUVLexGACwcXN&6K9j3%L?ndA)X^DfJK3EvP{3PMJ8Tk0P*;`c1 z31rp5gb12*4Vx^ecJEH!B}y7ncbJ9LnNoOf3*$3R60S3GtTL#WkFc`tf-XaqUL&wy zo)mjY`Lz((4@jsz{UqV7RLDk-ib0gXtv>FeNx7&*o?L8-4b1fweQ>@P#;2Vm{0J4m zNiCjal9lhM!@SvPHVz=*YVVgwwFt5&p*Dy87cPunc9QVJl)+n$CjY~Rf(i>nv%kPT zr6fR~Wh*8wt&%*=L9QlS7{Bx+;Rh%a@#SRff*oK6%zD%6C5hL)UozoKiYwG%V>mT^ z6)xYx_$4O^-%A?33b5Dkv)3?AS5v zOOV*6Qp~E3ThmjjKs9WLU+6o4=9>P|1iUv< z1<-w|jtzaAPfov4$66mt8*((2aV<6&yOx204&6u zQg`6!g|IFS@e6zh&=q3r(on^0)&(%D6uQ&K;z~^YUi(6ILO^hLJa1%e*APG7cK~hQ zp(ZO%Glo!KPHCgsyC{V8jW7!AdC(*u*;P{Y3lOm({z=~fbdA_yt9ht`9RaCXbhpGJ zCG8p(iJ_HSGUfi6_$Pb^&=tPy{!s;IClrd%D1<5N!_mcUhf>EP527|P1k?~e&vyV_ zEXE-LRpjs*pt#N5EGq*D;TF5hkvpwTcxgjJ{Nug@?4j|DJPf=6`y>>?K1UCJwGX;M zloB39q1Qu0{9NAww6nw8k;?mx1=iQTGUi92EI5p;$Cc1iK`nOWFRw5V)DS;s$N-U* zx8vT~0_>Vn_S{`6dM>d8Bxy5Lgvrf#3Kz)AHJn$)&*lN3k%IB$|QiNy7%zs*m zN%@`8*Lr^nb4MJLcNk4=h=0uY(c3AP@fs>!WhX&yWpx)GNXg>Mu+9=W_rSSk80fC6 z;%E6jy1uP|_aBu)2_Y+Sp@VLow-G~;>a+^A%-tP@WJp8&Oy5UurA+pts1$LJbpIFn zg81gI0<@HrdKY{FTrhD}{0!em*SBBEvH~i@MGK#DeSKbL-&2XV-+|1_>uk*$;-~vQ z`eDjt!%QWD@$n&~IpR5BE}pY$ZmP2_awiN3F%9vlz5^Vh0**DQWV4-qcXRigOW9+S z$^Iz}zw{iDo52A1aQ**x2H*epyZo7Xd-7K1rRP4FdtT0)Ig#x5v%jA`L$m+aXPuq- zR%T0PM#c{^DE(0S?dju(KQp{`*k6WycNnD|NxM6(SV#YhQvR0m9eXVPHy;i0(|q4t z->Z;mT{kLu+${T_#a*P?9R{I%OtrH|s5Y~!E&^a7EfMT3JtnwXTKV^enSi)hD%RA4mV$e*gaW{fDBQ=5u zP86<7Z-@td2iQls{OVM~`&%7D;5iE^7r7mH2fO{k2UR`Dh1yvEzuswxSNaaHmqtS2 zmVEpyeRPT><3zKd58D`>Qd^-!j@vnTS#DlZKzAGB6}|)L+&O#BRDy!uE|~F|@MyaD z$b0KidL%`&0K_Q3tMl-KrJ&PJ&*MCoV7~MF~0A#O@mkn;s zu^@7N3p(s*RxF_I0M58v;}Sa4dS%{Y*e`O0y0k^v&4&K!cp!;r-6awTSb(_B3|T1( z71^ivegso4Wo$x~!n|J{FHIs^H;CjAkOG{AR<5)=!){JbVtTnxR`SH48ZM5P4DPcr zXhO6rAF}(40??{*XNmNS5ql4SO0EG@z}wU|J`aoI#Yu+H?Iig~QR$xycJjDOl?qHH z^rtTgY>H4FSwh)2i{q1%451-oK;EUVaX`YQWKN|}6X;(+^K5)RQ>xt@;(3&jU6+r9Z@f4@KFJWeJ1xN466SD-Ye4hhlnA$7 z8buxj#Z)N7a1|EE$0Zp;)10cULZA}->QQD*QO(~BSa*lhnnDzkYVHn9lh(25CcRxX22*8#2+JPPI?A z7@>NdP5zbfQF#}erj(WlqK9a?HL@}gTD|I)mX%AI1FMz=F1xN}r6JBvN;MBPNlB0< zU1yOM5-OK^mfgB5<0Jni!Mb28$WVZEfRO@xY3nM{A}Bsr#z*{1f_0A`KF^L}-VM_Z zXGIBj4T6`&3yok)KeDr(WGZxz9$rog+DLe_^te&Ny%W?<8nD9GP|tIf%(8gFzcf%Q zO~hFaK5O>mUsOMm`AE5XKgJoC6rbF&_XqZHm&Nn{rGbvPt~9}4nAqtJsg`i`D(l;8 zAQ{)Bii4>*BN$p1&-<4KI!r~_wm~?O66cC;{S6#Q@$aPO$GuVRzci5U;N+5gf& z2dL;GW5_Egcpd92DT|e2xkrE%i@zuB0G{Kdz{+?Q4`ft{Q6@>Yw}x+y8FRjkf)V3f ztdfolRBOGRWlHRwF!|(-qz&T6>nyIcGM@P_4XDu;&PY@6eCy&m%53dSep57}_H4pl z16IPXkoxdVY#dg`GybIkchdv_sKE=Z)2M_3Ed4Y(PqPENCUmknL^b`EDGiI_>8=mD zp3?d2R%?R95z6J2ra-$%y8S~P!k_0DM^xh#2a%-_k5u|I?*SwOGr1@}{AB5eC>{GP zfJg|m3Yr_S242a{hsJ&ypc5XY!i}v8brOr>!%midkg}1(EDKo9i9-ICYLNRoWOem; zCHSng@4`C@t8r00?PTdXjATHN%GMYkvqs?}YS*x?)l9qAb1#BjBpO>1Hb*##wkV!@ zvUKg19JI?uWddIFvr>rNbk%8nt{QjosiPhcMOpvI`d-#&Gmm6`F0(A-rHmyR!_$A5K4WM=GDmklptGJHPte%9IdtPN#4uSJnkvP(Az}iF}NwUW0BZh z$;RlQ5@2&xR@dl^asz|abvT{ETzC}vd^;Enk_FzxyDAd9GuasJRFZAHvOiMQH1lBZ zE5!O#cb`?Ek~2`h6jKHrE*P*;!^#IC4NA*Z-U9vHb2p~gM_OZ`X zCpgrnx@xRB?B*XB^H*=00O0mEm*Ymf5{ccGY>dNH{Jw#gW>D3~8Jhu%fa)$|d`ybm zrSSlo9J=mJud{)Q#BNPC#z86thqnq@l@okUsP0^|N$V7P{!Ai`@bxFA`guY>eGh%t0Mh@mT5vp97LE zD#zKntL<7-Yjv$G_0rV2;5;Gs7>*680GWSl^HP1ua3>Wb>I#CYDJ^H}WchLIES=(e zzjAfgXyC0-R~(KFsQ`ia4k~627X=x+mrk`LO^u|*gowvw*GlT}Fhk+kYT;5EJqYpb z!tT)G4PFyc(q_D_iVwDke;T0%F06GM2`FMXc9V~IeWp1SqTmZQ6)f3Ll3q!Yqyf^P z-sZP;Nt;($2ZUoc`iR%Zd7afa6#T6{4z8NN4ofYmbbzS}$pVMwzQN&aIJU}1{1Gai zVu3&kqU2gCK);n?aHno}Wa)uX7G899!ulUbl_=vn8`o5J8Y+cIyhXI=KAj z?tlsJ)GaLsDU!Dj$5!}=KSae=x^}N&OOC@6s>@<0R60Ps!n_W(lYd@GPcJZ$!m;H( z;tx`ZO(b4SL34slQWelZ-7u&iBxt1e5v52jtBWNM$8PWue}IZv15@x}v&D3`J8M8^ zQ0+fWX1-LNK-iBBsI~z%5WWraMd8@>KH_!rdr&Kb->}%&Ko^?7^4kcdL8w#cg6bMb zykt*f=-Fr+{qjk)eGZh z;rtNIlzGTv(M{22_K}J>1YySOigWUO#qjz}1kNAVa?4vS*-CqJ~l zf6i{&Itqv@i%@j-KC79OH0G4$luN5*YTmKlPPj2Pjj`xx%?HYT^*~~F~67|pmuV)%CV;frG494`7w<#cQc6f%-qB4&MBNjqjEkpQZ?tg zO!cv%RXZ>}y=>tf@9s6uV{-lfwJC)U7JjN=XTgmHdHGM|SLgNQeJL-H`*Ln$&fjzH z&p9vqNOm;)f~;d%-^e;Yb8qJDnUgbK$XJ|_mj0NI|9gh7AAaVrw};(2Y;4-oX|<{E zrp8mxNO>dWTK3EBXJhOtx#DE#iyWenYb^{yZ8Wp5JMNXYLMN zFks_nheCv6Y_&w9c~cWcNCl-_bOKklF}A>eg#A+t&vImZx zjQk33xW?Fg{}J{LSg|6DvpZZ;E)Qz>|jj=la5j1H)W+}&lE8=N8 zuAi(lo>fV!UF6LbM>%IV#%ldX&?%@Vtour3aHT+~C%HaKk|EEr_Hn7&E*v7{up46` z{}Fc6$cR1rR0bL`_K3UONxTQi1`4IW2YKeroUB+7n>WN9+^8FA>3DG>2MbhbBcjC; zM9dL(g2$oKVg)9-ac!z}@UVEs9m2EM3=~FzQ9YGePYG z5+vwS52F?CiUrYgoj?U(1{THUoGiVSie^||2?gQjAf$D;5)z5t6U_H=lt)zO3YN7f zHv44hI?;sGaj=jJK~ErF7eonlJ?{F6V?Z16_Xg$yB9`0gST%kyIQEcYP(lztfcnZ2zQ003jy5Beu!i7vkdXuEVJwf#l zL8>kwBYUjJnzkr*`N`6?zsckhz0s}W9Ox`O(;i@jw2t?41d3vTg(9=Z`n?&8Vlz&b zt~tN3jX_2x6&h4h-6f2sp)08;=&fWt#K{8Tdr@rq$#3OhSS1_w;h2?Q&3)!H@J1?F2nyp1wYOMr6Vf#%PWZxnYP<&(8B#lkp& zK7WufOk$f`wCQ>jX`drnXGD6JK|FzF1gw#=7L0G7a5uI#qU06)#_$LoEXn) znu2reHkOM11QH(|GHsg(*18*uX!^F{3&L9TnQpd%xzykOa&wF~q0%tVry_ zWMgPL977`%yx8bi-FE{Dy>7leeX0%SH-^9!Eh3cEup>xV82c2Dfe6R$MP3ixsHWY9 z+!Q?9POMaZ%u?;J0uS&RRdRFVQO;bcE&MQ%*agX6KsTykt4Tq`7_gQOf9_yl*puv% z&<{{_u5hPIVyR@z5jUypc?J+LsILd1|;Ki7L>FNy%EQVvmk84M^_#i^R@NHpV_02mh#Y zlih@}S*e!eBX{V23vW#B;gK6aY_jS8cqDdCvN3dKmqReBL}V^)`D&l$xofpi;QIqD zdT{uJ&W9{SBzAVPF?7AlNQ2UBqDrJ5r1f|0!)&QA@6Njswv5nqaBpiQ_OWDR==+(a zzV{)`UZd% z_GJfuG{w$xZJvx_x10EqWvg437}GHtyI6XK%4J^Fk6WFq5JI_Lasp)YCcjuAcij{_ zGwC4us%VDos2l(c02ivhnU`OjW}x5>bVnmQ1r(wwc1F@c+G#X<6I3o4N!GQl?Pd={ z?w->p(8ay*V;dPi`%hck%RqTt?D-QwZ$rC57bfHOD7%Z!$IMAgwf- zaVR&4kiqBR)FZ#{{SvN&+z2AqZ=y3)gB+pJF&n+QYjmZFt~BC=Y4XJ7751|f z9|E^&icLv6h^AB{!&Q!KJ(}&&oHJO*19Kj@yP8v2V))fN?9?^Is*(<(dqr{>?&{Ev zacE1kpW>hi%w`9p3-Z*1^x7saN@$7&lMbSL4$JQ9wh*2|MJ>%n{EZ@ePhb=WK_Hih z8i1x)Wzs=(#^HBBw4m;#Rl%&^8@+OeLJh2k?r<(J7FQm3vNXjik`A(;MsXxW@&g_-q?%&oNe9u*Fc^TRat1-9!kK3Nk=H~9kvGA`X$tgZx#+1W zR+e-SZB^I}cPGA=&x0!zm#EF?YTMnNJtHLx4=djk3nU$64~-EFkg<2w%l;wFgix3d zcPXJDlQR`vPoDND|LgI)Z1V!tnWf)@RQ16gTWA@nQ6vwzAXJny=U2HP`w&L zH=Ui|;=;vwv68&A2PoF_SFMOFx0$%W>gH=(R;|>zrZJ!9)Sl=F=~TOmH@}j{MN_3pzq$k$M2#kY?p^goZn)75Wc53Oo`9b7K?yB&pQu zv)JPq?m8uL(BI_fry(|eNKSJ3s#|pTQR5F3L3vg(6=L94vwl1%hp(>bKfHEnp{0=6 zZitQZ9YAyOpRiyP1p@|4(U+?uFCZ>0NKDQZl(=0gJkWH#AvV@`0NoqmpBBe;u?u(! z&YuO^2sJjsT}s{w@E+GLG{naE4xqu&pIX3}g2T;kXzCp(YvRm;7~vTg-3Bg9oKS*1 zpixdkY_#tHI(+m@vh-%EJZ`-W$1oC47Ru6v+G1-u4On~IF13x*l?|~`z60nshv5`CgVqn=tdRwxlrAm&0q{)N6R1*9DCkTMi z4^?#-gzE=;)$4JD@3n9x`vGZ4^ecoT>4CV7?RZ11(02eG zGLkLsqe@%J8kFV=j+!o$&omW%Td)1`kPGX!GuYPKKO zdF5Q?MLIZxS#VV>mk0R3_R*aMK5OG%s(jnn z#kF#2+%)+=O0Guk0+=Rqvx5^o4Y8aLK6>N^tKMAWDHu?9rPg8_GAY#GyR?avBK3fB z;kHk3wWTFj77=a5N`5&FgFq)ptpzW;gC&eDGjkK-vP9GV-JcdS;D|Yofq=< zfnoRH)w;GOu5~%5ZW>~lz60peBf%VgW)RXcCBBH<&?@fqlK@s-dlLX>_S{q+YKUd{ z4xrVWOc8=;Xnc}ObNPfX^M1iie`Wtlxw8VP@2Xfj4=}KO>>}$9FuV(>@*DObC|n#f zP2svX??vb}Xl{3FJt%7pvEjatewZdC?1rRDuvu(aV{VX!TMI4Y$(1{}T3ty2>^7U_ zoz49JHG}W}+oJpb73MvaSDX9S+;8NbtvdiT=cHtRH~ajoy;(PB6=eQ6b6Uo+jIU%= zrN5Hil%6vDq2U(|+du5KVdK)CNvlhJKlT39^HX-Etl?ec_t_8|=KE4wrHZ*(#b~AU zs1C8`s?fsJ6IO{_r6uJ@+xU1l#L|2RI7s6kvvEIFu7Evbw39;6A5i`-XC~c>1Svx{ zu_2b~JAiH{{hCeFP$gsKvSTP@Q~$aE9!&|P{@4wGeSmgV4Y3s80kleG@R};Ggi6)6 z%CrEIrbV3`4p*NuKK~SR*&;?0_Z>6|sS$Dn543pv|Ab5C+)r%DO*q?^D0zC`w5& zDl%$~(YyRd&{dG1vm1`8fT{|&a=t}(&XXLG_Y`N5l?CXgKk9Du{sS*tWAsk{5wuQ{ zcj!kxnlocGKVV08)efi&Q?DSjmr(yz#(El~cleK>+ftPo9CH;_iP1FLRA*x6!$Fq- z^(ADBpFpNiC|7pC@@GjlpATXAx%<;zGTg7_(Z=Yl{v+rtGE9Hf_n5|sd8fLK8UfKY8F(k}WzIG$ znI&nV{gTa2eWo#bi~k7wX=14bFsSM)b`uHVi0YoU+f}+~dH>Fm+)XqcP$DlfR^1p~ z>pz0dCbMryRn-=m8d&LvdAA}*>YNNIt8BIZoFX*x#^@UV5p+*WPF_;gB9jEt{okzj zoZ}LHM?u??W+`&=x-n~8S@AVSZ}uNSXO)3SRB_JVvAreThn{(AJKT_`ph{u9r4ae5 z=xR5DfjyjF+D%35|56o?BptL|vQNl6lF=9TD{N>}bl{Q;18cW5uU;JqR5!2EcjI+X zE+;Ff7;c!v$Frf5Bs=*l-jGV-WdR0o|7=rq;IfMk4x-7D9Q;!;2ZRb4HkxG>>oO&r z4~IX&Jhj33JjAg}Q*_|ciw_Q>dp%pj5T;^w*A-k{nrXC#PK!x#yxq*^J|?6Ekt^aiOHgj7tG>g3Y~YAL*_Am!Y10!phZ)3;4+L4zQSP|#fOJV@XLKn zg`pX5T1;8VD?Gx%u@WFmE`u-yy^+O~p0|d%f!AEC@}1kF}t5I{ON;eo|r3ia-dpSxwRF9IW}lH`z;>%&4Qu zfSQs1rs;WX0_A|fEQo8O+SpB2dt~okn{<#pl*d0rli7_Gb{hX#wuG7E)X&t{V%AyLy4gE;;gs?|Z)$S5ILe-G#kkF?!9366<2E^+)beK7fA*uibj@B2BO)p*U ze+i8t&{CU4o=WA;=qsYQPGiWLYN&U*4RfdhUI23Um#MbfOg4CiCu~*87#!i*l){T} zbjUp#c{=R9Rpt`^ixjR;c`&7rpH+&DqJX|aJ70kI^-S=h}U@t4*E%Mp8^6;p-0%iJM?+` zR^E#yz|wu?bSS+OFT>b=H0Q@snP z4s0yJ-^0-%_h>-8t{mBGqcM`crqGfkl=DLz*?Lkvc>*D{tO>61;QW7LaQy$OzW*;P z@5gzwbNh0?m3v{%&YV>_qq3jPzB)TC>xWr0Gy5{Xsqg}VI^rVq&1}eGxed==_y?)2{wcOH=kETajVCW4Xo=~IDXt?A*Fb%l=jeQSn3LdP<^m>Az1E%2DN!)v%6hFD*xKCp<$`7jN*0= zdF++V*G86W-)}6cI0L*F6q*oRxYk3A z4bP9Rzq!>4pwhpYZLhD|1ClrwPPceRh?SMJZWI?5MJ4soA-8+T^Xuvx#8sty3gzli zs(#-B(sHAa>%-S2?}hO>EWW2cI^=c_k*|pa9AQ%_qYF|}P1PLEDnWT9c_B@gjsj-l zltgKLbjS@FBL5)eGfL#-K3eT3e-Dk~K#xk9Dl457X-=lGHZ!IF zox5;c+9!#Ac!Tv(eRPhWd|d{^^G?zaS>|7eE-18dK&|MXZWueOrrz4JFgn|Lx+W%% ztXav@I5V;9$ zVRTwj;kpini3b$?H~R|GXOKeGcybPS2HH#-6{m~vaPi;#=w(SKTX$At142P&H3+PD zi4eUV`v4Y8ZQ~QYFnVdyN7m&pJjoPHaPaP~eSmprW0=%?fse84m~CE2FUG>?B}s*A z+>(EYf?wj=Q@N8jRAr5jbW`CuhB~Ie}h+>b8(MD`a%U-Y3ZgHoqSBZ=Mc&sM64)<3aF-S ziheffAbV+&9Q>Q?N;%Ui*XO}O_P&MV)rvwJsjxuDjfK&R-5?)4qkE`$q;Xg_QE;(2 ziwhKJ3pDQpzlq%6z6Nj513Qm|VqNqi2sh0UhE9_%gt0zG9R-^$ztm|L>2WKOzLfES zx)_drX0Q`nr+Z)OOX52yhkZOM0W9ILIUW*;9;z*kCeRj|dC6jSbJfFT_Hw2%09 z%7dvcfv!VQ0M*3IKHVaBqpF`7M^krWe1&~(B?<;QVt(yDnYUZ^(r(MfxldHWv0q#vRCjJ;>e(cFC4wV zN4)NyCr{5hU5*dUeVos#gtQ`_^+BBy^c=jwaP)j1@rNmoEddomZzt*0=h%e~N6+;U zuZyXHy`WK$I>P*9*Q8!HpiR%{N=w9?PWJ+{hzGwXDQtQ@Se=l3@@WGBPIQj^h<|#43Fv#09%Hw z99Ee2larV$6NhNsEU(a4cF&aUMBrMZDn zMp1|pj-D-Ijptpr_GZ4!b1aN`Wu3{jtdKmXyLV6cBsR@C;p<`=lo+wsS@DLWAM+8f zqy3kyS*J>DASr}Kzjv|X-t$PKN`9n^9T@cn>yU8tEFbah12+aoY<^g-!lBS;>orJw zZRfG}!Pl0U0X}^=dZv$feUEa;x=$n*5`&vX((({DQ+PJQ)b5iMjEP-*-JF`!{t}L! z;Uiu{oHtm|jw*pcLUFqL17+@CgX>@+2s+nbLLgWv5m8^jB6^+1o>6rXoZh>-RF0meO;;~tN&cv-MN@_C}M91W1G$o0w~FDcza!_hJy@w;g>uN77No!3Y*65=_y zr~jcn7z1mHI0=qyeKar_K&aE@0EXPH(?R^!RLQ=}EuC#5EdzC>`@Hi=dmV_Fv_+SU8N9&^{e)2W*+8XgNRW4^5khHWC zYyyC$1Gt1-DIJ!!uzsqK7W>K9>e7ZCuTdqZZlnRIyE;zDC(nc4B27J|ss2`mFY2R{ z{p4$XIms;CJ5+hPNvdoU0+d52IGH!Ydx?*Z*_0G6-YE&6n&Sof~3>N|hW}O1C!G>7|nu zvB$AV$R%&2&U_c=it3}bI)bGS$k)js09+La*Z^F)>y_aWc<|EPRjqBtHfzLZ7rVOk zQCltXLHP%0410xCq2pQ|5)RDILh~1Q2!X>x<8;^et_`pYiXH2tkGhtmj>r-45ROYBvM#_0e&D^7W;33=mSqQ9l2@u)lKEFz$`;(0Es! zFdobP11+@bqhtN#@1e0AEm8&c9fD1FWgIS6^Ik{hM)rTFl3!lzc{XwCzoyZ;&uwwUITE)w&D1;~lkK@y`Ml@|c{B5F{H*(Fk_|+c(G&}a=TPWL9kuJQ z{r6VCUbrY)=$=LIa{jG-R0RCrlE2>jwFH_J`k{@ATruj~77iIBHyca*tDwFbqC-j- zLaSDwHvrM{KIE=LMUXI=Pr9^hIfBr){WQ+ruIHbjS%F1P`-fr{8! zqe{E8r>TCU=Wp9Z()_lc8CTvG#IzEUh&#N)I_2jzM2D0vxB)a{f!%YeJZu@gE*O#i zw7BQgLxqbVZI0iulaYpoC`uPt$G8EsLyrt`$U@Ighb#>+0ULC$3i@uNmr~ZbU%GYJsP4zN*A1D zeZ>+7XjJ)2)*3=kt$mL}9UM|u;wlYaK^9X;%{N4clrFddG;`q#)~-<{a25nJRNKY4 z3$7h??0FdgcN+?7)DRs~y5I)T_DP&eJ|?pNT)Tu`E>ZAaU^=%ne^)&IGPRrSenWIf z>4F>JAdP1Kjw&DF)9t1Rb1s$Hzhz(F87R3441^};|Nknb@CSu63VI7-1!w1P&tIEA zA@8}o#@xT>-mh-}d?#mhPC@oh^bLURS$Ahm%zQrcn#?qP1K_muqv`jhPZ|FD@Rs2@ z!+tufI_-E`BJJ$dw^LW7=B50K59I&*&#R(CiY?rfXq#$G=k0A&$v}`KWiJ=y;Ju1$ zwm380d`1-llZNP!VhbmEKaCM(0E9`pzDb=O;5hFOM)O|sRcWiF1eiux*bp63_}~W6 z!2&A*-Ic=FulH3yA8xAs2Al6r)~5sRD!b>dngiE2H$;aNKDYritN$Sbnw9F76c)pf zvr4sV+2n{idzBqOr){J&-Yza52uD)~hYO)q%lRH_SB(O7d;(OR+WYuC^)Ok@U6d`I zJCHY2aL2;Y6d&#Uv6>IT_qPuf(2J>ZrX-R#5b@AeU|V}&g?LZ!-w&Fbo80LZ$v7aG7vXTKPJb?wNI z=5SZfyurRzc>P^I;&r`%@#Np$N0nc(7Rr^J)CTO~Q+?pb{DyITN6VEyd~fmI3a`J@ zN4zd!%CxQ_Ro;f31JA5BgO?UK{XkPM#J3XZAgvT$e}|8F-QR~b1XV7zMnS@03jM=E zfbQ%{_Cf9jc2CbcE4==8AMqMlfnQq5@xnlw_dm>I*0~GfHo`AGjxrf(O@`*c;q~i$ z#Orz@wrm5a7JCB}>Nc8argX4zw@6CSsqB9+$iwSz^AUf5#vxBwIgL|!FxeD3#6=E$ zoL3&``wRx0?0dJgxB7_RPvc`2uc68_OjOpdPH<+FLOXch_aeBI>!ZYjlsva1dh z4;48z?+Jtmf+&j4for&6y}P@?V9-!$yJ*}s_VKC0KHlT5y3uuw<;1soSEnkqwi9$$ zZRdzNvi|15&3i)EwJdMB@y3>w%{OcBb&NeqbyQwzAuxqbCNwXP^%>wrhZIY4xt9|z zE-$`*HID(;Y|t3G*a{wU`8l>gObRnTD`lA8v*4O_BRM4PRCZZywIZ_qrerUmomYTc zk@Ytw8$Ei7J zNX0=E!rc;%k9&_*$;QwwtS#EvL1mDME$MQfzyuwOUT$8LtqaC>Wc|uyW9Sn1b1W}~ z$^Z?Z4=2@_wKfS*PJBA9j9h6ZoSEIsIEk!Zk!*~^G?r{ULuF6%{DVDBHTZKsd)%&f zlIR~{S%b(JS-(8l82ZLgKssd)vSxN`Znl6nV^Yeq?&48Y$>4^euRxKFZ?7j9{&wAFgm|imJ z8q8c(Yz-?Vq8OSqgE36$uMYR^Pw^c@*J-_!(%@_-Gpm%#G?v150G@q{l zDF#AG$9VnN)Mlm=*^AJcn|8fM3Ei11b&bN0Z6Rz8NTeC<+R)fK)9lk9<|!D|OyQ-x zUU$}|nW2MzK*_-_){YECdfhzPaoMTeF0*;kH9|Fd_jDO{9zxr%J99<-5jl~|*wEr- z7PUU=Z*B{DeJ3xphqnS1d`}r?FBkYtX1xYG-I>b^jNAI2hUOAM2+mGA23p|pc&;;N z(&Hh_dc9P-GnW+@&w&9EpbefB^Z^`(IvKC$#NnGHByZ4f)SVeDFuqleM1ULF7*sN+ zvQJcETQvgZlT%cU^De1(3@y6u%s_#0>pnXiM@k~P2nD(P8~_LqWq+vv6Kyr4@ciM`n3A3_5V$>*VNV5K2qCJ^M1`;H78fUW&8gRuX>`Y ztMY@&uT`F0v7%y8MML=`}Ojqavwifv505Ir~$eTeX z-)Iil)Y2kd5}T*K8v&(%MGU-{@VuhFyDu{@bOGyP-HtpGnQ*e)0deOx`0jfHIlMJN`fZzWn_>@Y^ov&)bDtCaS*XQn2W9fw}6|} zm+1&yz$W`~$1Rb_o!FLYNMcR;_oM+oj(nCLlRdovx%x7*Ll>|PZnnZ)5hW7&dPD3G zg<9C?9=t&7DOjKKYRWHZ&re^bJ#+yJlJXm9W^VTL7nH$+YV7Tqq&#>WtBu(xeVJLI z3)rF~0E>ubQyvGLgLk|ua8d7l)sO>^Nv8z&jXwu%p$picR1HZaC_Y+(8Cex`-qc-0 zCfK9!RX!*U;wn3K5^`0&nVETr$e^9#VSvpriGZdFsc4%Y5iJIinioGqOh0Z9?+-sYJYrsD4$ZS zyf&=`KV*YKJ7;sF! zyIfi)>G{N!E=0ho;`xt!dW{*#nc~#o-i(BpxAP!1sFIf7J0K^gvUr%@zZ_OV^NidG z_F@!bZ^nd}-yjne(vX%-K)f|n&9$zBlJOtN0KB%Q2DMWxS%$%j>k;$vivFa=u)kw=Po%<#U?|eh1joxcZ3=8CY zHP|rE>CfuToEh@ic51yMK+=LX3{K{a{TGg_9^V|gt0)>_PDWK1Ww?^ zH~2b1Ok%T^S1aA94qzyAdSF+@S}ht~$ z+(VhuKF&H;0sOw;R_&4|g+AC_WwvXW;0aa)vcNkuNV|tJpZz%N*pA(oT%03KNYu!A zaY6OMyR(|0pXdWC(j?a@33Mp)nUAxM6=!k5$5GPc9{7CUBnRq%XHOGqAJJf&=*m#$ z)Q_`{MN5HRHzBVf+vXhw75#)AhFSjixJaOPDD&x$vyPp9`K{o9v`OK|5LQGHm| zQ&pE#{%7U4Do?FgU9qI%(DKL1V`cA`eWmR9(iciE9JO=QvQZV*;Qz#*q0A{C=OtKV zS4#xa^aljTnvj^Sde3;}cuHGx!p(XmM_ilvl&%8~O_4)qWuY|#lcwjj9!FWTIZf{8 znyv1F=<*`+Y{J+9*a+Gy*Je)sIP2LqWWA`Q>7l^qe}^NzWX@O@Aewg+8}KYXN+47I z0J2WkW={Gz>)ECfl+>EQ;ziOSb4F7=jnDI?V`Js!-gxHgn>~S#O<;y~lYY zX`<^-s~ zcwt$haA4((XzAZLgyo!cU*@>b1xDlux-AW~3=GO_(VfS_ni8gLZ9{P~Kg(&o?##Z- zv7rmtVMLuSES4rRO8_#=uGbK4m)=k22QHzm^+aF}oLZ$hM_=ZXp$k}$7>vuNSArtu zZDxm-Wu@KSsP~v1$P$7mC8*4^|BsBlHCnFh%N!HBfED#>bJSaDdNO#q)66!M{y9Gc zlB?#409djS`mW#yTT1E(%0J+s^kqH~x_~XR0c2=GAO`U?Y0oI4M{X`TyBLXMFtf{0 z%{VhPbOB2m(_<%1|E|R&jCGdwh3;dRO<4G;AOx`$H&!Ddi)ttdoS723fGw|SFeOc2 zcTgQK32DbWU#E>A?8qQ1-?zN^Zx9V#z_x-Ma+UQ|F9;n7^pB+dR7LX~CDC#b@71sD zF#tM9IGDanYv=+N#n3vFG~u1Y^GN%6eI@Haa#`ihovno_?qWFhW*tF>me2)kSBRcW z`wJYJ!7D^&p>BjL!#s{0n;UhkG?q5tP3z6hc8+uNB%TOHDB?+V6!gxS+ham0rLy>vW8DOXkisOLTK8n9L|FVX& zy_tz2=0~Iv!Vpsc@Ep+0S329(>mI;4c@i9!mB8<**Rfo4$KK3@5cAt)Qq08(GG#no zhPpcGoaX)uM=BUh#N!xuL&WSAb)gq#j#l%!*YNJQ$|Nl?%alXZW#egQ`fi6f+`^&wV@ga}BMJ8cuOhK4)0LWtJ>G&DCugnT$!fXTGs|Eg?`EeoU zH|Jiug2aYn89I-(7f(Qg!lnF@Bfj;S4Y<5Hx#DGY5xtqCLd*f5kiy#Cl+{oHODJ8g6J z;N?SCEYj&7hihIeErSl#rRu!IF4s_u43(z=>Vgh$wrfbp&~PYo*hj5n2Y%^WmzD)V zPH?mFgX;T&&$7&rDt9-kGw*>2IHIVES*3aIQ0CB&T4zKK*MlxC-7ci%5t7&?8mjNs z*PeYqu`05#45l?v!fz;Z$VaVXl?Va+wZKDw3U7-++Ng(=!_SuUx}WeMI4eV$u^+XL zWk%s_w)03$L1N3{!H2$|=R#sM^lT1{c6z4dUUf zI@m*f7tshksk@`AhcdMvwT@Ms)mv2}IEzrTv!yV%XAPv6vyZrxw@Acl3h+a%&9ZRed zc>}J1zdx&#ZiQf0Tc#>doe6@zAXHPIecsL2EnXG?q(^L4aGfIXK0iZlzD0pJ*F1&q67(e4&XLBwd!DYxQgSO zY~gFmlovH-8)N%5(DSqA)c^Q_Lr@YV^QSFSR@9iK7iqTQhopfBMR`E88xaN=d2N}} zqQ)$h{ruo}eCUfJp#6E`F*SuYY41o|W>isQo8$;kwa^@3cA+B4YA^df5c|Y4B?tFu zc3eGwXt9$EKC&!;@nh2D63Sx@g(znNmmqB5iVy(@9B?=p&8rozj;HSkvu}YFl+~Km z6&M~NPAg+O(|zDNqAuoN%9|Q4#M8Hj*|)d~38y$ByK!V^Y*6?7u3mrHFA{;$f9^Sz zD|Fp>`nE9p+vEsEHKci>%Tvs54JTyAgBpSF#X%r2#K8y*OAwjI)3=7%-|Bmwnxg^U z+|K8c8A~)j0dLcfDe@G4eXkty6Hng~X5U`VzjnS)n$HNJ$XmQP_Y8brC{Sd1ZL-gu z;0jzzJpF|*`xYig(YN^+mkpYo2n(mbs+bBlH7CCC`N5W=tW7+9bC`X*&p!-&;xuVK z(xv4rU&wU5KB-}E9(7S#J4p+4p-d&>>6^mrTfVPLnQNsPt{dTrOdqfNhvkFE5Oz>6 ziZDHB8}amwVfHQ8SHlqxEP{|I(-8h_L)pvQ=lQ}v57J0mG>@lm2(!Ol4tpkucOQ}_ zm#Z%`dl1G_MxL_z8r6)YkeS&XRBNmx8+91c%fjqig0MOvnFhp(!_Y{u zq>v`h#j~2D#nVf}>{~=vf2TBo_yZ*%nKs59eBaFa1VBIfJ2pFD7;0B~iMBB#!wvkK zz4H!to96Q}5vK)+-e-JOP4Vl~sl8+NlBl7_yeGZ*;O=PWHmhu|00?Lzh%DO`UY53} zOM*X!cMl87j6q3yM@rX~zP|9GZDkO({D~S3QCYD(LLDnQ1&rzYmZb<`ntl0 z-YR2%|2_Mzua}7@X^;feNZLdn8W&^sE_h;61a<}o!QwcpbtiVE7ZpDA78$KbzD&e* zi+khKX14-*Svq)%dts)zS+4m*PkLeDLvNO`?%r7?6DI_uk~h7~!pz^g*non}S@Ob| zT~dTgz0g@b>1zwETa{kj)G`r=e;1tDOk5UFMa~i{WQPi-b8xy!PkKS2^-a=%3~a(5 zf>i23wg$`0)7;tNRhWGgFPt55jOw76)RVrZ(7GM%pck)9cw8?EmO^Hz1E3@DlO4CA zps>r`TUSz^rYHURLhCldp6^bKOi*yo0KAkLTulQbFFZ%dc4W!sX}8C^deT=HTDNgE zQ055$YH%+6AY2eIvOGVW$io__e*Eiu(pME)UoT^|E+7+twiAV)t_OfF#lIQM_N8Qp z0X)=`o?mF)#_GBgWr7lV*cs(7BskpckFol0&G&u2{k(p+p7fQ4*6nZzJ<>7(StT5n zOg};0H4C7RtA8@=HR6B1sQ6=lddSbp2{HjYpxyCltxFuYB#3~Xk>-<}J7BYka1sJp zDVhz8H@v_Z*sRfg)Std0d2Lr!Na%!II5J&k4%$(yZ8@A4frXAcjZO z7NiUI?K65k_NNEKSFm}C=BCoDK8M1zULc5FA@n`)qijN8GNkqYhf2oWKj!>~T@9Ir zDWhK*Jv4e${lC?pUbm+1rn-&mA6%wlbwruC=B$cd&5_--4m|oVu>^bJAdMjJ$sfscmmJ_ra3vBdmgoo{&Y|H z3RZLob%7?AbvDu zks19bSzYW*gFs(@`qJUP8s`0Nd;g5UnKVG)^uFeb_y42bMcUlP88 z)n;c%yxcA22j0i3gRA`*!#kGVZ6Bf+>;T__n7;U+?z*aup&OgJhX$ed&{*Y=3yHem z;S|bi`H5)^U3G$5jSmLY^Cy3<{{2GWOv-qki~ zRCr3F=eq}Gm%Xi$0Ud&tmw8P$pP|EgQL~T1^t@s}V5>~TRTe$lVSuDx=5&y>oMRx< zZdR(J@ia&Lpuu!!u{E|xqlO|9MQ-^%(iKV}@pphgVL;?Jtd~8nFL^LMx7ZrCCWmk| zihS1BS#d1hbFkvI)WtC?9b8};!dd_|ujtTvZlg^`D67RcB zP_{O!fN3#wc~0}A!StMBYiyE6-S85f5Ioqq1}y@<_=n~o9%DmAPqxzd@6l0g4NG^{ zpjx7VqnNWLw`r?_qsTD7ib>JRB1kJzt`)X*~~sr*u}jWWuW;yn)>GZ2-o|G0gIS zW3X?yJAJ;c!NZsP=GNgV<{?o%=myhYX0YSNP!kUPNAGDdn_w_~Ua=owJuSK!qOOAf zEw;wV+z;Iy=nK;*M4ES$cgLXD==`Zrzy%@q|j`;qxLN) z7EqaU_co`OU(Xuj_mSStXEt8Za zEzzg-ut6AE=Bfwf?=ovpz*`Ff3L7NBAQ?=XVry)aNg94h6bLDVC%vP34>ui%Wo82i z3j1`E7>oeuPM@u76mBTX8KJ|)riH_`%4qrn$)+&qLNM>*s((or8BCv5><8Fc7fPwK zyEV9vtkf#Kxq21fYpjR!^M+G9fH={sT$(n!%IW#giNc}9h zxF3~I5|P=L^tyWBp7iJP(2}9+bUfQ~wTZwsNK5i%iyRnVquI@t`_Vr11tJwvURz z8|FmTp7du6t=qbldM%l(@iF^zy?zNB-(N=vLRtwqyda`>r9Y$Ad8&eqvsn(?<(^R{ zBbvqp-!lz&$nW3?*rUk0HnO*#^r?jpZD;yk6I>4aW%5@vE<%yTYnGt+V|dq-6NPDi z)G_Qyf4b26CK-FcT}d(-cri<k#Yfu`uQNu6Y#oujMX4?tJ z3}@eyKDp4kEwcT{`CysEt%#Uw_ND4w*fYavhX?d&I5C8GdQbYKLhF|Bi*S7sxc@}j zXOD+;dyO*t$w3BMe?IZvzKi0f}P==E%h<{Xgc6bYV} zK7rQN`vx1`meb7Y$g_IwmFXKGY&6!@${51`*#00K6i^W z0~+A_;asNudN*_UwqZ4rbrek7xhNe~`+9xw`A6iC2V5tTG}pPq&#uPL8Hze>QQnGw za2EGg>Gd8@w}w6VHW{nwo;0CP2ojD$R|ZJ{U#!}$!J8p;3iZNxx+ToM9o%}`2R5Nu zE={1^kw(eEs=SgoR|Um0^Dd&>Rf?g+(~&UyTVyP7ho)b;2Q#3v3fqv#@#0{W9SC5F zpRCjad11O4_5*KL#TRdHZpGZB>3=y)pD$k8HwPzjG6!Rt5i|#}`~NqJfyL8#^DJoh z9T|(zv1yq$xS&%l|4x5J@&4NKY)X zg!P;*y`C%+ktv{(FKzf0VA*>T1Wzt+mbL2H2GSFXEMZ%f^$g0yyIcs(%SvW)2@M~7 zpUn=%Hq8jW{Tk(>45W`PvV>*ABDtNgH=qTt^t7cJt{ij>S=QOR^_`pDnne0-`{vQE z*fo$IUt|fZ@P~IlfjidH<8NC1H_u$+nDd*k1gZ0a0*DP36;n+T=Y9N5HY0PQ-?VChO%qyKK%(O0A&@OYxL)thr$OE zd2=pk-!hEO2r3K*q-S z${Ukr1m~Dra*lz4?CU5(vkFdss*|+-t`tM0IF0!2(X-F3;jskJZG4%L>|e6Qx*>TT6`R!^?_T~)mDua*B=c}B&$ zilr5Yl>elBR@t7i;j&0+wzPNDe~tRqs8dSzS(E>#f8yzeu%Bvm{V#S{hBV)$ci&#e z4{4A&yY#1y1Y3OOud<+mQ9{lSD8(zdAU)dIcM(BJ3D1a4E>nT)TO-YgZ8%32T-5CI z8VoWq8%WpZyQ76mgSp|019x$xx*KU(6{J;v_Cr0qjtAE6ISROu3L<_J~G+ucv9ZZ1A{t6pwFCqanYnpW$(hsC-i!5Q;`FfE_3v1LtJ-_;7 zucyO-ZY1SWahbhLYxUO+q-%;SVMX)w){&MMoWnDaQsm$qKQrzLpwD~sb}~%#*Sb%C zDvK;(o6eg9jA@ayeA(@c9IN7eCAhM^&!OPKpebKcyQ!NV>`av=571)MvgG#|by1d8|w()#x z5U0N+ElYxO$TMb_9$ATP40h=)<{kBxxq;}2b4E~qhg!)%x~#|&)=MaOBQ5_Jyxiw} z$P`YQR6trhQ4_$2+&cKjAhQH z8skt1@L9yeKIU**#c#;ekU3NI#sSgS{0MmrX)QaDb-%2KurGCM=mIuuB7UUE zqn~=g0RSXTYg97Uce?R^#}w|z7V>A1=tU`L`fo=Mi990%J~@3W?lrzg$qzu>s9?0eW{y67qFRnyL%#u0NOpE zYz8lBPi-BjtFewrT@mwwW?6lyn?e_`ttSZmBIvvXBJBs0??&Y0TNBU?xC7YFi^`Sl zOWhc{fDO?y?&_5Ya&}Zbz1}=Aj9=^ZYTk1m{#p;JqI%eux*>D{>+&YM{o%(*9Kf#X z;5pDs($@GhirG=w-In&dg@iQ65uR$B&_;>I`;QUusF{0u~-$a>nr>+mPZx!c}e?~q~|4+sF*aCMtNb|`467c_i!2J9&NK-CK zU8nY$|LF7EP!IWF#GyBLu)pUV>d9rF03!aL{vX**VmQDtwJ7Ytt%nOPk-zMgh~890 zsQt8RB+^+9bYSBc6_Fs;8c!_@vv1{u937@n=-|*vDszJOVjbBwJxsoD{CyxK+rdtS ztaChdZJ2#K_UMpc%e^2GO$y9j#nL~e1X z-#6~fX>(44FiTeR-eylVKuF0;GM>67%)aF;+uaoihDNZl!4%Gol-9y$_Az86+?XS{ zBSA5Vr#>HM-wGmwTN61o@Uwq1;HgT-hZaY*ox9t0gJ*xp3kV_a2uNw@p^m4n4zq8C z-ZdJR$Z1ONKt*3V-qg5v$GG5*y(9bc|5jjz^Ezq&ElqpksjI^5Teh+@(<>2F5Wrva zs=?_6I83rD(4?g zjHj*)vv0+a%N*N6B1frf-UlLR$4&bFceoHK=KDze`NH#q9H{yKPs#tkyWvzj|8LRg z`uZQ%PpjKrcV}H=?XPMtuK7#N-8G-7UR}ModTiBCs@g06qw=20&sA)yxXsr8v*iQj zqss0tJFj#{>6c26w;ceBMvW=?sSCyar~eX94TZf93pI`p-rqgaj7uB!2I&}d_#h|3 zWywvYbTj?Df8AGv*jfmua3Akt`*+~D0$0mEkL}3U&H4%m`n{>k4^~~7J#^F6 z4rV+G{Fauxg5&zIVSSsp0V3Ee<3YCWu`c?Se%0R8Wg+J6EGT&SmX{sUK~*f7i+C1t z=zf$En@5QGu5gHdS8r-C#QcaH?Oft1(&A7!t6i=&WuMF=iOC{j;xKDUFp~jvVQN6l z{776^YZ~|_NL+? z=B*;Mf-KUa9^9a#SYk?^;}*(3soA@sI2YS4fLQmYdPB@x3ZJGv(t`V8j|LVJ)3BP2 z{#nIuCY$XFeHd1XUsIT>H`Nnj-m>@Hv7C`J4^%6r2?+^keySkre1u2getT2hA?B^P z7`F_78MbA|eiUFF`x%XR@4HJQXaDp-eS1@vhM2cQkrg_U7Jx1LmB=fs3gCEVAHqK; zVuB!ogpuCVB_ZZF$OLd@TM&EgQ-+AdzT@}MTm;8sWs+ycmQ zWOe^`n%$si!Alr$JGxRA(tLo}!d0%3qdS9hb#3n5qhid83Hy%s1h~7ceC`GQ`I>&C zOHy6hI0Gj$xXg+`Uu_jmcF4FfE+&u`J-7z`;5-9=lD!}Q06am1six)`JtO_8c?b98 z%=V^j*W{lZ=pwC0y4s+D42GYkjir1vOux=@H;|0}RA=}KwrdiIS}Tf=n0O&R5z(t7 z`!n4C@8Y9kPOy1ii^~6?~FQ>Mg6H* z_zE_rzs^B*7IzNzhTU*M+3?$6mKb7gc3V9IV2NBN{uT_3>`%=JUtzNxsnuO+ap<^} zv*2%-r%^p=fEaeca-x^fM~hB>sv~>_+h^zY-FKuV{PW%FKD_D-@U=@*?YhLl zC&4XY`6)`Pkmk|ab%0Cbbn}klLfPNArEm678)_wHr5=TW)T|Ib&k?}gmcm?I!SxIe&d!3Mx|1F7jnmaw#y(z zw73@{O@DH($7>1B0?0$T?}w4w^2XtqA#8(z)cHl0usSb#rApK9or|Jyt;_<{wo^By z;pZm4!$4g$f24nSrPLfMIP^G(aoBuw>~!~yNu~c=s5s*4y4X4vV@g3 z(CkE-OPph+LYB0Bs7WKl`?Fs|y^8c@y`d`&+~Pp$oFYqDNpD9 zhU`{Xt8mt~%hABFqup*}u%XsT~4I^sZ3K^i0rd2`lTpM16e&YS8E^Pp5*6Z8hf?TU1;Jj3> zVZ@#twf>Hbx8ByCa%o-fFnwRsnhU?o5oy%w-Klpb`z+?Aa$OwWs)YfOs4p>M!yhbv?#txqbX_?|+bzU`EmF`6_CM+{%3I1X~RG31{n_^y7h-Q1!m2A z`1`r*)u&RT;T_gS6i7DcFzHTx`rxUE_F1nExR?Q`X;oGx1GUDLE^V4y(Q#+LhYS$2 zn0^0=H-1WiaU0yJ_~{umd^%ncfVVZ3|xySURRtil!|$WnHvK2>1cMt6#L$|L|~ zWcHIBiIEW=cV?>`yPq%_ygPMrfpM!rrC5ecdMQ8~X7~hQ=B4`NIL+C|l$+?AN8eS~ zYtV1lojR$&xTSR}`%or5;`W8%h}@au)i?$eWFO;e3I6Ax2Lc%tIG5e26AO%QmN7w8 z_}c5fO#>;V%)pcG&@=2)%$>S78IZB3zB_e7fpM!trB5W2hExO)F{aGG@!6?hi_b0@ zAnw-C%jh-M(VaTJz_?`|izZ={t_d87g-%dpoB<#kR1Oc6Q@D92k~D{Yee)l>Q^yq; zw<=UWavNMGX~f}q{4)UClC4X+1BVon#)(OM-Kk>>jBk_%ocBq%3ikk|nSm?-%?w#h zr*8I|e-s!3@2flY$pYgWWQ-$Ed{!o5WCDd9rz1G$IEy<0qA+)5;T@&X?$j{_#%-Lo z%z00lbZzkH&4fr~`ZqL)+M-}vHU)f%P5C4uwRNrt%OG`Q?- zitzaejgyOrcDV2Q?JrMD<;Gapo7p<9E3Ur5j?%L7cKYQl02EZn|LDPvxevN@%TQy~ zMT)ooxi6JBuEH7`ym^UBbdNx$*a{pB985p@8Lrl3@ePcuIHt6-vw1uV~_ z$Eh?(>tYSLG41+1W^?9g&4a1O!>TC9eDl1=%9GFw3Y^sYzbS+ zr;wQ24r*O!`{M=s$0v^7L`!&^SsCe6^i@)TeN@*=5SxDU5EwemepXj13`R`4hj zJV33qJndp%4t$ZA11fvTHt<4s>{j7mb@+k4RAcA@>*c63lz!f_GPpusAbnk8`pe87 z_=E>FwDiN($q7R_tuHk(bb)m;?vIWc(}EDQy6jKc4-ha58fCAVhsqyCLqR!45G}Q zqP}boHtTiRGmP}v#J$!b5{LGt@+Mut{D{=5BbNz^!tJEQ3nV__!idGATeB_u(6Q+bmvV1A1<=y{Y02xFiyF0*(V07g-!ojN_N6|D%M zn(H3uP329xfO*>kiNJ>D!F!Zh*g0tGHa`WHKx`NRk696f`xo5bn>w6z3i=Zv9bpar|N5sl zb!f;-d0WP4q$d*)CvC^2IP(e3MhP;JbU_Ubc8h?G)tfpb#Jrsih3dhC?f_Yz>cxy_ z{G;Ar>>@_o;fZ{75>InOjtwzyISh9NPUK-Z8araU#;G#B**QzE%))XvyW@y8V%gr* zm=N=8r9oGhqcy5BYz3Nz>yYssc81xBokN%bp~^t2As_s^VsQT85-SjDz2zZ@ry2pY z?y^4Lro%EDCw7}|Iv=<0b{A}|*$ox1RhrHYq(&E6VnoKyaKM)|YQfky-_8C~;4&@m z3r~F&LSs(LC0%r#<~#$b{3eb;|0`?{ZOr*AX>1X!?X^7Mi1p!ZfAeG<5ky~Q3&pR6tj<7ka9S$3+zFy^*T9RbeBK{djET5Li^C8^@yskGqAt1AJ zORSYK8V^e&(lOBNWmbiQ3bQOsa72cS2LAKSfmB}8M*FgxhOWJA(Xz$!t;1-9gPuCe zMe_zVWTCVm;M**xPOe8hibTyUSI04s%4^yHDu_r4}`){%KBaFSPa z52W&%HV#_Ca+S0dOQyQ3U`7rbMjVQ1_J-#Gr3pizghwrT$HAWUpd~E0jc9J_=Yn#N z6$V2Q)qe|sXsn{a&G{}DphyGB+lwr*Stj6yoBAouxA$w5Ae~2ROoXzI`8DnX^r|r} zA*X*Jd0UYs-jRtoYE#|GI>x*Q3OlE-ai9l_rmH~2-hn{=C5^}jlD8IF!cMc-2u-F& z0x$ko^By?honTWGZSF2izVWD|7ejMfx5P$R}};qO-`e;FfFe z%RutxB1>2v6MWFr$0q`+`_)UYTIP5PJ7hdI zR1}%@0qy1Ror;LrvsuRQIOIEV0&%$elQ)L1V3|8$LPTqne8^@dw)i1K&SKDsc^9vZ zBZ^n*4c?!;A$)}q8LtqLwEh7lE6t`Pwn{H*C?xq7=Y80*TM+@F7pOnEEPMq^pghVs z7-@Ac_)SC2!q|`XQxgb9?bWm3Fyr04tX{W2xiowQJAw(Dr}cOL6&w!3`YgFYxMi}G zp*?`UK2AM{B4dAYN%#s|Btrh!?LT;nDxF^hRjxY zSqypYPc8^w!Lswg{%;*}m#DuY<~Vn8j6oMl7F{mpfGsE6T*+*M_wc**n(!6Y$x-Uj zq;+19GyT~I1alC3qZd01K_7$3vW6rf=-z7m|MP|Q|3~X%b-%B>tL~)Q6}8vZj;(pL zCRY9X>bt5>s#;NXUDepiM=N6$zpuEf;-vBw<=2&uEqk;qR{DE80pQG0yGEr(eX``W zlF#eq&cF62KOg>E*2+k3t*6$E!*_=6Q=r~A z&jQ-bG8*26J9(Yv0zJtqyj2UR>9bnT2KcPyr-6{hD=Z?(oGur*vGVQb1Toj75YlSp zx5kr~AKc(!t-C>XR*2;m7xhXbP9RzsJygnhrw?o9O+_=a16a^{jq&5j%fjqi+(L0W zY1CZ70JQOZK_a_93|x}+)Oc%#k;>b_<9+iV;>p1<`&Rcz=>^mdHaml(W3?n_J*amJ zpf3--u!`ayd)7+^gp7D{Ak6+&sb%tqObyySo&ZNdO@bm+WaazWss*ulvOmoJ7O6lc z*ob@;0yNULLEpzt1!J;AW6`o=C>@LlIG*eavv1K};zk-VvfD!1knYi6-m8FupR!0n zP)t>fC*xuE?ZhKJBhsj6$a|TYL5O8>DGCLVu|f4)#wW}5l*E(0VfJlFc*G?eGErZs zLDV5L{;a9fZpF3yAill9|NMn*W(2>7{d~!uF#GFdwDMJDBF;J@GnoM&%)So2Ualv; zz&W$#ZQUR7WOttZp(Tr!UbV=2;d&I~Co6A_F{aG8RKM>ot^Q@7Ml;TPNOW0}K*SPH zUK(b9n=~i}C6gVtyUL*UCeyM1A)J(T#qDSR#m~W^@Esbo;>k~EC@M7WdR3{rI~ z^rSvhrnl?&#UM(LuaI=D$F|b<%O)=lv!9!NJ9$Eo1ii^xiA>uZd_db@qx-|FmFz)U zMsg0=pYh~H`SvdxT)1eVeg9+e{##CV*O^yCiS1JV0KRhe=XxiY{m6$`>%K53zQmIk zhS|48e=s>(l>TJ)s#h0kV{mpaYeDZR0nEIkev315;>oTs`*!X%{6kBxyFd*D5&gU) zOm55m46y+fV7KCTKtL;=oEK)_-i3&qTlzIub;4^acKYsyop@e*`2;6~WNZq8u^JRl zc81xvQZdRB^1>ce*P~Dt^q~wZeZ;NV&x$%_JUKVazMXHaMQ&;Nf~)8n->)^OegMz! z{XcVW3URGGGWcL^@nkH_zEw-0ePo@xP`zg<8rX04I?ZtmWy`mqA#-DZ_>B8{JUJ)K zzNLw`1tIX=(h|6XfK`QE`#PeeNI523>dn|W{sk2@nn0L zeOr6de=aQ#1*3nVhHGa@5Dii3|pn`ln*%oHs3iWALEiHidPxbTAFpg>vb~CYq@i76jZ=1sIaqdc5|1ALdZp;A=k1M1BfF}zW-O~*iGypa3O&k6GXV@uK{V}3a1vN2^14>Vjb`oQRa9~~RrT>onQlKP2t zFVtOD`~TE_r}p%kwKYp>##TR4-Bz``>Wfv)mA|X(srazsUn|Zo-)1=gpDo*1c3W9f z>2sx5lva#-aMbjYJ=W~U|I?e4kl$&Q!|rr8r1hA;*ig#y-1PTK4DsQJ@_#%N8hg-e z)BK0Cf_jrC#Jml=2n98`14{s1VxQG(hvo-(t!YujfX%^9vEJm_A?9sQkKQ)Y@_`;W z5RoM|#)YfqZQZ)rm)vT#B;_043U4U7(3?Cf#Jn9>_YHR|NvkHexup2_S~ft>clMRw z-328b6vuZgR;YP-kR$FJ?oFNyM}HNyM7_2u#`)yVw{o+(lV=>va%~@66g2Z5q4$h5V;}5v zzjU&vA~3&rR`-wZQYCec4Ep5h1;#B{;MiohN%H}{yb$~gNeEQ&X0p0nlOw~SQ&5}e zPM%g^+)B18b}P-B)i3QrWtS4(jGX!8WE$^7T>zEd?&N0+j9YsCZNW=hF3m3m+2IU! z+j-&vTWT4mcpYqnack9EwIx3TBYvN+Sc9Hfeny|3q`3^Q81rPVX7W{eLxc_+V_3mU|e}#KedvG)wm8M@S zuEujY3)uqMQX4hg_r0gcYFHHRPUiJjIOFT&2xYNI6K-9k&NAyXb~g5s&&4B3wR^6xXlE%aoFHB3JkZ1Lqk*@2h(wK5EkUYM~5?kf4Yl9%B*>-HY zKe=U@V_B;RZy5UTnXEdG|NFGyU2^)%_oZa*bmuloB zoj%lajTFN-OYdi@49FP6v<8x&D6)hNM-<(bCfCxi#K0X(2c8pX=`j1EG| zs+ni?b{R;v7FohZKWJlV`l55C9GNN|$S`+mD46{v5OFGm0SPf+dk!R9iY#FxAkY_@ z`t+*bhjTLfza2Tx05r(@7p14!aEa%&_|TP%_yEgh#j}>(IC%9^i}{UnC4)+d-mhNP z_s_VuVrvYjbN&jq9BU=0dv+z8L(Ezs5WR6F`eV1j35EHzkBq9NxJ-AcgD|U<-qDq8 z3NdTbJp@(Jm4TP&WXFoczOJz|`a`mh!zoZcbM+@&Le-U=9AehWFuC0HM2X_4u!Kfx z0t3FEYr5yTsH^q9I4(KKnYD3F@CWbKvIT-KHt9);y4dakYLv7m8~GF^xlducZ`Jcj z6utsuEj@h!y=k5mj)BST$%!H6Hp#dV_eEt&eQ+vYH$V$L+63;F*^9_sAGWhAIl-H= z=m~zz+cI8nY?)H+(0TUP3TXpuWMNW8&{-4ihTdde^90OVnIzRRk*H!b6x8{9OeRZA zb&I`5EV@cwwZRqKo6KvTfcXt_^u^9q$rKz&Piq0Ik}Y?)!o9HPie=0ddYXEZdCe0r zZ#zr$)|M$6&Ur4yoIeMkjV18wjgx%?G%t5Me0RBFFD~5u`AOG25yZ&>Vl`{gl0`QJ zQt{(81Z7W;9|{Xu9m7^fcPef@(3M1!L}0|5vC?jO93=9H3lykT#BM6ifA#ZKIl&3p zgXaHBOU67k=AwoV8t!U1e)Oxh|G&KcyY*++yq!pyr!3pRL|deM@y? zRkmuds;u(+mD4NUt@!7P^&ImYj4n&D#{ls>wWXvD}fYu(k|0c3oKL=^AwFPw4A zZ#9kdku&u)(A(6NL<2^iS?jK9T+v)2*dA;T*=u*O4W!J|`nyTYpyath<7ZbAEev^P zZJnUQ0TB|3D`W?aaX)G5C5zHqM2Yc@K|i$tf-pN7v@Y02$2_x}DE7ogYRfbkq61@s}_TKSismSRL6*H8TV7Wr$drMqI#K$`TN4hJC9)&!!o8(C3 zx{>1)@;fp2@jnz0JsxaPZ(4eHIK=A935iTV*XD!=BGr)x+*$r%4U=1Sfs0R_O#*s`aAU)UCH_ovm4|nLwA$;gRM)xl4g?i}@w6C#uJ-W>8TZ z@^n@{KBx~wR!TGAQ1+0mzf6M+&N|qy?$O68ZzzMmCs}hay<^tULQB%wA%`McYx5~8Om_6F(#WYNSzTy-yBvD6dst}#J#nYvVA64E5FXw`KE7Fn zu=-u>1K!FYclIQ!3a#6zR(gNgaMxWZ9#iSS<;+W%10E6Ou|#M5o2e|cZiyXQL6#;h zpioH416k~0dL3?z?FsKH1|O2%J6Hys3)K&SypJ>D#SB! zy-wdd+N}I6H{SoS!l8zSIWt!6NtPB`x1A>-6f|L9L;XnMHiEZo86v!-SCxX`u3yrfA_PvW*h>y}0{#=T!@ zLa2$`TG|#WlIx=R@2&G?a;oCc`g3~W^dxRAv~E*Igp5s79bC#FOlE3E>w8Mrd_bZ* zaSn7l_ats9v~GnP^cM6ZpDFP;6Y(y_)Mmedyvtp^wloX?*}S5y5Ce(4rhr+4Ul_dR zDnNhZG*p&Wq|soFGP^NQnf9vEoQ8#5n8D3JBCjdnpe1a;ifgE~M~N;6;3HTl2aKI% zyA_BAhPoopXj(pyxG68K&i#rJ83!I?D>HLI9-Qk9ZdCRueH3zSh*ukYhD#GS>Jq9O zanP@@rBBdXTF-KLy2s_H-s^c-)LLOA^MaxV1Bn}oJie8|MCqdSB!y2{bDpE2K3fd3 z_v@SU-jZJPIlaXO63dD#VQZg3+GyoyT0a$JA>#?*${f^{cL#oA`cJ$Z4a?cP)hSY? zZ6L9<$P!kdBDl!yWWLr@g8Jz*hLcF=v;>d$fUh+(_F|yR?Cb@-qX!a8iY#FzDlT>| zL0Y5krTQ$mLzku`vM(U*)ndItaA7Ddm{?q72}?Ugl;5g;gYyxjLp`k5kicg(oPUZJ z=v%uI*B4phZ8=gIOVaW;mpSrtfS9O z{4voT!$GlHT8s@O78Y5;id86{DlN+$?qDdlF*{hnMsc9jW*JRzNH6n#!tIG`i!8BD zj&w~Pc1{&oJh;?->+ieje6moQ^>cZ4C^T$dR7S)=VnLB5*2)ox=UNaSQ@DTjc>Ibh zT>PC~na16%N6}DW@+JNI^Ap!-cy7S}n`yQ!T6~2o-i!q}7io7Voa$6wGY4v`S)`$w z|KC?K<~w6fYgpZIT|@oohen@YzqS6(`lh<4>jvsdYVWIUtJz=km70^P->P0(J*n#H zs>`a%D<74lGF zQvgAL#8o*nRaJP~+vG4*86uavW;(X`c~&A=-CpCJVV%qI>)W~#^Fz$$$cT|ETqa2k zYp))JVUeEnfaWK&O6de$i7P|QZjmDp7DldCE(I0NNT@+YC;J2CmiZ26$fk8AhC
P}Yxo!&2z>wg&7HISGP&KM;%mN4^9=VT_E)p|{LC9ViDYZ)#Yq)O!GAZ}SjSL;WM z0#e8lzuBobtHJE;u0(Fsf=z_+$!rw|H+N*%T`)PK>O9SOP_)j%TbL2JT_{G*PF$u> zs~8K+S}(34pG3ayz5z@9=NQD)*=IF2%Z#YnTh1Qq5 z5}c*rAQsqNFNXmRkNnheK3J%gSc3)_QX z(FfFXP#{4!P4+j0cr{rtI{{8$f^d6+GZX?)o^NA~j6cCWogebU@l$>RsOHWd4}!U# zMDM}zdE4N1&h?J7p6G*LOp~YeEt&ftq#ke-(Zo4%;BL+L~Knw~^Yp><0Y1ZEKh z%>!Y9biSy32yY$P*LKCOe5Q_!u`AK7)^%^_vs^ouZ#_e_+%`%01A7t| z7FxHFvGQ~zieMYeEb08FvP1w$Wl;t-J9KqJ;7j+^mGcr^wC>K0+vqkZ4q6~4{#c@# z%lU}4Gvfkmk4Y2s1y|o7NbX6@qg8ttt8@$6BGhQtIv`Q&?E^ZP@7%vV@GW*4fCAWA z>JL!j14>Cy#Lc%lcG3iMfT=Eo3|B zzM8cD#W^gqA0TPxHNhs@Z;&_nY0uo>2)qg1_9SA3)@|U+Q*@NOm~)Qha!sZDv%80| zvZx>&>`|X>URJtaPhw7?bt}=PH-SWh^q~GmD z-nSCl>cUMjC$cV(4|*Hn7Aey6vc8*mB9CuR`_^-@5^+)Bg4zf(d1f{;gDk522HYQ3 z16ZN5#qdrs^f_~zCG>R zUUPVW$ZU72n5jtY-}Jr*^y+2zN#f$ELMRzec)q=!Rek@q4_v>xM1sKg$fT#9#=hdN zR4Tb9MMK?a*ca&QofB!h|R z^)01=Y4>O54T~1v+;rZe!6i!rj%bxDrb%EO3@RdrR3HOS#zf3Y`un&M&rx?Y|1HtN;F^H2r4)s@-dV{K*V_AI)kjvyL?p zS;=_P@XlSUDbHZyykcu?l|!}aCrw-2CC58YX5fxw#hsLSVruLl#t7%Z#JR=RuqBC? zg8X@gG`*tfHU3?hzCpkFyTO0_uY0^!^6p@FA6x3B+#&5gm^i1{8k?mazN6_!TC1f{ z()7pO$K=q_?9Tzzq7}eEqRXIAG?7Sd|3A6*t=c8Ehu1t&b5Zqw zR^MHHdez3NTdF2j{pDDfEvj2ZDYG%nFtkM7D zKZ6NV>=$p4v5pCGn>1acZ*`}_*)nZAZb9|%er^mqh}?Uy9?GZknAV^H@XV!y3vLeR z7`z3Wf=uNl_CL0fj6%S~E0$6gZCtP_SE5E<}eEHR{> z?Hk5u>qqBUsZJMDUdgb|J9&g9h9iujOw^Oen|7eq zEpb9|Hi;svV0P4bsXHPDI-4HqCa;-Afz_In^(6A99jNt#f_J?L&3g_!IA0hTY}X4h z*N}=z7`lE88veQxn09dR=d{7Q1}72?PPuhgxIShYbWY{&CHx;4tFBR~v?p;IqnY61 z(1*6HuL;4idee`WAd$7x1-@q)KJ=sC(>;k-W_IamHEUmXuC^zU8++ibTT(@h^GUgf zc2{?!be<95wznAcI%a=`_>MDYf$16e*q%gg{DHS_qxPPlu5hkIr#W^eJKUx7GR2EkjmBO4fBU#u~z--@Sd#sOl8A1wpT6+@wWCxPy}PvTRB*6p}Gg}WrWAi%qBCeceeC%R<}6$XBY+?SCI6R?ey#C|?`WlB%?gdRdlScmnBOdo_c+wWrtwO-BJs6T zk1V-2=E<>vorgWMhd}_On|c$U2r+M`p3ZRoS)x^X@|ksXMl~zjji*NS#8XNb<)X{I zH!(HD{3e;G2)VTWH8@um4%0hLI+1{Q8b97WSi-)!d$k_N-o%s;^KVPzuidRDt$%h{ zhv(aNHfqktUWaEDNnwsm?`hU67qB-G4Kcq_8W%ZiS6cVOktu~xI>+nI*`^^BNdQ#Z z^d&w>@Af8IL(FfG#;YBEDyv5cBJ$u`U2k zqtY7OrB)aP%{emn_i&U51PHj{YB#%ZrL5IUqBoJ_+UH!_I++l6bQPM-@igiXjw#2)msUY0AG9#1re*|*ZJ8raE{RDidxF$lT*5I0D@8mM8KHJa|TS%jml zI==75XM8lY@t+fy@~sGMLxV76H%Y@rS@$TRb|RI6CaXH_Jp|4$*y@je(3Rj0{N9c9)Ia zSQ~=hX=ASFIJeMn$iN%w4&sTU!t7fGS71v~2S7e#-q(%h zhmApQ)j&(lK!1ujoq1V5Ts(1Pn0@PvX&=t~{lM* z|8FlDbHC01H#gkcaP;UWM_*L`$NI0;pH%lo-GaK>+J|bV)qGgB4R%F0R~DZOOWUq;gU|# z2JryOwCt|##GwawM$cS4c)j)69CsSI(8cm(qDsf(dNg)9*KwuK`bq5G0mjKTLrP* zTV|`XF{DQj*rT}Hh^Ei;5@XaTy__{_Da;QB|MZU%(XgDYf1l%M0ADa7w7Nx8CMLYy zi3UEZeNuf?ixYkrq`T83a*I}Ub~^ujl+1ST_!P4pJAx!v&XV1teutW^-HFi!#;q8g z{>u`%Qx7XL2AQpg-mt741MtjVpphW1vmMtX8o;$B>S5f*3MKmF@5rJ0{Uw4ku^SoU zY!?JxpCt;+zy@<5x)XH;PilF}3S{^SISN@a8^&<}J?E4HHB^h<@P0d2E`0B!nD46xShV?mkMR?+qZhsXA~Ym88Bw&~r~ov0}=ZksdC4Ic41iJ;L1 zym-IYHtNlkeOmn!<3Y1cVMX({#^BwF>H^~%1EyOH>BNgD}#Cl8YTl z;jm@;4spahQ)xT)HFw2`R=3S&_bCopXvpN{+NeJ@$R!s{0VCxwg$8I<;QLe^D z<(|xrr39*l%E!5eV}eLE*rswpW{X3Zy1Nr)fA{hhS{HNZW_LuS1?LmYRf#Qd@r+^B za=F5`Y^N~0+`o2}fo?)~qO`!cEl_;Ny;^CRtVKtN9ZT#|O<6cp0Z=nV%sgoV0>a&i zQ3b|rAHHrxiKweFBYG-?>d@T%;1w8FOv%vMsz~wQ$T}l?gNoxy?j?zhbI#J>f?}_b5 zRqOpsrK(qg?`o-~R9B-K+*()i9_SvvwZOO)7x|)V-jE2=aNy)ZIb#l|CXrzu;3t5` zoK4(4d`p3GD=vbnN91qH76x5f<_v0DO9g2PLV#Y%AvR{6)}?0+e?g5ObOf!4n%maZ z5z~4Qr~`z;a3F4X^YM-+ZvP^UQ@;ELu2(8IG3+VBAp>c_#1`6Ubin zYQQXbU^JPpbCXDo_`82NZw5ea1zY{3yL=?by_%UC$((vU@tn$pE$lOIAXCO&A`AYx ze>iUjKyC$F`$RDzg599e$TaErKm)FQxUYCG?GF~V3?a_81#HtloHqj?x58FAoKaUI z$m8#0kE(QR(EaCI0C8EdC3df-i)M{RC;h{DGXQcc*uK)^9BAX~>0oh4hu(jNHH6Io z5{N?Y2VMa>a{qAN41nAUR`85p8at6wP&(8vF)lM3;pgAi4A1P-%!sjY|8U+6fZPgJ zc~d`7|8U+6fZPh3J!?v;x{3d1qoABPb0(UEPaQlbz zW&q??*eFM=a+NcQ)H%S5Y#{024X^2eL6~3;*z&fGCw)sLZpQxMycqzw6)e|Zcbhb0 z|6}iXWen!{FKh1Lo7Z?wvmSaW0gzi^tsI7W zb@SuuCBU$i*@$L2bdJN~sYr$$VOS9xzJ`?Un?`<2TI2hU5yfC zy7(zRb|(J`xP#XJzgaToTVsxEc($Q`^j}BcKf0~{KkC0)e{$W*y6fu>seP<=Zq0wx ze6{A}>MhlGR8O}3|NT{!m5)?*RhHTMe^>dR%I_{eqij>z?PXI-Un#w&bo8j7j+$HY zLCH7OSN&i7wP*PAg+F<_)adb+=KD3w0NyMe;@0rc#&0zK^;#M`5Olwz=|azN-k1RU z$?OXqkp{Tn=C8OU)lh((UA%O;PXzI^9aqbKB?`x~_&S_7CP1y*nQ{O$nh}0O>PFZe z1HNtc`zX)Rm64)@rtF^KyfFc4-Ofe-Wsu|DE6tY#>F6B><5pz$gYK-ef54E~&mL7m z=WEsJ_YCL81O%C|dowl_)~r*S5h8C7vax-`zDF3esO(ZCKO|(bYzh#iXE--5z+2z! zh3lIS(^??OOS9Yc62(Q8)xyu|q}>{jYRp@T(Dn@HjSbLee@6~c{M(9KxlKU1X0La* z8&~%ec<&(f8qRTD<9_PouHnmdM*?|pZ^p)^T1${7fR9@>JUYV%q0ZUc_7vXVJ5WSJ zeY9uzvcipS^J3-EO4ExP4IuH6c18n8U8yC{NS>iVDo zawF~PD%f6V9znXrD25d}2&VN64-{IrikFJ-O4Gjtmu;ijff85yZCZmuh1h>i>UF|9 z8qDMB8SXE%ZbNHL%B4xM3|6>OCR({=)+U$N z8{ScxK1FlGScKdG&3YtAiE>|>y!)}Z29 zhHZ76Xv)n2xb>o8i2vss-YSzcl$0pQdhe@;vW8ufG}f%dt-ag9xThMhZO!uv4qY@1 z)&G3MTci*#Td%}X+J%4_)Ee`g9_09N zp4|V8WeevIE)M8;;}lr)#*;1n(ieH2XWPS5mjvPp}46XU=dS_iw+depuSy zUMa0eaStfUay|z-WM2*t01GniM}dh-7ygUp3H;Nd?Vxd-)k~xmhvR^zIl=)8>??ay z6L23C?{vK7MJ&j~hw}vfY2UK(5E8e3t33EN>@@a`onYPhh7k&Wa)5>wj{D-nc>@2m zZ+i|k5SCUYb{p&jiQ!rROq_iQTpYBN5M?JPCqA4f@K5`;`B0stv@Q<%X~q+8^*xO! z;ANpw;OS>nym(WOUVJ!D;Gg#G0EDLkWMq}J#!3uh7p%ekU z#1K{CGRi_7mP4}44u`?qXn@4Whw~Z^Xx~C!8Wl_HISRx;pGRW2N+}rr3w7e&!%;9C zO`!4NyoLkX-{`^o*3Y=wnt`aJZ`a(a$)F#=f@{h^W}P!`?Qv^S*|PtrY%P?~u|?AC=7 zdz33HQGL_Ik-R$JYe-R9CPQ_RPIUh8IUjE&i&&{UmMHGCy$}WAMT@EJhI?Qap6DeF z=7RkHn3Ca=G53x!mjC|`4Uy5$jlN=ZMg4=8|G%d$Q+HhL8+QKRp*26Z{QnQD@2Nhs zYID_XmjD0j%I=E)s<^x2v*l~cmz5u0_ITN)r5~1lyY%=`&yBjY&o}H(k3}e!AD8ntB@>VGuA2*zXm?p z!6wCYK-6yQyrQPAr)|r+riE)(b*#31f5SB3lSa7d!tBaKZYdWSJ5XPf7~{hYTRJ+dm9_BSV+`!|ogdc)aL@1; z*g#IVs5D{&9no6SwNxlKKg1E{C}GIcYO(Kt@^;J@bQkpaRRw{}2Hi$&oga-|z>*_;_2C?8grA^pbn0_R z%9Yj?d8&-P&yMQl9r%^dQZJn3IE@0z0U)}hPH2O5)lRZicEBsFi@QuEqnIVs1Q!rGR+d4lSyTGk9dXIvvR?P$OvT{6Opi7AQig zi>mxkwv*I{6ewa&htSaQQf8J7NT;py;@AZ&R)i~|;h29!6DAZlxuEa`Hg*{X>qm)e zI1JTF?!BNeL2KtlM51hfR5{7Yf-kjDca2scr0$U7T!?UGDsUOlt;}{LTi+czH-S`+Cw>qDt&dE>V zwM9dtn$7i7;Y6;v1sagG=Q$kxt8Z|j?6 zkk)~v?jg6#Z1R+3(&g%%L8;<=zrZv@FS|jQn(i!WTbQ`!&JLS0+A-pPP?}@o=lw;; zh8CIjO?8!|Mg830UgrgzjZH|17}K4hZNWL3iEEawSmab1$g`CT>!0X^m|^+O$$)K76==&J_vu4F2LJ(9hiRJ1ZEhO?=AhyJQ`XV2(> z9`jb+OHYc_`vQ5J!K5Xb@`&ymDuuHSa|pYU{pj$Y=}sLX;NFb=3ooZjYP23HV?5LA zPX>v#v~(!;|_LAw2YyE$v^uOB&4j=H;fO(aFtbDNYs{Z@? z-{1e7ikB;vR#f);PQPo*_mtmPURUlqQB4Y92WnBY%hDx z{~~ER(`R%+>MMn_jLb1A`0sDWFW_GpK(A9bJiqg-_!aiZh-v;3m!?|3^BI*%s=+^_ z0b&^ar!UDYp(bD$=zu(Ye&?C-D|E?-mD(ZK)Zc@}>@t#6jbAwgn)l<(@G4-^`i=&q z^E=OoUtzb5P?sf5rS2|!luDg48u=+2?nj9>2ma8L7FQG@=f2 zL^Elb@sb89NLS6zP;O-Y%f=Ys#Pd5(i(kQtQ~lasjM8|}J1`cF2k-j?CNG)DhF&F(SX+g4@!4poPxXMY!I+&(V`m{ zSSjDAX!UPUZu%rF7@Ole=DF-oj=0#?9YWx*-RO%|z%6rclJB zfT6F4S*;8Tc2T->K#X}CfN5Pon*YTkKY@|Smf&u^rJ{`p3jEu5)2b1Btkchz?yQV4 zZ;7`^C7ZvXH5oLIhwe*|BqNkc0tQF&9z4aI&i-m%u{gXOTMy7ul{9yH%#Q%WBsMWc zxP}8V$Lo2cf{y9VikQdVEoUj{Da{4F{oxvgy^DKX1#aX+5sTwTlwf5JDsExcE2Nn2 z>=$F+&OOjSE*!fI_)c1WW%CSM>D=rup?=ZZ@I5Fvh4CX>G`L82mdBX4d8G4TPPqFX zZBj?LDgIO0E}ZRJ4GB+=Lbo}f-I&qK@uqBZHxk{I(A9P_U@ zEzMePBt970E&*;tkkts}S`KM_TW`~J;l3F278*OpUx`6S5D2ZbY|!g{hZ4*pWTfHc zP|#pjH^tA}tSTfW=}Ao3al8Mpj5?+Ux>`D&UwdaVe^;YEJOCh%{0fi*= zu->1NNv(yuPEOm^dbgaR=&Ur3_Sd*Mq#sVExfgBUG-Db{lQIH4i0Z;R|HevM3wQRm zZfm9bf~9eQ2jHouE7N>lx;S9K{+~MOWbL~&?4&{^p|x;FZ|kSJLxV7-9 z-VeP?2El7J9MIex9V;?bp&`S>jR_s}iGonVdJPO(3u}5?x8x6m-3{;}0C;8U*EI-0 zdKi6QT`M(yIJB5;`mKfAdRwO72;htd?(v3)@?&(^}~ z-qvlXs@H%tAay;cXogG$ZVwM>LQFJD$(Q}%e-w9;dx50qY5@_NZKbzwb!&lHxEA>%{fMXQ!~tZ-z%I!$3D`8@}? zttUA#sC%LJCHhZ%2Y+i_^S6{%XZnySEQ_jI}qoV6IjRQ9rcQ)`1}w^p`7PXtqn{@H6CcT0pKE1tq%eUoCe|1pn-uwix%Pv%!4%?IBQaETkX9|ns>{~4o_zBL@g;uV#ysU5nFTk$? z>O@;`K=oc#Pn#($inG5%Mj}Z|f|e29&kOJrzGT&Cd?YgbORO*i>H!8|W(o`A>~EKm zcRR=SWl28d!o#%&oL6b_j;)^G+dSlN@M+<$Bo_wkrmF0=3bW z2LLyMQ@~~-Hs-vd;CH6bM!WjlD_7m*d&|y1{+dWAXuuxhRDX@F4k-o^2JLh!%wzVV z%!2NgOd%6z--h1$yCeasD+?c~(=~=TtT$jtzgZ#nUc@T7zNKx-nF2Z@+|%1MWRX6< z9qs~DBGKqWnV=&~pck`Fqc^kw6M!vNpo4uhMikq(GA8;5C4ul8+C7rGP~SV%^o`pFgulVGn9XWeVt;D7J4~x`1glX(uYRnItt< zE1}>Mg!fNoClyFv)jD~mP}DrZ?`xa77WtS*ntq|=vOP#CQdjG_g3eupY}f$KHG8WR z6hy+9DHJtN(7vs8p4?esXFuRXYDck8}mr+21M z)Jj47c1WW#eWl5>74N0mfTWPI5VRzVb~iXwoN0_wP^M7SNA(6ux$~N&hyBAzVw!$cFgWD85&Bh;Z$=nDWLU)82M}qq#=fnEiM_2` z#uU^}67U2lJ;^k1YS2ap2 z>vqI%g?Flw&{!_?*-rh1cjg?28@;9!nJ_P&I5#j?&Hw+VNB{qv+Ba*L*Vfqje@pfM zuKu#k|F>7&T{UXp&jz**_~U?o9dJeEcB}tC%JTmg^e?M;%q->mxIfs()J$^1|G@6v^9PxcuTtX7q;j*SFBot*4FbjVz0BEmhQnOyV| zB54k5>lHzdJ=xX4{9YNU+enhQSfRc-g{1H3IqWBnwP!OOZuoTJnwZD7Tn6>9J)+!j zeN_Di7dImGL$NKYFi|18ATj3m$Vkmof}%L{QOf?KWFJMiZz(v$#sO$oqzfj-yk#*Q z@aIC39U4BPms6lU zp@%i9G_SeCd9-s*;VLz+*B8F&E*Sw_KMBYXf+~|)-HV<9y@QQs$Tle9nl4-!^VmCO zB$K(h4n?p7fq;^;P>Xd!{~6`E4m&?+5q|{J>B1E;<}C)`!GrrGN%MLe3JbNsc%m0n zxr#B7IRyR>iXG{~RSc`44ntj)9B&imI1$?+{kp{vKaH0setP@i7Sl55NDR^4n>3$rf7sw zY%cz?p#-XN>B7fi%x{s=dKU?|Ou!f5@1e33W~q=li;@w$%hQERW6W=ok+c77Z-8$} zvc<*8FPRg%0i|UZU;tcJ&*D>Z=a5{C+WhRoM`_-{0NC&wW%PU>Hb`=k7K2Xc{Ss=1 zpuj`AlgT>)w6dM&z3@-yCj2ZdZp6GNFOVu6fWJggh|IBdc6 zxrIyAKF%rZ@0EJZ3M8qm;0Ai%lgtS?_3vS`c$CdvyX2p&^>IvFrtsmo2k(}8I+!o| zO&uPb(!_uVBf>>s<8xee4;=NOIQx5~9_ejT(*|?G@A;Zg-sg*HcUiMduU`f%NZ1Gh zewo4taSUr@P%6F$2A=_ESCkczJFnF8SJM_;leokJETt2S4rNX>1-H!;g0K= zpVD`R=ZB;oN1mBiG-$~bE{L;lW%|`CNiwI5i2zqWs&Mjgg}=;GYR9~T=!EwxZjwyl z{5bno8k(JpxBJ+-2QI};bR6Ux-rpqGvkfdf|9Nrtt$4B~hLQv^ zP`a#{h z=Gz{rxFE>6?^kEb9@6Uz&9RSevvl3$GDZ(M8)z>#EPAql&eALOHaBPyx~-6ieRPXz zB1RbVLI3&)C&)Csb>16f)03<~F&LnE*B6>%AKj*+Q+yYI)al!%S^(hOb#JM3D{ z_Ggy^kfZ0-M~Bfvq}jfxm`tWH>SQNI`*wb)B0hE=h`XiVGH~ib0UKyXMRf9f;gpqo zQMXd2P&9vm_HD1PemH6NN#5!(_@br8M|D&h2>Aj9iYO(n;KU%!|E>PN&j0(zL08ru zsQqm1hiW#|SRzdIQ`N0if3Es&RZCUbz{dwp8nAD`X9kR}{AuOv{=e@3K>rU^yjF2j zMR~t(^t+;bbNTJ%!^)m4yWaBuzf$_KlFg@9|1T+-Tfp>(;%#LalyGy+AYUQiAICP2 zh`}aQQ4IUX*V;m-jVCjOqOlKrZC0cd4aUv??o;wGWH<%xB<|QSL=ezh(1Qbfm?;#E zeV~0SQL1-tAjAfh62$sQ*P>U@HO|jLj}c;@qOlLOZ{;4;%SyABL=ER3rQY;WKS9+f z#GEKCvV<1w7Y$yZeM_JGjk|mw2`WGwfRqBP1OOy@38f(RB2geX#3n_97ifR0oS`K` zX$GJd#@@Qhkfko5gcz}NmM!WSJ3xVqOyTsnV`p1`6;709O{dKZl_h%};^X;^M|JHbZs1~^qm zp|-CzY|l`ui`2&UbR{7dORd&YH7EfQ+5d+Si&6(}z2=G?g_^$B=#t^O_oWH08?=ki za1R72@-c!Pi@@eFa7qo-J39*1eXX%uhAV6&O=WH|t6r)(fTX7BHwW|`QI~_)5Ifhw zq@P!)(ly|)Puf>@q`l^Q()b7M;s7dh4cjh54S=8$_`znQ2B#f`fqngeouPTFQ5_T! z+ECLx;3Bi%{v^nI9r9qvboTz6chuo@6bAIQhHV@28E--w)s{JoL^*|+05iOz7m&yj zk)&eLX79t&9fiui*09>1*tCsWWaK;oNsVw9`qvByz~S&w{*1iIjp}$i3jO<9!}4*| z8Azl1wwB6_P(8GvA&&_&P#L~*b`mt#I|>zjt+7=`;b1hr=o1p=2{Pl?T1#f#$KP{y zWC^uNsX>Aob4Q_HUu#&onio7YB#r9r_-P2I~0qQ7}^|gi-!vSBU@fnLouG=4G z)z4U?^(5}A$B{5IMyBRB>gclyrJ)k!qWhcfyv0p19}4zE6TZZL4cUXjJ~YdtpTjyO zx_0P^m{urJtM*6-t9xZA97GeI8RzM0ipqr1CLoWPcN9dOmA|j|Lw3uM3V+6>=|2WJ zbk9HuBM98H)Q0=Z>_+JV>b|q`pYCmSj|>L#(DZLwN?;E%Cm}&NAp$`U#R83U+#Dlc2>qey4+xS7$`9P0XonE9rZPpyTHIH@%SG=cntD#ft z->fu!*5$(+4QavC{iU@ykV}4|kwj?pqI`n_`JZgf7j-r0v)kSvjT`K|9>q=|Od-?l zW_Cyf23Q35f_Nefp`{2!zNo7~t?!f??_=#yq`UkZ3LWdy9j;e(l>xCbycv@0_nkvER~k>8d2*%+42eHK=tHd z$Lwb}>$OzanlI{VP_s5%1`g1)T#pSf61naV{(FXS`6+jK*xQ344n-R=Bzsn#T@9{s zfQ@bk4I!9m0_uP^AGuC_c%*cc)68)cC^*9s8qKrvJ>3k!b8MEg&U2-!andwi!z}RG z<+?)}3IZ^S)UmXO*(#efPMew!T?{3`s#Q@`?4?${Y7;`S|(`l2&O@#PW3)RRc2PKwrO!9lfO02zHPj`(sO^T!&A;`Xte@< zfi}`e^Qv1ziw>)i5O>JrZ;7*SgJ0#^+No!HhoHe*S{f7x#QhXKr3{Lorg#jz3l}We zSs5<>Keyyl%>O?#sG;`R+VQ z-3#nu5TY8GADM;#n^!%U=E8O<%BVl_M zBD_q#sFPtlc9k7FuaLbosTcv}GJ^;(&S&%sjXFYF$o716A7=7JoeZ>ZLu|bir0I2k zdGo7EYKQlc#8kukp_EooeeeO*2QvAhP6pby6X;KOZtC5hX+7$=CAD6!50?H>0^*>$ zz%Bt}E|V|nWT1T;VMDyENg@8gqe>y7!|aRb$AA|&If|`)NJBFDqD}_d-!8*0_TF5Y zQ0l?eEQBu(D_bT+@Pu8cu_S+E&4+rJt>acMU%F!H zjU6i*W-hvA&4Oi1Z?s`GFPy~J6d4N1pz{>2gHv5p^eiBGBqL0O3|!HY{DM;~WwCA> z5!-VoiHH66q5wt!G6^0{9^|z7Wpc7mUt zcS+P}iUTr}r0O)VXNQ(vAEUx(9m2EWSGAsEsU329xr^XZVLBeJbV&{NcfWxv3&KS# z{}J_qNa>RNyi+V?!R#-)0C$QVdg$K-0v=V^2bg#3?ZAZ3gco?jDVDPF zzlO}x1n9_Jmo`L~83zzfx`gTYKSWRXC+Qi-L{118e@pV8IK@&{E*Oz&6QE^&s~Ij3 zw9p=5Pu7^>xOmqZf0ef!Tav&26ie9#S$%40dRcQ-fHwgg!3&J2)Pp8eqo8ho1EhFK ze(oujvfZ*XeX=c0=#6B2KLbaW1Cl}o6!;z~lk40CbIZd^@^enHl)XfFi9e)mQ{aop zjO(oh%TGCqRE>pb9${4RsgB&1pB;*=HmMr-$)yWcuCe->mYaL04+Ethw-URS$#e&A zEMmWD7ors?w3)TO+T1oFKg%!RbGDL_uz;OytF%<9hclXbw(c^Z>=8%zpsLZ9pBek4 zR#acJ7^(lUw-iM6r|k7_(@EGECF$SkgDh;z%nQ{+qSwy+6W+`($NNy(Fp|VK z%;by4RnUI7jQOg&I4s|Dm-~hFJ@!XvcmWQgQ7+FFhOh*B%h=PH$rp{Qp#42EMl&Qy z`b6(roP;BRz2}^TEx5gaiyhA!L^UAEl*t#3tDt>LQu8&J0e0k$!}Hd#-rqxlQxcyc z#rai4s7Lfmn^&1X7mcf+{oOJ~zmKrz`GjtSAhbf&8S2|JBVi`ULSDXTTm|j#k};YG zOVTIE8_WqMGf4|KlDpo&@r-#!$(rPdgz;m*WHb4qaTT<02mAmZPd=gD{DH*eU--l9 z5ht73pocf?pO+n2a_;Xld5o)YxQ%r(*!Xt9kG;U`5wi01uEO*e6G&LV1Hfl6&uM65 z)`AqnjKTlcU->(i|DRX#t)BeF+~AV$c&4B1`3^geTOCO_e1tblKLo7A7_lTb+l!TFV5 z-O{3QDQUdyW;3uC?pd6yOn!Wv{jD+vp*ZJuVF;GA;AC=q7ovNfcq;Ew94(U{7iWKq z)OWjN>Q9nHT!1;BLYf}uudZL>YO@bgUY^w=^PTzLK?j+1SxAm|91lOId_?xN%S-zW_OU7&NX@C5xzkyL5X?`D35@9G_p9f*XG z%e0$9|)W@dyz!E;@gYkQV1Ayk(!o0l4 zGFBTxV@ye&?|$}rbDTKim;81zz!Rglfrt1G=z)1 zWwkB?Zf6AAPiVtpvW4q#VgBm(Sf)!xx*%=Y=OwAvI)~&)%Pd`nJpWe^Ngs2UrK>=? z_|bZ)SM=8}%wP2$%j}kssOvNIb$(fUCqI|6 z>uBv*n7{lzmf0aAa2}htx%TOE%yEs;q-D4bFf48Ppv!q|S1!(nIiWXjmdgpTP#lmJoFhVnKSOeL0>_n2Na5F9_8!Yv`AfY%qW-uY?Kk6NBO8U1GhuUacxi{B~V2k+d75!r{#UmhjWbX|F6CCmQ`z3+pu?p&s3_2 zFUrjO@m6$eapp72tmf^Dd^nZPe}pY0?k4wEkqa;C~D zd|^6&NsRe!83E6oZ1Oh}(NLMWOuYluv%E*Plc<@OljVvVJe~h=jCngy1zAw?bk74Y zoW?M--GAILviT9D1az?+Q;l*~I{%><^IZW`PAYI=!1|Dx@OkiU(bqLX4Puc8k;!gU zEIXb5V2pV?7mr&5DHqE1GIN4{(tQef8kP(IIFSrtFvvNb|3Hj+OL){K18G*Gt_kM7 zi@VBj9u&2ejsjJncF6O6lOYqVT^ezjH98EFa}T( z^G9W7lZ(M#Fho7q;8#d;qoV z^XdHgG3G4=XEyrEaOWQe_&yU)3z-x17@Q8le73Ctok{1}J=RXrCdX2E}-z(XIzHV*}dv*YaB!FPIit(2=j zhCMXyCp6$e{1o|PV5dbf=q2L;QVyAXGR}UtoTX`|or>x9z$1b0NeLeeNC>QiH|B5;dwLp<~aLSDN;-O(%i0C7mq)KXwv4MMlf(prC>Oy!Mvk<>ACrY+E@JLTD*TN zq5GKU{Y&!{_hP@wDXQbmetmHP2WR*U?GCe1FV;-HDel27&aQd5G$a4Uz=^=02WKtt z|4F!HI|}9~W%7-2_AR)6zsK*T8F@Yg|E1-0{jkL3*j&V6YXWxpPf6hBt zX-+sk$uKt0g-SLWY=i0oo4!Cp;edfmzCO;r^^EFJ!}IgXZt1Vr#vZNvN9gr7zL02} zPoZ&WQ0a8}|2b~{pYs3j88oE!;o8e;Uax7d{$2HFt4CLTziQ&ZT?5w)tQqj_0hd>< zuUt}DVXOb9Vn@ZD6=(H(qF<`~c=_kb&nbJctfTZVrC+z5|GWNQ&Hi&&^xS+=cL{fw z1@QS2FZSpRlcjM~EDE|0zfztI=Pa1@THnm%i@Hl_*bev8vX(T{Fo;d$0d&{+Y%gMN z`6~po(3>!rBc90@b(he-#psdSbN52=R#Jx?taF~(gRl}`f#{#vhjJS(mQ22=yM*@b z*p^8i{+4D9#)I2n9Ub^=^rX`589keBxIdh}_Wa12#*=d7m8);-Xqag$p;l03l;&QN zcxj9aY?u!R0PeWY1jmIOjMo8!H}pKU=STFhgw2h$2q}rkv8GlVa8p9(@(Degk-p3i z8S;iX1p6IDDBAPG`&hzCCm!&}K@z?q{B?s#htl#(JtjDIfu6;njRV3_glx|b>tl&7 z84dNU#H0Fc+44bAWfmVF!nX~-0<2YBdF}bL`dDJOj6%kk_!l4N^jyV{YXE&*>j7bM z1)1R_+rnA3=g;h8iCr@KPu@dF;sKaMP)+S-d~QiC<#1eSmJ(sZp9zWcX2ML zaLCMloucLK`P2GXV!Mn!;(;7VEWzi-=Wn@FZ)PN-5ycewg0Q(M?$n+i+Q$;MffvYQ z;s%)XIKd=oS*G9S7|@hQ!O~zjN*LsIg{s=~L;6_4f{$xl===L13Utg_e*KNmV@p%t z|F#x_Sf}K#cunJ{_Wa;Jmarq@Z}PoZlAw;wi!l^RXo*&f5 z5}TzCU|M3V#_QCDXt_fn4@83@Jvf4-hh%y{lkNH1K9<-dqm>RS)DnbBfwbJC0qZdh zkPP!D7T=jiK`U%=zNY4)lRfQ(qO^$y6xc0Epz6~SIt-j_sc5%M?Jr}a{W}J~x+6H96GM6dh?&1>O zL6I*|efnL)m&K7tsJJZ7SH0&#R_R+`jg0Enw4ce_lp4R+OgC!ck75I0c8BT4gCQ?p zoFDj}3t7Fv@A_;~M&TY|o;CR$-D!JV0%LSpken1$Lti(f?kGk+0^FpKk*@41j|*ZqR8s>vwbeIaX~e4`%6Jw7#D9(~h; z-p8mI78JqIKDRjE|2-G7?I=Utc6v!hebA;K-`PviZ<&k)n^WPPBXW5M=q;4gWEpR9 zzT!O>+A4#0`+}j21VMsYTazAh@A8bUE! zj!!LJwrtUPP9RSaP-(bCYj2nm7@Fk4NRD_59Mp<|*#~F0Rp08;eEF%?vV(tO#e*0MTre~V%|k}Wj-$+SoGc0==7^eot? zycgK2rTNlRt<@z%z+q_UP>_1BqQ^4r2Hgn2D54)KRL{^nOqtxEB#Nc^l2ff^ z8~4%Y({PWAa}oyZb(sc7!Kwn2RKhUOL8W@o(%gNgT5FdKfm3R@+mTehY{*WZ3RHuU z^UwW>KF^@k5VS+Lx}X0qUt5~{^r_aeGwgIfNyB2d>3_#2Vws9PPvHLvM1s_TWUB|r zc1v^jo@yOwxcTlUnvu5ec!e`RBUdSli%)Qv>Gl(%e0#TFW{O1(>8Et!@ul zi%gxObrZm5p}CW|7S4uwTlY*y?(VRbLxxuRJF)02+v%F_W`F+gr2!;3%;XG161y~F zi--VH!xxxwCU;j+{=9Pe%2g}f9P!gu{+p}fNW&1{v1#^UUr>#LQ&D~S-fD7EJB`3U zP~A-K&N%zsG8jzl1`oWip?*LZ0J2AYjQI&bX-1+X84(}J-4SQses2Z!q+U@vGQY## z;wbKCe6h9Nut9t8KYL)tyrvng%l|JdSrDiH@8PSxIDOrI zso$Zy^q?X)L2s0eJsOVMb|c&ZB(b6Ln#rw+v%giU(Q00gPCyK{l&Ke=;m(}ty2iQd zN24EV%{1tk0vR*tVQ9By$J``l%Z-A(dD0UwG*xf*` zr&l9DLy3xw`rlulTdfNKyW;}3N!wo=i><1uD-Vq@$W*P$f(zLGcrbJ|A4M3#X@VHh z+?HDv`{>;=43*Wyx$eq&&;Xa0)G-bHP=bj#QGnew;Qt$her>s1V;8VBpNBl2DG9)9 zL8rj`XUopk>ov6RFo2_ocgQ_y6iAwJ>e1Kdgfg0)(PL>=GX;nEn82FPzXJ! zMc~q;5d9DJU58ggr7YkoZMjdzE?_G_fIQd_6xia+^c+wK^xv_Ij(FE`2K#zA^QbMi zGi}WL-^*egp`#}53^je}k41v+P@w#aae7bGm8h9s4N zQ_?gw)ZrO(a#-;Oy{Fo8H^nZnS%%{rG(D;xHM9xLaqjE)EVo8fbMyD6#UttMAi~?0 zTO7N9tz(UFFZXNG^mpE=^$=hf}a%H7!8 zsvSypzt%hwK+A#Q1@;cwCZZQLmJG=r#=%X?El{i4DXwq84ryHE9&(x_;3*I3y*{2O zWuzW+ahS3SD(=)=2OhG-RR`6attd_NM?(@7x`TnpO3Q`*zYikVRHlG9^VD2>Z)>)? zu0$kh+V9~KjvQebDdLC*qA4#asxmb21{x6VrrEn(k9jogX>% zt_v6L<^~OFA|w>!qtD8vdt2QuXC(cLk)~F6p5NkhJW2i9qg12~M{5xb9Rbqzob%j& z{@tuxYj3NzYvMugU8D(gau)eg2lSHV8+Z;k3uq(b4Any*jbM)fl9SXn zeFGS@6+vQ)9>%=rn}`y#ayRt0YI`9xv64p3Ua09OskeNBVvbJrkZ35mupt>oa%%1q zuzJ#Nw+(ZvJwzdm?zLJiPuw_?dcgxd5%hwBC_BE=wYlqQ%@@_ZGqOX$^sP(dLJe9V zCL$?NQ^GFS$gnjxH~dmZ2U@apnHxzv{A<1#EX@oIPZ)IcQX#5QGotDTAZ;Z)O-P#;v*8y&u|gjFfF7%^&i0sSr-l z55w<<8DhA34Rh1={*R4o&CTj<-O2y~foHWC(gV`6T2UUdIR6QO1CJ^v$RU$&&CTp> z-LfiE{^U!u9x?__0q@@jNcd@&;-7suG^kL61YMb}xt8A6Et#^>!JjK_C0en=BOYfS z5_q)aLqE*pqBN4Anuwm;)?BK$bvt_teFn{Ae4(EFb!kC-0GyB0?7|Es*6_l6pV8a8 z4KZCzV9~YaQ7&B_+hcvUf6?rRH9yu39dbD46Oa#S%}wuZ-D+;*=4!6?N0%Lm(lWKv zW0LGHe_5X*2m~`q1CG&}yRNr&OD+QIErCBxT3X9kP1iU~n1~DnDZ*4QC>FKmisoJD zA+;JmtUB(%o=}`rT0ZWho#52iDa=l1x_}LS<6fft|8JBG{>I>|2kjj6=|ShzzFfPs zwyNf_nrYR?tG`fvY1QVcJE}$ue0t!50sn2){{~lnz4D^|>-w+me^$j)73qHer{A~w zjW0h`{`vBY%hs3ORyM5ksnXVxKbL&NhwlGh|JIr-8pokO-bTF&YJ}P};&EyDsNXJu z8~1{y{Glh8p&fpFYp!S${9+hA9GZB-Ia z`0s1rh=i18imXz-!*Nkp)nRJ8h zxjneXL$U!-0u6-EdQrMyT<9F8s4pa+al-XzcOn z

TTnwJ~j%lIBS?Mja8#k!%kf?RW@n8WnOMH zW!#Ddp{KYG_X;{1WMZXTb&}CS$$-#2%1SDyZ=!*IUQT)$w^~8C)an!!G!(s>u*-!y z^`={4)rccENk5}j&^sDa&&!!!#%=%RKYD;#>UfBhgC-MxtovSZw@F67=O@TpF`TUe z!Tx!8$9Yy-y{LB2aLcU3RrTcuVb1gS#{ zD_Lz5W@wO#(NE@|;kqz6#GsyNz#N#DyRw(@9=V`8l;pbASIC5+>KFNL6)c$@8lW{(eZ_LYG(aZQ|83Ha)o#OIl7izlW-_e^M9p=&fs1K5$Lq4HK;pus~%X=B$B-MKC zr4H}#pf9Dj$#@`DREU32!45-~Xt%qmZIdKuAuDnpues_ZuefN%ZL2z#HC(fJRk3)) zo`4OH8fS~Dv;IH{cbR~X%1R@FC4hg1zXlb%6}ija*MePAfpB0Hf;`Z1WWs8_2lk@G z#F(9eFl;&At^Q+0?qlz3!R=Cucw@9;bY=^}`thIhIfyxA-&r>vzk9@ zw&)%R`Z3^x&dH(KqUf92$r_J%v_p~)cm@^+;ZA0s969lZlLWa*0VJn$#a$Nq*mj}@ zP^={G2=bg}epD|cw2o5I)3%y zGDHITaF6L+ahHXfx1>CNQwK;{`I-}GRGZnT)B;kg;j_$6CAXNPxM$wb<g zac#%)MXOfYX^~dk3D9f94eBJ(YAF=bz(iv6?^<37Ws`j_9I%zAExPC0au}n**MbG? zI7+3WNyAM(mox`l6#tdKlPS;olsM>wGvOdwh$6B<(V;C@G)*J?0?Ru>E=GP1hJMNv z{37C8ybc)vQyFrT=46`x-(E8KUk6`0X#JpNgDPvkReM#%)J{zDmyeaqAQQYrjXh6BLE!Q*4!yh^9ElXk2vnvhyYC_#$5?&GN|Do<0ID398 z&gG!Hw%nMaiWyIbr8%DIUyU>Xl7O(3Ov2`6zvkBgE7KS4S7^hm*Ei6XtBYO0W^cHL z8*l@l8%rkP8(`piM9MrX$9wUr-qs38TW)mh0ycxwm`oamyRUd32eAaCf-?r0H4}~G zn1S_<75UMpPiu?mo*48VPuPrw+c7d%yC%j>h zXTzFPoO7NIdrp)n2xYs-y@U0{n0MGn+3)LD3mlOtr}KWH}B zt+`M10|mwnBd@*w9A08HeZ8P9H#~NM%`(()_r*d66b1;%MBHfmTx#^c-wIRppyg-w z*#zFfY`8nxa>HU5*d&8Aw3LQ&4O^%!G~v%a&ErVaKo0-`!h~<2->5Bj)?Y2KVC6#J zTsSmWD2IgU?2)* z?6%zL!LT|XHEfYIeQDC5WqX5?oJ`j+i831IC*<)WA3!6$*`^3ZTkf>j1?-rpEe<#O zjWn$GZ<%6;LVavL`4fORj<|^4in);&0~P4D+|bwscFPdA?cUrf4WEE-z{#4AsQ{VLoJo#JdKSQ*r(ce{OlYacRTy5+ER*d^$AMHxLOR=rw+5t^&^8#O zY{OP&?xGDE!?)#XVi(vJ;H3J89NsWHcsI^TJ7Kqs{Viq_J}&0CP~F~a*RY~3R~@^+ zRvB`u!qxR_GzFv5?6j>KQKC=8P=7a(Bv z6a?S1Nov688N+Rd^pf-G*TKP4std!@%|^}pGP%l=372EntXi{T;nK=(8Kei4eVrdep8HI$BF?^r%;0!N0uaX@lgZcXA=vG~#&l4=L`ZKA_*=*r&~P%jesT7< zigzEk{ai-w)9OER2$`f`jG#m01Ka=EZVn(+;DBYgi%hOO&i)pu@loL@8QJBSt!oX6 z+A=Aper=tCCBeRPM)p%1xEm(m3vy*O$sQEde&3rdm8xMv$Lf`imyOJ9%nN#{LvvoH z>c=BIpi$mHp?g8Dw9iGl<@6tW7M6^8RKM(g@75;Cl;7%30#!KT^~=g0 zvN*F*llBFV`uSlF(>dV@3pg-*K>Rc}%Rd_nfUJ{PgICp|MV z2Cw6giw5odE_RIpXb!VV@yl4FBB^3Q_S1bXVrx+U;kTBI!CihpLqnOuZ-OkD-vk$) zA-KFrH`;>iy?riXYfX*AhNF)hq~^uhTcMAbU@ri|mvtjX7lu zDwXI|kjdBx;D86znuH_f{V2XH$ll%OBKGzKa14pQo}Q{3J)q1M{OAY%fE+WN0mll@ z27RpyvUl~l$aXnB;f+b%Zxo%z>ygP?d^S)(1R`nbB9|NZk_|vUm3RI_!OK3)2>#lRBR@ z)N$6VOu}`H5_G5zu$oS}h1WE*T#&t^&qZu6iqfkoOR+EW8)<6SQ;~pZDx{1)>fp+o**-!Pkh)ta|Ym~a% zeGbK_L?+JGu&7%>kTAlRU9E`I%zCYbv}M=y1Q(T+W7jOZsbiH-oz6mtn)svtHwF;0 zq>z6gTneX|`d0@KS-$SElY6hvqB%lSr?7x!$ZDBKnuohv_csKUuMNEmKLgZwLa_qF za?LB6sI+C#6`=@JuxwK&vVxFSvPO`4!k=F%O5#BW?bek})R(D5Rwx~HG zEMPl&0hcE9=INoe->fQu&{(pUzu=vcFN zs`muZ%X*O#dNz9jp0Q~mThtX19^GPFK6tcWSFaj&qDbmaO$-oih29zp6|-^eO$Bz^ zvPE4HVS(*3Se>UNzM@_SVOEgv->(ewK$JeA1`RsGsQl8FE$WI03v83Y`U)iRH!iWB z#9jeOEz_@ydn$TfKSKDrdsIZlys6Bcwro*XL|9<64C2>aVeQ*asUyflQWNlX6(b0P zo_?i)yVW_;hwbjCrekf`B=JqX?)|Qpki4YtR-Zl`>ePSowOzU}tALXx`=A*zlIeihwgQ zRX2QSCA-GwHJqXpd>CI!*edNb>n=l>wMr*?PQs{*aEE`;t!GD8xybW7dqWF2DaKY&ypLW*ITbR~RKxsXiEbEHY!S5Btp_ zpNL&xkJR{EwMr7cV4E`RNx5!>-rp=8q43TDu0iP%XSFSRee42VQVq~Q0Zg9@u=D(= zJH*X9Bj_ix@tO01XZCE5ibI2o0(j?1V#Gq)ffsrOUQSN}n`(1rR0` zV>qtjB@Oc0vPFY6!UEf+#(RbHB;l{8ODIk*Q{3^jfH#T>5u8{MKO%aI-lVo{(O`|R zfThEMf0xi$$v`|O06%Dti=GFCg1-PoGJ_c3<^SiFEcxsH|G_oiuW70NL-kjyP1WwI z`>W0#_{)Kd2lgNEh}Hi;Uio*n1K^GRZ56+&_)Nu6TmQeL{KfJ)We3V`FB?$$FQw;~ zykZUh)n9GdRP1K5Bgq&}U0fUtPCB9g8T{8M6f;m{KBzea8DDML8L_l%_Ex>$q)8(sI&De) z$nF0#SRFUt(XxW!Jc>PvO__Jpg)YlZcpuAImp;tz0crX#<>?&)H7(^~)|qCTTlB6y z0nvxaFd1j-w>MzTVe;>*pwLBr#$HDQo3Wb& zuVvYB?_)X3Hvt6S1VR8VB1t{&^BR^t!ZbpTf8liQZHj^|%U=6Fma}uAe3||nX+oHW zsk)NF1q^xm=xcbK6B?D7ZrnEDCoId3eILu&E?BqUU5ox_y_+)N|41sQ0R?)V%pJaT z^=@D-?nV9CC*;dMpUGZRRJmHYZ0V;IjntZgH0lX3=qr{~jlMk&SY)bk6g(pi`-N~; zCM$9FtxB|(NTmstLnzD340uIQO{1S62_UnT^D4F}+?vUnIQ!P?YW^op+Vx`C!a2h| zzGZW88&V;*sNc_IuZ(+eJ8xGLYH9p~&!nk6 zE;DZM8;X-OgEl{>b5UV^t6pQ7>=kkL?Y!MJHbk)KNaI0;GtewAGZ3thL#z!$R}jex z69hp<$z(5&vu{4H)5c(ZB+?M^C-T^$$886)vmIdeY`*KN|PoHmU`KrV-Br zgy%{Y`+`gW%b5HDS_Pew$$lj6!EO5}QlrM@E=6hNQIhMP#e*Y?O}Qx4_1yr}L>b9! zQN6Ue*-PRc+zRvSi5Z)EI}HMe!FsI;+; zB5Trgixxc~6D`w6=t<=yU<8Ok$?~wzPLGjpn9dgUjlldaIsG{WFq-E04`hxZ|GEwy znC(Zvqzt=BiI=?NbA&`XThuoK^E>6N3BJlEO;`I6DvTH*tih+;g!}TaI&3;pcE7h~ zKX7uV_}E1&mO3{2Pz^n#;UkX3Jl%9DmszGhpza;sFjCgSYIY)p$vx07ZOvZX+qxwg zY9UM-KI~$E5o`_#I%pUP5TGPFb%ydg^l4hN7xlJouO=T=O_GK&zDd$_DLN6D^q^A* zA}k~+3;)|0F}P2?(waTLxAooPQfvEHQ0T)Y zDO2!O(QF&}yw6I1Q0BT@OH*dE_D-~B&+Bb{msIJMEAi&=QpIULW;`0?3^n0z}&Hbv&e^@@V>^Eg!D*H(3rqVk~N0$8D z8ZBwfp4STGSEZ$ zNvZdj=3fk|?=q#)Z&l9!i~NaqE**eEHwx)*DE8BuJ-fGct6HdgLh2EE?oxLslmBdC zovN!yJcuCD6R`JvI;h0FuK(JaP4>3FMQRbx)IX|U5rL;nUajf%0gbam*_?WL-H5*- zy5E{@?rnXOROu;^dM(hI9X{x|TPD}2pXqkd_Va%qdTbf~vVVVr?zwa}K~UM(3l=R~ zde@>#8!Ul~)cB%Sg~6JV8Ka%mv|-EcmwAIA8e};FGmz8SrWo@U5(iM!sGTcenlmZQ zU?my0xKh`Iu@dQd*`kRcV;3#EY3Z8f)(eknb@jlplKhD$d@izb55z8$Eb(1;{|-9l2NbueI?0nyBJ|u&xphWT8sd+89k1g-fm<$Bxi*eUo?z^ z_U-fpJ*tvK@_NkY3Nxi;tA-ww(P6=M7qT>Di5y^=$rcUcpnY3Byx9l4lKhI|C@1_) zxFn2{#qbZqkgN-#8A&zk^vcX+M;3*A_^`HmsIjLc^#dDfUADaHqyHfO=Kry61%a-5 zh*kCVUX;m>h_k;#M*YIOt{(fyHe2kWb$oS*=|unTUYG4CK7`WB5lub_A!f3}n2F(BPl_w7I6$aS(cF4G|oBMEH{%K7H8iU68V0<;Dcv2+e*t5>NHu8 zq~AFJkm87jx;@|btT_8yWc2NR!%6Z>K8qp9C@l}FUpt2Hc@OsIKCR6WeXS4s$97XHe^`?D`tNKo z7&k~1dZ5gW1_B>Kx%d-II9I3BF5G>G8$xK6yjY_IDsUV*RSNrLKaxLc!jT_BnGEuo zv!}(`w?r(Z+(-f!d7vuXuYLiDdBoA%=t zkXbv``^8LlaGd?!au)VY;+q=S;5$lcn)@Mdu-qR#sdmhMd)@rz$$qtIMZ|`#@ z5=laTN64vC=QtpB5<~dtQT)FBdjGRi!T7l9D}R^C*2dYl;0N}3;y;|{Y7FNpRi=Ii zg_tn2cAxTcLfXR-<=L7z`#a>UzbM`v2J`5-lo{|l700bqgV}?Iww-U||<6|lO+yy`3sj8zN&t$9O?Asw#3XVvk0G6HJt1{zk-T%7$ z;^;;A8*(S1+QZolbF%~0eh3)+`Q0jKsUMd_+CPvvuKV$7vtKu0sDAF({M2-#*7&+c z*mJT2dLF!_(q4$(umwMW9w+AcH)9w{P2Z{)2y~;O*Aa*u0IwW9?wM?H0|@L|>;sON z#V3>oWjY)^l))o^j_mD{flWv2fAqB{s-B(`PvK(tson^#W_z~0k0q>D z7fx1#(sT`Wo}^CKUja66^avs;O5M?O0`_aqmi4iO9fzaAg)|`O1dbpxbk`d;Y<(8a zhh3u-8-mDed$zQXCF~#^z$^_~(=_`~sSP9;^~=#ukZ`adOzD1Xr}k_~A4}ND7N2!# zxt(Q>&xs+(GQ*!>D~YQ+GQgO;+WBixd;Y|IJuBFQ*0Z5@$!W-T8x&s)vS~9usKEo~ z6@>W+)E|CBgGtT*zfv;zn}f#=+B>K)C|Uc<+7-2~{y)9?SoPfe#J5 zdcckWcMTX``IE}o{r^}0FZcggMOVe&R?M>s0FU>ZQ~sCo@0O1*+gp|`t1tb9RRH{- zlCS9N`@i~o`=@(;uw|t6{NSB(8j{!s+{#@@$fv)n5I0UtfU`(GLH`_uG}`a&V+A{W zNADSFNZ9b}mWMfOQ>MS9@Pz-zQ`ZJgl&5?p+D?*P*|1 zx+dV{42RxpWYT6oz)SKkiat4T`^=J?5!dsh;x5nc26L337Z#mb>;1X%SvyTUE2ool3fq>rVJn z!?)IhNHadhil}3^-_geko8`3SKJt)yP5n)mGN$A@M6`754=Yd-pdud6cNENNzrBwY zHp$Ql3LMv?a)%f|uFGkRvsYV2dZv1z(8DhKcW~AA%($?z{n(Brt2#V#JX}L#Ng@>^ zs@}3pZ!9+LKa0?bh|UIOQqSobZE=!Wt09H%jpPb_)5pLlYnkO=E!nq*ksm3}kSv{Z zTZjuzGHZu69CGjX!5)M~U!Sxzcqc&ysCf>7DmhCK2AZ=v&a55P@SpxECHeObF|A`Y zG*DnDiTD%ZP9SbWHh0ddIJ3KDc%`Dl$$xOCZYBkuduCW*oBbT&+yTv-3^2HhZuMrZ z+OzwMpKO;5f7C;J%!a8-J?9oag-_n_g{=avCgDPDrej))mDJ1LOsF(cWD;ybvq3l3 zoRx8AtxEVPhoQbDNnA|mF%fb>7|ZX_PZVadZP8pevw~)QN{FYmj!jbyt7fDvs0b;; z%n9ghgxG_a>mGb@9Kg)-IPzNGt-B&MUQw8!eMuiH*bx9A zCUGSG04jr3U16w5vLsRyA-N#VQTi-!5akaRU% z38`oM;yzZe^QG0p26j6brIH$^AR((iuWC+V2rlq9AUA4X)W-@t<;-LLZU}uS9POQ| zbpCJ>@#Bzw9ss?Ife!0? zg6%irWdUwyazvnU8^!IM@PO?Qi8 zH?b2KkP<9kufbg=bF%BcX3gr`wBK|zAcy1=?lnJ0IV7PhC50U+AG;G#D~m+LlG1VJ zZ9ufvpD9UpDO7kuX&N$fmhPfsh_5&WmVTSR;#G~$=C-PNMPm5$-BPEQwItcFsS(O# zA}5BeYV0KDq(J0{nR#)KZPhgOvq)0;Wel)n=7ky_Qg-$^RN}gjOdmwE<68f%sxmjk znYU`1F1dZ@FOq!OXSt;12`gp{yncl6*}puihI>f=oOwn4eC88z=6B0z#pxyag1fd; z=D2<{nb{wgr~45WmU&7qlptcvx(Y7K%=K~RZP`ZuxHa$JzF{9<%bz`dXHX_G&uAKA z2&)~^gwvpVHZwQQ{7$I@Mv{C{(Yq7=p%+Wb@BG_f70tY)C@4WUPF68M^)hqf%v({- zulb8Zl8RCqMEc@gf@NME_dnv+@bu*WQ07&i>ORf?7xnJ{|4z-g>iyOCS6^K9R@E(b z`ri)+&KmH$0S^wis&ZH5eU%OU*Y;oBzoO#difj9I_sjNcD38h)mG>+AcG=j{J$CkA zqU6PrMLzI#f6L5{`wdpPv)g^)KS}bJ&Gw>sh=S45(yhr6WlfpAfbNjt4;?L+#P|)8iMgTEsv0;jtvYp>`rVE_p_Wd{Lk~%#jlKdw} z?&7OWGM*IM@U>e{%c+)`0@YPTsHH zA-Mkr|I!R8?(6jyG24|DL~fq(#j}eB&7Ty%zz!L$xUM8~H9o1P3+45N1I^}Mvsvq9 zoY7>Eq|Kigzku~`8rw_qb{8Uk-JAgIH}iCj8i>vSaW`Q5gk~_G;-CBb`4i$7upW+A z*sVS~GLS(Cl#=79$Z>yeR%DW-PJ<+4{`mL>tbDKn_>#QE2d(A=uH=?K_qO7a1G4cEM8BgG1$43rr6JUb$C^D_zYBFsipo$o0$^4KT?)!`;$vIU z5nqt4lcs<3TZYVLNv&~##_tW_o(P*dgjjs(TQz#m6!j|5yj9f&~o9S6lmT~Mgb(&1hzjm{51x%YQbOx+ZXjW3PCrewL(uJW&&ZT zPeh zov&NqnpHR1xhNQpiX?^8sE#R&AT8=37^?<`4MocVzZvv>wOryBD7F7rynyX~)zq(w z<>2vr1<`BjfDQW!cwrzMng8MVXSRg)3*9%mQ=0X>@EA&qzq4&8w_?a)0gjqGf)WfW zHuFCezkscR;H@_|xy$rVET%{c0w?4LJ)<;HSK#Efx3x4k|AX-hSPd40#myrfK6;K} z!!tXOQ6!39Mz+r}4o3iMZ&2?({{!(0STUAY96{t>X+Gbs=f@e6rm@a^H#}3g#yw1i{clsRTZt4OY=vRi%aTG z3c3A31!SUU^#pLE8onZ^OU%D8egQkWT0uW)zS!T$Bwa{Kw+ScIg#qYn)8Q`w>^T2| o_yxAhC`ayi`A5>MBnHm?lGHAj%+)i74Bvnx>mwT18{q%{55Brfi2wiq literal 0 HcmV?d00001 diff --git a/exercicios/para-casa/world-happiness-report.csv b/exercicios/para-casa/world-happiness-report.csv new file mode 100644 index 0000000..98129dd --- /dev/null +++ b/exercicios/para-casa/world-happiness-report.csv @@ -0,0 +1,1950 @@ +Country name,year,Life Ladder,Log GDP per capita,Social support,Healthy life expectancy at birth,Freedom to make life choices,Generosity,Perceptions of corruption,Positive affect,Negative affect +Afghanistan,2008,3.724,7.370,0.451,50.800,0.718,0.168,0.882,0.518,0.258 +Afghanistan,2009,4.402,7.540,0.552,51.200,0.679,0.190,0.850,0.584,0.237 +Afghanistan,2010,4.758,7.647,0.539,51.600,0.600,0.121,0.707,0.618,0.275 +Afghanistan,2011,3.832,7.620,0.521,51.920,0.496,0.162,0.731,0.611,0.267 +Afghanistan,2012,3.783,7.705,0.521,52.240,0.531,0.236,0.776,0.710,0.268 +Afghanistan,2013,3.572,7.725,0.484,52.560,0.578,0.061,0.823,0.621,0.273 +Afghanistan,2014,3.131,7.718,0.526,52.880,0.509,0.104,0.871,0.532,0.375 +Afghanistan,2015,3.983,7.702,0.529,53.200,0.389,0.080,0.881,0.554,0.339 +Afghanistan,2016,4.220,7.697,0.559,53.000,0.523,0.042,0.793,0.565,0.348 +Afghanistan,2017,2.662,7.697,0.491,52.800,0.427,-0.121,0.954,0.496,0.371 +Afghanistan,2018,2.694,7.692,0.508,52.600,0.374,-0.094,0.928,0.424,0.405 +Afghanistan,2019,2.375,7.697,0.420,52.400,0.394,-0.108,0.924,0.351,0.502 +Albania,2007,4.634,9.142,0.821,65.800,0.529,-0.009,0.875,0.553,0.246 +Albania,2009,5.485,9.262,0.833,66.200,0.525,-0.158,0.864,0.640,0.279 +Albania,2010,5.269,9.303,0.733,66.400,0.569,-0.172,0.726,0.648,0.300 +Albania,2011,5.867,9.331,0.759,66.680,0.487,-0.205,0.877,0.628,0.257 +Albania,2012,5.510,9.347,0.785,66.960,0.602,-0.169,0.848,0.607,0.271 +Albania,2013,4.551,9.359,0.759,67.240,0.632,-0.127,0.863,0.634,0.338 +Albania,2014,4.814,9.378,0.626,67.520,0.735,-0.025,0.883,0.685,0.335 +Albania,2015,4.607,9.403,0.639,67.800,0.704,-0.081,0.885,0.688,0.350 +Albania,2016,4.511,9.437,0.638,68.100,0.730,-0.017,0.901,0.675,0.322 +Albania,2017,4.640,9.476,0.638,68.400,0.750,-0.029,0.876,0.669,0.334 +Albania,2018,5.004,9.518,0.684,68.700,0.824,0.009,0.899,0.713,0.319 +Albania,2019,4.995,9.544,0.686,69.000,0.777,-0.099,0.914,0.681,0.274 +Albania,2020,5.365,9.497,0.710,69.300,0.754,0.007,0.891,0.679,0.265 +Algeria,2010,5.464,9.287,,64.500,0.593,-0.205,0.618,, +Algeria,2011,5.317,9.297,0.810,64.660,0.530,-0.181,0.638,0.550,0.255 +Algeria,2012,5.605,9.311,0.839,64.820,0.587,-0.172,0.690,0.604,0.230 +Algeria,2014,6.355,9.335,0.818,65.140,,,,0.626,0.177 +Algeria,2016,5.341,9.362,0.749,65.500,,,,0.661,0.377 +Algeria,2017,5.249,9.354,0.807,65.700,0.437,-0.167,0.700,0.642,0.289 +Algeria,2018,5.043,9.348,0.799,65.900,0.583,-0.146,0.759,0.591,0.293 +Algeria,2019,4.745,9.337,0.803,66.100,0.385,0.005,0.741,0.585,0.215 +Angola,2011,5.589,8.946,0.723,52.500,0.584,0.055,0.911,0.659,0.361 +Angola,2012,4.360,8.992,0.753,53.200,0.456,-0.136,0.906,0.558,0.305 +Angola,2013,3.937,9.005,0.722,53.900,0.410,-0.104,0.816,0.658,0.371 +Angola,2014,3.795,9.017,0.755,54.600,0.375,-0.168,0.834,0.579,0.368 +Argentina,2006,6.313,9.942,0.938,66.820,0.733,-0.157,0.852,0.825,0.328 +Argentina,2007,6.073,10.018,0.862,66.940,0.653,-0.141,0.881,0.828,0.279 +Argentina,2008,5.961,10.048,0.892,67.060,0.678,-0.132,0.865,0.823,0.318 +Argentina,2009,6.424,9.977,0.919,67.180,0.637,-0.130,0.885,0.864,0.237 +Argentina,2010,6.441,10.066,0.927,67.300,0.730,-0.126,0.855,0.846,0.211 +Argentina,2011,6.776,10.112,0.889,67.480,0.816,-0.174,0.755,0.840,0.232 +Argentina,2012,6.468,10.091,0.902,67.660,0.747,-0.148,0.817,0.857,0.272 +Argentina,2013,6.582,10.103,0.910,67.840,0.737,-0.130,0.823,0.842,0.254 +Argentina,2014,6.671,10.067,0.918,68.020,0.745,-0.164,0.854,0.857,0.238 +Argentina,2015,6.697,10.083,0.926,68.200,0.881,-0.174,0.851,0.859,0.305 +Argentina,2016,6.427,10.051,0.883,68.400,0.848,-0.192,0.851,0.842,0.312 +Argentina,2017,6.039,10.067,0.907,68.600,0.832,-0.186,0.841,0.809,0.292 +Argentina,2018,5.793,10.032,0.900,68.800,0.846,-0.211,0.855,0.820,0.321 +Argentina,2019,6.086,10.000,0.896,69.000,0.817,-0.211,0.830,0.826,0.319 +Argentina,2020,5.901,9.850,0.897,69.200,0.823,-0.122,0.816,0.764,0.342 +Armenia,2006,4.289,9.044,0.682,64.800,0.520,-0.231,0.850,0.494,0.469 +Armenia,2007,4.882,9.181,0.760,64.900,0.605,-0.251,0.817,0.507,0.412 +Armenia,2008,4.652,9.256,0.709,65.000,0.462,-0.215,0.876,0.521,0.385 +Armenia,2009,4.178,9.111,0.680,65.100,0.441,-0.214,0.882,0.543,0.411 +Armenia,2010,4.368,9.136,0.660,65.200,0.459,-0.176,0.891,0.510,0.426 +Armenia,2011,4.260,9.182,0.705,65.360,0.465,-0.225,0.875,0.475,0.459 +Armenia,2012,4.320,9.249,0.676,65.520,0.502,-0.215,0.893,0.518,0.464 +Armenia,2013,4.277,9.277,0.723,65.680,0.504,-0.195,0.900,0.562,0.450 +Armenia,2014,4.453,9.307,0.739,65.840,0.506,-0.218,0.920,0.581,0.404 +Armenia,2015,4.348,9.334,0.723,66.000,0.551,-0.203,0.901,0.594,0.438 +Armenia,2016,4.325,9.333,0.709,66.300,0.611,-0.170,0.921,0.594,0.437 +Armenia,2017,4.288,9.402,0.698,66.600,0.614,-0.147,0.865,0.625,0.437 +Armenia,2018,5.062,9.451,0.814,66.900,0.808,-0.163,0.677,0.581,0.455 +Armenia,2019,5.488,9.522,0.782,67.200,0.844,-0.172,0.583,0.598,0.430 +Australia,2005,7.341,10.659,0.968,71.400,0.935,,0.390,0.843,0.238 +Australia,2007,7.285,10.703,0.965,71.720,0.891,0.347,0.513,0.826,0.215 +Australia,2008,7.254,10.719,0.947,71.880,0.916,0.305,0.431,0.826,0.218 +Australia,2010,7.450,10.722,0.955,72.200,0.932,0.317,0.366,0.834,0.220 +Australia,2011,7.406,10.733,0.967,72.300,0.945,0.369,0.382,0.816,0.195 +Australia,2012,7.196,10.754,0.945,72.400,0.935,0.274,0.368,0.811,0.214 +Australia,2013,7.364,10.762,0.928,72.500,0.933,0.269,0.432,0.819,0.177 +Australia,2014,7.289,10.772,0.924,72.600,0.923,0.319,0.442,0.775,0.245 +Australia,2015,7.309,10.779,0.952,72.700,0.922,0.332,0.357,0.790,0.210 +Australia,2016,7.250,10.791,0.942,73.000,0.922,0.239,0.399,0.791,0.236 +Australia,2017,7.257,10.798,0.950,73.300,0.911,0.317,0.411,0.780,0.225 +Australia,2018,7.177,10.811,0.940,73.600,0.916,0.146,0.405,0.759,0.187 +Australia,2019,7.234,10.815,0.943,73.900,0.918,0.121,0.430,0.770,0.202 +Australia,2020,7.137,10.760,0.937,74.200,0.905,0.210,0.491,0.769,0.205 +Austria,2006,7.122,10.842,0.936,70.760,0.941,0.302,0.490,0.823,0.174 +Austria,2008,7.181,10.887,0.935,71.080,0.879,0.291,0.614,0.832,0.173 +Austria,2010,7.303,10.861,0.914,71.400,0.896,0.131,0.546,0.815,0.156 +Austria,2011,7.471,10.887,0.944,71.540,0.939,0.132,0.703,0.789,0.145 +Austria,2012,7.401,10.889,0.945,71.680,0.920,0.118,0.771,0.822,0.157 +Austria,2013,7.499,10.883,0.950,71.820,0.922,0.168,0.679,0.787,0.163 +Austria,2014,6.950,10.882,0.899,71.960,0.885,0.118,0.567,0.780,0.170 +Austria,2015,7.076,10.881,0.928,72.100,0.900,0.099,0.557,0.798,0.164 +Austria,2016,7.048,10.891,0.926,72.400,0.889,0.080,0.524,0.756,0.197 +Austria,2017,7.294,10.908,0.906,72.700,0.890,0.133,0.518,0.748,0.180 +Austria,2018,7.396,10.928,0.912,73.000,0.904,0.053,0.523,0.752,0.226 +Austria,2019,7.195,10.939,0.964,73.300,0.903,0.060,0.457,0.774,0.205 +Austria,2020,7.213,10.851,0.925,73.600,0.912,0.011,0.464,0.769,0.206 +Azerbaijan,2006,4.728,9.170,0.854,61.880,0.772,-0.235,0.774,0.512,0.276 +Azerbaijan,2007,4.568,9.386,0.753,62.260,0.522,-0.207,0.871,0.521,0.284 +Azerbaijan,2008,4.817,9.465,0.684,62.640,0.601,-0.029,0.715,0.578,0.227 +Azerbaijan,2009,4.574,9.534,0.736,63.020,0.498,-0.087,0.754,0.544,0.234 +Azerbaijan,2010,4.219,9.569,0.687,63.400,0.501,-0.123,0.858,0.527,0.272 +Azerbaijan,2011,4.680,9.540,0.725,63.640,0.537,-0.105,0.795,0.536,0.258 +Azerbaijan,2012,4.911,9.549,0.762,63.880,0.599,-0.140,0.763,0.554,0.266 +Azerbaijan,2013,5.481,9.592,0.770,64.120,0.672,-0.168,0.699,0.619,0.242 +Azerbaijan,2014,5.252,9.607,0.799,64.360,0.733,-0.208,0.654,0.598,0.220 +Azerbaijan,2015,5.147,9.606,0.786,64.600,0.764,-0.198,0.616,0.607,0.206 +Azerbaijan,2016,5.304,9.564,0.777,64.900,0.713,-0.204,0.607,0.598,0.191 +Azerbaijan,2017,5.152,9.555,0.787,65.200,0.731,-0.225,0.653,0.592,0.198 +Azerbaijan,2018,5.168,9.562,0.781,65.500,0.772,-0.232,0.561,0.593,0.191 +Azerbaijan,2019,5.173,9.575,0.887,65.800,0.854,-0.214,0.457,0.643,0.164 +Bahrain,2009,5.701,10.709,0.904,65.940,0.896,0.037,0.506,0.764,0.422 +Bahrain,2010,5.937,10.706,0.877,66.300,0.862,-0.001,0.715,0.685,0.423 +Bahrain,2011,4.824,10.696,0.908,66.580,0.870,-0.051,0.583,0.544,0.514 +Bahrain,2012,5.027,10.716,0.911,66.860,0.682,,0.438,0.589,0.381 +Bahrain,2013,6.690,10.757,0.884,67.140,0.809,,0.525,0.768,0.306 +Bahrain,2014,6.165,10.783,,67.420,,,,, +Bahrain,2015,6.007,10.785,0.853,67.700,0.850,0.112,,0.716,0.303 +Bahrain,2016,6.170,10.781,0.863,68.100,0.889,0.088,,0.787,0.283 +Bahrain,2017,6.227,10.771,0.876,68.500,0.906,0.136,,0.814,0.290 +Bahrain,2019,7.098,10.715,0.878,69.300,0.907,0.048,,0.762,0.317 +Bahrain,2020,6.173,10.620,0.848,69.700,0.945,0.132,,0.790,0.297 +Bangladesh,2006,4.319,7.783,0.672,59.020,0.612,0.068,0.786,0.600,0.321 +Bangladesh,2007,4.607,7.839,0.514,59.440,0.605,0.040,0.806,0.635,0.313 +Bangladesh,2008,5.052,7.886,0.467,59.860,0.606,-0.044,0.802,0.725,0.232 +Bangladesh,2009,5.083,7.924,0.528,60.280,0.631,-0.075,0.776,0.670,0.223 +Bangladesh,2010,4.858,7.967,0.549,60.700,0.659,-0.016,0.774,0.629,0.292 +Bangladesh,2011,4.986,8.018,0.606,61.120,0.838,-0.069,0.757,0.685,0.235 +Bangladesh,2012,4.724,8.070,0.582,61.540,0.668,-0.034,0.765,0.714,0.183 +Bangladesh,2013,4.660,8.116,0.530,61.960,0.742,-0.016,0.743,0.619,0.246 +Bangladesh,2014,4.636,8.164,0.577,62.380,0.736,-0.098,0.789,,0.231 +Bangladesh,2015,4.633,8.216,0.601,62.800,0.815,-0.068,0.721,0.635,0.226 +Bangladesh,2016,4.556,8.274,0.649,63.300,0.875,-0.089,0.688,0.560,0.235 +Bangladesh,2017,4.310,8.334,0.713,63.800,0.896,0.012,0.635,0.569,0.214 +Bangladesh,2018,4.499,8.399,0.706,64.300,0.901,-0.043,0.701,0.541,0.361 +Bangladesh,2019,5.114,8.467,0.673,64.800,0.902,-0.051,0.656,0.537,0.369 +Bangladesh,2020,5.280,8.472,0.739,65.300,0.777,-0.009,0.742,0.582,0.332 +Belarus,2006,5.658,9.489,0.918,61.100,0.707,-0.246,0.708,0.605,0.269 +Belarus,2007,5.617,9.576,0.858,61.400,0.667,-0.225,0.695,0.596,0.235 +Belarus,2008,5.463,9.677,0.904,61.700,0.640,-0.220,0.696,,0.246 +Belarus,2009,5.564,9.681,0.908,62.000,0.679,-0.203,0.676,0.566,0.223 +Belarus,2010,5.526,9.758,0.918,62.300,0.700,-0.163,0.706,0.567,0.208 +Belarus,2011,5.225,9.812,0.910,62.880,0.656,-0.168,0.672,0.521,0.249 +Belarus,2012,5.749,9.830,0.902,63.460,0.645,-0.217,0.657,0.523,0.181 +Belarus,2013,5.876,9.839,0.923,64.040,0.723,-0.177,0.653,0.609,0.206 +Belarus,2014,5.812,9.856,0.880,64.620,0.647,-0.048,0.682,0.619,0.209 +Belarus,2015,5.719,9.815,0.924,65.200,0.623,-0.091,0.669,0.584,0.184 +Belarus,2016,5.178,9.788,0.927,65.500,0.658,-0.125,0.664,0.554,0.182 +Belarus,2017,5.553,9.814,0.900,65.800,0.621,-0.122,0.654,0.541,0.233 +Belarus,2018,5.234,9.846,0.905,66.100,0.644,-0.174,0.718,0.450,0.236 +Belarus,2019,5.821,9.860,0.917,66.400,0.657,-0.186,0.546,0.591,0.190 +Belgium,2005,7.262,10.745,0.935,69.900,0.924,,0.598,0.796,0.260 +Belgium,2007,7.219,10.792,0.922,70.260,0.901,0.069,0.721,0.813,0.218 +Belgium,2008,7.117,10.789,0.923,70.440,0.887,0.007,0.652,0.813,0.242 +Belgium,2010,6.854,10.779,0.931,70.800,0.807,0.022,0.697,0.828,0.240 +Belgium,2011,7.111,10.783,0.937,70.920,0.880,-0.014,0.711,0.835,0.225 +Belgium,2012,6.935,10.784,0.927,71.040,0.855,-0.050,0.758,0.820,0.238 +Belgium,2013,7.104,10.784,0.909,71.160,0.891,0.017,0.574,0.797,0.217 +Belgium,2014,6.855,10.795,0.944,71.280,0.861,0.001,0.512,0.798,0.252 +Belgium,2015,6.904,10.810,0.885,71.400,0.869,0.062,0.469,0.805,0.240 +Belgium,2016,6.949,10.819,0.929,71.600,0.866,-0.056,0.497,0.765,0.260 +Belgium,2017,6.928,10.834,0.922,71.800,0.857,0.054,0.543,0.786,0.234 +Belgium,2018,6.892,10.844,0.930,72.000,0.808,-0.125,0.630,0.750,0.250 +Belgium,2019,6.772,10.853,0.884,72.200,0.776,-0.172,0.672,0.733,0.244 +Belgium,2020,6.839,10.771,0.904,72.400,0.767,-0.164,0.634,0.647,0.260 +Belize,2007,6.451,8.892,0.872,61.600,0.705,0.033,0.769,0.759,0.251 +Belize,2014,5.956,8.883,0.757,62.220,0.874,0.022,0.782,0.755,0.282 +Benin,2006,3.330,7.866,0.445,50.100,0.580,-0.011,0.790,0.587,0.309 +Benin,2008,3.667,7.915,0.382,50.900,0.709,-0.004,0.825,0.584,0.303 +Benin,2011,3.870,7.904,0.477,51.980,0.773,-0.142,0.849,0.626,0.219 +Benin,2012,3.193,7.923,0.523,52.260,0.769,-0.111,0.806,0.583,0.231 +Benin,2013,3.479,7.964,0.577,52.540,0.783,-0.085,0.856,0.702,0.216 +Benin,2014,3.347,7.998,0.506,52.820,0.776,-0.096,0.855,0.590,0.273 +Benin,2015,3.625,7.988,0.434,53.100,0.733,-0.027,0.850,0.592,0.373 +Benin,2016,4.007,7.993,0.493,53.500,0.780,-0.065,0.838,0.608,0.456 +Benin,2017,4.853,8.021,0.436,53.900,0.727,-0.065,0.767,0.615,0.458 +Benin,2018,5.820,8.059,0.504,54.300,0.713,0.002,0.747,0.647,0.468 +Benin,2019,4.976,8.098,0.442,54.700,0.770,-0.016,0.698,0.659,0.441 +Benin,2020,4.408,8.102,0.507,55.100,0.783,-0.083,0.532,0.609,0.305 +Bhutan,2013,5.569,9.123,0.819,59.600,0.810,0.353,0.802,0.779,0.217 +Bhutan,2014,4.939,9.167,0.880,59.900,0.834,0.268,0.650,0.859,0.324 +Bhutan,2015,5.082,9.219,0.848,60.200,0.830,0.277,0.634,0.810,0.312 +Bolivia,2006,5.374,8.686,0.834,59.000,0.770,-0.044,0.794,0.739,0.432 +Bolivia,2007,5.628,8.714,0.796,59.500,0.780,0.001,0.817,0.771,0.388 +Bolivia,2008,5.298,8.756,0.785,60.000,0.726,-0.092,0.801,0.781,0.392 +Bolivia,2009,6.086,8.773,0.831,60.500,0.779,-0.036,0.763,0.797,0.372 +Bolivia,2010,5.781,8.797,0.807,61.000,0.703,-0.068,0.781,0.766,0.350 +Bolivia,2011,5.779,8.831,0.817,61.340,0.782,-0.039,0.825,0.761,0.361 +Bolivia,2012,6.019,8.865,0.781,61.680,0.862,-0.015,0.840,0.782,0.409 +Bolivia,2013,5.767,8.915,0.803,62.020,0.846,-0.067,0.812,0.759,0.410 +Bolivia,2014,5.865,8.953,0.821,62.360,0.881,0.018,0.832,0.809,0.398 +Bolivia,2015,5.834,8.985,0.829,62.700,0.884,-0.030,0.862,0.786,0.393 +Bolivia,2016,5.770,9.012,0.796,63.000,0.882,-0.047,0.853,0.783,0.376 +Bolivia,2017,5.651,9.039,0.779,63.300,0.884,-0.120,0.819,0.698,0.434 +Bolivia,2018,5.916,9.066,0.827,63.600,0.863,-0.093,0.786,0.742,0.387 +Bolivia,2019,5.674,9.074,0.784,63.900,0.881,-0.086,0.857,0.751,0.419 +Bolivia,2020,5.559,8.998,0.805,64.200,0.877,-0.054,0.868,0.790,0.382 +Bosnia and Herzegovina,2007,4.900,9.267,0.766,66.040,0.342,0.006,0.926,0.613,0.296 +Bosnia and Herzegovina,2009,4.963,9.296,0.735,66.480,0.258,-0.026,0.959,0.572,0.390 +Bosnia and Herzegovina,2010,4.669,9.312,0.773,66.700,0.365,-0.128,0.933,0.517,0.409 +Bosnia and Herzegovina,2011,4.995,9.333,0.725,66.740,0.333,-0.035,0.925,0.596,0.326 +Bosnia and Herzegovina,2012,4.773,9.342,0.779,66.780,0.420,-0.013,0.953,0.548,0.338 +Bosnia and Herzegovina,2013,5.124,9.382,0.767,66.820,0.390,0.042,0.970,0.544,0.315 +Bosnia and Herzegovina,2014,5.249,9.411,0.788,66.860,0.412,0.232,0.976,0.531,0.262 +Bosnia and Herzegovina,2015,5.117,9.457,0.656,66.900,0.631,-0.055,0.960,0.534,0.286 +Bosnia and Herzegovina,2016,5.181,9.500,0.808,67.200,0.633,0.134,0.957,0.641,0.304 +Bosnia and Herzegovina,2017,5.090,9.532,0.775,67.500,0.564,0.092,0.923,0.597,0.271 +Bosnia and Herzegovina,2018,5.887,9.576,0.836,67.800,0.659,0.123,0.913,0.643,0.277 +Bosnia and Herzegovina,2019,6.016,9.609,0.873,68.100,0.722,0.079,0.963,0.633,0.238 +Bosnia and Herzegovina,2020,5.516,9.583,0.899,68.400,0.740,0.138,0.916,0.644,0.325 +Botswana,2006,4.739,9.492,0.883,46.820,0.824,-0.195,0.723,0.688,0.226 +Botswana,2008,5.451,9.590,0.832,49.860,0.858,-0.164,0.806,0.731,0.218 +Botswana,2010,3.553,9.556,0.866,52.900,0.826,-0.143,0.814,0.690,0.172 +Botswana,2011,3.520,9.600,0.860,53.680,0.813,-0.250,0.816,0.739,0.160 +Botswana,2012,4.836,9.632,0.837,54.460,0.799,-0.203,0.814,0.773,0.171 +Botswana,2013,4.128,9.728,0.856,55.240,0.767,-0.154,0.749,0.698,0.244 +Botswana,2014,4.031,9.756,0.859,56.020,0.791,-0.105,0.743,0.674,0.245 +Botswana,2015,3.762,9.724,0.816,56.800,0.857,-0.116,0.860,0.746,0.261 +Botswana,2016,3.499,9.748,0.768,57.500,0.852,-0.253,0.729,0.686,0.252 +Botswana,2017,3.505,9.756,0.768,58.200,0.817,-0.248,0.731,0.656,0.276 +Botswana,2018,3.461,9.778,0.795,58.900,0.818,-0.254,0.807,0.730,0.267 +Botswana,2019,3.471,9.785,0.774,59.600,0.833,-0.239,0.792,0.712,0.273 +Brazil,2005,6.637,9.438,0.883,63.300,0.882,,0.745,0.818,0.302 +Brazil,2007,6.321,9.515,0.886,63.780,0.777,-0.016,0.728,0.859,0.299 +Brazil,2008,6.691,9.555,0.878,64.020,0.782,-0.078,0.688,0.820,0.265 +Brazil,2009,7.001,9.544,0.913,64.260,0.767,-0.055,0.723,0.833,0.274 +Brazil,2010,6.837,9.607,0.906,64.500,0.806,-0.054,0.656,0.817,0.250 +Brazil,2011,7.038,9.637,0.916,64.760,0.834,-0.072,0.662,0.807,0.268 +Brazil,2012,6.660,9.647,0.890,65.020,0.849,,0.623,0.755,0.350 +Brazil,2013,7.140,9.668,0.910,65.280,0.785,-0.095,0.707,0.818,0.276 +Brazil,2014,6.981,9.664,0.898,65.540,0.714,-0.115,0.710,0.788,0.274 +Brazil,2015,6.547,9.620,0.907,65.800,0.799,-0.016,0.771,0.755,0.325 +Brazil,2016,6.375,9.578,0.912,66.000,0.807,-0.100,0.781,0.763,0.302 +Brazil,2017,6.333,9.583,0.905,66.200,0.765,-0.175,0.794,0.716,0.308 +Brazil,2018,6.191,9.589,0.882,66.400,0.751,-0.117,0.763,0.750,0.350 +Brazil,2019,6.451,9.592,0.899,66.600,0.830,-0.062,0.762,0.761,0.337 +Brazil,2020,6.110,9.522,0.831,66.800,0.786,-0.053,0.729,0.692,0.389 +Bulgaria,2007,3.844,9.715,0.832,65.100,0.566,-0.138,0.976,0.594,0.226 +Bulgaria,2010,3.912,9.765,0.843,65.700,0.545,-0.144,0.941,0.546,0.238 +Bulgaria,2011,3.875,9.795,0.860,65.800,0.664,-0.228,0.948,0.534,0.271 +Bulgaria,2012,4.222,9.804,0.838,65.900,0.641,-0.172,0.938,0.573,0.237 +Bulgaria,2013,3.993,9.813,0.829,66.000,0.603,-0.191,0.962,0.623,0.278 +Bulgaria,2014,4.438,9.838,0.886,66.100,0.576,-0.055,0.955,0.628,0.236 +Bulgaria,2015,4.865,9.883,0.908,66.200,0.637,-0.200,0.941,0.643,0.214 +Bulgaria,2016,4.838,9.928,0.926,66.400,0.700,-0.170,0.936,0.622,0.172 +Bulgaria,2017,5.097,9.969,0.942,66.600,0.689,-0.154,0.911,0.614,0.189 +Bulgaria,2018,5.099,10.007,0.924,66.800,0.724,-0.176,0.952,0.639,0.189 +Bulgaria,2019,5.108,10.047,0.948,67.000,0.822,-0.109,0.943,0.663,0.200 +Bulgaria,2020,5.598,9.991,0.916,67.200,0.818,-0.004,0.901,0.706,0.221 +Burkina Faso,2006,3.801,7.367,0.796,46.660,0.588,0.028,0.798,0.716,0.266 +Burkina Faso,2007,4.017,7.377,0.771,47.420,0.582,-0.060,0.833,0.651,0.281 +Burkina Faso,2008,3.846,7.403,0.727,48.180,0.612,-0.101,0.887,0.523,0.304 +Burkina Faso,2010,4.036,7.453,0.773,49.700,0.587,-0.036,0.767,0.590,0.217 +Burkina Faso,2011,4.785,7.487,0.710,50.240,0.725,-0.105,0.707,0.579,0.205 +Burkina Faso,2012,3.955,7.520,0.744,50.780,0.622,-0.070,0.726,0.545,0.300 +Burkina Faso,2013,3.326,7.546,0.745,51.320,0.741,-0.016,0.765,0.630,0.287 +Burkina Faso,2014,3.481,7.559,0.742,51.860,0.710,-0.004,0.801,0.614,0.256 +Burkina Faso,2015,4.419,7.568,0.705,52.400,0.659,0.004,0.693,0.579,0.359 +Burkina Faso,2016,4.206,7.596,0.764,52.900,0.645,-0.001,0.721,0.616,0.337 +Burkina Faso,2017,4.647,7.627,0.785,53.400,0.614,-0.063,0.727,0.585,0.354 +Burkina Faso,2018,4.927,7.665,0.665,53.900,0.721,-0.013,0.757,0.711,0.343 +Burkina Faso,2019,4.741,7.691,0.683,54.400,0.678,-0.004,0.729,0.691,0.365 +Burundi,2008,3.563,6.719,0.291,49.020,0.260,-0.019,0.860,0.440,0.253 +Burundi,2009,3.792,6.723,0.326,49.660,0.427,-0.019,0.718,0.641,0.164 +Burundi,2011,3.706,6.748,0.422,50.680,0.490,-0.062,0.677,0.689,0.190 +Burundi,2014,2.905,6.787,0.565,51.820,0.431,-0.059,0.808,0.656,0.251 +Burundi,2018,3.775,6.635,0.485,53.400,0.646,-0.024,0.599,0.666,0.363 +Cambodia,2006,3.569,7.746,0.793,55.300,,0.255,0.829,0.719,0.341 +Cambodia,2007,4.156,7.829,0.675,56.100,0.819,0.116,0.879,,0.320 +Cambodia,2008,4.462,7.879,0.619,56.900,0.914,0.045,0.888,0.739,0.335 +Cambodia,2009,4.111,7.865,0.818,57.700,0.937,0.152,0.965,0.796,0.188 +Cambodia,2010,4.141,7.907,0.697,58.500,0.940,0.350,0.896,0.774,0.422 +Cambodia,2011,4.161,7.960,0.716,58.880,0.927,0.418,0.775,0.799,0.308 +Cambodia,2012,3.899,8.014,0.606,59.260,0.956,0.247,0.890,0.820,0.352 +Cambodia,2013,3.674,8.068,0.651,59.640,0.941,0.164,0.812,0.792,0.440 +Cambodia,2014,3.883,8.121,0.693,60.020,0.938,0.239,0.843,0.783,0.482 +Cambodia,2015,4.162,8.173,0.729,60.400,0.956,0.210,0.825,0.813,0.399 +Cambodia,2016,4.461,8.225,0.746,60.800,0.958,0.076,0.840,0.839,0.398 +Cambodia,2017,4.586,8.276,0.765,61.200,0.964,0.088,0.821,0.799,0.408 +Cambodia,2018,5.122,8.333,0.795,61.600,0.958,0.036,,0.845,0.414 +Cambodia,2019,4.998,8.387,0.759,62.000,0.957,0.013,0.828,0.844,0.390 +Cambodia,2020,4.377,8.362,0.724,62.400,0.963,0.052,0.863,0.878,0.390 +Cameroon,2006,3.851,8.007,0.690,45.980,0.653,-0.009,0.907,0.606,0.271 +Cameroon,2007,4.350,8.028,0.717,46.560,0.644,-0.031,0.910,0.635,0.249 +Cameroon,2008,4.292,8.034,0.697,47.140,0.580,-0.069,0.945,0.600,0.312 +Cameroon,2009,4.741,8.029,0.729,47.720,0.698,-0.017,0.925,0.593,0.250 +Cameroon,2010,4.554,8.035,0.759,48.300,0.792,0.002,0.875,0.606,0.274 +Cameroon,2011,4.434,8.048,0.738,48.700,0.817,-0.029,0.870,0.598,0.272 +Cameroon,2012,4.245,8.065,0.743,49.100,0.766,-0.032,0.898,0.618,0.284 +Cameroon,2013,4.271,8.090,0.760,49.500,0.794,-0.030,0.867,0.681,0.268 +Cameroon,2014,4.240,8.120,0.778,49.900,0.795,-0.071,0.856,0.623,0.216 +Cameroon,2015,5.038,8.149,0.646,50.300,0.791,0.049,0.868,0.651,0.346 +Cameroon,2016,4.816,8.167,0.659,51.100,0.713,-0.003,0.879,0.662,0.367 +Cameroon,2017,5.074,8.176,0.695,51.900,0.767,-0.028,0.844,0.632,0.377 +Cameroon,2018,5.251,8.190,0.677,52.700,0.816,0.036,0.884,0.642,0.356 +Cameroon,2019,4.937,8.203,0.711,53.500,0.712,-0.008,0.817,0.629,0.326 +Cameroon,2020,5.241,8.175,0.720,54.300,0.675,0.049,0.837,0.630,0.386 +Canada,2005,7.418,10.652,0.962,71.300,0.957,0.256,0.503,0.839,0.233 +Canada,2007,7.482,10.739,,71.660,0.930,0.249,0.406,0.872,0.257 +Canada,2008,7.486,10.738,0.939,71.840,0.926,0.262,0.370,0.890,0.202 +Canada,2009,7.488,10.697,0.943,72.020,0.915,0.246,0.413,0.867,0.248 +Canada,2010,7.650,10.717,0.954,72.200,0.934,0.230,0.413,0.879,0.233 +Canada,2011,7.426,10.738,0.922,72.360,0.951,0.253,0.433,0.881,0.248 +Canada,2012,7.415,10.744,0.948,72.520,0.918,0.290,0.466,0.857,0.229 +Canada,2013,7.594,10.757,0.936,72.680,0.916,0.316,0.406,0.851,0.263 +Canada,2014,7.304,10.775,0.918,72.840,0.939,0.270,0.442,0.833,0.259 +Canada,2015,7.413,10.774,0.939,73.000,0.931,0.253,0.427,0.845,0.286 +Canada,2016,7.245,10.773,0.924,73.200,0.912,0.211,0.385,0.825,0.237 +Canada,2017,7.415,10.792,0.934,73.400,0.945,0.163,0.362,0.863,0.218 +Canada,2018,7.175,10.798,0.923,73.600,0.946,0.106,0.372,0.824,0.259 +Canada,2019,7.109,10.800,0.925,73.800,0.912,0.112,0.436,0.822,0.285 +Canada,2020,7.025,10.730,0.931,74.000,0.887,0.050,0.434,0.796,0.307 +Central African Republic,2007,4.160,6.987,0.532,40.900,0.663,0.081,0.782,0.568,0.330 +Central African Republic,2010,3.568,7.091,0.483,42.700,0.690,-0.036,0.845,0.523,0.257 +Central African Republic,2011,3.678,7.125,0.387,43.080,0.780,-0.016,0.834,0.524,0.277 +Central African Republic,2016,2.693,6.785,0.290,44.900,0.624,0.033,0.859,0.579,0.494 +Central African Republic,2017,3.476,6.817,0.320,45.200,0.645,0.073,0.890,0.614,0.599 +Chad,2006,3.435,7.360,0.724,43.180,0.306,0.028,0.961,0.580,0.263 +Chad,2007,4.141,7.359,0.479,43.660,0.295,-0.011,0.874,0.614,0.245 +Chad,2008,4.632,7.356,0.571,44.140,0.527,0.063,0.944,0.569,0.225 +Chad,2009,3.639,7.364,0.646,44.620,0.401,0.021,0.931,0.557,0.221 +Chad,2010,3.743,7.457,0.734,45.100,0.505,0.025,0.858,0.545,0.287 +Chad,2011,4.393,7.425,0.819,45.420,0.540,0.031,0.876,0.591,0.289 +Chad,2012,4.033,7.476,0.673,45.740,0.563,-0.034,0.884,0.527,0.316 +Chad,2013,3.508,7.498,0.714,46.060,0.488,-0.045,0.882,0.462,0.314 +Chad,2014,3.460,7.532,0.733,46.380,0.567,-0.070,0.881,0.536,0.329 +Chad,2015,4.323,7.527,0.751,46.700,0.474,-0.029,0.889,0.607,0.358 +Chad,2016,4.029,7.431,0.616,47.200,0.525,0.052,0.820,0.582,0.468 +Chad,2017,4.559,7.370,0.661,47.700,0.615,0.008,0.792,0.628,0.538 +Chad,2018,4.486,7.363,0.577,48.200,0.650,0.024,0.763,0.553,0.544 +Chad,2019,4.251,7.365,0.640,48.700,0.537,0.055,0.832,0.587,0.460 +Chile,2006,6.063,9.850,0.836,68.660,0.744,0.168,0.634,0.804,0.348 +Chile,2007,5.698,9.887,0.815,68.720,0.662,0.244,0.723,0.767,0.342 +Chile,2008,5.789,9.911,0.804,68.780,0.640,0.084,0.741,0.757,0.330 +Chile,2009,6.494,9.885,0.832,68.840,0.747,0.149,0.734,0.808,0.300 +Chile,2010,6.636,9.931,0.857,68.900,0.786,0.108,0.702,0.809,0.300 +Chile,2011,6.526,9.980,0.819,69.040,0.701,0.112,0.753,0.804,0.317 +Chile,2012,6.599,10.023,0.855,69.180,0.734,0.195,0.782,0.815,0.288 +Chile,2013,6.740,10.053,0.862,69.320,0.737,0.085,0.741,0.855,0.285 +Chile,2014,6.844,10.059,0.862,69.460,0.733,0.217,0.758,0.870,0.276 +Chile,2015,6.533,10.070,0.827,69.600,0.769,0.041,0.812,0.803,0.333 +Chile,2016,6.579,10.074,0.841,69.700,0.652,0.102,0.858,0.869,0.283 +Chile,2017,6.320,10.072,0.880,69.800,0.790,-0.020,0.836,0.838,0.291 +Chile,2018,6.436,10.097,0.890,69.900,0.789,-0.060,0.816,0.833,0.276 +Chile,2019,5.942,10.095,0.869,70.000,0.659,-0.103,0.860,0.809,0.337 +Chile,2020,6.151,10.020,0.888,70.100,0.781,0.033,0.812,0.815,0.336 +China,2006,4.560,8.696,0.747,66.880,,,,0.809,0.170 +China,2007,4.863,8.824,0.811,67.060,,-0.176,,0.817,0.159 +China,2008,4.846,8.911,0.748,67.240,0.853,-0.092,,0.817,0.147 +China,2009,4.454,8.996,0.798,67.420,0.771,-0.160,,0.786,0.162 +China,2010,4.653,9.092,0.768,67.600,0.805,-0.133,,0.765,0.158 +China,2011,5.037,9.179,0.787,67.760,0.824,-0.186,,0.820,0.134 +China,2012,5.095,9.249,0.788,67.920,0.808,-0.185,,0.821,0.159 +China,2013,5.241,9.319,0.778,68.080,0.805,-0.158,,0.836,0.142 +China,2014,5.196,9.386,0.820,68.240,,-0.217,,0.854,0.112 +China,2015,5.304,9.449,0.794,68.400,,-0.244,,0.809,0.171 +China,2016,5.325,9.510,0.742,68.700,,-0.228,,0.826,0.146 +China,2017,5.099,9.571,0.772,69.000,0.878,-0.175,,0.821,0.214 +China,2018,5.131,9.632,0.788,69.300,0.895,-0.159,,0.856,0.190 +China,2019,5.144,9.688,0.822,69.600,0.927,-0.173,,0.891,0.147 +China,2020,5.771,9.702,0.808,69.900,0.891,-0.103,,0.789,0.245 +Colombia,2006,6.025,9.277,0.910,65.220,0.805,-0.015,0.808,0.800,0.326 +Colombia,2007,6.138,9.330,0.894,65.340,0.786,-0.040,0.860,0.808,0.287 +Colombia,2008,6.168,9.351,0.880,65.460,0.795,-0.042,0.763,0.803,0.307 +Colombia,2009,6.272,9.351,0.886,65.580,0.757,-0.055,0.837,0.843,0.273 +Colombia,2010,6.408,9.384,0.893,65.700,0.816,-0.050,0.815,0.831,0.265 +Colombia,2011,6.464,9.442,0.904,65.920,0.811,-0.073,0.847,0.832,0.286 +Colombia,2012,6.375,9.471,0.914,66.140,0.828,-0.009,0.868,0.846,0.294 +Colombia,2013,6.607,9.512,0.901,66.360,0.841,-0.071,0.898,0.851,0.278 +Colombia,2014,6.449,9.546,0.907,66.580,0.801,-0.090,0.887,0.847,0.278 +Colombia,2015,6.388,9.564,0.890,66.800,0.791,-0.100,0.843,0.839,0.292 +Colombia,2016,6.234,9.571,0.882,67.100,0.835,-0.100,0.898,0.794,0.294 +Colombia,2017,6.157,9.569,0.909,67.400,0.838,-0.157,0.875,0.837,0.299 +Colombia,2018,5.984,9.579,0.871,67.700,0.851,-0.148,0.855,0.825,0.301 +Colombia,2019,6.350,9.598,0.873,68.000,0.822,-0.172,0.854,0.822,0.322 +Colombia,2020,5.709,9.495,0.797,68.300,0.840,-0.085,0.808,0.795,0.340 +Comoros,2009,3.476,7.952,0.629,54.360,0.508,-0.074,0.838,0.672,0.167 +Comoros,2010,3.812,7.965,0.721,54.700,0.529,0.005,0.741,0.728,0.178 +Comoros,2011,3.838,7.981,0.722,55.020,0.500,-0.075,0.732,0.667,0.173 +Comoros,2012,3.956,7.988,0.719,55.340,0.534,-0.121,0.651,0.612,0.212 +Comoros,2018,3.973,8.028,0.621,57.200,0.560,0.086,0.794,0.748,0.337 +Comoros,2019,4.609,8.033,0.632,57.500,0.538,0.077,0.762,0.736,0.336 +Congo (Brazzaville),2008,3.820,8.082,0.555,52.200,0.526,-0.098,,0.573,0.298 +Congo (Brazzaville),2011,4.510,8.180,0.637,54.580,0.745,-0.109,0.833,0.621,0.288 +Congo (Brazzaville),2012,3.919,8.192,0.622,54.960,0.773,-0.112,0.800,0.564,0.323 +Congo (Brazzaville),2013,3.955,8.201,0.680,55.340,0.726,-0.078,0.752,0.610,0.291 +Congo (Brazzaville),2014,4.056,8.242,0.686,55.720,0.662,-0.110,0.808,0.595,0.400 +Congo (Brazzaville),2015,4.691,8.243,0.642,56.100,0.850,-0.104,0.841,0.606,0.261 +Congo (Brazzaville),2016,4.119,8.190,0.615,56.700,0.786,-0.072,0.790,0.610,0.304 +Congo (Brazzaville),2017,4.884,8.146,0.655,57.300,0.778,-0.131,0.763,0.599,0.382 +Congo (Brazzaville),2018,5.490,8.136,0.621,57.900,0.699,-0.092,0.738,0.588,0.448 +Congo (Brazzaville),2019,5.213,8.101,0.625,58.500,0.686,-0.046,0.741,0.645,0.405 +Congo (Kinshasa),2009,3.984,6.728,0.733,49.340,0.556,-0.022,0.824,0.491,0.283 +Congo (Kinshasa),2011,4.517,6.797,0.744,50.340,0.631,-0.025,0.856,0.617,0.208 +Congo (Kinshasa),2012,4.639,6.832,0.770,50.780,0.557,-0.035,0.807,0.634,0.230 +Congo (Kinshasa),2013,4.497,6.880,0.830,51.220,0.480,0.012,0.913,0.589,0.187 +Congo (Kinshasa),2014,4.414,6.937,0.822,51.660,0.556,0.009,0.814,0.559,0.305 +Congo (Kinshasa),2015,3.903,6.971,0.767,52.100,0.574,-0.048,0.866,0.589,0.301 +Congo (Kinshasa),2016,4.522,6.962,0.864,52.500,0.637,-0.024,0.875,0.646,0.222 +Congo (Kinshasa),2017,4.311,6.966,0.670,52.900,0.704,0.068,0.809,0.551,0.404 +Costa Rica,2006,7.082,9.565,0.937,69.940,0.882,0.060,0.798,0.868,0.236 +Costa Rica,2007,7.432,9.630,0.918,69.880,0.923,0.098,0.820,0.875,0.240 +Costa Rica,2008,6.851,9.662,0.916,69.820,0.912,0.096,0.816,0.844,0.233 +Costa Rica,2009,7.615,9.639,0.900,69.760,0.886,0.065,0.787,0.876,0.217 +Costa Rica,2010,7.271,9.675,0.915,69.700,0.881,0.047,0.763,0.886,0.221 +Costa Rica,2011,7.229,9.705,0.892,69.900,0.926,-0.033,0.837,0.876,0.269 +Costa Rica,2012,7.272,9.740,0.902,70.100,0.929,0.046,0.794,0.897,0.263 +Costa Rica,2013,7.158,9.751,0.902,70.300,0.898,0.018,0.813,0.850,0.278 +Costa Rica,2014,7.247,9.775,0.914,70.500,0.927,0.010,0.788,0.837,0.290 +Costa Rica,2015,6.854,9.799,0.878,70.700,0.907,-0.059,0.761,0.850,0.286 +Costa Rica,2016,7.136,9.830,0.901,70.900,0.873,-0.032,0.781,0.874,0.281 +Costa Rica,2017,7.225,9.858,0.922,71.100,0.936,-0.076,0.742,0.874,0.275 +Costa Rica,2018,7.141,9.874,0.876,71.300,0.942,-0.107,0.781,0.870,0.326 +Costa Rica,2019,6.998,9.885,0.906,71.500,0.927,-0.146,0.836,0.848,0.303 +Croatia,2007,5.821,10.162,0.910,67.120,0.662,-0.092,0.934,0.586,0.337 +Croatia,2009,5.433,10.104,0.861,67.640,0.549,-0.271,0.958,0.637,0.272 +Croatia,2010,5.596,10.091,0.796,67.900,0.564,-0.237,0.973,0.607,0.259 +Croatia,2011,5.385,10.091,0.790,68.000,0.517,-0.198,0.977,0.598,0.273 +Croatia,2012,6.028,10.072,0.776,68.100,0.542,-0.242,0.924,0.622,0.271 +Croatia,2013,5.885,10.069,0.751,68.200,0.627,-0.204,0.936,0.590,0.285 +Croatia,2014,5.381,10.072,0.646,68.300,0.519,0.132,0.918,0.596,0.286 +Croatia,2015,5.205,10.104,0.768,68.400,0.694,-0.096,0.849,0.609,0.294 +Croatia,2016,5.417,10.146,0.798,69.000,0.672,-0.065,0.884,0.614,0.337 +Croatia,2017,5.343,10.189,0.770,69.600,0.716,-0.104,0.892,0.655,0.316 +Croatia,2018,5.536,10.224,0.910,70.200,0.691,-0.151,0.925,0.582,0.290 +Croatia,2019,5.626,10.258,0.936,70.800,0.739,-0.137,0.932,0.551,0.269 +Croatia,2020,6.508,10.166,0.923,71.400,0.837,-0.063,0.961,0.743,0.286 +Cuba,2006,5.418,,0.970,68.440,0.281,,,0.647,0.277 +Cyprus,2006,6.238,10.566,0.878,71.440,0.836,0.018,0.712,0.829,0.253 +Cyprus,2009,6.833,10.558,0.812,72.160,0.775,0.054,0.801,0.746,0.329 +Cyprus,2010,6.387,10.551,0.822,72.400,0.755,0.073,0.833,0.786,0.296 +Cyprus,2011,6.690,10.530,0.844,72.540,0.745,0.180,0.841,0.763,0.272 +Cyprus,2012,6.181,10.479,0.767,72.680,0.725,0.098,0.871,0.755,0.369 +Cyprus,2013,5.439,10.414,0.744,72.820,0.656,0.102,0.867,0.748,0.420 +Cyprus,2014,5.627,10.406,0.770,72.960,0.715,0.060,0.868,0.737,0.397 +Cyprus,2015,5.439,10.445,0.770,73.100,0.628,0.114,0.893,0.747,0.383 +Cyprus,2016,5.795,10.506,0.786,73.300,0.756,-0.030,0.898,0.742,0.336 +Cyprus,2017,6.062,10.539,0.819,73.500,0.812,0.043,0.851,0.784,0.301 +Cyprus,2018,6.276,10.567,0.826,73.700,0.794,-0.022,0.848,0.750,0.298 +Cyprus,2019,6.137,10.585,0.776,73.900,0.740,-0.008,0.865,0.763,0.290 +Cyprus,2020,6.260,,0.806,74.100,0.763,,0.816,0.759,0.284 +Czech Republic,2005,6.439,10.324,0.919,67.000,0.865,,0.901,0.723,0.258 +Czech Republic,2007,6.500,10.437,0.900,67.440,0.799,-0.063,0.928,0.736,0.277 +Czech Republic,2010,6.250,10.419,0.934,68.100,0.779,-0.042,0.926,0.641,0.244 +Czech Republic,2011,6.331,10.435,0.914,68.240,0.787,-0.106,0.950,0.601,0.253 +Czech Republic,2012,6.334,10.426,0.912,68.380,0.740,-0.154,0.957,0.609,0.257 +Czech Republic,2013,6.698,10.420,0.888,68.520,0.726,-0.156,0.916,0.720,0.253 +Czech Republic,2014,6.484,10.446,0.878,68.660,0.800,-0.168,0.897,0.678,0.235 +Czech Republic,2015,6.608,10.496,0.911,68.800,0.808,-0.146,0.886,0.751,0.206 +Czech Republic,2016,6.736,10.518,0.931,69.300,0.850,-0.197,0.900,0.756,0.201 +Czech Republic,2017,6.790,10.558,0.901,69.800,0.832,-0.177,0.867,0.739,0.227 +Czech Republic,2018,7.034,10.583,0.929,70.300,0.790,-0.292,0.851,0.714,0.178 +Czech Republic,2020,6.897,10.530,0.964,71.300,0.906,-0.127,0.884,0.832,0.290 +Denmark,2005,8.019,10.851,0.972,69.600,0.971,,0.237,0.860,0.154 +Denmark,2007,7.834,10.891,0.954,69.920,0.932,0.240,0.206,0.828,0.194 +Denmark,2008,7.971,10.880,0.954,70.080,0.970,0.272,0.248,0.757,0.163 +Denmark,2009,7.683,10.824,0.939,70.240,0.949,0.264,0.206,0.749,0.234 +Denmark,2010,7.771,10.839,0.975,70.400,0.944,0.242,0.175,0.785,0.155 +Denmark,2011,7.788,10.848,0.962,70.620,0.935,0.298,0.220,0.769,0.175 +Denmark,2012,7.520,10.846,0.951,70.840,0.933,0.139,0.187,0.774,0.209 +Denmark,2013,7.589,10.851,0.965,71.060,0.920,0.215,0.170,0.862,0.195 +Denmark,2014,7.508,10.862,0.956,71.280,0.942,0.118,0.237,0.832,0.233 +Denmark,2015,7.514,10.878,0.960,71.500,0.941,0.222,0.191,0.829,0.218 +Denmark,2016,7.558,10.903,0.954,71.800,0.948,0.138,0.210,0.836,0.208 +Denmark,2017,7.594,10.916,0.952,72.100,0.955,0.155,0.181,0.824,0.206 +Denmark,2018,7.649,10.935,0.958,72.400,0.935,0.018,0.151,0.821,0.206 +Denmark,2019,7.693,10.954,0.958,72.700,0.963,0.020,0.174,0.862,0.181 +Denmark,2020,7.515,10.910,0.947,73.000,0.938,0.052,0.214,0.818,0.227 +Djibouti,2008,5.009,8.111,0.690,53.260,0.773,0.129,0.576,0.755,0.120 +Djibouti,2009,4.906,7.927,0.901,53.780,0.649,0.005,0.634,0.662,0.232 +Djibouti,2010,5.006,7.812,,54.300,0.764,-0.058,0.597,, +Djibouti,2011,4.369,7.880,0.633,54.700,0.746,-0.057,0.519,0.579,0.181 +Dominican Republic,2006,5.088,9.314,0.919,62.680,0.858,0.038,0.755,0.748,0.274 +Dominican Republic,2007,5.081,9.372,0.848,62.960,0.886,-0.008,0.772,0.767,0.260 +Dominican Republic,2008,4.842,9.391,0.850,63.240,0.848,-0.045,0.728,0.732,0.329 +Dominican Republic,2009,5.432,9.388,0.878,63.520,0.863,-0.053,0.806,0.785,0.280 +Dominican Republic,2010,4.735,9.456,0.860,63.800,0.824,-0.075,0.780,0.787,0.282 +Dominican Republic,2011,5.397,9.475,0.872,64.020,0.848,0.014,0.788,0.809,0.300 +Dominican Republic,2012,4.753,9.489,0.879,64.240,0.840,-0.062,0.727,0.797,0.297 +Dominican Republic,2013,5.016,9.525,0.878,64.460,0.889,0.021,0.752,0.793,0.295 +Dominican Republic,2014,5.387,9.582,0.891,64.680,0.905,-0.020,0.760,0.798,0.300 +Dominican Republic,2015,5.062,9.637,0.893,64.900,0.856,-0.065,0.755,0.714,0.295 +Dominican Republic,2016,5.239,9.691,0.895,65.200,0.873,-0.080,0.737,0.760,0.278 +Dominican Republic,2017,5.605,9.725,0.894,65.500,0.855,-0.121,0.760,0.739,0.275 +Dominican Republic,2018,5.433,9.782,0.862,65.800,0.867,-0.150,0.762,0.745,0.291 +Dominican Republic,2019,6.004,9.821,0.884,66.100,0.877,-0.123,0.746,0.784,0.264 +Dominican Republic,2020,5.168,9.802,0.806,66.400,0.835,-0.128,0.636,0.734,0.314 +Ecuador,2006,5.024,9.186,0.910,66.080,0.671,-0.091,0.901,0.825,0.357 +Ecuador,2007,4.996,9.191,0.839,66.260,0.670,-0.063,0.830,0.833,0.286 +Ecuador,2008,5.297,9.236,0.829,66.440,0.640,-0.094,0.801,0.843,0.283 +Ecuador,2009,6.022,9.225,0.779,66.620,0.737,-0.108,0.774,0.840,0.256 +Ecuador,2010,5.838,9.244,0.839,66.800,0.723,-0.063,0.806,0.826,0.220 +Ecuador,2011,5.795,9.304,0.818,66.960,0.788,-0.155,0.702,0.862,0.271 +Ecuador,2012,5.961,9.344,0.785,67.120,0.825,-0.084,0.730,0.847,0.333 +Ecuador,2013,6.019,9.377,0.801,67.280,0.787,-0.191,0.646,0.851,0.267 +Ecuador,2014,5.946,9.399,0.831,67.440,0.719,-0.167,0.661,0.859,0.306 +Ecuador,2015,5.964,9.384,0.856,67.600,0.801,-0.114,0.666,0.851,0.323 +Ecuador,2016,6.115,9.355,0.842,67.900,0.846,-0.015,0.774,0.846,0.365 +Ecuador,2017,5.840,9.360,0.849,68.200,0.879,-0.167,0.734,0.829,0.314 +Ecuador,2018,6.128,9.355,0.851,68.500,0.869,-0.099,0.831,0.876,0.328 +Ecuador,2019,5.809,9.339,0.808,68.800,0.830,-0.115,0.839,0.811,0.374 +Ecuador,2020,5.354,9.244,0.804,69.100,0.829,-0.157,0.855,0.790,0.416 +Egypt,2005,5.168,9.036,0.848,59.700,0.817,,,0.735,0.346 +Egypt,2007,5.541,9.135,0.686,59.820,0.609,-0.121,,0.665,0.355 +Egypt,2008,4.632,9.186,0.738,59.880,,-0.087,0.914,0.683,0.301 +Egypt,2009,5.066,9.213,0.744,59.940,0.611,-0.100,0.801,0.642,0.339 +Egypt,2010,4.669,9.244,0.769,60.000,0.486,-0.076,0.826,0.567,0.276 +Egypt,2011,4.174,9.240,0.753,60.160,0.590,-0.151,0.859,0.529,0.353 +Egypt,2012,4.204,9.240,0.737,60.320,0.452,-0.138,0.880,0.527,0.398 +Egypt,2013,3.559,9.239,0.675,60.480,0.474,-0.141,0.913,0.551,0.483 +Egypt,2014,4.885,9.245,0.619,60.640,0.578,-0.126,0.749,0.543,0.327 +Egypt,2015,4.763,9.266,0.730,60.800,0.659,-0.089,0.684,0.610,0.344 +Egypt,2016,4.557,9.287,0.809,61.100,0.656,-0.141,0.818,0.611,0.370 +Egypt,2017,3.929,9.307,0.638,61.400,0.593,-0.152,,0.539,0.414 +Egypt,2018,4.005,9.338,0.759,61.700,0.682,-0.215,,0.492,0.285 +Egypt,2019,4.328,9.373,0.772,62.000,0.774,-0.199,,0.517,0.313 +Egypt,2020,4.472,9.383,0.673,62.300,0.770,-0.112,,0.599,0.442 +El Salvador,2006,5.701,8.873,0.878,62.920,0.683,-0.056,0.807,0.864,0.233 +El Salvador,2007,5.296,8.887,0.717,63.240,0.639,-0.015,0.785,0.869,0.220 +El Salvador,2008,5.191,8.908,0.747,63.560,0.636,-0.078,0.735,0.842,0.232 +El Salvador,2009,6.839,8.883,0.734,63.880,0.671,-0.103,0.648,0.850,0.243 +El Salvador,2010,6.740,8.900,0.757,64.200,0.669,-0.064,0.694,0.814,0.302 +El Salvador,2011,4.741,8.933,0.731,64.400,0.747,-0.126,0.707,0.875,0.336 +El Salvador,2012,5.934,8.956,0.806,64.600,0.683,-0.155,0.786,0.831,0.365 +El Salvador,2013,6.325,8.974,0.827,64.800,0.716,-0.150,0.772,0.828,0.317 +El Salvador,2014,5.857,8.986,0.798,65.000,0.778,-0.194,0.781,0.837,0.330 +El Salvador,2015,6.018,9.005,0.791,65.200,0.733,-0.156,0.805,0.826,0.333 +El Salvador,2016,6.140,9.025,0.794,65.500,0.800,-0.185,0.797,0.761,0.346 +El Salvador,2017,6.339,9.042,0.829,65.800,0.758,-0.172,0.778,0.849,0.268 +El Salvador,2018,6.241,9.061,0.820,66.100,0.863,-0.095,0.801,0.860,0.270 +El Salvador,2019,6.455,9.080,0.764,66.400,0.877,-0.109,0.682,0.871,0.271 +El Salvador,2020,5.462,9.019,0.696,66.700,0.924,-0.126,0.583,0.839,0.329 +Estonia,2006,5.371,10.270,0.910,64.860,0.749,-0.264,0.797,0.655,0.215 +Estonia,2007,5.332,10.347,0.896,65.320,0.712,-0.246,0.743,0.666,0.176 +Estonia,2008,5.452,10.298,0.904,65.780,0.642,-0.217,0.663,0.597,0.218 +Estonia,2009,5.138,10.144,0.874,66.240,0.611,-0.230,0.793,0.598,0.243 +Estonia,2011,5.487,10.248,0.909,66.960,0.735,-0.168,0.687,0.651,0.205 +Estonia,2012,5.364,10.282,0.889,67.220,0.697,-0.192,0.793,0.647,0.199 +Estonia,2013,5.367,10.299,0.901,67.480,0.754,-0.201,0.726,0.702,0.199 +Estonia,2014,5.556,10.331,0.917,67.740,0.773,-0.153,0.652,0.680,0.203 +Estonia,2015,5.629,10.348,0.918,68.000,0.815,-0.164,0.569,0.723,0.183 +Estonia,2016,5.650,10.374,0.938,68.200,0.843,-0.149,0.639,0.726,0.177 +Estonia,2017,5.938,10.429,0.936,68.400,0.862,-0.101,0.668,0.805,0.160 +Estonia,2018,6.091,10.472,0.933,68.600,0.886,-0.141,0.621,0.795,0.163 +Estonia,2019,6.035,10.511,0.934,68.800,0.887,-0.096,0.576,0.804,0.156 +Estonia,2020,6.453,10.459,0.958,69.000,0.954,-0.082,0.398,0.807,0.188 +Ethiopia,2012,4.561,7.271,0.659,55.200,0.776,-0.044,,0.668,0.137 +Ethiopia,2013,4.445,7.343,0.602,55.800,0.707,-0.008,0.750,0.643,0.213 +Ethiopia,2014,4.507,7.413,0.640,56.400,0.694,0.080,0.702,0.738,0.303 +Ethiopia,2015,4.573,7.484,0.626,57.000,0.803,0.113,0.567,0.714,0.237 +Ethiopia,2016,4.298,7.547,0.719,57.500,0.744,0.038,0.703,0.727,0.254 +Ethiopia,2017,4.180,7.612,0.734,58.000,0.717,0.001,0.757,0.609,0.304 +Ethiopia,2018,4.379,7.651,0.740,58.500,0.740,0.039,0.799,0.660,0.272 +Ethiopia,2019,4.100,7.705,0.748,59.000,0.754,0.053,0.732,0.631,0.283 +Ethiopia,2020,4.549,7.711,0.823,59.500,0.769,0.188,0.784,0.669,0.252 +Finland,2006,7.672,10.745,0.965,69.760,0.969,-0.005,0.132,0.722,0.172 +Finland,2008,7.671,10.796,0.951,70.080,0.934,0.028,0.217,0.773,0.144 +Finland,2010,7.393,10.734,0.935,70.400,0.916,0.091,0.413,0.832,0.202 +Finland,2011,7.354,10.754,0.938,70.640,0.936,0.101,0.320,0.773,0.205 +Finland,2012,7.420,10.735,0.928,70.880,0.921,-0.001,0.361,0.796,0.202 +Finland,2013,7.445,10.722,0.941,71.120,0.919,0.040,0.306,0.769,0.195 +Finland,2014,7.385,10.714,0.952,71.360,0.933,-0.001,0.265,0.784,0.199 +Finland,2015,7.448,10.716,0.948,71.600,0.930,0.111,0.223,0.751,0.191 +Finland,2016,7.660,10.740,0.954,71.700,0.948,-0.027,0.250,0.797,0.182 +Finland,2017,7.788,10.768,0.964,71.800,0.962,-0.002,0.192,0.787,0.176 +Finland,2018,7.858,10.783,0.962,71.900,0.938,-0.127,0.199,0.782,0.182 +Finland,2019,7.780,10.792,0.937,72.000,0.948,-0.052,0.195,0.755,0.181 +Finland,2020,7.889,10.750,0.962,72.100,0.962,-0.116,0.164,0.744,0.193 +France,2005,7.093,10.642,0.940,71.300,0.895,,0.688,0.769,0.225 +France,2006,6.583,10.659,0.944,71.480,0.789,0.126,0.699,0.777,0.289 +France,2008,7.008,10.674,0.935,71.840,0.833,-0.031,0.669,0.746,0.281 +France,2009,6.283,10.639,0.918,72.020,0.798,-0.082,0.654,0.763,0.303 +France,2010,6.798,10.654,0.943,72.200,0.850,-0.104,0.623,0.790,0.261 +France,2011,6.959,10.671,0.921,72.400,0.903,-0.102,0.627,0.781,0.281 +France,2012,6.649,10.669,0.937,72.600,0.841,-0.149,0.608,0.754,0.253 +France,2013,6.667,10.669,0.908,72.800,0.878,-0.125,0.699,0.800,0.205 +France,2014,6.467,10.674,0.878,73.000,0.803,-0.118,0.656,0.811,0.216 +France,2015,6.358,10.682,0.896,73.200,0.817,-0.139,0.641,0.786,0.215 +France,2016,6.475,10.690,0.885,73.400,0.787,-0.091,0.623,0.773,0.270 +France,2017,6.635,10.711,0.931,73.600,0.834,-0.123,0.601,0.762,0.242 +France,2018,6.666,10.727,0.921,73.800,0.816,-0.138,0.582,0.767,0.282 +France,2019,6.690,10.740,0.958,74.000,0.827,-0.133,0.568,0.735,0.250 +France,2020,6.714,10.643,0.947,74.200,0.823,-0.169,0.565,0.732,0.231 +Gabon,2011,4.255,9.608,0.653,55.480,0.772,-0.211,0.851,0.591,0.264 +Gabon,2012,3.972,9.621,0.736,56.160,0.566,-0.195,0.810,0.470,0.266 +Gabon,2013,3.800,9.638,0.733,56.840,0.682,-0.146,0.780,0.510,0.287 +Gabon,2014,3.918,9.644,0.829,57.520,0.607,-0.198,0.782,0.539,0.293 +Gabon,2015,4.661,9.649,0.756,58.200,0.671,-0.194,0.867,0.626,0.372 +Gabon,2016,4.832,9.639,0.780,58.700,0.699,-0.204,0.817,0.640,0.432 +Gabon,2017,4.782,9.616,0.807,59.200,0.652,-0.228,0.868,0.634,0.446 +Gabon,2018,4.783,9.599,0.785,59.700,0.719,-0.197,0.823,0.641,0.418 +Gabon,2019,4.914,9.607,0.763,60.200,0.736,-0.203,0.846,0.693,0.413 +Gambia,2017,4.118,7.637,0.697,54.700,0.812,0.111,0.572,0.838,0.277 +Gambia,2018,4.922,7.671,0.685,55.000,0.719,0.440,0.691,0.804,0.379 +Gambia,2019,5.164,7.699,0.694,55.300,0.677,0.410,0.798,0.773,0.401 +Georgia,2006,3.675,8.993,0.647,65.120,0.553,-0.267,0.752,0.433,0.269 +Georgia,2007,3.707,9.117,0.548,65.040,0.464,-0.267,0.697,0.427,0.236 +Georgia,2008,4.156,9.144,0.608,64.960,0.614,-0.224,0.498,0.441,0.262 +Georgia,2009,3.801,9.116,0.544,64.880,0.495,-0.233,0.535,0.492,0.242 +Georgia,2010,4.102,9.184,0.540,64.800,0.558,-0.248,0.460,0.502,0.243 +Georgia,2011,4.203,9.263,0.503,64.860,0.632,-0.255,0.353,0.515,0.247 +Georgia,2012,4.254,9.332,0.533,64.920,0.659,-0.269,0.321,0.559,0.250 +Georgia,2013,4.349,9.371,0.559,64.980,0.722,-0.254,0.349,0.595,0.200 +Georgia,2014,4.288,9.414,0.558,65.040,0.720,-0.233,0.416,0.570,0.204 +Georgia,2015,4.122,9.442,0.517,65.100,0.640,-0.205,0.502,0.547,0.233 +Georgia,2016,4.448,9.470,0.533,64.900,0.606,-0.249,0.561,0.564,0.223 +Georgia,2017,4.451,9.517,0.590,64.700,0.821,-0.244,0.590,0.581,0.210 +Georgia,2018,4.659,9.565,0.617,64.500,0.775,-0.233,0.755,0.573,0.244 +Georgia,2019,4.892,9.617,0.675,64.300,0.811,-0.260,0.647,0.604,0.244 +Georgia,2020,5.123,9.569,0.718,64.100,0.764,-0.221,0.583,0.611,0.295 +Germany,2005,6.620,10.689,0.963,70.200,0.847,,0.781,0.776,0.197 +Germany,2007,6.417,10.759,0.926,70.480,0.801,0.167,0.792,0.732,0.231 +Germany,2008,6.522,10.770,0.923,70.620,0.766,,0.758,0.787,0.220 +Germany,2009,6.641,10.714,0.935,70.760,0.844,0.127,0.690,0.792,0.206 +Germany,2010,6.725,10.756,0.939,70.900,0.843,0.095,0.688,0.794,0.182 +Germany,2011,6.621,10.813,0.947,70.980,0.906,0.033,0.677,0.794,0.165 +Germany,2012,6.702,10.816,0.926,71.060,0.904,0.071,0.679,0.804,0.170 +Germany,2013,6.965,10.817,0.931,71.140,0.894,0.024,0.566,0.743,0.205 +Germany,2014,6.984,10.835,0.938,71.220,0.899,0.088,0.474,0.785,0.188 +Germany,2015,7.037,10.844,0.926,71.300,0.889,0.178,0.412,0.765,0.203 +Germany,2016,6.874,10.858,0.906,71.600,0.871,0.148,0.446,0.738,0.187 +Germany,2017,7.074,10.878,0.892,71.900,0.841,0.145,0.414,0.737,0.196 +Germany,2018,7.118,10.890,0.920,72.200,0.877,0.034,0.496,0.780,0.243 +Germany,2019,7.035,10.893,0.886,72.500,0.885,0.057,0.462,0.751,0.226 +Germany,2020,7.312,10.833,0.905,72.800,0.864,-0.060,0.424,0.760,0.206 +Ghana,2006,4.535,8.073,0.728,52.340,0.849,0.213,0.814,0.671,0.198 +Ghana,2007,5.220,8.090,0.730,52.780,0.891,0.138,0.771,0.686,0.217 +Ghana,2008,4.965,8.152,0.622,53.220,0.838,0.120,0.863,0.717,0.172 +Ghana,2009,4.198,8.174,0.633,53.660,0.757,0.005,0.890,0.774,0.198 +Ghana,2010,4.606,8.225,0.739,54.100,0.891,0.074,0.875,0.783,0.184 +Ghana,2011,5.608,8.332,0.724,54.480,0.852,0.011,0.790,0.744,0.209 +Ghana,2012,5.057,8.397,0.685,54.860,0.679,0.040,0.898,0.760,0.152 +Ghana,2013,4.965,8.445,0.676,55.240,0.794,-0.065,0.880,0.691,0.211 +Ghana,2014,3.860,8.450,0.651,55.620,0.677,0.001,0.913,0.696,0.280 +Ghana,2015,3.986,8.449,0.687,56.000,0.852,-0.038,0.945,0.690,0.265 +Ghana,2016,4.514,8.460,0.647,56.400,0.751,0.090,0.894,0.668,0.305 +Ghana,2017,5.481,8.517,0.669,56.800,0.783,0.079,0.839,0.703,0.248 +Ghana,2018,5.004,8.555,0.761,57.200,0.817,0.062,0.846,0.747,0.250 +Ghana,2019,4.967,8.596,0.746,57.600,0.787,0.116,0.857,0.682,0.270 +Ghana,2020,5.319,8.590,0.643,58.000,0.824,0.200,0.847,0.713,0.253 +Greece,2005,6.006,10.462,0.837,70.500,0.734,,0.861,0.692,0.264 +Greece,2007,6.647,10.543,0.808,70.900,0.575,-0.190,0.845,0.738,0.222 +Greece,2009,6.039,10.491,0.793,71.300,0.443,-0.293,0.959,0.649,0.254 +Greece,2010,5.840,10.433,0.868,71.500,0.484,-0.303,0.954,0.634,0.292 +Greece,2011,5.372,10.339,0.852,71.560,0.528,-0.316,0.941,0.591,0.323 +Greece,2012,5.096,10.268,0.812,71.620,0.373,-0.305,0.959,0.581,0.352 +Greece,2013,4.720,10.243,0.687,71.680,0.426,-0.272,0.941,0.689,0.482 +Greece,2014,4.756,10.257,0.832,71.740,0.369,-0.288,0.930,0.695,0.385 +Greece,2015,5.623,10.259,0.835,71.800,0.532,-0.272,0.824,0.740,0.277 +Greece,2016,5.303,10.261,0.803,72.000,0.482,-0.260,0.898,0.701,0.336 +Greece,2017,5.148,10.278,0.753,72.200,0.438,-0.290,0.872,0.603,0.333 +Greece,2018,5.409,10.299,0.794,72.400,0.564,-0.335,0.860,0.666,0.255 +Greece,2019,5.952,10.319,0.891,72.600,0.614,-0.289,0.848,0.668,0.236 +Greece,2020,5.788,10.215,0.779,72.800,0.565,-0.241,0.764,0.684,0.322 +Guatemala,2006,5.901,8.850,0.830,60.740,0.663,0.172,0.706,0.818,0.287 +Guatemala,2007,6.330,8.891,0.866,61.080,0.628,0.136,0.810,0.819,0.224 +Guatemala,2008,6.414,8.904,0.866,61.420,0.630,0.206,0.796,0.834,0.234 +Guatemala,2009,6.452,8.891,0.834,61.760,0.643,0.197,0.755,0.829,0.240 +Guatemala,2010,6.290,8.901,0.859,62.100,0.696,0.166,0.795,0.850,0.236 +Guatemala,2011,5.743,8.923,0.768,62.460,0.763,0.009,0.863,0.844,0.289 +Guatemala,2012,5.856,8.935,0.802,62.820,0.865,0.020,0.821,0.863,0.349 +Guatemala,2013,5.985,8.953,0.830,63.180,0.884,0.045,0.817,0.867,0.333 +Guatemala,2014,6.536,8.980,0.834,63.540,0.843,0.108,0.804,0.835,0.305 +Guatemala,2015,6.465,9.003,0.823,63.900,0.869,0.051,0.822,0.851,0.311 +Guatemala,2016,6.359,9.013,0.811,64.200,0.863,0.011,0.812,0.846,0.321 +Guatemala,2017,6.325,9.026,0.826,64.500,0.915,-0.059,0.800,0.846,0.308 +Guatemala,2018,6.627,9.042,0.841,64.800,0.910,-0.010,0.765,0.871,0.262 +Guatemala,2019,6.262,9.064,0.774,65.100,0.901,-0.062,0.773,0.859,0.311 +Guinea,2011,4.045,7.567,0.598,50.220,0.797,0.041,0.743,0.701,0.260 +Guinea,2012,3.652,7.603,0.542,50.440,0.646,0.001,0.794,0.677,0.285 +Guinea,2013,3.902,7.619,0.567,50.660,0.693,0.091,0.815,0.600,0.348 +Guinea,2014,3.412,7.632,0.638,50.880,0.684,0.006,0.705,0.629,0.351 +Guinea,2015,3.505,7.645,0.579,51.100,0.666,0.007,0.762,0.667,0.268 +Guinea,2016,3.603,7.721,0.675,52.200,0.726,-0.056,0.803,0.687,0.374 +Guinea,2017,4.874,7.792,0.634,53.300,0.738,0.038,0.750,0.704,0.422 +Guinea,2018,5.252,7.823,0.630,54.400,0.731,0.092,0.778,0.744,0.440 +Guinea,2019,4.768,7.849,0.655,55.500,0.691,0.097,0.756,0.685,0.473 +Guyana,2007,5.993,8.773,0.849,57.260,0.694,0.110,0.836,0.768,0.296 +Haiti,2006,3.754,7.407,0.694,48.460,0.449,0.401,0.854,0.613,0.332 +Haiti,2008,3.846,7.417,0.679,40.380,0.465,0.261,0.812,0.608,0.256 +Haiti,2010,3.766,7.384,0.554,32.300,0.373,0.216,0.848,0.555,0.293 +Haiti,2011,4.845,7.423,0.567,36.860,0.413,0.243,0.682,0.625,0.245 +Haiti,2012,4.413,7.437,0.749,41.420,0.482,0.289,0.717,0.593,0.284 +Haiti,2013,4.622,7.464,0.648,45.980,0.610,0.289,0.669,0.538,0.327 +Haiti,2014,3.889,7.477,0.554,50.540,0.509,0.285,0.708,0.593,0.327 +Haiti,2015,3.570,7.476,0.564,55.100,0.398,0.306,0.777,0.619,0.333 +Haiti,2016,3.352,7.477,0.584,55.300,0.304,0.291,0.839,0.553,0.367 +Haiti,2017,3.824,7.475,0.647,55.500,0.484,0.381,0.647,0.573,0.322 +Haiti,2018,3.615,7.477,0.538,55.700,0.591,0.422,0.720,0.584,0.359 +Honduras,2006,5.397,8.462,0.933,64.540,0.650,0.089,0.844,0.858,0.155 +Honduras,2007,5.097,8.500,0.819,64.780,0.676,0.230,0.826,0.759,0.199 +Honduras,2008,5.420,8.520,0.828,65.020,0.687,0.223,0.863,0.789,0.206 +Honduras,2009,6.033,8.474,0.824,65.260,0.661,0.119,0.857,0.803,0.261 +Honduras,2010,5.866,8.490,0.803,65.500,0.646,0.105,0.820,0.797,0.260 +Honduras,2011,4.961,8.508,0.766,65.720,0.783,0.095,0.884,0.816,0.307 +Honduras,2012,4.602,8.530,0.779,65.940,0.700,-0.003,0.871,0.847,0.294 +Honduras,2013,4.713,8.540,0.792,66.160,0.698,-0.027,0.868,0.817,0.283 +Honduras,2014,5.056,8.552,0.790,66.380,0.696,0.015,0.834,0.820,0.299 +Honduras,2015,4.845,8.572,0.772,66.600,0.534,-0.097,0.848,0.863,0.311 +Honduras,2016,5.648,8.593,0.774,66.800,0.850,0.080,0.793,0.832,0.297 +Honduras,2017,6.020,8.624,0.843,67.000,0.898,0.072,0.783,0.842,0.248 +Honduras,2018,5.908,8.643,0.827,67.200,0.872,0.099,0.804,0.872,0.287 +Honduras,2019,5.930,8.653,0.797,67.400,0.846,0.063,0.815,0.850,0.279 +Hong Kong S.A.R. of China,2006,5.511,10.746,0.812,,0.910,0.156,0.356,0.723,0.236 +Hong Kong S.A.R. of China,2008,5.137,10.816,0.840,,0.922,0.296,0.274,0.719,0.237 +Hong Kong S.A.R. of China,2009,5.397,10.788,0.835,,0.918,0.308,0.272,0.762,0.210 +Hong Kong S.A.R. of China,2010,5.643,10.847,0.857,,0.890,0.332,0.256,0.710,0.183 +Hong Kong S.A.R. of China,2011,5.474,10.887,0.846,,0.894,0.235,0.245,0.734,0.196 +Hong Kong S.A.R. of China,2012,5.484,10.893,0.826,,0.880,0.222,0.380,0.715,0.183 +Hong Kong S.A.R. of China,2014,5.458,10.940,0.834,,0.843,0.224,0.423,0.684,0.243 +Hong Kong S.A.R. of China,2016,5.498,10.970,0.832,,0.800,0.100,0.403,0.664,0.213 +Hong Kong S.A.R. of China,2017,5.362,11.000,0.831,,0.831,0.140,0.416,0.640,0.201 +Hong Kong S.A.R. of China,2019,5.659,11.000,0.856,,0.727,0.067,0.432,0.599,0.358 +Hong Kong S.A.R. of China,2020,5.295,,0.813,,0.705,,0.380,0.609,0.210 +Hungary,2005,5.194,10.108,0.930,64.600,0.697,,0.903,0.675,0.290 +Hungary,2007,4.954,10.153,0.931,65.000,0.538,-0.161,0.895,0.701,0.230 +Hungary,2009,4.895,10.097,0.901,65.400,0.464,-0.125,0.915,0.664,0.228 +Hungary,2010,4.725,10.106,0.896,65.600,0.514,-0.145,0.983,0.656,0.235 +Hungary,2011,4.918,10.127,0.894,65.760,0.631,-0.089,0.940,0.642,0.305 +Hungary,2012,4.683,10.117,0.906,65.920,0.569,-0.136,0.930,0.652,0.315 +Hungary,2013,4.914,10.140,0.877,66.080,0.674,-0.113,0.912,0.706,0.307 +Hungary,2014,5.181,10.183,0.845,66.240,0.494,-0.150,0.855,0.651,0.238 +Hungary,2015,5.344,10.223,0.859,66.400,0.558,-0.198,0.908,0.707,0.245 +Hungary,2016,5.449,10.248,0.900,66.800,0.554,-0.187,0.924,0.666,0.243 +Hungary,2017,6.065,10.293,0.877,67.200,0.661,-0.139,0.886,0.735,0.181 +Hungary,2018,5.936,10.344,0.941,67.600,0.693,-0.243,0.911,0.676,0.201 +Hungary,2019,6.000,10.393,0.947,68.000,0.798,-0.195,0.884,0.743,0.180 +Hungary,2020,6.038,10.335,0.943,68.400,0.771,-0.120,0.836,0.735,0.240 +Iceland,2008,6.888,10.861,0.977,72.320,0.885,0.272,0.708,0.880,0.153 +Iceland,2012,7.591,10.777,0.979,72.760,0.905,0.241,0.759,0.900,0.157 +Iceland,2013,7.501,10.809,0.967,72.840,0.923,0.306,0.713,0.870,0.156 +Iceland,2015,7.498,10.854,0.980,73.000,0.940,0.301,0.639,0.849,0.180 +Iceland,2016,7.510,10.904,0.985,73.000,0.952,0.281,0.719,0.874,0.158 +Iceland,2017,7.476,10.925,0.967,73.000,0.939,0.246,0.727,0.895,0.148 +Iceland,2019,7.533,10.931,0.982,73.000,0.959,,0.699,0.836,0.178 +Iceland,2020,7.575,10.824,0.983,73.000,0.949,0.160,0.644,0.863,0.172 +India,2006,5.348,8.145,0.707,55.720,0.774,,0.855,0.687,0.199 +India,2007,5.027,8.204,0.569,56.140,0.729,-0.051,0.862,0.668,0.253 +India,2008,5.146,8.220,0.684,56.560,0.756,-0.072,0.891,0.674,0.259 +India,2009,4.522,8.281,0.653,56.980,0.679,-0.026,0.895,0.771,0.301 +India,2010,4.989,8.349,0.605,57.400,0.783,0.058,0.863,0.697,0.267 +India,2011,4.635,8.387,0.553,57.700,0.838,-0.038,0.908,0.648,0.232 +India,2012,4.720,8.428,0.511,58.000,0.609,0.067,0.830,0.629,0.295 +India,2013,4.428,8.478,0.553,58.300,0.740,0.084,0.832,0.680,0.330 +India,2014,4.424,8.538,0.621,58.600,0.809,-0.026,0.832,0.711,0.285 +India,2015,4.342,8.604,0.610,58.900,0.777,-0.005,0.776,0.701,0.322 +India,2016,4.179,8.673,0.614,59.300,0.820,0.046,0.765,0.695,0.346 +India,2017,4.046,8.730,0.607,59.700,0.886,-0.042,0.781,0.682,0.318 +India,2018,3.818,8.779,0.638,60.100,0.890,0.085,0.805,0.657,0.357 +India,2019,3.249,8.818,0.561,60.500,0.876,0.112,0.752,0.648,0.466 +India,2020,4.225,8.703,0.617,60.900,0.906,0.075,0.780,0.752,0.383 +Indonesia,2006,4.947,8.850,0.771,59.840,0.713,0.347,0.915,0.825,0.266 +Indonesia,2007,5.101,8.898,0.704,59.980,0.603,0.311,0.960,0.812,0.242 +Indonesia,2008,4.815,8.943,0.675,60.120,0.596,0.164,0.968,0.774,0.239 +Indonesia,2009,5.472,8.975,0.779,60.260,0.784,0.191,0.911,0.865,0.193 +Indonesia,2010,5.457,9.022,0.816,60.400,0.700,0.448,0.954,0.837,0.218 +Indonesia,2011,5.173,9.069,0.825,60.620,0.878,0.438,0.962,0.864,0.273 +Indonesia,2012,5.368,9.114,0.834,60.840,0.770,0.354,0.962,0.897,0.229 +Indonesia,2013,5.292,9.155,0.794,61.060,0.781,0.376,0.973,0.893,0.249 +Indonesia,2014,5.597,9.190,0.905,61.280,0.719,0.408,0.970,0.852,0.242 +Indonesia,2015,5.043,9.225,0.809,61.500,0.779,0.471,0.946,0.876,0.274 +Indonesia,2016,5.136,9.262,0.792,61.700,0.830,0.500,0.890,0.833,0.342 +Indonesia,2017,5.098,9.300,0.796,61.900,0.865,0.488,0.900,0.863,0.319 +Indonesia,2018,5.340,9.339,0.809,62.100,0.879,0.512,0.868,0.864,0.296 +Indonesia,2019,5.347,9.377,0.802,62.300,0.866,0.555,0.861,0.877,0.302 +Iran,2005,5.308,9.393,0.766,62.000,0.651,,0.636,0.608,0.456 +Iran,2007,5.336,9.497,0.718,62.760,0.533,0.056,0.872,0.626,0.361 +Iran,2008,5.129,9.489,0.633,63.140,0.601,0.052,0.868,0.624,0.345 +Iran,2011,4.768,9.547,0.582,64.140,0.798,0.200,0.665,0.578,0.359 +Iran,2012,4.609,9.458,0.600,64.380,0.764,,0.678,0.609,0.525 +Iran,2013,5.140,9.443,0.664,64.620,0.730,0.216,0.685,0.659,0.552 +Iran,2014,4.682,9.476,0.644,64.860,0.767,0.241,0.640,0.618,0.512 +Iran,2015,4.750,9.449,0.572,65.100,0.780,0.176,0.699,0.645,0.520 +Iran,2016,4.653,9.561,0.566,65.400,0.773,0.186,0.713,0.687,0.526 +Iran,2017,4.717,9.584,0.714,65.700,0.731,0.218,0.715,0.694,0.439 +Iran,2018,4.278,,0.674,66.000,0.603,,0.703,0.553,0.493 +Iran,2019,5.006,,0.698,66.300,0.623,,0.728,0.600,0.449 +Iran,2020,4.865,,0.757,66.600,0.600,,0.710,0.582,0.470 +Iraq,2008,4.590,9.063,0.744,58.320,0.386,-0.061,0.910,0.525,0.448 +Iraq,2009,4.775,9.076,0.862,58.960,0.431,-0.199,0.854,0.523,0.404 +Iraq,2010,5.065,9.112,0.854,59.600,0.419,-0.125,0.859,0.542,0.431 +Iraq,2011,4.725,9.152,0.751,59.360,0.347,-0.070,0.780,0.488,0.557 +Iraq,2012,4.660,9.246,0.730,59.120,0.315,-0.020,0.789,0.423,0.449 +Iraq,2013,4.725,9.280,0.728,58.880,,-0.050,0.710,,0.554 +Iraq,2014,4.542,9.250,0.725,58.640,0.646,-0.001,0.726,0.574,0.564 +Iraq,2015,4.493,9.241,0.684,58.400,0.599,0.019,0.762,0.490,0.581 +Iraq,2016,4.413,9.354,0.719,59.000,0.666,-0.052,0.799,0.489,0.570 +Iraq,2017,4.462,9.303,0.695,59.600,0.628,0.000,0.757,0.505,0.591 +Iraq,2018,4.886,9.274,0.764,60.200,0.598,-0.068,0.887,0.605,0.482 +Iraq,2020,4.785,9.167,0.708,61.400,0.700,-0.021,0.849,0.644,0.532 +Ireland,2006,7.144,10.972,0.967,70.140,0.943,0.242,0.473,0.878,0.209 +Ireland,2008,7.568,10.929,0.983,70.820,0.894,0.322,0.487,0.875,0.148 +Ireland,2009,7.046,10.866,0.959,71.160,0.835,0.315,0.580,0.862,0.233 +Ireland,2010,7.257,10.879,0.973,71.500,0.856,0.348,0.618,0.876,0.201 +Ireland,2011,7.007,10.878,0.977,71.600,0.952,0.383,0.590,0.865,0.190 +Ireland,2012,6.965,10.876,0.962,71.700,0.902,0.302,0.573,0.835,0.237 +Ireland,2013,6.760,10.884,0.955,71.800,0.884,0.331,0.558,0.814,0.245 +Ireland,2014,7.018,10.959,0.968,71.900,0.922,0.264,0.406,0.784,0.229 +Ireland,2015,6.830,11.174,0.953,72.000,0.892,0.233,0.409,0.799,0.225 +Ireland,2016,7.041,11.199,0.958,72.100,0.875,0.174,0.399,0.809,0.211 +Ireland,2017,7.060,11.266,0.943,72.200,0.905,0.216,0.337,0.833,0.213 +Ireland,2018,6.962,11.332,0.938,72.300,0.861,0.144,0.362,0.811,0.213 +Ireland,2019,7.255,11.371,0.944,72.400,0.892,0.074,0.373,0.807,0.223 +Ireland,2020,7.035,11.323,0.960,72.500,0.882,0.014,0.356,0.797,0.246 +Israel,2006,7.173,10.389,0.927,71.120,0.817,,0.905,0.696,0.308 +Israel,2007,6.841,10.428,0.868,71.440,0.683,0.219,0.868,0.696,0.320 +Israel,2008,7.261,10.440,0.859,71.760,0.663,0.139,0.898,0.710,0.349 +Israel,2009,7.353,10.425,0.937,72.080,0.593,0.172,0.923,0.695,0.327 +Israel,2010,7.359,10.461,0.882,72.400,0.561,0.150,0.902,0.679,0.362 +Israel,2011,7.433,10.489,0.893,72.460,0.722,0.141,0.891,0.738,0.384 +Israel,2012,7.111,10.493,0.903,72.520,0.681,0.153,0.862,0.665,0.319 +Israel,2013,7.321,10.515,0.909,72.580,0.739,0.150,0.849,0.698,0.409 +Israel,2014,7.401,10.533,0.889,72.640,0.707,0.094,0.818,0.604,0.271 +Israel,2015,7.079,10.536,0.864,72.700,0.753,0.108,0.789,0.697,0.256 +Israel,2016,7.159,10.555,0.890,72.900,0.772,0.153,0.804,0.629,0.263 +Israel,2017,7.331,10.570,0.916,73.100,0.768,0.145,0.793,0.674,0.276 +Israel,2018,6.927,10.585,0.910,73.300,0.725,0.055,0.770,0.663,0.282 +Israel,2019,7.332,10.601,0.946,73.500,0.834,0.085,0.743,0.635,0.266 +Israel,2020,7.195,10.538,0.959,73.700,0.831,-0.049,0.748,0.621,0.243 +Italy,2005,6.854,10.703,0.928,71.900,0.802,,0.944,0.679,0.295 +Italy,2007,6.574,10.727,0.912,72.260,0.684,0.113,0.922,0.716,0.303 +Italy,2008,6.780,10.711,0.880,72.440,0.543,0.049,0.946,0.637,0.268 +Italy,2009,6.334,10.652,0.880,72.620,0.701,0.240,0.890,0.775,0.279 +Italy,2010,6.354,10.666,0.872,72.800,0.738,-0.060,0.921,0.596,0.236 +Italy,2011,6.057,10.671,0.913,72.840,0.568,-0.018,0.933,0.658,0.266 +Italy,2012,5.839,10.638,0.869,72.880,0.570,0.113,0.908,0.670,0.388 +Italy,2013,6.009,10.608,0.916,72.920,0.499,-0.102,0.943,0.779,0.357 +Italy,2014,6.027,10.599,0.898,72.960,0.624,-0.065,0.920,0.716,0.356 +Italy,2015,5.848,10.608,0.909,73.000,0.575,-0.064,0.913,0.692,0.329 +Italy,2016,5.955,10.622,0.927,73.200,0.624,-0.081,0.903,0.685,0.339 +Italy,2017,6.199,10.640,0.920,73.400,0.633,-0.035,0.867,0.661,0.323 +Italy,2018,6.517,10.650,0.913,73.600,0.650,-0.021,0.888,0.649,0.403 +Italy,2019,6.445,10.655,0.838,73.800,0.709,-0.082,0.866,0.631,0.328 +Italy,2020,6.488,10.563,0.890,74.000,0.718,-0.150,0.844,0.670,0.311 +Ivory Coast,2009,4.197,8.209,0.667,45.780,0.760,-0.153,0.902,0.604,0.186 +Ivory Coast,2013,3.739,8.274,0.709,47.100,0.739,-0.031,0.691,0.743,0.306 +Ivory Coast,2014,3.570,8.334,0.711,47.400,0.781,-0.080,0.671,0.647,0.291 +Ivory Coast,2015,4.445,8.393,0.704,47.700,0.800,-0.053,0.744,0.664,0.347 +Ivory Coast,2016,4.543,8.437,0.617,48.300,0.769,-0.043,0.757,0.704,0.378 +Ivory Coast,2017,5.038,8.483,0.661,48.900,0.732,-0.111,0.771,0.698,0.357 +Ivory Coast,2018,5.268,8.523,0.621,49.500,0.713,-0.050,0.791,0.682,0.386 +Ivory Coast,2019,5.392,8.564,0.679,50.100,0.736,-0.017,0.799,0.674,0.425 +Ivory Coast,2020,5.257,8.565,0.613,50.700,0.770,0.016,0.777,0.693,0.340 +Jamaica,2006,6.208,9.225,0.909,64.900,0.738,-0.004,0.946,0.788,0.201 +Jamaica,2011,5.374,9.164,0.855,66.220,0.796,-0.064,0.909,0.836,0.237 +Jamaica,2013,5.709,9.151,0.865,66.460,0.793,-0.021,0.931,0.734,0.312 +Jamaica,2014,5.311,9.152,0.874,66.580,0.809,-0.001,0.861,0.737,0.310 +Jamaica,2017,5.890,9.169,0.913,67.100,0.861,-0.130,0.883,0.769,0.243 +Jamaica,2019,6.309,9.186,0.878,67.500,0.891,-0.137,0.885,0.752,0.195 +Japan,2005,6.516,10.529,0.928,73.200,0.868,,0.699,0.739,0.153 +Japan,2007,6.238,10.558,0.938,73.440,0.796,-0.090,0.809,0.731,0.207 +Japan,2008,5.911,10.546,0.887,73.560,0.772,-0.135,0.816,0.780,0.191 +Japan,2009,5.845,10.491,0.888,73.680,0.730,-0.210,0.740,0.785,0.169 +Japan,2010,6.057,10.532,0.902,73.800,0.772,-0.140,0.770,0.827,0.188 +Japan,2011,6.263,10.532,0.917,73.980,0.814,-0.052,0.734,0.776,0.181 +Japan,2012,5.968,10.549,0.905,74.160,0.753,,0.692,0.777,0.171 +Japan,2013,5.959,10.570,0.924,74.340,0.821,-0.147,0.650,0.794,0.175 +Japan,2014,5.923,10.575,0.900,74.520,0.838,-0.139,0.617,0.742,0.189 +Japan,2015,5.880,10.588,0.923,74.700,0.832,-0.155,0.654,0.768,0.176 +Japan,2016,5.955,10.595,0.900,74.800,0.836,-0.062,0.698,0.760,0.192 +Japan,2017,5.911,10.618,0.882,74.900,0.849,-0.206,0.659,0.740,0.176 +Japan,2018,5.794,10.623,0.886,75.000,0.773,-0.261,0.687,0.703,0.185 +Japan,2019,5.908,10.632,0.878,75.100,0.806,-0.255,0.617,0.743,0.194 +Japan,2020,6.118,10.580,0.887,75.200,0.806,-0.259,0.609,0.742,0.186 +Jordan,2005,6.295,9.246,0.920,63.500,,,0.670,0.696,0.240 +Jordan,2007,5.598,9.321,0.841,63.980,0.646,-0.112,0.664,0.683,0.240 +Jordan,2008,4.930,9.343,0.766,64.220,,-0.127,0.709,0.669,0.331 +Jordan,2009,6.000,9.347,0.899,64.460,0.771,-0.075,0.739,0.645,0.265 +Jordan,2010,5.570,9.317,0.918,64.700,0.788,-0.046,,0.643,0.343 +Jordan,2011,5.539,9.289,0.878,65.000,0.760,-0.143,,0.612,0.260 +Jordan,2012,5.132,9.261,0.829,65.300,0.693,-0.160,,0.565,0.345 +Jordan,2013,5.172,9.237,0.840,65.600,0.692,-0.117,,0.684,0.286 +Jordan,2014,5.333,9.222,0.816,65.900,0.729,-0.104,,0.660,0.313 +Jordan,2015,5.405,9.207,0.830,66.200,0.767,-0.046,,0.690,0.305 +Jordan,2016,5.271,9.197,0.820,66.400,0.771,-0.038,,0.641,0.312 +Jordan,2017,4.808,9.194,0.815,66.600,0.766,-0.152,,0.628,0.392 +Jordan,2018,4.639,9.196,0.800,66.800,0.762,-0.186,,, +Jordan,2019,4.453,9.201,0.793,67.000,0.726,-0.165,,, +Jordan,2020,4.094,9.150,0.709,67.200,0.779,-0.150,,, +Kazakhstan,2006,5.476,9.804,0.872,58.200,0.731,-0.274,0.865,0.669,0.185 +Kazakhstan,2007,5.719,9.878,0.861,58.700,0.806,-0.246,0.865,0.651,0.179 +Kazakhstan,2008,5.886,9.898,0.839,59.200,0.727,-0.221,0.899,0.675,0.160 +Kazakhstan,2009,5.383,9.884,0.893,59.700,0.856,-0.249,0.845,0.679,0.129 +Kazakhstan,2010,5.514,9.940,0.904,60.200,0.785,-0.215,0.823,0.692,0.149 +Kazakhstan,2011,5.736,9.997,0.905,60.720,0.878,-0.235,0.802,0.695,0.154 +Kazakhstan,2012,5.759,10.030,0.892,61.240,0.840,-0.171,0.877,0.740,0.184 +Kazakhstan,2013,5.835,10.074,0.889,61.760,0.782,-0.229,0.820,0.674,0.164 +Kazakhstan,2014,5.970,10.101,0.795,62.280,0.799,0.004,0.805,0.718,0.169 +Kazakhstan,2015,5.950,10.098,0.931,62.800,0.740,-0.037,0.714,0.730,0.174 +Kazakhstan,2016,5.534,10.095,0.928,63.400,0.783,-0.036,0.702,0.702,0.155 +Kazakhstan,2017,5.882,10.121,0.914,64.000,0.745,-0.035,0.755,0.757,0.171 +Kazakhstan,2018,6.008,10.148,0.937,64.600,0.840,-0.098,0.824,0.693,0.162 +Kazakhstan,2019,6.272,10.179,0.951,65.200,0.852,-0.055,0.708,0.787,0.139 +Kazakhstan,2020,6.168,10.135,0.966,65.800,0.872,-0.056,0.661,0.684,0.150 +Kenya,2006,4.223,8.039,0.909,50.220,0.616,-0.020,0.860,0.705,0.198 +Kenya,2007,4.576,8.078,0.841,51.540,0.750,0.054,0.799,0.725,0.162 +Kenya,2008,4.015,8.052,0.827,52.860,0.620,-0.012,0.909,0.772,0.149 +Kenya,2009,4.270,8.057,0.789,54.180,0.584,0.100,0.913,0.772,0.183 +Kenya,2010,4.256,8.111,0.805,55.500,0.635,0.019,0.918,0.819,0.123 +Kenya,2011,4.405,8.143,0.846,56.060,0.709,0.022,0.923,0.760,0.228 +Kenya,2012,4.547,8.161,0.831,56.620,0.628,0.066,0.911,0.707,0.194 +Kenya,2013,3.795,8.192,0.825,57.180,0.708,0.212,0.861,0.765,0.161 +Kenya,2014,4.905,8.219,0.765,57.740,0.819,0.172,0.849,0.814,0.221 +Kenya,2015,4.358,8.249,0.777,58.300,0.793,0.221,0.853,0.702,0.172 +Kenya,2016,4.396,8.282,0.706,58.900,0.749,0.298,0.828,0.743,0.226 +Kenya,2017,4.476,8.306,0.715,59.500,0.853,0.234,0.854,0.788,0.230 +Kenya,2018,4.656,8.344,0.707,60.100,0.821,0.291,0.844,0.759,0.237 +Kenya,2019,4.619,8.373,0.676,60.700,0.818,0.310,0.794,0.751,0.251 +Kenya,2020,4.547,8.365,0.674,61.300,0.702,0.260,0.837,0.733,0.297 +Kosovo,2007,5.104,8.928,0.848,,0.381,0.144,0.894,0.655,0.237 +Kosovo,2008,5.522,8.981,0.884,,,0.090,0.849,,0.318 +Kosovo,2009,5.891,9.008,0.830,,0.506,0.201,0.968,0.598,0.169 +Kosovo,2010,5.177,9.033,0.708,,0.451,0.170,0.967,0.695,0.118 +Kosovo,2011,4.860,9.067,0.759,,0.589,0.004,0.919,0.696,0.124 +Kosovo,2012,5.640,9.086,0.757,,0.636,0.027,0.950,0.596,0.100 +Kosovo,2013,6.126,9.113,0.721,,0.568,0.115,0.935,0.692,0.203 +Kosovo,2014,5.000,9.129,0.706,,0.441,0.012,0.775,0.636,0.206 +Kosovo,2015,5.077,9.182,0.805,,0.561,0.181,0.851,0.753,0.180 +Kosovo,2016,5.759,9.228,0.824,,0.827,0.125,0.941,0.704,0.150 +Kosovo,2017,6.149,9.262,0.792,,0.858,0.117,0.925,0.738,0.186 +Kosovo,2018,6.392,9.296,0.822,,0.890,0.269,0.922,0.778,0.170 +Kosovo,2019,6.425,9.339,0.843,,0.841,0.247,0.920,0.749,0.141 +Kosovo,2020,6.294,,0.792,,0.880,,0.910,0.726,0.201 +Kuwait,2006,6.076,11.228,0.919,63.960,0.769,-0.236,0.328,0.846,0.182 +Kuwait,2009,6.585,11.065,0.926,64.440,0.819,0.007,0.675,0.718,0.252 +Kuwait,2010,6.798,10.982,0.893,64.600,0.703,-0.031,0.486,0.718,0.203 +Kuwait,2011,6.378,11.017,0.882,64.900,0.769,,0.560,0.793,0.177 +Kuwait,2012,6.221,11.025,0.889,65.200,0.934,,,0.821,0.095 +Kuwait,2013,6.480,10.985,0.862,65.500,0.751,,,0.752,0.283 +Kuwait,2014,6.180,10.945,,65.800,,,,, +Kuwait,2015,6.146,10.912,0.823,66.100,0.822,0.082,,0.723,0.324 +Kuwait,2016,5.947,10.910,0.845,66.300,0.841,-0.075,,0.688,0.315 +Kuwait,2017,6.094,10.837,0.853,66.500,0.884,-0.005,,0.692,0.307 +Kuwait,2019,6.106,10.817,0.842,66.900,0.867,-0.104,,0.695,0.303 +Kyrgyzstan,2006,4.641,8.185,0.844,59.980,0.678,-0.140,0.879,0.655,0.159 +Kyrgyzstan,2007,4.698,8.258,0.833,60.260,0.684,-0.091,0.929,0.655,0.130 +Kyrgyzstan,2008,4.737,8.329,0.792,60.540,0.719,-0.100,0.923,0.623,0.147 +Kyrgyzstan,2009,5.069,8.345,0.855,60.820,0.699,-0.140,0.896,0.607,0.165 +Kyrgyzstan,2010,4.996,8.329,0.885,61.100,0.720,-0.072,0.926,0.650,0.123 +Kyrgyzstan,2011,4.921,8.374,0.891,61.520,0.748,-0.155,0.932,0.681,0.151 +Kyrgyzstan,2012,5.208,8.357,0.856,61.940,0.703,-0.079,0.892,0.691,0.182 +Kyrgyzstan,2013,5.402,8.441,0.851,62.360,0.755,-0.085,0.900,0.722,0.135 +Kyrgyzstan,2014,5.252,8.460,0.898,62.780,0.736,0.355,0.897,0.725,0.185 +Kyrgyzstan,2015,4.905,8.477,0.857,63.200,0.813,0.200,0.858,0.767,0.173 +Kyrgyzstan,2016,4.857,8.500,0.914,63.500,0.814,0.056,0.917,0.778,0.126 +Kyrgyzstan,2017,5.630,8.526,0.883,63.800,0.859,0.143,0.874,0.755,0.160 +Kyrgyzstan,2018,5.297,8.543,0.898,64.100,0.945,0.267,0.907,0.763,0.203 +Kyrgyzstan,2019,5.685,8.567,0.877,64.400,0.920,-0.002,0.885,0.766,0.207 +Kyrgyzstan,2020,6.250,8.503,0.902,64.700,0.935,0.103,0.931,0.803,0.258 +Laos,2006,5.076,8.251,0.807,53.920,0.925,0.439,0.688,0.886,0.163 +Laos,2007,5.364,8.307,0.790,54.440,0.867,0.478,0.580,0.861,0.136 +Laos,2008,5.044,8.366,0.807,54.960,0.886,0.416,0.637,0.829,0.202 +Laos,2011,4.704,8.548,0.691,56.300,0.882,0.459,0.587,0.900,0.225 +Laos,2012,4.876,8.611,0.693,56.600,,0.232,,0.917,0.387 +Laos,2017,4.623,8.890,0.707,58.300,0.891,0.073,0.592,0.873,0.344 +Laos,2018,4.859,8.935,0.705,58.700,0.907,0.141,0.634,0.852,0.332 +Laos,2019,5.197,8.965,0.729,59.100,0.906,0.061,0.620,0.878,0.306 +Laos,2020,5.284,8.960,0.660,59.500,0.915,0.141,0.748,0.822,0.358 +Latvia,2006,4.710,10.032,0.884,63.160,0.641,-0.229,0.937,0.654,0.234 +Latvia,2007,4.667,10.136,0.836,63.520,0.700,-0.167,0.924,0.673,0.247 +Latvia,2008,5.145,10.112,0.855,63.880,0.630,-0.203,0.926,0.639,0.215 +Latvia,2009,4.669,9.975,0.807,64.240,0.437,-0.180,0.942,0.525,0.242 +Latvia,2011,4.967,10.029,0.836,64.860,0.564,-0.002,0.934,0.563,0.222 +Latvia,2012,5.125,10.082,0.851,65.120,0.564,-0.038,0.895,0.560,0.232 +Latvia,2013,5.070,10.116,0.834,65.380,0.631,-0.073,0.837,0.642,0.227 +Latvia,2014,5.729,10.144,0.881,65.640,0.671,-0.043,0.804,0.652,0.226 +Latvia,2015,5.881,10.185,0.879,65.900,0.656,-0.077,0.808,0.608,0.228 +Latvia,2016,5.940,10.211,0.917,66.200,0.685,-0.156,0.868,0.654,0.231 +Latvia,2017,5.978,10.257,0.895,66.500,0.700,-0.154,0.798,0.623,0.232 +Latvia,2018,5.901,10.307,0.913,66.800,0.608,-0.212,0.799,0.585,0.192 +Latvia,2019,5.970,10.336,0.936,67.100,0.698,-0.194,0.789,0.575,0.212 +Latvia,2020,6.229,10.300,0.928,67.400,0.820,-0.078,0.809,0.714,0.202 +Lebanon,2005,5.491,9.565,0.796,64.600,0.703,,0.945,0.584,0.292 +Lebanon,2006,4.653,9.568,0.853,64.720,0.670,0.069,0.902,0.548,0.320 +Lebanon,2008,4.595,9.743,0.717,64.960,0.524,0.035,0.927,0.527,0.365 +Lebanon,2009,5.206,9.830,0.736,65.080,0.665,0.071,0.937,0.528,0.401 +Lebanon,2010,5.032,9.878,0.721,65.200,0.678,0.073,0.949,0.525,0.341 +Lebanon,2011,5.188,9.838,0.733,65.280,0.657,0.006,0.911,0.578,0.320 +Lebanon,2012,4.573,9.800,0.713,65.360,0.621,-0.006,0.856,0.499,0.339 +Lebanon,2013,4.983,9.772,0.708,65.440,0.655,-0.004,0.921,0.499,0.409 +Lebanon,2014,5.233,9.739,0.759,65.520,0.657,-0.012,0.939,0.559,0.267 +Lebanon,2015,5.172,9.699,0.742,65.600,0.597,0.073,0.889,0.568,0.243 +Lebanon,2016,5.271,9.687,0.828,66.100,0.657,0.031,0.853,0.553,0.263 +Lebanon,2017,5.154,9.681,0.777,66.600,0.605,-0.074,0.911,0.515,0.244 +Lebanon,2018,5.167,9.656,0.829,67.100,0.607,-0.066,0.907,0.464,0.271 +Lebanon,2019,4.024,9.597,0.866,67.600,0.447,-0.081,0.890,0.322,0.494 +Lesotho,2011,4.898,7.777,0.824,45.740,0.618,-0.087,0.768,0.793,0.170 +Lesotho,2016,3.808,7.953,0.798,46.600,0.729,-0.099,0.743,0.732,0.270 +Lesotho,2017,3.795,7.931,0.769,47.300,0.757,-0.145,0.797,0.746,0.255 +Lesotho,2019,3.512,7.926,0.790,48.700,0.716,-0.131,0.915,0.735,0.273 +Liberia,2007,3.701,7.196,0.594,49.140,0.790,0.115,0.776,0.613,0.435 +Liberia,2008,4.221,7.223,0.619,49.960,0.724,-0.035,0.840,0.585,0.261 +Liberia,2010,4.196,7.258,0.827,51.600,0.819,-0.038,0.818,0.595,0.217 +Liberia,2014,4.571,7.391,0.708,53.280,0.590,-0.030,0.869,0.543,0.443 +Liberia,2015,2.702,7.365,0.638,53.700,0.671,-0.061,0.903,0.505,0.388 +Liberia,2016,3.355,7.324,0.643,54.500,0.763,0.033,0.901,0.636,0.509 +Liberia,2017,4.424,7.324,0.685,55.300,0.733,-0.012,0.867,0.668,0.391 +Liberia,2018,4.135,7.311,0.727,56.100,0.766,0.050,0.868,0.660,0.436 +Liberia,2019,5.121,7.264,0.712,56.900,0.706,0.051,0.828,0.636,0.389 +Libya,2012,5.754,9.842,0.855,62.660,0.712,-0.032,0.791,0.695,0.316 +Libya,2015,5.615,9.308,0.868,62.300,0.775,-0.044,,0.704,0.369 +Libya,2016,5.434,9.268,0.876,62.300,0.822,-0.089,,0.718,0.383 +Libya,2017,5.647,9.491,0.823,62.300,0.779,-0.019,0.673,0.697,0.379 +Libya,2018,5.494,9.617,0.824,62.300,0.781,-0.101,0.646,0.706,0.399 +Libya,2019,5.330,9.627,0.827,62.300,0.762,-0.073,0.686,0.709,0.401 +Lithuania,2006,5.954,10.046,0.930,63.140,0.567,-0.295,0.967,0.621,0.254 +Lithuania,2007,5.808,10.163,0.941,63.480,0.590,-0.282,0.966,0.589,0.279 +Lithuania,2008,5.554,10.199,0.914,63.820,0.621,-0.259,0.961,0.533,0.276 +Lithuania,2009,5.467,10.050,0.933,64.160,0.496,-0.303,0.979,0.526,0.271 +Lithuania,2010,5.066,10.085,0.882,64.500,0.519,-0.275,0.962,0.473,0.272 +Lithuania,2011,5.432,10.167,0.911,64.700,0.566,-0.148,0.964,0.570,0.275 +Lithuania,2012,5.771,10.218,0.919,64.900,0.503,-0.273,0.957,0.581,0.277 +Lithuania,2013,5.596,10.263,0.913,65.100,0.556,-0.237,0.936,0.581,0.294 +Lithuania,2014,6.126,10.306,0.908,65.300,0.508,-0.263,0.956,0.619,0.287 +Lithuania,2015,5.711,10.335,0.929,65.500,0.641,-0.254,0.924,0.595,0.276 +Lithuania,2016,5.866,10.373,0.938,66.100,0.614,-0.266,0.949,0.594,0.250 +Lithuania,2017,6.273,10.429,0.926,66.700,0.749,-0.174,0.790,0.608,0.195 +Lithuania,2018,6.309,10.474,0.929,67.300,0.699,-0.237,0.852,0.517,0.214 +Lithuania,2019,6.064,10.518,0.918,67.900,0.780,-0.251,0.783,0.566,0.276 +Lithuania,2020,6.391,10.504,0.953,68.500,0.824,-0.122,0.829,0.660,0.202 +Luxembourg,2009,6.958,11.562,0.939,71.440,0.939,0.127,0.432,0.799,0.238 +Luxembourg,2010,7.097,11.592,0.952,71.700,0.908,0.096,0.423,0.809,0.216 +Luxembourg,2011,7.101,11.595,0.934,71.880,0.962,0.106,0.388,0.836,0.200 +Luxembourg,2012,6.964,11.567,0.914,72.060,0.917,0.059,0.403,0.815,0.227 +Luxembourg,2013,7.131,11.580,0.917,72.240,0.790,-0.054,0.301,0.640,0.185 +Luxembourg,2014,6.891,11.598,0.875,72.420,0.938,0.106,0.366,0.803,0.170 +Luxembourg,2015,6.702,11.617,0.934,72.600,0.932,0.052,0.375,0.757,0.193 +Luxembourg,2016,6.967,11.640,0.941,72.600,0.882,0.019,0.356,0.758,0.192 +Luxembourg,2017,7.061,11.634,0.905,72.600,0.903,0.044,0.330,0.766,0.184 +Luxembourg,2018,7.243,11.645,0.902,72.600,0.884,-0.022,0.385,0.750,0.202 +Luxembourg,2019,7.404,11.648,0.912,72.600,0.930,-0.045,0.390,0.789,0.212 +Madagascar,2006,3.980,7.376,0.711,54.040,,-0.039,,0.702,0.161 +Madagascar,2008,4.640,7.439,0.776,54.920,0.332,-0.099,0.773,0.614,0.215 +Madagascar,2011,4.381,7.336,0.818,56.220,0.546,-0.062,0.897,0.510,0.235 +Madagascar,2012,3.551,7.339,0.673,56.640,0.487,-0.055,0.854,0.690,0.194 +Madagascar,2013,3.816,7.334,0.673,57.060,0.480,-0.019,0.868,0.734,0.241 +Madagascar,2014,3.676,7.340,0.655,57.480,0.529,-0.023,0.791,0.748,0.192 +Madagascar,2015,3.593,7.344,0.647,57.900,0.545,-0.041,0.861,0.802,0.226 +Madagascar,2016,3.663,7.356,0.746,58.300,0.570,-0.069,0.864,0.813,0.204 +Madagascar,2017,4.079,7.368,0.626,58.700,0.570,-0.033,0.847,0.752,0.375 +Madagascar,2018,4.071,7.386,0.666,59.100,0.551,0.003,0.889,0.752,0.362 +Madagascar,2019,4.339,7.406,0.701,59.500,0.550,-0.012,0.720,0.723,0.304 +Malawi,2006,3.830,6.678,0.554,44.880,0.767,0.200,0.676,0.670,0.222 +Malawi,2007,4.891,6.742,0.600,46.260,0.910,0.202,0.691,0.727,0.176 +Malawi,2009,5.148,6.838,0.718,49.020,0.879,0.176,0.689,0.765,0.130 +Malawi,2011,3.946,6.895,0.613,51.420,0.733,0.099,0.853,0.713,0.268 +Malawi,2012,4.279,6.885,0.604,52.440,0.637,0.169,0.886,0.816,0.200 +Malawi,2013,4.035,6.907,0.563,53.460,0.752,0.078,0.857,0.808,0.248 +Malawi,2014,4.563,6.935,0.512,54.480,0.786,0.061,0.824,0.704,0.263 +Malawi,2015,3.868,6.935,0.494,55.500,0.801,0.058,0.835,0.633,0.260 +Malawi,2016,3.476,6.932,0.524,56.200,0.810,0.066,0.824,0.603,0.325 +Malawi,2017,3.417,6.945,0.555,56.900,0.848,0.025,0.735,0.609,0.312 +Malawi,2018,3.335,6.949,0.528,57.600,0.799,0.073,0.766,0.586,0.365 +Malawi,2019,3.869,6.966,0.549,58.300,0.765,0.004,0.680,0.537,0.348 +Malaysia,2006,6.012,9.839,0.866,64.960,0.837,0.201,0.740,0.750,0.243 +Malaysia,2007,6.239,9.881,0.871,65.120,0.844,0.089,0.799,0.775,0.162 +Malaysia,2008,5.807,9.909,0.803,65.280,0.780,0.044,0.884,0.815,0.186 +Malaysia,2009,5.385,9.875,0.792,65.440,0.874,-0.009,0.858,0.822,0.164 +Malaysia,2010,5.580,9.930,0.839,65.600,0.769,0.032,0.844,0.832,0.192 +Malaysia,2011,5.786,9.966,0.770,65.760,0.840,-0.016,0.842,0.887,0.155 +Malaysia,2012,5.914,10.005,0.841,65.920,0.848,0.017,0.847,0.867,0.177 +Malaysia,2013,5.770,10.037,0.831,66.080,0.791,0.264,0.755,0.736,0.317 +Malaysia,2014,5.963,10.082,0.863,66.240,0.808,0.239,0.845,0.770,0.261 +Malaysia,2015,6.322,10.118,0.818,66.400,0.675,0.222,0.838,0.775,0.314 +Malaysia,2018,5.339,10.223,0.789,67.000,0.875,0.127,0.894,0.824,0.200 +Malaysia,2019,5.428,10.252,0.842,67.200,0.916,0.123,0.782,0.834,0.176 +Maldives,2018,5.198,9.826,0.913,70.600,0.855,0.024,,, +Mali,2006,4.014,7.593,0.761,45.920,0.555,-0.072,0.761,0.767,0.209 +Mali,2008,4.115,7.607,0.747,47.160,0.495,-0.012,0.918,0.682,0.164 +Mali,2009,3.977,7.622,0.733,47.780,0.634,0.008,0.819,0.760,0.150 +Mali,2010,3.762,7.642,0.751,48.400,0.749,-0.028,0.811,0.797,0.162 +Mali,2011,4.667,7.643,0.796,48.760,0.823,-0.101,0.726,0.758,0.132 +Mali,2012,4.313,7.605,0.823,49.120,0.704,-0.088,0.787,0.681,0.109 +Mali,2013,3.676,7.599,0.820,49.480,0.665,-0.053,0.755,0.724,0.193 +Mali,2014,3.975,7.638,0.843,49.840,0.652,-0.037,0.658,0.741,0.186 +Mali,2015,4.582,7.669,0.830,50.200,0.634,-0.068,0.800,0.709,0.243 +Mali,2016,4.016,7.695,0.836,50.700,0.696,-0.070,0.862,0.807,0.305 +Mali,2017,4.742,7.718,0.741,51.200,0.753,-0.069,0.863,0.742,0.393 +Mali,2018,4.416,7.733,0.692,51.700,0.737,-0.034,0.793,0.770,0.370 +Mali,2019,4.988,7.752,0.755,52.200,0.670,-0.038,0.846,0.712,0.358 +Malta,2009,6.328,10.331,0.916,71.380,0.803,0.464,,0.715,0.358 +Malta,2010,5.774,10.361,0.908,71.600,0.802,0.287,,0.697,0.375 +Malta,2011,6.155,10.370,0.923,71.720,0.882,0.296,,0.736,0.340 +Malta,2012,5.963,10.389,0.922,71.840,0.861,0.352,,0.744,0.391 +Malta,2013,6.380,10.422,0.942,71.960,0.909,0.410,,0.660,0.370 +Malta,2014,6.452,10.486,0.941,72.080,0.904,0.404,0.670,0.652,0.352 +Malta,2015,6.613,10.566,0.919,72.200,0.912,0.347,0.664,0.680,0.355 +Malta,2016,6.591,10.599,0.930,72.200,0.916,0.345,0.696,0.687,0.355 +Malta,2017,6.676,10.635,0.937,72.200,0.924,0.253,0.690,0.721,0.302 +Malta,2018,6.910,10.670,0.932,72.200,0.927,0.179,0.595,0.721,0.296 +Malta,2019,6.733,10.677,0.922,72.200,0.924,0.087,0.689,0.707,0.356 +Malta,2020,6.157,,0.938,72.200,0.931,,0.675,0.601,0.411 +Mauritania,2007,4.149,8.533,0.682,53.660,0.573,-0.072,0.586,0.733,0.174 +Mauritania,2008,4.248,8.501,0.670,53.940,0.593,-0.018,0.841,0.732,0.176 +Mauritania,2009,4.500,8.473,0.819,54.220,0.735,0.039,0.848,0.738,0.170 +Mauritania,2010,4.772,8.470,0.857,54.500,0.669,0.055,0.727,0.778,0.129 +Mauritania,2011,4.785,8.481,0.750,54.820,0.567,0.052,0.747,0.762,0.175 +Mauritania,2012,4.673,8.495,0.763,55.140,0.487,-0.021,0.707,0.782,0.164 +Mauritania,2013,4.199,8.506,0.741,55.460,0.603,-0.079,0.676,0.793,0.196 +Mauritania,2014,4.483,8.519,0.853,55.780,0.468,-0.054,0.589,0.755,0.163 +Mauritania,2015,3.923,8.542,0.875,56.100,0.447,0.055,0.715,0.820,0.194 +Mauritania,2016,4.472,8.526,0.785,56.400,0.467,-0.175,0.842,0.735,0.222 +Mauritania,2017,4.678,8.533,0.779,56.700,0.527,-0.153,0.777,0.637,0.272 +Mauritania,2018,4.314,8.526,0.802,57.000,0.467,-0.112,0.711,0.663,0.276 +Mauritania,2019,4.153,8.556,0.798,57.300,0.628,-0.102,0.743,0.692,0.260 +Mauritius,2011,5.477,9.767,0.800,64.700,0.848,0.191,0.847,0.738,0.253 +Mauritius,2014,5.648,9.865,0.785,65.300,0.824,0.176,0.879,0.808,0.222 +Mauritius,2016,5.610,9.935,0.836,65.800,0.819,0.139,0.891,0.785,0.246 +Mauritius,2017,6.174,9.972,0.910,66.100,0.912,0.087,0.818,0.748,0.169 +Mauritius,2018,5.882,10.008,0.909,66.400,0.867,-0.073,0.785,0.774,0.158 +Mauritius,2019,6.241,10.043,0.913,66.700,0.893,-0.053,0.810,0.808,0.149 +Mauritius,2020,6.015,9.972,0.893,67.000,0.843,-0.037,0.772,0.767,0.138 +Mexico,2005,6.581,9.788,0.903,66.200,0.814,,0.764,0.820,0.219 +Mexico,2007,6.525,9.825,0.879,66.320,0.670,-0.095,0.747,0.816,0.248 +Mexico,2008,6.829,9.821,0.876,66.380,0.677,-0.128,0.785,0.825,0.201 +Mexico,2009,6.963,9.752,0.868,66.440,0.682,-0.076,0.764,0.849,0.196 +Mexico,2010,6.802,9.788,0.876,66.500,0.778,-0.048,0.693,0.840,0.215 +Mexico,2011,6.910,9.810,0.824,66.680,0.831,-0.099,0.698,0.790,0.228 +Mexico,2012,7.320,9.832,0.767,66.860,0.788,-0.093,0.633,0.784,0.278 +Mexico,2013,7.443,9.832,0.759,67.040,0.739,-0.165,0.615,0.790,0.223 +Mexico,2014,6.680,9.847,0.782,67.220,0.779,-0.094,0.630,0.802,0.229 +Mexico,2015,6.236,9.867,0.761,67.400,0.719,-0.152,0.708,0.745,0.237 +Mexico,2016,6.824,9.884,0.893,67.700,0.752,-0.153,0.809,0.859,0.220 +Mexico,2017,6.410,9.893,0.800,68.000,0.861,-0.202,0.801,0.843,0.231 +Mexico,2018,6.550,9.903,0.858,68.300,0.816,-0.179,0.809,0.882,0.213 +Mexico,2019,6.432,9.891,0.852,68.600,0.903,-0.141,0.809,0.864,0.252 +Mexico,2020,5.964,9.782,0.779,68.900,0.873,-0.119,0.778,0.810,0.292 +Moldova,2006,5.102,8.936,0.812,60.580,0.554,-0.164,0.926,0.619,0.255 +Moldova,2007,4.775,8.968,0.804,60.760,0.696,-0.186,0.930,0.571,0.306 +Moldova,2008,5.503,9.045,0.872,60.940,0.641,-0.056,0.926,0.584,0.284 +Moldova,2009,5.554,8.984,0.856,61.120,0.551,-0.099,0.925,0.562,0.306 +Moldova,2010,5.590,9.054,0.847,61.300,0.598,-0.088,0.929,0.584,0.278 +Moldova,2011,5.792,9.111,0.869,61.620,0.628,-0.082,0.957,0.568,0.285 +Moldova,2012,5.996,9.105,0.826,61.940,0.602,-0.050,0.955,0.568,0.314 +Moldova,2013,5.756,9.192,0.803,62.260,0.658,-0.069,0.941,0.582,0.261 +Moldova,2014,5.917,9.241,0.805,62.580,0.623,-0.113,0.925,0.583,0.260 +Moldova,2015,6.017,9.246,0.840,62.900,0.595,-0.090,0.943,0.590,0.281 +Moldova,2016,5.578,9.300,0.837,63.600,0.557,-0.047,0.969,0.621,0.275 +Moldova,2017,5.326,9.363,0.831,64.300,0.553,-0.053,0.926,0.581,0.259 +Moldova,2018,5.682,9.423,0.892,65.000,0.824,-0.084,0.929,0.582,0.270 +Moldova,2019,5.803,9.475,0.809,65.700,0.784,-0.092,0.884,0.631,0.262 +Moldova,2020,5.812,9.462,0.874,66.400,0.859,-0.058,0.941,0.727,0.268 +Mongolia,2007,4.609,8.833,0.881,58.820,0.781,0.064,0.918,0.571,0.203 +Mongolia,2008,4.493,8.904,0.920,59.280,0.484,0.068,0.962,0.586,0.173 +Mongolia,2010,4.586,8.920,0.904,60.200,0.631,0.099,0.928,0.712,0.150 +Mongolia,2011,5.031,9.061,0.948,60.500,0.700,0.151,0.931,0.692,0.153 +Mongolia,2012,4.885,9.158,0.919,60.800,0.688,0.107,0.932,0.689,0.181 +Mongolia,2013,4.913,9.248,0.935,61.100,0.748,0.136,0.928,0.649,0.179 +Mongolia,2014,4.825,9.304,0.943,61.400,0.752,0.146,0.909,0.627,0.170 +Mongolia,2015,4.983,9.308,0.906,61.700,0.686,0.173,0.900,0.653,0.208 +Mongolia,2016,5.057,9.300,0.947,61.900,0.760,0.090,0.900,0.694,0.171 +Mongolia,2017,5.334,9.334,0.924,62.100,0.675,0.119,0.865,0.675,0.214 +Mongolia,2018,5.465,9.386,0.942,62.300,0.696,0.054,0.849,0.654,0.192 +Mongolia,2019,5.563,9.418,0.946,62.500,0.711,0.149,0.873,0.707,0.167 +Mongolia,2020,6.011,9.396,0.918,62.700,0.718,0.141,0.843,0.636,0.260 +Montenegro,2007,5.196,9.693,0.832,66.200,0.512,-0.134,0.815,0.579,0.340 +Montenegro,2009,4.801,9.699,0.816,66.800,0.556,-0.101,0.838,0.623,0.423 +Montenegro,2010,5.455,9.724,0.805,67.100,0.552,-0.206,0.757,0.595,0.410 +Montenegro,2011,5.223,9.755,0.818,67.260,0.546,-0.226,0.762,0.603,0.378 +Montenegro,2012,5.219,9.726,0.704,67.420,0.462,-0.192,0.755,0.574,0.379 +Montenegro,2013,5.074,9.760,0.736,67.580,0.502,-0.176,0.693,0.539,0.331 +Montenegro,2014,5.283,9.777,0.863,67.740,0.503,0.097,0.768,0.587,0.368 +Montenegro,2015,5.125,9.810,0.740,67.900,0.583,-0.144,0.781,0.580,0.337 +Montenegro,2016,5.304,9.839,0.866,68.100,0.569,-0.087,0.849,0.591,0.337 +Montenegro,2017,5.615,9.885,0.881,68.300,0.626,-0.083,0.756,0.519,0.350 +Montenegro,2018,5.650,9.934,0.856,68.500,0.626,-0.051,0.769,0.590,0.355 +Montenegro,2019,5.386,9.970,0.832,68.700,0.694,-0.105,0.820,0.591,0.366 +Montenegro,2020,5.722,9.913,0.887,68.900,0.802,0.060,0.845,0.603,0.411 +Morocco,2010,4.383,8.746,,63.500,0.663,-0.162,0.900,, +Morocco,2011,5.085,8.783,0.833,63.800,0.579,-0.218,0.875,0.736,0.187 +Morocco,2012,4.970,8.799,0.676,64.100,0.757,-0.187,0.845,0.687,0.281 +Morocco,2013,5.142,8.829,0.597,64.400,0.572,-0.210,0.771,0.784,0.239 +Morocco,2015,5.163,8.872,0.606,65.000,0.713,-0.228,0.842,0.661,0.262 +Morocco,2016,5.386,8.869,0.655,65.300,0.817,-0.237,0.717,0.713,0.205 +Morocco,2017,5.312,8.898,0.641,65.600,0.814,-0.216,0.841,0.559,0.323 +Morocco,2018,4.897,8.914,0.554,65.900,0.773,-0.234,0.843,0.638,0.416 +Morocco,2019,5.057,8.925,0.535,66.200,0.757,-0.244,0.757,0.589,0.410 +Morocco,2020,4.803,8.871,0.553,66.500,0.819,-0.229,0.803,0.587,0.256 +Mozambique,2006,4.595,6.776,0.879,44.800,0.684,0.041,0.758,0.623,0.327 +Mozambique,2007,4.833,6.823,0.748,45.500,0.643,0.074,0.854,0.634,0.240 +Mozambique,2008,4.654,6.865,0.756,46.200,0.514,0.006,0.864,0.623,0.280 +Mozambique,2011,4.971,6.979,0.818,48.320,0.639,-0.024,0.719,0.592,0.243 +Mozambique,2015,4.550,7.141,0.666,51.200,0.813,0.089,0.632,0.564,0.340 +Mozambique,2017,4.280,7.157,0.678,53.200,0.823,-0.030,0.682,0.648,0.353 +Mozambique,2018,4.654,7.162,0.738,54.200,0.897,0.049,0.691,0.640,0.397 +Mozambique,2019,4.932,7.155,0.742,55.200,0.870,0.073,0.682,0.587,0.384 +Myanmar,2012,4.439,8.158,0.612,57.020,0.691,0.645,0.695,0.764,0.205 +Myanmar,2013,4.176,8.230,0.757,57.380,0.775,0.689,0.638,0.803,0.217 +Myanmar,2014,4.786,8.299,0.774,57.740,,0.698,0.592,0.858,0.112 +Myanmar,2015,4.224,8.359,0.752,58.100,0.808,0.688,0.633,0.866,0.272 +Myanmar,2016,4.623,8.408,0.793,58.400,0.877,0.679,0.607,0.804,0.302 +Myanmar,2017,4.154,8.464,0.795,58.700,0.886,0.650,0.619,0.746,0.282 +Myanmar,2018,4.411,8.523,0.774,59.000,0.906,0.490,0.647,0.777,0.300 +Myanmar,2019,4.434,8.545,0.763,59.300,0.899,0.561,0.682,0.755,0.286 +Myanmar,2020,4.431,8.554,0.796,59.600,0.825,0.470,0.647,0.800,0.289 +Namibia,2007,4.886,9.059,0.828,49.680,0.781,-0.101,0.839,0.811,0.160 +Namibia,2014,4.574,9.232,0.763,55.160,0.849,-0.183,0.790,0.749,0.239 +Namibia,2017,4.441,9.215,0.828,56.200,0.810,-0.190,0.831,0.721,0.277 +Namibia,2018,4.834,9.204,0.864,56.500,0.754,-0.169,0.846,0.739,0.240 +Namibia,2019,4.436,9.173,0.845,56.800,0.739,-0.174,0.879,0.672,0.256 +Namibia,2020,4.451,9.104,0.741,57.100,0.666,-0.104,0.810,0.648,0.248 +Nepal,2006,4.567,7.616,0.874,57.200,0.689,,0.897,0.717,0.171 +Nepal,2007,4.748,7.638,0.787,57.700,0.413,0.317,0.891,0.643,0.152 +Nepal,2008,4.441,7.686,0.818,58.200,0.618,0.291,0.900,0.745,0.153 +Nepal,2009,4.917,7.723,0.813,58.700,0.616,0.044,0.950,0.570,0.215 +Nepal,2010,4.350,7.765,0.779,59.200,0.519,0.092,0.911,0.672,0.226 +Nepal,2011,3.809,7.797,0.741,59.400,0.525,-0.010,0.935,0.699,0.207 +Nepal,2012,4.233,7.846,0.734,59.600,0.638,0.070,0.883,0.736,0.231 +Nepal,2013,4.605,7.889,0.740,59.800,0.722,0.151,0.877,0.629,0.279 +Nepal,2014,4.975,7.948,0.786,60.000,0.712,0.121,0.841,0.614,0.287 +Nepal,2015,4.812,7.976,0.748,60.200,0.763,0.227,0.824,0.543,0.358 +Nepal,2016,5.100,7.973,0.837,61.300,0.839,0.168,0.817,0.627,0.370 +Nepal,2017,4.737,8.039,0.816,62.400,0.845,0.134,0.770,0.571,0.376 +Nepal,2018,4.910,8.087,0.768,63.500,0.770,0.122,0.742,0.537,0.387 +Nepal,2019,5.449,8.136,0.772,64.600,0.790,0.167,0.712,0.536,0.357 +Netherlands,2005,7.464,10.814,0.947,70.400,0.901,,0.571,0.869,0.233 +Netherlands,2007,7.452,10.881,0.944,70.800,0.896,0.344,0.445,0.818,0.213 +Netherlands,2008,7.631,10.899,0.944,71.000,0.883,0.365,0.419,0.788,0.182 +Netherlands,2010,7.502,10.864,0.957,71.400,0.921,0.349,0.399,0.853,0.206 +Netherlands,2011,7.564,10.875,0.938,71.520,0.925,0.336,0.359,0.863,0.181 +Netherlands,2012,7.471,10.861,0.939,71.640,0.877,0.288,0.434,0.861,0.226 +Netherlands,2013,7.407,10.857,0.925,71.760,0.919,0.305,0.505,0.867,0.235 +Netherlands,2014,7.321,10.867,0.909,71.880,0.910,0.331,0.457,0.868,0.221 +Netherlands,2015,7.324,10.882,0.879,72.000,0.904,0.261,0.412,0.834,0.202 +Netherlands,2016,7.541,10.899,0.926,72.100,0.907,0.239,0.433,0.838,0.215 +Netherlands,2017,7.459,10.921,0.937,72.200,0.920,0.250,0.363,0.852,0.185 +Netherlands,2018,7.463,10.941,0.939,72.300,0.920,0.161,0.371,0.862,0.205 +Netherlands,2019,7.425,10.953,0.941,72.400,0.886,0.213,0.360,0.838,0.231 +Netherlands,2020,7.504,10.901,0.944,72.500,0.935,0.151,0.281,0.784,0.247 +New Zealand,2006,7.305,10.526,0.946,71.200,0.932,0.312,0.224,0.880,0.219 +New Zealand,2007,7.604,10.546,0.967,71.400,0.878,0.279,0.295,0.854,0.238 +New Zealand,2008,7.381,10.528,0.944,71.600,0.893,0.298,0.334,0.854,0.232 +New Zealand,2010,7.224,10.520,0.976,72.000,0.918,0.254,0.321,0.847,0.235 +New Zealand,2011,7.191,10.536,0.954,72.120,0.935,0.284,0.269,0.864,0.210 +New Zealand,2012,7.250,10.553,0.930,72.240,0.902,0.287,0.289,0.866,0.207 +New Zealand,2013,7.280,10.571,0.958,72.360,0.944,0.237,0.312,0.835,0.151 +New Zealand,2014,7.306,10.592,0.942,72.480,0.932,0.348,0.273,0.848,0.199 +New Zealand,2015,7.418,10.608,0.987,72.600,0.942,0.329,0.186,0.834,0.160 +New Zealand,2016,7.226,10.623,0.937,72.800,0.927,0.266,0.278,0.833,0.207 +New Zealand,2017,7.327,10.633,0.955,73.000,0.942,0.294,0.222,0.817,0.172 +New Zealand,2018,7.370,10.660,0.954,73.200,0.949,0.120,0.207,0.845,0.168 +New Zealand,2019,7.205,10.666,0.939,73.400,0.912,0.157,0.234,0.816,0.191 +New Zealand,2020,7.257,10.600,0.952,73.600,0.918,0.125,0.283,0.849,0.209 +Nicaragua,2006,4.460,8.398,0.877,64.140,0.745,0.010,0.844,0.779,0.294 +Nicaragua,2007,4.944,8.434,0.866,64.480,0.836,0.140,0.826,0.810,0.287 +Nicaragua,2008,5.104,8.454,0.857,64.820,0.791,0.076,0.819,0.784,0.289 +Nicaragua,2009,5.353,8.407,0.835,65.160,0.746,0.070,0.794,0.781,0.299 +Nicaragua,2010,5.687,8.436,0.863,65.500,0.792,0.018,0.802,0.805,0.268 +Nicaragua,2011,5.386,8.484,0.800,65.720,0.779,-0.020,0.760,0.791,0.309 +Nicaragua,2012,5.448,8.534,0.894,65.940,0.850,0.017,0.644,0.803,0.255 +Nicaragua,2013,5.772,8.569,0.868,66.160,0.859,0.039,0.636,0.839,0.271 +Nicaragua,2014,6.275,8.602,0.839,66.380,0.817,0.104,0.699,0.813,0.334 +Nicaragua,2015,5.924,8.636,0.827,66.600,0.809,0.077,0.728,0.797,0.346 +Nicaragua,2016,6.013,8.668,0.853,66.900,0.717,0.039,0.731,0.805,0.380 +Nicaragua,2017,6.476,8.700,0.838,67.200,0.922,0.010,0.673,0.850,0.308 +Nicaragua,2018,5.819,8.647,0.854,67.500,0.797,0.009,0.713,0.793,0.408 +Nicaragua,2019,6.113,8.595,0.874,67.800,0.883,0.029,0.622,0.835,0.337 +Niger,2006,3.737,6.888,0.677,46.360,0.750,0.076,0.755,0.755,0.179 +Niger,2007,4.277,6.881,0.726,47.120,0.584,-0.056,0.748,0.706,0.158 +Niger,2008,4.236,6.918,0.607,47.880,0.649,-0.055,0.749,0.650,0.194 +Niger,2009,4.267,6.898,0.771,48.640,0.880,-0.009,0.483,0.730,0.115 +Niger,2010,4.101,6.941,0.655,49.400,0.817,-0.023,0.529,0.745,0.126 +Niger,2011,4.556,6.925,0.818,49.920,0.780,-0.055,0.549,0.700,0.166 +Niger,2012,3.798,6.987,0.700,50.440,0.734,-0.064,0.777,0.603,0.142 +Niger,2013,3.716,7.002,0.696,50.960,0.825,-0.077,0.711,0.650,0.208 +Niger,2014,4.181,7.027,0.753,51.480,0.688,-0.046,0.605,0.678,0.205 +Niger,2015,3.671,7.030,0.713,52.000,0.728,-0.032,0.703,0.682,0.218 +Niger,2016,4.235,7.047,0.683,52.500,0.702,-0.016,0.814,0.675,0.325 +Niger,2017,4.616,7.058,0.582,53.000,0.684,-0.030,0.778,0.731,0.427 +Niger,2018,5.164,7.087,0.612,53.500,0.791,0.009,0.637,0.771,0.503 +Niger,2019,5.004,7.106,0.677,54.000,0.831,0.026,0.729,0.816,0.304 +Nigeria,2006,4.710,8.326,0.735,44.120,0.649,0.085,0.871,0.781,0.178 +Nigeria,2007,4.890,8.364,0.718,44.640,0.635,0.136,0.918,0.826,0.141 +Nigeria,2008,4.939,8.403,0.780,45.160,0.584,0.119,0.892,0.740,0.244 +Nigeria,2009,4.980,8.453,0.722,45.680,0.537,0.067,0.913,0.745,0.225 +Nigeria,2010,4.760,8.504,0.824,46.200,0.565,0.067,0.911,0.782,0.190 +Nigeria,2012,5.493,8.543,0.818,47.120,0.652,0.066,0.900,0.811,0.209 +Nigeria,2013,4.818,8.581,0.663,47.580,0.622,0.051,0.905,0.638,0.286 +Nigeria,2015,4.933,8.615,0.812,48.500,0.680,-0.035,0.926,0.717,0.251 +Nigeria,2016,5.220,8.573,0.805,48.900,0.798,0.043,0.905,0.732,0.252 +Nigeria,2017,5.322,8.555,0.733,49.300,0.826,0.124,0.835,0.725,0.236 +Nigeria,2018,5.252,8.548,0.741,49.700,0.790,-0.010,0.866,0.805,0.256 +Nigeria,2019,4.356,8.544,0.734,50.100,0.729,0.032,0.873,0.715,0.245 +Nigeria,2020,5.503,8.484,0.739,50.500,0.713,0.099,0.913,0.744,0.316 +North Cyprus,2012,5.463,,0.871,,0.693,,0.855,0.709,0.405 +North Cyprus,2013,5.567,,0.869,,0.775,,0.715,0.622,0.443 +North Cyprus,2014,5.786,,0.802,,0.830,,0.692,0.724,0.311 +North Cyprus,2015,5.843,,0.791,,0.785,,0.659,0.702,0.319 +North Cyprus,2016,5.827,,0.808,,0.796,,0.670,0.644,0.346 +North Cyprus,2018,5.608,,0.837,,0.797,,0.614,0.480,0.262 +North Cyprus,2019,5.467,,0.803,,0.793,,0.640,0.494,0.296 +North Macedonia,2007,4.494,9.416,0.811,64.095,0.439,0.080,0.870,0.603,0.251 +North Macedonia,2009,4.428,9.464,0.734,64.349,0.552,-0.042,0.844,0.576,0.370 +North Macedonia,2010,4.180,9.496,0.687,64.502,0.513,-0.058,0.856,0.567,0.314 +North Macedonia,2011,4.898,9.518,0.784,64.661,0.607,-0.087,0.865,0.588,0.363 +North Macedonia,2012,4.640,9.513,0.798,64.811,0.613,-0.084,0.920,0.642,0.422 +North Macedonia,2013,5.186,9.541,0.832,64.942,0.641,0.025,0.861,0.578,0.331 +North Macedonia,2014,5.204,9.576,0.793,65.053,0.645,0.035,0.861,0.637,0.307 +North Macedonia,2015,4.976,9.613,0.766,65.145,0.660,-0.047,0.824,0.620,0.299 +North Macedonia,2016,5.346,9.640,0.871,65.225,0.706,0.080,0.870,0.639,0.292 +North Macedonia,2017,5.234,9.650,0.800,65.303,0.752,-0.059,0.856,0.502,0.299 +North Macedonia,2018,5.240,9.677,0.849,65.389,0.745,-0.041,0.910,0.590,0.298 +North Macedonia,2019,5.015,9.711,0.815,65.474,0.725,0.024,0.923,0.576,0.304 +North Macedonia,2020,5.054,9.690,0.750,65.560,0.787,0.131,0.877,0.605,0.365 +Norway,2006,7.416,11.031,0.959,71.320,0.960,0.109,0.397,0.832,0.197 +Norway,2008,7.632,11.042,0.936,71.560,0.947,0.018,0.503,0.792,0.155 +Norway,2012,7.678,11.017,0.948,72.240,0.947,0.147,0.368,0.823,0.213 +Norway,2014,7.444,11.024,0.941,72.680,0.956,0.181,0.405,0.834,0.194 +Norway,2015,7.603,11.033,0.947,72.900,0.948,0.257,0.299,0.843,0.209 +Norway,2016,7.596,11.035,0.960,73.000,0.954,0.133,0.410,0.850,0.209 +Norway,2017,7.579,11.050,0.950,73.100,0.953,0.236,0.250,0.849,0.203 +Norway,2018,7.444,11.056,0.966,73.200,0.960,0.094,0.268,0.827,0.212 +Norway,2019,7.442,11.061,0.942,73.300,0.954,0.111,0.271,0.823,0.195 +Norway,2020,7.290,11.042,0.956,73.400,0.965,0.075,0.271,0.823,0.216 +Oman,2011,6.853,10.382,,65.500,0.916,0.025,,,0.295 +Pakistan,2005,5.225,8.218,0.591,54.200,0.630,,0.844,,0.237 +Pakistan,2007,5.671,8.277,0.479,55.000,0.396,0.089,0.794,0.683,0.310 +Pakistan,2008,4.414,8.271,0.373,55.400,0.335,0.100,0.848,0.655,0.321 +Pakistan,2009,5.208,8.277,0.522,55.800,0.388,0.077,0.874,0.639,0.349 +Pakistan,2010,5.786,8.270,0.571,56.200,0.364,0.300,0.852,0.651,0.372 +Pakistan,2011,5.267,8.276,0.510,56.420,0.376,0.030,0.857,0.628,0.358 +Pakistan,2012,5.132,8.289,0.542,56.640,0.367,0.165,0.842,0.665,0.332 +Pakistan,2013,5.138,8.311,0.607,56.860,0.448,0.100,0.792,0.598,0.274 +Pakistan,2014,5.436,8.336,0.552,57.080,0.543,0.140,0.677,0.585,0.295 +Pakistan,2015,4.823,8.361,0.562,57.300,0.587,0.085,0.717,0.575,0.329 +Pakistan,2016,5.549,8.394,0.627,57.700,0.634,0.095,0.793,0.648,0.332 +Pakistan,2017,5.831,8.428,0.690,58.100,0.713,0.045,0.714,0.586,0.308 +Pakistan,2018,5.472,8.464,0.685,58.500,0.773,0.069,0.799,0.567,0.377 +Pakistan,2019,4.443,8.453,0.617,58.900,0.685,0.124,0.776,0.581,0.424 +Palestinian Territories,2006,4.716,8.213,0.818,61.780,0.547,,0.858,0.497,0.431 +Palestinian Territories,2007,4.151,8.218,0.712,61.897,0.365,-0.080,0.844,0.566,0.412 +Palestinian Territories,2008,4.386,8.276,0.666,62.015,0.358,-0.070,0.753,0.571,0.403 +Palestinian Territories,2009,4.470,8.329,0.738,62.132,0.468,-0.085,0.797,0.544,0.466 +Palestinian Territories,2010,4.703,8.383,0.822,62.250,0.504,-0.117,0.752,0.628,0.381 +Palestinian Territories,2011,4.751,8.474,0.751,,0.522,-0.127,0.750,0.567,0.388 +Palestinian Territories,2012,4.647,8.531,0.782,,0.542,-0.153,0.730,0.616,0.379 +Palestinian Territories,2013,4.844,8.489,0.761,,0.454,-0.150,0.780,0.594,0.365 +Palestinian Territories,2014,4.722,8.457,0.775,,0.657,-0.147,0.804,0.565,0.380 +Palestinian Territories,2015,4.695,8.480,0.766,,0.556,-0.153,0.774,0.594,0.369 +Palestinian Territories,2016,4.907,8.498,0.818,,0.608,-0.129,0.812,0.593,0.378 +Palestinian Territories,2017,4.628,8.485,0.824,,0.632,-0.163,0.831,0.597,0.416 +Palestinian Territories,2018,4.554,,0.819,,0.655,,0.814,0.610,0.419 +Palestinian Territories,2019,4.483,,0.833,,0.653,,0.829,0.625,0.400 +Panama,2006,6.128,9.764,0.951,67.900,0.882,-0.047,0.912,0.845,0.232 +Panama,2007,6.894,9.859,0.937,68.000,0.640,0.083,0.915,0.820,0.149 +Panama,2008,6.931,9.935,0.922,68.100,0.707,0.060,0.881,0.819,0.150 +Panama,2009,7.034,9.930,0.905,68.200,0.721,0.014,0.889,0.883,0.144 +Panama,2010,7.321,9.969,0.928,68.300,0.755,-0.009,0.880,0.888,0.146 +Panama,2011,7.248,10.059,0.876,68.500,0.829,0.009,0.840,0.885,0.180 +Panama,2012,6.860,10.135,0.897,68.700,0.783,-0.002,0.796,0.869,0.207 +Panama,2013,6.866,10.184,0.896,68.900,0.811,0.018,0.814,0.869,0.226 +Panama,2014,6.631,10.217,0.873,69.100,0.894,0.002,0.847,0.808,0.254 +Panama,2015,6.606,10.255,0.883,69.300,0.847,-0.007,0.810,0.801,0.264 +Panama,2016,6.118,10.287,0.882,69.400,0.884,-0.102,0.837,0.858,0.244 +Panama,2017,6.568,10.324,0.912,69.500,0.900,-0.170,0.841,0.833,0.242 +Panama,2018,6.281,10.343,0.904,69.600,0.861,-0.131,0.837,0.884,0.223 +Panama,2019,6.086,10.356,0.886,69.700,0.883,-0.199,0.869,0.878,0.244 +Paraguay,2006,4.730,9.088,0.895,63.620,0.691,0.066,0.841,0.816,0.303 +Paraguay,2007,5.272,9.126,0.863,63.840,0.699,0.132,0.930,0.867,0.219 +Paraguay,2008,5.570,9.174,0.889,64.060,0.649,0.057,0.891,0.849,0.259 +Paraguay,2009,5.576,9.158,0.900,64.280,0.718,0.027,0.857,0.832,0.186 +Paraguay,2010,5.841,9.250,0.889,64.500,0.726,0.076,0.780,0.855,0.176 +Paraguay,2011,5.677,9.278,0.869,64.620,0.666,0.191,0.756,0.810,0.190 +Paraguay,2012,5.820,9.259,0.931,64.740,0.748,0.200,0.774,0.837,0.213 +Paraguay,2013,5.936,9.326,0.939,64.860,0.909,0.046,0.903,0.919,0.224 +Paraguay,2014,5.119,9.360,0.959,64.980,0.759,-0.002,0.762,0.944,0.216 +Paraguay,2015,5.560,9.377,0.914,65.100,0.806,-0.008,0.863,0.866,0.219 +Paraguay,2016,5.801,9.406,0.940,65.300,0.854,-0.071,0.756,0.925,0.197 +Paraguay,2017,5.713,9.441,0.902,65.500,0.891,0.003,0.810,0.903,0.232 +Paraguay,2019,5.653,9.448,0.892,65.900,0.876,0.028,0.882,0.858,0.275 +Peru,2006,4.811,8.989,0.875,65.340,0.668,-0.071,0.895,0.697,0.420 +Peru,2007,5.214,9.063,0.756,65.580,0.638,-0.078,0.931,0.758,0.361 +Peru,2008,5.129,9.142,0.777,65.820,0.638,-0.067,0.896,0.763,0.354 +Peru,2009,5.519,9.145,0.799,66.060,0.638,-0.079,0.880,0.811,0.320 +Peru,2010,5.613,9.217,0.812,66.300,0.757,-0.060,0.881,0.800,0.330 +Peru,2011,5.892,9.270,0.756,66.480,0.773,-0.123,0.824,0.780,0.331 +Peru,2012,5.825,9.322,0.764,66.660,0.703,-0.079,0.867,0.757,0.398 +Peru,2013,5.783,9.369,0.797,66.840,0.703,-0.066,0.870,0.778,0.390 +Peru,2014,5.866,9.382,0.819,67.020,0.722,-0.136,0.878,0.759,0.319 +Peru,2015,5.577,9.402,0.798,67.200,0.802,-0.090,0.884,0.754,0.378 +Peru,2016,5.701,9.426,0.803,67.500,0.830,-0.134,0.866,0.822,0.338 +Peru,2017,5.711,9.434,0.830,67.800,0.827,-0.154,0.895,0.789,0.394 +Peru,2018,5.680,9.456,0.845,68.100,0.830,-0.178,0.906,0.809,0.380 +Peru,2019,5.999,9.461,0.809,68.400,0.815,-0.130,0.874,0.820,0.375 +Philippines,2006,4.670,8.562,0.795,59.800,0.828,0.063,0.841,0.832, +Philippines,2007,5.074,8.608,0.801,60.000,0.852,-0.022,0.880,0.784,0.378 +Philippines,2008,4.589,8.634,0.798,60.200,0.861,0.083,0.817,0.805,0.384 +Philippines,2009,4.880,8.632,0.775,60.400,0.874,0.004,0.805,0.846,0.311 +Philippines,2010,4.942,8.686,0.805,60.600,0.893,0.033,0.812,0.876,0.294 +Philippines,2011,4.994,8.707,0.789,60.800,0.883,0.073,0.783,0.851,0.358 +Philippines,2012,5.002,8.756,0.813,61.000,0.914,0.053,0.771,0.865,0.351 +Philippines,2013,4.977,8.805,0.846,61.200,0.907,0.021,0.756,0.799,0.332 +Philippines,2014,5.313,8.850,0.813,61.400,0.902,-0.015,0.787,0.813,0.334 +Philippines,2015,5.547,8.896,0.854,61.600,0.912,-0.051,0.755,0.805,0.351 +Philippines,2016,5.431,8.950,0.821,61.700,0.908,-0.071,0.792,0.821,0.290 +Philippines,2017,5.594,9.002,0.851,61.800,0.926,-0.141,0.711,0.769,0.341 +Philippines,2018,5.869,9.050,0.846,61.900,0.918,-0.108,0.726,0.773,0.393 +Philippines,2019,6.268,9.095,0.845,62.000,0.910,-0.083,0.748,0.781,0.341 +Philippines,2020,5.080,9.061,0.781,62.100,0.932,-0.116,0.744,0.804,0.327 +Poland,2005,5.587,9.849,0.922,66.300,0.782,,0.983,0.715,0.282 +Poland,2007,5.886,9.978,0.913,66.700,0.772,-0.047,0.925,0.760,0.238 +Poland,2009,5.772,10.047,0.917,67.100,0.821,0.073,0.898,0.690,0.246 +Poland,2010,5.887,10.085,0.955,67.300,0.795,0.002,0.905,0.737,0.234 +Poland,2011,5.646,10.133,0.905,67.460,0.868,-0.067,0.908,0.725,0.224 +Poland,2012,5.876,10.149,0.936,67.620,0.811,-0.027,0.888,0.787,0.267 +Poland,2013,5.746,10.164,0.912,67.780,0.776,-0.137,0.916,0.784,0.242 +Poland,2014,5.750,10.197,0.924,67.940,0.875,-0.064,0.898,0.777,0.223 +Poland,2015,6.007,10.235,0.893,68.100,0.793,-0.093,0.810,0.734,0.240 +Poland,2016,6.162,10.266,0.917,68.500,0.871,-0.091,0.848,0.777,0.224 +Poland,2017,6.201,10.314,0.882,68.900,0.831,-0.122,0.639,0.677,0.203 +Poland,2018,6.111,10.366,0.863,69.300,0.870,-0.254,0.720,0.742,0.176 +Poland,2019,6.242,10.407,0.878,69.700,0.883,-0.231,0.696,0.725,0.168 +Poland,2020,6.139,10.371,0.953,70.100,0.767,-0.007,0.787,0.760,0.329 +Portugal,2006,5.405,10.360,0.905,69.840,0.882,-0.179,0.880,0.709,0.333 +Portugal,2008,5.717,10.384,0.886,70.320,0.646,-0.217,0.933,0.703,0.309 +Portugal,2010,5.095,10.368,0.864,70.800,0.721,-0.106,0.948,0.742,0.265 +Portugal,2011,5.220,10.353,0.856,71.000,0.875,-0.173,0.962,0.725,0.279 +Portugal,2012,4.994,10.315,0.866,71.200,0.774,-0.097,0.959,0.729,0.370 +Portugal,2013,5.158,10.312,0.867,71.400,0.788,-0.118,0.946,0.700,0.348 +Portugal,2014,5.127,10.325,0.862,71.600,0.847,-0.126,0.941,0.705,0.358 +Portugal,2015,5.081,10.347,0.866,71.800,0.800,-0.163,0.941,0.657,0.371 +Portugal,2016,5.447,10.370,0.905,72.000,0.838,-0.225,0.922,0.684,0.326 +Portugal,2017,5.711,10.407,0.900,72.200,0.905,-0.176,0.881,0.649,0.294 +Portugal,2018,5.920,10.434,0.887,72.400,0.877,-0.261,0.880,0.679,0.318 +Portugal,2019,6.095,10.457,0.876,72.600,0.882,-0.234,0.915,0.710,0.300 +Portugal,2020,5.768,10.371,0.875,72.800,0.913,-0.238,0.867,0.648,0.383 +Qatar,2009,6.418,11.456,0.894,66.580,0.865,0.235,0.184,0.678,0.258 +Qatar,2010,6.850,11.520,,66.700,,0.104,,, +Qatar,2011,6.592,11.553,0.857,67.020,0.905,0.012,,0.761,0.328 +Qatar,2012,6.611,11.523,0.838,67.340,0.924,0.162,,0.766,0.322 +Qatar,2015,6.375,11.486,,68.300,,,,, +Romania,2005,5.049,9.724,0.838,64.000,0.800,,0.957,0.642,0.346 +Romania,2007,5.394,9.892,0.736,64.480,0.686,-0.188,0.949,0.644,0.277 +Romania,2009,5.368,9.949,0.812,64.960,0.606,-0.196,0.967,0.548,0.270 +Romania,2010,4.909,9.915,0.689,65.200,0.566,-0.085,0.974,0.596,0.344 +Romania,2011,5.023,9.940,0.753,65.420,0.650,-0.140,0.964,0.543,0.294 +Romania,2012,5.167,9.965,0.740,65.640,0.645,-0.112,0.959,0.556,0.343 +Romania,2013,5.082,10.004,0.778,65.860,0.655,-0.129,0.952,0.640,0.329 +Romania,2014,5.727,10.041,0.753,66.080,0.754,-0.100,0.958,0.654,0.331 +Romania,2015,5.777,10.083,0.787,66.300,0.796,-0.141,0.962,0.714,0.312 +Romania,2016,5.969,10.136,0.809,66.600,0.822,-0.115,0.949,0.694,0.258 +Romania,2017,6.090,10.211,0.811,66.900,0.839,-0.160,0.926,0.734,0.231 +Romania,2018,6.151,10.260,0.818,67.200,0.845,-0.217,0.921,0.735,0.298 +Romania,2019,6.130,10.306,0.842,67.500,0.848,-0.221,0.954,0.697,0.244 +Russia,2006,4.964,9.991,0.895,58.680,0.643,-0.307,0.935,0.611,0.232 +Russia,2007,5.223,10.074,0.885,59.260,0.593,-0.284,0.933,0.623,0.193 +Russia,2008,5.619,10.125,0.882,59.840,0.643,-0.305,0.924,0.594,0.166 +Russia,2009,5.158,10.044,0.908,60.420,0.617,-0.283,0.954,0.566,0.169 +Russia,2010,5.385,10.087,0.909,61.000,0.613,-0.296,0.937,0.589,0.171 +Russia,2011,5.389,10.129,0.883,61.420,0.626,-0.279,0.935,0.601,0.165 +Russia,2012,5.621,10.166,0.901,61.840,0.609,-0.293,0.938,0.611,0.174 +Russia,2013,5.537,10.182,0.881,62.260,0.661,-0.289,0.934,0.680,0.180 +Russia,2014,6.037,10.171,0.932,62.680,0.744,-0.265,0.869,0.688,0.151 +Russia,2015,5.996,10.149,0.924,63.100,0.685,-0.171,0.913,0.679,0.130 +Russia,2016,5.855,10.149,0.911,63.500,0.714,-0.181,0.925,0.636,0.142 +Russia,2017,5.579,10.166,0.896,63.900,0.731,-0.145,0.862,0.710,0.195 +Russia,2018,5.514,10.191,0.909,64.300,0.729,-0.147,0.865,0.673,0.199 +Russia,2019,5.441,10.205,0.910,64.700,0.715,-0.116,0.848,0.691,0.200 +Russia,2020,5.495,10.162,0.887,65.100,0.714,-0.071,0.823,0.645,0.190 +Rwanda,2006,4.215,7.111,0.718,49.880,0.915,,0.299,0.735,0.189 +Rwanda,2008,4.363,7.239,0.486,53.040,0.752,0.017,0.286,0.643,0.221 +Rwanda,2009,4.030,7.273,0.559,54.620,0.766,-0.001,0.410,0.678,0.112 +Rwanda,2011,4.097,7.369,0.570,56.820,0.829,-0.039,0.161,0.665,0.154 +Rwanda,2012,3.333,7.428,0.637,57.440,0.835,-0.012,0.081,0.703,0.132 +Rwanda,2013,3.466,7.449,0.750,58.060,0.904,-0.028,0.117,0.760,0.167 +Rwanda,2014,3.596,7.484,0.748,58.680,0.894,-0.023,0.078,0.763,0.134 +Rwanda,2015,3.483,7.544,0.678,59.300,0.908,0.025,0.095,0.721,0.206 +Rwanda,2016,3.333,7.576,0.665,59.900,0.911,0.025,0.159,0.752,0.285 +Rwanda,2017,3.108,7.588,0.517,60.500,0.908,0.051,0.214,0.762,0.358 +Rwanda,2018,3.561,7.644,0.616,61.100,0.924,0.057,0.164,0.793,0.308 +Rwanda,2019,3.268,7.708,0.489,61.700,0.869,0.064,0.168,0.736,0.418 +Saudi Arabia,2005,7.080,10.699,0.868,63.500,,,0.505,0.730,0.243 +Saudi Arabia,2007,7.267,10.689,0.892,63.860,0.622,0.005,,0.772,0.232 +Saudi Arabia,2008,6.811,10.722,0.823,64.040,0.532,-0.022,0.508,0.710,0.202 +Saudi Arabia,2009,6.148,10.673,0.921,64.220,0.639,-0.110,0.445,0.742,0.319 +Saudi Arabia,2010,6.307,10.693,0.880,64.400,0.678,-0.033,,0.645,0.297 +Saudi Arabia,2011,6.700,10.758,0.830,64.600,0.603,-0.142,,0.726,0.240 +Saudi Arabia,2012,6.396,10.779,0.867,64.800,0.560,-0.120,,0.715,0.225 +Saudi Arabia,2013,6.495,10.776,0.827,65.000,0.661,-0.081,,0.744,0.276 +Saudi Arabia,2014,6.278,10.783,0.818,65.200,0.762,-0.073,,0.705,0.313 +Saudi Arabia,2015,6.345,10.798,0.820,65.400,0.820,-0.045,,0.724,0.327 +Saudi Arabia,2016,6.474,10.792,0.890,65.700,0.774,-0.132,,0.793,0.266 +Saudi Arabia,2017,6.294,10.764,0.840,66.000,0.814,-0.131,,0.775,0.306 +Saudi Arabia,2018,6.356,10.771,0.868,66.300,0.855,-0.192,,0.764,0.288 +Saudi Arabia,2019,6.561,10.757,0.912,66.600,0.891,-0.147,,0.732,0.238 +Saudi Arabia,2020,6.560,10.701,0.890,66.900,0.884,-0.111,,0.754,0.251 +Senegal,2006,4.417,7.881,0.760,53.380,0.736,-0.051,0.805,0.740,0.225 +Senegal,2007,4.680,7.903,0.718,54.060,0.698,-0.002,0.827,0.714,0.199 +Senegal,2008,4.683,7.916,0.756,54.740,0.612,-0.030,0.879,0.673,0.252 +Senegal,2009,4.335,7.909,0.810,55.420,0.557,-0.036,0.918,0.757,0.228 +Senegal,2010,4.372,7.917,0.760,56.100,0.777,-0.077,0.851,0.769,0.143 +Senegal,2011,3.834,7.904,0.602,56.560,0.641,-0.160,0.870,0.752,0.180 +Senegal,2012,3.669,7.926,0.711,57.020,0.668,-0.036,0.852,0.771,0.214 +Senegal,2013,3.647,7.926,0.823,57.480,0.636,-0.052,0.837,0.680,0.165 +Senegal,2014,4.395,7.961,0.856,57.940,0.692,-0.045,0.700,0.725,0.157 +Senegal,2015,4.617,7.995,0.702,58.400,0.720,-0.111,0.765,0.711,0.208 +Senegal,2016,4.595,8.029,0.839,58.800,0.744,-0.086,0.794,0.784,0.245 +Senegal,2017,4.683,8.072,0.744,59.200,0.687,-0.044,0.825,0.746,0.291 +Senegal,2018,4.769,8.106,0.739,59.600,0.629,-0.074,0.805,0.714,0.247 +Senegal,2019,5.489,8.130,0.688,60.000,0.759,-0.019,0.796,0.789,0.332 +Serbia,2007,4.750,9.532,0.844,65.600,0.453,-0.165,0.905,0.576,0.334 +Serbia,2009,4.380,9.568,0.770,66.000,0.373,-0.178,0.961,0.544,0.435 +Serbia,2010,4.461,9.579,0.726,66.200,0.463,-0.170,0.965,0.532,0.415 +Serbia,2011,4.815,9.607,0.773,66.360,0.440,-0.185,0.977,0.545,0.410 +Serbia,2012,5.155,9.605,0.819,66.520,0.461,-0.130,0.952,0.514,0.371 +Serbia,2013,5.102,9.638,0.828,66.680,0.533,-0.100,0.908,0.529,0.403 +Serbia,2014,5.113,9.627,0.783,66.840,0.532,0.072,0.912,0.498,0.326 +Serbia,2015,5.318,9.649,0.816,67.000,0.546,-0.062,0.859,0.496,0.303 +Serbia,2016,5.753,9.688,0.895,67.400,0.614,-0.068,0.890,0.535,0.298 +Serbia,2017,5.122,9.713,0.884,67.800,0.685,-0.077,0.851,0.510,0.326 +Serbia,2018,5.936,9.762,0.853,68.200,0.740,-0.100,0.864,0.559,0.296 +Serbia,2019,6.241,9.808,0.903,68.600,0.753,-0.040,0.813,0.509,0.242 +Serbia,2020,6.042,9.788,0.852,69.000,0.843,0.149,0.824,0.603,0.358 +Sierra Leone,2006,3.628,7.136,0.561,40.300,0.679,0.101,0.836,0.505,0.381 +Sierra Leone,2007,3.585,7.187,0.686,41.200,0.720,0.248,0.830,0.582,0.290 +Sierra Leone,2008,2.997,7.215,0.591,42.100,0.716,0.148,0.925,0.534,0.370 +Sierra Leone,2010,4.134,7.254,0.812,43.900,0.726,0.012,0.910,0.514,0.290 +Sierra Leone,2011,4.502,7.292,0.782,44.320,0.770,0.005,0.855,0.446,0.300 +Sierra Leone,2013,4.514,7.577,0.708,45.160,0.720,-0.071,0.856,0.521,0.423 +Sierra Leone,2014,4.500,7.600,0.869,45.580,0.681,0.034,0.786,0.570,0.334 +Sierra Leone,2015,4.909,7.347,0.611,46.000,0.624,0.050,0.825,0.625,0.414 +Sierra Leone,2016,4.733,7.384,0.657,47.600,0.681,0.106,0.863,0.584,0.456 +Sierra Leone,2017,4.090,7.404,0.652,49.200,0.711,0.079,0.848,0.600,0.495 +Sierra Leone,2018,4.306,7.417,0.650,50.800,0.716,0.095,0.856,0.552,0.466 +Sierra Leone,2019,3.447,7.449,0.611,52.400,0.718,0.074,0.874,0.513,0.438 +Singapore,2006,6.463,11.168,0.904,73.600,0.757,0.138,,0.751,0.267 +Singapore,2007,6.834,11.212,0.921,73.900,0.867,0.293,0.064,0.700,0.114 +Singapore,2008,6.642,11.178,0.845,74.200,0.661,0.046,0.066,0.721,0.256 +Singapore,2009,6.145,11.149,0.866,74.500,0.776,-0.075,0.035,0.500,0.208 +Singapore,2010,6.531,11.267,0.864,74.800,0.846,-0.018,0.060,0.602,0.131 +Singapore,2011,6.561,11.307,0.904,75.020,0.822,-0.149,0.099,0.483,0.144 +Singapore,2013,6.533,11.357,0.808,75.460,0.827,0.115,0.242,0.770,0.148 +Singapore,2014,7.062,11.383,0.822,75.680,0.835,0.154,0.133,0.841,0.180 +Singapore,2015,6.620,11.400,0.866,75.900,0.887,0.150,0.099,0.803,0.142 +Singapore,2016,6.033,11.419,0.925,76.200,0.904,0.143,0.047,0.824,0.111 +Singapore,2017,6.378,11.461,0.897,76.500,0.926,0.136,0.162,0.800,0.179 +Singapore,2018,6.375,11.490,0.903,76.800,0.916,-0.066,0.097,0.787,0.107 +Singapore,2019,6.378,11.486,0.925,77.100,0.938,0.027,0.070,0.723,0.138 +Slovakia,2006,5.265,10.015,0.954,66.000,0.542,-0.050,0.946,0.678,0.308 +Slovakia,2010,6.052,10.169,0.920,66.800,0.636,-0.101,0.907,0.666,0.277 +Slovakia,2011,5.945,10.196,0.917,67.040,0.727,0.010,0.907,0.637,0.287 +Slovakia,2012,5.911,10.213,0.926,67.280,0.620,-0.028,0.907,0.656,0.302 +Slovakia,2013,5.937,10.218,0.909,67.520,0.598,-0.051,0.915,0.698,0.277 +Slovakia,2014,6.139,10.244,0.924,67.760,0.635,-0.126,0.914,0.703,0.267 +Slovakia,2015,6.162,10.291,0.943,68.000,0.587,-0.128,0.928,0.714,0.269 +Slovakia,2016,5.993,10.310,0.945,68.300,0.700,-0.061,0.917,0.774,0.232 +Slovakia,2017,6.366,10.339,0.913,68.600,0.714,-0.055,0.920,0.788,0.213 +Slovakia,2018,6.235,10.376,0.922,68.900,0.758,-0.167,0.910,0.754,0.253 +Slovakia,2019,6.243,10.398,0.933,69.200,0.771,-0.129,0.926,0.750,0.252 +Slovakia,2020,6.519,10.332,0.954,69.500,0.762,-0.075,0.901,0.764,0.274 +Slovenia,2006,5.811,10.403,0.936,68.000,0.936,0.043,0.708,0.652,0.307 +Slovenia,2009,5.830,10.410,0.919,68.900,0.896,-0.019,0.804,0.641,0.303 +Slovenia,2010,6.083,10.419,0.917,69.200,0.896,0.029,0.845,0.671,0.295 +Slovenia,2011,6.036,10.426,0.931,69.400,0.907,-0.025,0.893,0.652,0.285 +Slovenia,2012,6.063,10.397,0.925,69.600,0.904,-0.020,0.891,0.656,0.284 +Slovenia,2013,5.975,10.385,0.932,69.800,0.890,0.036,0.918,0.635,0.274 +Slovenia,2014,5.678,10.412,0.908,70.000,0.888,0.052,0.909,0.620,0.291 +Slovenia,2015,5.741,10.433,0.901,70.200,0.896,0.008,0.892,0.659,0.261 +Slovenia,2016,5.937,10.463,0.934,70.500,0.904,-0.055,0.838,0.626,0.272 +Slovenia,2017,6.167,10.509,0.928,70.800,0.921,-0.025,0.829,0.615,0.286 +Slovenia,2018,6.249,10.546,0.941,71.100,0.942,-0.119,0.839,0.644,0.275 +Slovenia,2019,6.665,10.563,0.949,71.400,0.945,-0.102,0.785,0.679,0.228 +Slovenia,2020,6.462,10.478,0.953,71.700,0.958,-0.081,0.797,0.610,0.314 +Somalia,2014,5.528,,0.611,49.600,0.874,,0.456,0.834,0.207 +Somalia,2015,5.354,,0.599,50.100,0.968,,0.410,0.901,0.187 +Somalia,2016,4.668,,0.594,50.000,0.917,,0.441,0.891,0.193 +Somaliland region,2009,4.991,,0.880,,0.746,,0.513,0.819,0.112 +Somaliland region,2010,4.657,,0.829,,0.820,,0.471,0.769,0.083 +Somaliland region,2011,4.931,,0.788,,0.858,,0.357,0.749,0.122 +Somaliland region,2012,5.057,,0.786,,0.758,,0.334,0.735,0.152 +South Africa,2006,5.084,9.386,0.913,48.020,0.649,-0.084,,0.802,0.223 +South Africa,2007,5.204,9.426,0.788,48.640,0.690,-0.158,0.859,0.735,0.210 +South Africa,2008,5.346,9.444,0.810,49.260,0.749,-0.095,0.866,0.773,0.206 +South Africa,2009,5.218,9.414,0.877,49.880,0.739,-0.154,0.904,0.727,0.231 +South Africa,2010,4.652,9.430,0.917,50.500,0.739,-0.202,0.791,0.794,0.124 +South Africa,2011,4.931,9.447,0.858,51.460,0.835,-0.154,0.819,0.763,0.230 +South Africa,2012,5.134,9.453,0.907,52.420,0.590,-0.163,0.838,0.761,0.178 +South Africa,2013,3.661,9.461,0.839,53.380,0.714,-0.077,0.800,0.773,0.167 +South Africa,2014,4.828,9.464,0.881,54.340,0.794,-0.117,0.820,0.798,0.243 +South Africa,2015,4.887,9.460,0.898,55.300,0.862,-0.127,0.853,0.781,0.161 +South Africa,2016,4.770,9.450,0.875,55.700,0.774,-0.070,0.813,0.786,0.301 +South Africa,2017,4.514,9.450,0.870,56.100,0.787,-0.129,0.865,0.785,0.268 +South Africa,2018,4.884,9.444,0.841,56.500,0.753,-0.050,0.841,0.812,0.283 +South Africa,2019,5.035,9.432,0.848,56.900,0.738,-0.134,0.820,0.801,0.268 +South Africa,2020,4.947,9.332,0.891,57.300,0.757,-0.015,0.912,0.820,0.294 +South Korea,2006,5.332,10.310,0.775,70.200,0.715,-0.052,0.799,0.651,0.338 +South Korea,2007,5.767,10.361,0.827,70.500,0.656,-0.059,0.803,0.690,0.226 +South Korea,2008,5.390,10.383,0.754,70.800,0.524,-0.102,0.771,0.643,0.239 +South Korea,2009,5.648,10.386,0.811,71.100,0.600,-0.096,0.787,0.697,0.209 +South Korea,2010,6.116,10.447,0.816,71.400,0.677,-0.033,0.752,0.662,0.130 +South Korea,2011,6.947,10.475,0.809,71.660,0.682,-0.048,0.827,0.656,0.168 +South Korea,2012,6.003,10.494,0.775,71.920,0.618,,0.844,0.664,0.206 +South Korea,2013,5.959,10.520,0.797,72.180,0.642,-0.050,0.832,0.676,0.189 +South Korea,2014,5.801,10.546,0.738,72.440,0.623,-0.043,0.834,0.653,0.283 +South Korea,2015,5.780,10.568,0.768,72.700,0.616,-0.036,0.841,0.650,0.244 +South Korea,2016,5.971,10.593,0.811,73.000,0.591,0.026,0.862,0.676,0.233 +South Korea,2017,5.874,10.621,0.807,73.300,0.538,0.014,0.851,0.623,0.235 +South Korea,2018,5.840,10.643,0.798,73.600,0.600,-0.089,0.797,0.661,0.217 +South Korea,2019,5.903,10.661,0.783,73.900,0.706,-0.055,0.718,0.684,0.236 +South Korea,2020,5.793,10.648,0.808,74.200,0.711,-0.106,0.665,0.640,0.247 +South Sudan,2014,3.832,,0.545,49.840,0.567,,0.742,0.614,0.428 +South Sudan,2015,4.071,,0.585,50.200,0.512,,0.710,0.586,0.450 +South Sudan,2016,2.888,,0.532,50.600,0.440,,0.785,0.615,0.549 +South Sudan,2017,2.817,,0.557,51.000,0.456,,0.761,0.586,0.517 +Spain,2005,7.153,10.546,0.961,71.500,0.916,,0.777,0.776,0.241 +Spain,2007,6.995,10.587,0.957,72.060,0.782,-0.093,0.784,0.763,0.264 +Spain,2008,7.294,10.579,0.948,72.340,0.834,-0.150,0.683,0.772,0.260 +Spain,2009,6.199,10.532,0.929,72.620,0.749,-0.127,0.798,0.752,0.336 +Spain,2010,6.188,10.529,0.950,72.900,0.796,-0.138,0.840,0.724,0.322 +Spain,2011,6.518,10.518,0.944,73.020,0.819,-0.122,0.846,0.737,0.356 +Spain,2012,6.291,10.487,0.937,73.140,0.755,-0.059,0.844,0.749,0.366 +Spain,2013,6.150,10.476,0.929,73.260,0.759,-0.101,0.916,0.696,0.372 +Spain,2014,6.456,10.492,0.948,73.380,0.738,-0.028,0.854,0.716,0.335 +Spain,2015,6.381,10.531,0.956,73.500,0.732,-0.072,0.822,0.732,0.285 +Spain,2016,6.319,10.560,0.942,73.800,0.768,-0.048,0.819,0.653,0.301 +Spain,2017,6.230,10.586,0.903,74.100,0.756,-0.032,0.791,0.625,0.302 +Spain,2018,6.513,10.605,0.910,74.400,0.722,-0.075,0.777,0.659,0.357 +Spain,2019,6.457,10.618,0.949,74.700,0.778,-0.049,0.730,0.663,0.316 +Spain,2020,6.502,10.488,0.935,75.000,0.783,-0.121,0.730,0.686,0.317 +Sri Lanka,2006,4.345,8.912,0.864,65.780,0.724,0.062,0.838,0.757,0.216 +Sri Lanka,2007,4.415,8.970,0.838,65.860,0.736,0.110,0.847,0.709,0.220 +Sri Lanka,2008,4.431,9.021,0.816,65.940,0.834,0.163,0.861,0.790,0.153 +Sri Lanka,2009,4.212,9.049,0.830,66.020,0.799,0.306,0.690,0.770,0.172 +Sri Lanka,2010,3.977,9.119,0.814,66.100,0.738,0.259,0.769,0.823,0.163 +Sri Lanka,2011,4.181,9.193,0.842,66.200,0.823,0.145,0.760,0.825,0.175 +Sri Lanka,2012,4.225,9.279,0.824,66.300,0.800,0.161,0.823,0.864,0.197 +Sri Lanka,2013,4.365,9.305,0.809,66.400,0.834,0.268,0.842,0.860,0.208 +Sri Lanka,2014,4.268,9.344,0.805,66.500,0.868,0.299,0.791,0.843,0.187 +Sri Lanka,2015,4.612,9.383,0.863,66.600,0.902,0.319,0.859,0.848,0.235 +Sri Lanka,2017,4.331,9.440,0.823,67.000,0.827,0.094,0.844,0.795,0.270 +Sri Lanka,2018,4.435,9.462,0.833,67.200,0.859,0.106,0.856,0.831,0.302 +Sri Lanka,2019,4.213,9.479,0.815,67.400,0.824,0.051,0.863,0.816,0.315 +Sudan,2009,4.455,8.106,0.911,53.700,0.710,0.077,0.701,0.734,0.245 +Sudan,2010,4.435,8.076,0.855,54.000,0.648,-0.040,0.737,0.669,0.221 +Sudan,2011,4.314,8.204,0.818,54.280,0.583,-0.024,0.663,0.586,0.249 +Sudan,2012,4.550,8.296,0.813,54.560,0.412,-0.056,0.734,0.576,0.242 +Sudan,2014,4.139,8.317,0.811,55.120,0.390,-0.063,0.794,0.541,0.303 +Suriname,2012,6.269,9.797,0.797,62.240,0.885,-0.077,0.751,0.764,0.250 +Swaziland,2011,4.867,8.940,0.837,40.808,0.607,-0.067,0.917,0.821,0.251 +Swaziland,2018,4.212,9.060,0.779,50.353,0.710,-0.178,0.692,0.824,0.252 +Swaziland,2019,4.396,9.070,0.759,51.270,0.597,-0.191,0.724,0.778,0.280 +Sweden,2005,7.376,10.739,0.951,71.200,0.964,,,0.840,0.151 +Sweden,2007,7.241,10.806,0.917,71.480,0.910,0.146,0.289,0.796,0.177 +Sweden,2008,7.516,10.793,0.923,71.620,0.912,0.125,0.314,0.804,0.134 +Sweden,2009,7.266,10.740,0.903,71.760,0.864,0.221,0.292,0.820,0.151 +Sweden,2010,7.496,10.790,0.970,71.900,0.905,0.141,0.253,0.833,0.200 +Sweden,2011,7.382,10.814,0.921,71.980,0.941,0.161,0.269,0.815,0.179 +Sweden,2012,7.560,10.800,0.929,72.060,0.944,0.132,0.254,0.855,0.170 +Sweden,2013,7.434,10.804,0.916,72.140,0.936,0.159,0.324,0.829,0.184 +Sweden,2014,7.239,10.820,0.933,72.220,0.945,0.202,0.250,0.836,0.208 +Sweden,2015,7.289,10.853,0.929,72.300,0.935,0.211,0.232,0.818,0.191 +Sweden,2016,7.369,10.861,0.912,72.400,0.918,0.146,0.246,0.816,0.201 +Sweden,2017,7.287,10.873,0.914,72.500,0.935,0.170,0.239,0.814,0.175 +Sweden,2018,7.375,10.881,0.931,72.600,0.942,0.077,0.263,0.823,0.161 +Sweden,2019,7.398,10.882,0.934,72.700,0.942,0.091,0.250,0.826,0.202 +Sweden,2020,7.314,10.838,0.936,72.800,0.951,0.091,0.203,0.766,0.222 +Switzerland,2006,7.473,11.050,0.951,71.540,0.919,0.290,0.408,0.821,0.212 +Switzerland,2009,7.525,11.055,0.938,72.260,0.891,0.125,0.342,0.814,0.202 +Switzerland,2012,7.776,11.079,0.947,72.780,0.945,0.139,0.323,0.859,0.176 +Switzerland,2014,7.493,11.098,0.959,73.060,0.949,0.060,0.283,0.823,0.189 +Switzerland,2015,7.572,11.100,0.938,73.200,0.928,0.109,0.210,0.809,0.166 +Switzerland,2016,7.459,11.106,0.928,73.500,0.934,0.088,0.302,0.779,0.206 +Switzerland,2017,7.474,11.115,0.950,73.800,0.925,0.180,0.316,0.774,0.196 +Switzerland,2018,7.509,11.134,0.930,74.100,0.926,0.101,0.301,0.792,0.192 +Switzerland,2019,7.694,11.136,0.949,74.400,0.913,0.036,0.294,0.798,0.171 +Switzerland,2020,7.508,11.081,0.946,74.700,0.917,-0.064,0.280,0.769,0.193 +Syria,2008,5.323,8.652,0.712,63.900,0.661,0.122,0.680,0.609,0.338 +Syria,2009,4.979,8.654,0.842,64.000,0.748,0.082,0.688,0.574,0.292 +Syria,2010,4.465,8.729,0.934,64.100,0.647,0.008,0.743,0.558,0.225 +Syria,2011,4.038,8.727,0.576,62.320,0.530,0.131,0.741,0.599,0.496 +Syria,2012,3.164,8.563,0.588,60.540,0.467,0.316,0.673,0.464,0.705 +Syria,2013,2.688,8.396,0.585,58.760,0.455,0.225,0.663,0.387,0.622 +Syria,2015,3.462,8.442,0.464,55.200,0.448,0.045,0.685,0.369,0.643 +Taiwan Province of China,2006,6.189,10.613,0.882,68.680,0.630,-0.030,0.846,0.814,0.094 +Taiwan Province of China,2008,5.548,10.606,0.830,69.140,0.642,-0.017,0.785,0.794,0.169 +Taiwan Province of China,2010,6.229,10.691,0.831,69.600,0.677,0.005,0.821,0.845,0.136 +Taiwan Province of China,2011,6.309,10.705,0.863,,0.761,0.035,0.755,0.827,0.112 +Taiwan Province of China,2012,6.126,10.716,0.825,,0.698,0.022,0.803,0.821,0.140 +Taiwan Province of China,2013,6.340,10.750,0.817,,0.690,0.002,0.841,0.846,0.124 +Taiwan Province of China,2014,6.363,10.798,0.870,,0.693,0.092,0.866,0.849,0.108 +Taiwan Province of China,2015,6.450,10.842,0.885,,0.701,0.019,0.857,0.832,0.129 +Taiwan Province of China,2016,6.513,10.855,0.895,,0.719,-0.049,0.811,0.833,0.108 +Taiwan Province of China,2017,6.359,10.871,0.891,,0.760,-0.070,0.743,0.837,0.114 +Taiwan Province of China,2018,6.467,,0.896,,0.741,,0.736,0.848,0.093 +Taiwan Province of China,2019,6.537,,0.893,,0.814,,0.718,0.860,0.093 +Taiwan Province of China,2020,6.751,,0.901,,0.799,,0.711,0.845,0.083 +Tajikistan,2006,4.613,7.554,0.724,60.640,0.702,-0.088,0.768,0.566,0.195 +Tajikistan,2007,4.432,7.609,0.727,61.080,0.818,0.000,0.659,0.694,0.133 +Tajikistan,2008,5.064,7.665,0.701,61.520,0.816,0.018,0.723,0.606,0.160 +Tajikistan,2009,4.575,7.682,0.676,61.960,0.744,0.001,0.792,0.605,0.203 +Tajikistan,2010,4.381,7.723,0.759,62.400,0.784,0.062,0.679,0.643,0.192 +Tajikistan,2011,4.263,7.772,0.751,62.560,0.776,-0.119,0.672,0.698,0.166 +Tajikistan,2012,4.497,7.821,0.729,62.720,0.749,-0.073,0.717,0.714,0.198 +Tajikistan,2013,4.967,7.870,0.701,62.880,0.693,0.063,0.764,0.677,0.170 +Tajikistan,2014,4.896,7.911,0.810,63.040,0.853,0.002,0.698,0.656,0.196 +Tajikistan,2015,5.124,7.945,0.844,63.200,0.847,0.022,0.742,0.689,0.196 +Tajikistan,2016,5.104,7.987,0.857,63.500,0.703,0.010,0.632,0.644,0.220 +Tajikistan,2017,5.829,8.036,0.663,63.800,0.832,0.124,0.718,0.603,0.278 +Tajikistan,2018,5.497,8.082,0.875,64.100,,-0.065,0.578,0.695,0.220 +Tajikistan,2019,5.464,8.126,0.880,64.400,,-0.045,0.490,0.729,0.178 +Tajikistan,2020,5.373,8.080,0.790,64.700,,-0.040,0.550,0.749,0.344 +Tanzania,2006,3.922,7.485,0.783,48.700,0.787,-0.027,0.649,0.748,0.209 +Tanzania,2007,4.318,7.522,0.708,49.600,0.716,-0.013,0.707,0.755,0.220 +Tanzania,2008,4.385,7.549,0.774,50.500,0.562,0.256,0.930,0.744,0.178 +Tanzania,2009,3.408,7.572,0.837,51.400,0.607,0.308,0.903,0.778,0.161 +Tanzania,2010,3.229,7.604,0.813,52.300,0.597,0.139,0.866,0.717,0.146 +Tanzania,2011,4.074,7.649,0.883,53.040,0.736,-0.046,0.816,0.765,0.145 +Tanzania,2012,4.007,7.663,0.832,53.780,0.577,0.213,0.887,0.679,0.195 +Tanzania,2013,3.852,7.699,0.803,54.520,0.654,0.054,0.859,0.738,0.191 +Tanzania,2014,3.483,7.734,0.789,55.260,0.654,0.110,0.878,0.731,0.241 +Tanzania,2015,3.661,7.764,0.790,56.000,0.759,0.149,0.906,0.619,0.192 +Tanzania,2016,2.903,7.800,0.638,56.500,0.775,0.179,0.739,0.694,0.246 +Tanzania,2017,3.347,7.836,0.705,57.000,0.800,0.116,0.654,0.715,0.255 +Tanzania,2018,3.445,7.859,0.675,57.500,0.807,0.153,0.612,0.762,0.221 +Tanzania,2019,3.640,7.886,0.687,58.000,0.850,0.100,0.589,0.726,0.243 +Tanzania,2020,3.786,7.881,0.740,58.500,0.830,0.295,0.521,0.686,0.271 +Thailand,2006,5.885,9.461,0.894,64.140,0.863,0.331,0.935,0.814,0.164 +Thailand,2007,5.784,9.508,0.889,64.480,0.870,0.391,0.898,0.832,0.180 +Thailand,2008,5.636,9.520,0.832,64.820,0.868,0.425,0.933,0.819,0.145 +Thailand,2009,5.476,9.508,0.893,65.160,0.868,0.525,0.904,0.898,0.166 +Thailand,2010,6.217,9.576,0.898,65.500,0.860,0.536,0.917,0.901,0.182 +Thailand,2011,6.664,9.579,0.884,65.720,0.927,0.400,0.923,0.934,0.117 +Thailand,2012,6.300,9.645,0.906,65.940,0.847,0.380,0.909,0.855,0.138 +Thailand,2013,6.231,9.667,0.926,66.160,0.781,0.456,0.925,0.846,0.141 +Thailand,2014,6.985,9.672,0.933,66.380,0.900,0.553,0.920,0.811,0.169 +Thailand,2015,6.202,9.699,0.866,66.600,0.885,0.316,0.914,0.910,0.174 +Thailand,2016,6.074,9.729,0.908,66.800,0.924,0.356,0.878,0.835,0.218 +Thailand,2017,5.939,9.765,0.877,67.000,0.923,0.212,0.884,0.816,0.232 +Thailand,2018,6.012,9.803,0.873,67.200,0.905,0.259,0.907,0.843,0.198 +Thailand,2019,6.022,9.824,0.903,67.400,0.898,0.309,0.877,0.843,0.208 +Thailand,2020,5.885,9.769,0.867,67.600,0.840,0.273,0.918,0.783,0.326 +Togo,2006,3.202,7.078,0.435,49.260,0.628,-0.007,0.850,0.615,0.348 +Togo,2008,2.808,7.052,0.291,50.180,0.287,-0.055,0.932,0.362,0.379 +Togo,2011,2.936,7.146,0.303,51.580,0.584,-0.070,0.832,0.480,0.395 +Togo,2014,2.839,7.247,0.444,53.020,0.663,-0.085,0.795,0.583,0.443 +Togo,2015,3.768,7.277,0.479,53.500,0.772,-0.069,0.733,0.599,0.416 +Togo,2016,3.879,7.306,0.509,53.900,0.730,-0.007,0.815,0.604,0.483 +Togo,2017,4.361,7.324,0.508,54.300,0.717,-0.042,0.726,0.614,0.426 +Togo,2018,4.023,7.348,0.596,54.700,0.612,-0.007,0.809,0.608,0.446 +Togo,2019,4.179,7.375,0.539,55.100,0.617,0.065,0.737,0.590,0.444 +Trinidad and Tobago,2006,5.832,10.224,0.887,61.760,0.840,0.141,0.917,0.798,0.229 +Trinidad and Tobago,2008,6.696,10.295,0.858,62.080,0.838,0.087,0.959,0.817,0.184 +Trinidad and Tobago,2011,6.519,10.263,0.863,62.540,0.775,0.078,0.900,0.906,0.134 +Trinidad and Tobago,2013,6.168,10.285,0.883,62.820,0.847,0.128,0.948,0.833,0.286 +Trinidad and Tobago,2017,6.192,10.183,0.916,63.500,0.859,0.015,0.911,0.846,0.248 +Tunisia,2009,5.025,9.197,,64.960,0.781,-0.119,0.722,, +Tunisia,2010,5.131,9.222,0.863,65.100,0.624,-0.135,0.732,0.725,0.249 +Tunisia,2011,4.876,9.192,0.715,65.280,0.603,-0.199,0.913,0.588,0.248 +Tunisia,2012,4.464,9.222,0.614,65.460,0.568,-0.176,0.899,0.521,0.327 +Tunisia,2013,5.246,9.240,0.648,65.640,0.536,-0.207,0.886,0.517,0.239 +Tunisia,2014,4.764,9.260,0.680,65.820,0.589,-0.232,0.783,0.503,0.321 +Tunisia,2015,5.132,9.261,0.609,66.000,0.711,-0.226,0.815,0.573,0.320 +Tunisia,2016,4.521,9.262,0.702,66.300,0.614,-0.165,0.811,0.612,0.378 +Tunisia,2017,4.124,9.269,0.717,66.600,0.478,-0.219,0.869,0.421,0.377 +Tunisia,2018,4.741,9.284,0.733,66.900,0.650,-0.191,0.840,0.592,0.365 +Tunisia,2019,4.315,9.283,0.610,67.200,0.659,-0.209,0.889,0.539,0.433 +Tunisia,2020,4.731,9.231,0.719,67.500,0.668,-0.202,0.877,0.585,0.439 +Turkey,2005,4.719,9.809,0.820,62.600,0.623,,0.877,0.557, +Turkey,2007,5.623,9.903,0.792,63.320,0.459,-0.178,0.800,0.651,0.395 +Turkey,2008,5.118,9.899,0.645,63.680,0.415,-0.189,0.785,0.614,0.345 +Turkey,2009,5.213,9.838,0.755,64.040,0.456,-0.227,0.853,0.598,0.316 +Turkey,2010,5.490,9.906,0.795,64.400,0.515,-0.187,0.811,0.652,0.327 +Turkey,2011,5.272,9.996,0.692,64.640,0.446,-0.242,0.649,0.621,0.380 +Turkey,2012,5.309,10.026,0.739,64.880,0.471,-0.216,0.702,0.645,0.335 +Turkey,2013,4.888,10.091,0.795,65.120,0.541,-0.229,0.698,0.635,0.392 +Turkey,2014,5.580,10.124,0.863,65.360,0.649,-0.024,0.764,0.483,0.377 +Turkey,2015,5.514,10.166,0.851,65.600,0.653,-0.016,0.806,0.460,0.382 +Turkey,2016,5.326,10.181,0.880,66.000,0.644,-0.065,0.764,0.465,0.390 +Turkey,2017,5.607,10.238,0.876,66.400,0.644,-0.237,0.671,0.450,0.313 +Turkey,2018,5.186,10.251,0.847,66.800,0.529,-0.176,0.805,0.435,0.351 +Turkey,2019,4.872,10.246,0.792,67.200,0.631,-0.136,0.760,0.422,0.368 +Turkey,2020,4.862,10.219,0.857,67.600,0.510,-0.111,0.774,0.384,0.440 +Turkmenistan,2009,6.568,8.989,0.924,59.440,,-0.102,,0.781,0.152 +Turkmenistan,2011,5.792,9.182,0.964,60.040,,0.018,,0.639,0.122 +Turkmenistan,2012,5.464,9.269,0.946,60.280,0.786,-0.123,,0.584,0.117 +Turkmenistan,2013,5.392,9.348,0.846,60.520,0.705,-0.071,,0.599,0.160 +Turkmenistan,2014,5.787,9.427,0.909,60.760,0.805,0.032,,0.695,0.154 +Turkmenistan,2015,5.791,9.472,0.960,61.000,0.701,0.093,,0.705,0.301 +Turkmenistan,2016,5.887,9.515,0.929,61.400,0.749,0.005,,0.636,0.255 +Turkmenistan,2017,5.229,9.561,0.908,61.800,0.720,0.066,,0.521,0.350 +Turkmenistan,2018,4.621,9.605,0.984,62.200,0.858,0.260,,0.612,0.189 +Turkmenistan,2019,5.474,9.651,0.982,62.600,0.892,0.285,,0.510,0.183 +Uganda,2006,3.734,7.370,0.760,46.480,0.747,-0.041,0.807,0.590,0.254 +Uganda,2007,4.456,7.419,0.845,47.460,0.708,-0.001,0.881,0.708,0.228 +Uganda,2008,4.569,7.471,0.813,48.440,0.578,-0.055,0.848,0.641,0.240 +Uganda,2009,4.612,7.505,0.852,49.420,0.760,-0.037,0.840,0.640,0.296 +Uganda,2010,4.193,7.528,0.830,50.400,0.801,-0.015,0.855,0.648,0.251 +Uganda,2011,4.826,7.586,0.882,51.220,0.733,0.032,0.830,0.678,0.254 +Uganda,2012,4.309,7.592,0.885,52.040,0.649,0.081,0.838,0.754,0.265 +Uganda,2013,3.710,7.595,0.878,52.860,0.763,0.053,0.820,0.676,0.346 +Uganda,2014,3.770,7.611,0.821,53.680,0.834,0.009,0.898,0.681,0.397 +Uganda,2015,4.238,7.627,0.747,54.500,0.758,0.135,0.873,0.703,0.353 +Uganda,2016,4.233,7.637,0.754,54.900,0.739,0.132,0.811,0.668,0.410 +Uganda,2017,4.001,7.638,0.740,55.300,0.772,0.060,0.816,0.703,0.400 +Uganda,2018,4.322,7.660,0.740,55.700,0.729,0.079,0.856,0.685,0.390 +Uganda,2019,4.948,7.688,0.805,56.100,0.704,0.139,0.826,0.693,0.385 +Uganda,2020,4.641,7.684,0.800,56.500,0.687,0.147,0.878,0.699,0.425 +Ukraine,2006,4.804,9.380,0.852,60.120,0.624,-0.257,0.929,0.622,0.249 +Ukraine,2007,5.252,9.459,0.820,60.640,0.494,-0.241,0.968,0.636,0.208 +Ukraine,2008,5.172,9.488,0.860,61.160,0.487,-0.265,0.929,0.573,0.186 +Ukraine,2009,5.166,9.332,0.845,61.680,0.460,-0.241,0.962,0.583,0.189 +Ukraine,2010,5.058,9.374,0.884,62.200,0.484,-0.189,0.954,0.513,0.227 +Ukraine,2011,5.083,9.431,0.859,62.500,0.579,-0.228,0.933,0.590,0.220 +Ukraine,2012,5.030,9.436,0.898,62.800,0.564,-0.223,0.896,0.570,0.193 +Ukraine,2013,4.711,9.438,0.897,63.100,0.569,-0.216,0.937,0.643,0.225 +Ukraine,2014,4.297,9.426,0.877,63.400,0.533,0.084,0.927,0.594,0.249 +Ukraine,2015,3.965,9.327,0.909,63.700,0.431,-0.033,0.952,0.574,0.241 +Ukraine,2016,4.029,9.353,0.885,64.000,0.503,0.011,0.891,0.589,0.220 +Ukraine,2017,4.311,9.382,0.858,64.300,0.599,-0.002,0.937,0.597,0.235 +Ukraine,2018,4.662,9.420,0.901,64.600,0.663,-0.074,0.943,0.609,0.222 +Ukraine,2019,4.702,9.458,0.883,64.900,0.715,-0.081,0.885,0.634,0.201 +Ukraine,2020,5.270,9.428,0.885,65.200,0.784,0.126,0.946,0.688,0.285 +United Arab Emirates,2006,6.734,11.367,0.903,65.920,0.898,-0.033,0.203,0.746,0.275 +United Arab Emirates,2009,6.866,10.975,0.885,66.280,0.849,0.019,0.339,0.770,0.287 +United Arab Emirates,2010,7.097,10.914,0.912,66.400,0.878,0.057,0.355,0.763,0.233 +United Arab Emirates,2011,7.119,10.935,0.881,66.420,0.889,0.071,,0.763,0.216 +United Arab Emirates,2012,7.218,10.958,0.856,66.440,0.920,,,0.768,0.224 +United Arab Emirates,2013,6.621,11.001,0.864,66.460,0.936,,,,0.291 +United Arab Emirates,2014,6.540,11.041,,66.480,,,,, +United Arab Emirates,2015,6.568,11.086,0.824,66.500,0.915,0.201,,0.761,0.296 +United Arab Emirates,2016,6.831,11.105,0.849,66.700,0.949,0.131,,0.775,0.245 +United Arab Emirates,2017,7.039,11.115,0.836,66.900,0.962,0.216,,0.795,0.208 +United Arab Emirates,2018,6.604,11.112,0.851,67.100,0.944,0.054,,0.787,0.302 +United Arab Emirates,2019,6.711,11.114,0.862,67.300,0.911,0.129,,0.793,0.284 +United Arab Emirates,2020,6.458,11.053,0.827,67.500,0.942,0.060,,0.752,0.298 +United Kingdom,2005,6.984,10.663,0.979,69.900,0.922,,0.398,0.864,0.262 +United Kingdom,2007,6.802,10.699,0.970,70.460,0.838,0.336,0.498,0.782,0.241 +United Kingdom,2008,6.986,10.689,0.954,70.740,0.759,0.331,0.548,0.819,0.218 +United Kingdom,2009,6.907,10.638,0.964,71.020,0.816,0.341,0.559,0.846,0.231 +United Kingdom,2010,7.029,10.649,0.955,71.300,0.841,0.403,0.587,0.863,0.176 +United Kingdom,2011,6.869,10.657,0.949,71.380,0.900,0.336,0.438,0.844,0.174 +United Kingdom,2012,6.881,10.664,0.935,71.460,0.889,0.371,0.425,0.844,0.184 +United Kingdom,2013,6.918,10.679,0.937,71.540,0.905,0.346,0.568,0.776,0.252 +United Kingdom,2014,6.758,10.697,0.910,71.620,0.857,0.355,0.484,0.794,0.251 +United Kingdom,2015,6.515,10.712,0.936,71.700,0.833,0.300,0.456,0.798,0.219 +United Kingdom,2016,6.824,10.724,0.954,71.900,0.821,0.250,0.458,0.776,0.230 +United Kingdom,2017,7.103,10.736,0.937,72.100,0.813,0.291,0.419,0.759,0.210 +United Kingdom,2018,7.233,10.743,0.928,72.300,0.838,0.226,0.404,0.783,0.228 +United Kingdom,2019,7.157,10.751,0.943,72.500,0.854,0.271,0.485,0.775,0.251 +United Kingdom,2020,6.798,10.626,0.929,72.700,0.885,0.203,0.490,0.758,0.225 +United States,2006,7.182,10.924,0.965,68.060,0.911,,0.600,0.827,0.261 +United States,2007,7.513,10.933,,68.220,0.872,0.197,0.633,0.829,0.232 +United States,2008,7.280,10.922,0.953,68.380,0.878,0.255,0.668,0.872,0.227 +United States,2009,7.158,10.888,0.912,68.540,0.831,0.201,0.665,0.843,0.262 +United States,2010,7.164,10.905,0.926,68.700,0.828,0.244,0.690,0.861,0.231 +United States,2011,7.115,10.913,0.922,68.680,0.863,0.161,0.697,0.836,0.273 +United States,2012,7.026,10.928,0.903,68.660,0.823,0.215,0.710,0.834,0.260 +United States,2013,7.249,10.939,0.925,68.640,0.792,0.274,0.747,0.814,0.260 +United States,2014,7.151,10.956,0.902,68.620,0.866,0.221,0.702,0.834,0.281 +United States,2015,6.864,10.977,0.904,68.600,0.849,0.219,0.698,0.814,0.275 +United States,2016,6.804,10.986,0.897,68.500,0.758,0.144,0.739,0.806,0.264 +United States,2017,6.992,11.001,0.921,68.400,0.868,0.197,0.681,0.827,0.268 +United States,2018,6.883,11.025,0.904,68.300,0.825,0.116,0.710,0.815,0.292 +United States,2019,6.944,11.043,0.917,68.200,0.836,0.144,0.707,0.815,0.244 +United States,2020,7.028,11.001,0.937,68.100,0.850,0.034,0.678,0.787,0.295 +Uruguay,2006,5.786,9.543,0.912,67.440,0.807,-0.113,0.477,0.784,0.306 +Uruguay,2007,5.694,9.604,0.875,67.580,0.786,-0.165,0.614,0.777,0.274 +Uruguay,2008,5.664,9.671,0.879,67.720,0.808,-0.143,0.597,0.751,0.264 +Uruguay,2009,6.296,9.710,0.924,67.860,0.825,-0.118,0.544,0.793,0.255 +Uruguay,2010,6.062,9.782,0.893,68.000,0.832,-0.158,0.471,0.807,0.231 +Uruguay,2011,6.554,9.830,0.891,68.140,0.851,-0.080,0.556,0.805,0.252 +Uruguay,2012,6.450,9.861,0.865,68.280,0.871,0.067,0.615,0.788,0.214 +Uruguay,2013,6.444,9.904,0.917,68.420,0.888,-0.043,0.586,0.826,0.253 +Uruguay,2014,6.561,9.932,0.902,68.560,0.904,-0.073,0.533,0.869,0.251 +Uruguay,2015,6.628,9.932,0.891,68.700,0.917,-0.032,0.673,0.893,0.300 +Uruguay,2016,6.171,9.946,0.900,68.800,0.886,-0.072,0.676,0.842,0.283 +Uruguay,2017,6.336,9.968,0.914,68.900,0.898,-0.091,0.627,0.836,0.280 +Uruguay,2018,6.372,9.980,0.917,69.000,0.876,-0.097,0.683,0.877,0.275 +Uruguay,2019,6.600,9.979,0.933,69.100,0.903,-0.095,0.599,0.889,0.222 +Uruguay,2020,6.310,9.937,0.921,69.200,0.908,-0.084,0.491,0.807,0.265 +Uzbekistan,2006,5.232,8.193,0.903,61.440,0.784,-0.115,0.609,0.728,0.195 +Uzbekistan,2008,5.311,8.339,0.894,62.320,0.831,-0.023,,0.714,0.187 +Uzbekistan,2009,5.261,8.400,0.905,62.760,,0.013,0.610,0.736,0.159 +Uzbekistan,2010,5.095,8.445,0.903,63.200,,-0.030,0.519,0.776,0.152 +Uzbekistan,2011,5.739,8.493,0.924,63.400,0.934,0.042,0.522,0.787,0.123 +Uzbekistan,2012,6.019,8.550,0.933,63.600,0.914,-0.037,0.463,0.786,0.118 +Uzbekistan,2013,5.940,8.607,0.963,63.800,0.950,-0.034,0.434,0.749,0.130 +Uzbekistan,2014,6.049,8.659,0.952,64.000,0.954,0.061,0.536,0.805,0.106 +Uzbekistan,2015,5.972,8.714,0.968,64.200,0.980,0.375,0.471,0.840,0.103 +Uzbekistan,2016,5.893,8.756,0.945,64.500,0.984,0.208,,0.842,0.147 +Uzbekistan,2017,6.421,8.782,0.942,64.800,0.985,0.123,0.465,0.839,0.203 +Uzbekistan,2018,6.205,8.818,0.921,65.100,0.970,0.318,0.520,0.825,0.209 +Uzbekistan,2019,6.154,8.853,0.915,65.400,0.970,0.304,0.511,0.845,0.220 +Venezuela,2005,7.170,9.313,0.955,65.400,0.838,,0.720,0.819,0.233 +Venezuela,2006,6.525,9.460,0.946,65.460,0.798,-0.031,0.646,0.859,0.178 +Venezuela,2008,6.258,9.701,0.922,65.580,0.678,-0.225,0.776,0.802,0.224 +Venezuela,2009,7.189,9.542,0.945,65.640,0.677,-0.116,0.828,0.825,0.180 +Venezuela,2010,7.478,9.717,0.932,65.700,0.768,-0.155,0.754,0.862,0.130 +Venezuela,2011,6.580,9.822,0.931,65.740,0.766,-0.226,0.772,0.828,0.199 +Venezuela,2012,7.067,9.826,0.932,65.780,0.804,-0.193,0.743,0.858,0.176 +Venezuela,2013,6.553,9.739,0.896,65.820,0.642,-0.220,0.837,0.840,0.238 +Venezuela,2014,6.136,9.557,0.904,65.860,0.570,-0.199,0.827,0.811,0.244 +Venezuela,2015,5.569,9.001,0.911,65.900,0.512,-0.117,0.813,0.867,0.223 +Venezuela,2016,4.041,9.010,0.902,66.100,0.458,-0.155,0.890,0.688,0.392 +Venezuela,2017,5.071,9.073,0.896,66.300,0.636,-0.169,0.844,0.726,0.363 +Venezuela,2018,5.006,,0.887,66.500,0.611,,0.828,0.759,0.374 +Venezuela,2019,5.081,,0.888,66.700,0.626,,0.839,0.761,0.351 +Venezuela,2020,4.574,,0.805,66.900,0.612,,0.811,0.722,0.396 +Vietnam,2006,5.294,8.335,0.888,65.860,0.886,0.015,,0.682,0.204 +Vietnam,2007,5.422,8.394,0.856,66.020,0.918,0.089,0.754,0.588,0.206 +Vietnam,2008,5.480,8.440,0.805,66.180,0.889,0.201,0.789,0.665,0.218 +Vietnam,2009,5.304,8.483,0.815,66.340,0.834,-0.062,0.838,0.583,0.190 +Vietnam,2010,5.296,8.535,0.787,66.500,0.831,-0.006,0.743,0.685,0.216 +Vietnam,2011,5.767,8.585,0.898,66.660,0.818,0.105,0.742,0.532,0.193 +Vietnam,2012,5.535,8.626,0.775,66.820,0.856,-0.110,0.815,0.615,0.221 +Vietnam,2013,5.023,8.668,0.759,66.980,0.920,-0.027,0.771,0.718,0.165 +Vietnam,2014,5.085,8.716,0.792,67.140,,0.000,,0.701,0.241 +Vietnam,2015,5.076,8.770,0.849,67.300,,0.086,,0.642,0.232 +Vietnam,2016,5.062,8.820,0.876,67.500,0.894,-0.090,0.799,0.536,0.223 +Vietnam,2017,5.175,8.876,,67.700,,,,, +Vietnam,2018,5.296,8.934,0.832,67.900,0.909,-0.041,0.808,0.692,0.191 +Vietnam,2019,5.467,8.992,0.848,68.100,0.952,-0.126,0.788,0.751,0.186 +Yemen,2007,4.477,8.214,0.825,53.400,0.673,0.011,,0.592,0.379 +Yemen,2009,4.809,8.278,0.756,54.000,0.644,-0.052,0.832,0.583,0.374 +Yemen,2010,4.350,8.453,0.727,54.300,0.659,-0.104,0.853,0.582,0.308 +Yemen,2011,3.746,8.336,0.663,54.300,0.638,-0.173,0.754,0.503,0.285 +Yemen,2012,4.061,8.236,0.682,54.300,0.706,-0.171,0.793,0.502,0.263 +Yemen,2013,4.218,8.242,0.694,54.300,0.543,-0.179,0.885,0.558,0.266 +Yemen,2014,3.968,8.117,0.638,54.300,0.664,-0.157,0.885,0.611,0.276 +Yemen,2015,2.983,7.858,0.669,54.300,0.610,-0.139,0.829,0.507,0.321 +Yemen,2016,3.826,7.715,0.775,55.100,0.533,-0.151,,0.469,0.228 +Yemen,2017,3.254,7.578,0.790,55.900,0.595,-0.147,,0.455,0.295 +Yemen,2018,3.058,,0.789,56.700,0.553,,0.793,0.461,0.315 +Yemen,2019,4.197,,0.870,57.500,0.651,,0.798,0.543,0.213 +Zambia,2006,4.824,7.817,0.798,44.260,0.721,-0.006,0.785,0.701,0.226 +Zambia,2007,3.998,7.871,0.688,45.720,0.682,-0.067,0.948,0.687,0.246 +Zambia,2008,4.730,7.918,0.624,47.180,0.717,0.056,0.890,0.744,0.206 +Zambia,2009,5.260,7.978,0.782,48.640,0.696,-0.096,0.917,0.728,0.123 +Zambia,2011,4.999,8.071,0.864,50.840,0.663,0.003,0.882,0.833,0.204 +Zambia,2012,5.013,8.114,0.780,51.580,0.788,0.008,0.806,0.726,0.250 +Zambia,2013,5.244,8.131,0.761,52.320,0.770,-0.104,0.732,0.735,0.308 +Zambia,2014,4.346,8.146,0.706,53.060,0.812,-0.011,0.809,0.692,0.327 +Zambia,2015,4.843,8.144,0.691,53.800,0.759,-0.039,0.871,0.690,0.382 +Zambia,2016,4.348,8.151,0.767,54.300,0.812,0.122,0.771,0.731,0.372 +Zambia,2017,3.933,8.156,0.744,54.800,0.823,0.140,0.740,0.685,0.387 +Zambia,2018,4.041,8.167,0.718,55.300,0.791,0.048,0.811,0.703,0.351 +Zambia,2019,3.307,8.155,0.638,55.800,0.811,0.077,0.832,0.743,0.394 +Zambia,2020,4.838,8.117,0.767,56.300,0.750,0.056,0.810,0.691,0.345 +Zimbabwe,2006,3.826,7.711,0.822,41.580,0.431,-0.076,0.905,0.715,0.297 +Zimbabwe,2007,3.280,7.666,0.828,42.860,0.456,-0.082,0.946,0.661,0.265 +Zimbabwe,2008,3.174,7.461,0.843,44.140,0.344,-0.090,0.964,0.631,0.250 +Zimbabwe,2009,4.056,7.563,0.806,45.420,0.411,-0.078,0.931,0.736,0.218 +Zimbabwe,2010,4.682,7.729,0.857,46.700,0.665,-0.093,0.828,0.748,0.122 +Zimbabwe,2011,4.846,7.846,0.865,48.120,0.633,-0.088,0.830,0.781,0.211 +Zimbabwe,2012,4.955,7.983,0.896,49.540,0.470,-0.103,0.859,0.669,0.177 +Zimbabwe,2013,4.690,7.985,0.799,50.960,0.576,-0.104,0.831,0.712,0.182 +Zimbabwe,2014,4.184,7.991,0.766,52.380,0.642,-0.074,0.820,0.725,0.239 +Zimbabwe,2015,3.703,7.992,0.736,53.800,0.667,-0.123,0.810,0.715,0.179 +Zimbabwe,2016,3.735,7.984,0.768,54.400,0.733,-0.095,0.724,0.738,0.209 +Zimbabwe,2017,3.638,8.016,0.754,55.000,0.753,-0.098,0.751,0.806,0.224 +Zimbabwe,2018,3.616,8.049,0.775,55.600,0.763,-0.068,0.844,0.710,0.212 +Zimbabwe,2019,2.694,7.950,0.759,56.200,0.632,-0.064,0.831,0.716,0.235 +Zimbabwe,2020,3.160,7.829,0.717,56.800,0.643,-0.009,0.789,0.703,0.346 diff --git a/exercicios/para-sala/exercicio_sala_de_aula.ipynb b/exercicios/para-sala/exercicio_sala_de_aula.ipynb new file mode 100644 index 0000000..6546153 --- /dev/null +++ b/exercicios/para-sala/exercicio_sala_de_aula.ipynb @@ -0,0 +1,1099 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# ETL" + ] + }, + { + "cell_type": "code", + "execution_count": 240, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 241, + "metadata": {}, + "outputs": [], + "source": [ + "# Leitura do nosso arquivo csv\n", + "\n", + "df = pd.read_csv(\"titanic.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 242, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
5603Moran, Mr. JamesmaleNaN003308778.4583NaNQ
6701McCarthy, Mr. Timothy Jmale54.0001746351.8625E46S
7803Palsson, Master. Gosta Leonardmale2.03134990921.0750NaNS
8913Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)female27.00234774211.1333NaNS
91012Nasser, Mrs. Nicholas (Adele Achem)female14.01023773630.0708NaNC
\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass \\\n", + "0 1 0 3 \n", + "1 2 1 1 \n", + "2 3 1 3 \n", + "3 4 1 1 \n", + "4 5 0 3 \n", + "5 6 0 3 \n", + "6 7 0 1 \n", + "7 8 0 3 \n", + "8 9 1 3 \n", + "9 10 1 2 \n", + "\n", + " Name Sex Age SibSp \\\n", + "0 Braund, Mr. Owen Harris male 22.0 1 \n", + "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n", + "2 Heikkinen, Miss. Laina female 26.0 0 \n", + "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n", + "4 Allen, Mr. William Henry male 35.0 0 \n", + "5 Moran, Mr. James male NaN 0 \n", + "6 McCarthy, Mr. Timothy J male 54.0 0 \n", + "7 Palsson, Master. Gosta Leonard male 2.0 3 \n", + "8 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27.0 0 \n", + "9 Nasser, Mrs. Nicholas (Adele Achem) female 14.0 1 \n", + "\n", + " Parch Ticket Fare Cabin Embarked \n", + "0 0 A/5 21171 7.2500 NaN S \n", + "1 0 PC 17599 71.2833 C85 C \n", + "2 0 STON/O2. 3101282 7.9250 NaN S \n", + "3 0 113803 53.1000 C123 S \n", + "4 0 373450 8.0500 NaN S \n", + "5 0 330877 8.4583 NaN Q \n", + "6 0 17463 51.8625 E46 S \n", + "7 1 349909 21.0750 NaN S \n", + "8 2 347742 11.1333 NaN S \n", + "9 0 237736 30.0708 NaN C " + ] + }, + "execution_count": 242, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 243, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(891, 12)" + ] + }, + "execution_count": 243, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Quantidades de linhas e colunas\n", + "df.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 244, + "metadata": {}, + "outputs": [], + "source": [ + "# Backup\n", + "df_backup = df.copy()" + ] + }, + { + "cell_type": "code", + "execution_count": 245, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PassengerId 0\n", + "Survived 0\n", + "Pclass 0\n", + "Name 0\n", + "Sex 0\n", + "Age 177\n", + "SibSp 0\n", + "Parch 0\n", + "Ticket 0\n", + "Fare 0\n", + "Cabin 687\n", + "Embarked 2\n", + "dtype: int64\n" + ] + } + ], + "source": [ + "# Contas dados nulos em cada coluna\n", + "nulos_por_colunas = df.isnull().sum()\n", + "print(nulos_por_colunas)" + ] + }, + { + "cell_type": "code", + "execution_count": 246, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 1\n", + "1 0\n", + "2 1\n", + "3 0\n", + "4 1\n", + " ..\n", + "886 1\n", + "887 0\n", + "888 2\n", + "889 0\n", + "890 1\n", + "Length: 891, dtype: int64\n" + ] + } + ], + "source": [ + "# Contar dados nulos por linhas\n", + "nulos_por_linhas = df.isnull().sum(axis=1)\n", + "print(nulos_por_linhas)" + ] + }, + { + "cell_type": "code", + "execution_count": 247, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassAgeSibSpParchFare
count891.000000891.000000891.000000714.000000891.000000891.000000891.000000
mean446.0000000.3838382.30864229.6991180.5230080.38159432.204208
std257.3538420.4865920.83607114.5264971.1027430.80605749.693429
min1.0000000.0000001.0000000.4200000.0000000.0000000.000000
25%223.5000000.0000002.00000020.1250000.0000000.0000007.910400
50%446.0000000.0000003.00000028.0000000.0000000.00000014.454200
75%668.5000001.0000003.00000038.0000001.0000000.00000031.000000
max891.0000001.0000003.00000080.0000008.0000006.000000512.329200
\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass Age SibSp \\\n", + "count 891.000000 891.000000 891.000000 714.000000 891.000000 \n", + "mean 446.000000 0.383838 2.308642 29.699118 0.523008 \n", + "std 257.353842 0.486592 0.836071 14.526497 1.102743 \n", + "min 1.000000 0.000000 1.000000 0.420000 0.000000 \n", + "25% 223.500000 0.000000 2.000000 20.125000 0.000000 \n", + "50% 446.000000 0.000000 3.000000 28.000000 0.000000 \n", + "75% 668.500000 1.000000 3.000000 38.000000 1.000000 \n", + "max 891.000000 1.000000 3.000000 80.000000 8.000000 \n", + "\n", + " Parch Fare \n", + "count 891.000000 891.000000 \n", + "mean 0.381594 32.204208 \n", + "std 0.806057 49.693429 \n", + "min 0.000000 0.000000 \n", + "25% 0.000000 7.910400 \n", + "50% 0.000000 14.454200 \n", + "75% 0.000000 31.000000 \n", + "max 6.000000 512.329200 " + ] + }, + "execution_count": 247, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Descrição dos dados\n", + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 248, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 891 entries, 0 to 890\n", + "Data columns (total 12 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 PassengerId 891 non-null int64 \n", + " 1 Survived 891 non-null int64 \n", + " 2 Pclass 891 non-null int64 \n", + " 3 Name 891 non-null object \n", + " 4 Sex 891 non-null object \n", + " 5 Age 714 non-null float64\n", + " 6 SibSp 891 non-null int64 \n", + " 7 Parch 891 non-null int64 \n", + " 8 Ticket 891 non-null object \n", + " 9 Fare 891 non-null float64\n", + " 10 Cabin 204 non-null object \n", + " 11 Embarked 889 non-null object \n", + "dtypes: float64(2), int64(5), object(5)\n", + "memory usage: 83.7+ KB\n", + "None\n" + ] + } + ], + "source": [ + "# Verificar as infomações\n", + "info_df = df.info()\n", + "print(info_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 249, + "metadata": {}, + "outputs": [], + "source": [ + "# Remover linhas duplicadas\n", + "df = df.drop_duplicates()" + ] + }, + { + "cell_type": "code", + "execution_count": 250, + "metadata": {}, + "outputs": [], + "source": [ + "# Remover linhas duplicadas de uma coluna específica\n", + "df = df.drop_duplicates([\"PassengerId\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 251, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Empty DataFrame\n", + "Columns: [PassengerId, Survived, Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked]\n", + "Index: []\n" + ] + } + ], + "source": [ + "# Função das linhas duplicadas (apenas explicação)\n", + "def visulizar_linhas_duplicadas(df):\n", + " duplicados = df[df.duplicated(keep=False)] # colocar o keep para trazer apenas as duplicadas, o padrão ele traz as linhas que NÃO são duplicadas\n", + " return duplicados\n", + "\n", + "linhas_duplicadas = visulizar_linhas_duplicadas(df)\n", + "print(linhas_duplicadas)" + ] + }, + { + "cell_type": "code", + "execution_count": 252, + "metadata": {}, + "outputs": [], + "source": [ + "# Apagar colunas do df\n", + "df = df.drop(columns=[\"SibSp\",\"Parch\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 253, + "metadata": {}, + "outputs": [], + "source": [ + "# Apagar as informações NAN (na são os valores nulos), utilizar em uma df teste para não afetar a original\n", + "df_teste = df.dropna(subset=[\"Cabin\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 254, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(204, 10)" + ] + }, + "execution_count": 254, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_teste.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 255, + "metadata": {}, + "outputs": [], + "source": [ + "# Resetar o index (para apagar o número de índice caso tenha)\n", + "df = df.reset_index(drop=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 256, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'Ticket',\n", + " 'Fare', 'Cabin', 'Embarked'],\n", + " dtype='object')" + ] + }, + "execution_count": 256, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 257, + "metadata": {}, + "outputs": [], + "source": [ + "# Renomear as colunas\n", + "df.rename(columns={\n", + " 'PassengerId': 'IdPassageiro', \n", + " 'Survived': 'Sobreviveu', \n", + " 'Pclass': 'Classe', \n", + " 'Name': 'Nome', \n", + " 'Sex': 'Genero', \n", + " 'Age': 'Idade', \n", + " 'Ticket': 'Bilhete', \n", + " 'Fare': 'Tarifa', \n", + " 'Cabin': 'Cabine', \n", + " 'Embarked': 'Embarque',\n", + "}, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 258, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['IdPassageiro', 'Sobreviveu', 'Classe', 'Nome', 'Genero', 'Idade',\n", + " 'Bilhete', 'Tarifa', 'Cabine', 'Embarque'],\n", + " dtype='object')" + ] + }, + "execution_count": 258, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 259, + "metadata": {}, + "outputs": [], + "source": [ + "# Salvar no csv\n", + "df.to_csv('titanic_tratado.csv', index=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Análises" + ] + }, + { + "cell_type": "code", + "execution_count": 260, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHCCAYAAAAJowgXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABEhUlEQVR4nO3deXwNd////+eJyCJxErEklsS+hFqKIqXVomKLpZS61FK0VwmK0lZLrb0sVbpRqr0svaiW0qral+pHhSqlSiy1NFpil4glkeT9+6O/nG+PhEaEk4zH/XY7tysz7/fMvGbO6XWeZt4zx2aMMQIAALAoN1cXAAAAcDcRdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdnDf2Lp1q0aPHq2zZ8+6uhQAwD1E2MF9ITY2Vm3btpWbm5sKFSrk6nLuiWPHjslms2nOnDmuLsXSbDabRo0a5eoycqVRo0bJZrO5ugzcBwg7yBXmzJkjm80mLy8v/fnnn+naH3vsMT3wwAMZLpuSkqLOnTurdevWGjFixN0uFbjvXbt2TVOnTlXdunXl5+cnLy8vVahQQf369dPBgwddXR7uQ+6uLgC4HYmJiZowYYLef//9TC9z4MABtWzZUoMGDbqLleF+dfXqVbm783+lac6ePatmzZppx44datWqlf71r3/J19dXBw4c0MKFC/XRRx8pKSnJ1WXiPsN/ochVatSooVmzZmnYsGEqVqxYppapXLmyKleufJcry5rU1FQlJSXJy8vL1aUgizLz3l2+fFk+Pj73oJq779q1a/Lw8JCbW8YXBnr06KGff/5ZixcvVvv27Z3axo4dq9dff/1elAk44TIWcpXXXntNKSkpmjBhwi373Wq8yo1jLNLGDRw8eFDPPPOM/Pz8VLhwYY0YMULGGB0/flxt2rSR3W5XUFCQ3n777XTrTExM1MiRI1WuXDl5enoqODhYL7/8shITE9Ntu1+/fpo/f76qVKkiT09PrVq1SpL0888/q3nz5rLb7fL19VXjxo21devWTB2XixcvqkePHvLz85O/v7+6d++uixcvZth3//796tChgwICAuTl5aXatWtr2bJl/7iNtGM6efJkTZ06VSVLlpS3t7caNmyoX3/91anvL7/8oh49eqhMmTLy8vJSUFCQevbsqXPnzjn1u3TpkgYOHKhSpUrJ09NTRYoU0RNPPKGdO3c6+hw6dEjt27dXUFCQvLy8VKJECT399NOKi4tz9Jk9e7YaNWqkIkWKyNPTU5UrV9aHH36Ybh9SU1M1atQoFStWTPny5dPjjz+uffv2qVSpUurRo0e6Yzpw4EAFBwfL09NT5cqV08SJE5WamurU72afp3379ulf//qXChQooAYNGkiSkpOTNXbsWJUtW1aenp4qVaqUXnvttXSfk59++knh4eEqVKiQvL29Vbp0afXs2fMf36NSpUqpVatWWrNmjWrUqCEvLy9VrlxZS5YsSdf3yJEjeuqppxQQEKB8+fKpXr16+vbbb536fPfdd7LZbFq4cKGGDx+u4sWLK1++fIqPj89w+9u2bdO3336rXr16pQs6kuTp6anJkyffch8y+15m5hgtXLhQtWrVUv78+WW321W1alW9++67Tn0y+z4jd+PMDnKV0qVLq1u3bpo1a5ZeffXVTJ/dyYxOnTopNDRUEyZM0Lfffqtx48YpICBAM2fOVKNGjTRx4kTNnz9fQ4YM0UMPPaRHH31U0l9foK1bt9bmzZv1/PPPKzQ0VHv27NHUqVN18OBBffXVV07b2bBhg7744gv169dPhQoVUqlSpbR371498sgjstvtevnll5U3b17NnDlTjz32mDZt2qS6devetG5jjNq0aaPNmzfrhRdeUGhoqJYuXaru3bun67t3717Vr19fxYsX16uvviofHx998cUXatu2rb788ku1a9fuH4/TvHnzdOnSJUVGRuratWt699131ahRI+3Zs0eBgYGSpLVr1+rIkSN69tlnFRQUpL179+qjjz7S3r17tXXrVseg1BdeeEGLFy9Wv379VLlyZZ07d06bN29WdHS0atasqaSkJIWHhysxMVH9+/dXUFCQ/vzzTy1fvlwXL16Un5+fJOnDDz9UlSpV1Lp1a7m7u+ubb75R3759lZqaqsjISEftw4YN06RJkxQREaHw8HDt3r1b4eHhunbtmtM+XrlyRQ0bNtSff/6pf//73woJCdGWLVs0bNgwnTx5Uu+8884/HqennnpK5cuX13/+8x8ZYyRJvXv31ty5c9WhQwe99NJL2rZtm8aPH6/o6GgtXbpUknT69Gk1bdpUhQsX1quvvip/f38dO3Ysw8CSkUOHDqlTp0564YUX1L17d82ePVtPPfWUVq1apSeeeEKSdOrUKT388MO6cuWKBgwYoIIFC2ru3Llq3bq1Fi9enO5zMHbsWHl4eGjIkCFKTEyUh4dHhttOC81du3bNVK0Zycx7mZljtHbtWnXu3FmNGzfWxIkTJUnR0dH64Ycf9OKLL0rKnvcZuYQBcoHZs2cbSWb79u3m8OHDxt3d3QwYMMDR3rBhQ1OlShXH9NGjR40kM3v27HTrkmRGjhzpmB45cqSRZJ5//nnHvOTkZFOiRAljs9nMhAkTHPMvXLhgvL29Tffu3R3zPv30U+Pm5mb+7//+z2k7M2bMMJLMDz/84LRtNzc3s3fvXqe+bdu2NR4eHubw4cOOeSdOnDD58+c3jz766C2PzVdffWUkmUmTJjnV/8gjj6Q7Bo0bNzZVq1Y1165dc8xLTU01Dz/8sClfvvwtt5N2TL29vc0ff/zhmL9t2zYjyQwaNMgx78qVK+mW/+yzz4wk8/333zvm+fn5mcjIyJtu8+effzaSzKJFi25ZW0bbCw8PN2XKlHFMx8bGGnd3d9O2bVunfqNGjTKSnN7TsWPHGh8fH3Pw4EGnvq+++qrJkyePiYmJccy72eepc+fOTsvu2rXLSDK9e/d2mj9kyBAjyWzYsMEYY8zSpUsdn/XbVbJkSSPJfPnll455cXFxpmjRoubBBx90zBs4cKCR5PSZvXTpkildurQpVaqUSUlJMcYYs3HjRiPJlClTJsNjfKN27doZSebChQuZqjftWP1dZt7LzByjF1980djtdpOcnHzTPrfzPiN34zIWcp0yZcqoa9eu+uijj3Ty5MlsW2/v3r0df+fJk0e1a9eWMUa9evVyzPf391fFihV15MgRx7xFixYpNDRUlSpV0tmzZx2vRo0aSZI2btzotJ2GDRs6jSFKSUnRmjVr1LZtW5UpU8Yxv2jRovrXv/6lzZs33/SygSStWLFC7u7u6tOnj1P9/fv3d+p3/vx5bdiwQR07dtSlS5ccdZ47d07h4eE6dOhQhne63aht27YqXry4Y7pOnTqqW7euVqxY4Zjn7e3t+PvatWs6e/as6tWrJ0lOl6j8/f21bds2nThxIsNtpZ25Wb16ta5cuXLTmv6+vbi4OJ09e1YNGzbUkSNHHJe71q9fr+TkZPXt29dp2RuPk/TXe/rII4+oQIECTu9pkyZNlJKSou+///6mtaR54YUXnKbTjs/gwYOd5r/00kuS5LiE5O/vL0lavny5rl+//o/buVGxYsWczszY7XZ169ZNP//8s2JjYx211KlTx3F5TZJ8fX31/PPP69ixY9q3b5/TOrt37+50jG8m7XOaP3/+2647TWbey8wcI39/f12+fFlr16696bay431G7kDYQa40fPhwJScn/+PYndsREhLiNJ12y+yNz+Xx8/PThQsXHNOHDh3S3r17VbhwYadXhQoVJP11yv3vSpcu7TR95swZXblyRRUrVkxXU2hoqFJTU3X8+PGb1v3777+raNGi8vX1dZp/4/p+++03GWM0YsSIdLWOHDkyw1ozUr58+XTzKlSooGPHjjmmz58/rxdffFGBgYHy9vZW4cKFHfv997E2kyZN0q+//qrg4GDVqVNHo0aNcgqSpUuX1uDBg/Xxxx+rUKFCCg8P17Rp05zWIUk//PCDmjRpIh8fH/n7+6tw4cJ67bXXnLb3+++/S5LKlSvntGxAQIAKFCjgNO/QoUNatWpVuuPUpEmTTB+nG9/n33//XW5ubum2HxQUJH9/f0d9DRs2VPv27TV69GgVKlRIbdq00ezZs9ON67mZcuXKpXt2TdpnMe09+v3332/6eUtrv9W+3Izdbpf011isrMrMe5mZY9S3b19VqFBBzZs3V4kSJdSzZ0/H+Lg02fE+I3dgzA5ypTJlyuiZZ57RRx99pFdffTVd+80eVJaSknLTdebJkydT8yQ5xmBIf43ZqVq1qqZMmZJh3+DgYKfpzPwL+W5IG3A5ZMgQhYeHZ9jnxi/irOrYsaO2bNmioUOHqkaNGvL19VVqaqqaNWvmNPCzY8eOeuSRR7R06VKtWbNGb731liZOnKglS5aoefPmkqS3335bPXr00Ndff601a9ZowIABGj9+vLZu3aoSJUro8OHDaty4sSpVqqQpU6YoODhYHh4eWrFihaZOnZqlgaapqal64okn9PLLL2fYnhYebuVm7/M/PUTPZrNp8eLF2rp1q7755hutXr1aPXv21Ntvv62tW7emC7X3QmY/s5UqVZIk7dmzR4888shtbyez72VmjlGRIkW0a9curV69WitXrtTKlSs1e/ZsdevWTXPnzpWUPe8zcgfCDnKt4cOH63//+59j8OHfpf1L/cY7km78F2t2KFu2rHbv3q3GjRtn6WmwhQsXVr58+XTgwIF0bfv375ebm1u6wPR3JUuW1Pr165WQkOD0RXjj+tIukeXNm9fxL9esOHToULp5Bw8eVKlSpSRJFy5c0Pr16zV69Gi98cYbt1xO+utyXd++fdW3b1+dPn1aNWvW1JtvvukIO5JUtWpVVa1aVcOHD9eWLVtUv359zZgxQ+PGjdM333yjxMRELVu2zOns3I2XD0uWLCnprzNcfz9Tce7cOaczddJf72lCQsIdHacblSxZUqmpqTp06JDjDIr012DhixcvOupLU69ePdWrV09vvvmmFixYoC5dumjhwoVOl1szknYG7++fxbQH+aW9RyVLlrzp5y2tPSsiIiI0fvx4/e9//8tS2Mnse5nmn46Rh4eHIiIiFBERodTUVPXt21czZ87UiBEjVK5cubvyPiNn4jIWcq2yZcvqmWee0cyZMx1jEdLY7XYVKlQo3TX36dOnZ3sdHTt21J9//qlZs2ala7t69aouX758y+Xz5Mmjpk2b6uuvv3a6FHTq1CktWLBADRo0cFweyEiLFi2UnJzsdHtuSkpKugcvFilSRI899phmzpyZ4VinM2fO3LLONF999ZXT2J4ff/xR27Ztc4STtLNhfz/7JSndnS0pKSnpLkcVKVJExYoVc1yOiI+PV3JyslOfqlWrys3NzdEno+3FxcVp9uzZTss1btxY7u7u6W5j/uCDD9LtY8eOHRUVFaXVq1ena7t48WK6mjKjRYsWktIfh7Qzgi1btpT0V1i88djVqFFDkjJ1KevEiROOO7ukv47hvHnzVKNGDQUFBTlq+fHHHxUVFeXod/nyZX300UcqVapUlp9LFRYWpmbNmunjjz9OdxeiJCUlJWnIkCE3XT6z72VmjtGNjzlwc3NTtWrVnPrcjfcZORNndpCrvf766/r000914MABValSxamtd+/emjBhgnr37q3atWvr+++/vyuPqu/atau++OILvfDCC9q4caPq16+vlJQU7d+/X1988YVWr16t2rVr33Id48aN09q1a9WgQQP17dtX7u7umjlzphITEzVp0qRbLhsREaH69evr1Vdf1bFjxxzPVbkxSEjStGnT1KBBA1WtWlXPPfecypQpo1OnTikqKkp//PGHdu/e/Y/7W65cOTVo0EB9+vRRYmKi3nnnHRUsWNBxKcBut+vRRx/VpEmTdP36dRUvXlxr1qzR0aNHndZz6dIllShRQh06dFD16tXl6+urdevWafv27Y5nGW3YsEH9+vXTU089pQoVKig5OVmffvqp8uTJ43iOS9OmTR3/gv/3v/+thIQEzZo1S0WKFHEKdYGBgXrxxRf19ttvq3Xr1mrWrJl2796tlStXqlChQk5nQoYOHaply5apVatW6tGjh2rVqqXLly9rz549Wrx4sY4dO3bbv7FWvXp1de/eXR999JEuXryohg0b6scff9TcuXPVtm1bPf7445KkuXPnavr06WrXrp3Kli2rS5cuadasWbLb7Y7AdCsVKlRQr169tH37dgUGBuq///2vTp065RQYXn31VX322Wdq3ry5BgwYoICAAM2dO1dHjx7Vl19+edMHBmbGvHnz1LRpUz355JOKiIhQ48aN5ePjo0OHDmnhwoU6efLkTZ+1k9n3MjPHqHfv3jp//rwaNWqkEiVK6Pfff9f777+vGjVqOM6s3Y33GTmUy+4DA27D3289v1H37t2NJKdbz4356xbWXr16GT8/P5M/f37TsWNHc/r06ZveKnzmzJl06/Xx8Um3vRtvczfGmKSkJDNx4kRTpUoV4+npaQoUKGBq1aplRo8ebeLi4hz9JN30VuudO3ea8PBw4+vra/Lly2cef/xxs2XLln88NsYYc+7cOdO1a1djt9uNn5+f6dq1q+O27Rtvvz98+LDp1q2bCQoKMnnz5jXFixc3rVq1MosXL77lNtJuPX/rrbfM22+/bYKDg42np6d55JFHzO7du536/vHHH6Zdu3bG39/f+Pn5maeeesqcOHHC6dgnJiaaoUOHmurVq5v8+fMbHx8fU716dTN9+nTHeo4cOWJ69uxpypYta7y8vExAQIB5/PHHzbp165y2t2zZMlOtWjXj5eVlSpUqZSZOnGj++9//Gknm6NGjjn7JyclmxIgRJigoyHh7e5tGjRqZ6OhoU7BgQfPCCy84rfPSpUtm2LBhply5csbDw8MUKlTIPPzww2by5MkmKSnJ0S+znydjjLl+/boZPXq0KV26tMmbN68JDg42w4YNc3oUwM6dO03nzp1NSEiI8fT0NEWKFDGtWrUyP/300y3fH2P+uvW8ZcuWZvXq1aZatWrG09PTVKpUKcNb9w8fPmw6dOhg/P39jZeXl6lTp45Zvny5U5+0W8//6db/G125csVMnjzZPPTQQ8bX19d4eHiY8uXLm/79+5vffvvN0S+jW88z815m5hgtXrzYNG3a1BQpUsR4eHiYkJAQ8+9//9ucPHnSaXuZfZ+Ru9mMueFcIABk4NixYypdurTeeuutW16KyG0uXryoAgUKaNy4cbn+pwxKlSqlBx54QMuXL3d1KUCOwpgdAPeNq1evppuXNobmscceu7fFALhnGLMD4L7x+eefa86cOWrRooV8fX21efNmffbZZ2ratKnq16/v6vIA3CWEHQD3jWrVqsnd3V2TJk1SfHy8Y9DyuHHjXF0agLuIMTsAAMDSGLMDAAAsjbADAAAsjTE7+uv3UU6cOKH8+fNn6XH/AADg3jPG6NKlSypWrNgtH4ZJ2NFfj1e/1W8PAQCAnOv48eMqUaLETdsJO5Ly588v6a+DdavfIAIAADlHfHy8goODHd/jN0PYkRyXrux2O2EHAIBc5p+GoDBAGQAAWBphBwAAWBphBwAAWBphBwAAWJpLw86oUaNks9mcXpUqVXK0X7t2TZGRkSpYsKB8fX3Vvn17nTp1ymkdMTExatmypfLly6ciRYpo6NChSk5Ovte7AgAAciiX341VpUoVrVu3zjHt7v7/Sho0aJC+/fZbLVq0SH5+furXr5+efPJJ/fDDD5KklJQUtWzZUkFBQdqyZYtOnjypbt26KW/evPrPf/5zz/cFAADkPC4PO+7u7goKCko3Py4uTp988okWLFigRo0aSZJmz56t0NBQbd26VfXq1dOaNWu0b98+rVu3ToGBgapRo4bGjh2rV155RaNGjZKHh8e93h0AAJDDuHzMzqFDh1SsWDGVKVNGXbp0UUxMjCRpx44dun79upo0aeLoW6lSJYWEhCgqKkqSFBUVpapVqyowMNDRJzw8XPHx8dq7d+9Nt5mYmKj4+HinFwAAsCaXhp26detqzpw5WrVqlT788EMdPXpUjzzyiC5duqTY2Fh5eHjI39/faZnAwEDFxsZKkmJjY52CTlp7WtvNjB8/Xn5+fo4XPxUBAIB1ufQyVvPmzR1/V6tWTXXr1lXJkiX1xRdfyNvb+65td9iwYRo8eLBjOu1x0wAAwHpcfhnr7/z9/VWhQgX99ttvCgoKUlJSki5evOjU59SpU44xPkFBQenuzkqbzmgcUBpPT0/HT0PwExEAAFhbjgo7CQkJOnz4sIoWLapatWopb968Wr9+vaP9wIEDiomJUVhYmCQpLCxMe/bs0enTpx191q5dK7vdrsqVK9/z+gEAQM7j0stYQ4YMUUREhEqWLKkTJ05o5MiRypMnjzp37iw/Pz/16tVLgwcPVkBAgOx2u/r376+wsDDVq1dPktS0aVNVrlxZXbt21aRJkxQbG6vhw4crMjJSnp6ertw1AACQQ7g07Pzxxx/q3Lmzzp07p8KFC6tBgwbaunWrChcuLEmaOnWq3Nzc1L59eyUmJio8PFzTp093LJ8nTx4tX75cffr0UVhYmHx8fNS9e3eNGTPGVbsEAAByGJsxxri6CFeLj4+Xn5+f4uLicvT4nZgY6exZV1dhDYUKSSEhrq4CAHAnMvv97fKHCiJzYmKk0FCjK1dsri7FEvLlM4qOthF4AOA+QNjJJc6ela5csel/rx9RaMlrri4nV4v+3UvPvFlGZ89ydgcA7geEnVwmtOQ11axwxdVlAACQa+SoW88BAACyG2EHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYWo4JOxMmTJDNZtPAgQMd865du6bIyEgVLFhQvr6+at++vU6dOuW0XExMjFq2bKl8+fKpSJEiGjp0qJKTk+9x9QAAIKfKEWFn+/btmjlzpqpVq+Y0f9CgQfrmm2+0aNEibdq0SSdOnNCTTz7paE9JSVHLli2VlJSkLVu2aO7cuZozZ47eeOONe70LAAAgh3J52ElISFCXLl00a9YsFShQwDE/Li5On3zyiaZMmaJGjRqpVq1amj17trZs2aKtW7dKktasWaN9+/bpf//7n2rUqKHmzZtr7NixmjZtmpKSkly1SwAAIAdxediJjIxUy5Yt1aRJE6f5O3bs0PXr153mV6pUSSEhIYqKipIkRUVFqWrVqgoMDHT0CQ8PV3x8vPbu3XvTbSYmJio+Pt7pBQAArMndlRtfuHChdu7cqe3bt6dri42NlYeHh/z9/Z3mBwYGKjY21tHn70EnrT2t7WbGjx+v0aNH32H1AAAgN3DZmZ3jx4/rxRdf1Pz58+Xl5XVPtz1s2DDFxcU5XsePH7+n2wcAAPeOy8LOjh07dPr0adWsWVPu7u5yd3fXpk2b9N5778nd3V2BgYFKSkrSxYsXnZY7deqUgoKCJElBQUHp7s5Km07rkxFPT0/Z7XanFwAAsCaXhZ3GjRtrz5492rVrl+NVu3ZtdenSxfF33rx5tX79escyBw4cUExMjMLCwiRJYWFh2rNnj06fPu3os3btWtntdlWuXPme7xMAAMh5XDZmJ3/+/HrggQec5vn4+KhgwYKO+b169dLgwYMVEBAgu92u/v37KywsTPXq1ZMkNW3aVJUrV1bXrl01adIkxcbGavjw4YqMjJSnp+c93ycAAJDzuHSA8j+ZOnWq3Nzc1L59eyUmJio8PFzTp093tOfJk0fLly9Xnz59FBYWJh8fH3Xv3l1jxoxxYdUAACAnyVFh57vvvnOa9vLy0rRp0zRt2rSbLlOyZEmtWLHiLlcGAAByK5c/ZwcAAOBuIuwAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLy3LYuXjxoj7++GMNGzZM58+flyTt3LlTf/75Z7YVBwAAcKfcs7LQL7/8oiZNmsjPz0/Hjh3Tc889p4CAAC1ZskQxMTGaN29edtcJAACQJVk6szN48GD16NFDhw4dkpeXl2N+ixYt9P3332dbcQAAAHcqS2Fn+/bt+ve//51ufvHixRUbG3vHRQEAAGSXLIUdT09PxcfHp5t/8OBBFS5cONPr+fDDD1WtWjXZ7XbZ7XaFhYVp5cqVjvZr164pMjJSBQsWlK+vr9q3b69Tp045rSMmJkYtW7ZUvnz5VKRIEQ0dOlTJyclZ2S0AAGBBWQo7rVu31pgxY3T9+nVJks1mU0xMjF555RW1b98+0+spUaKEJkyYoB07duinn35So0aN1KZNG+3du1eSNGjQIH3zzTdatGiRNm3apBMnTujJJ590LJ+SkqKWLVsqKSlJW7Zs0dy5czVnzhy98cYbWdktAABgQTZjjLndheLi4tShQwf99NNPunTpkooVK6bY2FiFhYVpxYoV8vHxyXJBAQEBeuutt9ShQwcVLlxYCxYsUIcOHSRJ+/fvV2hoqKKiolSvXj2tXLlSrVq10okTJxQYGChJmjFjhl555RWdOXNGHh4emdpmfHy8/Pz8FBcXJ7vdnuXa76adO6VataQdH+1TzQpXXF1OrrbzYD7Ver6yduyQatZ0dTUAgKzK7Pd3lu7G8vPz09q1a7V582b98ssvSkhIUM2aNdWkSZMsF5ySkqJFixbp8uXLCgsL044dO3T9+nWndVaqVEkhISGOsBMVFaWqVas6go4khYeHq0+fPtq7d68efPDBDLeVmJioxMREx3RGl+QAAIA1ZCnspGnQoIEaNGhwRwXs2bNHYWFhunbtmnx9fbV06VJVrlxZu3btkoeHh/z9/Z36BwYGOgZBx8bGOgWdtPa0tpsZP368Ro8efUd1AwCA3CHTYee9997L9EoHDBiQ6b4VK1bUrl27FBcXp8WLF6t79+7atGlTppfPimHDhmnw4MGO6fj4eAUHB9/VbQIAANfIdNiZOnWq0/SZM2d05coVx5mXixcvOu6Iup2w4+HhoXLlykmSatWqpe3bt+vdd99Vp06dlJSUpIsXLzqd3Tl16pSCgoIkSUFBQfrxxx+d1pd2t1Zan4x4enrK09Mz0zUCAIDcK9N3Yx09etTxevPNN1WjRg1FR0fr/PnzOn/+vKKjo1WzZk2NHTv2jgpKTU1VYmKiatWqpbx582r9+vWOtgMHDigmJkZhYWGSpLCwMO3Zs0enT5929Fm7dq3sdrsqV658R3UAAABryNKYnREjRmjx4sWqWLGiY17FihU1depUdejQQV26dMnUeoYNG6bmzZsrJCREly5d0oIFC/Tdd99p9erV8vPzU69evTR48GAFBATIbrerf//+CgsLU7169SRJTZs2VeXKldW1a1dNmjRJsbGxGj58uCIjIzlzAwAAJGUx7Jw8eTLDB/elpKSke+jfrZw+fVrdunXTyZMn5efnp2rVqmn16tV64oknJP116czNzU3t27dXYmKiwsPDNX36dMfyefLk0fLly9WnTx+FhYXJx8dH3bt315gxY7KyWwAAwIKy9JydiIgI/fnnn/r4449V8/9/UMmOHTv0/PPPq3jx4lq2bFm2F3o38Zyd+wvP2QEAa8js93eWnqD83//+V0FBQapdu7ZjsG+dOnUUGBiojz/+OMtFAwAAZLcsXcYqXLiwVqxYoYMHD2r//v2S/nrgX4UKFbK1OAAAgDt1Rw8VrFChAgEHAADkaFkOO3/88YeWLVummJgYJSUlObVNmTLljgsDAADIDlkKO+vXr1fr1q1VpkwZ7d+/Xw888ICOHTsmY4xjwDIAAEBOkKUBysOGDdOQIUO0Z88eeXl56csvv9Tx48fVsGFDPfXUU9ldIwAAQJZlKexER0erW7dukiR3d3ddvXpVvr6+GjNmjCZOnJitBQIAANyJLIUdHx8fxzidokWL6vDhw462s2fPZk9lAAAA2SBLY3bq1aunzZs3KzQ0VC1atNBLL72kPXv2aMmSJY6fcgAAAMgJshR2pkyZooSEBEnS6NGjlZCQoM8//1zly5fnTiwAAJCjZCnslClTxvG3j4+PZsyYkW0FAQAAZKcsjdkBAADILTJ9ZqdAgQKy2WyZ6nv+/PksFwQAAJCdMh123nnnHcff586d07hx4xQeHq6wsDBJUlRUlFavXq0RI0Zke5EAAABZlemw0717d8ff7du315gxY9SvXz/HvAEDBuiDDz7QunXrNGjQoOytEgAAIIuyNGZn9erVatasWbr5zZo107p16+64KAAAgOySpbBTsGBBff311+nmf/311ypYsOAdFwUAAJBdsnTr+ejRo9W7d2999913qlu3riRp27ZtWrVqlWbNmpWtBQIAANyJLIWdHj16KDQ0VO+9956WLFkiSQoNDdXmzZsd4QcAACAnyFLYkaS6detq/vz52VkLAABAtst02ImPj5fdbnf8fStp/QAAAFztth4qePLkSRUpUkT+/v4ZPmDQGCObzaaUlJRsLRIAACCrMh12NmzYoICAAEnSxo0b71pBAAAA2SnTYadhw4aOv0uXLq3g4OB0Z3eMMTp+/Hj2VQcAAHCHsvScndKlS+vMmTPp5p8/f16lS5e+46IAAACyS5bCTtrYnBslJCTIy8vrjosCAADILrd16/ngwYMlSTabTSNGjFC+fPkcbSkpKdq2bZtq1KiRrQUCAADcidsKOz///LOkv87s7NmzRx4eHo42Dw8PVa9eXUOGDMneCgEAAO7AbYWdtLuwnn32Wb377rs8TwcAAOR4WXqC8uzZs7O7DgAAgLsiS2Hn8uXLmjBhgtavX6/Tp08rNTXVqf3IkSPZUhwAAMCdylLY6d27tzZt2qSuXbuqaNGiGd6ZBQAAkBNkKeysXLlS3377rerXr5/d9QAAAGSrLD1np0CBAo6fjgAAAMjJshR2xo4dqzfeeENXrlzJ7noAAACyVZYuY7399ts6fPiwAgMDVapUKeXNm9epfefOndlSHAAAwJ3KUthp27ZtNpcBAABwd2Qp7IwcOTK76wAAALgrsjRmBwAAILfI0pmdlJQUTZ06VV988YViYmKUlJTk1H7+/PlsKQ4AAOBOZenMzujRozVlyhR16tRJcXFxGjx4sJ588km5ublp1KhR2VwiAABA1mUp7MyfP1+zZs3SSy+9JHd3d3Xu3Fkff/yx3njjDW3dujW7awQAAMiyLIWd2NhYVa1aVZLk6+uruLg4SVKrVq307bffZl91AAAAdyhLYadEiRI6efKkJKls2bJas2aNJGn79u3y9PTMvuoAAADuUJbCTrt27bR+/XpJUv/+/TVixAiVL19e3bp1U8+ePbO1QAAAgDuRpbuxJkyY4Pi7U6dOCgkJUVRUlMqXL6+IiIhsKw4AAOBOZSns3CgsLExhYWHZsSoAAIBslaWwM2/evFu2d+vWLUvFAAAAZLcshZ0XX3zRafr69eu6cuWKPDw8lC9fPsIOAADIMbI0QPnChQtOr4SEBB04cEANGjTQZ599lt01AgAAZFm2/TZW+fLlNWHChHRnfQAAAFwpW38I1N3dXSdOnMjOVQIAANyRLI3ZWbZsmdO0MUYnT57UBx98oPr162dLYQByvpgY6exZV1dhDYUKSSEhrq4CsKYshZ22bds6TdtsNhUuXFiNGjXS22+/nR11AcjhYmKk0FCjK1dsri7FEvLlM4qOthF4gLsgS2EnNTVVknTmzBl5eHjIz88vW4sCkPOdPStduWLT/14/otCS11xdTq4W/buXnnmzjM6e5ewOcDfcdti5ePGiXn/9dX3++ee6cOGCJKlw4cJ69tlnNWLECOXLly/biwSQc4WWvKaaFa64ugwAuKnbCjvnz59XWFiY/vzzT3Xp0kWhoaGSpH379un999/X2rVrtXnzZv3yyy/aunWrBgwYcFeKBgAAyKzbCjtjxoyRh4eHDh8+rMDAwHRtTZs2VdeuXbVmzRq999572VooAABAVtxW2Pnqq680c+bMdEFHkoKCgjRp0iS1aNFCI0eOVPfu3bOtSAAAgKy6refsnDx5UlWqVLlp+wMPPCA3NzeNHDnyjgsDAADIDrcVdgoVKqRjx47dtP3o0aMqUqTIndYEAACQbW4r7ISHh+v1119XUlJSurbExESNGDFCzZo1y/T6xo8fr4ceekj58+dXkSJF1LZtWx04cMCpz7Vr1xQZGamCBQvK19dX7du316lTp5z6xMTEqGXLlsqXL5+KFCmioUOHKjk5+XZ2DQAAWNRtD1CuXbu2ypcvr8jISFWqVEnGGEVHR2v69OlKTEzUvHnzMr2+TZs2KTIyUg899JCSk5P12muvqWnTptq3b598fHwkSYMGDdK3336rRYsWyc/PT/369dOTTz6pH374QZKUkpKili1bKigoSFu2bNHJkyfVrVs35c2bV//5z39uZ/cAAIAF3VbYKVGihKKiotS3b18NGzZMxhhJfz1B+YknntAHH3ygkNt4ItaqVaucpufMmaMiRYpox44devTRRxUXF6dPPvlECxYsUKNGjSRJs2fPVmhoqLZu3ap69eppzZo12rdvn9atW6fAwEDVqFFDY8eO1SuvvKJRo0bJw8Mj3XYTExOVmJjomI6Pj7+dwwAAAHKR2/4h0NKlS2vlypU6e/astm7dqq1bt+rMmTNatWqVypUrd0fFxMXFSZICAgIkSTt27ND169fVpEkTR59KlSopJCREUVFRkqSoqChVrVrV6Q6x8PBwxcfHa+/evRluZ/z48fLz83O8goOD76huAACQc2X5V88LFCigOnXqqE6dOo5wcidSU1M1cOBA1a9fXw888IAkKTY2Vh4eHvL393fqGxgYqNjYWEefG2+FT5tO63OjYcOGKS4uzvE6fvz4HdcPAABypiz9NtbdEBkZqV9//VWbN2++69vy9PSUp6fnXd8OAABwvSyf2clO/fr10/Lly7Vx40aVKFHCMT8oKEhJSUm6ePGiU/9Tp04pKCjI0efGu7PSptP6AACA+5dLw44xRv369dPSpUu1YcMGlS5d2qm9Vq1ayps3r9avX++Yd+DAAcXExCgsLEySFBYWpj179uj06dOOPmvXrpXdblflypXvzY4AAIAcy6WXsSIjI7VgwQJ9/fXXyp8/v2OMjZ+fn7y9veXn56devXpp8ODBCggIkN1uV//+/RUWFqZ69epJkpo2barKlSura9eumjRpkmJjYzV8+HBFRkZyqQoAALg27Hz44YeSpMcee8xp/uzZs9WjRw9J0tSpU+Xm5qb27dsrMTFR4eHhmj59uqNvnjx5tHz5cvXp00dhYWHy8fFR9+7dNWbMmHu1GwAAIAdzadhJe07PrXh5eWnatGmaNm3aTfuULFlSK1asyM7SAACAReSIAcoAAAB3C2EHAABYGmEHAABYWo55qCAAANkhJkY6e9bVVeR+hQpJt/FzlzkaYQcAYBkxMVJoqNGVKzZXl5Lr5ctnFB1ts0TgIewAACzj7FnpyhWb/vf6EYWWvObqcnKt6N+99MybZXT2rDXO7hB2AACWE1rymmpWuOLqMpBDMEAZAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYmkvDzvfff6+IiAgVK1ZMNptNX331lVO7MUZvvPGGihYtKm9vbzVp0kSHDh1y6nP+/Hl16dJFdrtd/v7+6tWrlxISEu7hXgAAgJzMpWHn8uXLql69uqZNm5Zh+6RJk/Tee+9pxowZ2rZtm3x8fBQeHq5r1645+nTp0kV79+7V2rVrtXz5cn3//fd6/vnn79UuAACAHM7dlRtv3ry5mjdvnmGbMUbvvPOOhg8frjZt2kiS5s2bp8DAQH311Vd6+umnFR0drVWrVmn79u2qXbu2JOn9999XixYtNHnyZBUrVuye7QsAAMiZcuyYnaNHjyo2NlZNmjRxzPPz81PdunUVFRUlSYqKipK/v78j6EhSkyZN5Obmpm3btt103YmJiYqPj3d6AQAAa8qxYSc2NlaSFBgY6DQ/MDDQ0RYbG6siRYo4tbu7uysgIMDRJyPjx4+Xn5+f4xUcHJzN1QMAgJwix4adu2nYsGGKi4tzvI4fP+7qkgAAwF2SY8NOUFCQJOnUqVNO80+dOuVoCwoK0unTp53ak5OTdf78eUefjHh6esputzu9AACANeXYsFO6dGkFBQVp/fr1jnnx8fHatm2bwsLCJElhYWG6ePGiduzY4eizYcMGpaamqm7duve8ZgAAkPO49G6shIQE/fbbb47po0ePateuXQoICFBISIgGDhyocePGqXz58ipdurRGjBihYsWKqW3btpKk0NBQNWvWTM8995xmzJih69evq1+/fnr66ae5EwsAAEhycdj56aef9PjjjzumBw8eLEnq3r275syZo5dfflmXL1/W888/r4sXL6pBgwZatWqVvLy8HMvMnz9f/fr1U+PGjeXm5qb27dvrvffeu+f7AgAAciaXhp3HHntMxpibtttsNo0ZM0Zjxoy5aZ+AgAAtWLDgbpQHAAAsIMeO2QEAAMgOhB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBplgk706ZNU6lSpeTl5aW6devqxx9/dHVJAAAgB7BE2Pn88881ePBgjRw5Ujt37lT16tUVHh6u06dPu7o0AADgYpYIO1OmTNFzzz2nZ599VpUrV9aMGTOUL18+/fe//3V1aQAAwMXcXV3AnUpKStKOHTs0bNgwxzw3Nzc1adJEUVFRGS6TmJioxMREx3RcXJwkKT4+/u4WewcSEv763x0Hryvhaqpri8nlDhy/LileCQlSDn7Lczw+k9mHz2T24XOZPXLLZzLte9sYc+uOJpf7888/jSSzZcsWp/lDhw41derUyXCZkSNHGkm8ePHixYsXLwu8jh8/fsuskOvP7GTFsGHDNHjwYMd0amqqzp8/r4IFC8pms7mwstwtPj5ewcHBOn78uOx2u6vLASTxuUTOw2cy+xhjdOnSJRUrVuyW/XJ92ClUqJDy5MmjU6dOOc0/deqUgoKCMlzG09NTnp6eTvP8/f3vVon3Hbvdzn/AyHH4XCKn4TOZPfz8/P6xT64foOzh4aFatWpp/fr1jnmpqalav369wsLCXFgZAADICXL9mR1JGjx4sLp3767atWurTp06euedd3T58mU9++yzri4NAAC4mCXCTqdOnXTmzBm98cYbio2NVY0aNbRq1SoFBga6urT7iqenp0aOHJnuEiHgSnwukdPwmbz3bMb80/1aAAAAuVeuH7MDAABwK4QdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdZFl0dLRmz56t/fv3S5L279+vPn36qGfPntqwYYOLqwPSO378uHr27OnqMnCfuXr1qjZv3qx9+/ala7t27ZrmzZvngqruLzxnB1myatUqtWnTRr6+vrpy5YqWLl2qbt26qXr16kpNTdWmTZu0Zs0aNWrUyNWlAg67d+9WzZo1lZKS4upScJ84ePCgmjZtqpiYGNlsNjVo0EALFy5U0aJFJf31O47FihXjM3mXEXaQJQ8//LAaNWqkcePGaeHCherbt6/69OmjN998U9Jfvyy/Y8cOrVmzxsWV4n6ybNmyW7YfOXJEL730El8suGfatWun69eva86cObp48aIGDhyoffv26bvvvlNISAhh5x4h7CBL/Pz8tGPHDpUrV06pqany9PTUjz/+qAcffFCS9Ouvv6pJkyaKjY11caW4n7i5uclms+lW/7dms9n4YsE9ExgYqHXr1qlq1aqSJGOM+vbtqxUrVmjjxo3y8fEh7NwDjNlBltlsNkl/fcF4eXnJz8/P0ZY/f37FxcW5qjTcp4oWLaolS5YoNTU1w9fOnTtdXSLuM1evXpW7+//7GUqbzaYPP/xQERERatiwoQ4ePOjC6u4fhB1kSalSpXTo0CHHdFRUlEJCQhzTMTExjmvSwL1Sq1Yt7dix46bt/3TWB8hulSpV0k8//ZRu/gcffKA2bdqodevWLqjq/kPYQZb06dPH6bTrAw884PSvl5UrVzI4Gffc0KFD9fDDD9+0vVy5ctq4ceM9rAj3u3bt2umzzz7LsO2DDz5Q586dCeD3AGN2AACApXFmBwAAWBphBwAAWBphBwAAWBphBwAAWBphB7iP2Gw2ffXVV64uI9PmzJkjf39/V5eR4+W29xW41wg7gEXExsaqf//+KlOmjDw9PRUcHKyIiAitX7/e1aW51KhRo2Sz2WSz2eTu7q5SpUpp0KBBSkhIcHVp2ebkyZNq3ry5q8sAciz3f+4CIKc7duyY6tevL39/f7311luqWrWqrl+/rtWrVysyMtLxy/T3qypVqmjdunVKTk7WDz/8oJ49e+rKlSuaOXOmq0vLFkFBQbdsv379uvLmzXuPqgFyHs7sABbQt29f2Ww2/fjjj2rfvr0qVKigKlWqaPDgwdq6detNl3vllVdUoUIF5cuXT2XKlNGIESN0/fp1R/vu3bv1+OOPK3/+/LLb7apVq5bjabC///67IiIiVKBAAfn4+KhKlSpasWKFY9lff/1VzZs3l6+vrwIDA9W1a1edPXv2lvsxZ84chYSEKF++fGrXrp3OnTuXrs+HH36osmXLysPDQxUrVtSnn376j8fH3d1dQUFBKlGihDp16qQuXbo4fjT0008/Ve3atZU/f34FBQXpX//6l06fPu1Y9sKFC+rSpYsKFy4sb29vlS9fXrNnz5YkJSUlqV+/fipatKi8vLxUsmRJjR8/3rHslClTVLVqVfn4+Cg4OFh9+/ZNd0Zp1qxZCg4OduzzlClT0l26+/rrr1WzZk15eXmpTJkyGj16tJKTkx3tf7+MdezYMdlsNn3++edq2LChvLy8NH/+fKWmpmrMmDEqUaKEPD09VaNGDa1ateofjx1gCQZArnbu3Dljs9nMf/7zn3/sK8ksXbrUMT127Fjzww8/mKNHj5ply5aZwMBAM3HiREd7lSpVzDPPPGOio6PNwYMHzRdffGF27dpljDGmZcuW5oknnjC//PKLOXz4sPnmm2/Mpk2bjDHGXLhwwRQuXNgMGzbMREdHm507d5onnnjCPP744zetbevWrcbNzc1MnDjRHDhwwLz77rvG39/f+Pn5OfosWbLE5M2b10ybNs0cOHDAvP322yZPnjxmw4YNN13vyJEjTfXq1Z3mDRgwwAQEBBhjjPnkk0/MihUrzOHDh01UVJQJCwszzZs3d/SNjIw0NWrUMNu3bzdHjx41a9euNcuWLTPGGPPWW2+Z4OBg8/3335tjx46Z//u//zMLFixwLDt16lSzYcMGc/ToUbN+/XpTsWJF06dPH0f75s2bjZubm3nrrbfMgQMHzLRp00xAQIDTPn///ffGbrebOXPmmMOHD5s1a9aYUqVKmVGjRjn6/P19PXr0qJFkSpUqZb788ktz5MgRc+LECTNlyhRjt9vNZ599Zvbv329efvllkzdvXnPw4MGbHjvAKgg7QC63bds2I8ksWbLkH/veGHZu9NZbb5latWo5pvPnz2/mzJmTYd+qVas6feH+3dixY03Tpk2d5h0/ftxIMgcOHMhwmc6dO5sWLVo4zevUqZPTF//DDz9snnvuOac+Tz31VLrl/u7GsPPTTz+ZQoUKmQ4dOmTYf/v27UaSuXTpkjHGmIiICPPss89m2Ld///6mUaNGJjU19abb/7tFixaZggULOqY7depkWrZs6dSnS5cuTvvcuHHjdEH2008/NUWLFnVMZxR23nnnHadlihUrZt58802neQ899JDp27dvpmoHcjMuYwG5nLmDX3z5/PPPVb9+fQUFBcnX11fDhw9XTEyMo33w4MHq3bu3mjRpogkTJujw4cOOtgEDBmjcuHGqX7++Ro4cqV9++cXRtnv3bm3cuFG+vr6OV6VKlSTJaR1/Fx0drbp16zrNCwsLS9enfv36TvPq16+v6OjoW+7nnj175OvrK29vb9WpU0dhYWH64IMPJEk7duxQRESEQkJClD9/fjVs2FCSHMehT58+WrhwoWrUqKGXX35ZW7Zscay3R48e2rVrlypWrKgBAwZozZo1Tttdt26dGjdurOLFiyt//vzq2rWrzp07pytXrkiSDhw4oDp16jgtc+P07t27NWbMGKdj+dxzz+nkyZOO9WSkdu3ajr/j4+N14sSJLB07wAoIO0AuV758edlsttsehBwVFaUuXbqoRYsWWr58uX7++We9/vrrSkpKcvQZNWqU9u7dq5YtW2rDhg2qXLmyli5dKknq3bu3jhw5oq5du2rPnj2qXbu23n//fUlSQkKCIiIitGvXLqfXoUOH9Oijj2bfzmdSxYoVtWvXLkVHR+vq1atatmyZAgMDdfnyZYWHh8tut2v+/Pnavn27Y//SjkPz5s31+++/a9CgQTpx4oQaN26sIUOGSJJq1qypo0ePauzYsbp69ao6duyoDh06SPpr7EyrVq1UrVo1ffnll9qxY4emTZvmtO7MSEhI0OjRo52O4549e3To0CF5eXnddDkfH58sHSvAklx9agnAnWvWrJkpXry4SUhISNd24cIFx9/62+WOyZMnmzJlyjj17dWrl9MllBs9/fTTJiIiIsO2V1991VStWtUYY8xrr71mKlasaK5fv57pfcjoMtbTTz+dqctYN14K+ruMxuyk+emnn4wkExMT45j36aefGknm559/znCZGTNmmPz582fYtmrVKiPJnDt3zixevNjkzZvXpKSkONrHjh1rJDnek06dOplWrVo5reOZZ55Jt889e/a86f4Zk/FlrBvrv9llrMjIyFuuG7ACbj0HLGDatGmqX7++6tSpozFjxqhatWpKTk7W2rVr9eGHH2Z4qaJ8+fKKiYnRwoUL9dBDD+nbb791nNWQpKtXr2ro0KHq0KGDSpcurT/++EPbt29X+/btJUkDBw5U8+bNVaFCBV24cEEbN25UaGioJCkyMlKzZs1S586d9fLLLysgIEC//fabFi5cqI8//lh58uRJV8+AAQNUv359TZ48WW3atNHq1avT3S00dOhQdezYUQ8++KCaNGmib775RkuWLNG6deuydNxCQkLk4eGh999/Xy+88IJ+/fVXjR071qnPG2+8oVq1aqlKlSpKTEzU8uXLHfs5ZcoUFS1aVA8++KDc3Ny0aNEiBQUFyd/fX+XKldP169f1/vvvKyIiQj/88INmzJjhtO7+/fvr0Ucf1ZQpUxQREaENGzZo5cqVstlsTttv1aqVQkJC1KFDB7m5uWn37t369ddfNW7cuEzv69ChQzVy5EiVLVtWNWrU0OzZs7Vr1y7Nnz8/S8cOyFVcnbYAZI8TJ06YyMhIU7JkSePh4WGKFy9uWrdubTZu3OjooxsGKA8dOtQULFjQ+Pr6mk6dOpmpU6c6ziokJiaap59+2gQHBxsPDw9TrFgx069fP3P16lVjjDH9+vUzZcuWNZ6enqZw4cKma9eu5uzZs451Hzx40LRr1874+/sbb29vU6lSJTNw4MBbDub95JNPTIkSJYy3t7eJiIgwkydPTnemafr06aZMmTImb968pkKFCmbevHm3PC63OrNjjDELFiwwpUqVMp6eniYsLMwsW7bM6czI2LFjTWhoqPH29jYBAQGmTZs25siRI8YYYz766CNTo0YN4+PjY+x2u2ncuLHZuXOnY91TpkwxRYsWNd7e3iY8PNzMmzfP6cxO2jqKFy9uvL29Tdu2bc24ceNMUFCQU42rVq0yDz/8sPH29jZ2u93UqVPHfPTRR452ZeLMTkpKihk1apQpXry4yZs3r6levbpZuXLlLY8dYBU2Y+5gdCMAIFs999xz2r9/v/7v//7P1aUAlsFlLABwocmTJ+uJJ56Qj4+PVq5cqblz52r69OmuLguwFM7sAIALdezYUd99950uXbqkMmXKqH///nrhhRdcXRZgKYQdAABgaTxnBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWNr/Bx9t1arrff+HAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Quantos passageiros estavam em casa classe do Titanic?\n", + "\n", + "# Contagem do número de passageiros\n", + "contagem_passageiros = df[\"Classe\"].value_counts()\n", + "\n", + "# Criação do gráfico\n", + "contagem_passageiros.plot(kind=\"bar\", edgecolor=\"blue\", color=\"pink\")\n", + "\n", + "# Configurações\n", + "plt.xlabel(\"Classe do Passageiro\")\n", + "plt.ylabel(\"Quantidade\")\n", + "plt.title(\"Número de passageiros por Classe\")\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 261, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHpCAYAAAB+9B1sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZaElEQVR4nO3deVwU9f8H8NcCsrCAoCKHiKKAB14oeOCdonzTTM0UzYPwqFTyQNPI8lbUEMmjSNPMo8QrOzTQ+GpemApqmojhBR4geICAgu5+fn/4Y76tgLIILIyv5+Oxj9zPfGbmPTtLvJj5zIxCCCFAREREJBMG+i6AiIiIqDQx3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQEVGZSEhIwOzZs3Hjxg19l0KvGIYbojL07rvvwsnJSd9lPJdCoUBAQIC+y9DStWtXdO3aVd9l0EtQq9UYMWIEtmzZgvfff1/f5dArhuGGKiSFQlGs14EDB/Rdark7fPgwXn/9dTg4OMDExAR16tRBnz598P333+u7NFnas2cPZs+ere8y9Co3NxcrVqxAx44dUa1aNRgbG6NWrVp488038cMPP0CtVheYJyQkBBYWFjh16hRu3LiBDRs26KFyelUZ6bsAosJs3LhR6/2GDRuwb9++Au2NGzcuz7L0btu2bfD19YW7uzsmTpyIatWq4cqVKzh48CDWrFmDd955R98lloq9e/fquwTJnj17sGrVqlc24KSlpeH1119HbGwsfHx88Omnn6J69epISUnB77//jnfeeQeJiYn47LPPpHnyw87mzZthamqKbdu2Yc+ePfraBHoFMdxQhTRs2DCt98eOHcO+ffsKtL9qZs+eDTc3Nxw7dgzGxsZa027fvl3u9WRnZ8PMzKzUl/vstlHZefToEYyNjWFgUPiB/OHDh+PUqVPYsWMH3nrrLa1pQUFBOHnyJBISErTaDQ0NMX36dOm9i4sLJkyYUPrFF8OLto/kiXubKq1vv/0W3bp1g42NDZRKJdzc3PDVV19p9fnvf/8LAwMDzJw5U6v9+++/h0Kh0OpfnOU9z65du9C0aVOYmJigadOm+PHHHwvtp9FoEBYWhiZNmsDExAS2trZ4//33ce/evReu49KlS2jdunWhv/xtbGy03mdnZ2PKlClwdHSEUqlEw4YNERISAiFEocvevHkzGjZsCBMTE3h4eODgwYNa02fPng2FQoHz58/jnXfeQbVq1dCxY0dp+qZNm+Dh4QFTU1NUr14dgwcPRnJysjQ9ICAA5ubmyMnJKbDuIUOGwM7OTvqL/99jblJTU2FkZIQ5c+YUmC8hIQEKhQIrV66U2u7fv49JkyZJ2+3i4oLFixdDo9FIfa5evQqFQoGQkBCsXr0azs7OUCqVaN26NU6cOCH1e/fdd7Fq1SoA2qdK8xV3X548eRI+Pj6wtraGqakp6tWrh5EjRxa6H/7NyckJb7zxBvbu3Qt3d3eYmJjAzc0NO3fuLND38uXLGDhwIKpXrw6VSoV27dph9+7dWn0OHDgAhUKBLVu24NNPP4WDgwNUKhUyMzMLXX9MTAyioqLw3nvvFQg2+Tw9PTF06FCtttzcXMyaNQsuLi5QKpVwdHTEtGnTkJubq9Uvf7xX/s+OUqlEkyZNEBkZWWA9N27cwMiRI2Frayv1W7dunU7bt23bNuk7am1tjWHDhnGws1wJokpg/Pjx4tmva+vWrcW7774rli1bJlasWCF69uwpAIiVK1cWmNfIyEjExsYKIYS4efOmqF69uvD29hYajUbn5RUmKipKGBgYiKZNm4rQ0FAxY8YMYWlpKZo0aSLq1q2r1Xf06NHCyMhIjBkzRoSHh4vp06cLMzMz0bp1a5GXl/fc9TRo0EA4OjqK5OTk5/bTaDSiW7duQqFQiNGjR4uVK1eKPn36CABi0qRJWn0BiKZNmwpra2sxd+5csXjxYlG3bl1hamoqzp49K/WbNWuWACDc3NxE3759xZdffilWrVolhBBi/vz5QqFQCF9fX/Hll1+KOXPmCGtra+Hk5CTu3bsnhBDi4MGDAoDYunWr1vqzs7OFmZmZGD9+vNTWpUsX0aVLF+l9t27dhJubW4HtnDNnjjA0NBQpKSnSspo3by5q1KghPvnkExEeHi5GjBghFAqFmDhxojTflStXBADRsmVL4eLiIhYvXiyWLFkirK2tRe3ataX9cPToUdGjRw8BQGzcuFF65SvOvkxNTRXVqlUTDRo0EJ9//rlYs2aNmDFjhmjcuPFz96EQQtStW1c0aNBAWFlZiY8//liEhoaKZs2aCQMDA7F3716pX0pKirC1tRUWFhZixowZIjQ0VLRo0UIYGBiInTt3Sv32798v7UN3d3cRGhoqgoODRXZ2dqHrDwoKEgDE4cOHX1hrPrVaLXr27ClUKpWYNGmS+Prrr0VAQIAwMjISffv21eoLQLRo0ULY29uLefPmibCwMFG/fn2hUqlEenq61vbVrl1bODo6irlz54qvvvpKvPnmmwKAWLZsWbG279tvvxUAROvWrcWyZcvExx9/LExNTbW+oyQfDDdUKRQWbnJycgr08/HxEfXr19dqy87OFi4uLqJJkybi0aNHonfv3qJq1ari2rVrJVpeYdzd3YW9vb24f/++1LZ3714BQCvcHDp0SAAQmzdv1po/MjKy0PZnrV27VgAQxsbG4rXXXhOfffaZOHTokFCr1Vr9du3aJQCI+fPna7W//fbbQqFQiMTERKkNgAAgTp48KbVdu3ZNmJiYiP79+0tt+eFmyJAhWsu8evWqMDQ0FAsWLNBqP3v2rDAyMpLaNRqNcHBwEAMGDNDqt3XrVgFAHDx4UGp7Ntx8/fXXAoBW2BJCCDc3N9GtWzfp/bx584SZmZm4ePGiVr+PP/5YGBoaiqSkJCHE/8JNjRo1xN27d6V+P/30kwAgfvnlF6mtsO+eEMXflz/++KMAIE6cOFFgGS9St25dAUDs2LFDasvIyBD29vaiZcuWUtukSZMEAHHo0CGp7cGDB6JevXrCyclJ+n7k//KvX79+od/3Z/Xv318A0PpeCyHEw4cPRVpamvT6dzjYuHGjMDAw0KpFCCHCw8MFAHHkyBGpLf+7/O/v45kzZwQAsWLFCqlt1KhRwt7eXivwCCHE4MGDhaWlpbQtRW1fXl6esLGxEU2bNhUPHz6U2n/99VcBQMycOfOFnwVVLjwtRZWWqamp9O+MjAykp6ejS5cuuHz5MjIyMqRpKpUK69evR3x8PDp37ozdu3dj2bJlqFOnTomW96xbt27h9OnT8PPzg6WlpdTeo0cPuLm5afXdtm0bLC0t0aNHD6Snp0svDw8PmJubY//+/c/d5pEjRyIyMhJdu3bF4cOHMW/ePHTq1Amurq44evSo1G/Pnj0wNDQsMM5hypQpEELgt99+02r38vKCh4eH9L5OnTro27cvoqKiClwJ88EHH2i937lzJzQaDQYNGqS1TXZ2dnB1dZW2SaFQYODAgdizZw+ysrKk+SMiIuDg4KB1iutZb731FoyMjBARESG1nTt3DufPn4evr6/Utm3bNnTq1AnVqlXTqsXb2xtqtbrAqTZfX19Uq1ZNet+pUycAT0/xvEhx96WVlRUA4Ndff8Xjx49fuNxn1apVC/3795feV61aFSNGjMCpU6eQkpIC4On+btOmjdZnaG5ujvfeew9Xr17F+fPntZbp5+en9X0vSv7pHHNzc6328PBw1KxZU3r9e73btm1D48aN0ahRI63PpVu3bgBQ4Dvu7e0NZ2dn6X3z5s1RtWpVaR8IIbBjxw706dMHQgitZfr4+CAjIwNxcXHP3b6TJ0/i9u3bGDduHExMTKT23r17o1GjRgVO31Hlx3BDldaRI0fg7e0NMzMzWFlZoWbNmvjkk08AoEAY6dChA8aOHYvjx4/Dx8en0PEOuizv365duwYAcHV1LTCtYcOGWu//+ecfZGRkwMbGRuuXQ82aNZGVlVWsQcE+Pj6IiorC/fv3cfDgQYwfPx7Xrl3DG2+8Ic1/7do11KpVCxYWFlrz5l9dll9zvsJqb9CgAXJycpCWlqbVXq9evQLbJISAq6trgW2Kj4/X2iZfX188fPgQP//8MwAgKysLe/bswcCBA7XGsjzL2toa3bt3x9atW6W2iIgIGBkZaY0F+eeffxAZGVmgDm9vbwAFB10/G3Dzg05xxj8Vd1926dIFAwYMwJw5c2BtbY2+ffvi22+/LTD+pCguLi4FPpsGDRoAeDp2CHi6P5/9rgFF7+9n92FR8r8//w6jADBgwADs27cP+/btQ/PmzbWm/fPPP/j7778LfCb5Nb9oHwBP90P+PkhLS8P9+/exevXqAsv09/cvdJnPbl/+9hf2GTVq1KjA50OVH6+Wokrp0qVL6N69Oxo1aoTQ0FA4OjrC2NgYe/bswbJly7QGjwJPBzjm3xPn0qVLyMnJgUqlKvHySkqj0cDGxgabN28udHrNmjWLvSyVSoVOnTqhU6dOsLa2xpw5c/Dbb7/Bz8+vVGotyrN/8Ws0GigUCvz2228wNDQs0P/ff/W3a9cOTk5O2Lp1K9555x388ssvePjwodbRl6IMHjwY/v7+OH36NNzd3bF161Z0794d1tbWWrX06NED06ZNK3QZ+b9g8xVWL4AiB13/W3H3pUKhwPbt23Hs2DH88ssviIqKwsiRI7F06VIcO3aswFGR8lCcozbA01/8wNOjZB06dJDaHR0d4ejoCADSUbJ8Go0GzZo1Q2hoaKHLzJ8v34v2Qf7P3rBhw4r8bj8bsIq7fSRfDDdUKf3yyy/Izc3Fzz//rPWXX1GndWbNmoX4+HiEhIRg+vTp+Pjjj7F8+fISL+/f6tatC+DpX6zPevYSWWdnZ/z+++/o0KFDqf4P2NPTE8DTU2T5Nf3+++948OCB1tGbCxcuaNWcr7DaL168CJVK9cLA5ezsDCEE6tWrVyA8FGbQoEH44osvkJmZiYiICDg5OaFdu3YvnK9fv354//33pVNTFy9eRFBQUIFasrKypCM1paGoI0q67st27dqhXbt2WLBgAb7//nsMHToUW7ZswejRo587X2JiIoQQWnVcvHgRAKS7X9etW7fAdw0oen8X1xtvvIFFixZh8+bNWuHmeZydnXHmzBl07979uUfjiqtmzZqwsLCAWq0u8X7N3/6EhATp9Fi+hISEEn8+VHHxtBRVSvl/7f37L+yMjAx8++23Bfr++eefCAkJwaRJkzBlyhR89NFHWLlyJf74448SLe9Z9vb2cHd3x3fffad1+mrfvn0FxjoMGjQIarUa8+bNK7CcJ0+e4P79+89dV3R0dKHt+TdIyz/s3qtXL6jVaq1LpAFg2bJlUCgUeP3117XaY2JitMYtJCcn46effkLPnj2L/Ms631tvvQVDQ0PMmTOnwBEPIQTu3Lmj1ebr64vc3Fx89913iIyMxKBBg567/HxWVlbw8fHB1q1bsWXLFhgbG6Nfv35afQYNGiRdvvys+/fv48mTJ8Va17/l38fn2X1T3H157969Ap+Lu7s7ABTr1NTNmze1biuQmZmJDRs2wN3dHXZ2dgCe7u/jx48jJiZG6pednY3Vq1fDycmpwNiv4urQoQN69OiB1atX46effiq0z7PbNmjQINy4cQNr1qwp0Pfhw4fIzs7WqQZDQ0MMGDAAO3bswLlz5wpMf/a0aWE8PT1hY2OD8PBwrc/8t99+Q3x8PHr37q1TTVQJ6GMUM5Gunr1i5cKFC8LY2Fg0a9ZMrFy5UixatEg4OzuLFi1aCADiypUrQoinV3U0bNhQNGrUSLpKIjc3VzRp0kTUq1dPZGVl6bS8ovz2229al4J/+umnRV4K/v777wsA4vXXXxfLli0TK1euFBMnThS1atUS27Zte+56zMzMRNOmTUVQUJD45ptvxBdffCFd4t26dWvx+PFjIcTTy3Ffe+01oVAoxHvvvSdWrVol+vbtq9Ol4CYmJuLMmTNSv/yrpdLS0grUFRwcLACI9u3biyVLloivvvpKTJs2Tbi6uorPP/+8QH8XFxdhYWEhAEiX6P/bs1dL5du0aZMAICwsLESfPn0KTM/OzhatWrUSRkZGYvTo0eKrr74SISEhws/PT5iZmUm1518tVVhtAMSsWbOk9/lXcw0fPlxs2rRJ/PDDD9K04uzLZcuWCVdXVzFt2jTx9ddfi5CQENGwYUNRtWpVcfny5QLr/7dnLwVftmyZdCl4ZGSk1C//UnBLS0vx2WefiWXLlgl3d3ehUCgKvRT8Rd+zf0tNTRUtW7aUtnPp0qVi3bp1YuHChaJbt25Sez61Wi169eolFAqFGDx4sFixYoUICwsTH3zwgahevbrWVWMAtG4B8O/t9vPz09q+unXrCpVKJSZOnCi+/vprERwcLAYOHCiqVatWrO3LvxS8bdu2IiwsTAQFBQmVSsVLwWWK4YYqhcIux/35559F8+bNhYmJiXBychKLFy8W69at0wojkydPFoaGhuLPP//UmvfkyZPCyMhIjB07VqflPc+OHTtE48aNhVKpFG5ubmLnzp3Cz8+vQLgRQojVq1cLDw8PYWpqKiwsLESzZs3EtGnTxM2bN5+7jh9++EEMHjxYODs7C1NTU2FiYiLc3NzEjBkzRGZmplbfBw8eiMmTJ4tatWqJKlWqSEHj3/f2EeJ/v2A2bdokXF1dhVKpFC1bthT79+/X6ve8cJO//R07dhRmZmbCzMxMNGrUSIwfP14kJCQU6DtjxgwBQLi4uBS6rKLCTWZmpjA1NRUAxKZNmwqd98GDByIoKEi4uLgIY2NjYW1tLdq3by9CQkKke8/oEm6ePHkiPvzwQ1GzZk2hUCgKfA9ftC/j4uLEkCFDRJ06dYRSqRQ2NjbijTfe0Lr0vih169YVvXv3FlFRUaJ58+ZCqVSKRo0aFfrL+9KlS+Ltt98WVlZWwsTERLRp00b8+uuvWn1KEm6EePpHQlhYmPDy8hJVq1YVRkZGws7OTrzxxhti8+bN4smTJ1r98/LyxOLFi0WTJk2EUqkU1apVEx4eHmLOnDkiIyND6lfccCPE05A1fvx44ejoKKpUqSLs7OxE9+7dxerVq4u9fREREaJly5ZCqVSK6tWri6FDh4rr16/r9FlQ5aAQohgj54iIqNw5OTmhadOm+PXXX/VdClGlwjE3REREJCsMN0RERCQrDDdEREQkKxxzQ0RERLLCIzdEREQkKww3REREJCuv3OMXNBoNbt68CQsLi1K5NTgRERGVPSEEHjx4gFq1asHA4PnHZl65cHPz5s0CD24jIiKiyiE5ORm1a9d+bp9XLtzkP0QwOTkZVatW1XM1REREVByZmZlwdHTUehhwUV65cJN/Kqpq1aoMN0RERJVMcYaUcEAxERERyQrDDVU6q1atgpOTE0xMTNC2bVscP368yL5du3aFQqEo8Ordu3eh/T/44AMoFAqEhYWVUfVERFTWGG6oUomIiEBgYCBmzZqFuLg4tGjRAj4+Prh9+3ah/Xfu3Ilbt25Jr3PnzsHQ0BADBw4s0PfHH3/EsWPHUKtWrbLeDCIiKkOv3JgbqtxCQ0MxZswY+Pv7AwDCw8Oxe/durFu3Dh9//HGB/tWrV9d6v2XLFqhUqgLh5saNG/jwww8RFRVV5FEdopLSaDTIy8vTdxlEFZ6xsfELL/MuDoYbqjTy8vIQGxuLoKAgqc3AwADe3t6IiYkp1jLWrl2LwYMHw8zMTGrTaDQYPnw4PvroIzRp0qTU66ZXW15eHq5cuQKNRqPvUogqPAMDA9SrVw/GxsYvtRyGG6o00tPToVarYWtrq9Vua2uLCxcuvHD+48eP49y5c1i7dq1W++LFi2FkZIQJEyaUar1EQgjcunULhoaGcHR0LJW/SInkKv8mu7du3UKdOnVe6ka7DDf0yli7di2aNWuGNm3aSG2xsbH44osvEBcXxztWU6l78uQJcnJyUKtWLahUKn2XQ1Th1axZEzdv3sSTJ09QpUqVEi+Hf0ZQpWFtbQ1DQ0OkpqZqtaempsLOzu6582ZnZ2PLli0YNWqUVvuhQ4dw+/Zt1KlTB0ZGRjAyMsK1a9cwZcoUODk5lfYm0CtGrVYDwEsfYid6VeT/rOT/7JQUww1VGsbGxvDw8EB0dLTUptFoEB0dDS8vr+fOu23bNuTm5mLYsGFa7cOHD8dff/2F06dPS69atWrho48+QlRUVJlsB716eFSQqHhK62eFp6WoUgkMDISfnx88PT3Rpk0bhIWFITs7W7p6asSIEXBwcEBwcLDWfGvXrkW/fv1Qo0YNrfYaNWoUaKtSpQrs7OzQsGHDst0YIiI9EEIgJCQEXbt2RevWrfVdTplguKFKxdfXF2lpaZg5cyZSUlLg7u6OyMhIaZBxUlJSgUGbCQkJOHz4MPbu3auPkokKSEoC0tPLb33W1kCdOuW3vvLw7rvv4v79+9i1a9crW8fs2bOxa9cunD59Wqf5VqxYgcjISKxfvx7Hjx/XunpUXzWVNoUQQui1gnKWmZkJS0tLZGRk8NlSRFSmHj16hCtXrqBevXowMTEB8DTYNG4skJNTfqeqVCqB+HhFsQLOi04LzJo1C7Nnzy6dwl5CaYSKK1euYMaMGThw4ADu3r0La2treHh4YPHixWjUqFG51VFSWVlZyM3NLXD0+XkuX76MAQMG4ODBg9i8eTP+/vtvrFixQq81/VthPzP5dPn9zSM3RETlKD0dyMlRYNNHF9DYMafM1xefrMKwzxshPb14R29u3bol/TsiIgIzZ85EQkKC1GZubl4WZZa7x48fo0ePHmjYsCF27twJe3t7XL9+Hb/99hvu379fpuvOy8srlUHm5ubmOu+P+vXr49SpUwCePm6mtJWkprLAAcVERHrQ2DEHrVyyyvyla4Cys7OTXpaWllAoFNL77OxsDB06FLa2tjA3N0fr1q3x+++/S/NeuHABKpUK33//vdS2detWmJqa4vz58wCAEydOoEePHrC2toalpSW6dOmCuLi459akVqsRGBgIKysr1KhRA9OmTcOzJx00Gg2Cg4NRr149mJqaokWLFti+fXuRy/z7779x6dIlfPnll2jXrh3q1q2LDh06YP78+WjXrp3U7+zZs+jWrRtMTU1Ro0YNvPfee8jKyiqwvDlz5qBmzZqoWrUqPvjgA607Unft2hUBAQGYNGkSrK2t4ePjAwA4d+4cXn/9dZibm8PW1hbDhw9H+v+fr1y9ejVq1apV4OaPffv2xciRIwE8PQXk7u4OANi7dy9MTEwKBLOJEyeiW7du0vvDhw+jU6dOMDU1haOjIyZMmIDs7GxpupOTExYuXIiRI0fCwsICderUwerVq7WWef36dQwZMgTVq1eHmZkZPD098eeffxaoCSjZ/i4NPHLzCinv8/ykX3IcZ0H6lZWVhV69emHBggVQKpXYsGED+vTpg4SEBNSpUweNGjVCSEgIxo0bh44dO8LAwAAffPABFi9eDDc3NwDAgwcP4OfnhxUrVkAIgaVLl6JXr174559/YGFhUeh6ly5divXr12PdunVo3Lgxli5dih9//FHrl3ZwcDA2bdqE8PBwuLq64uDBgxg2bBhq1qyJLl26FFhmzZo1YWBggO3bt2PSpEkwNDQs0Cc7Oxs+Pj7w8vLCiRMncPv2bYwePRoBAQFYv3691C86OhomJiY4cOAArl69Cn9/f9SoUQMLFiyQ+nz33XcYO3Ysjhw5AgC4f/8+unXrhtGjR2PZsmV4+PAhpk+fjkGDBuG///0vBg4ciA8//BD79+9H9+7dAQB3795FZGQk9uzZU6DW7t27w8rKCjt27JBueaFWqxERESHVcenSJfznP//B/PnzsW7dOqSlpSEgIAABAQH49ttvtT7vefPm4ZNPPsH27dsxduxYdOnSBQ0bNkRWVha6dOkCBwcH/Pzzz7Czs0NcXFyRd+Auyf4uFeIVk5GRIQCIjIwMfZdSrq5dE0Kl0ghA8PWKvFQqjbh2Td/fvFfbw4cPxfnz58XDhw+lttjYp/sndnmsEHv+KPNX7PLYp+uL1b3+b7/9VlhaWj63T5MmTcSKFSu02nr37i06deokunfvLnr27Ck0Gk2R86vVamFhYSF++eWXIvvY29uLJUuWSO8fP34sateuLfr27SuEEOLRo0dCpVKJo0ePas03atQoMWTIkCKXu3LlSqFSqYSFhYV47bXXxNy5c8WlS5ek6atXrxbVqlUTWVlZUtvu3buFgYGBSElJEUII4efnJ6pXry6ys7OlPl999ZUwNzcXarVaCCFEly5dRMuWLbXWPW/ePNGzZ0+ttuTkZAFAJCQkCCGE6Nu3rxg5cqQ0/euvvxa1atWSljtr1izRokULafrEiRNFt27dpPdRUVFCqVSKe/fuSZ/He++9p7XOQ4cOCQMDA+k7WrduXTFs2DBpukajETY2NuKrr76SarCwsBB37twp9DN9tqZnvWh/F/Yzk0+X3988cvOKKO/z/KRfuo6zICqOrKwszJ49G7t378atW7fw5MkTPHz4EElJSVr91q1bhwYNGsDAwAB///231iDl1NRUfPrppzhw4ABu374NtVqNnJycAsvIl5GRgVu3bqFt27ZSm5GRETw9PSH+/9RUYmIicnJy0KNHD6158/Ly0LJlyyK3Z/z48RgxYgQOHDiAY8eOYdu2bVi4cCF+/vln9OjRA/Hx8WjRooXW1UQdOnSARqNBQkKCdJVmixYttO5A7eXlhaysLCQnJ6Nu3boAAA8PD611nzlzBvv37y90fMqlS5fQoEEDDB06FGPGjMGXX34JpVKJzZs3Y/DgwUU+xmPo0KFo164dbt68iVq1amHz5s3o3bs3rKyspHX+9ddf2Lx5szSPEAIajQZXrlxB48aNAQDNmzeXpueflrx9+zYA4PTp02jZsmWBhxIXRdf9XVoYbl4x+ef5iYh0NXXqVOzbtw8hISFwcXGBqakp3n777QJPPD9z5gyys7NhYGCAW7duwd7eXprm5+eHO3fu4IsvvkDdunWhVCrh5eX1Uk9Nzx8Ds3v3bjg4OGhNUyqVz53XwsICffr0QZ8+fTB//nz4+Phg/vz5BYLSy3r2cuusrCz06dMHixcvLtA3//Pq06cPhBDYvXs3WrdujUOHDmHZsmVFrqN169ZwdnbGli1bMHbsWPz4449ap8+ysrLw/vvvF/ocvTr/+ivo2cceKBQK6bSTqanpizf2X8pifxcHww0RERXLkSNH8O6776J///4Anv6yvHr1qlafu3fv4t1338WMGTNw69YtDB06FHFxcdIvxSNHjuDLL79Er169AADJycnSINrCWFpawt7eHn/++Sc6d+4M4Okzu2JjY9GqVSsAgJubG5RKJZKSkgodX1NcCoUCjRo1wtGjRwEAjRs3xvr165GdnS2FkyNHjsDAwEDrJp9nzpzBw4cPpW08duwYzM3N4ejoWOS6WrVqhR07dsDJyQlGRoX/KjYxMcFbb72FzZs3IzExEQ0bNpS2uShDhw7F5s2bUbt2bRgYGKB3795a6zx//jxcXFyK94EUonnz5vjmm29w9+7dYh290XV/lxZeLUVERMXi6uqKnTt34vTp0zhz5gzeeeedAgNJP/jgAzg6OuLTTz9FaGgo1Go1pk6dqrWMjRs3Ij4+Hn/++SeGDh36wqMBEydOxKJFi7Br1y5cuHAB48aN07oqyMLCAlOnTsXkyZPx3Xff4dKlS4iLi8OKFSvw3XffFbrM06dPo2/fvti+fTvOnz+PxMRErF27FuvWrUPfvn0BPA0KJiYm8PPzw7lz57B//358+OGHGD58uHRKCnh6+mvUqFE4f/489uzZg1mzZiEgIOC5T4EfP3487t69iyFDhuDEiRO4dOkSoqKi4O/vr/VcpaFDh2L37t1Yt24dhg4d+tzPKb9/XFwcFixYgLffflvryNX06dNx9OhRBAQE4PTp0/jnn3/w008/ISAg4IXLzTdkyBDY2dmhX79+OHLkCC5fvowdO3YgJiam0P4l2d+lgUduiIj0ID65fJ4SXprrCQ0NxciRI9G+fXtYW1tj+vTpyMzMlKZv2LABe/bswalTp6QH0W7atAkdO3bEG2+8gddffx1r167Fe++9h1atWsHR0RELFy7UCj+FmTJlCm7dugU/Pz8YGBhg5MiR6N+/PzIyMqQ+8+bNQ82aNREcHIzLly/DysoKrVq1wieffFLoMmvXrg0nJyfMmTMHV69ehUKhkN5PnjwZAKBSqRAVFYWJEyeidevWUKlUGDBgAEJDQ7WW1b17d7i6uqJz587Izc3FkCFDXnijw1q1auHIkSOYPn06evbsidzcXNStWxf/+c9/tEJRt27dUL16dSQkJOCdd9557jIBwMXFBW3atMHx48cRFhamNa158+b4448/MGPGDHTq1AlCCDg7O8PX1/eFy81nbGyMvXv3YsqUKejVqxeePHkCNzc3rFq1qtD+JdnfpYF3KH5FxMUBHh5A7PI4jrl5BcQlmsNjQivExgIvOIpNZagy3qGYSJ94h2IiokqoTh0gPl5Rzs+WYrChVwvDDRFROatTh5foE5UlDigmIiIiWWG4ISIiIllhuCEiKmOv2HUbRCVWWj8rDDdERGUk/2GMZX03ViK5yP9ZKexBprrggGIiojJiZGQElUqFtLQ0VKlS5bk3dSN61Wk0GqSlpUGlUhV51+biYrghIiojCoUC9vb2uHLlCq5du6bvcogqPAMDA9SpU0frYaslwXBDRFSGjI2N4erqylNTRMVgbGxcKkc4K0S4WbVqFT7//HOkpKSgRYsWWLFiBdq0aVNo365du+KPP/4o0N6rVy/s3r27rEslItKZgYFBgbutElHZ0fsJ4IiICAQGBmLWrFmIi4tDixYt4OPjg9u3bxfaf+fOnbh165b0OnfuHAwNDTFw4MByrpyIiIgqIr2Hm9DQUIwZMwb+/v5wc3NDeHg4VCoV1q1bV2j/6tWrw87OTnrt27cPKpWK4YaIiIgA6Dnc5OXlITY2Ft7e3lKbgYEBvL29i3x8+rPWrl2LwYMHw8zMrNDpubm5yMzM1HoRERGRfOk13KSnp0OtVsPW1lar3dbWFikpKS+c//jx4zh37hxGjx5dZJ/g4GBYWlpKL0dHx5eum4iIiCouvZ+Wehlr165Fs2bNihx8DABBQUHIyMiQXsnJyeVYIREREZU3vV4tZW1tDUNDQ6Smpmq1p6amws7O7rnzZmdnY8uWLZg7d+5z+ymVSiiVypeulYiIiCoHvR65MTY2hoeHB6Kjo6U2jUaD6OhoeHl5PXfebdu2ITc3F8OGDSvrMomIiKgS0ft9bgIDA+Hn5wdPT0+0adMGYWFhyM7Ohr+/PwBgxIgRcHBwQHBwsNZ8a9euRb9+/VCjRg19lE1EREQVlN7Dja+vL9LS0jBz5kykpKTA3d0dkZGR0iDjpKSkAncrTEhIwOHDh7F37159lExEREQVmN7DDQAEBAQgICCg0GkHDhwo0NawYcNSeyw6ERERyUulvlqKiIiI6FkMN0RERCQrDDdEREQkKww3REREJCsMN0RERCQrDDdEREQkKww3REREJCsMN0RERCQrDDdEREQkKww3REREJCsMN0RERCQrDDdEREQkKww3REREJCsMN0RERCQrDDdEREQkKww3REREJCsMN0RERCQrDDdEREQkKww3REREJCsMN0RERCQrDDdEREQkKww3REREJCsMN0RERCQrDDdEREQkKww3REREJCsMN0RERCQrDDdEREQkKww3REREJCsMN0RERCQrDDdEREQkKww3REREJCsMN0RERCQrDDdEREQkKww3REREJCsMN0RERCQrDDdEREQkK3oPN6tWrYKTkxNMTEzQtm1bHD9+/Ln979+/j/Hjx8Pe3h5KpRINGjTAnj17yqlaIiIiquiM9LnyiIgIBAYGIjw8HG3btkVYWBh8fHyQkJAAGxubAv3z8vLQo0cP2NjYYPv27XBwcMC1a9dgZWVV/sUTERFRhaTXcBMaGooxY8bA398fABAeHo7du3dj3bp1+Pjjjwv0X7duHe7evYujR4+iSpUqAAAnJ6fyLJmIiIgqOL2dlsrLy0NsbCy8vb3/V4yBAby9vRETE1PoPD///DO8vLwwfvx42NraomnTpli4cCHUanWR68nNzUVmZqbWi4iIiORLb+EmPT0darUatra2Wu22trZISUkpdJ7Lly9j+/btUKvV2LNnDz777DMsXboU8+fPL3I9wcHBsLS0lF6Ojo6luh1ERERUseh9QLEuNBoNbGxssHr1anh4eMDX1xczZsxAeHh4kfMEBQUhIyNDeiUnJ5djxURERFTe9DbmxtraGoaGhkhNTdVqT01NhZ2dXaHz2Nvbo0qVKjA0NJTaGjdujJSUFOTl5cHY2LjAPEqlEkqlsnSLJyIiogpLb0dujI2N4eHhgejoaKlNo9EgOjoaXl5ehc7ToUMHJCYmQqPRSG0XL16Evb19ocGGiIiIXj16PS0VGBiINWvW4LvvvkN8fDzGjh2L7Oxs6eqpESNGICgoSOo/duxY3L17FxMnTsTFixexe/duLFy4EOPHj9fXJhAREVEFo9dLwX19fZGWloaZM2ciJSUF7u7uiIyMlAYZJyUlwcDgf/nL0dERUVFRmDx5Mpo3bw4HBwdMnDgR06dP19cmEBERUQWj13ADAAEBAQgICCh02oEDBwq0eXl54dixY2VcFREREVVWlepqKSIiIqIXYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIll56XCTmZmJXbt2IT4+vjTqISIiInopOoebQYMGYeXKlQCAhw8fwtPTE4MGDULz5s2xY8eOUi+QiIiISBc6h5uDBw+iU6dOAIAff/wRQgjcv38fy5cvx/z580u9QCIiIiJd6BxuMjIyUL16dQBAZGQkBgwYAJVKhd69e+Off/4p9QKJiIiIdKFzuHF0dERMTAyys7MRGRmJnj17AgDu3bsHExOTUi+QiIiISBdGus4wadIkDB06FObm5qhTpw66du0K4OnpqmbNmpV2fUREREQ60TncjBs3Dm3atEFycjJ69OgBA4OnB3/q16/PMTdERESkdzqHGwDw9PRE8+bNceXKFTg7O8PIyAi9e/cu7dqIiIiIdKbzmJucnByMGjUKKpUKTZo0QVJSEgDgww8/xKJFi0q9QCIiIiJd6BxugoKCcObMGRw4cEBrALG3tzciIiJKtTgiIiIiXekcbnbt2oWVK1eiY8eOUCgUUnuTJk1w6dKlEhWxatUqODk5wcTEBG3btsXx48eL7Lt+/XooFAqtF6/SIiIionw6h5u0tDTY2NgUaM/OztYKO8UVERGBwMBAzJo1C3FxcWjRogV8fHxw+/btIuepWrUqbt26Jb2uXbum83qJiIhInnQON56enti9e7f0Pj/QfPPNN/Dy8tK5gNDQUIwZMwb+/v5wc3NDeHg4VCoV1q1bV+Q8CoUCdnZ20svW1lbn9RIREZE86Xy11MKFC/H666/j/PnzePLkCb744gucP38eR48exR9//KHTsvLy8hAbG4ugoCCpzcDAAN7e3oiJiSlyvqysLNStWxcajQatWrXCwoUL0aRJk0L75ubmIjc3V3qfmZmpU41ERERUueh85KZjx444ffo0njx5gmbNmmHv3r2wsbFBTEwMPDw8dFpWeno61Gp1gSMvtra2SElJKXSehg0bYt26dfjpp5+wadMmaDQatG/fHtevXy+0f3BwMCwtLaWXo6OjTjUSERFR5VKi+9w4OztjzZo1pV1LsXh5eWmd/mrfvj0aN26Mr7/+GvPmzSvQPygoCIGBgdL7zMxMBhwiIiIZ0zncGBoa4tatWwUGFd+5cwc2NjZQq9XFXpa1tTUMDQ2Rmpqq1Z6amgo7O7tiLaNKlSpo2bIlEhMTC52uVCqhVCqLXRMRERFVbjqflhJCFNqem5sLY2NjnZZlbGwMDw8PREdHS20ajQbR0dHFHpysVqtx9uxZ2Nvb67RuIiIikqdiH7lZvnw5gKdXKn3zzTcwNzeXpqnVahw8eBCNGjXSuYDAwED4+fnB09MTbdq0QVhYGLKzs+Hv7w8AGDFiBBwcHBAcHAwAmDt3Ltq1awcXFxfcv38fn3/+Oa5du4bRo0frvG4iIiKSn2KHm2XLlgF4euQmPDwchoaG0jRjY2M4OTkhPDxc5wJ8fX2RlpaGmTNnIiUlBe7u7oiMjJQGGSclJUkP5wSAe/fuYcyYMUhJSUG1atXg4eGBo0ePws3NTed1ExERkfwoRFHnmYrw2muvYefOnahWrVpZ1VSmMjMzYWlpiYyMDFStWlXf5ZSbuDjAwwOIXR6HVi5Z+i6Hylhcojk8JrRCbCzQqpW+qyEienm6/P7WeUDx/v37S1wYERERUVnTOdyo1WqsX78e0dHRuH37NjQajdb0//73v6VWHBEREZGudA43EydOxPr169G7d280bdq0RM+TIiIiIiorOoebLVu2YOvWrejVq1dZ1ENERET0UnS+z42xsTFcXFzKohYiIiKil6ZzuJkyZQq++OKLIm/mR0RERKRPOp+WOnz4MPbv34/ffvsNTZo0QZUqVbSm79y5s9SKIyIiItKVzuHGysoK/fv3L4taiIiIiF6azuHm22+/LYs6iIiIiEqFzmNuAODJkyf4/fff8fXXX+PBgwcAgJs3byIri3e+JSIiIv3S+cjNtWvX8J///AdJSUnIzc1Fjx49YGFhgcWLFyM3N7dEz5ciIiIiKi06H7mZOHEiPD09ce/ePZiamkrt/fv3R3R0dKkWR0RERKQrnY/cHDp0CEePHoWxsbFWu5OTE27cuFFqhRERERGVhM5HbjQaDdRqdYH269evw8LColSKIiIiIiopncNNz549ERYWJr1XKBTIysrCrFmz+EgGIiIi0judT0stXboUPj4+cHNzw6NHj/DOO+/gn3/+gbW1NX744YeyqJGIiIio2HQON7Vr18aZM2ewZcsW/PXXX8jKysKoUaMwdOhQrQHGRERERPqgc7h59OgRTExMMGzYsLKoh4iIiOil6DzmxsbGBn5+fti3bx80Gk1Z1ERERERUYjqHm++++w45OTno27cvHBwcMGnSJJw8ebIsaiMiIiLSmc7hpn///ti2bRtSU1OxcOFCnD9/Hu3atUODBg0wd+7csqiRiIiIqNhK9GwpALCwsIC/vz/27t2Lv/76C2ZmZpgzZ05p1kZERESksxKHm0ePHmHr1q3o168fWrVqhbt37+Kjjz4qzdqIiIiIdKbz1VJRUVH4/vvvsWvXLhgZGeHtt9/G3r170blz57Koj4iIiEgnOoeb/v3744033sCGDRvQq1cvVKlSpSzqIiIiIioRncNNamoqnyFFREREFVaxwk1mZiaqVq0KABBCIDMzs8i++f2IiIiI9KFY4aZatWq4desWbGxsYGVlBYVCUaCPEAIKhaLQJ4YTERERlZdihZv//ve/qF69uvTvwsINERERUUVQrHDTpUsX6d9du3Ytq1qIiIiIXprO97lxdXXF7Nmz8c8//5RFPUREREQvRedwM27cOOzevRuNGjVC69at8cUXXyAlJaUsaiMiIiLSmc7hZvLkyThx4gTi4+PRq1cvrFq1Co6OjujZsyc2bNhQFjUSERERFVuJH7/QoEEDzJkzBxcvXsShQ4eQlpYGf3//0qyNiIiISGc638Tv344fP47vv/8eERERyMzMxMCBA0urLiIiIqIS0TncXLx4EZs3b8YPP/yAK1euoFu3bli8eDHeeustmJubl0WNRERERMWm82mpRo0aITIyEuPHj8f169cRFRWFESNGvFSwWbVqFZycnGBiYoK2bdvi+PHjxZpvy5YtUCgU6NevX4nXTURERPKi85GbhIQEuLq6lloBERERCAwMRHh4ONq2bYuwsDD4+PggISEBNjY2Rc539epVTJ06FZ06dSq1WoiIiKjyK9F9bu7fv49vvvkGQUFBuHv3LgAgLi4ON27c0LmA0NBQjBkzBv7+/nBzc0N4eDhUKhXWrVtX5DxqtRpDhw7FnDlzUL9+fZ3XSURERPKlc7j566+/4OrqisWLFyMkJAT3798HAOzcuRNBQUE6LSsvLw+xsbHw9vb+X0EGBvD29kZMTEyR882dOxc2NjYYNWrUC9eRm5uLzMxMrRcRERHJV4nuc+Pv749//vkHJiYmUnuvXr1w8OBBnZaVnp4OtVoNW1tbrXZbW9sibwx4+PBhrF27FmvWrCnWOoKDg2FpaSm9HB0ddaqRiIiIKhedw83Jkyfx/vvvF2h3cHAo8zsVP3jwAMOHD8eaNWtgbW1drHmCgoKQkZEhvZKTk8u0RiIiItIvnQcUK5XKQk/tXLx4ETVr1tRpWdbW1jA0NERqaqpWe2pqKuzs7Ar0v3TpEq5evYo+ffpIbRqNBgBgZGSEhIQEODs7F6hXqVTqVBcRERFVXjofuXnzzTcxd+5cPH78GACgUCiQlJSE6dOnY8CAAToty9jYGB4eHoiOjpbaNBoNoqOj4eXlVaB/o0aNcPbsWZw+fVp6vfnmm3jttddw+vRpnnIiIiIi3Y/cLF26FG+//TZsbGzw8OFDdOnSBSkpKfDy8sKCBQt0LiAwMBB+fn7w9PREmzZtEBYWhuzsbOlRDiNGjICDgwOCg4NhYmKCpk2bas1vZWUFAAXaiYiI6NWkc7ixtLTEvn37cOTIEZw5cwZZWVlo1aqV1hVPuvD19UVaWhpmzpyJlJQUuLu7IzIyUhpknJSUBAODEj8Ci4iIiF4xOoWbx48fw9TUFKdPn0aHDh3QoUOHUikiICAAAQEBhU47cODAc+ddv359qdRARERE8qDTIZEqVaqgTp06UKvVZVUPERER0UvR+XzPjBkz8Mknn0h3JiYiIiKqSHQec7Ny5UokJiaiVq1aqFu3LszMzLSmx8XFlVpxRERERLrSOdzwCdxERERUkekcbmbNmlUWdRARERGVCp3DTb6TJ08iPj4eAODm5gYPD49SK4qIiIiopHQON9evX8eQIUNw5MgR6QZ69+/fR/v27bFlyxbUrl27tGskIiIiKjadr5YaPXo0Hj9+jPj4eNy9exd3795FfHw8NBoNRo8eXRY1EhERERWbzkdu/vjjDxw9ehQNGzaU2ho2bIgVK1agU6dOpVocERERka50PnLj6OgoPTTz39RqNWrVqlUqRRERERGVlM7h5vPPP8eHH36IkydPSm0nT57ExIkTERISUqrFEREREemqWKelqlWrBoVCIb3Pzs5G27ZtYWT0dPYnT57AyMgII0eO5H1wiIiISK+KFW7CwsLKuAwiIiKi0lGscOPn51fWdRARERGVihLdxE+tVmPXrl3STfyaNGmCN998E4aGhqVaHBEREZGudA43iYmJ6NWrF27cuCFdDh4cHAxHR0fs3r0bzs7OpV4kERERUXHpfLXUhAkT4OzsjOTkZMTFxSEuLg5JSUmoV68eJkyYUBY1EhERERVbiW7id+zYMVSvXl1qq1GjBhYtWoQOHTqUanFEREREutL5yI1SqcSDBw8KtGdlZcHY2LhUiiIiIiIqKZ3DzRtvvIH33nsPf/75J4QQEELg2LFj+OCDD/Dmm2+WRY1ERERExaZzuFm+fDmcnZ3h5eUFExMTmJiYoEOHDnBxccEXX3xRFjUSERERFZvOY26srKzw008/ITExUboUvHHjxnBxcSn14oiIiIh0VaL73ACAi4sLXFxc8OTJEzx69Kg0ayIiIiIqsWKflvrll1+wfv16rbYFCxbA3NwcVlZW6NmzJ+7du1fa9RERERHppNjhJjQ0FNnZ2dL7o0ePYubMmfjss8+wdetWJCcnY968eWVSJBEREVFxFTvc/P3332jfvr30fvv27ejRowdmzJiBt956C0uXLsUvv/xSJkUSERERFVexw82DBw9Qo0YN6f3hw4fRvXt36X2TJk1w8+bN0q2OiIiISEfFDjcODg7S1VFZWVk4c+aM1pGcO3fuQKVSlX6FRERERDoodrgZOHAgJk2ahI0bN2LMmDGws7NDu3btpOknT56UHqRJREREpC/FvhR85syZuHHjBiZMmAA7Ozts2rQJhoaG0vQffvgBffr0KZMiiYiIiIqr2OHG1NQUGzZsKHL6/v37S6UgIiIiopeh8+MXiIiIiCoyhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSlRI9FTw7Oxt//PEHkpKSkJeXpzVtwoQJpVIYERERUUnoHG5OnTqFXr16IScnB9nZ2ahevTrS09OhUqlgY2NTonCzatUqfP7550hJSUGLFi2wYsUKtGnTptC+O3fuxMKFC5GYmIjHjx/D1dUVU6ZMwfDhw3VeLxEREcmPzqelJk+ejD59+uDevXswNTXFsWPHcO3aNXh4eCAkJETnAiIiIhAYGIhZs2YhLi4OLVq0gI+PD27fvl1o/+rVq2PGjBmIiYnBX3/9BX9/f/j7+yMqKkrndRMREZH86BxuTp8+jSlTpsDAwACGhobIzc2Fo6MjlixZgk8++UTnAkJDQzFmzBj4+/vDzc0N4eHhUKlUWLduXaH9u3btiv79+6Nx48ZwdnbGxIkT0bx5cxw+fLjQ/rm5ucjMzNR6ERERkXzpHG6qVKkCA4Ons9nY2CApKQkAYGlpieTkZJ2WlZeXh9jYWHh7e/+vIAMDeHt7IyYm5oXzCyEQHR2NhIQEdO7cudA+wcHBsLS0lF6Ojo461UhERESVi85jblq2bIkTJ07A1dUVXbp0wcyZM5Geno6NGzeiadOmOi0rPT0darUatra2Wu22tra4cOFCkfNlZGTAwcEBubm5MDQ0xJdffokePXoU2jcoKAiBgYHS+8zMTAYcIiIiGdM53CxcuBAPHjwAACxYsAAjRozA2LFj4erqirVr15Z6gYWxsLDA6dOnkZWVhejoaAQGBqJ+/fro2rVrgb5KpRJKpbJc6iIiIiL90znceHp6Sv+2sbFBZGRkiVdubW0NQ0NDpKamarWnpqbCzs6uyPkMDAzg4uICAHB3d0d8fDyCg4MLDTdERET0atF5zM3zThfpesWSsbExPDw8EB0dLbVpNBpER0fDy8ur2MvRaDTIzc3Vad1EREQkTzqHm1atWmHVqlVabbm5uQgICEDfvn11LiAwMBBr1qzBd999h/j4eIwdOxbZ2dnw9/cHAIwYMQJBQUFS/+DgYOzbtw+XL19GfHw8li5dio0bN2LYsGE6r5uIiIjkR+fTUuvXr8fYsWOxe/dufPvtt7h16xbeeecdaDQaHDp0SOcCfH19kZaWhpkzZyIlJQXu7u6IjIyUBhknJSVJV2cBT++OPG7cOFy/fh2mpqZo1KgRNm3aBF9fX53XTURERPKjEEIIXWe6fv06/P39cerUKWRnZ+Pdd9/F0qVLoVKpyqLGUpWZmQlLS0tkZGSgatWq+i6n3MTFAR4eQOzyOLRyydJ3OVTG4hLN4TGhFWJjgVat9F0NEdHL0+X3d4kfnJmXlwe1Wg21Wg17e3uYmJiUdFFEREREpUbncLNlyxY0a9YMlpaWuHjxInbv3o3Vq1ejU6dOuHz5clnUSERERFRsOoebUaNGYeHChfj5559Rs2ZN9OjRA2fPnoWDgwPc3d3LoEQiIiKi4tN5QHFcXBwaNmyo1VatWjVs3boVGzduLLXCiIiIiEpC5yM3zwabfxs+fPhLFUNERET0snQ+cgM8vVrq559/RlJSEvLy8rSmhYaGlkphRERERCWhc7iJjo7Gm2++ifr16+PChQto2rQprl69CiEEWvGaUyIiItIznU9LBQUFYerUqTh79ixMTEywY8cOJCcno0uXLhg4cGBZ1EhERERUbDqHm/j4eIwYMQIAYGRkhIcPH8Lc3Bxz587F4sWLS71AIiIiIl3oHG7MzMykcTb29va4dOmSNC09Pb30KiMiIiIqgWKHm7lz5yI7Oxvt2rXD4cOHAQC9evXClClTsGDBAowcORLt2rUrs0KJiIiIiqPY4WbOnDnIzs5GaGgo2rZtK7V1794dERERcHJywtq1a8usUCIiIqLiKPbVUvnP16xfv77UZmZmhvDw8NKvioiIiKiEdBpzo1AoyqoOIiIiolKh031uGjRo8MKAc/fu3ZcqiIiIiOhl6BRu5syZA0tLy7KqhYiIiOil6RRuBg8eDBsbm7KqhYiIiOilFXvMDcfbEBERUWVQ7HCTf7UUERERUUVW7NNSGo2mLOsgIiIiKhU6P36BiIiIqCJjuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIqIKY9WqVXBycoKJiQnatm2L48ePF9n377//xoABA+Dk5ASFQoGwsLACfR48eIBJkyahbt26MDU1Rfv27XHixIky3AKqCBhuiIioQoiIiEBgYCBmzZqFuLg4tGjRAj4+Prh9+3ah/XNyclC/fn0sWrQIdnZ2hfYZPXo09u3bh40bN+Ls2bPo2bMnvL29cePGjbLcFNIzhhsiIqoQQkNDMWbMGPj7+8PNzQ3h4eFQqVRYt25dof1bt26Nzz//HIMHD4ZSqSww/eHDh9ixYweWLFmCzp07w8XFBbNnz4aLiwu++uqrst4c0iOGGyIi0ru8vDzExsbC29tbajMwMIC3tzdiYmJKtMwnT55ArVbDxMREq93U1BSHDx9+qXqpYmO4ISIivUtPT4darYatra1Wu62tLVJSUkq0TAsLC3h5eWHevHm4efMm1Go1Nm3ahJiYGNy6das0yqYKqkKEG10GkK1ZswadOnVCtWrVUK1aNXh7ez+3PxERvbo2btwIIQQcHBygVCqxfPlyDBkyBAYGFeLXH5URve9dXQeQHThwAEOGDMH+/fsRExMDR0dH9OzZk4PDiIgqMWtraxgaGiI1NVWrPTU1tcjBwsXh7OyMP/74A1lZWUhOTsbx48fx+PFj1K9f/2VLpgpM7+FG1wFkmzdvxrhx4+Du7o5GjRrhm2++gUajQXR0dDlXTkREpcXY2BgeHh5a/y/P/3+7l5fXSy/fzMwM9vb2uHfvHqKiotC3b9+XXiZVXEb6XHn+ALKgoCCpTdcBZDk5OXj8+DGqV69e6PTc3Fzk5uZK7zMzM1+uaCIiKhOBgYHw8/ODp6cn2rRpg7CwMGRnZ8Pf3x8AMGLECDg4OCA4OBjA098h58+fl/5948YNnD59Gubm5nBxcQEAREVFQQiBhg0bIjExER999BEaNWokLZPkSa/h5nkDyC5cuFCsZUyfPh21atXSGmH/b8HBwZgzZ85L10pERGXL19cXaWlpmDlzJlJSUuDu7o7IyEjpd0RSUpLWWJmbN2+iZcuW0vuQkBCEhISgS5cuOHDgAAAgIyMDQUFBuH79OqpXr44BAwZgwYIFqFKlSrluG5UvvYabl7Vo0SJs2bIFBw4cKHCpX76goCAEBgZK7zMzM+Ho6FheJRIRkQ4CAgIQEBBQ6LT8wJLPyckJQojnLm/QoEEYNGhQaZVHlYRew83LDCALCQnBokWL8Pvvv6N58+ZF9lMqlYXe3ImIiIjkSa8Diks6gGzJkiWYN28eIiMj4enpWR6lEhERUSWh99NSug4gW7x4MWbOnInvv/8eTk5O0s2dzM3NYW5urrftICLSp6QkID1d31VQebG2BurU0XcVFZfew42uA8i++uor5OXl4e2339ZazqxZszB79uzyLJ2IqEJISgIaNxbIyVHouxQqJyqVQHy8ggGnCHoPN4BuA8iuXr1a9gUREVUi6elATo4CEz+/h9r1n+i7HCpj1y8b4YuPqiE9nUdvilIhwg0REb282vWfoH4Thhsivd+hmIiIiKg0MdwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrOg93KxatQpOTk4wMTFB27Ztcfz48SL7/v333xgwYACcnJygUCgQFhZWfoUSERFRpaDXcBMREYHAwEDMmjULcXFxaNGiBXx8fHD79u1C++fk5KB+/fpYtGgR7OzsyrlaIiIiqgz0Gm5CQ0MxZswY+Pv7w83NDeHh4VCpVFi3bl2h/Vu3bo3PP/8cgwcPhlKpLOdqiYiIqDLQW7jJy8tDbGwsvL29/1eMgQG8vb0RExNTauvJzc1FZmam1ouIiIjkS2/hJj09HWq1Gra2tlrttra2SElJKbX1BAcHw9LSUno5OjqW2rKJiIio4tH7gOKyFhQUhIyMDOmVnJys75KIiIioDBnpa8XW1tYwNDREamqqVntqamqpDhZWKpUcn0NERPQK0duRG2NjY3h4eCA6Olpq02g0iI6OhpeXl77KIiIiokpOb0duACAwMBB+fn7w9PREmzZtEBYWhuzsbPj7+wMARowYAQcHBwQHBwN4Ogj5/Pnz0r9v3LiB06dPw9zcHC4uLnrbDiIiIqo49BpufH19kZaWhpkzZyIlJQXu7u6IjIyUBhknJSXBwOB/B5du3ryJli1bSu9DQkIQEhKCLl264MCBA+VdPhEREVVAeg03ABAQEICAgIBCpz0bWJycnCCEKIeqiIiIqLKS/dVSRERE9GphuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIlmpEOFm1apVcHJygomJCdq2bYvjx48/t/+2bdvQqFEjmJiYoFmzZtizZ085VUpEREQVnd7DTUREBAIDAzFr1izExcWhRYsW8PHxwe3btwvtf/ToUQwZMgSjRo3CqVOn0K9fP/Tr1w/nzp0r58qJiIioItJ7uAkNDcWYMWPg7+8PNzc3hIeHQ6VSYd26dYX2/+KLL/Cf//wHH330ERo3box58+ahVatWWLlyZTlXTkRERBWRkT5XnpeXh9jYWAQFBUltBgYG8Pb2RkxMTKHzxMTEIDAwUKvNx8cHu3btKrR/bm4ucnNzpfcZGRkAgMzMzJesvnLJynr639hEDbIe6rcWKnsJNzQAMpGVBbxiX/VXUv7P96XzOXiUo9ZvMVTmblw1xKv4853/e1sI8cK+eg036enpUKvVsLW11Wq3tbXFhQsXCp0nJSWl0P4pKSmF9g8ODsacOXMKtDs6Opaw6srtveX6roDKU5cu+q6AylP4Z/qugMrTq/rz/eDBA1haWj63j17DTXkICgrSOtKj0Whw9+5d1KhRAwqFQo+VUXnIzMyEo6MjkpOTUbVqVX2XQ0SliD/frxYhBB48eIBatWq9sK9ew421tTUMDQ2Rmpqq1Z6amgo7O7tC57Gzs9Opv1KphFKp1GqzsrIqedFUKVWtWpX/8yOSKf58vzpedMQmn14HFBsbG8PDwwPR0dFSm0ajQXR0NLy8vAqdx8vLS6s/AOzbt6/I/kRERPRq0ftpqcDAQPj5+cHT0xNt2rRBWFgYsrOz4e/vDwAYMWIEHBwcEBwcDACYOHEiunTpgqVLl6J3797YsmULTp48idWrV+tzM4iIiKiC0Hu48fX1RVpaGmbOnImUlBS4u7sjMjJSGjSclJQEA4P/HWBq3749vv/+e3z66af45JNP4Orqil27dqFp06b62gSqwJRKJWbNmlXg1CQRVX78+aaiKERxrqkiIiIiqiT0fhM/IiIiotLEcENERESywnBDREREssJwQ0RERLLCcENERESywnBDspWYmIioqCg8fPj0SaG8MJCI6NXAcEOyc+fOHXh7e6NBgwbo1asXbt26BQAYNWoUpkyZoufqiIiorDHckOxMnjwZRkZGSEpKgkqlktp9fX0RGRmpx8qIqLQcOnQIw4YNg5eXF27cuAEA2LhxIw4fPqznyqgiYLgh2dm7dy8WL16M2rVra7W7urri2rVreqqKiErLjh074OPjA1NTU5w6dQq5ubkAgIyMDCxcuFDP1VFFwHBDspOdna11xCbf3bt3eZt2IhmYP38+wsPDsWbNGlSpUkVq79ChA+Li4vRYGVUUDDckO506dcKGDRuk9wqFAhqNBkuWLMFrr72mx8qIqDQkJCSgc+fOBdotLS1x//798i+IKhy9PziTqLQtWbIE3bt3x8mTJ5GXl4dp06bh77//xt27d3HkyBF9l0dEL8nOzg6JiYlwcnLSaj98+DDq16+vn6KoQuGRG5Kdpk2b4uLFi+jYsSP69u2L7OxsvPXWWzh16hScnZ31XR4RvaQxY8Zg4sSJ+PPPP6FQKHDz5k1s3rwZU6dOxdixY/VdHlUAfCo4ERFVKkIILFy4EMHBwcjJyQEAKJVKTJ06FfPmzdNzdVQRMNyQLPz111/F7tu8efMyrISIykteXh4SExORlZUFNzc3mJub67skqiAYbkgWDAwMoFAoXngXYoVCAbVaXU5VERGRPnBAMcnClStX9F0CEZWht956q9h9d+7cWYaVUGXAcEOyULduXX2XQERlyNLSUt8lUCXC01IkW+fPn0dSUhLy8vK02t988009VUREROWBR25Idi5fvoz+/fvj7NmzWuNwFAoFAHDMDRGRzDHckOxMnDgR9erVQ3R0NOrVq4fjx4/jzp07mDJlCkJCQvRdHhGVgu3bt2Pr1q2FHp3lIxiIN/Ej2YmJicHcuXNhbW0NAwMDGBgYoGPHjggODsaECRP0XR4RvaTly5fD398ftra2OHXqFNq0aYMaNWrg8uXLeP311/VdHlUADDckO2q1GhYWFgAAa2tr3Lx5E8DTQccJCQn6LI2ISsGXX36J1atXY8WKFTA2Nsa0adOwb98+TJgwARkZGfoujyoAhhuSnaZNm+LMmTMAgLZt22LJkiU4cuQI5s6dy+fOEMlAUlIS2rdvDwAwNTXFgwcPAADDhw/HDz/8oM/SqIJguCHZ+fTTT6HRaAAAc+fOxZUrV9CpUyfs2bMHy5cv13N1RPSy7OzscPfuXQBAnTp1cOzYMQBP73fFC4AJ4IBikiEfHx/p3y4uLrhw4QLu3r2LatWqSVdMEVHl1a1bN/z8889o2bIl/P39MXnyZGzfvh0nT57U6WZ/JF+8zw0REVUqGo0GGo0GRkZP/z6PiIjAkSNH4Orqig8++ABVqlTRc4Wkbww3JDuPHj3CihUrsH//fty+fVs6RZWPl4kSVX6PHj3CX3/9VeBnXKFQoE+fPnqsjCoCnpYi2Rk1ahT27t2Lt99+G23atOGpKCKZiYyMxPDhw3Hnzp0C0/hwXAJ45IZkyNLSEnv27EGHDh30XQoRlQFXV1f07NkTM2fOhK2trb7LoQqIV0uR7Dg4OEj3uSEi+UlNTUVgYCCDDRWJ4YZkZ+nSpZg+fTquXbum71KIqAy8/fbbOHDggL7LoAqMp6VIdtLS0jBo0CAcPHgQKpWqwJUT+ffHIKLKKScnBwMHDkTNmjXRrFmzAj/jfMwKMdyQ7Hh7eyMpKQmjRo2Cra1tgQHFfn5+eqqMiErD2rVr8cEHH8DExAQ1atTQ+hlXKBS4fPmyHqujioDhhmRHpVIhJiYGLVq00HcpRFQG7OzsMGHCBHz88ccwMODoCiqI3wqSnUaNGuHhw4f6LoOIykheXh58fX0ZbKhI/GaQ7CxatAhTpkzBgQMHcOfOHWRmZmq9iKhy8/PzQ0REhL7LoAqMp6VIdvL/mnt2rI0Qgjf4IpKBCRMmYMOGDWjRogWaN29eYEBxaGioniqjioJ3KCbZ2b9/v75LIKIydPbsWbRs2RIAcO7cOa1pvCM5ATxyQ0RERDLDMTckS4cOHcKwYcPQvn173LhxAwCwceNGHD58WM+VERFRWWO4IdnZsWMHfHx8YGpqiri4OOTm5gIAMjIysHDhQj1XR0REZY3hhmRn/vz5CA8Px5o1a7QGGnbo0AFxcXF6rIyIiMoDww3JTkJCAjp37lyg3dLSEvfv3y//goiIqFwx3JDs2NnZITExsUD74cOHUb9+fT1URERE5YnhhmRnzJgxmDhxIv78808oFArcvHkTmzdvxtSpUzF27Fh9l0dERGWM97khWfjrr7/QtGlTGBgYICgoCBqNBt27d0dOTg46d+4MpVKJqVOn4sMPP9R3qUREVMZ4nxuSBUNDQ9y6dQs2NjaoX78+Tpw4AQsLCyQmJiIrKwtubm4wNzfXd5lERFQOeOSGZMHKygpXrlyBjY0Nrl69Co1GA2NjY7i5uem7NCIiKmcMNyQLAwYMQJcuXWBvbw+FQgFPT08YGhoW2vfy5cvlXB0REZUnhhuShdWrV+Ott95CYmIiJkyYgDFjxsDCwkLfZRERkR5wzA3Jjr+/P5YvX85wQ0T0imK4ISIiIlnhfW6IiIhIVhhuiIiISFYYboiIiEhWGG6IqMKLiorCmjVr9F0GEVUSvBSciCq069evY9y4cahZsyZq166N119/Xd8lEVEFxyM3RKQXKSkpmDhxIlxcXGBiYgJbW1t06NABX331FXJycqR+77//PlauXInt27fjk08+QUZGhh6rJqLKgJeCE1G5u3z5Mjp06AArKyvMmTMHzZo1g1KpxNmzZ7F69Wq8//77ePPNN/VSmxACarUaRkY8sE1UWfHIDRGVu3HjxsHIyAgnT57EoEGD0LhxY9SvXx99+/bF7t270adPHwDA/fv3MXr0aNSsWRNVq1ZFt27dcObMGWk5s2fPhru7OzZu3AgnJydYWlpi8ODBePDggdRHo9EgODgY9erVg6mpKVq0aIHt27dL0w8cOACFQoHffvsNHh4eUCqVOHz4MHJzczFhwgTY2NjAxMQEHTt2xIkTJ8rvQyKiEmO4IaJydefOHezduxfjx4+HmZlZoX0UCgUAYODAgbh9+zZ+++03xMbGolWrVujevTvu3r0r9b106RJ27dqFX3/9Fb/++iv++OMPLFq0SJoeHByMDRs2IDw8HH///TcmT56MYcOG4Y8//tBa58cff4xFixYhPj4ezZs3x7Rp07Bjxw589913iIuLg4uLC3x8fLTWTUQVlCAiKkfHjh0TAMTOnTu12mvUqCHMzMyEmZmZmDZtmjh06JCoWrWqePTokVY/Z2dn8fXXXwshhJg1a5ZQqVQiMzNTmv7RRx+Jtm3bCiGEePTokVCpVOLo0aNayxg1apQYMmSIEEKI/fv3CwBi165d0vSsrCxRpUoVsXnzZqktLy9P1KpVSyxZsqQUPgUiKks8qUxEFcLx48eh0WgwdOhQ5Obm4syZM8jKykKNGjW0+j18+BCXLl2S3js5OWk9R8ze3h63b98GACQmJiInJwc9evTQWkZeXh5atmyp1ebp6Sn9+9KlS3j8+DE6dOggtVWpUgVt2rRBfHz8y28sEZUphhsiKlcuLi5QKBRISEjQaq9fvz4AwNTUFACQlZUFe3t7HDhwoMAyrKyspH9XqVJFa5pCoYBGo5GWAQC7d++Gg4ODVj+lUqn1vqhTZERU+TDcEFG5qlGjBnr06IGVK1fiww8/LDJUtGrVCikpKTAyMoKTk1OJ1uXm5galUomkpCR06dKl2PM5OzvD2NgYR44cQd26dQEAjx8/xokTJzBp0qQS1UJE5YfhhojK3ZdffokOHTrA09MTs2fPRvPmzWFgYIATJ07gwoUL8PDwgLe3N7y8vNCvXz8sWbIEDRo0wM2bN7F79270799f6zRSUSwsLDB16lRMnjwZGo0GHTt2REZGBo4cOYKqVavCz8+v0PnMzMwwduxYfPTRR6hevTrq1KmDJUuWICcnB6NGjSrtj4OIShnDDRGVO2dnZ5w6dQoLFy5EUFAQrl+/DqVSCTc3N0ydOhXjxo2DQqHAnj17MGPGDPj7+yMtLQ12dnbo3LkzbG1ti72uefPmoWbNmggODsbly5dhZWWFVq1a4ZNPPnnufIsWLYJGo8Hw4cPx4MEDeHp6IioqCtWqVXvZzSeiMsab+BEREZGs8D43REREJCsMN0RERCQrDDdEREQkKww3REREJCsMN0RERCQrDDdEREQkKww3REREJCsMN0RERCQrDDdEREQkKww3REREJCsMN0RERCQr/wdCaxD1TLU64gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Qual é a taxa de sobreviventes por gênero?\n", + "\n", + "# Agrupamento de gênero por sobreviventes\n", + "taxa_sob_genero = df.groupby(\"Genero\")[\"Sobreviveu\"].mean()\n", + "\n", + "# Cores para barras\n", + "cores = [\"lightpink\", \"lightblue\"]\n", + "\n", + "# Plotagem\n", + "barras = taxa_sob_genero.plot.bar(edgecolor = \"blue\", color= cores)\n", + "\n", + "# Os rótulos\n", + "plt.xlabel(\"Gênero\")\n", + "plt.ylabel(\"Taxa Sobreviventes\")\n", + "plt.title(\"Taxa de Sobreviventes por Gênero\")\n", + "\n", + "# Adicionar Legendas\n", + "plt.legend([\"Taxa de Sobrevivência\"])\n", + "\n", + "# Adicionar rótulos nos gráficos\n", + "for i, v in enumerate(taxa_sob_genero):\n", + " barras.text(i, v + 0.01, f\"{v:.2f}\", color = \"black\", ha = \"center\")\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 262, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+hklEQVR4nO3deVxWdf7//+eFCIiCiICAAuJObrkkmZqaFGJZltOqpZmapblNplTuOZiVWeZoq06jZjWZ2uaS6zguHzcyDTdSsQQ3VAQSFd6/P/x5fbsCTPDCC06P++12bsM57/d1rtf7OgbPOdf7nGMzxhgBAABYlJurCwAAAChJhB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB3AosaNGyebzebqMhysWbNGNptNa9asKfJr33rrLfn4+Ojuu+9WamqqYmNjtWjRIqfX+EeHDh2SzWbTnDlznLZPm82mcePG/Wm/kjiGNWvWVO/evZ26T6C0I+wAZcCcOXNks9nsi5eXl0JDQxUbG6u3335b586dc8r7HD16VOPGjVNiYqJT9udMkyZN0osvvqicnBxVr15d+/btU6dOnVxdFoAywN3VBQC4dhMmTFBkZKQuXryotLQ0rVmzRkOHDtXUqVO1ZMkSNWnSxN735Zdf1qhRo4q0/6NHj2r8+PGqWbOmbr75ZidXL91+++367bff5OHhUeTXbty4UbVr11Z8fLzS0tJUtWpVlS9f3uk13gi//fab3N359QvcKPzXBpQhcXFxatmypX09Pj5eq1at0j333KN7771XSUlJqlChgiTJ3d29xP+gZmdny9vb+5r7u7m5ycvLq1jvVbt2bfvPwcHBxdpHaVHczwBA8fA1FlDG3XHHHRo9erQOHz6suXPn2rcXNN9jxYoVatu2rfz8/FSpUiXVr19fL774oqTL82luueUWSdKTTz5p/8rsylyVDh06qFGjRtq2bZtuv/12eXt7219b2ByUP84PKWzOzubNm9WlSxdVqVJFFStWVJMmTfTWW2/Z2xMTE/XEE08oMjJSXl5eCg4OVp8+fXTq1Kl877ljxw7FxcXJ19dXlSpVUqdOnbRp06Zr+izPnDmj3r17q3LlyvLz81OvXr105syZAvvu2bNHf/vb3+Tv7y8vLy+1bNlSS5Ysuab3KejzWr9+vW655RZ5eXmpdu3aevfddwt87ezZs3XHHXcoKChInp6euummmzRz5sx8/YwxeuWVV1SjRg15e3urY8eO2r17d6HjHjp0qMLCwuTp6ak6dero1VdfVV5e3jWNByjtOLMDWMDjjz+uF198UcuXL1e/fv0K7LN7927dc889atKkiSZMmCBPT08dOHBA//vf/yRJUVFRmjBhgsaMGaP+/furXbt2kqTbbrvNvo9Tp04pLi5OjzzyiHr27Klq1apdd+0rVqzQPffco5CQEA0ZMkTBwcFKSkrS119/rSFDhkiSli1bpkOHDqlPnz4KDg7W7t279d5772n37t3atGmTPdTt3r1b7dq1k6+vr1544QWVL19e7777rjp06KC1a9cqOjq60DqMMbrvvvu0fv16DRgwQFFRUfryyy/Vq1evAj/LNm3aqHr16ho1apQqVqyozz77TN26ddMXX3yh+++/v0ifwY8//qi77rpLgYGBGjdunC5duqSxY8cW+PnOnDlTDRs21L333it3d3d99dVXevbZZ5WXl6eBAwfa+40ZM0avvPKKunTpoi5dumj79u266667dOHCBYf9ZWdnq3379vr111/19NNPKzw8XBs2bFB8fLxSU1M1bdq0Io0FKJUMgFJv9uzZRpLZsmVLoX0qV65smjVrZl8fO3as+f1/4m+++aaRZE6cOFHoPrZs2WIkmdmzZ+dra9++vZFkZs2ala9Nkhk7dmy+7REREaZXr1729dWrVxtJZvXq1cYYYy5dumQiIyNNRESEOX36tMNr8/Ly7D9nZWXl2/cnn3xiJJl169bZt3Xr1s14eHiY5ORk+7ajR48aHx8fc/vttxcy6ssWLVpkJJkpU6bYt126dMm0a9cu32fSqVMn07hxY3P+/HmHem+77TZTt27dq76PMfk/r27duhkvLy9z+PBh+7affvrJlCtXzvzx13R2dna+/cXGxppatWrZ148fP248PDzM3Xff7fA5vvjii0aSwzGZOHGiqVixotm3b5/DPkeNGmXKlStnUlJS/nQ8QGnH11iARVSqVOmqV2X5+flJkhYvXlzsryc8PT315JNPFuu1BdmxY4cOHjyooUOH2uu74vdfwf1+XtD58+d18uRJ3XrrrZKk7du3S5Jyc3O1fPlydevWTbVq1bL3DwkJ0WOPPab169crIyOj0Fq+/fZbubu765lnnrFvK1eunJ577jmHfunp6Vq1apUeeughnTt3TidPntTJkyd16tQpxcbGav/+/fr111+v+TPIzc3VsmXL1K1bN4WHh9u3R0VFKTY2Nl//K3OyJOns2bM6efKk2rdvr59//llnz56VJH3//fe6cOGCnnvuOYfPcejQofn29/nnn6tdu3aqUqWKfSwnT55UTEyMcnNztW7dumseC1BaEXYAi8jMzJSPj0+h7Q8//LDatGmjvn37qlq1anrkkUf02WefFSn4VK9evVhXUhUmOTlZktSoUaOr9ktPT9eQIUNUrVo1VahQQYGBgYqMjJQk+x/4EydOKDs7W/Xr18/3+qioKOXl5enIkSOFvsfhw4cVEhKiSpUqOWz/4/4OHDggY4xGjx6twMBAh2Xs2LGSpOPHj//JyP+fEydO6LffflPdunXztRU0lv/973+KiYlRxYoV5efnp8DAQPvcqSufxeHDhyUp3z4DAwNVpUoVh2379+/X0qVL840lJiamyGMBSivm7AAW8Msvv+js2bOqU6dOoX0qVKigdevWafXq1frmm2+0dOlSffrpp7rjjju0fPlylStX7k/f5/dnFa5Fbm5ukfoX5qGHHtKGDRs0YsQI3XzzzapUqZLy8vLUuXPnGz6J9sr7Pf/88wWeeZF01eNwPZKTk9WpUyc1aNBAU6dOVVhYmDw8PPTtt9/qzTffLNZnkZeXpzvvvFMvvPBCge316tW73rIBlyPsABbw73//W5IK/eN7hZubmzp16qROnTpp6tSp+sc//qGXXnpJq1evVkxMTLHv1lulSpV8Vy1duHBBqampV33dlcvJd+3aZT+T8EenT5/WypUrNX78eI0ZM8a+ff/+/Q79AgMD5e3trb179+bbx549e+Tm5qawsLBCa4mIiNDKlSuVmZnpcHbnj/u78hVZ+fLlC625KAIDA1WhQoV84ynovb/66ivl5ORoyZIlDl95rV69Ot9YpMuf0e+/0jtx4oROnz7t0Ld27drKzMx0yliA0oqvsYAybtWqVZo4caIiIyPVo0ePQvulp6fn23blxoE5OTmSpIoVK0pSoZdbF6Z27dr55na89957f3pmp3nz5oqMjNS0adPyvacxRpLsZ5yurF/xx6uEypUrp7vuukuLFy/WoUOH7NuPHTum+fPnq23btvL19S20li5duujSpUsOl3Hn5uZq+vTpDv2CgoLUoUMHvfvuuwWGuRMnThT6HgUpV66c/dEXKSkp9u1JSUlatmxZvr6S42dx9uxZzZ4926FfTEyMypcvr+nTpzv0LejKqoceekgbN27M917S5X8Hly5dKtJ4gNKIMztAGfLdd99pz549unTpko4dO6ZVq1ZpxYoVioiI0JIlS656s7oJEyZo3bp1uvvuuxUREaHjx4/rn//8p2rUqKG2bdtKuhxa/Pz8NGvWLPn4+KhixYqKjo62z48pTN++fTVgwAB1795dd955p3744QctW7ZMAQEBV32dm5ubZs6cqa5du+rmm2/Wk08+qZCQEO3Zs0e7d+/WsmXL5Ovrq9tvv11TpkzRxYsXVb16dS1fvlwHDx7Mt79XXnnFfi+hZ599Vu7u7nr33XeVk5OjKVOmXLWWrl27qk2bNho1apQOHTqkm266SQsXLrTPg/m9GTNmqG3btmrcuLH69eunWrVq6dixY9q4caN++eUX/fDDD1d9rz8aP368li5dqnbt2unZZ5/VpUuXNH36dDVs2FA7d+6097vrrrvk4eGhrl276umnn1ZmZqbef/99BQUFOQSvwMBAPf/880pISNA999yjLl26aMeOHfruu+/yHZMRI0ZoyZIluueee9S7d2+1aNFCWVlZ+vHHH/Wf//xHhw4d+tPjCJR6Lr0WDMA1uXLp+ZXFw8PDBAcHmzvvvNO89dZbJiMjI99r/njp+cqVK819991nQkNDjYeHhwkNDTWPPvpovkuOFy9ebG666Sbj7u7ucMl1+/btTcOGDQusLzc314wcOdIEBAQYb29vExsbaw4cOPCnl55fsX79enPnnXcaNzc3I8k0adLETJ8+3d7+yy+/mPvvv9/4+fmZypUrmwcffNAcPXq0wEvet2/fbmJjY02lSpWMt7e36dixo9mwYcM1fMrGnDp1yjz++OPG19fXVK5c2Tz++ONmx44dBV6On5ycbJ544gkTHBxsypcvb6pXr27uuece85///OdP36eguteuXWtatGhhPDw8TK1atcysWbPyHUNjjFmyZIlp0qSJ8fLyMjVr1jSvvvqq+eijj4wkc/DgQXu/3NxcM378eBMSEmIqVKhgOnToYHbt2pXvmBhjzLlz50x8fLypU6eO8fDwMAEBAea2224zr7/+urlw4cI1fXZAaWYz5g/nhgHARfLy8tSoUSN98cUXioqKcnU5ACyCOTsASg03NzfFxsbqk08+cXUpACyEOTsASoV3331X5cqV09KlSxUXF+fqcgBYCGd2AJQKGzZs0MCBA1WuXDkNGDDA1eUAsBDm7AAAAEvjzA4AALA0wg4AALA0Jijr8uWuR48elY+PT7Fvlw8AAG4sY4zOnTun0NBQubkVfv6GsCPp6NGjV31mDgAAKL2OHDmiGjVqFNpO2JHk4+Mj6fKHdbVn5wAAgNIjIyNDYWFh9r/jhSHsSPavrnx9fQk7AACUMX82BYUJygAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNLcXfnm69at02uvvaZt27YpNTVVX375pbp162ZvL+yR7VOmTNGIESMkSTVr1tThw4cd2hMSEjRq1KgSqxulT0qKdPKkq6somoAAKTzc1VUAgPW5NOxkZWWpadOm6tOnjx544IF87ampqQ7r3333nZ566il1797dYfuECRPUr18/+7qPj0/JFIxSKSVFiooyys4uOByXVt7eRklJNgIPAJQwl4aduLg4xcXFFdoeHBzssL548WJ17NhRtWrVctju4+OTry/+Ok6elLKzbZr70s+Kijjv6nKuSdJhL/WcVEsnT3J2BwBKmkvDTlEcO3ZM33zzjf71r3/la5s8ebImTpyo8PBwPfbYYxo2bJjc3cvM0OAkURHn1bxetqvLAACUMmUmEfzrX/+Sj49Pvq+7Bg8erObNm8vf318bNmxQfHy8UlNTNXXq1EL3lZOTo5ycHPt6RkZGidUNAABcq8yEnY8++kg9evSQl5eXw/bhw4fbf27SpIk8PDz09NNPKyEhQZ6engXuKyEhQePHjy/RegEAQOlQJi49/+9//6u9e/eqb9++f9o3Ojpaly5d0qFDhwrtEx8fr7Nnz9qXI0eOOLFaAABQmpSJMzsffvihWrRooaZNm/5p38TERLm5uSkoKKjQPp6enoWe9QEAANbi0rCTmZmpAwcO2NcPHjyoxMRE+fv7K/z/v0QlIyNDn3/+ud544418r9+4caM2b96sjh07ysfHRxs3btSwYcPUs2dPValS5YaNAwAAlF4uDTtbt25Vx44d7etX5t/06tVLc+bMkSQtWLBAxhg9+uij+V7v6empBQsWaNy4ccrJyVFkZKSGDRvmMI8HAAD8tbk07HTo0EHGmKv26d+/v/r3719gW/PmzbVp06aSKA0AAFhEmZigDAAAUFyEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGll4qaCgFUlJbm6gqILCOBJ7QDKFsIO4AKpp9zl5mbUs6fN1aUUmbe3UVKSjcADoMwg7AAucCbTXXl5Ns196WdFRZx3dTnXLOmwl3pOqqWTJzm7A6DsIOwALhQVcV7N62W7ugwAsDQmKAMAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEtzadhZt26dunbtqtDQUNlsNi1atMihvXfv3rLZbA5L586dHfqkp6erR48e8vX1lZ+fn5566illZmbewFEAAIDSzKVhJysrS02bNtWMGTMK7dO5c2elpqbal08++cShvUePHtq9e7dWrFihr7/+WuvWrVP//v1LunQAAFBGuLvyzePi4hQXF3fVPp6engoODi6wLSkpSUuXLtWWLVvUsmVLSdL06dPVpUsXvf766woNDXV6zQAAoGwp9XN21qxZo6CgINWvX1/PPPOMTp06ZW/buHGj/Pz87EFHkmJiYuTm5qbNmzcXus+cnBxlZGQ4LAAAwJpKddjp3LmzPv74Y61cuVKvvvqq1q5dq7i4OOXm5kqS0tLSFBQU5PAad3d3+fv7Ky0trdD9JiQkqHLlyvYlLCysRMcBAABcx6VfY/2ZRx55xP5z48aN1aRJE9WuXVtr1qxRp06dir3f+Ph4DR8+3L6ekZFB4AEAwKJK9ZmdP6pVq5YCAgJ04MABSVJwcLCOHz/u0OfSpUtKT08vdJ6PdHkekK+vr8MCAACsqUyFnV9++UWnTp1SSEiIJKl169Y6c+aMtm3bZu+zatUq5eXlKTo62lVlAgCAUsSlX2NlZmbaz9JI0sGDB5WYmCh/f3/5+/tr/Pjx6t69u4KDg5WcnKwXXnhBderUUWxsrCQpKipKnTt3Vr9+/TRr1ixdvHhRgwYN0iOPPMKVWAAAQJKLz+xs3bpVzZo1U7NmzSRJw4cPV7NmzTRmzBiVK1dOO3fu1L333qt69erpqaeeUosWLfTf//5Xnp6e9n3MmzdPDRo0UKdOndSlSxe1bdtW7733nquGBAAAShmXntnp0KGDjDGFti9btuxP9+Hv76/58+c7sywAAGAhZWrODgAAQFERdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKW5NOysW7dOXbt2VWhoqGw2mxYtWmRvu3jxokaOHKnGjRurYsWKCg0N1RNPPKGjR4867KNmzZqy2WwOy+TJk2/wSAAAQGnl0rCTlZWlpk2basaMGfnasrOztX37do0ePVrbt2/XwoULtXfvXt177735+k6YMEGpqan25bnnnrsR5QMAgDLA3ZVvHhcXp7i4uALbKleurBUrVjhse+edd9SqVSulpKQoPDzcvt3Hx0fBwcElWisAACibytScnbNnz8pms8nPz89h++TJk1W1alU1a9ZMr732mi5dunTV/eTk5CgjI8NhAQAA1uTSMztFcf78eY0cOVKPPvqofH197dsHDx6s5s2by9/fXxs2bFB8fLxSU1M1derUQveVkJCg8ePH34iyAQCAi5WJsHPx4kU99NBDMsZo5syZDm3Dhw+3/9ykSRN5eHjo6aefVkJCgjw9PQvcX3x8vMPrMjIyFBYWVjLFAwAAlyr1YedK0Dl8+LBWrVrlcFanINHR0bp06ZIOHTqk+vXrF9jH09Oz0CAEAACspVSHnStBZ//+/Vq9erWqVq36p69JTEyUm5ubgoKCbkCFAACgtHNp2MnMzNSBAwfs6wcPHlRiYqL8/f0VEhKiv/3tb9q+fbu+/vpr5ebmKi0tTZLk7+8vDw8Pbdy4UZs3b1bHjh3l4+OjjRs3atiwYerZs6eqVKniqmEBAIBSxKVhZ+vWrerYsaN9/co8ml69emncuHFasmSJJOnmm292eN3q1avVoUMHeXp6asGCBRo3bpxycnIUGRmpYcOGOczHAQAAf20uDTsdOnSQMabQ9qu1SVLz5s21adMmZ5cFAAAspEzdZwcAAKCoCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSSvUdlAGUTklJrq6gaAICpPBwV1cBwFUIOwCuWeopd7m5GfXsaXN1KUXi7W2UlGQj8AB/UYQdANfsTKa78vJsmvvSz4qKOO/qcq5J0mEv9ZxUSydPcnYH+Ksi7AAosqiI82peL9vVZQDANWGCMgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsLRih50zZ87ogw8+UHx8vNLT0yVJ27dv16+//uq04gAAAK5XsR4XsXPnTsXExKhy5co6dOiQ+vXrJ39/fy1cuFApKSn6+OOPnV0nAABAsRTrzM7w4cPVu3dv7d+/X15eXvbtXbp00bp165xWHAAAwPUqVtjZsmWLnn766Xzbq1evrrS0tOsuCgAAwFmKFXY8PT2VkZGRb/u+ffsUGBh43UUBAAA4S7HCzr333qsJEybo4sWLkiSbzaaUlBSNHDlS3bt3d2qBAAAA16NYYeeNN95QZmamgoKC9Ntvv6l9+/aqU6eOfHx8NGnSJGfXCAAAUGzFuhqrcuXKWrFihdavX6+dO3cqMzNTzZs3V0xMjLPrAwAAuC7FCjtXtG3bVm3btnVWLQAAAE53zWHn7bffvuadDh48uFjFAAAAONs1h50333zTYf3EiRPKzs6Wn5+fpMt3VPb29lZQUBBhBwAAlBrXPEH54MGD9mXSpEm6+eablZSUpPT0dKWnpyspKUnNmzfXxIkTS7JeAACAIinW1VijR4/W9OnTVb9+ffu2+vXr680339TLL7/stOIAAACuV7HCTmpqqi5dupRve25uro4dO3bdRQEAADhLscJOp06d9PTTT2v79u32bdu2bdMzzzzD5ecAAKBUKVbY+eijjxQcHKyWLVvK09NTnp6eatWqlapVq6YPPvjA2TUCAAAUW7HusxMYGKhvv/1W+/bt0549eyRJDRo0UL169ZxaHAAAwPW6rpsK1qtXj4ADAABKtWKHnV9++UVLlixRSkqKLly44NA2derU6y4MAADAGYoVdlauXKl7771XtWrV0p49e9SoUSMdOnRIxhg1b97c2TUCAAAUW7EmKMfHx+v555/Xjz/+KC8vL33xxRc6cuSI2rdvrwcffPCa97Nu3Tp17dpVoaGhstlsWrRokUO7MUZjxoxRSEiIKlSooJiYGO3fv9+hT3p6unr06CFfX1/5+fnpqaeeUmZmZnGGBQAALKhYYScpKUlPPPGEJMnd3V2//fabKlWqpAkTJujVV1+95v1kZWWpadOmmjFjRoHtU6ZM0dtvv61Zs2Zp8+bNqlixomJjY3X+/Hl7nx49emj37t1asWKFvv76a61bt079+/cvzrAAAIAFFetrrIoVK9rn6YSEhCg5OVkNGzaUJJ08efKa9xMXF6e4uLgC24wxmjZtml5++WXdd999kqSPP/5Y1apV06JFi/TII48oKSlJS5cu1ZYtW9SyZUtJ0vTp09WlSxe9/vrrCg0NLc7wAACAhRTrzM6tt96q9evXS5K6dOmiv//975o0aZL69OmjW2+91SmFHTx4UGlpaQ43KaxcubKio6O1ceNGSdLGjRvl5+dnDzqSFBMTIzc3N23evLnQfefk5CgjI8NhAQAA1lSsMztTp061z4sZP368MjMz9emnn6pu3bpOuxIrLS1NklStWjWH7dWqVbO3paWlKSgoyKHd3d1d/v7+9j4FSUhI0Pjx451SJwAAKN2KFXZq1apl/7lixYqaNWuW0wq6EeLj4zV8+HD7ekZGhsLCwlxYEQAAKCnF+hrrRggODpakfA8WPXbsmL0tODhYx48fd2i/dOmS0tPT7X0K4unpKV9fX4cFAABY0zWf2alSpYpsNts19U1PTy92QVdERkYqODhYK1eu1M033yzp8hmYzZs365lnnpEktW7dWmfOnNG2bdvUokULSdKqVauUl5en6Ojo664BAACUfdccdqZNm2b/+dSpU3rllVcUGxur1q1bS7o8WXjZsmUaPXr0Nb95ZmamDhw4YF8/ePCgEhMT5e/vr/DwcA0dOlSvvPKK6tatq8jISI0ePVqhoaHq1q2bJCkqKkqdO3dWv379NGvWLF28eFGDBg3SI488wpVYAABAUhHCTq9evew/d+/eXRMmTNCgQYPs2wYPHqx33nlH33//vYYNG3ZN+9y6das6duxoX78yj6ZXr16aM2eOXnjhBWVlZal///46c+aM2rZtq6VLl8rLy8v+mnnz5mnQoEHq1KmT3Nzc1L17d7399tvXOiwAAGBxxZqgvGzZsgJvHti5c2eNGjXqmvfToUMHGWMKbbfZbJowYYImTJhQaB9/f3/Nnz//mt8TAAD8tRRrgnLVqlW1ePHifNsXL16sqlWrXndRAAAAzlKsMzvjx49X3759tWbNGvtE4M2bN2vp0qV6//33nVogAADA9ShW2Ondu7eioqL09ttva+HChZIuTxZev349V0EBAIBSpVhhR5Kio6M1b948Z9YCAADgdNccdjIyMuw33/uzZ0lxkz4AAFBaFOmmgqmpqQoKCpKfn1+BNxg0xshmsyk3N9epRQIAABTXNYedVatWyd/fX5K0evXqEisIAADAma457LRv397+c2RkpMLCwvKd3THG6MiRI86rDgAA4DoV6z47kZGROnHiRL7t6enpioyMvO6iAAAAnKVYYefK3Jw/yszMdHiUAwAAgKsV6dLzK8+ustlsGj16tLy9ve1tubm52rx5s/0J5QAAAKVBkcLOjh07JF0+s/Pjjz/Kw8PD3ubh4aGmTZvq+eefd26FAAAA16FIYefKVVhPPvmk3nrrLe6nAwAASr1i3UF59uzZzq4DAACgRBQr7GRlZWny5MlauXKljh8/rry8PIf2n3/+2SnFAQAAXK9ihZ2+fftq7dq1evzxxxUSElLglVkAAAClQbHCznfffadvvvlGbdq0cXY9AAAATlWs++xUqVLF/ugIAACA0qxYYWfixIkaM2aMsrOznV0PAACAUxXra6w33nhDycnJqlatmmrWrKny5cs7tG/fvt0pxQEAAFyvYoWdbt26ObkMAACAklGssDN27Fhn1wEAAFAiijVnBwAAoKwo1pmd3Nxcvfnmm/rss8+UkpKiCxcuOLSnp6c7pTgAAIDrVawzO+PHj9fUqVP18MMP6+zZsxo+fLgeeOABubm5ady4cU4uEQAAoPiKFXbmzZun999/X3//+9/l7u6uRx99VB988IHGjBmjTZs2ObtGAACAYitW2ElLS1Pjxo0lSZUqVdLZs2clSffcc4+++eYb51UHAABwnYoVdmrUqKHU1FRJUu3atbV8+XJJ0pYtW+Tp6em86gAAAK5TscLO/fffr5UrV0qSnnvuOY0ePVp169bVE088oT59+ji1QAAAgOtRrKuxJk+ebP/54YcfVnh4uDZu3Ki6deuqa9euTisOAADgehUr7PxR69at1bp1a2fsCgAAwKmKFXY+/vjjq7Y/8cQTxSoGAADA2YoVdoYMGeKwfvHiRWVnZ8vDw0Pe3t6EHQAAUGoUa4Ly6dOnHZbMzEzt3btXbdu21SeffOLsGgEAAIrNac/Gqlu3riZPnpzvrA8AAIArOfVBoO7u7jp69KgzdwkAAHBdijVnZ8mSJQ7rxhilpqbqnXfeUZs2bZxSGAAAgDMUK+x069bNYd1msykwMFB33HGH3njjDWfUBQAA4BTF+horLy9PeXl5OnbsmE6fPq3c3FylpaVp/vz5CgkJcWqBNWvWlM1my7cMHDhQktShQ4d8bQMGDHBqDQAAoOwqctg5c+aMBg4cqICAAAUHB8vf31/BwcGKj49Xdna20wvcsmWLUlNT7cuKFSskSQ8++KC9T79+/Rz6TJkyxel1AACAsqlIX2Olp6erdevW+vXXX9WjRw9FRUVJkn766SdNnz5dK1as0Pr167Vz505t2rRJgwcPvu4CAwMDHdYnT56s2rVrq3379vZt3t7eCg4Ovu73AgAA1lOksDNhwgR5eHgoOTlZ1apVy9d211136fHHH9fy5cv19ttvO7VQSbpw4YLmzp2r4cOHy2az2bfPmzdPc+fOVXBwsLp27arRo0fL29vb6e8PAADKniKFnUWLFundd9/NF3QkKTg4WFOmTFGXLl00duxY9erVy2lF/v79z5w5o969e9u3PfbYY4qIiFBoaKh27typkSNHau/evVq4cGGh+8nJyVFOTo59PSMjw+m1AgCA0qFIYSc1NVUNGzYstL1Ro0Zyc3PT2LFjr7uwgnz44YeKi4tTaGiofVv//v3tPzdu3FghISHq1KmTkpOTVbt27QL3k5CQoPHjx5dIjQAAoHQp0gTlgIAAHTp0qND2gwcPKigo6HprKtDhw4f1/fffq2/fvlftFx0dLUk6cOBAoX3i4+N19uxZ+3LkyBGn1goAAEqPIoWd2NhYvfTSS7pw4UK+tpycHI0ePVqdO3d2WnG/N3v2bAUFBenuu+++ar/ExERJuuol8J6envL19XVYAACANRV5gnLLli1Vt25dDRw4UA0aNJAxRklJSfrnP/+pnJwcffzxx04vMi8vT7Nnz1avXr3k7v7/Sk5OTtb8+fPVpUsXVa1aVTt37tSwYcN0++23q0mTJk6vAwAAlD1FCjs1atTQxo0b9eyzzyo+Pl7GGEmX76B855136p133lF4eLjTi/z++++VkpKiPn36OGz38PDQ999/r2nTpikrK0thYWHq3r27Xn75ZafXAAAAyqYiPy4iMjJS3333nU6fPq39+/dLkurUqSN/f3+nF3fFXXfdZQ9WvxcWFqa1a9eW2PsCAICyr1jPxpKkKlWqqFWrVs6sBQAAwOmK9WwsAACAsoKwAwAALK3YX2MBQFmSlOTqCoomIEAqges9gL8kwg4AS0s95S43N6OePW1/3rkU8fY2SkqyEXgAJyDsALC0M5nuysuzae5LPysq4ryry7kmSYe91HNSLZ08ydkdwBkIOwD+EqIizqt5vWxXlwHABZigDAAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALM3d1QVYXUqKdPKkq6somoAAKTzc1VUAAOAchJ0SlJIiRUUZZWfbXF1KkXh7GyUl2Qg8AABLIOyUoJMnpexsm+a+9LOiIs67upxrknTYSz0n1dLJk5zdAQBYA2HnBoiKOK/m9bJdXQYAAH9JTFAGAACWVqrDzrhx42Sz2RyWBg0a2NvPnz+vgQMHqmrVqqpUqZK6d++uY8eOubBiAABQ2pTqsCNJDRs2VGpqqn1Zv369vW3YsGH66quv9Pnnn2vt2rU6evSoHnjgARdWCwAASptSP2fH3d1dwcHB+bafPXtWH374oebPn6877rhDkjR79mxFRUVp06ZNuvXWW290qQAAoBQq9Wd29u/fr9DQUNWqVUs9evRQSkqKJGnbtm26ePGiYmJi7H0bNGig8PBwbdy48ar7zMnJUUZGhsMCAACsqVSHnejoaM2ZM0dLly7VzJkzdfDgQbVr107nzp1TWlqaPDw85Ofn5/CaatWqKS0t7ar7TUhIUOXKle1LWFhYCY4CAAC4Uqn+GisuLs7+c5MmTRQdHa2IiAh99tlnqlChQrH3Gx8fr+HDh9vXMzIyCDwAAFhUqT6z80d+fn6qV6+eDhw4oODgYF24cEFnzpxx6HPs2LEC5/j8nqenp3x9fR0WAABgTWUq7GRmZio5OVkhISFq0aKFypcvr5UrV9rb9+7dq5SUFLVu3dqFVQIAgNKkVH+N9fzzz6tr166KiIjQ0aNHNXbsWJUrV06PPvqoKleurKeeekrDhw+Xv7+/fH199dxzz6l169ZciQUAAOxKddj55Zdf9Oijj+rUqVMKDAxU27ZttWnTJgUGBkqS3nzzTbm5ual79+7KyclRbGys/vnPf7q4agAAUJqU6rCzYMGCq7Z7eXlpxowZmjFjxg2qCAAAlDWlOuzAdZKSXF3BtStLtQIAbjzCDhyknnKXm5tRz542V5cCAIBTEHbg4Eymu/LybJr70s+Kijjv6nKuybebfDX6oxquLgNwurJ21jIgQAoPd3UVQH6EHRQoKuK8mtfLdnUZ1yTpsJerSwCcqqyeYfX2NkpKshF4UOoQdgCglCmLZ1iTDnup56RaOnmSszsofQg7AFBKlaUzrEBpVqbuoAwAAFBUhB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBppTrsJCQk6JZbbpGPj4+CgoLUrVs37d2716FPhw4dZLPZHJYBAwa4qGIAAFDalOqws3btWg0cOFCbNm3SihUrdPHiRd11113Kyspy6NevXz+lpqbalylTprioYgAAUNq4u7qAq1m6dKnD+pw5cxQUFKRt27bp9ttvt2/39vZWcHDwjS4PAACUAaX6zM4fnT17VpLk7+/vsH3evHkKCAhQo0aNFB8fr+zs7KvuJycnRxkZGQ4LAACwplJ9Zuf38vLyNHToULVp00aNGjWyb3/ssccUERGh0NBQ7dy5UyNHjtTevXu1cOHCQveVkJCg8ePH34iyAQCAi5WZsDNw4EDt2rVL69evd9jev39/+8+NGzdWSEiIOnXqpOTkZNWuXbvAfcXHx2v48OH29YyMDIWFhZVM4QDwF5KU5OoKiiYgQAoPd3UVKGllIuwMGjRIX3/9tdatW6caNWpctW90dLQk6cCBA4WGHU9PT3l6ejq9TgD4q0o95S43N6OePW2uLqVIvL2NkpJsBB6LK9Vhxxij5557Tl9++aXWrFmjyMjIP31NYmKiJCkkJKSEqwMAXHEm0115eTbNfelnRUWcd3U51yTpsJd6Tqqlkyc5u2N1pTrsDBw4UPPnz9fixYvl4+OjtLQ0SVLlypVVoUIFJScna/78+erSpYuqVq2qnTt3atiwYbr99tvVpEkTF1cPAH89URHn1bze1S8SAW60Uh12Zs6cKenyjQN/b/bs2erdu7c8PDz0/fffa9q0acrKylJYWJi6d++ul19+2QXVAgCA0qhUhx1jzFXbw8LCtHbt2htUDQAAKIvK1H12AAAAioqwAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALM3d1QUAAOBKSUmurqBoAgKk8HBXV1G2EHYAAH9Jqafc5eZm1LOnzdWlFIm3t1FSko3AUwSEHQDAX9KZTHfl5dk096WfFRVx3tXlXJOkw17qOamWTp7k7E5REHYAAH9pURHn1bxetqvLQAligjIAALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0yzwuYsaMGXrttdeUlpampk2bavr06WrVqpWrywIAwOl4UnvRWCLsfPrppxo+fLhmzZql6OhoTZs2TbGxsdq7d6+CgoJcXR4AAE7Bk9qLxxJhZ+rUqerXr5+efPJJSdKsWbP0zTff6KOPPtKoUaNcXB0AAM7Bk9qLp8yHnQsXLmjbtm2Kj4+3b3Nzc1NMTIw2btzowsoAACgZPKm9aMp82Dl58qRyc3NVrVo1h+3VqlXTnj17CnxNTk6OcnJy7Otnz56VJGVkZDi1tszMy/+7bd9FZf6W59R9l5SkwzmSMqi5hJXFmqWyWTc13xjUfGOUxZr3HrkoKUOZmZKT/8za/24bY67e0ZRxv/76q5FkNmzY4LB9xIgRplWrVgW+ZuzYsUYSCwsLCwsLiwWWI0eOXDUrlPkzOwEBASpXrpyOHTvmsP3YsWMKDg4u8DXx8fEaPny4fT0vL0/p6emqWrWqbLbrn/SVkZGhsLAwHTlyRL6+vte9v9LG6uOTGKMVWH18EmO0AquPTyrZMRpjdO7cOYWGhl61X5kPOx4eHmrRooVWrlypbt26SbocXlauXKlBgwYV+BpPT095eno6bPPz83N6bb6+vpb9xytZf3wSY7QCq49PYoxWYPXxSSU3xsqVK/9pnzIfdiRp+PDh6tWrl1q2bKlWrVpp2rRpysrKsl+dBQAA/rosEXYefvhhnThxQmPGjFFaWppuvvlmLV26NN+kZQAA8NdjibAjSYMGDSr0a6sbzdPTU2PHjs33VZlVWH18EmO0AquPT2KMVmD18UmlY4w2Y/7sei0AAICyiweBAgAASyPsAAAASyPsAAAASyPsAAAASyPsONmMGTNUs2ZNeXl5KTo6Wv/3f//n6pKKbd26deratatCQ0Nls9m0aNEih3ZjjMaMGaOQkBBVqFBBMTEx2r9/v2uKLYaEhATdcsst8vHxUVBQkLp166a9e/c69Dl//rwGDhyoqlWrqlKlSurevXu+u3WXZjNnzlSTJk3sN/Nq3bq1vvvuO3t7WR/fH02ePFk2m01Dhw61byvrYxw3bpxsNpvD0qBBA3t7WR/fFb/++qt69uypqlWrqkKFCmrcuLG2bt1qby/rv29q1qyZ7zjabDYNHDhQUtk/jrm5uRo9erQiIyNVoUIF1a5dWxMnTnR4ZpVLj+H1P50KVyxYsMB4eHiYjz76yOzevdv069fP+Pn5mWPHjrm6tGL59ttvzUsvvWQWLlxoJJkvv/zSoX3y5MmmcuXKZtGiReaHH34w9957r4mMjDS//fabawouotjYWDN79myza9cuk5iYaLp06WLCw8NNZmamvc+AAQNMWFiYWblypdm6dau59dZbzW233ebCqotmyZIl5ptvvjH79u0ze/fuNS+++KIpX7682bVrlzGm7I/v9/7v//7P1KxZ0zRp0sQMGTLEvr2sj3Hs2LGmYcOGJjU11b6cOHHC3l7Wx2eMMenp6SYiIsL07t3bbN682fz8889m2bJl5sCBA/Y+Zf33zfHjxx2O4YoVK4wks3r1amNM2T+OkyZNMlWrVjVff/21OXjwoPn8889NpUqVzFtvvWXv48pjSNhxolatWpmBAwfa13Nzc01oaKhJSEhwYVXO8cewk5eXZ4KDg81rr71m33bmzBnj6elpPvnkExdUeP2OHz9uJJm1a9caYy6Pp3z58ubzzz+390lKSjKSzMaNG11V5nWrUqWK+eCDDyw1vnPnzpm6deuaFStWmPbt29vDjhXGOHbsWNO0adMC26wwPmOMGTlypGnbtm2h7Vb8fTNkyBBTu3Ztk5eXZ4njePfdd5s+ffo4bHvggQdMjx49jDGuP4Z8jeUkFy5c0LZt2xQTE2Pf5ubmppiYGG3cuNGFlZWMgwcPKi0tzWG8lStXVnR0dJkd79mzZyVJ/v7+kqRt27bp4sWLDmNs0KCBwsPDy+QYc3NztWDBAmVlZal169aWGt/AgQN19913O4xFss4x3L9/v0JDQ1WrVi316NFDKSkpkqwzviVLlqhly5Z68MEHFRQUpGbNmun999+3t1vt982FCxc0d+5c9enTRzabzRLH8bbbbtPKlSu1b98+SdIPP/yg9evXKy4uTpLrj6Fl7qDsaidPnlRubm6+R1RUq1ZNe/bscVFVJSctLU2SChzvlbayJC8vT0OHDlWbNm3UqFEjSZfH6OHhke8hsWVtjD/++KNat26t8+fPq1KlSvryyy910003KTEx0RLjW7BggbZv364tW7bka7PCMYyOjtacOXNUv359paamavz48WrXrp127dplifFJ0s8//6yZM2dq+PDhevHFF7VlyxYNHjxYHh4e6tWrl+V+3yxatEhnzpxR7969JVnj3+moUaOUkZGhBg0aqFy5csrNzdWkSZPUo0cPSa7/m0HYAXT5zMCuXbu0fv16V5fidPXr11diYqLOnj2r//znP+rVq5fWrl3r6rKc4siRIxoyZIhWrFghLy8vV5dTIq78P2NJatKkiaKjoxUREaHPPvtMFSpUcGFlzpOXl6eWLVvqH//4hySpWbNm2rVrl2bNmqVevXq5uDrn+/DDDxUXF6fQ0FBXl+I0n332mebNm6f58+erYcOGSkxM1NChQxUaGloqjiFfYzlJQECAypUrl2/2/LFjxxQcHOyiqkrOlTFZYbyDBg3S119/rdWrV6tGjRr27cHBwbpw4YLOnDnj0L+sjdHDw0N16tRRixYtlJCQoKZNm+qtt96yxPi2bdum48ePq3nz5nJ3d5e7u7vWrl2rt99+W+7u7qpWrVqZH+Mf+fn5qV69ejpw4IAljqEkhYSE6KabbnLYFhUVZf+6zkq/bw4fPqzvv/9effv2tW+zwnEcMWKERo0apUceeUSNGzfW448/rmHDhikhIUGS648hYcdJPDw81KJFC61cudK+LS8vTytXrlTr1q1dWFnJiIyMVHBwsMN4MzIytHnz5jIzXmOMBg0apC+//FKrVq1SZGSkQ3uLFi1Uvnx5hzHu3btXKSkpZWaMBcnLy1NOTo4lxtepUyf9+OOPSkxMtC8tW7ZUjx497D+X9TH+UWZmppKTkxUSEmKJYyhJbdq0yXfbh3379ikiIkKSNX7fXDF79mwFBQXp7rvvtm+zwnHMzs6Wm5tjpChXrpzy8vIklYJjWOJToP9CFixYYDw9Pc2cOXPMTz/9ZPr372/8/PxMWlqaq0srlnPnzpkdO3aYHTt2GElm6tSpZseOHebw4cPGmMuXEfr5+ZnFixebnTt3mvvuu69MXQr6zDPPmMqVK5s1a9Y4XBKanZ1t7zNgwAATHh5uVq1aZbZu3Wpat25tWrdu7cKqi2bUqFFm7dq15uDBg2bnzp1m1KhRxmazmeXLlxtjyv74CvL7q7GMKftj/Pvf/27WrFljDh48aP73v/+ZmJgYExAQYI4fP26MKfvjM+bybQPc3d3NpEmTzP79+828efOMt7e3mTt3rr1PWf99Y8zlK3TDw8PNyJEj87WV9ePYq1cvU716dful5wsXLjQBAQHmhRdesPdx5TEk7DjZ9OnTTXh4uPHw8DCtWrUymzZtcnVJxbZ69WojKd/Sq1cvY8zlSwlHjx5tqlWrZjw9PU2nTp3M3r17XVt0ERQ0Nklm9uzZ9j6//fabefbZZ02VKlWMt7e3uf/++01qaqrrii6iPn36mIiICOPh4WECAwNNp06d7EHHmLI/voL8MeyU9TE+/PDDJiQkxHh4eJjq1aubhx9+2OH+M2V9fFd89dVXplGjRsbT09M0aNDAvPfeew7tZf33jTHGLFu2zEgqsO6yfhwzMjLMkCFDTHh4uPHy8jK1atUyL730ksnJybH3ceUxtBnzu9sbAgAAWAxzdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgCUWR06dNDQoUOvax9r1qyRzWbL91wiANZB2AFQavXu3VvdunVzdRkAyjjCDgAAsDTCDoAyISsrS0888YQqVaqkkJAQvfHGG/n6/Pvf/1bLli3l4+Oj4OBgPfbYYzp+/LhDn2+//Vb16tVThQoV1LFjRx06dCjfftavX6927dqpQoUKCgsL0+DBg5WVlVVSQwNQwgg7AMqEESNGaO3atVq8eLGWL1+uNWvWaPv27Q59Ll68qIkTJ+qHH37QokWLdOjQIfXu3dvefuTIET3wwAPq2rWrEhMT1bdvX40aNcphH8nJyercubO6d++unTt36tNPP9X69es1aNCgGzFMACWAB4ECKLV69+6tM2fOaO7cuapatarmzp2rBx98UJKUnp6uGjVqqH///po2bVqBr9+6datuueUWnTt3TpUqVdKLL76oxYsXa/fu3fY+o0aN0quvvqrTp0/Lz89Pffv2Vbly5fTuu+/a+6xfv17t27dXVlaWvLy8SnTMAJyPMzsASr3k5GRduHBB0dHR9m3+/v6qX7++Q79t27apa9euCg8Pl4+Pj9q3by9JSklJkSQlJSU57EOSWrdu7bD+ww8/aM6cOapUqZJ9iY2NVV5eng4ePFgSwwNQwtxdXQAAOENWVpZiY2MVGxurefPmKTAwUCkpKYqNjdWFCxeueT+ZmZl6+umnNXjw4Hxt4eHhziwZwA1C2AFQ6tWuXVvly5fX5s2b7YHj9OnT2rdvn/3szZ49e3Tq1ClNnjxZYWFhki5/jfV7UVFRWrJkicO2TZs2Oaw3b95cP/30k+rUqVNSwwFwg/E1FoBSr1KlSnrqqac0YsQIrVq1Srt27VLv3r3l5vb/foWFh4fLw8ND06dP188//6wlS5Zo4sSJDvsZMGCA9u/frxEjRmjv3r2aP3++5syZ49Bn5MiR2rBhgwYNGqTExETt379fixcvZoIyUIYRdgCUCa+99pratWunrl27KiYmRm3btlWLFi3s7YGBgZozZ44+//xz3XTTTZo8ebJef/11h32Eh4friy++0KJFi9S0aVPNmjVL//jHPxz6NGnSRGvXrtW+ffvUrl07NWvWTGPGjFFoaOgNGScA5+NqLAAAYGmc2QEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJb2/wHP/+nJedtqVQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Distribuição de idades\n", + "\n", + "# Plotagem\n", + "df[\"Idade\"].plot.hist(bins=10, edgecolor=\"blue\", color=\"pink\")\n", + "\n", + "plt.xlabel(\"Idade\")\n", + "plt.ylabel(\"Quantidade\")\n", + "plt.title(\"Distruição de idade\")\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Teste Hipóteses " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Teste de Classe e Sobrevivência\n", + "\n", + "Hipótese Nula H0: Os sobreviventes não dependem da idade dos passageiros.

\n", + "Hipótese Alternativa h1: Sobreviventes dependem da idade dos passageiros." + ] + }, + { + "cell_type": "code", + "execution_count": 263, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: seaborn in c:\\users\\sukzw\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (0.13.2)\n", + "Requirement already satisfied: numpy!=1.24.0,>=1.20 in c:\\users\\sukzw\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from seaborn) (2.0.1)\n", + "Requirement already satisfied: pandas>=1.2 in c:\\users\\sukzw\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from seaborn) (2.2.2)\n", + "Requirement already satisfied: matplotlib!=3.6.1,>=3.4 in c:\\users\\sukzw\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from seaborn) (3.9.2)\n", + "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\sukzw\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.2.1)\n", + "Requirement already satisfied: cycler>=0.10 in c:\\users\\sukzw\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\sukzw\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (4.53.1)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\sukzw\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.4.5)\n", + "Requirement already satisfied: packaging>=20.0 in c:\\users\\sukzw\\appdata\\roaming\\python\\python311\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (23.1)\n", + "Requirement already satisfied: pillow>=8 in c:\\users\\sukzw\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (10.4.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in c:\\users\\sukzw\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (3.1.2)\n", + "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\sukzw\\appdata\\roaming\\python\\python311\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in c:\\users\\sukzw\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from pandas>=1.2->seaborn) (2024.1)\n", + "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\sukzw\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from pandas>=1.2->seaborn) (2024.1)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\sukzw\\appdata\\roaming\\python\\python311\\site-packages (from python-dateutil>=2.7->matplotlib!=3.6.1,>=3.4->seaborn) (1.16.0)\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "cell_type": "code", + "execution_count": 264, + "metadata": {}, + "outputs": [], + "source": [ + "from scipy.stats import ttest_ind\n", + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "execution_count": 267, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Teste T de idade\n", + "Estatísticaa T: -2.06668694625381\n", + "Valor P: 0.03912465401348249\n", + "Rejeitamos a hipótese nula\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHHCAYAAACle7JuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgzUlEQVR4nOzdd1yV5fvA8c9h742Ag6Go4N6Je29z5dbMNK0cqU1bZlY2vqWZNuyXo9TcI3MP3CPF3OAEcSKI7A3P749HTiKgjAOHcb1fr/M6z3nOc+77OnCAi3tqFEVREEIIIYQohQz0HYAQQgghREFJIiOEEEKIUksSGSGEEEKUWpLICCGEEKLUkkRGCCGEEKWWJDJCCCGEKLUkkRFCCCFEqSWJjBBCCCFKLUlkhBBCCFFqSSIjitQnn3yCRqMplrratWtHu3bttI/37duHRqNh7dq1OqsjJCQEjUbDkiVL8v3atWvXYmdnR8uWLbly5Qrjxo1j7ty5OovtaTQaDZ988kmx1PW4wny9clNcn6ni/OwWBY1Gw8SJE/UdRhZP/owKoQuSyIg8W7JkCRqNRnszMzOjYsWKdO3alXnz5hEbG6uTeu7cucMnn3zC6dOndVJeSfH1118zbtw43Nzc8PHxYf369fTt21ffYRWIp6cnvXr10ncYQhTY1q1b9ZLcC90z0ncAovT59NNP8fLyIjU1lXv37rFv3z6mTJnCd999x19//UW9evW013744Ye89957+Sr/zp07zJw5E09PTxo0aJDn1+3cuTNf9RSEh4cHiYmJGBsb5/u1a9asoVKlShgZGREeHo61tTVmZmZFEKUQJVNx/Izm1datW1mwYIEkM2WAJDIi37p3706TJk20j6dPn87evXvp1asXzz//PIGBgZibmwNgZGSEkVHRfswSEhKwsLDAxMSkSOsBtC1RBeHh4aE9dnZ21lVIQuhcfHw8lpaWOi+3OH5GRfkjXUtCJzp06MBHH33EjRs3WLZsmfZ8TuMMdu3aRatWrbCzs8PKyoqaNWvy/vvvA+q4lqZNmwIwevRobTdW5hiLdu3aUadOHQICAmjTpg0WFhba1+bW/56ens7777+Pq6srlpaWPP/889y8eTPLNZ6enrz00kvZXvtkmbmN+QgKCmLQoEE4Oztjbm5OzZo1+eCDD7TPBwcH89prr1GjRg3Mzc1xdHRk4MCBhISEZKvz+vXrDBw4EAcHBywsLGjevDlbtmzJdl1OkpOTmTp1Ks7OzlhbW/P8889z69atHK+9ffs2L7/8Mi4uLpiamlK7dm0WLVqUp3pyEhUVxUsvvYStrS12dnaMGjWKqKiobNedPXuWl156iapVq2JmZoarqysvv/wyDx48yHbtoUOHaNq0KWZmZlSrVo1ffvkl1/qXLVtG48aNMTc3x8HBgSFDhmT7Pucmr/WkpaUxa9YsqlWrhqmpKZ6enrz//vskJydnue7kyZN07doVJycnzM3N8fLy4uWXX35mHHl5XXx8PG+++SZVqlTB1NSUmjVr8r///Q9FUXIsc/ny5dSsWRMzMzMaN27MgQMHsjyf+TN68eJFhg0bhr29Pa1atdI+/6yv68SJE7GysiIhISFb3UOHDsXV1ZX09HQg689TWFgYRkZGzJw5M9vrLl26hEajYf78+dpzUVFRTJkyRfu+vb29+eqrr8jIyNBek/nz+b///Y+FCxdqv09NmzblxIkT2uteeuklFixYAJCluzxTRkYGc+fOpXbt2piZmeHi4sL48eN5+PBhljgL+n0WuiUtMkJnRo4cyfvvv8/OnTt55ZVXcrzmwoUL9OrVi3r16vHpp59iamrK1atXOXz4MAC+vr58+umnfPzxx4wbN47WrVsD0KJFC20ZDx48oHv37gwZMoQRI0bg4uLy1Lg+//xzNBoN7777Lvfv32fu3Ll06tSJ06dPa1uOCuPs2bO0bt0aY2Njxo0bh6enJ9euXWPz5s18/vnnABw/fpyjR48ydOhQKleuTHBwMD///DPt2rXj4sWLWFhYAOov9xYtWpCQkMDkyZNxdHRk6dKlPP/886xdu5Z+/fo9NZaxY8eybNkyhg0bRosWLdi7dy89e/bMdl1YWBjNmzfXDgh1dnZm27ZtjBkzhpiYGKZMmZKvr4GiKPTp04dDhw7x6quv4uvry4YNGxg1alS2a3ft2sX169cZPXo0rq6uXLhwgYULF3LhwgWOHTum/YNy7tw5unTpgrOzM5988glpaWnMmDEjx+/3559/zkcffcSgQYMYO3Ys4eHh/PDDD7Rp04Z///0XOzu7XGPPTz1jx45l6dKlvPDCC7z55pscP36c2bNnExgYyIYNGwC4f/++trz33nsPOzs7QkJCWL9+/VO/hnl5naIoPP/88/j7+zNmzBgaNGjAjh07ePvtt7l9+zZz5szJUub+/ftZtWoVkydPxtTUlB9//JFu3brxzz//UKdOnSzXDhw4kOrVq/PFF19ok6K8fF0HDx7MggUL2LJlCwMHDtSWl5CQwObNm3nppZcwNDTM9n5dXFxo27Ytq1evZsaMGVmeW7VqFYaGhtryEhISaNu2Lbdv32b8+PG4u7tz5MgRpk+fzt27d7MNml+xYgWxsbGMHz8ejUbD119/Tf/+/bl+/TrGxsaMHz+eO3fusGvXLv74449ssY0fP54lS5YwevRoJk+eTHBwMPPnz+fff//l8OHDGBsbF/j7LIqAIkQeLV68WAGUEydO5HqNra2t0rBhQ+3jGTNmKI9/zObMmaMASnh4eK5lnDhxQgGUxYsXZ3uubdu2CqD8/PPPOT7Xtm1b7WN/f38FUCpVqqTExMRoz69evVoBlO+//157zsPDQxk1atQzywwODs4WW5s2bRRra2vlxo0bWV6bkZGhPU5ISMhW9tGjRxVA+f3337XnpkyZogDKwYMHtediY2MVLy8vxdPTU0lPT89WTqbTp08rgPL6669nOT9s2DAFUGbMmKE9N2bMGMXNzU2JiIjIcu2QIUMUW1vbHON9nIeHh9KzZ0/t440bNyqA8vXXX2vPpaWlKa1bt8729cqp7D///FMBlAMHDmjP9e3bVzEzM8vydb148aJiaGiY5TMVEhKiGBoaKp9//nmWMs+dO6cYGRllO/+kvNaT+fUdO3Zslte/9dZbCqDs3btXURRF2bBhwzN/TnKSl9dlfp0/++yzLOdfeOEFRaPRKFevXtWeAxRAOXnypPbcjRs3FDMzM6Vfv37ac5k/o0OHDs1SZl6/rhkZGUqlSpWUAQMGZLku8+fs8e/pkz9Pv/zyiwIo586dy/LaWrVqKR06dNA+njVrlmJpaalcvnw5y3XvvfeeYmhoqISGhiqK8t/Pp6OjoxIZGam9btOmTQqgbN68WXtuwoQJSk5/Ag8ePKgAyvLly7Oc3759e5bzBf0+C92TriWhU1ZWVk+dvZT5n/GmTZuyNAnnh6mpKaNHj87z9S+++CLW1tbaxy+88AJubm5s3bq1QPU/Ljw8nAMHDvDyyy/j7u6e5bnHm6ofb/lJTU3lwYMHeHt7Y2dnx6lTp7TPbd26lWbNmmVp2reysmLcuHGEhIRw8eLFXGPJfD+TJ0/Ocv7J1hVFUVi3bh29e/dGURQiIiK0t65duxIdHZ0lprzYunUrRkZGvPbaa9pzhoaGTJo0Kdu1j38tkpKSiIiIoHnz5gDaetPT09mxYwd9+/bN8nX19fWla9euWcpbv349GRkZDBo0KMt7cXV1pXr16vj7++cad37qyfz6Tps2Lcv5N998E0Db/Zf5Gf/7779JTU3Nte4n5eV1W7duxdDQMNv3+M0330RRFLZt25blvJ+fH40bN9Y+dnd3p0+fPuzYsUPb3ZPp1VdfzfI4r19XjUbDwIED2bp1K3FxcdrXr1q1ikqVKmX5LD+pf//+GBkZsWrVKu258+fPc/HiRQYPHqw9t2bNGlq3bo29vX2WWDp16kR6enq27rLBgwdjb2+vfZzZsnv9+vVcY3m8LltbWzp37pylrsaNG2NlZaV93wX9Pgvdk0RG6FRcXFyWpOFJgwcPpmXLlowdOxYXFxeGDBnC6tWr85XUVKpUKV+DBqtXr57lsUajwdvbO8fxKfmV+YvxyWb6JyUmJvLxxx9r+/ednJxwdnYmKiqK6Oho7XU3btygZs2a2V7v6+urfT43N27cwMDAgGrVqmU5/2R54eHhREVFsXDhQpydnbPcMhPE+/fvP/X95FS3m5sbVlZWT60bIDIykjfeeAMXFxfMzc1xdnbGy8sLQPu1CA8PJzExMdv3Lqcyr1y5gqIoVK9ePdv7CQwMfOp7yU89mV9fb2/vLOddXV2xs7PTfm/atm3LgAEDmDlzJk5OTvTp04fFixdnG0fzpLy87saNG1SsWDHbz1hun4+c3leNGjVISEggPDw8y/nM70Gm/HxdBw8eTGJiIn/99Reg/h7YunUrAwcOfOpaPE5OTnTs2JHVq1drz61atQojIyP69++fJZbt27dni6NTp05A9s/rk/9UZCY1T45xycmVK1eIjo6mQoUK2eqLi4vT1lXQ77PQPRkjI3Tm1q1bREdHZ/tF/zhzc3MOHDiAv78/W7ZsYfv27axatYoOHTqwc+fOHPvScypD13L7ZZuenp6nmJ5l0qRJLF68mClTpuDn54etrS0ajYYhQ4YUuGWqoDLrGzFiRI5jWIAsU+h1bdCgQRw5coS3336bBg0aYGVlRUZGBt26dSvQ1yIjIwONRsO2bdty/F49mVwV1rMWyctchPHYsWNs3ryZHTt28PLLL/Ptt99y7NixXOMp6Ot05cmfq/x8XZs3b46npyerV69m2LBhbN68mcTExCytKrkZMmQIo0eP5vTp0zRo0IDVq1fTsWNHnJycssTSuXNn3nnnnRzLqFGjRpbHuf3MKrkMiH5cRkYGFSpUYPny5Tk+nznjUN/fL/EfSWSEzmQOmnuySf5JBgYGdOzYkY4dO/Ldd9/xxRdf8MEHH+Dv70+nTp10vprqlStXsjxWFIWrV69m+WNtb2+f4wybGzduULVq1VzLznzu/PnzT41h7dq1jBo1im+//VZ7LikpKVudHh4eXLp0Kdvrg4KCtM/nxsPDg4yMDK5du5alNeHJ8jJnNKWnp2v/oy0sDw8P9uzZQ1xcXJZf4E/W/fDhQ/bs2cPMmTP5+OOPteef/B5lzv568nxOZVarVg1FUfDy8sr2B+1Z8lNP5tf3ypUr2hYQUAdOR0VFZfveNG/enObNm/P555+zYsUKhg8fzsqVKxk7duxTY3ra6zw8PNi9ezexsbFZWmVy+3zk9L4uX76MhYXFM5cAyO/XddCgQXz//ffExMSwatUqPD09tV2GT9O3b1/Gjx+v7V66fPky06dPzxZLXFyczj6vkHtCWq1aNXbv3k3Lli3z9E9TQb/PQneka0noxN69e5k1axZeXl4MHz481+siIyOznctc9C6zSTZz/YqcEouC+P3337OM21m7di13796le/fu2nPVqlXj2LFjpKSkaM/9/fffz5y+6+zsTJs2bVi0aBGhoaFZnnv8vz9DQ8Ns/w3+8MMP2cYp9OjRg3/++YejR49qz8XHx7Nw4UI8PT2pVatWrrFkvp958+ZlOf/kjA5DQ0MGDBjAunXrckzAnuxyyIsePXqQlpbGTz/9pD2Xnp7ODz/8kK1uyP6fcU4xdu3alY0bN2b5ugYGBrJjx44s1/bv3x9DQ0NmzpyZrVxFUXKc1l2Qenr06JFjrN999x2AdnbYw4cPs8Xx5Gc8J3l5XY8ePUhPT88yLRlgzpw5aDSaLJ9pgKNHj2YZ73Tz5k02bdpEly5dntnSmN+v6+DBg0lOTmbp0qVs376dQYMGPbX8THZ2dnTt2pXVq1ezcuVKTExMsq14PWjQII4ePZrtewLq74m0tLQ81fW43H7PDBo0iPT0dGbNmpXtNWlpadrrC/p9FronLTIi37Zt20ZQUBBpaWmEhYWxd+9edu3ahYeHB3/99ddTF4z79NNPOXDgAD179sTDw4P79+/z448/UrlyZe2gwGrVqmFnZ8fPP/+MtbU1lpaWPPfcc9n68PPKwcGBVq1aMXr0aMLCwpg7dy7e3t5ZpoiPHTuWtWvX0q1bNwYNGsS1a9dYtmxZtvEmOZk3bx6tWrWiUaNGjBs3Di8vL0JCQtiyZYt2m4VevXrxxx9/YGtrS61atTh69Ci7d+/G0dExS1nvvfcef/75J927d2fy5Mk4ODiwdOlSgoODWbduHQYGuf/v0aBBA4YOHcqPP/5IdHQ0LVq0YM+ePVy9ejXbtV9++SX+/v4899xzvPLKK9SqVYvIyEhOnTrF7t27c0w4n6Z37960bNmS9957j5CQEGrVqsX69euzjP8BsLGxoU2bNnz99dekpqZSqVIldu7cSXBwcLYyZ86cyfbt22ndujWvv/46aWlp/PDDD9SuXZuzZ89qr6tWrRqfffYZ06dPJyQkhL59+2JtbU1wcDAbNmxg3LhxvPXWW7nGntd66tevz6hRo1i4cCFRUVG0bduWf/75h6VLl9K3b1/at28PwNKlS/nxxx/p168f1apVIzY2ll9//RUbGxttMpSTvLyud+/etG/fng8++ICQkBDq16/Pzp072bRpE1OmTMn2ea1Tpw5du3bNMv068z0/S36/ro0aNcLb25sPPviA5OTkPHUrZRo8eDAjRozgxx9/pGvXrtmmy7/99tv89ddf9OrVi5deeonGjRsTHx/PuXPnWLt2LSEhIVm6ovIicxD05MmT6dq1K4aGhgwZMoS2bdsyfvx4Zs+ezenTp+nSpQvGxsZcuXKFNWvW8P333/PCCy8U+PssikAxz5ISpVjm9OvMm4mJieLq6qp07txZ+f7777NMcc705PTrPXv2KH369FEqVqyomJiYKBUrVlSGDh2abVrlpk2blFq1ailGRkZZpu+2bdtWqV27do7x5Tb9+s8//1SmT5+uVKhQQTE3N1d69uyZbaq0oijKt99+q1SqVEkxNTVVWrZsqZw8eTJP068VRVHOnz+v9OvXT7GxsVEApWbNmspHH32kff7hw4fK6NGjFScnJ8XKykrp2rWrEhQUlOO072vXrikvvPCCYmdnp5iZmSnNmjVT/v777xzf85MSExOVyZMnK46OjoqlpaXSu3dv5ebNm9mmXyuKooSFhSkTJkxQqlSpohgbGyuurq5Kx44dlYULFz6znienXyuKojx48EAZOXKkYmNjo9ja2iojR45U/v3332xfr1u3bin9+vVT7OzsFFtbW2XgwIHKnTt3coxx//79SuPGjRUTExOlatWqys8//5ztM5Vp3bp1SqtWrRRLS0vF0tJS8fHxUSZMmKBcunTpme8nr/WkpqYqM2fOVLy8vBRjY2OlSpUqyvTp05WkpCTtNadOnVKGDh2quLu7K6ampkqFChWUXr16ZZkGnZO8vi42NlaZOnWqUrFiRcXY2FipXr268s0332SZ7q8o6vTrCRMmKMuWLVOqV6+umJqaKg0bNlT8/f2zXJf5PnNbEiE/X9cPPvhAARRvb+8cy3ry5ylTTEyMYm5urgDKsmXLcnxtbGysMn36dMXb21sxMTFRnJyclBYtWij/+9//lJSUFEVR/vv5/Oabb7K9/snPV1pamjJp0iTF2dlZ0Wg02b7XCxcuVBo3bqyYm5sr1tbWSt26dZV33nlHuXPnjqIoBf8+C93TKEoeRj8JIfKsU6dOvPPOO3Tp0kXfoQghRJknY2SE0LHevXtn2aZBCCFE0ZExMkLoyJ9//kl8fDxr1qyhQoUK+g5HCCHKBWmREUJHLly4wMSJE7l9+/ZTB5cKIYTQHRkjI4QQQohSS1pkhBBCCFFqSSIjhBBCiFKrzA/2zcjI4M6dO1hbW+t86XshhBBCFA1FUYiNjaVixYpPXQy0zCcyd+7coUqVKvoOQwghhBAFcPPmTSpXrpzr82U+kcncWO3mzZvY2NjoORohhBBC5EVMTAxVqlTJskFqTsp8IpPZnWRjYyOJjBBCCFHKPGtYiAz2FUIIIUSpJYmMEEIIIUotSWSEEEIIUWqV+TEyQggh8iY9PZ3U1FR9hyHKCWNjYwwNDQtdjiQyQghRzimKwr1794iKitJ3KKKcsbOzw9XVtVDrvEkiI4QQ5VxmElOhQgUsLCxk8VBR5BRFISEhgfv37wPg5uZW4LIkkRFCiHIsPT1dm8Q4OjrqOxxRjpibmwNw//59KlSoUOBuJhnsK4QQ5VjmmBgLCws9RyLKo8zPXWHGZkkiI4QQQrqThF7o4nMniYwQQgghSi0ZIyOEECJHoaGhREREFFt9Tk5OuLu7F1t9AJ988gkbN27k9OnTxVovwJIlS5gyZYrMFiskSWSEEEJkExoaio+PL4mJCcVWp7m5BUFBgflKZsLDw/n444/ZsmULYWFh2NvbU79+fT7++GNatmxZhNEW3uDBg+nRo0ex16vRaNiwYQN9+/Yt9rqLgiQyQgghsomIiCAxMYF+/Zbh7Oxb5PWFhweyYcMIIiIi8pXIDBgwgJSUFJYuXUrVqlUJCwtjz549PHjwoMhiTUlJwcTEpNDlmJuba2fuiIKTMTJCCCFy5ezsi5tboyK/FSRZioqK4uDBg3z11Ve0b98eDw8PmjVrxvTp03n++ecBtWWpT58+WFlZYWNjw6BBgwgLC8tW1i+//EKVKlWwsLBg0KBBREdHa5976aWX6Nu3L59//jkVK1akZs2aANy8eZNBgwZhZ2eHg4MDffr0ISQkBICdO3diZmaWrdvojTfeoEOHDoDatWRnZwfA5cuX0Wg0BAUFZbl+zpw5VKtWTfv4/PnzdO/eHSsrK1xcXBg5cmSW7r927doxefJk3nnnHRwcHHB1deWTTz7RPu/p6QlAv3790Gg02scAmzZtolGjRpiZmVG1alVmzpxJWloaoK778sknn+Du7o6pqSkVK1Zk8uTJz/gOFQ9pkRGigIpi/IA+xggIUVpZWVlhZWXFxo0bad68Oaamplmez8jI0CYx+/fvJy0tjQkTJjB48GD27dunve7q1ausXr2azZs3ExMTw5gxY3j99ddZvny59po9e/ZgY2PDrl27AHW6cNeuXfHz8+PgwYMYGRnx2Wef0a1bN86ePUvHjh2xs7Nj3bp1jBkzBlDX7Fm1ahWff/55tvdSo0YNmjRpwvLly5k1a5b2/PLlyxk2bBigJm4dOnRg7NixzJkzh8TERN59910GDRrE3r17ta9ZunQp06ZN4/jx4xw9epSXXnqJli1b0rlzZ06cOEGFChVYvHgx3bp1067dcvDgQV588UXmzZtH69atuXbtGuPGjQNgxowZrFu3jjlz5rBy5Upq167NvXv3OHPmTGG+fTojiYwQBRAaGoqvjw8JiYk6LdfC3JzAoCBJZoTIAyMjI5YsWcIrr7zCzz//TKNGjWjbti1DhgyhXr167Nmzh3PnzhEcHEyVKlUA+P3336lduzYnTpygadOmACQlJfH7779TqVIlAH744Qd69uzJt99+i6urKwCWlpb83//9n7ZLadmyZWRkZPB///d/2inEixcvxs7Ojn379tGlSxeGDBnCihUrtInMnj17iIqKYsCAATm+n+HDhzN//nxtInP58mUCAgJYtmwZAPPnz6dhw4Z88cUX2tcsWrSIKlWqcPnyZWrUqAFAvXr1mDFjBgDVq1dn/vz57Nmzh86dO+Ps7Az8tzVAppkzZ/Lee+8xatQoAKpWrcqsWbN45513mDFjBqGhobi6utKpUyeMjY1xd3enWbNmBf/m6ZAkMkIUQEREBAmJiSzr1w/fR78YCiswPJwRGzbke4yAEOXZgAED6NmzJwcPHuTYsWNs27aNr7/+mv/7v/8jJiaGKlWqaJMYgFq1amFnZ0dgYKA2kXF3d9cmMQB+fn5kZGRw6dIl7R/7unXrZhkXc+bMGa5evYq1tXWWeJKSkrh27RqgJibNmzfnzp07VKxYkeXLl9OzZ09td9KThgwZwltvvcWxY8do3rw5y5cvp1GjRvj4+Gjr9Pf3x8rKKttrr127liWReZybm5t2K4DcnDlzhsOHD2dpLUpPTycpKYmEhAQGDhzI3LlzqVq1Kt26daNHjx707t0bIyP9pxH6j0CIUszX2ZlGhdgjRAhReGZmZnTu3JnOnTvz0UcfMXbsWGbMmMGbb76pszosLS2zPI6Li6Nx48ZZup8yZbZ6NG3alGrVqrFy5Upee+01NmzYwJIlS3Ktw9XVlQ4dOrBixQqaN2/OihUreO2117LU2bt3b7766qtsr318ryJjY+Msz2k0GjIyMp76/uLi4pg5cyb9+/fP9pyZmRlVqlTh0qVL7N69m127dvH666/zzTffsH///mz1FTdJZIQQQpQptWrVYuPGjfj6+nLz5k1u3rypbZW5ePEiUVFR1KpVS3t9aGiottUE4NixYxgYGGgH9eakUaNGrFq1igoVKmBjY5PrdcOHD2f58uVUrlwZAwMDevbs+dTYhw8fzjvvvMPQoUO5fv06Q4YMyVLnunXr8PT0LFRLiLGxMenp6dnez6VLl/D29s71debm5vTu3ZvevXszYcIEfHx8OHfuHI0aNSpwLLogs5aEEEKUSg8ePKBDhw4sW7aMs2fPEhwczJo1a/j666/p06cPnTp1om7dugwfPpxTp07xzz//8OKLL9K2bVuaNGmiLcfMzIxRo0Zx5swZDh48yOTJkxk0aFCWMSRPGj58OE5OTvTp04eDBw8SHBzMvn37mDx5Mrdu3cpy3alTp/j888954YUXsg1IflL//v2JjY3ltddeo3379trkCmDChAlERkYydOhQTpw4wbVr19ixYwejR4/Olpg8jaenJ3v27OHevXs8fPgQgI8//pjff/+dmTNncuHCBQIDA1m5ciUffvghoM6w+u233zh//jzXr19n2bJlmJub4+Hhked6i4q0yAghhMhVeHhgia3HysqK5557jjlz5nDt2jVSU1OpUqUKr7zyCu+//z4ajYZNmzYxadIk2rRpg4GBAd26deOHH37IUo63tzf9+/enR48eREZG0qtXL3788cen1m1hYcGBAwd49913tclHpUqV6NixY5YWGm9vb5o1a8Y///zD3Llzn/merK2t6d27N6tXr2bRokVZnqtYsSKHDx/m3XffpUuXLiQnJ+Ph4UG3bt0wMMh7u8S3337LtGnT+PXXX6lUqRIhISF07dqVv//+m08//ZSvvvoKY2NjfHx8GDt2LKAODv7yyy+ZNm0a6enp1K1bl82bN5eIHdM1iqIo+g6iKMXExGBra0t0dPRTm/+EyI9Tp07RuHFjAsaN09kYmVN379J44UICAgL03lQryo+kpCSCg4Px8vLCzMxMe760rOwrSrfcPn+Q97/f0iIjhBAiG3d3d4KCAsv8Xkui9JNERgghRI7c3d0lsRAlngz2FUIIIUSpJYmMEEIIIUot6VoSooQJDNTdLBEZcyCEKOskkRGihLgbF4cGGDFihM7KlL2bhBBlnSQyQpQQUUlJKMD89u3xq1690OXJ3k1CiPJAEhkhShhve3vZv0kIIfJIBvsKIYQQotSSFhkhhBA5Cg0NLTML4q1fv56XX35Zu13Bxo0bWbBgQZHUlR8vvfQSUVFRbNy4sdjr/uSTT9i4cSOnT58u9rp1SRIZIYQQ2YSGhuLr40NCYmKx1ZnfwekvvfQSS5cuZfbs2bz33nva8xs3bqRfv348vgPP+vXr+eOPP9i4cSOvvfYaK1asKHS8wcHBfPDBB+zbt4/IyEicnJxo3LgxX331FT4+PoUuv6i99dZbTJo0Sd9hFJokMkIIIbKJiIggITGRZf364evsXOT1FXRwupmZGV999RXjx4/H3t4+1+uWLVsGQO/evQsdK0BqaiqdO3emZs2arF+/Hjc3N27dusW2bduIiorSSR25SUlJwcTEpNDlWFlZYWVlpYOI9EvGyAghhMiVr7MzjdzcivxW0GSpU6dOuLq6Mnv27FyvefDgAUOHDqVSpUpYWFhQt25d/vzzzyzXJCcnM3nyZCpUqICZmRmtWrXixIkTuZZ54cIFrl27xo8//kjz5s3x8PCgZcuWfPbZZzRv3lx73blz5+jQoQPm5uY4Ojoybtw44uLispU3c+ZMnJ2dsbGx4dVXXyUlJUX7XLt27Zg4cSJTpkzBycmJrl27AnD+/Hm6d++OlZUVLi4ujBw5UtsVuHDhQipWrEhGRkaWevr06cPLL78MqF1LDRo0AGDnzp2YmZllS8LeeOMNOnTooH186NAhWrdujbm5OVWqVGHy5MnEx8drn9doNNm6yezs7FiyZEmuX8vCkkRGCCFEqWVoaMgXX3zBDz/8wK1bt3K8JikpicaNG7NlyxbOnz/PuHHjGDlyJP/884/2mnfeeYd169axdOlSTp06hbe3N127diUyMjLHMp2dnTEwMGDt2rWkp6fneE18fDxdu3bF3t6eEydOsGbNGnbv3s3EiROzXLdnzx4CAwPZt28ff/75J+vXr2fmzJlZrlm6dCkmJiYcPnyYn3/+maioKDp06EDDhg05efIk27dvJywsjEGDBgEwcOBAHjx4gL+/v7aMyMhItm/fzvDhw7PF2rFjR+zs7Fi3bp32XHp6OqtWrdJef+3aNbp168aAAQM4e/Ysq1at4tChQ9neT3GTREYIIUSp1q9fPxo0aMCMGTNyfL5SpUq89dZbNGjQgKpVqzJp0iS6devG6tWrATXh+Omnn/jmm2/o3r07tWrV4tdff8Xc3Jzffvst1zLnzZvHxx9/jL29PR06dGDWrFlcv35de82KFStISkri999/p06dOnTo0IH58+fzxx9/EBYWpr3OxMSERYsWUbt2bXr27Mmnn37KvHnzsrSmVK9ena+//pqaNWtSs2ZN5s+fT8OGDfniiy/w8fGhYcOGLFq0CH9/fy5fvoy9vT3du3fPMhZo7dq1ODk50b59+2zvx9DQkCFDhmS5fs+ePURFRTFgwAAAZs+ezfDhw5kyZQrVq1enRYsWzJs3j99//52kpKS8fKuKhCQyQgghSr2vvvqKpUuX5rjFR3p6OrNmzaJu3bo4ODhgZWXFjh07CA0NBdSWhtTUVFq2bKl9jbGxMc2aNXvqliETJkzg3r17LF++HD8/P9asWUPt2rXZtWsXoG43Ur9+fSwtLbWvadmyJRkZGVy6dEl7rn79+lhYWGgf+/n5ERcXx82bN7XnGjdunKXuM2fO4O/vrx3nYmVlpR1gfO3aNQCGDx/OunXrSE5OBmD58uUMGTIEA4Oc//QPHz6cffv2cefOHe31PXv2xM7OTlvnkiVLstTZtWtXMjIyCA4OzvXrVNQkkRFCCFHqtWnThq5duzJ9+vRsz33zzTd8//33vPvuu/j7+3P69Gm6du2aZRxKQVlbW9O7d28+//xzzpw5Q+vWrfnss88KXe6THk+GAOLi4ujduzenT5/Ocrty5Qpt2rQB1IHNiqKwZcsWbt68ycGDB3PsVsrUtGlTqlWrxsqVK0lMTGTDhg1Zro+Li2P8+PFZ6jtz5gxXrlyhWrVqgDpG5vHZYqAOjC5KMmtJCCFEmfDll1/SoEEDatasmeX84cOH6dOnj3Yfs4yMDC5fvkytWrUAqFatmnb8iYeHB6D+8T1x4gRTpkzJc/0ajQYfHx+OHDkCgK+vL0uWLCE+Pl6biBw+fBgDA4MsMZ45c4bExETMzc0BOHbsGFZWVlSpUiXXuho1asS6devw9PTEyCjnP+VmZmb079+f5cuXc/XqVWrWrEmjRo2e+h6GDx/O8uXLqVy5MgYGBvTs2TNLnRcvXsTb2zvX1zs7O3P37l3t4ytXrpCQkPDUOgtLWmSEEEKUCXXr1mX48OHMmzcvy/nq1auza9cujhw5QmBgIOPHj88yRsXS0pLXXnuNt99+m+3bt3Px4kVeeeUVEhISGDNmTI51nT59mj59+rB27VouXrzI1atX+e2331i0aBF9+vQB1KTAzMyMUaNGcf78efz9/Zk0aRIjR47ExcVFW1ZKSgpjxozh4sWLbN26lRkzZjBx4sRcu4BA7daKjIxk6NChnDhxgmvXrrFjxw5Gjx6dZfDx8OHD2bJlC4sWLXpqa8zj1586dYrPP/+cF154AVNTU+1z7777LkeOHGHixIna1p9NmzZlGeybOQ7o33//5eTJk7z66qsYGxs/s97CkBYZIYQQuQoMDy9V9Xz66aesWrUqy7kPP/yQ69ev07VrVywsLBg3bhx9+/YlOjpae82XX35JRkYGI0eOJDY2liZNmrBjx45c16apXLkynp6ezJw5k5CQEDQajfbx1KlTAbCwsGDHjh288cYbNG3aFAsLCwYMGMB3332XpayOHTtSvXp12rRpQ3JyMkOHDuWTTz556vusWLEihw8f5t1336VLly4kJyfj4eFBt27dsiRAHTp0wMHBgUuXLjFs2LBnfv28vb1p1qwZ//zzD3Pnzs3yXL169di/fz8ffPABrVu3RlEUqlWrxuDBg7XXfPvtt4wePZrWrVtTsWJFvv/+ewICAp5Zb2FolCc7s8qYmJgYbG1tiY6OxsbGRt/hiDLi1KlTNG7cmIBx43S2wePyc+cYsX492/v3p2vduoUu79TduzReuJCAgIBnNieL8ispKYng4GC8vLwwMzPTni8NK/uK0i+3zx/k/e+3tMgIIYTIxt3dncCgoDKz15IouySREUIIkSN3d3dJLESJJ4mMKHGKYsdd+U9PCCHKJklkRIlSVP3y0vcuhBBlkyQyokQpih13C7qrrhDlSRmf9yFKKF187vSayHzyySfZNsaqWbMmQUFBgDqa+c0332TlypUkJyfTtWtXfvzxxyzz70XZlLnjrhCiaGWu8ZGQkKBdkE2I4pK5WF5h1prRe4tM7dq12b17t/bx4ysUTp06lS1btrBmzRpsbW2ZOHEi/fv35/Dhw/oIVQghyhxDQ0Ps7Oy4f/8+oK59otFo9ByVKOsURSEhIYH79+9jZ2eHoaFhgcvSeyJjZGSEq6trtvPR0dH89ttvrFixgg4dOgCwePFifH19OXbsGM2bNy/uUIXIxiAlBf79F27ehHv3ID0dNBpwcIBKlaB6dahQQd9hCvFUmb+DM5MZIYqLnZ1djjlAfug9kbly5QoVK1bEzMwMPz8/Zs+ejbu7OwEBAaSmptKpUyfttT4+Pri7u3P06NFcE5nk5GTtTp+gLqgjhK4ZRkXxJVB3+XLIaUO0sDAIDITdu6FKFfDzAx8fNckRooTRaDS4ublRoUKFIt/gT4hMxsbGhWqJyaTXROa5555jyZIl1KxZk7t37zJz5kxat27N+fPnuXfvHiYmJtrtwzO5uLhw7969XMucPXt2tnE3QujU3r34DhlCfVCTGCcnqFlTbYExNVVbZe7fh9BQuHJFba25eRM8PaFbN5AxXqKEMjQ01MkfFiGKk14Tme7du2uP69Wrx3PPPYeHhwerV68u8KCz6dOnM23aNO3jmJiYp+4gKkS+fPUVTJ+OiaIQBBh17Yr3c89lb2mpXh1atoTYWDhxAo4ehZAQ+PVX6NIFmjaV1hkhhNCBErX7tZ2dHTVq1ODq1au4urqSkpJCVFRUlmvCwsKe2p9mamqKjY1NlpsQOjFzJrz3HigKEf360RiI8fB4ekJibQ0dOsCECVCjhtpas20brF2bc5eUEEKIfClRiUxcXBzXrl3Dzc2Nxo0bY2xszJ49e7TPX7p0idDQUPz8/PQYpSiXZs+GzN1ov/yS0A8/JCE/r7ezgyFDoGtXMDCAixfhjz+gGDfkE0KIskivicxbb73F/v37CQkJ4ciRI/Tr1w9DQ0OGDh2Kra0tY8aMYdq0afj7+xMQEMDo0aPx8/OTGUuieG3ZAu+/rx5//TW8+27BytFooHlzePFFMDNTx80sXgxxcbqLVQghyhm9JjK3bt1i6NCh1KxZk0GDBuHo6MixY8dwfrSi65w5c+jVqxcDBgygTZs2uLq6sn79en2GLMqba9dgxAj1+PXX4e23C1+mhweMHq12O4WHqy0zCflq3xFCCPGIXgf7rly58qnPm5mZsWDBAhYsWFBMEQnxmLQ0GDwYoqLU6dNz5uiu7AoV4KWX1BaZ+/dh2TKMmjTRXflCCFFOlKgxMkKUKHPnQkCAOr5lzRowMdFt+Q4OajeThQXcvUurf/5BJr4KIUT+SCIjRE6uX4ePP1aPv/1WXSOmKDg7w7BhYGREpbAwdNjmI4QQ5YIkMkI8SVHU8TCJidC+vTqepShVqgT9+6MAk4DKwcFFW58QQpQhksgI8aTdu2HHDrUr6ZdfimfhOl9fztSuDYDPmTNw507R1ymEEGWAJDJCPC4jA6ZPV49fe01dobeYXKhRg02AYUaGOiZH1pgRQohn0vumkUIUl8DAwGdeY7dzJ1UDAki3tORC796knTpV4LLyTaNhFHDH0hKLqCjYvBkGDpStDIQQ4ikkkRFl3t24ODTAiMz1YHJhAFx8dDwzPp5Zj+28nptYHS9mFw2cadYMv/371d2zT5+Ghg11WocQQpQlksiIMi8qKQkFmN++PX5P6Sqyu36dqrt3k2ZqSv+hQ+n7lOnWW69c4SN/f5KSknQeb4y9vTrIeM8edV8mDw91qrYQQohsJJER5Ya3vT2N3NxyflJR4O+/ATB67jkaeHg8tazAiAhdh5dVixbqqsIhIfDXXzBqlHQxCSFEDmSwrxAAN26oM4WMjKBZM31Ho24s2acPGBursZ04oe+IhBCiRJJERgiAI0fU+/r1wdJSv7FksrODzHE6u3fDw4d6DUcIIUoiSWSEePAArlxRj/389BvLk5o2VcfIpKbC1q1qF5gQQggtSWSEyJxiXb06ODrqN5YnaTTQu7fa1XT1Kly6pO+IhBCiRJFERpRvaWnqFGeARo30GkquHB3Vwb8A27errTNCCCEASWREeRcUBAkJYG0NNWroO5rctW4NNjYQHQ0HD+o7GiGEKDEkkRHlW2a3UsOGavdNSWViAt26qcdHjqjjeoQQQkgiI8qxyEgIDlbHoZTUbqXH+fhAtWqQnq52McnAXyGEkERGlGPnzqn3VauCra1+Y8kLjQa6dwdDQ3Xgb1CQviMSQgi9k0RGlE+K8l8iU7eufmPJj8cH/u7apbbOCCFEOSaJjCif7t5Vx5kYGaldNqVJq1bqon0PH0JAgL6jEUIIvZJERpRPZ8+q9zVrgqmpfmPJLxMTaNtWPd6/H5KT9RuPEELokSQyovzJyIALF9TjevX0G0tBNWqkdjMlJPy3vYIQQpRDksiI8ickBOLiwNxcnQVUGhkaQocO6vHRoxAbq994hBBCTySREeVPYKB67+OjJgSlla8vVK6srvS7f7++oxFCCL2QREaUL4ry37RlX1/9xlJYGs1/u2OfOgUREfqNRwgh9EASGVG+3LqldiuZmoKXl76jKTwPD3VrBUWBvXv1HY0QQhQ7SWRE+ZLZrVSjhjr1uizo2FG9DwyEe/f0G4sQQhQzSWRE+aEo/yUypb1b6XEVKkCdOuqxjJURQpQzksiIcsM6OhqiotSWmNI6Wyk3bdqo90FB6mJ/QghRTkgiI8qNCpl/4KtVUxeVK0ucnaVVRghRLkkiI8oNp8zxIzVq6DeQopK52u+lS9IqI4QoNySREeWCM2D78KH6oHp1vcZSZJyc/tsAU1plhBDlhCQyolzoDmgAXF3B2lrP0RShNm3U9WUuXcJc1pURQpQDksiIcqFn5kFZbY3J5OSkHSvjdvKknoMRQoiiJ4mMKPM0GRl0zXxQVsfHPO5Rq4xdaCh19R2LEEIUMUlkRJnn/OABtkCKiQlUrKjvcIqekxPUqgXAe3oORQghipokMqLMqxgWBkCEiwsYlJOPfMuWAAwGTG7e1G8sQghRhMrJb3VRnrnevw88SmTKCzc3oqtUwRBw+eMPfUcjhBBFRhIZUbbFx+MQFQXAgwoV9BtLMQurXx8Ax7/+knVlhBBlliQyomwLDkYDnAFSzMz0HU2xinNz4whgkJoKc+boOxwhhCgSksiIsu3aNQB26TkMvdBomJ15/NNPkLkgoBBClCGSyIiyS1Hg+nUAduo5FH3ZAiRWqwZxcfDjj/oORwghdE4SGVF2RURATAzpBgYc1HcseqIA9156SX0wdy4kJOgxGiGE0D1JZETZ9ag15r6TE0l6DkWfHnbpAp6eamL3++/6DkcIIXRKEhlRdoWEAHDP2Vm/ceibkRFMmaIez5kDGRl6DUcIIXRJEhlRNimKNpEJK++JDMDLL4OtLVy+DH//re9ohBBCZySREWXTvXuQlAQmJkTa2ek7Gv2ztobx49Xjb7/VbyxCCKFDksiIsulRawweHijlZVuCZ5k0Se1mOnAAZGdsIUQZIb/hRdmUmch4euozipKlcmUYMkQ9llYZIUQZIYmMKHsyMuDGDfVYEpms3nxTvV+zBkJD9RuLEELogCQyouy5exeSk8HMDFxd9R1NydKgAXToAOnp8P33+o5GCCEKTRIZUfY8Nj4GGR+TXWarzK+/QnS0fmMRQohCKjG/5b/88ks0Gg1TMte7AJKSkpgwYQKOjo5YWVkxYMAAwsLC9BekKB0yu5U8PPQbR0nVrRv4+kJsLPzf/+k7GiGEKJQSkcicOHGCX375hXr16mU5P3XqVDZv3syaNWvYv38/d+7coX///nqKUpQKGRn/jf2QRCZnBgYwbZp6/P33kJqq33iEEKIQ9J7IxMXFMXz4cH799Vfs7e2156Ojo/ntt9/47rvv6NChA40bN2bx4sUcOXKEY8eO6TFiUaLdv6+OjzExkfExTzNiBFSoADdvwtq1+o5GCCEKTO+JzIQJE+jZsyedOnXKcj4gIIDU1NQs5318fHB3d+fo0aO5lpecnExMTEyWmyhHMltjqlSR8TFPY2YGEyaox99+q66ELIQQpZBef9OvXLmSU6dOMXv27GzP3bt3DxMTE+yeWJXVxcWFe/fu5Vrm7NmzsbW11d6qVKmi67BFSZaZyLi76zeO0uD119WEJiBAXSRPCCFKIb0lMjdv3uSNN95g+fLlmJmZ6azc6dOnEx0drb3dvHlTZ2WLEk5R/hvoK4nMszk5wahR6vGcOfqNRQghCkhviUxAQAD379+nUaNGGBkZYWRkxP79+5k3bx5GRka4uLiQkpJCVFRUlteFhYXh+pSxD6amptjY2GS5iXLi4UOIi1O7lCpV0nc0pUPmLMG//oKrV/UaihBCFITeEpmOHTty7tw5Tp8+rb01adKE4cOHa4+NjY3Zs2eP9jWXLl0iNDQUPz8/fYUtSrLM1phKlcDYWL+xlBY+PtCjh9qaNW+evqMRQoh8M9JXxdbW1tSpUyfLOUtLSxwdHbXnx4wZw7Rp03BwcMDGxoZJkybh5+dH8+bN9RGyKOlkfEzBTJ0KW7fCokXw6acgu4ULIUqREj2tY86cOfTq1YsBAwbQpk0bXF1dWb9+vb7DEiXVrVvqvSQy+dOxI9StC/HxskCeEKLUKVGJzL59+5g7d672sZmZGQsWLCAyMpL4+HjWr1//1PExohxLTISICPW4cmX9xlLaaDT/jZWZNw/S0vQajhBC5EeJSmSEKLDM1hhHR7Cw0G8spdGwYf8tkLdunb6jEUKIPJNERpQNmdPspTWmYMzM4LXX1GOZii2EKEUkkRFlQ2aLjCyAWHCvvaZu7XD8ODxl9WwhhChJJJERpV9GBty+rR5Li0zBubjA8OHqsbTKCCFKCUlkROl3/z6kpKitCc7O+o6mdJs6Vb1ft+6/dXmEEKIEk0RGlH6Pj4+RjSILp25ddTp2Rgb88IO+oxFCiGeS3/qi9MscHyPdSrqR2Srz668QG6vfWIQQ4hkkkRGlX2aLjAz01Y3u3aFmTYiJgcWL9R2NEEI8lSQyonSLj1c3iwRpkdEVAwN44w31+PvvIT1dv/EIIcRTSCIjSrfM1hhnZ3UtFKEbL74I9vZw/Tps3qzvaIQQIleSyIjSTcbHFA1LSxg/Xj2WqdhCiBJMEhlRuslCeEVn4kQwMoIDB+DUKX1HI4QQOZJERpRe6en/LYQniYzuVaoEgwapx9IqI4QooSSREaVXWJi6U7OZmbpZpNC9zKnYK1f+lzQKIUQJIomMKL0eXwhPo9FvLGVVkybQurWaMC5YoO9ohBAiG0lkROkl42OKR2arzC+/QEKCfmMRQognSCIjSi+ZsVQ8nn8eqlaFyEj4/Xd9RyOEEFkY6TsAIQokIQGiotTjihULXEx0dDQJBWhlePhoEb6ohw+5e/dujtdYWFhga2tb4NhKDENDmDwZpkyBuXNh3DjZ00oIUWJIIiNKp8yBp46OBV4ILzo6mvnz55Oalpbv1557dL/X359Af/8crzE2MmLixIllI5l5+WX4+GO4dAm2b4cePfQdkRBCAJLIiNLqzh31vlKlAheRkJBAaloavj79sLBwztdrYyOvQIg/Xp7tqe1QPYeywwkM2kBCQkLZSGSsrWHsWPjuO3UqtiQyQogSQhIZUTplJjKF6FbKZGHhjLW1W75eY54QAYCZmX2+X1tqTZqkdi3t3g3nzkHduvqOSAghZLCvKIUU5b+upUK0yIh88vSE/v3V47lz9RmJEEJoSSIjSp+YGHXXawMDcHXVdzTly7Rp6v2yZZDLIGchhChOksiI0iezNaZCBXUvIFF8/PygZUtISZFWGSFEiSB/BUTpU867lfI6ZTw8Qh3HExgYmOeyk5OTMTU1feo1ti+8QLXDh0lfsIBzPXqQYW39zHKdnJxwd3fPcxxCCJFXksiI0keHA31Lm/xMGc/s+BkxYkQ+atAAyjOvOAfUjo9nZbt2fJWHUs3NLQgKCpRkRgihc5LIiNJFUXQy9bq0ys+U8WsJERC0nv79l+Hk5PvMsq9c2Yq//0e0bz+f6tX9nnrtP5c3U3vfJ0w3dyR26GbSjHJvxQkPD2TDhhFERERIIiOE0LkCJTJJSUn88MMP+Pv7c//+fTIyMrI8f+rUKZ0EJ0Q2ERHq+AxjY3DO39ovZUlepoxbPLp3cvLFza3RM8uMiFC7oOztvZ95/a0KdYg+9Ru2MTfpdv8cAY3H5SluIYTQtQIlMmPGjGHnzp288MILNGvWDI3sPCyKS2ZrjJubLJOvR+mGJhz1m0a3HVNpceQbTjUcg2JgqO+whBDlUIESmb///putW7fSsmVLXccjxNNlDvQth+NjSppTjcbSdv+nOEZexTdoAxdrvaDvkIQQ5VCBEplKlSphnYeZCkLoXDkeH1NSREeHkvBoZeM9tQbQ69T/0WzfDPbYeUEOrbOZXVZPmz0ls5qEEAVVoETm22+/5d133+Xnn3/Gw8ND1zEJkbP0dLh3Tz2WFhm9iI4O5cf5PqSkJQKwHrgBeIZf5MqvTch5+0zV02ZPWZibExgUJMmMECLfCpTINGnShKSkJKpWrYqFhQXGxsZZno+MjNRJcEJkERamJjPm5mBvr+9oyqWEhAhS0hJ536cfHo9mTQXfPETt8Issta7MturZN5NMSIggMGg9/fv3x9nJKdvzgeHhjNiwQWY1CSEKpECJzNChQ7l9+zZffPEFLi4uMthXFI/Hx8fIZ06vPCycqfFo1lSsVyeU8ECqxN6iERD3xGyqWCAKqOfkhJtbOdlgUwhRbAqUyBw5coSjR49Sv359XccjRO7K8UJ4JVmSuT33K9TG5f55qtw8QmCtAfoOSQhRjhRo/qqPjw+JiYm6jkWIpyvnWxOUZDerqDMYK4RfwDxRupaFEMWnQInMl19+yZtvvsm+fft48OABMTExWW5C6FxyMoSHq8eSyJQ4cVauPHCojgYF99CD+g5HCFGOFKhrqVu3bgB07Ngxy3lFUdBoNKSnpxc+MiEed/fRzkE2NmBlpd9YRI5CPNrgGHkF13tnuOHehiRzGZAthCh6BUpk/P2fNslSiCIg68eUeLE2lYm0r4bDw2u4hx7kcs3n9R2SEKIcKFAi07ZtW13HIcTTyYq+pUKIR1scHl7DNewMNzzakGxmp++QhBBlXIE3qzl48CAjRoygRYsW3H70R+aPP/7g0KFDOgtOCK1y2iKjKBCXYkJMsilxKSZkKCV72nmMbRUi7apioGTgHiq/C4QQRa9ALTLr1q1j5MiRDB8+nFOnTpGcnAxAdHQ0X3zxBVu3btVpkKKci4+HqCj1uIyuQ6IocCe2IjCOef/257OTPlx/aE94vCWpGf9txmikScecj6h4KRlvm4d4W96joV0w7hYRJWZpnRsebXCIuo7bvX8JdW9NrL4DEkKUaQVKZD777DN+/vlnXnzxRVauXKk937JlSz777DOdBScE8F9rjKMjmJnpNxYdUhQ4crMKqy/UZn2QL7dibAHYGpz7a9IUQ2KpxKV4uBT/33knkxhaOQXRqcJZatnc0mtSE23nwUNbT+yjQ3C/eZgI14b6C0YIUeYVKJG5dOkSbdq0yXbe1taWqMz/nIXQlTK2fkxssglLzzRg/j/NuPTgvyX7jQ1SSM04zOAakfSuDTUcH+BiFY+DeSKGmgwyFA2XQmP4eflu7Dxf5W5GTS7GVOZctDsRKTZsvNOMjXea4W4RzguVjuFluUNv7/GGRxvsz4bgdvcUZg419BaHEKLsK1Ai4+rqytWrV/H09Mxy/tChQ1StWlUXcQnxnzKyom9ssgk//PMc3x71IzLRAgArk2T6+wYysNZFwhM28/KmlYyu05+udevmWIabZRQVOUVjh5NYW6sJXkqGEf8+9GTP/bocjPAlNMGZ7670xtqoLWBAenrxN89E2XkSZeuOXXQo1e+d4nCxRyCEKC8KlMi88sorvPHGGyxatAiNRsOdO3c4evQob731Fh999JGuYxTlmaKU+haZDEXD0tP1eXd3Z8ITLAGo4RjBG88dZ2S9M1ibpgCw/FxKgco3MUjjOcerPOd4lfi0rWy715B1t5/jXpI9MI/Vq5Pp2RNq1tTVO8oDjYZgzw40PLME94ggZEUZIURRKVAi895775GRkUHHjh1JSEigTZs2mJqa8tZbbzFp0iRdxyjKs+hoSEgAAwNwddV3NPkWFFmRflvGcPx2ZQC8HR7wSdt9DKlzHkMDRef1WRol80LlY/St+A9LQqqy/GYHYmMrsnIl+PpC9+5gba3zanMUbeehXVemXfFUKYQohwo0/Vqj0fDBBx8QGRnJ+fPnOXbsGOHh4cyaNUvX8YnyLrNbycUFjAqUd+tFuqLhEO/Qbf37HL9dGSuTZP7XeQcXXv+R4fXOFUkS8zgjgwzaOB8EqtOgwT0MDCAwEH76CYKCirTqLK57dQCgHmAUKXswCSF0r1B/GUxMTKhVq5auYhEiu1K4EF5kihWfXJnKOWpCBvSqcYlfev1NRWt9TEROoFmzOzRv7sqmTepOD6tWQdOm0LUrGBo+u4TCiLOuyF07T9yiQrA6eRJq1y7aCoUQ5U6BEpl+/fqhyWF+p0ajwczMDG9vb4YNG0bNYu2UF2VSKVsI70yUB58GvkBkijUmxDK7zXqmtgvW+xovLi4wZgzs3QtHjsCJExAWBoMGgaVl0dYd5NYU16gQzENC1O9nKUpKhRAlX4G6lmxtbdm7dy+nTp1Co9Gg0Wj4999/2bt3L2lpaaxatYr69etz+LDMVRCFkJFRqmYsbbvXgDfPvkhkijXuZrd5hSYM9Tmi9yQmk6EhdO4MQ4eCqSmEhsLChXD/ftHWG2duz9nMB3v3Fm1lQohyp0CJjKurK8OGDeP69eusW7eOdevWce3aNUaMGEG1atUIDAxk1KhRvPvuu7qOV5QnDx5ASgoYG4Ozs76jyZWiwK/XO/L1pb6kK4a0dz7P/2p+iROX9R1ajmrUgLFj1fUFY2Jg8WI1qSlK+wBFo4Fr1yAkpGgrE0KUKwVKZH777TemTJmCgcF/LzcwMGDSpEksXLgQjUbDxIkTOX/+/FPL+emnn6hXrx42NjbY2Njg5+fHtm3btM8nJSUxYcIEHB0dsbKyYsCAAYSFhRUkZFEaZY6PcXNTZy2VQBmKAd9cfp4VN1sD8KLHPj7yXYuZYcGmUhcXJye1q6lyZUhKgj/+gHv3iq7V6yGQ4OurPti1S83+hBBCBwr01yEtLY2gHKY+BAUFkZ6eDoCZmVmO42geV7lyZb788ksCAgI4efIkHTp0oE+fPly4cAGAqVOnsnnzZtasWcP+/fu5c+cO/fv3L0jIojQq8QN9jfn9zlS23WuEARm8W3Mjoz33lZiupGcxN4cXX1RbaNLS4NixNkDPIqsvrlEjMDFRuwuf8U+OEELkVYEG+44cOZIxY8bw/vvv07RpUwBOnDjBF198wYsvvgjA/v37qf2MGQq9e/fO8vjzzz/np59+4tixY1SuXJnffvuNFStW0KGDOoVz8eLF+Pr6cuzYMZo3b16Q0EVpUoIH+qYrhsBqzsS2wFiTxke11tLaqRjnNeuIsbE64Hf9erh40RBYz92758llYeFCybCwgJYtwd8f9uxRF7YpRVPqhRAlU4F+i8yZMwcXFxe+/vprbVePi4sLU6dO1Y6L6dKlC926dctzmenp6axZs4b4+Hj8/PwICAggNTWVTp06aa/x8fHB3d2do0eP5prIJCcna3fjBoiJiSnIWxR6pklPV6fVQIlLZNIVAzbdmQK0wEiTwmd1VtHM4VqO14aHh+e53IcPHwIQ9fAhd+/eLXR5mSIiAp95TYsWEB5uRnh4LY4fr4ej42UqVowrUFlP5ecHAQHqQofHj6uJjRBCFEKBEhlDQ0M++OADPvjgA22iYGNjk+Uad3f3PJV17tw5/Pz8SEpKwsrKig0bNlCrVi1Onz6NiYkJdnZ2Wa53cXHh3r17uZY3e/ZsZs6cmb83JEoc8wcPID1d7f944jOgT4oC31x6nsDYBkAKoyt9QzOH1GzXpaSoa8as37Ahz2Wfe3S/19+fQH//p16bkpL81OcBIlPi0ADr14/IYwSGwFoyMvry998uwGDgdC71Z09y8sTYGDp0gI0b4eBBaCg7YwshCqfQ7bpPJjD5VbNmTU6fPk10dDRr165l1KhR7N+/v8DlTZ8+nWnTpmkfx8TEUKVKlULFKIqfRWbLQ6VKlKRBJ/8X3JEdYQ3QkI7CIGpZGQLZ+2HS0pIA8PLsjoND3j5/sZFXIMQfL8/21HaonuM1kZFXCA7xJy0t7ZnlxaUloQDTPNtTM5fyniz7SshQ/E3/ITi5LjZG+3i35lc4mT7QXnM88gqLQvy1769A6tWDY8fg3j3Yvx8aNCh4WUKIcq/AiczatWtZvXo1oaGhpKRknaFx6tSpPJdjYmKCt7c3AI0bN+bEiRN8//33DB48mJSUFKKiorK0yoSFheH6lD13TE1NMTU1zd+bESWOZWYiU4IG+q6/3Uw7O6mn60/8fW8T8PTB52ZmDlhbu+WpfPOEiEevsc/1NQkJ+e9aqmJmT408xBCWEE4SSXzkPo/P78ziWrwrvwZP4YeGv2FlpLYAhT6KsVA0GujSBX7/HU6exNTTs/BlCiHKrQLNWpo3bx6jR4/GxcWFf//9l2bNmuHo6Mj169fp3r17oQLKyMggOTmZxo0bY2xszJ49e7TPXbp0idDQUPz8/ApVhyj5LEpYInPsQXUWXFXHfI3x3EN9u6d3/ZRmFoaJzK67AkeTWEISKjDz4kDSFR1Pf/fyUqdLZWRQ+dgx3ZYthChXCvTb6ccff2ThwoX88MMPmJiY8M4777Br1y4mT55MdHR0nsuZPn06Bw4cICQkhHPnzjF9+nT27dvH8OHDsbW1ZcyYMUybNg1/f38CAgIYPXo0fn5+MmOpjLMCzB4NfC0JA31D4p2ZFfgCGRjQ0zWA4e4H9R1SkXM2jeHzOiswM0jh5ENvfr7WWfeVdO4MBgbYhoYW4aRvIURZV6BEJjQ0lBYtWgBgbm5ObKw6sHHkyJH8+eefeS7n/v37vPjii9SsWZOOHTty4sQJduzYQefO6i/NOXPm0KtXLwYMGECbNm1wdXVl/fr1BQlZlCKNAQ2AjQ1YWek1lphUcz44P5SEdFPq24bwRvWtJWnITpGqaX2X6T7qYOW1t/3YHabjOdlOTvDon5LvAU3yswcwCyHEkwq8RUFkZCSgzk469qhpODg4GCUfK3b+9ttvhISEkJyczP3799m9e7c2iQF1Ub0FCxYQGRlJfHw869evf+r4GFE2NM080HNrTIai4Yug/txJcsDN7CEza6/G2CBdrzEVtzbOgQx3PwDA/y4/T1iSh44raEOKhQXVAJc//tBt2UKIcqFAiUyHDh3466+/ABg9ejRTp06lc+fODB48mH79+uk0QFH+aBMZPY+P+eNGG45HVsfEIJVPa6/E1jhBr/Hoy2hPf5raXyU5w5gNd94ELHRXuKkptx+1yrguWgQ3buiubCFEuVCgWUsLFy4kIyMDQLsX0pEjR3j++ecZP368TgMU5U+zzAM9tsicjKzK0hvtAJha/W+8rcrvHl+GGoUPfNcx9uRrRKRUQu0I2vasl+XZw2rVCN27l7bJyfDmm7B2rc7KFkKUfQVqkbl16xaGhobax0OGDGHevHlMnDjxqYvVCfEsRg8f4gkooG4WqQeRKZZ8EdQfBQ093QLo5npGL3GUJLbGiXzgux7IAMbyb0wL3RWu0TAJUAwNYd06dVNJIYTIowIlMl5eXjkulR4ZGYmXl1ehgxLll8WjzQST7ezAzKzY689QNHwV1JeHqVZ4WYYxqZruWh5KuwZ2IbR0XAfA6nuvcjfRTmdlnwPCBw5UH0yYoG7JLYQQeVCgREZRlBx3to6Li8NMD398RNlh+Wjn8/gKFfRS/7rbz/HPQ3VczEe+azE1fPYKuuVJG6fVwBGSMiz5LHAAaRm6W1/mzquvqq1wV67AZ5/prFwhRNmWrzEymUv/azQaPvroIyws/hv0l56ezvHjx2kgy42LQrDITGScnXEs5rpDE5z49bq6Senr1XbgZZn/VXTLOgNNBjAMM4MLXIytwpIb7RjrtVcnZV+4dQubadOo+vbbKF9+SWC9eiQ9WvU7v5ycnPK835sQonTLVyLz77//AmqLzLlz5zAxMdE+Z2JiQv369Xnrrbd0G6EoPxRF2yKTUMwtMumKhq+C+pCqGNHM/grPu50s1vpLlxsMdv2JpXfeYkVoa5o7XKGO7c0Cl3Y3Tt3ccsQIdXPL9UC/9HSiBw+mFeqonPyyMDcnMChIkhkhyoF8JTL+j3bkHT16NN9//32hN4wUIotr1zCKjiYJSHRwKNaq191qzsXYKlgaJvFmjc3lZtG7gmpgc5S76afZGdaAry/14f+a/IyJQcG64aKS1M0t57dvj1/16hjHx5O+ejV+qakEt2xJRO3a+SovMDycERs2EBERIYmMEOVAgaZfL168WNdxCAH//APAv4DpY7PiitqtJBd+C+kAwGvVdlDBLKbY6i7NJlTbwcmH1biZ6MTSkLa8UnXPs1/0FN729jTKnKnWuTNs3Yr7iRO4N2umrvIshBA5KNBIvfj4eD766CNatGiBt7c3VatWzXITokAeJTL/FGOVGRgw78aLpGQY08T+Kj1c/y3G2ks3G+NEplb/G4CVN1tyKVaHCxg2aQJVqkBKCmzZAvlYMVwIUb4UqEVm7Nix7N+/n5EjR+Lm5pbjDCYh8u34cUBNZFoXV5VMJijeGwvDZN6SLqV8a+V0iQ7O59gbXpevL/Xh50YLdbONg0YDvXvDL7/A5ctw9izUr1/4coUQZU6BEplt27axZcsWWrZsqet4SpXQ0FAiIiKKpOxyN+siJQUeDSbPqUUmOjqahISCbRHw8NFO2lEPH3L37l3t+YBgQ/byBaB2KbmY5X3ndvGfydW3cSqqKtfjXVge2pqXPPfppmBnZ2jXDvbsgW3bwMtLupiEENkUKJGxt7fHoZgHY5Y0oaGh+Pj4kphYNPvvmJtbEBQUWH6SmXPnIDmZNBsbrsZkHaMSHR3N/PnzSU0r2GDSc4/u9/r7E/howLoCrGALaZhT1/ICPV1PFSL48s3WOIHJ3lv5NHAgy0Jb08opUHdbOrRoAUFBcPs2/PUXDB+ONJsJIR5XoERm1qxZfPzxxyxdujTLWjLlSUREBImJCfTrtwxnZ1+dlh0eHsiGDSPK16yLR+Nj4mvXhqNHszyVkJBAaloavj79sLBwznfRsZFXIMQfL8/21HaoDsCxqPpcvd4DA1IY7bIYjcaq8O+hHGvnfAH/8NocjKjFt5d7M7/hbxhqdDCuxcAA+vZVu5iuXYOAAHX8jBBCPFKgRObbb7/l2rVruLi44OnpibGxcZbnT50qP//dOjv74ubWSN9hlH6Pxsck5JDIZLKwcMbaOv/7L5knqN1/Zmb2WFu7kZRuzG8XhgHQgm+oaHIPKNjCa0Kl0cAb3ls59bAqQbGV2XK3Ec9XDNBN4U5O0LEj7NgBO3dCtWpgb6+bsoUQpV6BEpm+ffvqOAxR7j3eIlPEVoS2IizZDkejcFqnfQH0K/I6ywNH0zhe9trLD1d78GtwJ1o7BWFvEq+bwp97Tu1iunEDNm2CF19UW2uEEOVegRKZGTNm6DoOUZ5FR6t/pICEOnWKtKrbiQ6svKkOUh/lsgiT20Uzxqm86lPxJNvvNeRKnBs/X+/MdJ+NuilYo4E+feCnn9Rk5vBhaF1cc9uEECVZof6lCQgIYNmyZSxbtky7fYEQ+RYQoK4T4ulJWhEOIlcU+OFqN1IVI5rYX6Wp1fEiq6u8MtRkMKX632hQ2BnWgNNRHror3N4eevRQj/394dYt3ZUthCi1CpTI3L9/nw4dOtC0aVMmT57M5MmTady4MR07diQ8XDbaE/n0qFuJZs2KtJoLcU04HlkDI006k723yeSXIlLL5ja93NTxMXOv9CQ1Q4erNNevD3XqqFnpunWQnKy7soUQpVKBEplJkyYRGxvLhQsXiIyMJDIykvPnzxMTE8PkyZN1HaMo6x4N9C3aRMaEjfdHAzCo8hGqWDwowrrEK167sTOO50ZCBf6630l3BWs00LMn2NlBVJS66q8QolwrUCKzfft2fvzxR3x9/5t2XKtWLRYsWMC2bdt0FpwoJzJbZJ57rggreZ0Hqa44msQywuNgEdYjAKyNk3i16k4A/rzbi2gq665wMzPo319Nas6dU1f9FUKUWwVKZDIyMrJNuQYwNjYmIyOj0EGJcuT2bbhzBwwNoWHDIqkiMd0S+AiA0Z7+mBumFEk9IqsuLmeoZ3uDFMWE3Xyl28KrVIG2bdXjLVvggbSwCVFeFSiR6dChA2+88QZ37tzRnrt9+zZTp06lY8eOOgtOlAOZ3Up16oClZZFUceTBAMABV5NQusmmkMVGo4GJ1bahIYPzDOP4vWq6raB1a/DwULe3WLMGUlN1W74QolQoUCIzf/58YmJi8PT0pFq1alSrVg0vLy9iYmL44YcfdB2jKMsyF79r3rxIir+XZMeJh+pMl94V/tDNarMiz6pb36Oz42EAPj4ymAxFhyOsDQxgwAA1AQ4LU/djEkKUOwVaR6ZKlSqcOnWK3bt3E/Ro/Q9fX186ddLhoD5RPhw5ot63aFEkxf9fcAfSFWNgD76Wp4C6RVKPyN2IipvY/6Ae5yI8WHK6AS831GGrmLW1Ol7mjz/UTUfd3cHFRXflCyFKvHy1yOzdu5datWoRExODRqOhc+fOTJo0iUmTJtG0aVNq167NwYMykFLkUXKyuoYMgJ+fzou/FFuRPffrPXr0tky31hM741ja8CkA0/d0JCbZVLcVVK2q7pINsGULZpGRui1fCFGi5SuRmTt3Lq+88go2NjbZnrO1tWX8+PF89913OgtOlHH//qsmM05O4K3bvY4UBX6+1hmAOjb7ARkbo0/P8QNVbcO4H2/FZwfa6L6CNm3UPZjS0qi6axeyBagQ5Ue+EpkzZ87QrVu3XJ/v0qULAQE62ihOlH2Z42P8/NB1c8nxyOqcjvbCWJNGO+c/dVq2yD9DUvnEbzUAc48158oDHa/grNGoXUw2NphFR7MUQGZQClEu5CuRCQsLy3HadSYjIyNZ2VfkXWYio+PxMYoCi0I6ANCv0j/YGstnsiToWOU83byvkJphyJs7u+q+AgsLGDiQDAMD+gOuixbpvg4hRImTr0SmUqVKnD9/Ptfnz549i5ubW6GDEuVE5kBfHY+PORjhy5U4N8wNkxnmfkinZYuC02jguy47MDJIZ/Plmuy8puPp2ACVK3OzVSsA3H7+GTZv1n0dQogSJV+JTI8ePfjoo49ISkrK9lxiYiIzZsygV69eOgtOlGE3b6qL4RkaQpMmOis2XdGwOKQ9AC9UOoatsexuXZL4Okcwsam6kvPUHV1JTS/UvrU5euDjwwJAoygwYgRcuqTzOoQQJUe+fot8+OGHREZGUqNGDb7++ms2bdrEpk2b+Oqrr6hZsyaRkZF88MEHRRWrKEsyW2MaNNDpQnj+9+sQklABK6NEBlU5qrNyhe583HY/ThbxXAyvwM8ndZfEPm4qENuwIcTEQJ8+EB1dJPUIIfQvX4mMi4sLR44coU6dOkyfPp1+/frRr18/3n//ferUqcOhQ4dwkTUcRF48PtBXR9IVA5beaAfA4MpHsDLK3nIo9M/ePIlZ7f0B+Hhfe2KTdT/HKBUI/uorqFxZbZEZOVIG/wpRRuW7XdfDw4OtW7cSERHB8ePHOXbsGBEREWzduhUvL6+iiFGURUWwEN7OsHrcSnTE1jie/pWO66xcoXuvNAqgnss9opLM2RA0qEjqSHN0hPXrwdRUHSvz6adFUo8QQr8K3EFtb29P06ZNadasGfb29rqMSZR1iYnqGjKgsxaZ1AxDloa0A2BYlUNYGMnGkCWZoYHCd112ALD7ejfAp2gqatoUfvlFPZ45EzZsKJp6hBB6o/uRdkI8y8mTkJYGbm7qpn86sPVeQ8KS7XA0ieX5iid1UqYoWh2rBvN8zSAyFEPgf0VX0ahRMHmyejxiBJw+XXR1CSGKXYH2WhKiUHS8EF5KhiHLbqirxQ53P4iZoeyCXFp803kXWy57k6705GTYKbrWTS+air79Fi5ehN27oXdvOHECXF3zVURoaCgRERE6DcvJyQl3d3edlilEeSOJjCh+Oh4fs/1eQyJSbHAyiaGnm6wsXZrUcHxA52rb2H61NwvPvsS7HRZjZFAEg3KNjGDNGnWX9UuX1JlM+/aBuXmeXh4aGoqvjw8JiYk6DcvC3JzAoCBJZoQoBElkRPFSFJ3OWErLMGBFqLoA2pAqhzExKKL/6EWR6eezhu1X/QiNrcLCgMa83vRE0VRkZwd//w3NmsE//8DLL8OKFXlqFYyIiCAhMZFl/frh6+ysk3ACw8MZsWEDERERksgIUQiSyIjiFRwM9++DsTE0alTo4nbdr0dYsh32xnH0ktaYUsnSJB6YASzgY//2DKt7DjuzIpo67+0N69ZBly6wciXUqgUffZTnl/s6O9NIVi8XokSRwb6ieGV2KzVuDGZmhSoqXTFgeWhrAAZXOYKpYVphoxN68wvu1jd5kGjBrP1FsDv249q3hx9/VI8//hhWry7a+oQQRUoSGVG8Dj3a+0gH42P23q/N7URHbIwSZKZSqZfOuLpLAPjhn+d0vzv2k155BaZOVY9HjVIH/wohSiVJZETx2r9fvW/btlDFZCgaloeq/7kPrHwUc0NZN6a0a+J6mu6Pdsd+e1eXoq/wm2+gRw9ISlIH/96+XfR1CiF0ThIZUXzCwiAoSB1c+WiH4oI6GOHLjQRnrIwS6VvpHx0FKPTt2y47MNRksOmSD3uDi3ilcEND+PNPqF0b7t6F55+H+PiirVMIoXOSyIjic+CAel+3LjgUvOtAUeCPR+vG9K90HCujZF1EJ0oAX+cIXmuidvNM3dGV9IzCrzP0VDY26vYFTk5w6pTazSR7MglRqkgiI4qPjrqVjjyoybV4V8wNkxkgeyqVOZ+024edWSJnw1xZ9G/Doq/Qy0vdusDERJ3R9PHHRV+nEEJnJJERxUcHiYyiwB+Pxsb0q/gPNsa6XaBM6J+jRSIz2qqflQ/9OxCTbFr0lbZqBQsXqseffw7LlhV9nUIInZBERhSPBw/g/Hn1uHXrAhdz4qE3l2IrYWqQysDKR3UUnChpXm96ghqOEdyPt+KLgwX/vOTLqFHw7rvq8dixcOxY8dQrhCgUSWRE8Th4UL339YUKFQpUhKLA74/GxvR2O4mdSYKuohMljIlhOt922QnAnGPNCX5oVzwVf/GFOoMpORn69oXQ0OKpVwhRYJLIiOKhg26lc3E1uBDjjrEmjSFVDusoMFFS9ax+mU5Vr5GSbsQ7uzsXT6UGBmq3Ur166iy7Pn1kJpMQJZwkMqJ46CCRWX2vJwA93U7haBqni6hECabRwHdddmCgyWDtxdocvFFM+xFZWcFff6kth6dPw8iRMpNJiBJMEhlR9KKi1D8IAG0Ktvz8LZ7jbKwPhpp0aY0pR+q63GdcI3UPrSk7upGhFPF07EweHv/NZNqwAbeffy6eeoUQ+abXRGb27Nk0bdoUa2trKlSoQN++fbl06VKWa5KSkpgwYQKOjo5YWVkxYMAAwsLC9BSxKJDDh9UBLt7eULFigYo4yAcAdHE5g4tZtC6jEyXcp+39sTFN4tTdiiz+t0HxVdyiBfz6KwBuv/3G0OKrWQiRD3pNZPbv38+ECRM4duwYu3btIjU1lS5duhD/WJ/01KlT2bx5M2vWrGH//v3cuXOH/v376zFqkW+F7Fa68KAyl+mNARkMldaYcsfZMkE7Hfu9PZ2ITDQvvspffBHeeQeARYDF/fvFV7cQIk/0mshs376dl156idq1a1O/fn2WLFlCaGgoAQFqU3J0dDS//fYb3333HR06dKBx48YsXryYI0eOcEymRpYehUxkfvi3GwAt7QOoYvFAV1GJUmRSs+PUdr5PRIIlH+1tX7yVf/EFUW3aYAZU27EDYmKKt34hxFOVqDEy0dFql4HDo+XrAwICSE1NpVOnTtprfHx8cHd35+jRnNcQSU5OJiYmJstN6FFsLDxKTAuSyFx+4Mjm640BeMFlmy4jE6WIsWEG83tsBeCnk005ddet+Co3NCTks884CxgnJsLKlZAim5QKUVKUmEQmIyODKVOm0LJlS+rUqQPAvXv3MDExwc7OLsu1Li4u3Lt3L8dyZs+eja2trfZWpUqVog5dPM2RI5Cerg6edM//rJOvDrVEwYAabMbLQnYnLs/aeYYwtM45FDRM2Nqj+Ab+AhmWljwPpJqZqRtMbtqkjvsSQuhdiUlkJkyYwPnz51m5cmWhypk+fTrR0dHa282bN3UUoSiQQnQrhUbb8vvZ+gC05nNdRiVKqf912YmVSTLHblVh6en6xVr3DeB6ly7qWjMXL/63CaoQQq9KRCIzceJE/v77b/z9/alcubL2vKurKykpKURFRWW5PiwsDFdX1xzLMjU1xcbGJstN6NHevep9u3b5fuk3h1uQlmFIq4pBVEY2hxRQ0TpWO/D33d2deZhoVqz1x7u6Qq9e6oN9++CJWZZCiOKn10RGURQmTpzIhg0b2Lt3L15eXlmeb9y4McbGxuzZs0d77tKlS4SGhuLn51fc4Yr8ioqCEyfU48fGOeXFgwRr/u/fRgBMaihjY8R/3njuGL5O4YQnWPLh3g7FH0DDhtC0qXq8YQNERBR/DEIILb0mMhMmTGDZsmWsWLECa2tr7t27x71790hMVHc0trW1ZcyYMUybNg1/f38CAgIYPXo0fn5+NG/eXJ+hi7zw91dXRK1ZE/I5Vmn5uU4kpRnzXKVbtKoYVEQBitLoyYG/x25VfsYrikDXruqYr+RkWLVKvRdC6IVeE5mffvqJ6Oho2rVrh5ubm/a2atUq7TVz5syhV69eDBgwgDZt2uDq6sr69ev1GLXIs9271fvO+d0nx461F9UxNR+0PoCm+MZ0ilKig1cwL9Y/jYKGVzb3JiXdsHgDMDSEgQPBxkZtkdmwQQb/CqEneu9ayun20ksvaa8xMzNjwYIFREZGEh8fz/r163MdHyNKmF271Pt8divBROJTzalbIYyeNa7oPCxRNnzbZSdOFvGcv+/CN4dbFH8AVlYwaJCa1Fy69N/AdiFEsSoRg31FGXTjBly5ov6Sz8dA34QEA2AKAO+3PoiBRv7LFTlzskhgbtftAMw60JbLDxyLP4hKlf4b/Lt/PwRJN6gQxU0SGVE0MruVmjUDW9s8v2zdOifAkSo2YQysdaFoYhNlxrC65+ha7SrJ6UaM29xbP707DRqon3NQu5jCw/UQhBDllyQyomhkdivlY3xMUhIsW1YBgJca7MDQQFpjxNNpNPBTz7+xME5h/w1PFv3bUD+BdOmiLvqYkqIO/k1K0k8cQpRDksgI3UtPh5071eMuXfL8siVLICLCBAilZ3XZS0vkjZd9FJ+28wfgrV1dCE/Qw9pRjw/+ffAA1q+Xwb9CFBNJZITuHT8ODx+CnR0891yeXpKaCl99lfnoG4wN04sqOlEGvdH8OI3d7hCVZM5nB0bqJwhLSxg8GIyM1PFh+/bpJw4hyhlJZITubXu0gF2XLuov9Tz4808ICQF7+1TgtyILTZRNRgYZLOm7ERPDNA6F1gPG6ieQihWhd2/1+MABWflXiGIgiYzQvcxEpkePPF2eng5ffKEeDx9+H0gsmrhEmVanwn2+6JC5Cvgcbt400U8g9eplXfk3MlI/cQhRTkgiI3QrLAwCAtTjbt3y9JKVK9V/XB0cYOBAmfEhCm6q3zEau10CrJgxw5N0ffVQdu2qrmadufJvSoqeAhGi7JNERujWjh3qfaNG4OLyzMvT0uDTT9XjN98EK6uMIgxOlHUGGoWZ7ZYAMZw5Y8U33+gpkMzBv1ZWcP8+bN4sg3+FKCKSyAjdyuxW6t49T5evXAmXL4OjI0yaVIRxiXLDzToSmAzAxx/D6dN6CsTaWk1mDAzg/Hl1ELwQQuckkRG6k5qar/Exj7fGvPWW+ntfCN1YSrt2UaSmwvDhEB+vpzDc3f9bgmDnTnXFayGETuVtSokQebF/P0RHQ4UKeZp2vWKFOkvV0REmTiyG+IReheey4u3Dhw8BiHr4kLt37+a7XAsLC2xzWD160KDdnD//PBcvmjBo0AM+/fRGgTcgDQwMLNgLQV319/ZtOHcO1qyB8eMlaxdChySREbqzaZN637u3OkbgKdLSYNYs9fjtt9WhBKJsSkmJBWD9hg05Pn/u0f1ef38C/f3zXb6xkRETJ07UJjN34+LQAK+/PhBoDexl61ZHtm6dDvya7/IfFxsXl/8XaTTqfkxhYep4mdWr4bGNcYUQhSOJjNANRfkvkenT55mXL18OV6+CkxNMmFDEsQm9SktTl+v38uyOg0OVbM/HRl6BEH+8PNtT26F6vspOSAgnMGgDCQkJ2kQmKikJBZjfvj1+1avz+5lNfH98AMYGC1jcxwNf59B8v4etV67wkb8/SQXdesDERF0sb+FCuHVLHRTfUE/bKQhRxkgiI3Tj9Gm4eRMsLKBTp6de+nhrzDvvSGtMeWFm5oC1tVu28+YJEY+et8/x+YLytrenkZsbDV3PERJVm02XfPjI/3UCxv2CvXn+EpLAiIjCB+TgAP37q6s/njiBg6Vl4csUQshgX6Ejma0xXbqAuflTL12yBK5dA2dneP31og9NlG8aDSzpuxEvu4cER9kzamM/MpQCDpYprBo1oE0bANwPHqSBfqIQokyRREboRmYi8/zzT70sIQFmzFCPP/hA3Z5GiKJmZ5bE2kGrMTVMY/Plmszc11Z/wbRrB97eGKSnsw4wjI7WXyxClAGSyIjCu3JF7VoyNPxvn5lczJ0Ld+6Alxe8+mqxRCcEAI3c7vJTz78B+PRAO5aerq+fQDQa6N+fZGtrqgKeH36I/pYgFqL0k0RGFN6aNep9x47q6N1cRET8t8P1Z5+BqWkxxCbEY0Y3PM30VgcBGLv5efYGe+knEHNzrnfpQgJge+QIzJypnziEKAMkkRGFt3q1ej9w4FMv++wziIlRdy8YMqQY4hIiB5912Mvg2udJyzCk/6rBXAx31ksciY6OjMt8MGuWuo2BECLfJJERhXP5Mpw5o3Yr9euX62XXr8OPP6rHX32lrtouhD4YaBSW9N1IyyqhRCeb0XPFMMLi9DNYazlwf/Bg9cHIkeqaBEKIfJE/J6JwMruVOnVSl+jNxYcfqjsYdOnyzNnZQhQ5M6M0Ng5ZibfDA0Ki7Om5Yjgxyfrp67w9dSq0aKGuit2vnx73UxCidJJERhROHrqVTp1Sl84A+PLLYohJiDxwskhg67DlOJonEHC3Ij1XDCM+xbjY41CMjdV/CFxd1c0lX3lFdsoWIh9kQTxRcOfOwdmzYGwMffsSGhpKxBMLhykKvPaaN2BD9+6RKEoIp07lXmTmnjbhERFk7rqT2x49QhRWdcdIdo78gw5LR3Eo1IO+q4bw15A/MTdOK7YYMj/zlp99Ro3x49H8+Sc3K1YkfNiwfJfl5OSEu7u7rkMUokSTREYU3B9/qPc9exIaH4+Pjy+JiQlPXNQfWAcksW1bI7Zty9vuv+vXr+foE+dSUpILGbAQ2TVyu8u24cvo/MeL7L5eje7LR/DX0D+xMS3az1vmnlAjRozQnpsMfA+4ffstw7/9loP5LNPC3JzAoCBJZkS5IomMKJj0dFi2TD1+8UUiIiJITEygX79lODv7ApCWpmH16lrExUGjRg9p0mT9M4uNiAhk/foR+Pr0p5qFOpU7MvIKwSH+pKUV33/Jonzxq3KL7SOW0XPFMPbf8KTj7y+yffgyHC0Si6zOJ/eEAkBRiPT3x+HqVfaYmxPUvz+peVw1MjA8nBEbNhARESGJjChXJJERBbNnD9y9q+4f06MHXLgAgLOzL25ujQDw94e4OLC1hW7d3DA2zvs+OhYWTtp9dxISpGtJFL1W7qH4j1pK12UjOHmnEm2WjGbXyD+oaB1bpPVm7gmlNXAg/PYbxvfvU3f/fnWn7GfsJi9EeSaDfUXBZHYrDRmS48p2kZFw5Ih63KWLOoxGiJKukdtdDry0mIrWMVwMr0CrRS9z/aF98QaRuVO2qel/O2ULIXIliYzIv5gYWP+om+jFF7M9rSjw99/qLtdVq4KvbzHHJ0Qh+DpHcGj0IqraRxIcZc9z/zeWoIhaxRtE5k7ZACdOqGs1CSFyJImMyL/ly9XdH319oVmzbE+fPQvBwWBkBD17qlvLCFGaeNlHcWj0Ihq53SEiwZLZB2cAxbw52GM7ZfP332pXrhAiGxkjI/JHUeDnn9Xj8eOzZSlJSYbalvC2bdV/LIUojdys4zg4ejFj/3qeP8/XBX5i3r87aF/rH0wMC7fJY3R0NA8fPgQg6uFD7uaWpNSsiX1wMGY3b5L2559E9OuHYmaW46Xhj5Y+yLUsIcooSWRE/hw/rja5mJnl2K108KA7iYng4gJ+fnqITwgdsjBOZXn/dWQop1l1YThbg7vS6Xcf/hywlko2BRsEHB0dzfz58zn1aBbeXn9/Av39c73eHBgH2MfGkvj77/wBZORwXWb6MmDAC1y+fElmLolyQxIZkT+//KLeDx4M9k8OghxGcLA9BgbQp49MtBBlg0YDvWtuZNWFP7EwWsPBUA/q/vQ6v/b+iwG1AvNdXkJCAqlpaVR0awJ3T+Ll2Z7aDtWf+poziZG0urQJr4xURjn6cNa9dbbW0GsJERC0nuTkJJmCLcoVSWRE3kVGwsqV6vH48VmeCgszBhYAapeSW95nWgtRSmzjhw7v8uO59wm4W5EX1gzm5Qan+L77dqxMUvJdmompNQBmZvbapQZyZe1GoKExdc7/iceDIFJt3blVJWuTp0W+IxCibJDBviLvFi6EpCRo0ACaN9eeTkuDjz7yBOxwdo6nVSt9BShE0apkdZcjY35jequDaFBYdLoRDX8Zz7FblYu87geONbhWrQsA1a7vxPHB5SKvU4jSQBIZkTcpKfDDD+rxtGlZmrVnzICAAGsglvbtQzCQT5Uow0wM0/mi4x78Ry2hik00VyMdafHbGCZv605sskmR1n2rUnPuuDVCA/gGrsMy7l6R1idEaSBdSzoUHR1KQkLEsy98hogItd+9RM0+WLUK7txR+4wGD9ae3rYNvvgi89FY7Oze1Ut4QhS3tp43OPPqT7yxvTt/nK3PD/88x4YgH37ssYXeNYuotUSj4Yp3D8wTI7GPCqHeuRWcajiGZDPboqlPiFJAEhkdiY4O5cf5PqSk6W5vloEDBhB0+bL+B+0pCnz3nXo8aZK68igQFASZG/QOGnSf1atXA5LIiPLD3jyJ3/ttYGS9M7y6pRfXHzrw/MphDPC9yJyu26liG6PzOhUDQy7UGkTD04uxTAin3rnl/NvwZZ3XI0RpIYmMjiQkRJCSlsj7Pv3wsHAudFkHgtazITm5ZMw+2LULTp8GCwvtIN+ICHWxu6goaNECpk69zerVeo1SCL3pXO065177iU/3t+V/R1qwLrAW2656817LQ7zV4gjmxrrd8DTN2JyzdYfT6N/fsEwIp875lVzy6qjTOoQoLSSR0TEPC2dqPGsGwjPEAvmf1FlEFAU++UQ9Hj8eHBxISIC+feH6dfDygo0b4eZNRY9BCqF/FsapfNlpN0PrnGPith4cCvXg430dWHS6If/rvJP+voE6XeU62cyWs3WH0/D0Yuyib9AuZB8aQH4SRXkjwzLF0+3eDUePqgvgvfMOiYnqGjGHD6u7Wm/ZAs6Fa4ASokyp7xrGgZcW8+eAtVS2iSYkyp4X1gym4++jOBdWQad1xVu5cL72YDI0BlSLus4cnZYuROkgiYzI3ROtMUl2rvTvr+Y2lpZqEiMbQgqRnUYDQ+qcJ2jCfD5qsx9TwzT8Q7xo8MurvH9oCAnobu+OKHsvgmr2BeAN4FOdlSxE6SBdSyJ3O3bAkSNgZkbkK+/SpzMcOqQOldm6FVq21HeAQqjCw8O1x3nawygP0tLSMDIyKnSZr/msoFelHXx6bABbghuz5GJ7zLmMX8wy4ECB43vcfZe6RMaH0ermYT4Cbi9dCo0a6aRsIUo6SWT0LF3RcDvRkbAkW8KTbUjOMCI5OYYg0oB7BAWZU7Om2gJSrNLS4K23AHg49HWa93PjyhW1O2nTpv825RVCn1JS1P2O1m/YoD137tH9s/Ywyg9dlNmE2TjSnu18z33qsjfyDaAjl+PX0kAHMV50rs3mm4f5Cqg0bx7UrAmvv66DkoUo2SSR0YPIFCv23q/D8cjqXIypTEK6aQ5XDQVg+HC1mbpqVXUTxnbtoH17dZCtLgcOZrNoEVy4QJKlA3VXfcjtBPDwUFtiatUqwnqFyIe0tCQAvDy74+BQBYDYyCsQ4p+nPYxyExl5heAQf225uigToDHQ9sFU1t2owR7NbJKVOvx0sw7nEwN5tepOKpo/LHDZAF8D1sCHABMmqP8BjRpVqDKFKOkkkSlG56KrsCK0Nf9EepPx2PAkM4MUKpo/xMkkBnPDFFLTkrgZFcZNXLCzq0dUlDHXrsG1a7Bsmfoad3c1oenWDbp0AQfddblDbCxpH3yMEfBu/Mfcxp62bdVtllxddViPEDpiZuag3a/I/NGilHnawygXCQnhWcrVRZmPl92Un6hY4Tr/F9YDAyZwMMKXYw+qM7DyUUZ4HMTcMP97N2X6CBg3ZAgVVq6E0aMhI0O9F6KMkkSmGFyLc2HBtW78G+WlPVfb5ibtnC/QwC4YL8v7GGr+mzQZG3uXv08tZCGwZ08AlSs34swZOHAA/P3h+HEIDYWlS9WbgQE89xx0767eGjWiwNsEXLkCNwfOoENEGFfw5lfD1/jyc7WXSXazFkJ3zAxigTd4y+s6ux9O5lRUVVbcbM2OsAaMq7qLzhXOFrjV9dabb1LB3h5++gleflndYuSJjV6FKCskkSlCienGLA5pz7pbzcnAACNNOl1dTzOk8mEqW0TmuZwKFaBzZ/UGEB+vjsHduVPdIuDCBXWG9NGj8PHH6nTojh3VheqaN1dnFllZ5Vy2osDly+qad5s2wYPdpzjB9wD83uQHTiwxoXbtwn4lhBC5cTO9yf/q/c7hBz78dK0Ld5IcmB3Un213GzK1xhbcLQqw7YmBASxYoK7C/f338OqrajIzaZLu34AQeiaJTBG5HleBmYEDCU1QF1lp63SB16rtxMUsutBlW1r+l9h88w3cvAnbt6tJze7dEB6udgOtXPnfaypXVruFHB3V33GpqXD/Ply9CgkJ6jWGpHGMcRiSwb12Q5jl363QsQohnk2jgVZOQTRzuMqaW83540ZbTkd7MebkawytcogRHgcxMcjn6sAaDcyZoyYz33wDkyeru9e//XbRvAkh9EQSmSKw/V595lzpRUqGMU4mMbxV4y+ec7xaZPVVqQKvvKLeUlLUlpmDB9VWm4AANWG5dUu95cTYOIP69eP5wPhLmhwNIM3amvvvv8ydU6fyVL+Tk5MO340Q5ZeJQRrD3Q/Rwfk831/twfHIGvwR2pa94XWYVv1vGtkH569AjQa++gpMTeGzz+Cdd9RfCF99VfD+ZyFKGElkdGzTnefZeq8nAM85XOG9mhuwM0kotvpNTKBtW/WWKTJSHfty8eJ9Xh3/ISmpqUAKEAlcJTX1BuknU+nx6PpXYmNZ0qVLnuu0MDdn9Zo1OnwXQpRvbuZRzK6zggMRtZh/tRu3Ex158+woerudZHzVXVgaJee9MI0GZs1S+5ffew/+9z+4fRsWL1YTHCFKOUlkdCQjA2CpNokZ6b6flzz3YaDR/84nDg7qYGBj41ukpP7Ksn798HV2BqwAdzRpafiuW4dJdDQPvbyY1KkTk/I4yjAwPJwRGzYQFRVVlG9BiHJHo4G2zhdpYn+NhcGd+OtOUzbfbcI/kd68WWMzTR2u5a/Ad9+FihXVwb9//glhYbB+vbo4lBClmF4TmQMHDvDNN98QEBDA3bt32bBhA3379tU+rygKM2bM4NdffyUqKoqWLVvy008/Ub16wddxKArp6bBnjxfQCAPSebPG3/Rw+1ffYeXK19mZRm6PppAqirrrY3Q0WFtj/8IL2FtY6DU+IcR/LI2SmVp9C+2cLvDN5T7cTbLnnXMj6ekawOvVdmBhlI+p2iNHgosLDBgAe/eqK1v+9Ze6SJQQpZReO0nj4+OpX78+CxYsyPH5r7/+mnnz5vHzzz9z/PhxLC0t6dq1K0lJScUcae4yMmDtWggOtgeSea3aTyU6icnm+HE4e1b9969/f3X/ASFEidPQPoTfmvxEv0rHAdhyrzGvBLzKxZhK+SuoSxd1LQcXF/Vnv0kT2LdP9wELUUz0msh0796dzz77jH79+mV7TlEU5s6dy4cffkifPn2oV68ev//+O3fu3GHjxo3FH2yONOzb50lQEBgaZgD9qGd77pmvKjGuXVPncIP6y83TU6/hCCGeztwwhcne25hTfzEuplHcSXJg0r9jWHajNRlKPhadadgQ/vlHXXQqIgI6dYL589UWWiFKmRI7bD04OJh79+7RqVMn7TlbW1uee+45jh49muvrkpOTiYmJyXIrCurP+7dcveqAgQF07nwd2FYkdRWJO3dg9Wr1jdSvrw6iEUKUCg3sbvB/TX6mvfN5MjDgt5COfHvlTcA974W4u6vTG4cNU/vHJ02CsWMhMbHI4haiKJTYRObevXsAuLi4ZDnv4uKifS4ns2fPxtbWVnurUqVKkcS3ZIkLMBWAPn3A3b1oEqaiYBoVBcuXq3O1vbygV68i3rhJCKFrVkZJfOS7luk+67EwTOZqXHXgDDA474VYWKj7nvzvf+p07EWL1H9qAgOLKmwhdK7EJjIFNX36dKKjo7W3mzdv6rwORYGwMBMA/PxuUq+ezqsoMjWB6n//ra6C5+YGgweDkUxeE6I00migi8tZfm38M1UtrwF2wEo+/tiDuLh8FPLmm+qqmhUqwLlz0Lgx/N//SVeTKBVKbCLj+mh3wrCwsCznw8LCtM/lxNTUFBsbmyw3XdNo4N13bwIdqVs3XOflFxXzK1fYD5gkJKi/sIYPl3UkhCgDKpo/5K0a/wM+AdLZssWRZs3g4sV8FNK5M5w5o94nJqorbA4ZAg8LtyO3EEWtxCYyXl5euLq6smfPHu25mJgYjh8/jp+fnx4jU6k9MXv1HUbe7dhBjTFjcAESHB1h1Ch1rwMhRJlgqMkAZgLtcHZOITAQmjZVe47yzNVVbZn56iu1pXb1aqhdW52iLUQJpddEJi4ujtOnT3P69GlAHeB7+vRpQkND0Wg0TJkyhc8++4y//vqLc+fO8eKLL1KxYsUsa82IZ1AUdTZCz54YxsezD7jSq5dMsxaizDrEihVBdOqk9iCPHKlufJ3nVSsMDNStDA4fhpo14e5ddSDgsGHqDCchShi9Do44efIk7du31z6eNm0aAKNGjWLJkiW88847xMfHM27cOKKiomjVqhXbt2/HzMxMXyEXu8BCDLoziI/H/bPPcHg0xfpa69Z0OXiQXampugpPCFECOTiksX27ur3SzJmwcKE623rNGvD2zmMhzZrB6dPwySfqppN//qnuSjt3LgwdKhMERImh10SmXbt2KE8ZTKbRaPj000/59NNPizEq/UtJidUejxgxokBltASWAA5AKvAuMOfgQQBWr1pFg0mTsJWlyYUoswwNYcYMaNFCHQ53+rQ6hnfRInVh3zwxM4Mvv1Rf8PLLcP68WtjChWpLb506RfkWhMgTma5SAqWl/dcG3L//MpycfPP8WtOUeHoH/ELHcyswQCHS0oVfO84m3rU+/SMCWb9+BGnp6SQkJEgiI0Q50Lkz/PuvOm730CF44QWYMkUdBmNiksdCmjaFkyfVadqffw7790ODBuraM598Ivs1Cb2SRKaEc3Lyxc2t0bMvVBTqnltBl11vYx13F4B/G7zEjq5zSDKzw62I4xRClFyVKqlbK33wgdpLNHcuHDsGq1ap6+LliampWsCIETBtmrrh5Ny58Mcf8OGH8NprMgtS6EWJnbUk8s7l3hlGL2nLgA0jsI67ywMHb5YP28KmPotJMrPTd3hCiBLA2Bi+/ho2bQI7OzWRadRInaSULx4esG4d7NgBPj7w4AFMnaoeL1umbkAnRDGSRKYUc4oI4oW1Q3j1l4Z4hB4kxdiC3R2+4MfXznOleg99hyeEKIGefx5OnVLHyzx4AD16wEcfqbsU5EuXLurieQsXqotrhoSoU6QysyNZTE8UE+laKoUcHlyh7YFPqXtuBQaK+t/PuTpD2NXpa2Jsi2ZLBiFE2eHlpc6unjYNfvxRnd105AisWKFuiv240NBQIp427bpxYzRr1lDhzz9xXbIEwzNnoHt3Yhs35u4rrxDXpEm2GU5OTk6457lPS4ink0SmFLF/eJ02Bz6j/pnfMVDUf58Cffqyr91MwlxK0T4JQgi9MzWFBQugZUsYN04dQ9OwoTpupnVr9ZrQ0FB8fXxIyONGkg7A+8BEwDogAOuAAA4BnwK7HrvOwtycwKAgSWaETkgiUwrYRt2gzcHPaXB6MYYZaQBcqtGLfW0/4W7FxnqOTghRmg0bpiYwL7ygbmnQvj188QW8/TZERESQkJjIsn798HV2znOZl+PicDl9GqegIFplZLATiHd25m6jRhw3N2fExo1ERERIIiN0QhKZEswVGHLoK9oEbcAwQ13E7op3N/a1m8ntSs30G5wQoszw9VUXzHv1VXW87rvvql1PU6caqs87O9PILZ9zH6tXh9hYtaCAACzDw/HesYOKjo70BRkULHRGBvuWQCZpyQwArgPtL67GMCOV614d+G30IZYP3yZJjBBC5ywt4fff4Zdf1PVl/voLhg/3AfKw/ENurK2hWzd44w11ZT5jYywePGAD4Dt0KKxcWYBRxkJkJYlMCWKYloxnyD56Xd9JF8AcuOpSnyWj/Pn9xT3cdG+p7xCFEGWYRqOOlzl6VB0QfOeOKXCENRfbFG4SkpWVujLflCncbdiQGMD86lV1qwMfH/jtN0hJ0dG7EOWNJDIlgCYjncq3jtH8+Pd43tiPcUYaoUAP4JvnfyPEs52eIxRClCeNGqlTtNu2jQJM+fLQcAavHUhUUiH3ubOw4G7TpngAd159FRwc4OpVGDtW3QTqhx8gjwOLhcgkY2T0zD7yGt7XtmOZoE5vjLdw4rRdVf648w/bgHGyMZsQIp+2bt1aqA1nM3XsGMz+/VEYar5kzcXaHL9diRX919HS/Wahyo0C/Fu1ovbw4TitW4fLH39gfPMmTJ5M6iefcH/YMMIHDiTDyipP5cl07vJNEhk9MUt8iPe1HTg9uARAirEFwV4duOvakLD751Hu6DlAIUSpEpkShwZQgI8++kinZfdWDnCAFYRGe9NmyWg+brOfD9ocxMgg/wN278apcT6+Ia4pMBp1c1vPyEgqzZ+Pxfz5/AB8D0Q+o0yZzl2+SSJT3JQMKt86jlfIXgwz0sjQGHC7YlNueLYjzaiQzbZCiHIrLi0JBegH1Hdrga2ta6HLPBkdyvK7J2ngpuBztyFXq+9k7RU/Ptnfnt3BVVnefz3uttH5KjMqSY1zfvv2+FWvnuW5yIwMuHoV19OnsY+K4mPgAyMjImrV4n7duqRaWmYrLzA8nBEbNsh07nJMEpliZBF/H59Lf2ETexuAh3aeXPHuQYJl3tdnEEKIp3EGfGy9cHHxLnRZEQB3T2Jqao1CHPPaL6FvnTu8tqUXh0I9qP/zq/zaezMv1LqY77K97e1zntJdqZK6Il9QEBw8iOG9e7icPYvLhQvqjtstW4K9fWHfmihDJJEpDkoG7qGH8byxHwMlnTRDU65V68xd10bZlu4WQoiSbHi9c/hVucXQdQP453ZlBq4ZxIh6Z5jXbRv25km6qcTAAGrVUhe4uXoVDh6EmzchIEAdhVyvnprQ5GORPlF2SSJTxEyTY/ANXI9d9A0AIhxqcKVGT5JNbfQcmRBCFExV+4ccGr2IT/a148vDrVh2tj7+wV789vwmunpf011FGo26sJ63N9y4AYcOwbVrcOaMevP1xdzXV3f1iVJJEpki5BgRhM+lvzBOSyTN0IQr3t0Jc6kvrTBCiFLP2DCDzzvupVeNy4za2I8rkY50Wz6S8Y1P8r8uO7Ey0eG6MBoNeHqqt9u31YQmKAgCA/ENDGQrELFxI6d0V6PMhCpFJJEpApqMdKpd20HlOycAiLVy46LvABItHPUcmRBC6JZflVucfvVnpu/uyLx/mvNLQBN2XqvGkr4baeNxQ/cVVqoEgwfD/ftw6BDK+fN0VxSYNYv9s2bxOVk3qCwomQlVekgio2PmqQk0OLMU2xh1nYXQyn4Ee3VEMTDUc2RCCFE0LIxT+b77dvr4XOLlTX0IjrKn3ZKXmNL8GLPa78XSJFX3lVaoAP3785ebG2E7dzJGo6GtotAWdYPKew0bEu3hUaAWcJkJVbpIIqNDfkD/oPVYpiaQamRGoE9/Ih2rP/N1QghRFnTwCubsaz8xbUdXfvu3EXOO+bExyIdfem2mc7XrRVJnnJUV44EaXbvS7uFD7QaV1XbuVAcDt24NtWurA4hFmSTfWV1QFFpfXMc+wDI1gXgLZ041ekWSGCFEuWNjmsz/Pf8XW4cto4pNNMFR9nRZ9iKjNvblQYJ5kdWbbGGhblA5ZQq0agWmphAeDuvXw/z56mwn2aCyTJJERgdaHP2WEYe+wAS4bufFqUZjSTR30HdYQgihN92rX+XC6wuY3OwYGhR+P9MA3wUTOXKzVdFWbGkJHTuqCU379mBuDg8fwubNMG8eHD8OqUXQ1SX0RrqWdOBc3WE0PfINX8bfp5pXJ2oYmuis7IiIwu+XUhRlPSk4OFgndRRljEKIwgkPD8/3a95rsJjObvt468BILj2sxI8npgI1uHJ3GfWc7gJgYWGBra2tboM1M4M2baB5c3X9maNHISYGtm+HAwfAzw+aNlVbbkSpJomMDsRaV2TGoHX8sLg1v+hoanUcoAHWrx/xrEv1KnPflMy9XXQVb0pKnE7KEUIUXlqautDd+g0bClzGQD7mEO9ygA/JoCdTj7Zj49FZ+PEdZkYKEydO1H0yA2Bi8l/Scvo0HD4MUVGwZ4963LgxPPccWFvrvm5RLCSR0ZFkYwudlpeEuvnbNM/21HTQzVib45FXWBTir5OyMmXum/JFkyaEnDyJr09/LCycClxeZoyZvziFEPqXnq52xXh5dsfBoUqBy2nGfTzujWfpnZdJow17+JJAk4l0SnmRhISEoklkMhkZQZMm0KgR/9/evYdVVaUPHP8eLoeLKCggF+UAaolXVBDEy5g/KXLM0i7jPFlhpmUjo+Zkkk068/QrnV/37EI3ZUodzUbUskxDpCyvKAoKiIqCykWU+13O+v1x8uQJNBX0cI7v53nWg2fvfVbv24LNy9l77UVamuFZNMXFhmJmxw7o18/w6Y13y9eoEjeXFDJtnJ9jR25v38x6JNcht7q4VfppTrf27akDujt70L4F8d7IGIUQLePo2KlFP98AXavT4MxIHvZ5m2+Lp3CmviufsZWyxN28f9+P+LavaKVoL8PGBoKDDcscZGUZipjc3F+fFhwYSIeePZHHlloOudlXCCHETTfYNZnPwt7lj55JaGhk/bEwgt6N4c0dQ7igvwm/mjQaCAqCxx+HqVMNU7Q1GsjJocemTRwGPFeuNFyGEm2aFDJCCCHMwsWulul+q5jGYAZ1Pk5FvQNzNt/NoA+fYnvuTXwQXZcu8OCDMHMmDBlCo709QYDf66+Dry9Mm2aYvi3aJClkhBBCmJUP+9lw3//x8bgNdHKqJq3IixHLphC9bjxnKm7iTbhubhAVRdqkSTwN1HTvDjU18MknhpuChwyBzz6DWrmHry2Re2RuUdczjbI5JSUlAFRU3ODr2kIIq3auuIixPhuJeGgbi3ZPYEXmCD47MIAvDwUxc+Amnuy3BUe7C03ed/EcVFpSQn5+vsm+653WrddqiQOmrV7NoJoaeP99+PJLwzNodu2COXMMl6SmTIFrWH07NzeX4uLWuw9QFrY0kELmFtWSaZSXSvvl6569e/EB6uvrWqVfIcStob7e8EfQpeekHrzJVAazibc5dSGCxXvGE7cnmDt5ll6sNbkR9+I5aGtSEhlJprMy7e3sWjatW6MxPCV4+HB480349FOIi4O8PHjtNUOLiDAUNBMnXnEKd25uLr2Cgqiuqbm+WJohC1saSCFzi2rpNMqLKs5nw4kkPD16QXEGFy40/YtJCCEu5+KjFn57TgoBxql4kksO8+/T93OuIZA1/Je+LllM7foF3ZxPAb+egwIDRtHnkkdVVFefJSMzofWmdXt5wfz5MG8ebNxoKGo2bjTMetqxA2bNgj/9yVDUDB/eZLHK4uJiqmtqWD5hAr08PVscjixs+SspZG5RrTGNEsDpl+nS9vbtUC3uTQhxq7rcOWlchzwiu77PqrxhrMobRnplT57J/DtjfVKYEpCEk2PxL+/v2CrntN9lawv33mto+fnw+eewdKlhKnd8vKH16GEoaB57zHAj8SV6eXoyyOcmxHkLkZt9hRBCtGlOtg08HrCNfw9+l1Ge6Sg0fJ0fyqO7/8rOc/cCZlpmwMcHnnsOMjIMD9Z74glwcYGjRw2f3uh0cM89sHYtGlnf6YaRQkYIIYRF8HYsY0HvL3lnwFJuczlDVaMjiWejgUxSykagV2Z6jJ1GA0OHGmY35ecbPqEZPhz0esPlpwceoO+YMbwGOP5yc7JoPVLICCGEsCj9XHOJG/Qxz/VcR3u7c0AAy/NnM33fk6SUBJo3OBcXw4ymH380XG6KjQUfH+xLSvgb0HvNGkOhs38/1NebN1YrIYWMEEIIi2OjUYzxTuXpbjHA8zjaVJFd6cOzB6OZd3ASOdVdfrePG+7222HRIsjN5dibb7IOUBqNYdbThg3w+uvw1Vdw+jQoucvwesnNvkIIISyWvU09sJgXuuWTWjOd9WcGs7vkNvaU/J1+BHJXWRZmv7fWzo6yP/yBCcCBSZPon59veFJwSYnh6759hllRgwYZFq90cjJzwJZFChkhhBAWz8Wugpgem5jQZRef5owm6WxfDvIof/iikejgA7w48gcC3ErNHSYXnJ0N988MGwYnTxqKmMOHobAQvv0WNm+G3r0NRY2/f5Np3KIpKWSEEEJYjS5OJSzo/SXjCtfzQWYw2eoelqYO4rODwTwxcD8vjPgBP9dyc4dpKFACAgxtzBhISzMUNYWFhn+npUGnToaCZsAAaNfOzAG3XXKPjBBCCKvTwzmXhxnHV/ct5s5ux7igt+XDlFB6LJnJX78Zw6nyDuYO8VdOThAWBk89ZVigMiQEtFo4fx6+/x7eeMOwREJOjtxL0wz5REYIIYTVCvHKYfOAz/nxpI4F20ax7UQg7+4J58OUUB7pf5Dnhv1EkEfz6x9lZGS0WhxX1ZdGY1ht29cX7roL0tMhJQXOnIFDhwzN3R0GDcLW7Df+tB1SyAghhLB6I/xzSYr+N0k5Afwz+Q6STwawLHUg8akDGB+UyXPDfmJIV8OyB/mVlWiARx55pNXjqKisvLoDtVrDZaVBgwzPpklJMVxuOncOtmyhn40NKwDn9HTDMbcwKWSEEELcMkYFnmBUYDw7T3XlXz8NY11mLxJ+aYN9TzMzfBcX9Bko4N1Ro4i47bbf7fNqfJOdzYtJSdTW1l77m318DE8IvvNO46c0Nvn5PAyc2r/fsBTCLUwKGSGEELecIV1PkTBxNRlnPfi/n4exMq0fe8504dGE++ng8D9AH1wdTrXaukgZxc1fvromDg6G+2dCQsg4eJAfEhIYcs89dG15zxZNbvYVQghxy+rlWcyy+9aT98yb/O+oRHzbl1Ne5wYs4LFNcUQtf4RV6X2pvdC2/u6v8fRkOtDYsaO5QzG7tjUyQgghhBl0blfFC3/4keeG/cScze14d3cIijvYfKwHm4/1wM2xhj/3SedPfQ4xwj8XOxu9uUMWv5BCRgghhPiFva2eIV1/5t3dz7L0rqfJqZ1IfOoA8spdiUsZTFzKYDydq5gQlMGDvQ8zMuAkWttGc4d9VXJzcylujUtcv+Hh4YFOp2v1fq+WFDJCCCFEM3xdCnk8IomFI7exNSeQ1Yf6kpAZxNnqdny0L5SP9oXioq1jVMAJ7up+jKjuR+nR6XybfBhvbm4uQUG9qKmpbvW+nZycyczMMFsxI4WMEEIIcQW2Noo7ux/nzu7H+WDs1ySfDODLw71JyAyiqMqFr4705KsjPQHQuZYy1C+PiK6nGOqXR7BXAfa25r8MVVxcTE1NNRMmLMfTs1er9Xv2bAYJCY9QXFwshcyVvPfee7z66qsUFBQQHBzMkiVLCAsLM3dYQgghbjH2tnoiux0nsttx3h+7kQMFXnx3rAebj3Vne66O3DI3csvcWJXeDwAnuwb6di7CyT4T0LGv0I2+/i74tK/ERnPzn9Lr6dkLHx/reu5Mmy9kVq9ezZw5c4iLiyM8PJy33nqLqKgosrKy6Ny5s7nDE0IIcYuy0SgG+hQw0KeA2OHbqazXsvNUV3bkdWXHKT92nupKSa0Te850AboAo5n/E8z/CbS2F/B3LSPArZQAt1J821fQuV0VndtV4elchYdzNe20DbSzr6edtgFHuwstKnwMKxvY0dBgQ20tNDb+2vT6y79ubp9e/2ufZWUewHSOH3c023P52nwh88YbbzBt2jQef/xxAOLi4ti4cSNLly4lNjbWzNEJIYQQBi7aeuOnNQB6pSH7XCfSirxYmaZIyLSli0sE+VU+1DfakX3enezz7lfdv7N9Pc72hqKmobERmM8993jj4GBY3cDGxlBs1NdDQ4Pp1wsXBgENLFvW2lnrgA9ITT3Jgw+2dt9Xp00XMvX19aSkpPD8888bt9nY2BAZGcmOHTvMGJkQQghxZTYaRU+Pc/T0OEddYxoJmWv59K77+Z/ewZyu6MCJUjdjK6h04Wy1M0VV7Siqase5ameqGuypvWBv7K+6QUt1g/aS/0In8vNbEJ8N2Nr++vViu9JrGxtDA0PxVFtbyokTifj69r/+QFqoTRcyxcXFNDY24uXlZbLdy8uLzMzMZt9TV1dHXV2d8XVZWRkA5eWtu2x75S/rZZw5k0J9fSXnzmUBcLA4g/MVLfjOAsrKT3H2l39nlORQ29jQov4uyi43rCNyBkgtyca1seX/Ty72ebT6LHZAXQv7vdjfpXmXlZ+ioAV9N9dnS/u9XJ8t6fv3+rzWfq+mv2vt+1r7vJp+r6fPK/Xdkv4u129r9Pnbvs9VF7Ran2AZP9+X9nkx7xv1811bV8pJYFNGBq7X+Nt+7ylDnz/n5FDV0PzYaIBrudBzuT47AP07GFpz/Sqloa7RgdoLWur0jtRe0NKgt+d0RSXvpKYSGzsff39/lNKg14OtrcLWVmFvr7Cz+/XriRPZPPvsTO6++w06d+6BRkOrzK4qLs7ixIkn6ds3mfJyr99/wzW4+Htb/d6K36oNO336tALUzz//bLJ97ty5KiwsrNn3LFy4UGH4PpAmTZo0adKkWXjLy8u7Yq3Qpj+R8fDwwNbWlsLCQpPthYWFeHt7N/ue559/njlz5hhf6/V6zp8/j7u7O5pWKD/Ly8vx8/MjLy+PDh06tLi/tsjac7T2/EBytAbWnh9IjtbgRuanlKKiogJfX98rHtemCxmtVktISAiJiYmMHz8eMBQmiYmJxMTENPseBwcHHBwcTLa5ubm1emwdOnSwym/KS1l7jtaeH0iO1sDa8wPJ0RrcqPxcXV1/95g2XcgAzJkzh+joaEJDQwkLC+Ott96iqqrKOItJCCGEELeuNl/ITJw4kbNnz7JgwQIKCgoYMGAAmzZtanIDsBBCCCFuPW2+kAGIiYm57KWkm83BwYGFCxc2uXxlTaw9R2vPDyRHa2Dt+YHkaA3aQn4apX5vXpMQQgghRNtkY+4AhBBCCCGulxQyQgghhLBYUsgIIYQQwmJJISOEEEIIiyWFzDV67733CAgIwNHRkfDwcHbv3m3ukK7LDz/8wLhx4/D19UWj0bBu3TqT/UopFixYgI+PD05OTkRGRpKdnW2eYK/TokWLGDx4MO3bt6dz586MHz+erKwsk2Nqa2uZMWMG7u7uuLi48MADDzR5knRb9cEHH9C/f3/jg6giIiL49ttvjfstObfLWbx4MRqNhtmzZxu3WXqe//jHP9BoNCYtKCjIuN/S8wM4ffo0jzzyCO7u7jg5OdGvXz/27t1r3G/p55uAgIAmY6jRaJgxYwZgHWPY2NjIiy++SGBgIE5OTnTv3p2XXnrJZB0ks41jy1dEunWsWrVKabVatXTpUnXo0CE1bdo05ebmpgoLC80d2jX75ptv1AsvvKDWrl2rAJWQkGCyf/HixcrV1VWtW7dOHThwQN17770qMDBQ1dTUmCfg6xAVFaWWLVum0tPTVWpqqvrjH/+odDqdqqysNB4zffp05efnpxITE9XevXvVkCFD1NChQ80Y9dXbsGGD2rhxozpy5IjKyspS8+fPV/b29io9PV0pZdm5NWf37t0qICBA9e/fX82aNcu43dLzXLhwoerTp4/Kz883trNnzxr3W3p+58+fV/7+/mry5Mlq165d6vjx4+q7775TR48eNR5j6eeboqIik/HbsmWLAlRSUpJSyvLHUCmlXn75ZeXu7q6+/vprlZOTo9asWaNcXFzU22+/bTzGXOMohcw1CAsLUzNmzDC+bmxsVL6+vmrRokVmjKrlflvI6PV65e3trV599VXjttLSUuXg4KD+85//mCHC1lFUVKQAlZycrJQy5GRvb6/WrFljPCYjI0MBaseOHeYKs0U6duyoPvnkE6vLraKiQt12221qy5YtauTIkcZCxhryXLhwoQoODm52nzXkN2/ePDV8+PDL7rfG882sWbNU9+7dlV6vt4oxVEqpsWPHqilTpphsu//++9WkSZOUUuYdR7m0dJXq6+tJSUkhMjLSuM3GxobIyEh27NhhxshaX05ODgUFBSa5urq6Eh4ebtG5lpWVAdCpUycAUlJSaGhoMMkzKCgInU5ncXk2NjayatUqqqqqiIiIsKrcAGbMmMHYsWNN8gHrGcPs7Gx8fX3p1q0bkyZNIjc3F7CO/DZs2EBoaCgPPfQQnTt3ZuDAgXz88cfG/dZ2vqmvr2f58uVMmTIFjUZjFWMIMHToUBITEzly5AgABw4cYPv27YwZMwYw7zhaxJN924Li4mIaGxubLI3g5eVFZmammaK6MQoKCgCazfXiPkuj1+uZPXs2w4YNo2/fvoAhT61W22RRUUvKMy0tjYiICGpra3FxcSEhIYHevXuTmppq8bldtGrVKvbt28eePXua7LOGMQwPDyc+Pp6ePXuSn5/PP//5T0aMGEF6erpV5Hf8+HE++OAD5syZw/z589mzZw8zZ85Eq9USHR1tdeebdevWUVpayuTJkwHr+B4FiI2Npby8nKCgIGxtbWlsbOTll19m0qRJgHl/b0ghI24JM2bMID09ne3bt5s7lFbVs2dPUlNTKSsr48svvyQ6Oprk5GRzh9Vq8vLymDVrFlu2bMHR0dHc4dwQF/+iBejfvz/h4eH4+/vzxRdf4OTkZMbIWoderyc0NJRXXnkFgIEDB5Kenk5cXBzR0dFmjq71ffrpp4wZMwZfX19zh9KqvvjiC1asWMHKlSvp06cPqampzJ49G19fX7OPo1xaukoeHh7Y2to2udO8sLAQb29vM0V1Y1zMx1pyjYmJ4euvvyYpKYmuXbsat3t7e1NfX09paanJ8ZaUp1arpUePHoSEhLBo0SKCg4N5++23rSI3MFxaKSoqYtCgQdjZ2WFnZ0dycjLvvPMOdnZ2eHl5WUWel3Jzc+P222/n6NGjVjGOPj4+9O7d22Rbr169jJfPrOl8c/LkSb7//numTp1q3GYNYwgwd+5cYmNj+fOf/0y/fv149NFHeeaZZ1i0aBFg3nGUQuYqabVaQkJCSExMNG7T6/UkJiYSERFhxshaX2BgIN7e3ia5lpeXs2vXLovKVSlFTEwMCQkJbN26lcDAQJP9ISEh2Nvbm+SZlZVFbm6uReV5Kb1eT11dndXkNnr0aNLS0khNTTW20NBQJk2aZPy3NeR5qcrKSo4dO4aPj49VjOOwYcOaPPbgyJEj+Pv7A9ZzvgFYtmwZnTt3ZuzYscZt1jCGANXV1djYmJYMtra26PV6wMzjeENvJbYyq1atUg4ODio+Pl4dPnxYPfnkk8rNzU0VFBSYO7RrVlFRofbv36/279+vAPXGG2+o/fv3q5MnTyqlDNPo3Nzc1Pr169XBgwfVfffdZ1HTIZVS6umnn1aurq5q27ZtJlMjq6urjcdMnz5d6XQ6tXXrVrV3714VERGhIiIizBj11YuNjVXJyckqJydHHTx4UMXGxiqNRqM2b96slLLs3K7k0llLSll+nn/729/Utm3bVE5Ojvrpp59UZGSk8vDwUEVFRUopy89v9+7dys7OTr388ssqOztbrVixQjk7O6vly5cbj7GG801jY6PS6XRq3rx5TfZZ+hgqpVR0dLTq0qWLcfr12rVrlYeHh3ruueeMx5hrHKWQuUZLlixROp1OabVaFRYWpnbu3GnukK5LUlKSApq06OhopZRhKt2LL76ovLy8lIODgxo9erTKysoyb9DXqLn8ALVs2TLjMTU1Neovf/mL6tixo3J2dlYTJkxQ+fn55gv6GkyZMkX5+/srrVarPD091ejRo41FjFKWnduV/LaQsfQ8J06cqHx8fJRWq1VdunRREydONHnGiqXnp5RSX331lerbt69ycHBQQUFB6qOPPjLZbw3nm++++04BzcZtDWNYXl6uZs2apXQ6nXJ0dFTdunVTL7zwgqqrqzMeY65x1Ch1yWP5hBBCCCEsiNwjI4QQQgiLJYWMEEIIISyWFDJCCCGEsFhSyAghhBDCYkkhI4QQQgiLJYWMEEIIISyWFDJCCCGEsFhSyAgh2qQ77riD2bNnt6iPbdu2odFomqxzI4SwHlLICCHMYvLkyYwfP97cYQghLJwUMkIIIYSwWFLICCHMrqqqisceewwXFxd8fHx4/fXXmxzz+eefExoaSvv27fH29ubhhx+mqKjI5JhvvvmG22+/HScnJ0aNGsWJEyea9LN9+3ZGjBiBk5MTfn5+zJw5k6qqqhuVmhDiBpNCRghhdnPnziU5OZn169ezefNmtm3bxr59+0yOaWho4KWXXuLAgQOsW7eOEydOMHnyZOP+vLw87r//fsaNG0dqaipTp04lNjbWpI9jx45x991388ADD3Dw4EFWr17N9u3biYmJuRlpCiFuAFk0UghhFpMnT6a0tJTly5fj7u7O8uXLeeihhwA4f/48Xbt25cknn+Stt95q9v179+5l8ODBVFRU4OLiwvz581m/fj2HDh0yHhMbG8u//vUvSkpKcHNzY+rUqdja2vLhhx8aj9m+fTsjR46kqqoKR0fHG5qzEKL1yScyQgizOnbsGPX19YSHhxu3derUiZ49e5ocl5KSwrhx49DpdLRv356RI0cCkJubC0BGRoZJHwAREREmrw8cOEB8fDwuLi7GFhUVhV6vJycn50akJ4S4wezMHYAQQvyeqqoqoqKiiIqKYsWKFXh6epKbm0tUVBT19fVX3U9lZSVPPfUUM2fObLJPp9O1ZshCiJtEChkhhFl1794de3t7du3aZSwmSkpKOHLkiPFTl8zMTM6dO8fixYvx8/MDDJeWLtWrVy82bNhgsm3nzp0mrwcNGsThw4fp0aPHjUpHCHGTyaUlIYRZubi48MQTTzB37ly2bt1Keno6kydPxsbm19OTTqdDq9WyZMkSjh8/zoYNG3jppZdM+pk+fTrZ2dnMnTuXrKwsVq5cSXx8vMkx8+bN4+effyYmJobU1FSys7NZv3693OwrhAWTQkYIYXavvvoqI0aMYNy4cURGRjJ8+HBCQkKM+z09PYmPj2fNmjX07t2bxYsX89prr5n0odPp+O9//8u6desIDg4mLi6OV155xeSY/v37k5yczJEjRxgxYgQDBw5kwYIF+Pr63pQ8hRCtT2YtCSGEEMJiyScyQgghhLBYUsgIIYQQwmJJISOEEEIIiyWFjBBCCCEslhQyQgghhLBYUsgIIYQQwmJJISOEEEIIiyWFjBBCCCEslhQyQgghhLBYUsgIIYQQwmJJISOEEEIIiyWFjBBCCCEs1v8DLXSsDOCYMKcAAAAASUVORK5CYII=", + "text/plain": [ + "

" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Amostras\n", + "idade_sobreviventes = df[df['Sobreviveu']== 1][\"Idade\"].dropna()\n", + "idade_nao_sobreviveu = df[df['Sobreviveu']== 0][\"Idade\"].dropna()\n", + "\n", + "# Teste t\n", + "estatistica_t, valor_p = ttest_ind(idade_sobreviventes, idade_nao_sobreviveu)\n", + "\n", + "print(\"Teste T de idade\")\n", + "print(f\"Estatísticaa T: {estatistica_t}\")\n", + "print(f\"Valor P: {valor_p}\")\n", + "\n", + "# Gráfico\n", + "sns.histplot(idade_sobreviventes, color= 'blue', label='Sobreviventes', kde=True, bins= 20)\n", + "sns.histplot(idade_nao_sobreviveu, color= 'red', label='Não Sobreviveu', kde=True, bins= 20)\n", + "\n", + "# Rótulos\n", + "plt.legend()\n", + "plt.title(\"Distribuição de Idade dos sobreviventes\")\n", + "plt.xlabel(\"Idade\")\n", + "plt.ylabel(\"Contagem\")\n", + "plt.show\n", + "\n", + "# Interpretação\n", + "if valor_p < 0.05:\n", + " print(\"Rejeitamos a hipótese nula\")\n", + "else: \n", + " print(\"Não rejeitamos a hipótese nula\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Amostra e SQL" + ] + }, + { + "cell_type": "code", + "execution_count": 268, + "metadata": {}, + "outputs": [], + "source": [ + "# Amostra\n", + "baby_df = df.sample(100)" + ] + }, + { + "cell_type": "code", + "execution_count": 269, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdPassageiroSobreviveuClasseNomeGeneroIdadeBilheteTarifaCabineEmbarque
272801Fortune, Mr. Charles Alexandermale19.019950263.0C23 C25 C27S
636403Skoog, Master. Haraldmale4.034708827.9NaNS
42642712Clarke, Mrs. Charles V (Ada Maria Winfield)female28.0200326.0NaNS
\n", + "
" + ], + "text/plain": [ + " IdPassageiro Sobreviveu Classe \\\n", + "27 28 0 1 \n", + "63 64 0 3 \n", + "426 427 1 2 \n", + "\n", + " Nome Genero Idade Bilhete \\\n", + "27 Fortune, Mr. Charles Alexander male 19.0 19950 \n", + "63 Skoog, Master. Harald male 4.0 347088 \n", + "426 Clarke, Mrs. Charles V (Ada Maria Winfield) female 28.0 2003 \n", + "\n", + " Tarifa Cabine Embarque \n", + "27 263.0 C23 C25 C27 S \n", + "63 27.9 NaN S \n", + "426 26.0 NaN S " + ] + }, + "execution_count": 269, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "baby_df.head(3)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/exercicios/para-sala/titanic_tratado.csv b/exercicios/para-sala/titanic_tratado.csv new file mode 100644 index 0000000..3a992a0 --- /dev/null +++ b/exercicios/para-sala/titanic_tratado.csv @@ -0,0 +1,892 @@ +IdPassageiro,Sobreviveu,Classe,Nome,Genero,Idade,Bilhete,Tarifa,Cabine,Embarque +1,0,3,"Braund, Mr. Owen Harris",male,22.0,A/5 21171,7.25,,S +2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38.0,PC 17599,71.2833,C85,C +3,1,3,"Heikkinen, Miss. Laina",female,26.0,STON/O2. 3101282,7.925,,S +4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35.0,113803,53.1,C123,S +5,0,3,"Allen, Mr. William Henry",male,35.0,373450,8.05,,S +6,0,3,"Moran, Mr. James",male,,330877,8.4583,,Q +7,0,1,"McCarthy, Mr. Timothy J",male,54.0,17463,51.8625,E46,S +8,0,3,"Palsson, Master. Gosta Leonard",male,2.0,349909,21.075,,S +9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27.0,347742,11.1333,,S +10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14.0,237736,30.0708,,C +11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4.0,PP 9549,16.7,G6,S +12,1,1,"Bonnell, Miss. Elizabeth",female,58.0,113783,26.55,C103,S +13,0,3,"Saundercock, Mr. William Henry",male,20.0,A/5. 2151,8.05,,S +14,0,3,"Andersson, Mr. Anders Johan",male,39.0,347082,31.275,,S +15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14.0,350406,7.8542,,S +16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55.0,248706,16.0,,S +17,0,3,"Rice, Master. Eugene",male,2.0,382652,29.125,,Q +18,1,2,"Williams, Mr. Charles Eugene",male,,244373,13.0,,S +19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31.0,345763,18.0,,S +20,1,3,"Masselmani, Mrs. Fatima",female,,2649,7.225,,C +21,0,2,"Fynney, Mr. Joseph J",male,35.0,239865,26.0,,S +22,1,2,"Beesley, Mr. Lawrence",male,34.0,248698,13.0,D56,S +23,1,3,"McGowan, Miss. Anna ""Annie""",female,15.0,330923,8.0292,,Q +24,1,1,"Sloper, Mr. William Thompson",male,28.0,113788,35.5,A6,S +25,0,3,"Palsson, Miss. Torborg Danira",female,8.0,349909,21.075,,S +26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38.0,347077,31.3875,,S +27,0,3,"Emir, Mr. Farred Chehab",male,,2631,7.225,,C +28,0,1,"Fortune, Mr. Charles Alexander",male,19.0,19950,263.0,C23 C25 C27,S +29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,330959,7.8792,,Q +30,0,3,"Todoroff, Mr. Lalio",male,,349216,7.8958,,S +31,0,1,"Uruchurtu, Don. Manuel E",male,40.0,PC 17601,27.7208,,C +32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,PC 17569,146.5208,B78,C +33,1,3,"Glynn, Miss. Mary Agatha",female,,335677,7.75,,Q +34,0,2,"Wheadon, Mr. Edward H",male,66.0,C.A. 24579,10.5,,S +35,0,1,"Meyer, Mr. Edgar Joseph",male,28.0,PC 17604,82.1708,,C +36,0,1,"Holverson, Mr. Alexander Oskar",male,42.0,113789,52.0,,S +37,1,3,"Mamee, Mr. Hanna",male,,2677,7.2292,,C +38,0,3,"Cann, Mr. Ernest Charles",male,21.0,A./5. 2152,8.05,,S +39,0,3,"Vander Planke, Miss. Augusta Maria",female,18.0,345764,18.0,,S +40,1,3,"Nicola-Yarred, Miss. Jamila",female,14.0,2651,11.2417,,C +41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40.0,7546,9.475,,S +42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27.0,11668,21.0,,S +43,0,3,"Kraeff, Mr. Theodor",male,,349253,7.8958,,C +44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3.0,SC/Paris 2123,41.5792,,C +45,1,3,"Devaney, Miss. Margaret Delia",female,19.0,330958,7.8792,,Q +46,0,3,"Rogers, Mr. William John",male,,S.C./A.4. 23567,8.05,,S +47,0,3,"Lennon, Mr. Denis",male,,370371,15.5,,Q +48,1,3,"O'Driscoll, Miss. Bridget",female,,14311,7.75,,Q +49,0,3,"Samaan, Mr. Youssef",male,,2662,21.6792,,C +50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18.0,349237,17.8,,S +51,0,3,"Panula, Master. Juha Niilo",male,7.0,3101295,39.6875,,S +52,0,3,"Nosworthy, Mr. Richard Cater",male,21.0,A/4. 39886,7.8,,S +53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49.0,PC 17572,76.7292,D33,C +54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29.0,2926,26.0,,S +55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65.0,113509,61.9792,B30,C +56,1,1,"Woolner, Mr. Hugh",male,,19947,35.5,C52,S +57,1,2,"Rugg, Miss. Emily",female,21.0,C.A. 31026,10.5,,S +58,0,3,"Novel, Mr. Mansouer",male,28.5,2697,7.2292,,C +59,1,2,"West, Miss. Constance Mirium",female,5.0,C.A. 34651,27.75,,S +60,0,3,"Goodwin, Master. William Frederick",male,11.0,CA 2144,46.9,,S +61,0,3,"Sirayanian, Mr. Orsen",male,22.0,2669,7.2292,,C +62,1,1,"Icard, Miss. Amelie",female,38.0,113572,80.0,B28, +63,0,1,"Harris, Mr. Henry Birkhardt",male,45.0,36973,83.475,C83,S +64,0,3,"Skoog, Master. Harald",male,4.0,347088,27.9,,S +65,0,1,"Stewart, Mr. Albert A",male,,PC 17605,27.7208,,C +66,1,3,"Moubarek, Master. Gerios",male,,2661,15.2458,,C +67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29.0,C.A. 29395,10.5,F33,S +68,0,3,"Crease, Mr. Ernest James",male,19.0,S.P. 3464,8.1583,,S +69,1,3,"Andersson, Miss. Erna Alexandra",female,17.0,3101281,7.925,,S +70,0,3,"Kink, Mr. Vincenz",male,26.0,315151,8.6625,,S +71,0,2,"Jenkin, Mr. Stephen Curnow",male,32.0,C.A. 33111,10.5,,S +72,0,3,"Goodwin, Miss. Lillian Amy",female,16.0,CA 2144,46.9,,S +73,0,2,"Hood, Mr. Ambrose Jr",male,21.0,S.O.C. 14879,73.5,,S +74,0,3,"Chronopoulos, Mr. Apostolos",male,26.0,2680,14.4542,,C +75,1,3,"Bing, Mr. Lee",male,32.0,1601,56.4958,,S +76,0,3,"Moen, Mr. Sigurd Hansen",male,25.0,348123,7.65,F G73,S +77,0,3,"Staneff, Mr. Ivan",male,,349208,7.8958,,S +78,0,3,"Moutal, Mr. Rahamin Haim",male,,374746,8.05,,S +79,1,2,"Caldwell, Master. Alden Gates",male,0.83,248738,29.0,,S +80,1,3,"Dowdell, Miss. Elizabeth",female,30.0,364516,12.475,,S +81,0,3,"Waelens, Mr. Achille",male,22.0,345767,9.0,,S +82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29.0,345779,9.5,,S +83,1,3,"McDermott, Miss. Brigdet Delia",female,,330932,7.7875,,Q +84,0,1,"Carrau, Mr. Francisco M",male,28.0,113059,47.1,,S +85,1,2,"Ilett, Miss. Bertha",female,17.0,SO/C 14885,10.5,,S +86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33.0,3101278,15.85,,S +87,0,3,"Ford, Mr. William Neal",male,16.0,W./C. 6608,34.375,,S +88,0,3,"Slocovski, Mr. Selman Francis",male,,SOTON/OQ 392086,8.05,,S +89,1,1,"Fortune, Miss. Mabel Helen",female,23.0,19950,263.0,C23 C25 C27,S +90,0,3,"Celotti, Mr. Francesco",male,24.0,343275,8.05,,S +91,0,3,"Christmann, Mr. Emil",male,29.0,343276,8.05,,S +92,0,3,"Andreasson, Mr. Paul Edvin",male,20.0,347466,7.8542,,S +93,0,1,"Chaffee, Mr. Herbert Fuller",male,46.0,W.E.P. 5734,61.175,E31,S +94,0,3,"Dean, Mr. Bertram Frank",male,26.0,C.A. 2315,20.575,,S +95,0,3,"Coxon, Mr. Daniel",male,59.0,364500,7.25,,S +96,0,3,"Shorney, Mr. Charles Joseph",male,,374910,8.05,,S +97,0,1,"Goldschmidt, Mr. George B",male,71.0,PC 17754,34.6542,A5,C +98,1,1,"Greenfield, Mr. William Bertram",male,23.0,PC 17759,63.3583,D10 D12,C +99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34.0,231919,23.0,,S +100,0,2,"Kantor, Mr. Sinai",male,34.0,244367,26.0,,S +101,0,3,"Petranec, Miss. Matilda",female,28.0,349245,7.8958,,S +102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,349215,7.8958,,S +103,0,1,"White, Mr. Richard Frasar",male,21.0,35281,77.2875,D26,S +104,0,3,"Johansson, Mr. Gustaf Joel",male,33.0,7540,8.6542,,S +105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37.0,3101276,7.925,,S +106,0,3,"Mionoff, Mr. Stoytcho",male,28.0,349207,7.8958,,S +107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21.0,343120,7.65,,S +108,1,3,"Moss, Mr. Albert Johan",male,,312991,7.775,,S +109,0,3,"Rekic, Mr. Tido",male,38.0,349249,7.8958,,S +110,1,3,"Moran, Miss. Bertha",female,,371110,24.15,,Q +111,0,1,"Porter, Mr. Walter Chamberlain",male,47.0,110465,52.0,C110,S +112,0,3,"Zabour, Miss. Hileni",female,14.5,2665,14.4542,,C +113,0,3,"Barton, Mr. David John",male,22.0,324669,8.05,,S +114,0,3,"Jussila, Miss. Katriina",female,20.0,4136,9.825,,S +115,0,3,"Attalah, Miss. Malake",female,17.0,2627,14.4583,,C +116,0,3,"Pekoniemi, Mr. Edvard",male,21.0,STON/O 2. 3101294,7.925,,S +117,0,3,"Connors, Mr. Patrick",male,70.5,370369,7.75,,Q +118,0,2,"Turpin, Mr. William John Robert",male,29.0,11668,21.0,,S +119,0,1,"Baxter, Mr. Quigg Edmond",male,24.0,PC 17558,247.5208,B58 B60,C +120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2.0,347082,31.275,,S +121,0,2,"Hickman, Mr. Stanley George",male,21.0,S.O.C. 14879,73.5,,S +122,0,3,"Moore, Mr. Leonard Charles",male,,A4. 54510,8.05,,S +123,0,2,"Nasser, Mr. Nicholas",male,32.5,237736,30.0708,,C +124,1,2,"Webber, Miss. Susan",female,32.5,27267,13.0,E101,S +125,0,1,"White, Mr. Percival Wayland",male,54.0,35281,77.2875,D26,S +126,1,3,"Nicola-Yarred, Master. Elias",male,12.0,2651,11.2417,,C +127,0,3,"McMahon, Mr. Martin",male,,370372,7.75,,Q +128,1,3,"Madsen, Mr. Fridtjof Arne",male,24.0,C 17369,7.1417,,S +129,1,3,"Peter, Miss. Anna",female,,2668,22.3583,F E69,C +130,0,3,"Ekstrom, Mr. Johan",male,45.0,347061,6.975,,S +131,0,3,"Drazenoic, Mr. Jozef",male,33.0,349241,7.8958,,C +132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20.0,SOTON/O.Q. 3101307,7.05,,S +133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47.0,A/5. 3337,14.5,,S +134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29.0,228414,26.0,,S +135,0,2,"Sobey, Mr. Samuel James Hayden",male,25.0,C.A. 29178,13.0,,S +136,0,2,"Richard, Mr. Emile",male,23.0,SC/PARIS 2133,15.0458,,C +137,1,1,"Newsom, Miss. Helen Monypeny",female,19.0,11752,26.2833,D47,S +138,0,1,"Futrelle, Mr. Jacques Heath",male,37.0,113803,53.1,C123,S +139,0,3,"Osen, Mr. Olaf Elon",male,16.0,7534,9.2167,,S +140,0,1,"Giglio, Mr. Victor",male,24.0,PC 17593,79.2,B86,C +141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,2678,15.2458,,C +142,1,3,"Nysten, Miss. Anna Sofia",female,22.0,347081,7.75,,S +143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24.0,STON/O2. 3101279,15.85,,S +144,0,3,"Burke, Mr. Jeremiah",male,19.0,365222,6.75,,Q +145,0,2,"Andrew, Mr. Edgardo Samuel",male,18.0,231945,11.5,,S +146,0,2,"Nicholls, Mr. Joseph Charles",male,19.0,C.A. 33112,36.75,,S +147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27.0,350043,7.7958,,S +148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9.0,W./C. 6608,34.375,,S +149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,230080,26.0,F2,S +150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42.0,244310,13.0,,S +151,0,2,"Bateman, Rev. Robert James",male,51.0,S.O.P. 1166,12.525,,S +152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22.0,113776,66.6,C2,S +153,0,3,"Meo, Mr. Alfonzo",male,55.5,A.5. 11206,8.05,,S +154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,A/5. 851,14.5,,S +155,0,3,"Olsen, Mr. Ole Martin",male,,Fa 265302,7.3125,,S +156,0,1,"Williams, Mr. Charles Duane",male,51.0,PC 17597,61.3792,,C +157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16.0,35851,7.7333,,Q +158,0,3,"Corn, Mr. Harry",male,30.0,SOTON/OQ 392090,8.05,,S +159,0,3,"Smiljanic, Mr. Mile",male,,315037,8.6625,,S +160,0,3,"Sage, Master. Thomas Henry",male,,CA. 2343,69.55,,S +161,0,3,"Cribb, Mr. John Hatfield",male,44.0,371362,16.1,,S +162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40.0,C.A. 33595,15.75,,S +163,0,3,"Bengtsson, Mr. John Viktor",male,26.0,347068,7.775,,S +164,0,3,"Calic, Mr. Jovo",male,17.0,315093,8.6625,,S +165,0,3,"Panula, Master. Eino Viljami",male,1.0,3101295,39.6875,,S +166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9.0,363291,20.525,,S +167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,113505,55.0,E33,S +168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45.0,347088,27.9,,S +169,0,1,"Baumann, Mr. John D",male,,PC 17318,25.925,,S +170,0,3,"Ling, Mr. Lee",male,28.0,1601,56.4958,,S +171,0,1,"Van der hoef, Mr. Wyckoff",male,61.0,111240,33.5,B19,S +172,0,3,"Rice, Master. Arthur",male,4.0,382652,29.125,,Q +173,1,3,"Johnson, Miss. Eleanor Ileen",female,1.0,347742,11.1333,,S +174,0,3,"Sivola, Mr. Antti Wilhelm",male,21.0,STON/O 2. 3101280,7.925,,S +175,0,1,"Smith, Mr. James Clinch",male,56.0,17764,30.6958,A7,C +176,0,3,"Klasen, Mr. Klas Albin",male,18.0,350404,7.8542,,S +177,0,3,"Lefebre, Master. Henry Forbes",male,,4133,25.4667,,S +178,0,1,"Isham, Miss. Ann Elizabeth",female,50.0,PC 17595,28.7125,C49,C +179,0,2,"Hale, Mr. Reginald",male,30.0,250653,13.0,,S +180,0,3,"Leonard, Mr. Lionel",male,36.0,LINE,0.0,,S +181,0,3,"Sage, Miss. Constance Gladys",female,,CA. 2343,69.55,,S +182,0,2,"Pernot, Mr. Rene",male,,SC/PARIS 2131,15.05,,C +183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9.0,347077,31.3875,,S +184,1,2,"Becker, Master. Richard F",male,1.0,230136,39.0,F4,S +185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4.0,315153,22.025,,S +186,0,1,"Rood, Mr. Hugh Roscoe",male,,113767,50.0,A32,S +187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,370365,15.5,,Q +188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45.0,111428,26.55,,S +189,0,3,"Bourke, Mr. John",male,40.0,364849,15.5,,Q +190,0,3,"Turcin, Mr. Stjepan",male,36.0,349247,7.8958,,S +191,1,2,"Pinsky, Mrs. (Rosa)",female,32.0,234604,13.0,,S +192,0,2,"Carbines, Mr. William",male,19.0,28424,13.0,,S +193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19.0,350046,7.8542,,S +194,1,2,"Navratil, Master. Michel M",male,3.0,230080,26.0,F2,S +195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44.0,PC 17610,27.7208,B4,C +196,1,1,"Lurette, Miss. Elise",female,58.0,PC 17569,146.5208,B80,C +197,0,3,"Mernagh, Mr. Robert",male,,368703,7.75,,Q +198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42.0,4579,8.4042,,S +199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,370370,7.75,,Q +200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24.0,248747,13.0,,S +201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28.0,345770,9.5,,S +202,0,3,"Sage, Mr. Frederick",male,,CA. 2343,69.55,,S +203,0,3,"Johanson, Mr. Jakob Alfred",male,34.0,3101264,6.4958,,S +204,0,3,"Youseff, Mr. Gerious",male,45.5,2628,7.225,,C +205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18.0,A/5 3540,8.05,,S +206,0,3,"Strom, Miss. Telma Matilda",female,2.0,347054,10.4625,G6,S +207,0,3,"Backstrom, Mr. Karl Alfred",male,32.0,3101278,15.85,,S +208,1,3,"Albimona, Mr. Nassef Cassem",male,26.0,2699,18.7875,,C +209,1,3,"Carr, Miss. Helen ""Ellen""",female,16.0,367231,7.75,,Q +210,1,1,"Blank, Mr. Henry",male,40.0,112277,31.0,A31,C +211,0,3,"Ali, Mr. Ahmed",male,24.0,SOTON/O.Q. 3101311,7.05,,S +212,1,2,"Cameron, Miss. Clear Annie",female,35.0,F.C.C. 13528,21.0,,S +213,0,3,"Perkin, Mr. John Henry",male,22.0,A/5 21174,7.25,,S +214,0,2,"Givard, Mr. Hans Kristensen",male,30.0,250646,13.0,,S +215,0,3,"Kiernan, Mr. Philip",male,,367229,7.75,,Q +216,1,1,"Newell, Miss. Madeleine",female,31.0,35273,113.275,D36,C +217,1,3,"Honkanen, Miss. Eliina",female,27.0,STON/O2. 3101283,7.925,,S +218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42.0,243847,27.0,,S +219,1,1,"Bazzani, Miss. Albina",female,32.0,11813,76.2917,D15,C +220,0,2,"Harris, Mr. Walter",male,30.0,W/C 14208,10.5,,S +221,1,3,"Sunderland, Mr. Victor Francis",male,16.0,SOTON/OQ 392089,8.05,,S +222,0,2,"Bracken, Mr. James H",male,27.0,220367,13.0,,S +223,0,3,"Green, Mr. George Henry",male,51.0,21440,8.05,,S +224,0,3,"Nenkoff, Mr. Christo",male,,349234,7.8958,,S +225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38.0,19943,90.0,C93,S +226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22.0,PP 4348,9.35,,S +227,1,2,"Mellors, Mr. William John",male,19.0,SW/PP 751,10.5,,S +228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,A/5 21173,7.25,,S +229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18.0,236171,13.0,,S +230,0,3,"Lefebre, Miss. Mathilde",female,,4133,25.4667,,S +231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35.0,36973,83.475,C83,S +232,0,3,"Larsson, Mr. Bengt Edvin",male,29.0,347067,7.775,,S +233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59.0,237442,13.5,,S +234,1,3,"Asplund, Miss. Lillian Gertrud",female,5.0,347077,31.3875,,S +235,0,2,"Leyson, Mr. Robert William Norman",male,24.0,C.A. 29566,10.5,,S +236,0,3,"Harknett, Miss. Alice Phoebe",female,,W./C. 6609,7.55,,S +237,0,2,"Hold, Mr. Stephen",male,44.0,26707,26.0,,S +238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8.0,C.A. 31921,26.25,,S +239,0,2,"Pengelly, Mr. Frederick William",male,19.0,28665,10.5,,S +240,0,2,"Hunt, Mr. George Henry",male,33.0,SCO/W 1585,12.275,,S +241,0,3,"Zabour, Miss. Thamine",female,,2665,14.4542,,C +242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,367230,15.5,,Q +243,0,2,"Coleridge, Mr. Reginald Charles",male,29.0,W./C. 14263,10.5,,S +244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22.0,STON/O 2. 3101275,7.125,,S +245,0,3,"Attalah, Mr. Sleiman",male,30.0,2694,7.225,,C +246,0,1,"Minahan, Dr. William Edward",male,44.0,19928,90.0,C78,Q +247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25.0,347071,7.775,,S +248,1,2,"Hamalainen, Mrs. William (Anna)",female,24.0,250649,14.5,,S +249,1,1,"Beckwith, Mr. Richard Leonard",male,37.0,11751,52.5542,D35,S +250,0,2,"Carter, Rev. Ernest Courtenay",male,54.0,244252,26.0,,S +251,0,3,"Reed, Mr. James George",male,,362316,7.25,,S +252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29.0,347054,10.4625,G6,S +253,0,1,"Stead, Mr. William Thomas",male,62.0,113514,26.55,C87,S +254,0,3,"Lobb, Mr. William Arthur",male,30.0,A/5. 3336,16.1,,S +255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41.0,370129,20.2125,,S +256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29.0,2650,15.2458,,C +257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,PC 17585,79.2,,C +258,1,1,"Cherry, Miss. Gladys",female,30.0,110152,86.5,B77,S +259,1,1,"Ward, Miss. Anna",female,35.0,PC 17755,512.3292,,C +260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50.0,230433,26.0,,S +261,0,3,"Smith, Mr. Thomas",male,,384461,7.75,,Q +262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3.0,347077,31.3875,,S +263,0,1,"Taussig, Mr. Emil",male,52.0,110413,79.65,E67,S +264,0,1,"Harrison, Mr. William",male,40.0,112059,0.0,B94,S +265,0,3,"Henry, Miss. Delia",female,,382649,7.75,,Q +266,0,2,"Reeves, Mr. David",male,36.0,C.A. 17248,10.5,,S +267,0,3,"Panula, Mr. Ernesti Arvid",male,16.0,3101295,39.6875,,S +268,1,3,"Persson, Mr. Ernst Ulrik",male,25.0,347083,7.775,,S +269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58.0,PC 17582,153.4625,C125,S +270,1,1,"Bissette, Miss. Amelia",female,35.0,PC 17760,135.6333,C99,S +271,0,1,"Cairns, Mr. Alexander",male,,113798,31.0,,S +272,1,3,"Tornquist, Mr. William Henry",male,25.0,LINE,0.0,,S +273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41.0,250644,19.5,,S +274,0,1,"Natsch, Mr. Charles H",male,37.0,PC 17596,29.7,C118,C +275,1,3,"Healy, Miss. Hanora ""Nora""",female,,370375,7.75,,Q +276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63.0,13502,77.9583,D7,S +277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45.0,347073,7.75,,S +278,0,2,"Parkes, Mr. Francis ""Frank""",male,,239853,0.0,,S +279,0,3,"Rice, Master. Eric",male,7.0,382652,29.125,,Q +280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35.0,C.A. 2673,20.25,,S +281,0,3,"Duane, Mr. Frank",male,65.0,336439,7.75,,Q +282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28.0,347464,7.8542,,S +283,0,3,"de Pelsmaeker, Mr. Alfons",male,16.0,345778,9.5,,S +284,1,3,"Dorking, Mr. Edward Arthur",male,19.0,A/5. 10482,8.05,,S +285,0,1,"Smith, Mr. Richard William",male,,113056,26.0,A19,S +286,0,3,"Stankovic, Mr. Ivan",male,33.0,349239,8.6625,,C +287,1,3,"de Mulder, Mr. Theodore",male,30.0,345774,9.5,,S +288,0,3,"Naidenoff, Mr. Penko",male,22.0,349206,7.8958,,S +289,1,2,"Hosono, Mr. Masabumi",male,42.0,237798,13.0,,S +290,1,3,"Connolly, Miss. Kate",female,22.0,370373,7.75,,Q +291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26.0,19877,78.85,,S +292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19.0,11967,91.0792,B49,C +293,0,2,"Levy, Mr. Rene Jacques",male,36.0,SC/Paris 2163,12.875,D,C +294,0,3,"Haas, Miss. Aloisia",female,24.0,349236,8.85,,S +295,0,3,"Mineff, Mr. Ivan",male,24.0,349233,7.8958,,S +296,0,1,"Lewy, Mr. Ervin G",male,,PC 17612,27.7208,,C +297,0,3,"Hanna, Mr. Mansour",male,23.5,2693,7.2292,,C +298,0,1,"Allison, Miss. Helen Loraine",female,2.0,113781,151.55,C22 C26,S +299,1,1,"Saalfeld, Mr. Adolphe",male,,19988,30.5,C106,S +300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50.0,PC 17558,247.5208,B58 B60,C +301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,9234,7.75,,Q +302,1,3,"McCoy, Mr. Bernard",male,,367226,23.25,,Q +303,0,3,"Johnson, Mr. William Cahoone Jr",male,19.0,LINE,0.0,,S +304,1,2,"Keane, Miss. Nora A",female,,226593,12.35,E101,Q +305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,A/5 2466,8.05,,S +306,1,1,"Allison, Master. Hudson Trevor",male,0.92,113781,151.55,C22 C26,S +307,1,1,"Fleming, Miss. Margaret",female,,17421,110.8833,,C +308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17.0,PC 17758,108.9,C65,C +309,0,2,"Abelson, Mr. Samuel",male,30.0,P/PP 3381,24.0,,C +310,1,1,"Francatelli, Miss. Laura Mabel",female,30.0,PC 17485,56.9292,E36,C +311,1,1,"Hays, Miss. Margaret Bechstein",female,24.0,11767,83.1583,C54,C +312,1,1,"Ryerson, Miss. Emily Borie",female,18.0,PC 17608,262.375,B57 B59 B63 B66,C +313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26.0,250651,26.0,,S +314,0,3,"Hendekovic, Mr. Ignjac",male,28.0,349243,7.8958,,S +315,0,2,"Hart, Mr. Benjamin",male,43.0,F.C.C. 13529,26.25,,S +316,1,3,"Nilsson, Miss. Helmina Josefina",female,26.0,347470,7.8542,,S +317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24.0,244367,26.0,,S +318,0,2,"Moraweck, Dr. Ernest",male,54.0,29011,14.0,,S +319,1,1,"Wick, Miss. Mary Natalie",female,31.0,36928,164.8667,C7,S +320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40.0,16966,134.5,E34,C +321,0,3,"Dennis, Mr. Samuel",male,22.0,A/5 21172,7.25,,S +322,0,3,"Danoff, Mr. Yoto",male,27.0,349219,7.8958,,S +323,1,2,"Slayter, Miss. Hilda Mary",female,30.0,234818,12.35,,Q +324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22.0,248738,29.0,,S +325,0,3,"Sage, Mr. George John Jr",male,,CA. 2343,69.55,,S +326,1,1,"Young, Miss. Marie Grice",female,36.0,PC 17760,135.6333,C32,C +327,0,3,"Nysveen, Mr. Johan Hansen",male,61.0,345364,6.2375,,S +328,1,2,"Ball, Mrs. (Ada E Hall)",female,36.0,28551,13.0,D,S +329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31.0,363291,20.525,,S +330,1,1,"Hippach, Miss. Jean Gertrude",female,16.0,111361,57.9792,B18,C +331,1,3,"McCoy, Miss. Agnes",female,,367226,23.25,,Q +332,0,1,"Partner, Mr. Austen",male,45.5,113043,28.5,C124,S +333,0,1,"Graham, Mr. George Edward",male,38.0,PC 17582,153.4625,C91,S +334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16.0,345764,18.0,,S +335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,PC 17611,133.65,,S +336,0,3,"Denkoff, Mr. Mitto",male,,349225,7.8958,,S +337,0,1,"Pears, Mr. Thomas Clinton",male,29.0,113776,66.6,C2,S +338,1,1,"Burns, Miss. Elizabeth Margaret",female,41.0,16966,134.5,E40,C +339,1,3,"Dahl, Mr. Karl Edwart",male,45.0,7598,8.05,,S +340,0,1,"Blackwell, Mr. Stephen Weart",male,45.0,113784,35.5,T,S +341,1,2,"Navratil, Master. Edmond Roger",male,2.0,230080,26.0,F2,S +342,1,1,"Fortune, Miss. Alice Elizabeth",female,24.0,19950,263.0,C23 C25 C27,S +343,0,2,"Collander, Mr. Erik Gustaf",male,28.0,248740,13.0,,S +344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25.0,244361,13.0,,S +345,0,2,"Fox, Mr. Stanley Hubert",male,36.0,229236,13.0,,S +346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24.0,248733,13.0,F33,S +347,1,2,"Smith, Miss. Marion Elsie",female,40.0,31418,13.0,,S +348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,386525,16.1,,S +349,1,3,"Coutts, Master. William Loch ""William""",male,3.0,C.A. 37671,15.9,,S +350,0,3,"Dimic, Mr. Jovan",male,42.0,315088,8.6625,,S +351,0,3,"Odahl, Mr. Nils Martin",male,23.0,7267,9.225,,S +352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,113510,35.0,C128,S +353,0,3,"Elias, Mr. Tannous",male,15.0,2695,7.2292,,C +354,0,3,"Arnold-Franchi, Mr. Josef",male,25.0,349237,17.8,,S +355,0,3,"Yousif, Mr. Wazli",male,,2647,7.225,,C +356,0,3,"Vanden Steen, Mr. Leo Peter",male,28.0,345783,9.5,,S +357,1,1,"Bowerman, Miss. Elsie Edith",female,22.0,113505,55.0,E33,S +358,0,2,"Funk, Miss. Annie Clemmer",female,38.0,237671,13.0,,S +359,1,3,"McGovern, Miss. Mary",female,,330931,7.8792,,Q +360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,330980,7.8792,,Q +361,0,3,"Skoog, Mr. Wilhelm",male,40.0,347088,27.9,,S +362,0,2,"del Carlo, Mr. Sebastiano",male,29.0,SC/PARIS 2167,27.7208,,C +363,0,3,"Barbara, Mrs. (Catherine David)",female,45.0,2691,14.4542,,C +364,0,3,"Asim, Mr. Adola",male,35.0,SOTON/O.Q. 3101310,7.05,,S +365,0,3,"O'Brien, Mr. Thomas",male,,370365,15.5,,Q +366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30.0,C 7076,7.25,,S +367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60.0,110813,75.25,D37,C +368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,2626,7.2292,,C +369,1,3,"Jermyn, Miss. Annie",female,,14313,7.75,,Q +370,1,1,"Aubart, Mme. Leontine Pauline",female,24.0,PC 17477,69.3,B35,C +371,1,1,"Harder, Mr. George Achilles",male,25.0,11765,55.4417,E50,C +372,0,3,"Wiklund, Mr. Jakob Alfred",male,18.0,3101267,6.4958,,S +373,0,3,"Beavan, Mr. William Thomas",male,19.0,323951,8.05,,S +374,0,1,"Ringhini, Mr. Sante",male,22.0,PC 17760,135.6333,,C +375,0,3,"Palsson, Miss. Stina Viola",female,3.0,349909,21.075,,S +376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,PC 17604,82.1708,,C +377,1,3,"Landergren, Miss. Aurora Adelia",female,22.0,C 7077,7.25,,S +378,0,1,"Widener, Mr. Harry Elkins",male,27.0,113503,211.5,C82,C +379,0,3,"Betros, Mr. Tannous",male,20.0,2648,4.0125,,C +380,0,3,"Gustafsson, Mr. Karl Gideon",male,19.0,347069,7.775,,S +381,1,1,"Bidois, Miss. Rosalie",female,42.0,PC 17757,227.525,,C +382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1.0,2653,15.7417,,C +383,0,3,"Tikkanen, Mr. Juho",male,32.0,STON/O 2. 3101293,7.925,,S +384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35.0,113789,52.0,,S +385,0,3,"Plotcharsky, Mr. Vasil",male,,349227,7.8958,,S +386,0,2,"Davies, Mr. Charles Henry",male,18.0,S.O.C. 14879,73.5,,S +387,0,3,"Goodwin, Master. Sidney Leonard",male,1.0,CA 2144,46.9,,S +388,1,2,"Buss, Miss. Kate",female,36.0,27849,13.0,,S +389,0,3,"Sadlier, Mr. Matthew",male,,367655,7.7292,,Q +390,1,2,"Lehmann, Miss. Bertha",female,17.0,SC 1748,12.0,,C +391,1,1,"Carter, Mr. William Ernest",male,36.0,113760,120.0,B96 B98,S +392,1,3,"Jansson, Mr. Carl Olof",male,21.0,350034,7.7958,,S +393,0,3,"Gustafsson, Mr. Johan Birger",male,28.0,3101277,7.925,,S +394,1,1,"Newell, Miss. Marjorie",female,23.0,35273,113.275,D36,C +395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24.0,PP 9549,16.7,G6,S +396,0,3,"Johansson, Mr. Erik",male,22.0,350052,7.7958,,S +397,0,3,"Olsson, Miss. Elina",female,31.0,350407,7.8542,,S +398,0,2,"McKane, Mr. Peter David",male,46.0,28403,26.0,,S +399,0,2,"Pain, Dr. Alfred",male,23.0,244278,10.5,,S +400,1,2,"Trout, Mrs. William H (Jessie L)",female,28.0,240929,12.65,,S +401,1,3,"Niskanen, Mr. Juha",male,39.0,STON/O 2. 3101289,7.925,,S +402,0,3,"Adams, Mr. John",male,26.0,341826,8.05,,S +403,0,3,"Jussila, Miss. Mari Aina",female,21.0,4137,9.825,,S +404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28.0,STON/O2. 3101279,15.85,,S +405,0,3,"Oreskovic, Miss. Marija",female,20.0,315096,8.6625,,S +406,0,2,"Gale, Mr. Shadrach",male,34.0,28664,21.0,,S +407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51.0,347064,7.75,,S +408,1,2,"Richards, Master. William Rowe",male,3.0,29106,18.75,,S +409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21.0,312992,7.775,,S +410,0,3,"Lefebre, Miss. Ida",female,,4133,25.4667,,S +411,0,3,"Sdycoff, Mr. Todor",male,,349222,7.8958,,S +412,0,3,"Hart, Mr. Henry",male,,394140,6.8583,,Q +413,1,1,"Minahan, Miss. Daisy E",female,33.0,19928,90.0,C78,Q +414,0,2,"Cunningham, Mr. Alfred Fleming",male,,239853,0.0,,S +415,1,3,"Sundman, Mr. Johan Julian",male,44.0,STON/O 2. 3101269,7.925,,S +416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,343095,8.05,,S +417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34.0,28220,32.5,,S +418,1,2,"Silven, Miss. Lyyli Karoliina",female,18.0,250652,13.0,,S +419,0,2,"Matthews, Mr. William John",male,30.0,28228,13.0,,S +420,0,3,"Van Impe, Miss. Catharina",female,10.0,345773,24.15,,S +421,0,3,"Gheorgheff, Mr. Stanio",male,,349254,7.8958,,C +422,0,3,"Charters, Mr. David",male,21.0,A/5. 13032,7.7333,,Q +423,0,3,"Zimmerman, Mr. Leo",male,29.0,315082,7.875,,S +424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28.0,347080,14.4,,S +425,0,3,"Rosblom, Mr. Viktor Richard",male,18.0,370129,20.2125,,S +426,0,3,"Wiseman, Mr. Phillippe",male,,A/4. 34244,7.25,,S +427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28.0,2003,26.0,,S +428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19.0,250655,26.0,,S +429,0,3,"Flynn, Mr. James",male,,364851,7.75,,Q +430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32.0,SOTON/O.Q. 392078,8.05,E10,S +431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28.0,110564,26.55,C52,S +432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,376564,16.1,,S +433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42.0,SC/AH 3085,26.0,,S +434,0,3,"Kallio, Mr. Nikolai Erland",male,17.0,STON/O 2. 3101274,7.125,,S +435,0,1,"Silvey, Mr. William Baird",male,50.0,13507,55.9,E44,S +436,1,1,"Carter, Miss. Lucile Polk",female,14.0,113760,120.0,B96 B98,S +437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21.0,W./C. 6608,34.375,,S +438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24.0,29106,18.75,,S +439,0,1,"Fortune, Mr. Mark",male,64.0,19950,263.0,C23 C25 C27,S +440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31.0,C.A. 18723,10.5,,S +441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45.0,F.C.C. 13529,26.25,,S +442,0,3,"Hampe, Mr. Leon",male,20.0,345769,9.5,,S +443,0,3,"Petterson, Mr. Johan Emil",male,25.0,347076,7.775,,S +444,1,2,"Reynaldo, Ms. Encarnacion",female,28.0,230434,13.0,,S +445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,65306,8.1125,,S +446,1,1,"Dodge, Master. Washington",male,4.0,33638,81.8583,A34,S +447,1,2,"Mellinger, Miss. Madeleine Violet",female,13.0,250644,19.5,,S +448,1,1,"Seward, Mr. Frederic Kimber",male,34.0,113794,26.55,,S +449,1,3,"Baclini, Miss. Marie Catherine",female,5.0,2666,19.2583,,C +450,1,1,"Peuchen, Major. Arthur Godfrey",male,52.0,113786,30.5,C104,S +451,0,2,"West, Mr. Edwy Arthur",male,36.0,C.A. 34651,27.75,,S +452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,65303,19.9667,,S +453,0,1,"Foreman, Mr. Benjamin Laventall",male,30.0,113051,27.75,C111,C +454,1,1,"Goldenberg, Mr. Samuel L",male,49.0,17453,89.1042,C92,C +455,0,3,"Peduzzi, Mr. Joseph",male,,A/5 2817,8.05,,S +456,1,3,"Jalsevac, Mr. Ivan",male,29.0,349240,7.8958,,C +457,0,1,"Millet, Mr. Francis Davis",male,65.0,13509,26.55,E38,S +458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,17464,51.8625,D21,S +459,1,2,"Toomey, Miss. Ellen",female,50.0,F.C.C. 13531,10.5,,S +460,0,3,"O'Connor, Mr. Maurice",male,,371060,7.75,,Q +461,1,1,"Anderson, Mr. Harry",male,48.0,19952,26.55,E12,S +462,0,3,"Morley, Mr. William",male,34.0,364506,8.05,,S +463,0,1,"Gee, Mr. Arthur H",male,47.0,111320,38.5,E63,S +464,0,2,"Milling, Mr. Jacob Christian",male,48.0,234360,13.0,,S +465,0,3,"Maisner, Mr. Simon",male,,A/S 2816,8.05,,S +466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38.0,SOTON/O.Q. 3101306,7.05,,S +467,0,2,"Campbell, Mr. William",male,,239853,0.0,,S +468,0,1,"Smart, Mr. John Montgomery",male,56.0,113792,26.55,,S +469,0,3,"Scanlan, Mr. James",male,,36209,7.725,,Q +470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2666,19.2583,,C +471,0,3,"Keefe, Mr. Arthur",male,,323592,7.25,,S +472,0,3,"Cacic, Mr. Luka",male,38.0,315089,8.6625,,S +473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33.0,C.A. 34651,27.75,,S +474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23.0,SC/AH Basle 541,13.7917,D,C +475,0,3,"Strandberg, Miss. Ida Sofia",female,22.0,7553,9.8375,,S +476,0,1,"Clifford, Mr. George Quincy",male,,110465,52.0,A14,S +477,0,2,"Renouf, Mr. Peter Henry",male,34.0,31027,21.0,,S +478,0,3,"Braund, Mr. Lewis Richard",male,29.0,3460,7.0458,,S +479,0,3,"Karlsson, Mr. Nils August",male,22.0,350060,7.5208,,S +480,1,3,"Hirvonen, Miss. Hildur E",female,2.0,3101298,12.2875,,S +481,0,3,"Goodwin, Master. Harold Victor",male,9.0,CA 2144,46.9,,S +482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,239854,0.0,,S +483,0,3,"Rouse, Mr. Richard Henry",male,50.0,A/5 3594,8.05,,S +484,1,3,"Turkula, Mrs. (Hedwig)",female,63.0,4134,9.5875,,S +485,1,1,"Bishop, Mr. Dickinson H",male,25.0,11967,91.0792,B49,C +486,0,3,"Lefebre, Miss. Jeannie",female,,4133,25.4667,,S +487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35.0,19943,90.0,C93,S +488,0,1,"Kent, Mr. Edward Austin",male,58.0,11771,29.7,B37,C +489,0,3,"Somerton, Mr. Francis William",male,30.0,A.5. 18509,8.05,,S +490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9.0,C.A. 37671,15.9,,S +491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,65304,19.9667,,S +492,0,3,"Windelov, Mr. Einar",male,21.0,SOTON/OQ 3101317,7.25,,S +493,0,1,"Molson, Mr. Harry Markland",male,55.0,113787,30.5,C30,S +494,0,1,"Artagaveytia, Mr. Ramon",male,71.0,PC 17609,49.5042,,C +495,0,3,"Stanley, Mr. Edward Roland",male,21.0,A/4 45380,8.05,,S +496,0,3,"Yousseff, Mr. Gerious",male,,2627,14.4583,,C +497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54.0,36947,78.2667,D20,C +498,0,3,"Shellard, Mr. Frederick William",male,,C.A. 6212,15.1,,S +499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25.0,113781,151.55,C22 C26,S +500,0,3,"Svensson, Mr. Olof",male,24.0,350035,7.7958,,S +501,0,3,"Calic, Mr. Petar",male,17.0,315086,8.6625,,S +502,0,3,"Canavan, Miss. Mary",female,21.0,364846,7.75,,Q +503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,330909,7.6292,,Q +504,0,3,"Laitinen, Miss. Kristina Sofia",female,37.0,4135,9.5875,,S +505,1,1,"Maioni, Miss. Roberta",female,16.0,110152,86.5,B79,S +506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18.0,PC 17758,108.9,C65,C +507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33.0,26360,26.0,,S +508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,111427,26.55,,S +509,0,3,"Olsen, Mr. Henry Margido",male,28.0,C 4001,22.525,,S +510,1,3,"Lang, Mr. Fang",male,26.0,1601,56.4958,,S +511,1,3,"Daly, Mr. Eugene Patrick",male,29.0,382651,7.75,,Q +512,0,3,"Webber, Mr. James",male,,SOTON/OQ 3101316,8.05,,S +513,1,1,"McGough, Mr. James Robert",male,36.0,PC 17473,26.2875,E25,S +514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54.0,PC 17603,59.4,,C +515,0,3,"Coleff, Mr. Satio",male,24.0,349209,7.4958,,S +516,0,1,"Walker, Mr. William Anderson",male,47.0,36967,34.0208,D46,S +517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34.0,C.A. 34260,10.5,F33,S +518,0,3,"Ryan, Mr. Patrick",male,,371110,24.15,,Q +519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36.0,226875,26.0,,S +520,0,3,"Pavlovic, Mr. Stefo",male,32.0,349242,7.8958,,S +521,1,1,"Perreault, Miss. Anne",female,30.0,12749,93.5,B73,S +522,0,3,"Vovk, Mr. Janko",male,22.0,349252,7.8958,,S +523,0,3,"Lahoud, Mr. Sarkis",male,,2624,7.225,,C +524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44.0,111361,57.9792,B18,C +525,0,3,"Kassem, Mr. Fared",male,,2700,7.2292,,C +526,0,3,"Farrell, Mr. James",male,40.5,367232,7.75,,Q +527,1,2,"Ridsdale, Miss. Lucy",female,50.0,W./C. 14258,10.5,,S +528,0,1,"Farthing, Mr. John",male,,PC 17483,221.7792,C95,S +529,0,3,"Salonen, Mr. Johan Werner",male,39.0,3101296,7.925,,S +530,0,2,"Hocking, Mr. Richard George",male,23.0,29104,11.5,,S +531,1,2,"Quick, Miss. Phyllis May",female,2.0,26360,26.0,,S +532,0,3,"Toufik, Mr. Nakli",male,,2641,7.2292,,C +533,0,3,"Elias, Mr. Joseph Jr",male,17.0,2690,7.2292,,C +534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,2668,22.3583,,C +535,0,3,"Cacic, Miss. Marija",female,30.0,315084,8.6625,,S +536,1,2,"Hart, Miss. Eva Miriam",female,7.0,F.C.C. 13529,26.25,,S +537,0,1,"Butt, Major. Archibald Willingham",male,45.0,113050,26.55,B38,S +538,1,1,"LeRoy, Miss. Bertha",female,30.0,PC 17761,106.425,,C +539,0,3,"Risien, Mr. Samuel Beard",male,,364498,14.5,,S +540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22.0,13568,49.5,B39,C +541,1,1,"Crosby, Miss. Harriet R",female,36.0,WE/P 5735,71.0,B22,S +542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9.0,347082,31.275,,S +543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11.0,347082,31.275,,S +544,1,2,"Beane, Mr. Edward",male,32.0,2908,26.0,,S +545,0,1,"Douglas, Mr. Walter Donald",male,50.0,PC 17761,106.425,C86,C +546,0,1,"Nicholson, Mr. Arthur Ernest",male,64.0,693,26.0,,S +547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19.0,2908,26.0,,S +548,1,2,"Padro y Manent, Mr. Julian",male,,SC/PARIS 2146,13.8625,,C +549,0,3,"Goldsmith, Mr. Frank John",male,33.0,363291,20.525,,S +550,1,2,"Davies, Master. John Morgan Jr",male,8.0,C.A. 33112,36.75,,S +551,1,1,"Thayer, Mr. John Borland Jr",male,17.0,17421,110.8833,C70,C +552,0,2,"Sharp, Mr. Percival James R",male,27.0,244358,26.0,,S +553,0,3,"O'Brien, Mr. Timothy",male,,330979,7.8292,,Q +554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22.0,2620,7.225,,C +555,1,3,"Ohman, Miss. Velin",female,22.0,347085,7.775,,S +556,0,1,"Wright, Mr. George",male,62.0,113807,26.55,,S +557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48.0,11755,39.6,A16,C +558,0,1,"Robbins, Mr. Victor",male,,PC 17757,227.525,,C +559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39.0,110413,79.65,E67,S +560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36.0,345572,17.4,,S +561,0,3,"Morrow, Mr. Thomas Rowan",male,,372622,7.75,,Q +562,0,3,"Sivic, Mr. Husein",male,40.0,349251,7.8958,,S +563,0,2,"Norman, Mr. Robert Douglas",male,28.0,218629,13.5,,S +564,0,3,"Simmons, Mr. John",male,,SOTON/OQ 392082,8.05,,S +565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,SOTON/O.Q. 392087,8.05,,S +566,0,3,"Davies, Mr. Alfred J",male,24.0,A/4 48871,24.15,,S +567,0,3,"Stoytcheff, Mr. Ilia",male,19.0,349205,7.8958,,S +568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29.0,349909,21.075,,S +569,0,3,"Doharr, Mr. Tannous",male,,2686,7.2292,,C +570,1,3,"Jonsson, Mr. Carl",male,32.0,350417,7.8542,,S +571,1,2,"Harris, Mr. George",male,62.0,S.W./PP 752,10.5,,S +572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53.0,11769,51.4792,C101,S +573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36.0,PC 17474,26.3875,E25,S +574,1,3,"Kelly, Miss. Mary",female,,14312,7.75,,Q +575,0,3,"Rush, Mr. Alfred George John",male,16.0,A/4. 20589,8.05,,S +576,0,3,"Patchett, Mr. George",male,19.0,358585,14.5,,S +577,1,2,"Garside, Miss. Ethel",female,34.0,243880,13.0,,S +578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39.0,13507,55.9,E44,S +579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,2689,14.4583,,C +580,1,3,"Jussila, Mr. Eiriik",male,32.0,STON/O 2. 3101286,7.925,,S +581,1,2,"Christy, Miss. Julie Rachel",female,25.0,237789,30.0,,S +582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39.0,17421,110.8833,C68,C +583,0,2,"Downton, Mr. William James",male,54.0,28403,26.0,,S +584,0,1,"Ross, Mr. John Hugo",male,36.0,13049,40.125,A10,C +585,0,3,"Paulner, Mr. Uscher",male,,3411,8.7125,,C +586,1,1,"Taussig, Miss. Ruth",female,18.0,110413,79.65,E68,S +587,0,2,"Jarvis, Mr. John Denzil",male,47.0,237565,15.0,,S +588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60.0,13567,79.2,B41,C +589,0,3,"Gilinski, Mr. Eliezer",male,22.0,14973,8.05,,S +590,0,3,"Murdlin, Mr. Joseph",male,,A./5. 3235,8.05,,S +591,0,3,"Rintamaki, Mr. Matti",male,35.0,STON/O 2. 3101273,7.125,,S +592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52.0,36947,78.2667,D20,C +593,0,3,"Elsbury, Mr. William James",male,47.0,A/5 3902,7.25,,S +594,0,3,"Bourke, Miss. Mary",female,,364848,7.75,,Q +595,0,2,"Chapman, Mr. John Henry",male,37.0,SC/AH 29037,26.0,,S +596,0,3,"Van Impe, Mr. Jean Baptiste",male,36.0,345773,24.15,,S +597,1,2,"Leitch, Miss. Jessie Wills",female,,248727,33.0,,S +598,0,3,"Johnson, Mr. Alfred",male,49.0,LINE,0.0,,S +599,0,3,"Boulos, Mr. Hanna",male,,2664,7.225,,C +600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49.0,PC 17485,56.9292,A20,C +601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24.0,243847,27.0,,S +602,0,3,"Slabenoff, Mr. Petco",male,,349214,7.8958,,S +603,0,1,"Harrington, Mr. Charles H",male,,113796,42.4,,S +604,0,3,"Torber, Mr. Ernst William",male,44.0,364511,8.05,,S +605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35.0,111426,26.55,,C +606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36.0,349910,15.55,,S +607,0,3,"Karaic, Mr. Milan",male,30.0,349246,7.8958,,S +608,1,1,"Daniel, Mr. Robert Williams",male,27.0,113804,30.5,,S +609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22.0,SC/Paris 2123,41.5792,,C +610,1,1,"Shutes, Miss. Elizabeth W",female,40.0,PC 17582,153.4625,C125,S +611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39.0,347082,31.275,,S +612,0,3,"Jardin, Mr. Jose Neto",male,,SOTON/O.Q. 3101305,7.05,,S +613,1,3,"Murphy, Miss. Margaret Jane",female,,367230,15.5,,Q +614,0,3,"Horgan, Mr. John",male,,370377,7.75,,Q +615,0,3,"Brocklebank, Mr. William Alfred",male,35.0,364512,8.05,,S +616,1,2,"Herman, Miss. Alice",female,24.0,220845,65.0,,S +617,0,3,"Danbom, Mr. Ernst Gilbert",male,34.0,347080,14.4,,S +618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26.0,A/5. 3336,16.1,,S +619,1,2,"Becker, Miss. Marion Louise",female,4.0,230136,39.0,F4,S +620,0,2,"Gavey, Mr. Lawrence",male,26.0,31028,10.5,,S +621,0,3,"Yasbeck, Mr. Antoni",male,27.0,2659,14.4542,,C +622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42.0,11753,52.5542,D19,S +623,1,3,"Nakid, Mr. Sahid",male,20.0,2653,15.7417,,C +624,0,3,"Hansen, Mr. Henry Damsgaard",male,21.0,350029,7.8542,,S +625,0,3,"Bowen, Mr. David John ""Dai""",male,21.0,54636,16.1,,S +626,0,1,"Sutton, Mr. Frederick",male,61.0,36963,32.3208,D50,S +627,0,2,"Kirkland, Rev. Charles Leonard",male,57.0,219533,12.35,,Q +628,1,1,"Longley, Miss. Gretchen Fiske",female,21.0,13502,77.9583,D9,S +629,0,3,"Bostandyeff, Mr. Guentcho",male,26.0,349224,7.8958,,S +630,0,3,"O'Connell, Mr. Patrick D",male,,334912,7.7333,,Q +631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80.0,27042,30.0,A23,S +632,0,3,"Lundahl, Mr. Johan Svensson",male,51.0,347743,7.0542,,S +633,1,1,"Stahelin-Maeglin, Dr. Max",male,32.0,13214,30.5,B50,C +634,0,1,"Parr, Mr. William Henry Marsh",male,,112052,0.0,,S +635,0,3,"Skoog, Miss. Mabel",female,9.0,347088,27.9,,S +636,1,2,"Davis, Miss. Mary",female,28.0,237668,13.0,,S +637,0,3,"Leinonen, Mr. Antti Gustaf",male,32.0,STON/O 2. 3101292,7.925,,S +638,0,2,"Collyer, Mr. Harvey",male,31.0,C.A. 31921,26.25,,S +639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41.0,3101295,39.6875,,S +640,0,3,"Thorneycroft, Mr. Percival",male,,376564,16.1,,S +641,0,3,"Jensen, Mr. Hans Peder",male,20.0,350050,7.8542,,S +642,1,1,"Sagesser, Mlle. Emma",female,24.0,PC 17477,69.3,B35,C +643,0,3,"Skoog, Miss. Margit Elizabeth",female,2.0,347088,27.9,,S +644,1,3,"Foo, Mr. Choong",male,,1601,56.4958,,S +645,1,3,"Baclini, Miss. Eugenie",female,0.75,2666,19.2583,,C +646,1,1,"Harper, Mr. Henry Sleeper",male,48.0,PC 17572,76.7292,D33,C +647,0,3,"Cor, Mr. Liudevit",male,19.0,349231,7.8958,,S +648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56.0,13213,35.5,A26,C +649,0,3,"Willey, Mr. Edward",male,,S.O./P.P. 751,7.55,,S +650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23.0,CA. 2314,7.55,,S +651,0,3,"Mitkoff, Mr. Mito",male,,349221,7.8958,,S +652,1,2,"Doling, Miss. Elsie",female,18.0,231919,23.0,,S +653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21.0,8475,8.4333,,S +654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,330919,7.8292,,Q +655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18.0,365226,6.75,,Q +656,0,2,"Hickman, Mr. Leonard Mark",male,24.0,S.O.C. 14879,73.5,,S +657,0,3,"Radeff, Mr. Alexander",male,,349223,7.8958,,S +658,0,3,"Bourke, Mrs. John (Catherine)",female,32.0,364849,15.5,,Q +659,0,2,"Eitemiller, Mr. George Floyd",male,23.0,29751,13.0,,S +660,0,1,"Newell, Mr. Arthur Webster",male,58.0,35273,113.275,D48,C +661,1,1,"Frauenthal, Dr. Henry William",male,50.0,PC 17611,133.65,,S +662,0,3,"Badt, Mr. Mohamed",male,40.0,2623,7.225,,C +663,0,1,"Colley, Mr. Edward Pomeroy",male,47.0,5727,25.5875,E58,S +664,0,3,"Coleff, Mr. Peju",male,36.0,349210,7.4958,,S +665,1,3,"Lindqvist, Mr. Eino William",male,20.0,STON/O 2. 3101285,7.925,,S +666,0,2,"Hickman, Mr. Lewis",male,32.0,S.O.C. 14879,73.5,,S +667,0,2,"Butler, Mr. Reginald Fenton",male,25.0,234686,13.0,,S +668,0,3,"Rommetvedt, Mr. Knud Paust",male,,312993,7.775,,S +669,0,3,"Cook, Mr. Jacob",male,43.0,A/5 3536,8.05,,S +670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,19996,52.0,C126,S +671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40.0,29750,39.0,,S +672,0,1,"Davidson, Mr. Thornton",male,31.0,F.C. 12750,52.0,B71,S +673,0,2,"Mitchell, Mr. Henry Michael",male,70.0,C.A. 24580,10.5,,S +674,1,2,"Wilhelms, Mr. Charles",male,31.0,244270,13.0,,S +675,0,2,"Watson, Mr. Ennis Hastings",male,,239856,0.0,,S +676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18.0,349912,7.775,,S +677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,342826,8.05,,S +678,1,3,"Turja, Miss. Anna Sofia",female,18.0,4138,9.8417,,S +679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43.0,CA 2144,46.9,,S +680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36.0,PC 17755,512.3292,B51 B53 B55,C +681,0,3,"Peters, Miss. Katie",female,,330935,8.1375,,Q +682,1,1,"Hassab, Mr. Hammad",male,27.0,PC 17572,76.7292,D49,C +683,0,3,"Olsvigen, Mr. Thor Anderson",male,20.0,6563,9.225,,S +684,0,3,"Goodwin, Mr. Charles Edward",male,14.0,CA 2144,46.9,,S +685,0,2,"Brown, Mr. Thomas William Solomon",male,60.0,29750,39.0,,S +686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25.0,SC/Paris 2123,41.5792,,C +687,0,3,"Panula, Mr. Jaako Arnold",male,14.0,3101295,39.6875,,S +688,0,3,"Dakic, Mr. Branko",male,19.0,349228,10.1708,,S +689,0,3,"Fischer, Mr. Eberhard Thelander",male,18.0,350036,7.7958,,S +690,1,1,"Madill, Miss. Georgette Alexandra",female,15.0,24160,211.3375,B5,S +691,1,1,"Dick, Mr. Albert Adrian",male,31.0,17474,57.0,B20,S +692,1,3,"Karun, Miss. Manca",female,4.0,349256,13.4167,,C +693,1,3,"Lam, Mr. Ali",male,,1601,56.4958,,S +694,0,3,"Saad, Mr. Khalil",male,25.0,2672,7.225,,C +695,0,1,"Weir, Col. John",male,60.0,113800,26.55,,S +696,0,2,"Chapman, Mr. Charles Henry",male,52.0,248731,13.5,,S +697,0,3,"Kelly, Mr. James",male,44.0,363592,8.05,,S +698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,35852,7.7333,,Q +699,0,1,"Thayer, Mr. John Borland",male,49.0,17421,110.8833,C68,C +700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42.0,348121,7.65,F G63,S +701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18.0,PC 17757,227.525,C62 C64,C +702,1,1,"Silverthorne, Mr. Spencer Victor",male,35.0,PC 17475,26.2875,E24,S +703,0,3,"Barbara, Miss. Saiide",female,18.0,2691,14.4542,,C +704,0,3,"Gallagher, Mr. Martin",male,25.0,36864,7.7417,,Q +705,0,3,"Hansen, Mr. Henrik Juul",male,26.0,350025,7.8542,,S +706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39.0,250655,26.0,,S +707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45.0,223596,13.5,,S +708,1,1,"Calderhead, Mr. Edward Pennington",male,42.0,PC 17476,26.2875,E24,S +709,1,1,"Cleaver, Miss. Alice",female,22.0,113781,151.55,,S +710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,2661,15.2458,,C +711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24.0,PC 17482,49.5042,C90,C +712,0,1,"Klaber, Mr. Herman",male,,113028,26.55,C124,S +713,1,1,"Taylor, Mr. Elmer Zebley",male,48.0,19996,52.0,C126,S +714,0,3,"Larsson, Mr. August Viktor",male,29.0,7545,9.4833,,S +715,0,2,"Greenberg, Mr. Samuel",male,52.0,250647,13.0,,S +716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19.0,348124,7.65,F G73,S +717,1,1,"Endres, Miss. Caroline Louise",female,38.0,PC 17757,227.525,C45,C +718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27.0,34218,10.5,E101,S +719,0,3,"McEvoy, Mr. Michael",male,,36568,15.5,,Q +720,0,3,"Johnson, Mr. Malkolm Joackim",male,33.0,347062,7.775,,S +721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6.0,248727,33.0,,S +722,0,3,"Jensen, Mr. Svend Lauritz",male,17.0,350048,7.0542,,S +723,0,2,"Gillespie, Mr. William Henry",male,34.0,12233,13.0,,S +724,0,2,"Hodges, Mr. Henry Price",male,50.0,250643,13.0,,S +725,1,1,"Chambers, Mr. Norman Campbell",male,27.0,113806,53.1,E8,S +726,0,3,"Oreskovic, Mr. Luka",male,20.0,315094,8.6625,,S +727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30.0,31027,21.0,,S +728,1,3,"Mannion, Miss. Margareth",female,,36866,7.7375,,Q +729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25.0,236853,26.0,,S +730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25.0,STON/O2. 3101271,7.925,,S +731,1,1,"Allen, Miss. Elisabeth Walton",female,29.0,24160,211.3375,B5,S +732,0,3,"Hassan, Mr. Houssein G N",male,11.0,2699,18.7875,,C +733,0,2,"Knight, Mr. Robert J",male,,239855,0.0,,S +734,0,2,"Berriman, Mr. William John",male,23.0,28425,13.0,,S +735,0,2,"Troupiansky, Mr. Moses Aaron",male,23.0,233639,13.0,,S +736,0,3,"Williams, Mr. Leslie",male,28.5,54636,16.1,,S +737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48.0,W./C. 6608,34.375,,S +738,1,1,"Lesurer, Mr. Gustave J",male,35.0,PC 17755,512.3292,B101,C +739,0,3,"Ivanoff, Mr. Kanio",male,,349201,7.8958,,S +740,0,3,"Nankoff, Mr. Minko",male,,349218,7.8958,,S +741,1,1,"Hawksford, Mr. Walter James",male,,16988,30.0,D45,S +742,0,1,"Cavendish, Mr. Tyrell William",male,36.0,19877,78.85,C46,S +743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21.0,PC 17608,262.375,B57 B59 B63 B66,C +744,0,3,"McNamee, Mr. Neal",male,24.0,376566,16.1,,S +745,1,3,"Stranden, Mr. Juho",male,31.0,STON/O 2. 3101288,7.925,,S +746,0,1,"Crosby, Capt. Edward Gifford",male,70.0,WE/P 5735,71.0,B22,S +747,0,3,"Abbott, Mr. Rossmore Edward",male,16.0,C.A. 2673,20.25,,S +748,1,2,"Sinkkonen, Miss. Anna",female,30.0,250648,13.0,,S +749,0,1,"Marvin, Mr. Daniel Warner",male,19.0,113773,53.1,D30,S +750,0,3,"Connaghton, Mr. Michael",male,31.0,335097,7.75,,Q +751,1,2,"Wells, Miss. Joan",female,4.0,29103,23.0,,S +752,1,3,"Moor, Master. Meier",male,6.0,392096,12.475,E121,S +753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33.0,345780,9.5,,S +754,0,3,"Jonkoff, Mr. Lalio",male,23.0,349204,7.8958,,S +755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48.0,220845,65.0,,S +756,1,2,"Hamalainen, Master. Viljo",male,0.67,250649,14.5,,S +757,0,3,"Carlsson, Mr. August Sigfrid",male,28.0,350042,7.7958,,S +758,0,2,"Bailey, Mr. Percy Andrew",male,18.0,29108,11.5,,S +759,0,3,"Theobald, Mr. Thomas Leonard",male,34.0,363294,8.05,,S +760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33.0,110152,86.5,B77,S +761,0,3,"Garfirth, Mr. John",male,,358585,14.5,,S +762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41.0,SOTON/O2 3101272,7.125,,S +763,1,3,"Barah, Mr. Hanna Assi",male,20.0,2663,7.2292,,C +764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36.0,113760,120.0,B96 B98,S +765,0,3,"Eklund, Mr. Hans Linus",male,16.0,347074,7.775,,S +766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51.0,13502,77.9583,D11,S +767,0,1,"Brewe, Dr. Arthur Jackson",male,,112379,39.6,,C +768,0,3,"Mangan, Miss. Mary",female,30.5,364850,7.75,,Q +769,0,3,"Moran, Mr. Daniel J",male,,371110,24.15,,Q +770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32.0,8471,8.3625,,S +771,0,3,"Lievens, Mr. Rene Aime",male,24.0,345781,9.5,,S +772,0,3,"Jensen, Mr. Niels Peder",male,48.0,350047,7.8542,,S +773,0,2,"Mack, Mrs. (Mary)",female,57.0,S.O./P.P. 3,10.5,E77,S +774,0,3,"Elias, Mr. Dibo",male,,2674,7.225,,C +775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54.0,29105,23.0,,S +776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18.0,347078,7.75,,S +777,0,3,"Tobin, Mr. Roger",male,,383121,7.75,F38,Q +778,1,3,"Emanuel, Miss. Virginia Ethel",female,5.0,364516,12.475,,S +779,0,3,"Kilgannon, Mr. Thomas J",male,,36865,7.7375,,Q +780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43.0,24160,211.3375,B3,S +781,1,3,"Ayoub, Miss. Banoura",female,13.0,2687,7.2292,,C +782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17.0,17474,57.0,B20,S +783,0,1,"Long, Mr. Milton Clyde",male,29.0,113501,30.0,D6,S +784,0,3,"Johnston, Mr. Andrew G",male,,W./C. 6607,23.45,,S +785,0,3,"Ali, Mr. William",male,25.0,SOTON/O.Q. 3101312,7.05,,S +786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25.0,374887,7.25,,S +787,1,3,"Sjoblom, Miss. Anna Sofia",female,18.0,3101265,7.4958,,S +788,0,3,"Rice, Master. George Hugh",male,8.0,382652,29.125,,Q +789,1,3,"Dean, Master. Bertram Vere",male,1.0,C.A. 2315,20.575,,S +790,0,1,"Guggenheim, Mr. Benjamin",male,46.0,PC 17593,79.2,B82 B84,C +791,0,3,"Keane, Mr. Andrew ""Andy""",male,,12460,7.75,,Q +792,0,2,"Gaskell, Mr. Alfred",male,16.0,239865,26.0,,S +793,0,3,"Sage, Miss. Stella Anna",female,,CA. 2343,69.55,,S +794,0,1,"Hoyt, Mr. William Fisher",male,,PC 17600,30.6958,,C +795,0,3,"Dantcheff, Mr. Ristiu",male,25.0,349203,7.8958,,S +796,0,2,"Otter, Mr. Richard",male,39.0,28213,13.0,,S +797,1,1,"Leader, Dr. Alice (Farnham)",female,49.0,17465,25.9292,D17,S +798,1,3,"Osman, Mrs. Mara",female,31.0,349244,8.6833,,S +799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30.0,2685,7.2292,,C +800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30.0,345773,24.15,,S +801,0,2,"Ponesell, Mr. Martin",male,34.0,250647,13.0,,S +802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31.0,C.A. 31921,26.25,,S +803,1,1,"Carter, Master. William Thornton II",male,11.0,113760,120.0,B96 B98,S +804,1,3,"Thomas, Master. Assad Alexander",male,0.42,2625,8.5167,,C +805,1,3,"Hedman, Mr. Oskar Arvid",male,27.0,347089,6.975,,S +806,0,3,"Johansson, Mr. Karl Johan",male,31.0,347063,7.775,,S +807,0,1,"Andrews, Mr. Thomas Jr",male,39.0,112050,0.0,A36,S +808,0,3,"Pettersson, Miss. Ellen Natalia",female,18.0,347087,7.775,,S +809,0,2,"Meyer, Mr. August",male,39.0,248723,13.0,,S +810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33.0,113806,53.1,E8,S +811,0,3,"Alexander, Mr. William",male,26.0,3474,7.8875,,S +812,0,3,"Lester, Mr. James",male,39.0,A/4 48871,24.15,,S +813,0,2,"Slemen, Mr. Richard James",male,35.0,28206,10.5,,S +814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6.0,347082,31.275,,S +815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,364499,8.05,,S +816,0,1,"Fry, Mr. Richard",male,,112058,0.0,B102,S +817,0,3,"Heininen, Miss. Wendla Maria",female,23.0,STON/O2. 3101290,7.925,,S +818,0,2,"Mallet, Mr. Albert",male,31.0,S.C./PARIS 2079,37.0042,,C +819,0,3,"Holm, Mr. John Fredrik Alexander",male,43.0,C 7075,6.45,,S +820,0,3,"Skoog, Master. Karl Thorsten",male,10.0,347088,27.9,,S +821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52.0,12749,93.5,B69,S +822,1,3,"Lulic, Mr. Nikola",male,27.0,315098,8.6625,,S +823,0,1,"Reuchlin, Jonkheer. John George",male,38.0,19972,0.0,,S +824,1,3,"Moor, Mrs. (Beila)",female,27.0,392096,12.475,E121,S +825,0,3,"Panula, Master. Urho Abraham",male,2.0,3101295,39.6875,,S +826,0,3,"Flynn, Mr. John",male,,368323,6.95,,Q +827,0,3,"Lam, Mr. Len",male,,1601,56.4958,,S +828,1,2,"Mallet, Master. Andre",male,1.0,S.C./PARIS 2079,37.0042,,C +829,1,3,"McCormack, Mr. Thomas Joseph",male,,367228,7.75,,Q +830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62.0,113572,80.0,B28, +831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15.0,2659,14.4542,,C +832,1,2,"Richards, Master. George Sibley",male,0.83,29106,18.75,,S +833,0,3,"Saad, Mr. Amin",male,,2671,7.2292,,C +834,0,3,"Augustsson, Mr. Albert",male,23.0,347468,7.8542,,S +835,0,3,"Allum, Mr. Owen George",male,18.0,2223,8.3,,S +836,1,1,"Compton, Miss. Sara Rebecca",female,39.0,PC 17756,83.1583,E49,C +837,0,3,"Pasic, Mr. Jakob",male,21.0,315097,8.6625,,S +838,0,3,"Sirota, Mr. Maurice",male,,392092,8.05,,S +839,1,3,"Chip, Mr. Chang",male,32.0,1601,56.4958,,S +840,1,1,"Marechal, Mr. Pierre",male,,11774,29.7,C47,C +841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20.0,SOTON/O2 3101287,7.925,,S +842,0,2,"Mudd, Mr. Thomas Charles",male,16.0,S.O./P.P. 3,10.5,,S +843,1,1,"Serepeca, Miss. Augusta",female,30.0,113798,31.0,,C +844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,2683,6.4375,,C +845,0,3,"Culumovic, Mr. Jeso",male,17.0,315090,8.6625,,S +846,0,3,"Abbing, Mr. Anthony",male,42.0,C.A. 5547,7.55,,S +847,0,3,"Sage, Mr. Douglas Bullen",male,,CA. 2343,69.55,,S +848,0,3,"Markoff, Mr. Marin",male,35.0,349213,7.8958,,C +849,0,2,"Harper, Rev. John",male,28.0,248727,33.0,,S +850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,17453,89.1042,C92,C +851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4.0,347082,31.275,,S +852,0,3,"Svensson, Mr. Johan",male,74.0,347060,7.775,,S +853,0,3,"Boulos, Miss. Nourelain",female,9.0,2678,15.2458,,C +854,1,1,"Lines, Miss. Mary Conover",female,16.0,PC 17592,39.4,D28,S +855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44.0,244252,26.0,,S +856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18.0,392091,9.35,,S +857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45.0,36928,164.8667,,S +858,1,1,"Daly, Mr. Peter Denis ",male,51.0,113055,26.55,E17,S +859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24.0,2666,19.2583,,C +860,0,3,"Razi, Mr. Raihed",male,,2629,7.2292,,C +861,0,3,"Hansen, Mr. Claus Peter",male,41.0,350026,14.1083,,S +862,0,2,"Giles, Mr. Frederick Edward",male,21.0,28134,11.5,,S +863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48.0,17466,25.9292,D17,S +864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,CA. 2343,69.55,,S +865,0,2,"Gill, Mr. John William",male,24.0,233866,13.0,,S +866,1,2,"Bystrom, Mrs. (Karolina)",female,42.0,236852,13.0,,S +867,1,2,"Duran y More, Miss. Asuncion",female,27.0,SC/PARIS 2149,13.8583,,C +868,0,1,"Roebling, Mr. Washington Augustus II",male,31.0,PC 17590,50.4958,A24,S +869,0,3,"van Melkebeke, Mr. Philemon",male,,345777,9.5,,S +870,1,3,"Johnson, Master. Harold Theodor",male,4.0,347742,11.1333,,S +871,0,3,"Balkic, Mr. Cerin",male,26.0,349248,7.8958,,S +872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47.0,11751,52.5542,D35,S +873,0,1,"Carlsson, Mr. Frans Olof",male,33.0,695,5.0,B51 B53 B55,S +874,0,3,"Vander Cruyssen, Mr. Victor",male,47.0,345765,9.0,,S +875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28.0,P/PP 3381,24.0,,C +876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15.0,2667,7.225,,C +877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20.0,7534,9.8458,,S +878,0,3,"Petroff, Mr. Nedelio",male,19.0,349212,7.8958,,S +879,0,3,"Laleff, Mr. Kristo",male,,349217,7.8958,,S +880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56.0,11767,83.1583,C50,C +881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25.0,230433,26.0,,S +882,0,3,"Markun, Mr. Johann",male,33.0,349257,7.8958,,S +883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22.0,7552,10.5167,,S +884,0,2,"Banfield, Mr. Frederick James",male,28.0,C.A./SOTON 34068,10.5,,S +885,0,3,"Sutehall, Mr. Henry Jr",male,25.0,SOTON/OQ 392076,7.05,,S +886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39.0,382652,29.125,,Q +887,0,2,"Montvila, Rev. Juozas",male,27.0,211536,13.0,,S +888,1,1,"Graham, Miss. Margaret Edith",female,19.0,112053,30.0,B42,S +889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,W./C. 6607,23.45,,S +890,1,1,"Behr, Mr. Karl Howell",male,26.0,111369,30.0,C148,C +891,0,3,"Dooley, Mr. Patrick",male,32.0,370376,7.75,,Q