diff --git a/exercicios/para-casa/Exercicio_casa.ipynb b/exercicios/para-casa/Exercicio_casa.ipynb
new file mode 100644
index 0000000..91fc5c4
--- /dev/null
+++ b/exercicios/para-casa/Exercicio_casa.ipynb
@@ -0,0 +1,875 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Exercícios Casa "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Requirement already satisfied: pandas in c:\\users\\jenif\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (2.2.2)\n",
+ "Requirement already satisfied: numpy>=1.26.0 in c:\\users\\jenif\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from pandas) (2.0.1)\n",
+ "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\jenif\\appdata\\roaming\\python\\python312\\site-packages (from pandas) (2.9.0.post0)\n",
+ "Requirement already satisfied: pytz>=2020.1 in c:\\users\\jenif\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from pandas) (2024.1)\n",
+ "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\jenif\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from pandas) (2024.1)\n",
+ "Requirement already satisfied: six>=1.5 in c:\\users\\jenif\\appdata\\roaming\\python\\python312\\site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "[notice] A new release of pip is available: 24.0 -> 24.2\n",
+ "[notice] To update, run: python.exe -m pip install --upgrade pip\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Requirement already satisfied: numpy in c:\\users\\jenif\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (2.0.1)\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "[notice] A new release of pip is available: 24.0 -> 24.2\n",
+ "[notice] To update, run: python.exe -m pip install --upgrade pip\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Requirement already satisfied: matplotlib in c:\\users\\jenif\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (3.9.1.post1)\n",
+ "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\jenif\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib) (1.2.1)\n",
+ "Requirement already satisfied: cycler>=0.10 in c:\\users\\jenif\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib) (0.12.1)\n",
+ "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\jenif\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib) (4.53.1)\n",
+ "Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\jenif\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib) (1.4.5)\n",
+ "Requirement already satisfied: numpy>=1.23 in c:\\users\\jenif\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib) (2.0.1)\n",
+ "Requirement already satisfied: packaging>=20.0 in c:\\users\\jenif\\appdata\\roaming\\python\\python312\\site-packages (from matplotlib) (24.1)\n",
+ "Requirement already satisfied: pillow>=8 in c:\\users\\jenif\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib) (10.4.0)\n",
+ "Requirement already satisfied: pyparsing>=2.3.1 in c:\\users\\jenif\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib) (3.1.2)\n",
+ "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\jenif\\appdata\\roaming\\python\\python312\\site-packages (from matplotlib) (2.9.0.post0)\n",
+ "Requirement already satisfied: six>=1.5 in c:\\users\\jenif\\appdata\\roaming\\python\\python312\\site-packages (from python-dateutil>=2.7->matplotlib) (1.16.0)\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "[notice] A new release of pip is available: 24.0 -> 24.2\n",
+ "[notice] To update, run: python.exe -m pip install --upgrade pip\n"
+ ]
+ }
+ ],
+ "source": [
+ "!pip install pandas\n",
+ "!pip install numpy\n",
+ "!pip install matplotlib"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 65,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "np.random.seed(42)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 66,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "categorias = ['Eletrônicos', 'Roupas', 'Alimentos', 'Livros', 'Brinquedos']\n",
+ "datas = pd.date_range(start='2023-01-01', end='2023-12-31', freq='D')\n",
+ "num_registros = len(datas)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 67,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data = {\n",
+ " 'Data': np.random.choice(datas, num_registros),\n",
+ " 'Categoria': np.random.choice(categorias, num_registros),\n",
+ " 'Quantidade_Vendida': np.random.randint(1, 100, num_registros),\n",
+ " 'Preco_Unitario': np.round(np.random.uniform(10, 500, num_registros), 2)\n",
+ " }\n",
+ "df = pd.DataFrame(data)\n",
+ "df['Valor_Total'] = df['Quantidade_Vendida'] * df['Preco_Unitario']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 68,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df.to_csv('dados_vendas.csv', index=False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 69,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Data Categoria Quantidade_Vendida Preco_Unitario Valor_Total\n",
+ "0 2023-04-13 Roupas 74 60.43 4471.82\n",
+ "1 2023-12-15 Alimentos 83 272.88 22649.04\n",
+ "2 2023-09-28 Roupas 17 195.62 3325.54\n",
+ "3 2023-04-17 Roupas 85 233.93 19884.05\n",
+ "4 2023-03-13 Roupas 78 305.94 23863.32\n",
+ ".. ... ... ... ... ...\n",
+ "360 2023-10-07 Brinquedos 66 12.49 824.34\n",
+ "361 2023-04-24 Brinquedos 10 350.90 3509.00\n",
+ "362 2023-10-15 Brinquedos 5 33.90 169.50\n",
+ "363 2023-12-08 Brinquedos 74 270.98 20052.52\n",
+ "364 2023-05-31 Roupas 97 481.44 46699.68\n",
+ "\n",
+ "[365 rows x 5 columns]\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(df)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 70,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Data | \n",
+ " Categoria | \n",
+ " Quantidade_Vendida | \n",
+ " Preco_Unitario | \n",
+ " Valor_Total | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 2023-04-13 | \n",
+ " Roupas | \n",
+ " 74 | \n",
+ " 60.43 | \n",
+ " 4471.82 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2023-12-15 | \n",
+ " Alimentos | \n",
+ " 83 | \n",
+ " 272.88 | \n",
+ " 22649.04 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 2023-09-28 | \n",
+ " Roupas | \n",
+ " 17 | \n",
+ " 195.62 | \n",
+ " 3325.54 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 2023-04-17 | \n",
+ " Roupas | \n",
+ " 85 | \n",
+ " 233.93 | \n",
+ " 19884.05 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 2023-03-13 | \n",
+ " Roupas | \n",
+ " 78 | \n",
+ " 305.94 | \n",
+ " 23863.32 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Data Categoria Quantidade_Vendida Preco_Unitario Valor_Total\n",
+ "0 2023-04-13 Roupas 74 60.43 4471.82\n",
+ "1 2023-12-15 Alimentos 83 272.88 22649.04\n",
+ "2 2023-09-28 Roupas 17 195.62 3325.54\n",
+ "3 2023-04-17 Roupas 85 233.93 19884.05\n",
+ "4 2023-03-13 Roupas 78 305.94 23863.32"
+ ]
+ },
+ "execution_count": 70,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 71,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 71,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.info"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 72,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(365, 5)"
+ ]
+ },
+ "execution_count": 72,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 73,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Data datetime64[ns]\n",
+ "Categoria object\n",
+ "Quantidade_Vendida int32\n",
+ "Preco_Unitario float64\n",
+ "Valor_Total float64\n",
+ "dtype: object"
+ ]
+ },
+ "execution_count": 73,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.dtypes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 74,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Data | \n",
+ " Categoria | \n",
+ " Quantidade_Vendida | \n",
+ " Preco_Unitario | \n",
+ " Valor_Total | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 2023-04-13 | \n",
+ " Roupas | \n",
+ " 74 | \n",
+ " 60.43 | \n",
+ " 4471.82 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2023-12-15 | \n",
+ " Alimentos | \n",
+ " 83 | \n",
+ " 272.88 | \n",
+ " 22649.04 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 2023-09-28 | \n",
+ " Roupas | \n",
+ " 17 | \n",
+ " 195.62 | \n",
+ " 3325.54 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 2023-04-17 | \n",
+ " Roupas | \n",
+ " 85 | \n",
+ " 233.93 | \n",
+ " 19884.05 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 2023-03-13 | \n",
+ " Roupas | \n",
+ " 78 | \n",
+ " 305.94 | \n",
+ " 23863.32 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Data Categoria Quantidade_Vendida Preco_Unitario Valor_Total\n",
+ "0 2023-04-13 Roupas 74 60.43 4471.82\n",
+ "1 2023-12-15 Alimentos 83 272.88 22649.04\n",
+ "2 2023-09-28 Roupas 17 195.62 3325.54\n",
+ "3 2023-04-17 Roupas 85 233.93 19884.05\n",
+ "4 2023-03-13 Roupas 78 305.94 23863.32"
+ ]
+ },
+ "execution_count": 74,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head(5)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 75,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Data Categoria Quantidade_Vendida Preco_Unitario Valor_Total\n",
+ "5 2023-07-08 Eletrônicos 73 256.12 18696.76\n",
+ "6 2023-01-21 Eletrônicos 1 274.53 274.53\n",
+ "7 2023-04-13 Eletrônicos 51 248.32 12664.32\n",
+ "14 2023-06-01 Eletrônicos 34 303.52 10319.68\n",
+ "18 2023-09-15 Eletrônicos 39 121.40 4734.60\n",
+ ".. ... ... ... ... ...\n",
+ "347 2023-09-10 Eletrônicos 33 431.46 14238.18\n",
+ "349 2023-09-13 Eletrônicos 27 201.67 5445.09\n",
+ "351 2023-05-08 Eletrônicos 29 243.57 7063.53\n",
+ "353 2023-10-08 Eletrônicos 57 427.57 24371.49\n",
+ "356 2023-02-27 Eletrônicos 55 466.48 25656.40\n",
+ "\n",
+ "[73 rows x 5 columns]\n"
+ ]
+ }
+ ],
+ "source": [
+ "eletronicos = df[df['Categoria'] == 'Eletrônicos']\n",
+ "print(eletronicos)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 79,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "np.float64(13102.970520547946)"
+ ]
+ },
+ "execution_count": 79,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "media_valor = df['Valor_Total']\n",
+ "media_valor.mean()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 80,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Data Categoria Quantidade_Vendida Preco_Unitario Valor_Total\n",
+ "0 2023-04-13 Roupas 74 60.43 4471.82\n",
+ "1 2023-12-15 Alimentos 83 272.88 22649.04\n",
+ "2 2023-09-28 Roupas 17 195.62 3325.54\n",
+ "3 2023-04-17 Roupas 85 233.93 19884.05\n",
+ "4 2023-03-13 Roupas 78 305.94 23863.32\n",
+ ".. ... ... ... ... ...\n",
+ "358 2023-12-26 Brinquedos 68 147.88 10055.84\n",
+ "359 2023-06-23 Alimentos 86 133.80 11506.80\n",
+ "361 2023-04-24 Brinquedos 10 350.90 3509.00\n",
+ "363 2023-12-08 Brinquedos 74 270.98 20052.52\n",
+ "364 2023-05-31 Roupas 97 481.44 46699.68\n",
+ "\n",
+ "[330 rows x 5 columns]\n"
+ ]
+ }
+ ],
+ "source": [
+ "vendas_acima_1000 = df[df['Valor_Total'] > 1000]\n",
+ "print(vendas_acima_1000)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 81,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Data | \n",
+ " Categoria | \n",
+ " Quantidade_Vendida | \n",
+ " Preco_Unitario | \n",
+ " Valor_Total | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 2023-04-13 | \n",
+ " Roupas | \n",
+ " 74 | \n",
+ " 60.43 | \n",
+ " 4471.82 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2023-12-15 | \n",
+ " Alimentos | \n",
+ " 83 | \n",
+ " 272.88 | \n",
+ " 22649.04 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 2023-09-28 | \n",
+ " Roupas | \n",
+ " 17 | \n",
+ " 195.62 | \n",
+ " 3325.54 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 2023-04-17 | \n",
+ " Roupas | \n",
+ " 85 | \n",
+ " 233.93 | \n",
+ " 19884.05 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 2023-03-13 | \n",
+ " Roupas | \n",
+ " 78 | \n",
+ " 305.94 | \n",
+ " 23863.32 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 2023-07-08 | \n",
+ " Eletrônicos | \n",
+ " 73 | \n",
+ " 256.12 | \n",
+ " 18696.76 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 2023-01-21 | \n",
+ " Eletrônicos | \n",
+ " 1 | \n",
+ " 274.53 | \n",
+ " 274.53 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 2023-04-13 | \n",
+ " Eletrônicos | \n",
+ " 51 | \n",
+ " 248.32 | \n",
+ " 12664.32 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 2023-05-02 | \n",
+ " Alimentos | \n",
+ " 45 | \n",
+ " 210.39 | \n",
+ " 9467.55 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 2023-08-03 | \n",
+ " Brinquedos | \n",
+ " 77 | \n",
+ " 388.22 | \n",
+ " 29892.94 | \n",
+ "
\n",
+ " \n",
+ " | 10 | \n",
+ " 2023-11-27 | \n",
+ " Roupas | \n",
+ " 4 | \n",
+ " 15.98 | \n",
+ " 63.92 | \n",
+ "
\n",
+ " \n",
+ " | 11 | \n",
+ " 2023-03-29 | \n",
+ " Roupas | \n",
+ " 62 | \n",
+ " 303.24 | \n",
+ " 18800.88 | \n",
+ "
\n",
+ " \n",
+ " | 12 | \n",
+ " 2023-04-10 | \n",
+ " Alimentos | \n",
+ " 65 | \n",
+ " 287.10 | \n",
+ " 18661.50 | \n",
+ "
\n",
+ " \n",
+ " | 13 | \n",
+ " 2023-12-26 | \n",
+ " Roupas | \n",
+ " 32 | \n",
+ " 360.93 | \n",
+ " 11549.76 | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " 2023-06-01 | \n",
+ " Eletrônicos | \n",
+ " 34 | \n",
+ " 303.52 | \n",
+ " 10319.68 | \n",
+ "
\n",
+ " \n",
+ " | 15 | \n",
+ " 2023-05-11 | \n",
+ " Brinquedos | \n",
+ " 92 | \n",
+ " 415.13 | \n",
+ " 38191.96 | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " 2023-05-30 | \n",
+ " Livros | \n",
+ " 95 | \n",
+ " 479.95 | \n",
+ " 45595.25 | \n",
+ "
\n",
+ " \n",
+ " | 17 | \n",
+ " 2023-11-05 | \n",
+ " Roupas | \n",
+ " 72 | \n",
+ " 177.84 | \n",
+ " 12804.48 | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " 2023-09-15 | \n",
+ " Eletrônicos | \n",
+ " 39 | \n",
+ " 121.40 | \n",
+ " 4734.60 | \n",
+ "
\n",
+ " \n",
+ " | 19 | \n",
+ " 2023-12-10 | \n",
+ " Livros | \n",
+ " 26 | \n",
+ " 217.56 | \n",
+ " 5656.56 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Data Categoria Quantidade_Vendida Preco_Unitario Valor_Total\n",
+ "0 2023-04-13 Roupas 74 60.43 4471.82\n",
+ "1 2023-12-15 Alimentos 83 272.88 22649.04\n",
+ "2 2023-09-28 Roupas 17 195.62 3325.54\n",
+ "3 2023-04-17 Roupas 85 233.93 19884.05\n",
+ "4 2023-03-13 Roupas 78 305.94 23863.32\n",
+ "5 2023-07-08 Eletrônicos 73 256.12 18696.76\n",
+ "6 2023-01-21 Eletrônicos 1 274.53 274.53\n",
+ "7 2023-04-13 Eletrônicos 51 248.32 12664.32\n",
+ "8 2023-05-02 Alimentos 45 210.39 9467.55\n",
+ "9 2023-08-03 Brinquedos 77 388.22 29892.94\n",
+ "10 2023-11-27 Roupas 4 15.98 63.92\n",
+ "11 2023-03-29 Roupas 62 303.24 18800.88\n",
+ "12 2023-04-10 Alimentos 65 287.10 18661.50\n",
+ "13 2023-12-26 Roupas 32 360.93 11549.76\n",
+ "14 2023-06-01 Eletrônicos 34 303.52 10319.68\n",
+ "15 2023-05-11 Brinquedos 92 415.13 38191.96\n",
+ "16 2023-05-30 Livros 95 479.95 45595.25\n",
+ "17 2023-11-05 Roupas 72 177.84 12804.48\n",
+ "18 2023-09-15 Eletrônicos 39 121.40 4734.60\n",
+ "19 2023-12-10 Livros 26 217.56 5656.56"
+ ]
+ },
+ "execution_count": 81,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head(20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 84,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(365, 5)"
+ ]
+ },
+ "execution_count": 84,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 85,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Categoria Valor_Total\n",
+ "0 Alimentos 742457.74\n",
+ "1 Brinquedos 1187964.04\n",
+ "2 Eletrônicos 897261.71\n",
+ "3 Livros 963685.46\n",
+ "4 Roupas 991215.29\n"
+ ]
+ }
+ ],
+ "source": [
+ "total_por_categoria = df.groupby('Categoria')['Valor_Total'].sum().reset_index()\n",
+ "print(total_por_categoria)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 86,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Categoria Quantidade_Vendida\n",
+ "0 Alimentos 55.618182\n",
+ "1 Brinquedos 47.247191\n",
+ "2 Eletrônicos 46.780822\n",
+ "3 Livros 50.917808\n",
+ "4 Roupas 47.200000\n"
+ ]
+ }
+ ],
+ "source": [
+ "media_quantidade_categoria = df.groupby('Categoria')['Quantidade_Vendida'].mean().reset_index()\n",
+ "print(media_quantidade_categoria)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 91,
+ "metadata": {},
+ "outputs": [
+ {
+ "ename": "NameError",
+ "evalue": "name 'plt' is not defined",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
+ "Cell \u001b[1;32mIn[91], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[43mplt\u001b[49m\u001b[38;5;241m.\u001b[39mfigure(figsize\u001b[38;5;241m=\u001b[39m(\u001b[38;5;241m10\u001b[39m, \u001b[38;5;241m6\u001b[39m))\n\u001b[0;32m 2\u001b[0m plt\u001b[38;5;241m.\u001b[39mbar(total_por_categoria[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mCategoria\u001b[39m\u001b[38;5;124m'\u001b[39m], total_por_categoria[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mValor_Total\u001b[39m\u001b[38;5;124m'\u001b[39m], color\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mskyblue\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m 3\u001b[0m plt\u001b[38;5;241m.\u001b[39mxlabel(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mCategoria\u001b[39m\u001b[38;5;124m'\u001b[39m)\n",
+ "\u001b[1;31mNameError\u001b[0m: name 'plt' is not defined"
+ ]
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10, 6))\n",
+ "plt.bar(total_por_categoria['Categoria'], total_por_categoria['Valor_Total'], color='skyblue')\n",
+ "plt.xlabel('Categoria')\n",
+ "plt.ylabel('Valor Total de Vendas (R$)')\n",
+ "plt.title('Total de Vendas por Categoria')\n",
+ "plt.show()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.12.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/exercicios/para-casa/dados_vendas.csv b/exercicios/para-casa/dados_vendas.csv
new file mode 100644
index 0000000..c98fa34
--- /dev/null
+++ b/exercicios/para-casa/dados_vendas.csv
@@ -0,0 +1,366 @@
+Data,Categoria,Quantidade_Vendida,Preco_Unitario,Valor_Total
+2023-04-13,Roupas,74,60.43,4471.82
+2023-12-15,Alimentos,83,272.88,22649.04
+2023-09-28,Roupas,17,195.62,3325.54
+2023-04-17,Roupas,85,233.93,19884.05
+2023-03-13,Roupas,78,305.94,23863.32
+2023-07-08,Eletrônicos,73,256.12,18696.760000000002
+2023-01-21,Eletrônicos,1,274.53,274.53
+2023-04-13,Eletrônicos,51,248.32,12664.32
+2023-05-02,Alimentos,45,210.39,9467.55
+2023-08-03,Brinquedos,77,388.22,29892.940000000002
+2023-11-27,Roupas,4,15.98,63.92
+2023-03-29,Roupas,62,303.24,18800.88
+2023-04-10,Alimentos,65,287.1,18661.5
+2023-12-26,Roupas,32,360.93,11549.76
+2023-06-01,Eletrônicos,34,303.52,10319.68
+2023-05-11,Brinquedos,92,415.13,38191.96
+2023-05-30,Livros,95,479.95,45595.25
+2023-11-05,Roupas,72,177.84,12804.48
+2023-09-15,Eletrônicos,39,121.4,4734.6
+2023-12-10,Livros,26,217.56,5656.56
+2023-10-21,Brinquedos,34,151.09,5137.06
+2023-07-11,Livros,54,311.33,16811.82
+2023-10-04,Eletrônicos,3,456.81,1370.43
+2023-06-10,Livros,50,78.17,3908.5
+2023-11-10,Alimentos,12,59.39,712.6800000000001
+2023-01-22,Livros,65,135.45,8804.25
+2023-09-10,Roupas,54,365.79,19752.66
+2023-08-24,Roupas,5,300.55,1502.75
+2023-12-11,Alimentos,94,60.08,5647.5199999999995
+2023-02-18,Eletrônicos,94,460.19,43257.86
+2023-02-28,Roupas,57,397.14,22636.98
+2023-06-19,Brinquedos,17,21.28,361.76
+2023-07-07,Roupas,47,329.17,15470.990000000002
+2023-09-28,Roupas,23,387.91,8921.93
+2023-07-09,Eletrônicos,79,193.47,15284.13
+2023-06-24,Livros,85,43.77,3720.4500000000003
+2023-02-20,Roupas,14,47.89,670.46
+2023-12-30,Alimentos,66,61.08,4031.2799999999997
+2023-02-24,Livros,75,421.82,31636.5
+2023-09-01,Brinquedos,51,456.24,23268.24
+2023-11-16,Eletrônicos,38,70.18,2666.84
+2023-05-11,Brinquedos,64,125.59,8037.76
+2023-11-03,Livros,98,91.11,8928.78
+2023-05-15,Livros,38,101.3,3849.4
+2023-01-21,Livros,50,420.37,21018.5
+2023-11-25,Brinquedos,98,172.75,16929.5
+2023-06-16,Livros,82,162.61,13334.02
+2023-10-01,Brinquedos,30,121.42,3642.6
+2023-03-30,Livros,79,307.87,24321.73
+2023-11-12,Alimentos,91,195.86,17823.260000000002
+2023-01-14,Livros,51,374.68,19108.68
+2023-08-30,Brinquedos,63,110.73,6975.990000000001
+2023-09-22,Roupas,98,396.02,38809.96
+2023-12-12,Livros,52,305.82,15902.64
+2023-02-22,Roupas,38,65.99,2507.62
+2023-12-06,Alimentos,97,213.11,20671.670000000002
+2023-04-02,Eletrônicos,88,433.12,38114.56
+2023-09-21,Alimentos,79,462.25,36517.75
+2023-02-04,Livros,30,238.19,7145.7
+2023-07-25,Roupas,51,245.61,12526.11
+2023-03-22,Roupas,81,460.04,37263.240000000005
+2023-02-19,Brinquedos,5,297.66,1488.3000000000002
+2023-12-26,Roupas,29,26.09,756.61
+2023-01-02,Brinquedos,4,457.25,1829.0
+2023-02-23,Eletrônicos,10,131.63,1316.3
+2023-04-16,Livros,56,293.04,16410.24
+2023-09-17,Brinquedos,17,91.1,1548.6999999999998
+2023-11-06,Eletrônicos,74,26.6,1968.4
+2023-07-10,Roupas,17,162.62,2764.54
+2023-08-06,Roupas,84,392.44,32964.96
+2023-02-13,Eletrônicos,88,146.02,12849.76
+2023-06-11,Roupas,69,117.85,8131.65
+2023-07-21,Eletrônicos,34,114.21,3883.14
+2023-09-27,Brinquedos,6,262.44,1574.6399999999999
+2023-12-17,Brinquedos,53,488.02,25865.059999999998
+2023-10-31,Eletrônicos,66,234.9,15503.4
+2023-09-28,Brinquedos,77,283.08,21797.16
+2023-08-03,Brinquedos,43,431.71,18563.53
+2023-09-09,Brinquedos,75,272.18,20413.5
+2023-07-09,Alimentos,23,100.39,2308.97
+2023-10-23,Livros,55,156.8,8624.0
+2023-08-01,Roupas,80,161.87,12949.6
+2023-07-27,Alimentos,95,204.69,19445.55
+2023-08-25,Brinquedos,75,219.13,16434.75
+2023-12-04,Eletrônicos,16,401.89,6430.24
+2023-02-22,Brinquedos,8,181.2,1449.6
+2023-10-07,Livros,4,239.43,957.72
+2023-08-05,Brinquedos,4,316.24,1264.96
+2023-09-09,Eletrônicos,56,195.09,10925.04
+2023-07-07,Livros,25,419.92,10498.0
+2023-02-10,Brinquedos,67,297.85,19955.95
+2023-06-06,Livros,96,154.08,14791.68
+2023-01-15,Roupas,67,359.89,24112.629999999997
+2023-10-28,Roupas,27,268.55,7250.85
+2023-03-06,Brinquedos,93,271.88,25284.84
+2023-12-11,Livros,32,245.73,7863.36
+2023-11-23,Eletrônicos,50,253.54,12677.0
+2023-01-09,Brinquedos,61,385.02,23486.219999999998
+2023-12-10,Roupas,51,60.46,3083.46
+2023-05-09,Roupas,19,173.84,3302.96
+2023-05-16,Brinquedos,21,47.0,987.0
+2023-03-04,Livros,5,379.09,1895.4499999999998
+2023-05-19,Roupas,82,143.43,11761.26
+2023-03-22,Livros,92,449.74,41376.08
+2023-06-12,Roupas,42,268.02,11256.84
+2023-10-16,Roupas,61,402.37,24544.57
+2023-09-18,Alimentos,22,489.68,10772.960000000001
+2023-08-19,Roupas,21,421.5,8851.5
+2023-02-10,Eletrônicos,70,434.83,30438.1
+2023-01-28,Brinquedos,1,209.91,209.91
+2023-05-15,Brinquedos,5,280.34,1401.6999999999998
+2023-07-20,Livros,12,134.41,1612.92
+2023-11-24,Roupas,90,106.1,9549.0
+2023-09-25,Eletrônicos,46,257.7,11854.199999999999
+2023-02-02,Livros,34,301.57,10253.38
+2023-02-17,Alimentos,49,176.24,8635.76
+2023-03-03,Livros,78,289.03,22544.339999999997
+2023-08-04,Livros,90,444.86,40037.4
+2023-10-20,Roupas,45,282.79,12725.550000000001
+2023-04-09,Alimentos,27,363.2,9806.4
+2023-06-21,Livros,73,404.6,29535.800000000003
+2023-12-26,Eletrônicos,26,494.48,12856.48
+2023-08-02,Eletrônicos,47,305.57,14361.789999999999
+2023-02-04,Brinquedos,86,405.36,34860.96
+2023-08-15,Alimentos,56,481.7,26975.2
+2023-04-11,Alimentos,94,472.76,44439.44
+2023-05-11,Brinquedos,63,79.13,4985.19
+2023-09-14,Livros,48,209.13,10038.24
+2023-01-05,Alimentos,61,168.76,10294.359999999999
+2023-08-06,Eletrônicos,81,52.59,4259.79
+2023-09-12,Eletrônicos,26,320.29,8327.54
+2023-12-25,Roupas,36,370.59,13341.24
+2023-10-10,Alimentos,1,425.58,425.58
+2023-07-26,Livros,8,70.16,561.28
+2023-01-15,Brinquedos,99,439.46,43506.54
+2023-12-12,Brinquedos,52,325.03,16901.559999999998
+2023-02-11,Livros,79,354.93,28039.47
+2023-06-28,Roupas,47,456.21,21441.87
+2023-03-04,Brinquedos,56,316.13,17703.28
+2023-12-18,Alimentos,86,174.57,15013.019999999999
+2023-08-19,Roupas,14,414.3,5800.2
+2023-08-29,Alimentos,90,187.9,16911.0
+2023-02-21,Eletrônicos,28,26.77,749.56
+2023-04-06,Roupas,87,417.02,36280.74
+2023-08-10,Brinquedos,78,179.14,13972.919999999998
+2023-08-19,Roupas,88,389.18,34247.840000000004
+2023-08-25,Roupas,2,187.75,375.5
+2023-05-23,Roupas,26,431.92,11229.92
+2023-06-20,Roupas,14,117.56,1645.8400000000001
+2023-01-29,Alimentos,59,487.53,28764.269999999997
+2023-02-05,Eletrônicos,56,392.08,21956.48
+2023-01-13,Livros,7,65.98,461.86
+2023-06-09,Roupas,3,287.23,861.69
+2023-11-23,Brinquedos,23,492.83,11335.09
+2023-07-06,Roupas,18,240.82,4334.76
+2023-08-31,Brinquedos,38,99.23,3770.7400000000002
+2023-03-27,Alimentos,99,247.54,24506.46
+2023-10-11,Brinquedos,15,261.1,3916.5000000000005
+2023-03-07,Livros,64,373.43,23899.52
+2023-06-19,Eletrônicos,89,352.43,31366.27
+2023-02-14,Brinquedos,28,207.25,5803.0
+2023-03-03,Brinquedos,74,116.83,8645.42
+2023-05-14,Eletrônicos,39,326.08,12717.119999999999
+2023-10-11,Livros,57,216.63,12347.91
+2023-01-28,Roupas,17,74.82,1271.9399999999998
+2023-04-18,Brinquedos,86,451.28,38810.079999999994
+2023-02-13,Eletrônicos,90,348.7,31383.0
+2023-12-06,Alimentos,44,344.76,15169.439999999999
+2023-10-13,Eletrônicos,25,413.07,10326.75
+2023-11-27,Alimentos,17,269.53,4582.009999999999
+2023-05-08,Livros,13,409.38,5321.94
+2023-12-14,Roupas,84,254.06,21341.04
+2023-08-19,Eletrônicos,25,42.92,1073.0
+2023-07-09,Brinquedos,68,208.57,14182.76
+2023-08-13,Livros,10,253.76,2537.6
+2023-10-10,Eletrônicos,67,362.9,24314.3
+2023-05-01,Brinquedos,18,62.22,1119.96
+2023-04-26,Eletrônicos,86,78.61,6760.46
+2023-08-21,Alimentos,34,139.21,4733.14
+2023-09-16,Eletrônicos,8,140.58,1124.64
+2023-12-25,Eletrônicos,40,368.77,14750.8
+2023-07-17,Eletrônicos,83,132.86,11027.380000000001
+2023-05-17,Livros,42,320.22,13449.240000000002
+2023-11-14,Eletrônicos,41,252.19,10339.789999999999
+2023-06-14,Brinquedos,6,290.91,1745.46
+2023-08-13,Alimentos,52,420.67,21874.84
+2023-11-03,Alimentos,26,208.15,5411.900000000001
+2023-08-22,Eletrônicos,64,387.75,24816.0
+2023-06-21,Livros,98,216.8,21246.4
+2023-06-01,Livros,59,183.4,10820.6
+2023-11-11,Brinquedos,56,479.73,26864.88
+2023-06-09,Eletrônicos,59,100.34,5920.06
+2023-04-06,Alimentos,70,54.27,3798.9
+2023-08-21,Livros,33,387.78,12796.74
+2023-06-29,Eletrônicos,53,43.44,2302.3199999999997
+2023-04-23,Livros,22,420.17,9243.74
+2023-11-14,Livros,21,224.22,4708.62
+2023-02-21,Alimentos,70,458.6,32102.0
+2023-09-25,Roupas,70,363.55,25448.5
+2023-10-22,Brinquedos,4,309.1,1236.4
+2023-04-23,Brinquedos,94,475.16,44665.04
+2023-04-11,Alimentos,75,204.36,15327.000000000002
+2023-04-23,Livros,62,477.5,29605.0
+2023-03-22,Eletrônicos,62,76.15,4721.3
+2023-07-06,Livros,94,247.04,23221.76
+2023-04-23,Alimentos,95,142.26,13514.699999999999
+2023-01-02,Brinquedos,24,274.52,6588.48
+2023-05-10,Livros,55,89.39,4916.45
+2023-08-08,Brinquedos,9,422.35,3801.15
+2023-02-23,Eletrônicos,3,424.74,1274.22
+2023-12-09,Brinquedos,31,478.07,14820.17
+2023-08-12,Brinquedos,40,85.79,3431.6000000000004
+2023-08-13,Roupas,36,315.43,11355.48
+2023-05-06,Roupas,24,242.38,5817.12
+2023-05-10,Roupas,95,178.75,16981.25
+2023-02-22,Brinquedos,6,182.25,1093.5
+2023-06-21,Alimentos,66,212.27,14009.820000000002
+2023-08-06,Brinquedos,84,355.41,29854.440000000002
+2023-06-09,Alimentos,92,303.16,27890.72
+2023-07-17,Alimentos,75,235.24,17643.0
+2023-09-04,Roupas,4,47.21,188.84
+2023-11-20,Livros,79,48.11,3800.69
+2023-07-22,Eletrônicos,6,11.15,66.9
+2023-07-03,Roupas,94,484.17,45511.98
+2023-05-03,Roupas,51,12.57,641.07
+2023-09-12,Livros,62,60.52,3752.2400000000002
+2023-10-21,Eletrônicos,57,164.15,9356.550000000001
+2023-10-07,Brinquedos,66,405.64,26772.239999999998
+2023-11-21,Brinquedos,79,481.43,38032.97
+2023-04-08,Roupas,75,397.11,29783.25
+2023-07-17,Eletrônicos,8,348.37,2786.96
+2023-08-28,Roupas,26,265.44,6901.44
+2023-05-24,Alimentos,51,52.49,2676.9900000000002
+2023-04-07,Roupas,45,479.5,21577.5
+2023-07-20,Roupas,44,381.61,16790.84
+2023-05-04,Brinquedos,5,323.09,1615.4499999999998
+2023-07-06,Brinquedos,70,381.93,26735.100000000002
+2023-11-22,Brinquedos,26,364.81,9485.06
+2023-12-15,Alimentos,68,322.24,21912.32
+2023-09-16,Brinquedos,19,490.48,9319.12
+2023-05-28,Eletrônicos,84,452.65,38022.6
+2023-09-09,Livros,97,326.87,31706.39
+2023-12-12,Eletrônicos,20,349.66,6993.200000000001
+2023-05-27,Eletrônicos,12,35.28,423.36
+2023-05-28,Brinquedos,47,338.26,15898.22
+2023-12-18,Livros,1,31.64,31.64
+2023-07-18,Livros,90,298.25,26842.5
+2023-11-04,Livros,14,499.68,6995.52
+2023-05-08,Alimentos,64,282.35,18070.4
+2023-02-08,Brinquedos,38,241.87,9191.06
+2023-12-04,Livros,37,163.3,6042.1
+2023-12-26,Alimentos,11,69.06,759.6600000000001
+2023-05-09,Roupas,77,368.2,28351.399999999998
+2023-09-24,Roupas,3,104.37,313.11
+2023-05-31,Alimentos,33,66.49,2194.1699999999996
+2023-10-25,Alimentos,6,216.66,1299.96
+2023-04-09,Brinquedos,50,399.72,19986.0
+2023-09-20,Brinquedos,10,375.08,3750.7999999999997
+2023-09-09,Roupas,5,36.89,184.45
+2023-05-24,Livros,23,233.02,5359.46
+2023-12-12,Roupas,10,265.99,2659.9
+2023-04-22,Livros,44,325.83,14336.519999999999
+2023-03-01,Livros,2,328.58,657.16
+2023-01-02,Brinquedos,13,188.7,2453.1
+2023-10-31,Eletrônicos,40,284.73,11389.2
+2023-09-11,Eletrônicos,2,245.72,491.44
+2023-05-20,Alimentos,84,443.65,37266.6
+2023-02-06,Brinquedos,65,269.83,17538.95
+2023-06-09,Livros,63,226.11,14244.93
+2023-01-09,Eletrônicos,73,208.2,15198.599999999999
+2023-08-21,Livros,17,290.49,4938.33
+2023-04-09,Eletrônicos,9,403.95,3635.5499999999997
+2023-05-27,Eletrônicos,75,273.82,20536.5
+2023-10-31,Eletrônicos,15,334.21,5013.15
+2023-07-27,Brinquedos,24,371.55,8917.2
+2023-05-11,Roupas,38,264.88,10065.44
+2023-06-01,Livros,35,219.14,7669.9
+2023-02-23,Brinquedos,94,439.57,41319.58
+2023-04-30,Brinquedos,95,214.58,20385.100000000002
+2023-06-10,Brinquedos,49,236.35,11581.15
+2023-04-26,Brinquedos,69,495.27,34173.63
+2023-03-16,Brinquedos,62,10.12,627.4399999999999
+2023-04-23,Alimentos,60,100.88,6052.799999999999
+2023-04-14,Livros,50,198.14,9907.0
+2023-12-06,Brinquedos,78,466.97,36423.66
+2023-09-11,Livros,75,44.31,3323.25
+2023-08-15,Alimentos,9,14.65,131.85
+2023-04-22,Alimentos,34,35.82,1217.88
+2023-04-09,Livros,76,53.39,4057.64
+2023-06-02,Eletrônicos,99,28.42,2813.5800000000004
+2023-12-15,Roupas,35,245.09,8578.15
+2023-12-04,Eletrônicos,1,294.57,294.57
+2023-07-13,Eletrônicos,40,143.13,5725.2
+2023-11-06,Eletrônicos,64,205.16,13130.24
+2023-06-12,Brinquedos,22,54.93,1208.46
+2023-07-27,Alimentos,60,174.82,10489.199999999999
+2023-06-18,Eletrônicos,64,266.03,17025.92
+2023-06-10,Alimentos,93,368.81,34299.33
+2023-03-09,Livros,72,11.64,838.08
+2023-10-16,Roupas,11,238.98,2628.7799999999997
+2023-10-04,Livros,14,155.53,2177.42
+2023-10-31,Livros,60,427.88,25672.8
+2023-05-15,Brinquedos,30,360.62,10818.6
+2023-07-14,Roupas,35,298.66,10453.1
+2023-05-08,Livros,85,145.86,12398.1
+2023-02-02,Livros,37,456.07,16874.59
+2023-06-25,Roupas,5,32.1,160.5
+2023-01-22,Roupas,83,63.64,5282.12
+2023-08-26,Livros,78,201.9,15748.2
+2023-06-07,Roupas,26,70.97,1845.22
+2023-02-07,Livros,62,478.64,29675.68
+2023-08-18,Livros,4,401.01,1604.04
+2023-12-31,Brinquedos,89,136.9,12184.1
+2023-02-20,Eletrônicos,42,298.39,12532.38
+2023-09-21,Livros,89,491.34,43729.259999999995
+2023-10-10,Alimentos,18,443.26,7978.68
+2023-01-27,Eletrônicos,40,304.39,12175.599999999999
+2023-08-14,Eletrônicos,72,452.82,32603.04
+2023-10-04,Eletrônicos,39,494.7,19293.3
+2023-10-13,Brinquedos,14,374.24,5239.360000000001
+2023-04-07,Livros,32,41.84,1338.88
+2023-10-11,Brinquedos,51,206.77,10545.27
+2023-11-13,Livros,38,420.53,15980.14
+2023-10-31,Brinquedos,97,122.98,11929.06
+2023-05-27,Brinquedos,23,417.01,9591.23
+2023-01-04,Alimentos,63,68.97,4345.11
+2023-02-04,Brinquedos,15,33.0,495.0
+2023-07-11,Roupas,97,198.2,19225.399999999998
+2023-02-18,Alimentos,25,28.0,700.0
+2023-01-17,Brinquedos,17,479.06,8144.02
+2023-06-21,Eletrônicos,97,414.84,40239.479999999996
+2023-08-08,Roupas,66,402.38,26557.079999999998
+2023-06-07,Roupas,78,318.59,24850.019999999997
+2023-02-15,Roupas,53,116.0,6148.0
+2023-01-06,Alimentos,51,263.95,13461.449999999999
+2023-04-09,Brinquedos,39,302.66,11803.740000000002
+2023-08-21,Brinquedos,51,267.27,13630.769999999999
+2023-02-06,Eletrônicos,70,137.51,9625.699999999999
+2023-10-07,Eletrônicos,6,262.47,1574.8200000000002
+2023-12-15,Roupas,67,250.68,16795.56
+2023-10-29,Eletrônicos,7,498.2,3487.4
+2023-06-30,Alimentos,51,449.74,22936.74
+2023-04-05,Brinquedos,72,237.06,17068.32
+2023-04-09,Roupas,42,315.24,13240.08
+2023-07-07,Eletrônicos,64,376.46,24093.44
+2023-04-26,Alimentos,15,27.08,406.2
+2023-07-10,Alimentos,29,448.51,13006.789999999999
+2023-09-10,Eletrônicos,33,431.46,14238.179999999998
+2023-06-10,Brinquedos,94,234.14,22009.16
+2023-09-13,Eletrônicos,27,201.67,5445.089999999999
+2023-11-19,Roupas,36,143.75,5175.0
+2023-05-08,Eletrônicos,29,243.57,7063.53
+2023-01-18,Alimentos,38,31.74,1206.12
+2023-10-08,Eletrônicos,57,427.57,24371.489999999998
+2023-08-11,Brinquedos,97,27.36,2653.92
+2023-02-23,Livros,27,171.24,4623.4800000000005
+2023-02-27,Eletrônicos,55,466.48,25656.4
+2023-11-19,Brinquedos,33,370.25,12218.25
+2023-12-26,Brinquedos,68,147.88,10055.84
+2023-06-23,Alimentos,86,133.8,11506.800000000001
+2023-10-07,Brinquedos,66,12.49,824.34
+2023-04-24,Brinquedos,10,350.9,3509.0
+2023-10-15,Brinquedos,5,33.9,169.5
+2023-12-08,Brinquedos,74,270.98,20052.52
+2023-05-31,Roupas,97,481.44,46699.68