diff --git a/exercicios/projeto-guiado/meu_exercio.ipynb b/exercicios/projeto-guiado/meu_exercio.ipynb new file mode 100644 index 0000000..a3589d0 --- /dev/null +++ b/exercicios/projeto-guiado/meu_exercio.ipynb @@ -0,0 +1,5809 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 115, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 116, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('INMET_MS_ITAQUIRAI_2020.CSV', delimiter=';', skiprows=8, encoding='latin1')" + ] + }, + { + "cell_type": "code", + "execution_count": 117, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Data object\n", + "Hora UTC object\n", + "PRECIPITAÇÃO TOTAL, HORÁRIO (mm) object\n", + "PRESSAO ATMOSFERICA AO NIVEL DA ESTACAO, HORARIA (mB) object\n", + "PRESSÃO ATMOSFERICA MAX.NA HORA ANT. (AUT) (mB) object\n", + "PRESSÃO ATMOSFERICA MIN. NA HORA ANT. (AUT) (mB) object\n", + "RADIACAO GLOBAL (Kj/m²) object\n", + "TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) object\n", + "TEMPERATURA DO PONTO DE ORVALHO (°C) object\n", + "TEMPERATURA MÁXIMA NA HORA ANT. (AUT) (°C) object\n", + "TEMPERATURA MÍNIMA NA HORA ANT. (AUT) (°C) object\n", + "TEMPERATURA ORVALHO MAX. NA HORA ANT. (AUT) (°C) object\n", + "TEMPERATURA ORVALHO MIN. NA HORA ANT. (AUT) (°C) object\n", + "UMIDADE REL. MAX. NA HORA ANT. (AUT) (%) float64\n", + "UMIDADE REL. MIN. NA HORA ANT. (AUT) (%) float64\n", + "UMIDADE RELATIVA DO AR, HORARIA (%) float64\n", + "VENTO, DIREÇÃO HORARIA (gr) (° (gr)) float64\n", + "VENTO, RAJADA MAXIMA (m/s) object\n", + "VENTO, VELOCIDADE HORARIA (m/s) object\n", + "Unnamed: 19 float64\n", + "dtype: object" + ] + }, + "execution_count": 117, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 118, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)PRESSAO ATMOSFERICA AO NIVEL DA ESTACAO, HORARIA (mB)PRESSÃO ATMOSFERICA MAX.NA HORA ANT. (AUT) (mB)PRESSÃO ATMOSFERICA MIN. NA HORA ANT. (AUT) (mB)RADIACAO GLOBAL (Kj/m²)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)TEMPERATURA MÁXIMA NA HORA ANT. (AUT) (°C)TEMPERATURA MÍNIMA NA HORA ANT. (AUT) (°C)TEMPERATURA ORVALHO MAX. NA HORA ANT. (AUT) (°C)TEMPERATURA ORVALHO MIN. NA HORA ANT. (AUT) (°C)UMIDADE REL. MAX. NA HORA ANT. (AUT) (%)UMIDADE REL. MIN. NA HORA ANT. (AUT) (%)UMIDADE RELATIVA DO AR, HORARIA (%)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, RAJADA MAXIMA (m/s)VENTO, VELOCIDADE HORARIA (m/s)Unnamed: 19
02020/01/010000 UTC,6970970969,5NaN23,122,623,122,622,821,698.094.097.011.03,21,9NaN
12020/01/010100 UTC0970,2970,29702,923,721,723,72322,521,697.088.088.010.04,61,3NaN
22020/01/010200 UTC0969,8970,2969,81,62421,824,423,721,921,288.083.088.0345.03,2,6NaN
32020/01/010300 UTC0970,1970,1969,8,624,321,425,1242221,288.080.083.0332.04,81,5NaN
42020/01/010400 UTC0970,2970,5970,1NaN23,821,724,323,721,821,489.083.089.0316.03,3,2NaN
\n", + "
" + ], + "text/plain": [ + " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "0 2020/01/01 0000 UTC ,6 \n", + "1 2020/01/01 0100 UTC 0 \n", + "2 2020/01/01 0200 UTC 0 \n", + "3 2020/01/01 0300 UTC 0 \n", + "4 2020/01/01 0400 UTC 0 \n", + "\n", + " PRESSAO ATMOSFERICA AO NIVEL DA ESTACAO, HORARIA (mB) \\\n", + "0 970 \n", + "1 970,2 \n", + "2 969,8 \n", + "3 970,1 \n", + "4 970,2 \n", + "\n", + " PRESSÃO ATMOSFERICA MAX.NA HORA ANT. (AUT) (mB) \\\n", + "0 970 \n", + "1 970,2 \n", + "2 970,2 \n", + "3 970,1 \n", + "4 970,5 \n", + "\n", + " PRESSÃO ATMOSFERICA MIN. NA HORA ANT. (AUT) (mB) RADIACAO GLOBAL (Kj/m²) \\\n", + "0 969,5 NaN \n", + "1 970 2,9 \n", + "2 969,8 1,6 \n", + "3 969,8 ,6 \n", + "4 970,1 NaN \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "0 23,1 \n", + "1 23,7 \n", + "2 24 \n", + "3 24,3 \n", + "4 23,8 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n", + "0 22,6 \n", + "1 21,7 \n", + "2 21,8 \n", + "3 21,4 \n", + "4 21,7 \n", + "\n", + " TEMPERATURA MÁXIMA NA HORA ANT. (AUT) (°C) \\\n", + "0 23,1 \n", + "1 23,7 \n", + "2 24,4 \n", + "3 25,1 \n", + "4 24,3 \n", + "\n", + " TEMPERATURA MÍNIMA NA HORA ANT. (AUT) (°C) \\\n", + "0 22,6 \n", + "1 23 \n", + "2 23,7 \n", + "3 24 \n", + "4 23,7 \n", + "\n", + " TEMPERATURA ORVALHO MAX. NA HORA ANT. (AUT) (°C) \\\n", + "0 22,8 \n", + "1 22,5 \n", + "2 21,9 \n", + "3 22 \n", + "4 21,8 \n", + "\n", + " TEMPERATURA ORVALHO MIN. NA HORA ANT. (AUT) (°C) \\\n", + "0 21,6 \n", + "1 21,6 \n", + "2 21,2 \n", + "3 21,2 \n", + "4 21,4 \n", + "\n", + " UMIDADE REL. MAX. NA HORA ANT. (AUT) (%) \\\n", + "0 98.0 \n", + "1 97.0 \n", + "2 88.0 \n", + "3 88.0 \n", + "4 89.0 \n", + "\n", + " UMIDADE REL. MIN. NA HORA ANT. (AUT) (%) \\\n", + "0 94.0 \n", + "1 88.0 \n", + "2 83.0 \n", + "3 80.0 \n", + "4 83.0 \n", + "\n", + " UMIDADE RELATIVA DO AR, HORARIA (%) VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n", + "0 97.0 11.0 \n", + "1 88.0 10.0 \n", + "2 88.0 345.0 \n", + "3 83.0 332.0 \n", + "4 89.0 316.0 \n", + "\n", + " VENTO, RAJADA MAXIMA (m/s) VENTO, VELOCIDADE HORARIA (m/s) Unnamed: 19 \n", + "0 3,2 1,9 NaN \n", + "1 4,6 1,3 NaN \n", + "2 3,2 ,6 NaN \n", + "3 4,8 1,5 NaN \n", + "4 3,3 ,2 NaN " + ] + }, + "execution_count": 118, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 119, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)PRESSAO ATMOSFERICA AO NIVEL DA ESTACAO, HORARIA (mB)PRESSÃO ATMOSFERICA MAX.NA HORA ANT. (AUT) (mB)PRESSÃO ATMOSFERICA MIN. NA HORA ANT. (AUT) (mB)RADIACAO GLOBAL (Kj/m²)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)TEMPERATURA MÁXIMA NA HORA ANT. (AUT) (°C)TEMPERATURA MÍNIMA NA HORA ANT. (AUT) (°C)TEMPERATURA ORVALHO MAX. NA HORA ANT. (AUT) (°C)TEMPERATURA ORVALHO MIN. NA HORA ANT. (AUT) (°C)UMIDADE REL. MAX. NA HORA ANT. (AUT) (%)UMIDADE REL. MIN. NA HORA ANT. (AUT) (%)UMIDADE RELATIVA DO AR, HORARIA (%)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, RAJADA MAXIMA (m/s)VENTO, VELOCIDADE HORARIA (m/s)Unnamed: 19
87792020/12/311900 UTC,4972,6973,3972,6775,923,122,723,321,7NaNNaNNaNNaN97.032.06,61,2NaN
87802020/12/312000 UTC0970,4972,6970,4837,824,222,724,423,122,822,197.089.091.0355.02,8,8NaN
87812020/12/312100 UTC0970,7970,7970,1524,724,92324,924,123,322,593.089.089.0315.04,21,2NaN
87822020/12/312200 UTC0972,4972,4970,7256,524,222,125,124,223,122,189.087.088.0291.04,8,9NaN
87832020/12/312300 UTC0974,1974,1972,49,623,522,524,223,422,52294.088.094.0132.03,9,9NaN
\n", + "
" + ], + "text/plain": [ + " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "8779 2020/12/31 1900 UTC ,4 \n", + "8780 2020/12/31 2000 UTC 0 \n", + "8781 2020/12/31 2100 UTC 0 \n", + "8782 2020/12/31 2200 UTC 0 \n", + "8783 2020/12/31 2300 UTC 0 \n", + "\n", + " PRESSAO ATMOSFERICA AO NIVEL DA ESTACAO, HORARIA (mB) \\\n", + "8779 972,6 \n", + "8780 970,4 \n", + "8781 970,7 \n", + "8782 972,4 \n", + "8783 974,1 \n", + "\n", + " PRESSÃO ATMOSFERICA MAX.NA HORA ANT. (AUT) (mB) \\\n", + "8779 973,3 \n", + "8780 972,6 \n", + "8781 970,7 \n", + "8782 972,4 \n", + "8783 974,1 \n", + "\n", + " PRESSÃO ATMOSFERICA MIN. NA HORA ANT. (AUT) (mB) RADIACAO GLOBAL (Kj/m²) \\\n", + "8779 972,6 775,9 \n", + "8780 970,4 837,8 \n", + "8781 970,1 524,7 \n", + "8782 970,7 256,5 \n", + "8783 972,4 9,6 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "8779 23,1 \n", + "8780 24,2 \n", + "8781 24,9 \n", + "8782 24,2 \n", + "8783 23,5 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n", + "8779 22,7 \n", + "8780 22,7 \n", + "8781 23 \n", + "8782 22,1 \n", + "8783 22,5 \n", + "\n", + " TEMPERATURA MÁXIMA NA HORA ANT. (AUT) (°C) \\\n", + "8779 23,3 \n", + "8780 24,4 \n", + "8781 24,9 \n", + "8782 25,1 \n", + "8783 24,2 \n", + "\n", + " TEMPERATURA MÍNIMA NA HORA ANT. (AUT) (°C) \\\n", + "8779 21,7 \n", + "8780 23,1 \n", + "8781 24,1 \n", + "8782 24,2 \n", + "8783 23,4 \n", + "\n", + " TEMPERATURA ORVALHO MAX. NA HORA ANT. (AUT) (°C) \\\n", + "8779 NaN \n", + "8780 22,8 \n", + "8781 23,3 \n", + "8782 23,1 \n", + "8783 22,5 \n", + "\n", + " TEMPERATURA ORVALHO MIN. NA HORA ANT. (AUT) (°C) \\\n", + "8779 NaN \n", + "8780 22,1 \n", + "8781 22,5 \n", + "8782 22,1 \n", + "8783 22 \n", + "\n", + " UMIDADE REL. MAX. NA HORA ANT. (AUT) (%) \\\n", + "8779 NaN \n", + "8780 97.0 \n", + "8781 93.0 \n", + "8782 89.0 \n", + "8783 94.0 \n", + "\n", + " UMIDADE REL. MIN. NA HORA ANT. (AUT) (%) \\\n", + "8779 NaN \n", + "8780 89.0 \n", + "8781 89.0 \n", + "8782 87.0 \n", + "8783 88.0 \n", + "\n", + " UMIDADE RELATIVA DO AR, HORARIA (%) \\\n", + "8779 97.0 \n", + "8780 91.0 \n", + "8781 89.0 \n", + "8782 88.0 \n", + "8783 94.0 \n", + "\n", + " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) VENTO, RAJADA MAXIMA (m/s) \\\n", + "8779 32.0 6,6 \n", + "8780 355.0 2,8 \n", + "8781 315.0 4,2 \n", + "8782 291.0 4,8 \n", + "8783 132.0 3,9 \n", + "\n", + " VENTO, VELOCIDADE HORARIA (m/s) Unnamed: 19 \n", + "8779 1,2 NaN \n", + "8780 ,8 NaN \n", + "8781 1,2 NaN \n", + "8782 ,9 NaN \n", + "8783 ,9 NaN " + ] + }, + "execution_count": 119, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.tail()" + ] + }, + { + "cell_type": "code", + "execution_count": 120, + "metadata": {}, + "outputs": [], + "source": [ + "df = df[['Data','Hora UTC','PRECIPITAÇÃO TOTAL, HORÁRIO (mm)', 'TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)','TEMPERATURA DO PONTO DE ORVALHO (°C)','UMIDADE RELATIVA DO AR, HORARIA (%)', 'RADIACAO GLOBAL (Kj/m²)', 'VENTO, DIREÇÃO HORARIA (gr) (° (gr))' ,'VENTO, VELOCIDADE HORARIA (m/s)']]" + ] + }, + { + "cell_type": "code", + "execution_count": 121, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)
02020/01/010000 UTC,623,122,697.0NaN11.01,9
12020/01/010100 UTC023,721,788.02,910.01,3
22020/01/010200 UTC02421,888.01,6345.0,6
32020/01/010300 UTC024,321,483.0,6332.01,5
42020/01/010400 UTC023,821,789.0NaN316.0,2
52020/01/010500 UTC023,522,393.0NaN141.00
62020/01/010600 UTC022,722,498.0NaN40.00
72020/01/010700 UTC022,9NaNNaNNaN36.0,9
82020/01/010800 UTC022,9NaNNaNNaN68.00
92020/01/010900 UTC022,922,597.02,3358.00
102020/01/011000 UTC024,722,889.0408,116.02
112020/01/011100 UTC026,422,780.01219,6341.01
122020/01/011200 UTC028,623,674.01870,5345.01,4
132020/01/011300 UTC030,323,266.02602,9346.02,5
142020/01/011400 UTC03223,159.02996,3351.02,6
152020/01/011500 UTC032,623,157.03715,37.02,8
162020/01/011600 UTC032,221,453.03284,4338.02
172020/01/011700 UTC033,523,355.03238,710.01,7
182020/01/011800 UTC029,623,269.02380,5128.01,9
192020/01/011900 UTC3,42523,290.0930,1342.02,2
\n", + "
" + ], + "text/plain": [ + " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "0 2020/01/01 0000 UTC ,6 \n", + "1 2020/01/01 0100 UTC 0 \n", + "2 2020/01/01 0200 UTC 0 \n", + "3 2020/01/01 0300 UTC 0 \n", + "4 2020/01/01 0400 UTC 0 \n", + "5 2020/01/01 0500 UTC 0 \n", + "6 2020/01/01 0600 UTC 0 \n", + "7 2020/01/01 0700 UTC 0 \n", + "8 2020/01/01 0800 UTC 0 \n", + "9 2020/01/01 0900 UTC 0 \n", + "10 2020/01/01 1000 UTC 0 \n", + "11 2020/01/01 1100 UTC 0 \n", + "12 2020/01/01 1200 UTC 0 \n", + "13 2020/01/01 1300 UTC 0 \n", + "14 2020/01/01 1400 UTC 0 \n", + "15 2020/01/01 1500 UTC 0 \n", + "16 2020/01/01 1600 UTC 0 \n", + "17 2020/01/01 1700 UTC 0 \n", + "18 2020/01/01 1800 UTC 0 \n", + "19 2020/01/01 1900 UTC 3,4 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "0 23,1 \n", + "1 23,7 \n", + "2 24 \n", + "3 24,3 \n", + "4 23,8 \n", + "5 23,5 \n", + "6 22,7 \n", + "7 22,9 \n", + "8 22,9 \n", + "9 22,9 \n", + "10 24,7 \n", + "11 26,4 \n", + "12 28,6 \n", + "13 30,3 \n", + "14 32 \n", + "15 32,6 \n", + "16 32,2 \n", + "17 33,5 \n", + "18 29,6 \n", + "19 25 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) UMIDADE RELATIVA DO AR, HORARIA (%) \\\n", + "0 22,6 97.0 \n", + "1 21,7 88.0 \n", + "2 21,8 88.0 \n", + "3 21,4 83.0 \n", + "4 21,7 89.0 \n", + "5 22,3 93.0 \n", + "6 22,4 98.0 \n", + "7 NaN NaN \n", + "8 NaN NaN \n", + "9 22,5 97.0 \n", + "10 22,8 89.0 \n", + "11 22,7 80.0 \n", + "12 23,6 74.0 \n", + "13 23,2 66.0 \n", + "14 23,1 59.0 \n", + "15 23,1 57.0 \n", + "16 21,4 53.0 \n", + "17 23,3 55.0 \n", + "18 23,2 69.0 \n", + "19 23,2 90.0 \n", + "\n", + " RADIACAO GLOBAL (Kj/m²) VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n", + "0 NaN 11.0 \n", + "1 2,9 10.0 \n", + "2 1,6 345.0 \n", + "3 ,6 332.0 \n", + "4 NaN 316.0 \n", + "5 NaN 141.0 \n", + "6 NaN 40.0 \n", + "7 NaN 36.0 \n", + "8 NaN 68.0 \n", + "9 2,3 358.0 \n", + "10 408,1 16.0 \n", + "11 1219,6 341.0 \n", + "12 1870,5 345.0 \n", + "13 2602,9 346.0 \n", + "14 2996,3 351.0 \n", + "15 3715,3 7.0 \n", + "16 3284,4 338.0 \n", + "17 3238,7 10.0 \n", + "18 2380,5 128.0 \n", + "19 930,1 342.0 \n", + "\n", + " VENTO, VELOCIDADE HORARIA (m/s) \n", + "0 1,9 \n", + "1 1,3 \n", + "2 ,6 \n", + "3 1,5 \n", + "4 ,2 \n", + "5 0 \n", + "6 0 \n", + "7 ,9 \n", + "8 0 \n", + "9 0 \n", + "10 2 \n", + "11 1 \n", + "12 1,4 \n", + "13 2,5 \n", + "14 2,6 \n", + "15 2,8 \n", + "16 2 \n", + "17 1,7 \n", + "18 1,9 \n", + "19 2,2 " + ] + }, + "execution_count": 121, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head(20)" + ] + }, + { + "cell_type": "code", + "execution_count": 122, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Data 0\n", + "Hora UTC 0\n", + "PRECIPITAÇÃO TOTAL, HORÁRIO (mm) 6\n", + "TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) 6\n", + "TEMPERATURA DO PONTO DE ORVALHO (°C) 466\n", + "UMIDADE RELATIVA DO AR, HORARIA (%) 466\n", + "RADIACAO GLOBAL (Kj/m²) 4049\n", + "VENTO, DIREÇÃO HORARIA (gr) (° (gr)) 6\n", + "VENTO, VELOCIDADE HORARIA (m/s) 6\n", + "dtype: int64" + ] + }, + "execution_count": 122, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_5 = df.isnull().sum()\n", + "df_5" + ] + }, + { + "cell_type": "code", + "execution_count": 123, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(8784, 9)" + ] + }, + "execution_count": 123, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 124, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)
02020/01/010000 UTC,623,122,697.0NaN11.01,9
12020/01/010100 UTC023,721,788.02,910.01,3
22020/01/010200 UTC02421,888.01,6345.0,6
32020/01/010300 UTC024,321,483.0,6332.01,5
42020/01/010400 UTC023,821,789.0NaN316.0,2
\n", + "
" + ], + "text/plain": [ + " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "0 2020/01/01 0000 UTC ,6 \n", + "1 2020/01/01 0100 UTC 0 \n", + "2 2020/01/01 0200 UTC 0 \n", + "3 2020/01/01 0300 UTC 0 \n", + "4 2020/01/01 0400 UTC 0 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "0 23,1 \n", + "1 23,7 \n", + "2 24 \n", + "3 24,3 \n", + "4 23,8 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) UMIDADE RELATIVA DO AR, HORARIA (%) \\\n", + "0 22,6 97.0 \n", + "1 21,7 88.0 \n", + "2 21,8 88.0 \n", + "3 21,4 83.0 \n", + "4 21,7 89.0 \n", + "\n", + " RADIACAO GLOBAL (Kj/m²) VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n", + "0 NaN 11.0 \n", + "1 2,9 10.0 \n", + "2 1,6 345.0 \n", + "3 ,6 332.0 \n", + "4 NaN 316.0 \n", + "\n", + " VENTO, VELOCIDADE HORARIA (m/s) \n", + "0 1,9 \n", + "1 1,3 \n", + "2 ,6 \n", + "3 1,5 \n", + "4 ,2 " + ] + }, + "execution_count": 124, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 125, + "metadata": {}, + "outputs": [], + "source": [ + "df['PRECIPITAÇÃO TOTAL, HORÁRIO (mm)'] = pd.to_numeric(df['PRECIPITAÇÃO TOTAL, HORÁRIO (mm)'], errors='coerce')\n", + "df['TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)'] = pd.to_numeric(df['TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)'], errors='coerce')\n", + "df['TEMPERATURA DO PONTO DE ORVALHO (°C)'] = pd.to_numeric(df['TEMPERATURA DO PONTO DE ORVALHO (°C)'], errors='coerce')\n", + "df['RADIACAO GLOBAL (Kj/m²)'] = pd.to_numeric(df['RADIACAO GLOBAL (Kj/m²)'], errors='coerce')\n", + "df['VENTO, VELOCIDADE HORARIA (m/s)'] = pd.to_numeric(df['VENTO, VELOCIDADE HORARIA (m/s)'], errors='coerce')" + ] + }, + { + "cell_type": "code", + "execution_count": 126, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Data object\n", + "Hora UTC object\n", + "PRECIPITAÇÃO TOTAL, HORÁRIO (mm) float64\n", + "TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) float64\n", + "TEMPERATURA DO PONTO DE ORVALHO (°C) float64\n", + "UMIDADE RELATIVA DO AR, HORARIA (%) float64\n", + "RADIACAO GLOBAL (Kj/m²) float64\n", + "VENTO, DIREÇÃO HORARIA (gr) (° (gr)) float64\n", + "VENTO, VELOCIDADE HORARIA (m/s) float64\n", + "dtype: object" + ] + }, + "execution_count": 126, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 127, + "metadata": {}, + "outputs": [], + "source": [ + "# df = df.dropna() # remover linhas com valores nulos ou faltantes\n", + "\n", + "df['PRECIPITAÇÃO TOTAL, HORÁRIO (mm)'] = df['PRECIPITAÇÃO TOTAL, HORÁRIO (mm)'].fillna(0)\n", + "df['TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)'] = df['TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)'].fillna(0)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 128, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Data 0\n", + "Hora UTC 0\n", + "PRECIPITAÇÃO TOTAL, HORÁRIO (mm) 0\n", + "TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) 0\n", + "TEMPERATURA DO PONTO DE ORVALHO (°C) 7934\n", + "UMIDADE RELATIVA DO AR, HORARIA (%) 466\n", + "RADIACAO GLOBAL (Kj/m²) 8312\n", + "VENTO, DIREÇÃO HORARIA (gr) (° (gr)) 6\n", + "VENTO, VELOCIDADE HORARIA (m/s) 7207\n", + "dtype: int64" + ] + }, + "execution_count": 128, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 129, + "metadata": {}, + "outputs": [], + "source": [ + "df = df.fillna(0)" + ] + }, + { + "cell_type": "code", + "execution_count": 130, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)
02020/01/010000 UTC0.00.00.097.00.011.00.0
12020/01/010100 UTC0.00.00.088.00.010.00.0
22020/01/010200 UTC0.024.00.088.00.0345.00.0
32020/01/010300 UTC0.00.00.083.00.0332.00.0
42020/01/010400 UTC0.00.00.089.00.0316.00.0
..............................
87792020/12/311900 UTC0.00.00.097.00.032.00.0
87802020/12/312000 UTC0.00.00.091.00.0355.00.0
87812020/12/312100 UTC0.00.023.089.00.0315.00.0
87822020/12/312200 UTC0.00.00.088.00.0291.00.0
87832020/12/312300 UTC0.00.00.094.00.0132.00.0
\n", + "

8784 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "0 2020/01/01 0000 UTC 0.0 \n", + "1 2020/01/01 0100 UTC 0.0 \n", + "2 2020/01/01 0200 UTC 0.0 \n", + "3 2020/01/01 0300 UTC 0.0 \n", + "4 2020/01/01 0400 UTC 0.0 \n", + "... ... ... ... \n", + "8779 2020/12/31 1900 UTC 0.0 \n", + "8780 2020/12/31 2000 UTC 0.0 \n", + "8781 2020/12/31 2100 UTC 0.0 \n", + "8782 2020/12/31 2200 UTC 0.0 \n", + "8783 2020/12/31 2300 UTC 0.0 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "0 0.0 \n", + "1 0.0 \n", + "2 24.0 \n", + "3 0.0 \n", + "4 0.0 \n", + "... ... \n", + "8779 0.0 \n", + "8780 0.0 \n", + "8781 0.0 \n", + "8782 0.0 \n", + "8783 0.0 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n", + "0 0.0 \n", + "1 0.0 \n", + "2 0.0 \n", + "3 0.0 \n", + "4 0.0 \n", + "... ... \n", + "8779 0.0 \n", + "8780 0.0 \n", + "8781 23.0 \n", + "8782 0.0 \n", + "8783 0.0 \n", + "\n", + " UMIDADE RELATIVA DO AR, HORARIA (%) RADIACAO GLOBAL (Kj/m²) \\\n", + "0 97.0 0.0 \n", + "1 88.0 0.0 \n", + "2 88.0 0.0 \n", + "3 83.0 0.0 \n", + "4 89.0 0.0 \n", + "... ... ... \n", + "8779 97.0 0.0 \n", + "8780 91.0 0.0 \n", + "8781 89.0 0.0 \n", + "8782 88.0 0.0 \n", + "8783 94.0 0.0 \n", + "\n", + " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) VENTO, VELOCIDADE HORARIA (m/s) \n", + "0 11.0 0.0 \n", + "1 10.0 0.0 \n", + "2 345.0 0.0 \n", + "3 332.0 0.0 \n", + "4 316.0 0.0 \n", + "... ... ... \n", + "8779 32.0 0.0 \n", + "8780 355.0 0.0 \n", + "8781 315.0 0.0 \n", + "8782 291.0 0.0 \n", + "8783 132.0 0.0 \n", + "\n", + "[8784 rows x 9 columns]" + ] + }, + "execution_count": 130, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 131, + "metadata": {}, + "outputs": [], + "source": [ + "# .fillna(df['PRECIPITAÇÃO TOTAL, HORÁRIO (mm)'].mean())" + ] + }, + { + "cell_type": "code", + "execution_count": 132, + "metadata": {}, + "outputs": [], + "source": [ + "df['UMIDADE RELATIVA DO AR, HORARIA (%)'] = (df['UMIDADE RELATIVA DO AR, HORARIA (%)'] - df['UMIDADE RELATIVA DO AR, HORARIA (%)'].min()) / (df['UMIDADE RELATIVA DO AR, HORARIA (%)'].max() - df['UMIDADE RELATIVA DO AR, HORARIA (%)'].min())" + ] + }, + { + "cell_type": "code", + "execution_count": 133, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)
02020/01/010000 UTC0.00.00.00.970.011.00.0
12020/01/010100 UTC0.00.00.00.880.010.00.0
22020/01/010200 UTC0.024.00.00.880.0345.00.0
32020/01/010300 UTC0.00.00.00.830.0332.00.0
42020/01/010400 UTC0.00.00.00.890.0316.00.0
..............................
87792020/12/311900 UTC0.00.00.00.970.032.00.0
87802020/12/312000 UTC0.00.00.00.910.0355.00.0
87812020/12/312100 UTC0.00.023.00.890.0315.00.0
87822020/12/312200 UTC0.00.00.00.880.0291.00.0
87832020/12/312300 UTC0.00.00.00.940.0132.00.0
\n", + "

8784 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "0 2020/01/01 0000 UTC 0.0 \n", + "1 2020/01/01 0100 UTC 0.0 \n", + "2 2020/01/01 0200 UTC 0.0 \n", + "3 2020/01/01 0300 UTC 0.0 \n", + "4 2020/01/01 0400 UTC 0.0 \n", + "... ... ... ... \n", + "8779 2020/12/31 1900 UTC 0.0 \n", + "8780 2020/12/31 2000 UTC 0.0 \n", + "8781 2020/12/31 2100 UTC 0.0 \n", + "8782 2020/12/31 2200 UTC 0.0 \n", + "8783 2020/12/31 2300 UTC 0.0 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "0 0.0 \n", + "1 0.0 \n", + "2 24.0 \n", + "3 0.0 \n", + "4 0.0 \n", + "... ... \n", + "8779 0.0 \n", + "8780 0.0 \n", + "8781 0.0 \n", + "8782 0.0 \n", + "8783 0.0 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n", + "0 0.0 \n", + "1 0.0 \n", + "2 0.0 \n", + "3 0.0 \n", + "4 0.0 \n", + "... ... \n", + "8779 0.0 \n", + "8780 0.0 \n", + "8781 23.0 \n", + "8782 0.0 \n", + "8783 0.0 \n", + "\n", + " UMIDADE RELATIVA DO AR, HORARIA (%) RADIACAO GLOBAL (Kj/m²) \\\n", + "0 0.97 0.0 \n", + "1 0.88 0.0 \n", + "2 0.88 0.0 \n", + "3 0.83 0.0 \n", + "4 0.89 0.0 \n", + "... ... ... \n", + "8779 0.97 0.0 \n", + "8780 0.91 0.0 \n", + "8781 0.89 0.0 \n", + "8782 0.88 0.0 \n", + "8783 0.94 0.0 \n", + "\n", + " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) VENTO, VELOCIDADE HORARIA (m/s) \n", + "0 11.0 0.0 \n", + "1 10.0 0.0 \n", + "2 345.0 0.0 \n", + "3 332.0 0.0 \n", + "4 316.0 0.0 \n", + "... ... ... \n", + "8779 32.0 0.0 \n", + "8780 355.0 0.0 \n", + "8781 315.0 0.0 \n", + "8782 291.0 0.0 \n", + "8783 132.0 0.0 \n", + "\n", + "[8784 rows x 9 columns]" + ] + }, + "execution_count": 133, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 134, + "metadata": {}, + "outputs": [], + "source": [ + "df['Data'] = pd.to_datetime(df['Data'], format='%Y/%m/%d')" + ] + }, + { + "cell_type": "code", + "execution_count": 135, + "metadata": {}, + "outputs": [], + "source": [ + "df['Data'] = df['Data'].dt.strftime('%d/%m/%Y')" + ] + }, + { + "cell_type": "code", + "execution_count": 136, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)
001/01/20200000 UTC0.00.00.00.970.011.00.0
101/01/20200100 UTC0.00.00.00.880.010.00.0
201/01/20200200 UTC0.024.00.00.880.0345.00.0
301/01/20200300 UTC0.00.00.00.830.0332.00.0
401/01/20200400 UTC0.00.00.00.890.0316.00.0
..............................
877931/12/20201900 UTC0.00.00.00.970.032.00.0
878031/12/20202000 UTC0.00.00.00.910.0355.00.0
878131/12/20202100 UTC0.00.023.00.890.0315.00.0
878231/12/20202200 UTC0.00.00.00.880.0291.00.0
878331/12/20202300 UTC0.00.00.00.940.0132.00.0
\n", + "

8784 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "0 01/01/2020 0000 UTC 0.0 \n", + "1 01/01/2020 0100 UTC 0.0 \n", + "2 01/01/2020 0200 UTC 0.0 \n", + "3 01/01/2020 0300 UTC 0.0 \n", + "4 01/01/2020 0400 UTC 0.0 \n", + "... ... ... ... \n", + "8779 31/12/2020 1900 UTC 0.0 \n", + "8780 31/12/2020 2000 UTC 0.0 \n", + "8781 31/12/2020 2100 UTC 0.0 \n", + "8782 31/12/2020 2200 UTC 0.0 \n", + "8783 31/12/2020 2300 UTC 0.0 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "0 0.0 \n", + "1 0.0 \n", + "2 24.0 \n", + "3 0.0 \n", + "4 0.0 \n", + "... ... \n", + "8779 0.0 \n", + "8780 0.0 \n", + "8781 0.0 \n", + "8782 0.0 \n", + "8783 0.0 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n", + "0 0.0 \n", + "1 0.0 \n", + "2 0.0 \n", + "3 0.0 \n", + "4 0.0 \n", + "... ... \n", + "8779 0.0 \n", + "8780 0.0 \n", + "8781 23.0 \n", + "8782 0.0 \n", + "8783 0.0 \n", + "\n", + " UMIDADE RELATIVA DO AR, HORARIA (%) RADIACAO GLOBAL (Kj/m²) \\\n", + "0 0.97 0.0 \n", + "1 0.88 0.0 \n", + "2 0.88 0.0 \n", + "3 0.83 0.0 \n", + "4 0.89 0.0 \n", + "... ... ... \n", + "8779 0.97 0.0 \n", + "8780 0.91 0.0 \n", + "8781 0.89 0.0 \n", + "8782 0.88 0.0 \n", + "8783 0.94 0.0 \n", + "\n", + " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) VENTO, VELOCIDADE HORARIA (m/s) \n", + "0 11.0 0.0 \n", + "1 10.0 0.0 \n", + "2 345.0 0.0 \n", + "3 332.0 0.0 \n", + "4 316.0 0.0 \n", + "... ... ... \n", + "8779 32.0 0.0 \n", + "8780 355.0 0.0 \n", + "8781 315.0 0.0 \n", + "8782 291.0 0.0 \n", + "8783 132.0 0.0 \n", + "\n", + "[8784 rows x 9 columns]" + ] + }, + "execution_count": 136, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 137, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Data object\n", + "Hora UTC object\n", + "PRECIPITAÇÃO TOTAL, HORÁRIO (mm) float64\n", + "TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) float64\n", + "TEMPERATURA DO PONTO DE ORVALHO (°C) float64\n", + "UMIDADE RELATIVA DO AR, HORARIA (%) float64\n", + "RADIACAO GLOBAL (Kj/m²) float64\n", + "VENTO, DIREÇÃO HORARIA (gr) (° (gr)) float64\n", + "VENTO, VELOCIDADE HORARIA (m/s) float64\n", + "dtype: object" + ] + }, + "execution_count": 137, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 138, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)
001/01/20200000 UTC0.00.00.00.970.011.00.0
101/01/20200100 UTC0.00.00.00.880.010.00.0
201/01/20200200 UTC0.024.00.00.880.0345.00.0
301/01/20200300 UTC0.00.00.00.830.0332.00.0
401/01/20200400 UTC0.00.00.00.890.0316.00.0
..............................
877931/12/20201900 UTC0.00.00.00.970.032.00.0
878031/12/20202000 UTC0.00.00.00.910.0355.00.0
878131/12/20202100 UTC0.00.023.00.890.0315.00.0
878231/12/20202200 UTC0.00.00.00.880.0291.00.0
878331/12/20202300 UTC0.00.00.00.940.0132.00.0
\n", + "

8784 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "0 01/01/2020 0000 UTC 0.0 \n", + "1 01/01/2020 0100 UTC 0.0 \n", + "2 01/01/2020 0200 UTC 0.0 \n", + "3 01/01/2020 0300 UTC 0.0 \n", + "4 01/01/2020 0400 UTC 0.0 \n", + "... ... ... ... \n", + "8779 31/12/2020 1900 UTC 0.0 \n", + "8780 31/12/2020 2000 UTC 0.0 \n", + "8781 31/12/2020 2100 UTC 0.0 \n", + "8782 31/12/2020 2200 UTC 0.0 \n", + "8783 31/12/2020 2300 UTC 0.0 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "0 0.0 \n", + "1 0.0 \n", + "2 24.0 \n", + "3 0.0 \n", + "4 0.0 \n", + "... ... \n", + "8779 0.0 \n", + "8780 0.0 \n", + "8781 0.0 \n", + "8782 0.0 \n", + "8783 0.0 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n", + "0 0.0 \n", + "1 0.0 \n", + "2 0.0 \n", + "3 0.0 \n", + "4 0.0 \n", + "... ... \n", + "8779 0.0 \n", + "8780 0.0 \n", + "8781 23.0 \n", + "8782 0.0 \n", + "8783 0.0 \n", + "\n", + " UMIDADE RELATIVA DO AR, HORARIA (%) RADIACAO GLOBAL (Kj/m²) \\\n", + "0 0.97 0.0 \n", + "1 0.88 0.0 \n", + "2 0.88 0.0 \n", + "3 0.83 0.0 \n", + "4 0.89 0.0 \n", + "... ... ... \n", + "8779 0.97 0.0 \n", + "8780 0.91 0.0 \n", + "8781 0.89 0.0 \n", + "8782 0.88 0.0 \n", + "8783 0.94 0.0 \n", + "\n", + " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) VENTO, VELOCIDADE HORARIA (m/s) \n", + "0 11.0 0.0 \n", + "1 10.0 0.0 \n", + "2 345.0 0.0 \n", + "3 332.0 0.0 \n", + "4 316.0 0.0 \n", + "... ... ... \n", + "8779 32.0 0.0 \n", + "8780 355.0 0.0 \n", + "8781 315.0 0.0 \n", + "8782 291.0 0.0 \n", + "8783 132.0 0.0 \n", + "\n", + "[8784 rows x 9 columns]" + ] + }, + "execution_count": 138, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 139, + "metadata": {}, + "outputs": [], + "source": [ + "df['Hora UTC'] = pd.to_datetime(df['Hora UTC'], format='%H%M UTC', errors='coerce').dt.strftime('%H:%M')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 140, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)
001/01/202000:000.00.00.00.970.011.00.0
101/01/202001:000.00.00.00.880.010.00.0
201/01/202002:000.024.00.00.880.0345.00.0
301/01/202003:000.00.00.00.830.0332.00.0
401/01/202004:000.00.00.00.890.0316.00.0
..............................
877931/12/202019:000.00.00.00.970.032.00.0
878031/12/202020:000.00.00.00.910.0355.00.0
878131/12/202021:000.00.023.00.890.0315.00.0
878231/12/202022:000.00.00.00.880.0291.00.0
878331/12/202023:000.00.00.00.940.0132.00.0
\n", + "

8784 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "0 01/01/2020 00:00 0.0 \n", + "1 01/01/2020 01:00 0.0 \n", + "2 01/01/2020 02:00 0.0 \n", + "3 01/01/2020 03:00 0.0 \n", + "4 01/01/2020 04:00 0.0 \n", + "... ... ... ... \n", + "8779 31/12/2020 19:00 0.0 \n", + "8780 31/12/2020 20:00 0.0 \n", + "8781 31/12/2020 21:00 0.0 \n", + "8782 31/12/2020 22:00 0.0 \n", + "8783 31/12/2020 23:00 0.0 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "0 0.0 \n", + "1 0.0 \n", + "2 24.0 \n", + "3 0.0 \n", + "4 0.0 \n", + "... ... \n", + "8779 0.0 \n", + "8780 0.0 \n", + "8781 0.0 \n", + "8782 0.0 \n", + "8783 0.0 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n", + "0 0.0 \n", + "1 0.0 \n", + "2 0.0 \n", + "3 0.0 \n", + "4 0.0 \n", + "... ... \n", + "8779 0.0 \n", + "8780 0.0 \n", + "8781 23.0 \n", + "8782 0.0 \n", + "8783 0.0 \n", + "\n", + " UMIDADE RELATIVA DO AR, HORARIA (%) RADIACAO GLOBAL (Kj/m²) \\\n", + "0 0.97 0.0 \n", + "1 0.88 0.0 \n", + "2 0.88 0.0 \n", + "3 0.83 0.0 \n", + "4 0.89 0.0 \n", + "... ... ... \n", + "8779 0.97 0.0 \n", + "8780 0.91 0.0 \n", + "8781 0.89 0.0 \n", + "8782 0.88 0.0 \n", + "8783 0.94 0.0 \n", + "\n", + " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) VENTO, VELOCIDADE HORARIA (m/s) \n", + "0 11.0 0.0 \n", + "1 10.0 0.0 \n", + "2 345.0 0.0 \n", + "3 332.0 0.0 \n", + "4 316.0 0.0 \n", + "... ... ... \n", + "8779 32.0 0.0 \n", + "8780 355.0 0.0 \n", + "8781 315.0 0.0 \n", + "8782 291.0 0.0 \n", + "8783 132.0 0.0 \n", + "\n", + "[8784 rows x 9 columns]" + ] + }, + "execution_count": 140, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df\n" + ] + }, + { + "cell_type": "code", + "execution_count": 141, + "metadata": {}, + "outputs": [], + "source": [ + "df['Data e Hora'] = df['Data'] + ' ' + df['Hora UTC']" + ] + }, + { + "cell_type": "code", + "execution_count": 142, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)Data e Hora
001/01/202000:000.00.00.00.970.011.00.001/01/2020 00:00
101/01/202001:000.00.00.00.880.010.00.001/01/2020 01:00
201/01/202002:000.024.00.00.880.0345.00.001/01/2020 02:00
301/01/202003:000.00.00.00.830.0332.00.001/01/2020 03:00
401/01/202004:000.00.00.00.890.0316.00.001/01/2020 04:00
.................................
877931/12/202019:000.00.00.00.970.032.00.031/12/2020 19:00
878031/12/202020:000.00.00.00.910.0355.00.031/12/2020 20:00
878131/12/202021:000.00.023.00.890.0315.00.031/12/2020 21:00
878231/12/202022:000.00.00.00.880.0291.00.031/12/2020 22:00
878331/12/202023:000.00.00.00.940.0132.00.031/12/2020 23:00
\n", + "

8784 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "0 01/01/2020 00:00 0.0 \n", + "1 01/01/2020 01:00 0.0 \n", + "2 01/01/2020 02:00 0.0 \n", + "3 01/01/2020 03:00 0.0 \n", + "4 01/01/2020 04:00 0.0 \n", + "... ... ... ... \n", + "8779 31/12/2020 19:00 0.0 \n", + "8780 31/12/2020 20:00 0.0 \n", + "8781 31/12/2020 21:00 0.0 \n", + "8782 31/12/2020 22:00 0.0 \n", + "8783 31/12/2020 23:00 0.0 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "0 0.0 \n", + "1 0.0 \n", + "2 24.0 \n", + "3 0.0 \n", + "4 0.0 \n", + "... ... \n", + "8779 0.0 \n", + "8780 0.0 \n", + "8781 0.0 \n", + "8782 0.0 \n", + "8783 0.0 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n", + "0 0.0 \n", + "1 0.0 \n", + "2 0.0 \n", + "3 0.0 \n", + "4 0.0 \n", + "... ... \n", + "8779 0.0 \n", + "8780 0.0 \n", + "8781 23.0 \n", + "8782 0.0 \n", + "8783 0.0 \n", + "\n", + " UMIDADE RELATIVA DO AR, HORARIA (%) RADIACAO GLOBAL (Kj/m²) \\\n", + "0 0.97 0.0 \n", + "1 0.88 0.0 \n", + "2 0.88 0.0 \n", + "3 0.83 0.0 \n", + "4 0.89 0.0 \n", + "... ... ... \n", + "8779 0.97 0.0 \n", + "8780 0.91 0.0 \n", + "8781 0.89 0.0 \n", + "8782 0.88 0.0 \n", + "8783 0.94 0.0 \n", + "\n", + " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) VENTO, VELOCIDADE HORARIA (m/s) \\\n", + "0 11.0 0.0 \n", + "1 10.0 0.0 \n", + "2 345.0 0.0 \n", + "3 332.0 0.0 \n", + "4 316.0 0.0 \n", + "... ... ... \n", + "8779 32.0 0.0 \n", + "8780 355.0 0.0 \n", + "8781 315.0 0.0 \n", + "8782 291.0 0.0 \n", + "8783 132.0 0.0 \n", + "\n", + " Data e Hora \n", + "0 01/01/2020 00:00 \n", + "1 01/01/2020 01:00 \n", + "2 01/01/2020 02:00 \n", + "3 01/01/2020 03:00 \n", + "4 01/01/2020 04:00 \n", + "... ... \n", + "8779 31/12/2020 19:00 \n", + "8780 31/12/2020 20:00 \n", + "8781 31/12/2020 21:00 \n", + "8782 31/12/2020 22:00 \n", + "8783 31/12/2020 23:00 \n", + "\n", + "[8784 rows x 10 columns]" + ] + }, + "execution_count": 142, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 143, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)Data e Hora
001/01/202000:000.00.00.00.970.011.00.001/01/2020 00:00
101/01/202001:000.00.00.00.880.010.00.001/01/2020 01:00
201/01/202002:000.024.00.00.880.0345.00.001/01/2020 02:00
301/01/202003:000.00.00.00.830.0332.00.001/01/2020 03:00
401/01/202004:000.00.00.00.890.0316.00.001/01/2020 04:00
.................................
877931/12/202019:000.00.00.00.970.032.00.031/12/2020 19:00
878031/12/202020:000.00.00.00.910.0355.00.031/12/2020 20:00
878131/12/202021:000.00.023.00.890.0315.00.031/12/2020 21:00
878231/12/202022:000.00.00.00.880.0291.00.031/12/2020 22:00
878331/12/202023:000.00.00.00.940.0132.00.031/12/2020 23:00
\n", + "

8784 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "0 01/01/2020 00:00 0.0 \n", + "1 01/01/2020 01:00 0.0 \n", + "2 01/01/2020 02:00 0.0 \n", + "3 01/01/2020 03:00 0.0 \n", + "4 01/01/2020 04:00 0.0 \n", + "... ... ... ... \n", + "8779 31/12/2020 19:00 0.0 \n", + "8780 31/12/2020 20:00 0.0 \n", + "8781 31/12/2020 21:00 0.0 \n", + "8782 31/12/2020 22:00 0.0 \n", + "8783 31/12/2020 23:00 0.0 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "0 0.0 \n", + "1 0.0 \n", + "2 24.0 \n", + "3 0.0 \n", + "4 0.0 \n", + "... ... \n", + "8779 0.0 \n", + "8780 0.0 \n", + "8781 0.0 \n", + "8782 0.0 \n", + "8783 0.0 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n", + "0 0.0 \n", + "1 0.0 \n", + "2 0.0 \n", + "3 0.0 \n", + "4 0.0 \n", + "... ... \n", + "8779 0.0 \n", + "8780 0.0 \n", + "8781 23.0 \n", + "8782 0.0 \n", + "8783 0.0 \n", + "\n", + " UMIDADE RELATIVA DO AR, HORARIA (%) RADIACAO GLOBAL (Kj/m²) \\\n", + "0 0.97 0.0 \n", + "1 0.88 0.0 \n", + "2 0.88 0.0 \n", + "3 0.83 0.0 \n", + "4 0.89 0.0 \n", + "... ... ... \n", + "8779 0.97 0.0 \n", + "8780 0.91 0.0 \n", + "8781 0.89 0.0 \n", + "8782 0.88 0.0 \n", + "8783 0.94 0.0 \n", + "\n", + " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) VENTO, VELOCIDADE HORARIA (m/s) \\\n", + "0 11.0 0.0 \n", + "1 10.0 0.0 \n", + "2 345.0 0.0 \n", + "3 332.0 0.0 \n", + "4 316.0 0.0 \n", + "... ... ... \n", + "8779 32.0 0.0 \n", + "8780 355.0 0.0 \n", + "8781 315.0 0.0 \n", + "8782 291.0 0.0 \n", + "8783 132.0 0.0 \n", + "\n", + " Data e Hora \n", + "0 01/01/2020 00:00 \n", + "1 01/01/2020 01:00 \n", + "2 01/01/2020 02:00 \n", + "3 01/01/2020 03:00 \n", + "4 01/01/2020 04:00 \n", + "... ... \n", + "8779 31/12/2020 19:00 \n", + "8780 31/12/2020 20:00 \n", + "8781 31/12/2020 21:00 \n", + "8782 31/12/2020 22:00 \n", + "8783 31/12/2020 23:00 \n", + "\n", + "[8784 rows x 10 columns]" + ] + }, + "execution_count": 143, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 144, + "metadata": {}, + "outputs": [], + "source": [ + "df['Data e Hora'] = pd.to_datetime(df['Data e Hora'], format='%d/%m/%Y %H:%M', errors='coerce')" + ] + }, + { + "cell_type": "code", + "execution_count": 145, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)Data e Hora
001/01/202000:000.00.00.00.970.011.00.02020-01-01 00:00:00
101/01/202001:000.00.00.00.880.010.00.02020-01-01 01:00:00
201/01/202002:000.024.00.00.880.0345.00.02020-01-01 02:00:00
301/01/202003:000.00.00.00.830.0332.00.02020-01-01 03:00:00
401/01/202004:000.00.00.00.890.0316.00.02020-01-01 04:00:00
\n", + "
" + ], + "text/plain": [ + " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "0 01/01/2020 00:00 0.0 \n", + "1 01/01/2020 01:00 0.0 \n", + "2 01/01/2020 02:00 0.0 \n", + "3 01/01/2020 03:00 0.0 \n", + "4 01/01/2020 04:00 0.0 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "0 0.0 \n", + "1 0.0 \n", + "2 24.0 \n", + "3 0.0 \n", + "4 0.0 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) UMIDADE RELATIVA DO AR, HORARIA (%) \\\n", + "0 0.0 0.97 \n", + "1 0.0 0.88 \n", + "2 0.0 0.88 \n", + "3 0.0 0.83 \n", + "4 0.0 0.89 \n", + "\n", + " RADIACAO GLOBAL (Kj/m²) VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n", + "0 0.0 11.0 \n", + "1 0.0 10.0 \n", + "2 0.0 345.0 \n", + "3 0.0 332.0 \n", + "4 0.0 316.0 \n", + "\n", + " VENTO, VELOCIDADE HORARIA (m/s) Data e Hora \n", + "0 0.0 2020-01-01 00:00:00 \n", + "1 0.0 2020-01-01 01:00:00 \n", + "2 0.0 2020-01-01 02:00:00 \n", + "3 0.0 2020-01-01 03:00:00 \n", + "4 0.0 2020-01-01 04:00:00 " + ] + }, + "execution_count": 145, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 146, + "metadata": {}, + "outputs": [], + "source": [ + "df['Data e Hora BR'] = df['Data e Hora'].dt.tz_localize('UTC').dt.tz_convert('America/Sao_Paulo')" + ] + }, + { + "cell_type": "code", + "execution_count": 147, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)Data e HoraData e Hora BR
001/01/202000:000.00.00.00.970.011.00.02020-01-01 00:00:002019-12-31 21:00:00-03:00
101/01/202001:000.00.00.00.880.010.00.02020-01-01 01:00:002019-12-31 22:00:00-03:00
201/01/202002:000.024.00.00.880.0345.00.02020-01-01 02:00:002019-12-31 23:00:00-03:00
301/01/202003:000.00.00.00.830.0332.00.02020-01-01 03:00:002020-01-01 00:00:00-03:00
401/01/202004:000.00.00.00.890.0316.00.02020-01-01 04:00:002020-01-01 01:00:00-03:00
\n", + "
" + ], + "text/plain": [ + " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "0 01/01/2020 00:00 0.0 \n", + "1 01/01/2020 01:00 0.0 \n", + "2 01/01/2020 02:00 0.0 \n", + "3 01/01/2020 03:00 0.0 \n", + "4 01/01/2020 04:00 0.0 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "0 0.0 \n", + "1 0.0 \n", + "2 24.0 \n", + "3 0.0 \n", + "4 0.0 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) UMIDADE RELATIVA DO AR, HORARIA (%) \\\n", + "0 0.0 0.97 \n", + "1 0.0 0.88 \n", + "2 0.0 0.88 \n", + "3 0.0 0.83 \n", + "4 0.0 0.89 \n", + "\n", + " RADIACAO GLOBAL (Kj/m²) VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n", + "0 0.0 11.0 \n", + "1 0.0 10.0 \n", + "2 0.0 345.0 \n", + "3 0.0 332.0 \n", + "4 0.0 316.0 \n", + "\n", + " VENTO, VELOCIDADE HORARIA (m/s) Data e Hora \\\n", + "0 0.0 2020-01-01 00:00:00 \n", + "1 0.0 2020-01-01 01:00:00 \n", + "2 0.0 2020-01-01 02:00:00 \n", + "3 0.0 2020-01-01 03:00:00 \n", + "4 0.0 2020-01-01 04:00:00 \n", + "\n", + " Data e Hora BR \n", + "0 2019-12-31 21:00:00-03:00 \n", + "1 2019-12-31 22:00:00-03:00 \n", + "2 2019-12-31 23:00:00-03:00 \n", + "3 2020-01-01 00:00:00-03:00 \n", + "4 2020-01-01 01:00:00-03:00 " + ] + }, + "execution_count": 147, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 148, + "metadata": {}, + "outputs": [], + "source": [ + "df['Data e Hora BR'] = df['Data e Hora BR'].dt.strftime('%d/%m/%Y %H:%M')" + ] + }, + { + "cell_type": "code", + "execution_count": 149, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)Data e HoraData e Hora BR
001/01/202000:000.00.00.00.970.011.00.02020-01-01 00:00:0031/12/2019 21:00
101/01/202001:000.00.00.00.880.010.00.02020-01-01 01:00:0031/12/2019 22:00
201/01/202002:000.024.00.00.880.0345.00.02020-01-01 02:00:0031/12/2019 23:00
301/01/202003:000.00.00.00.830.0332.00.02020-01-01 03:00:0001/01/2020 00:00
401/01/202004:000.00.00.00.890.0316.00.02020-01-01 04:00:0001/01/2020 01:00
\n", + "
" + ], + "text/plain": [ + " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "0 01/01/2020 00:00 0.0 \n", + "1 01/01/2020 01:00 0.0 \n", + "2 01/01/2020 02:00 0.0 \n", + "3 01/01/2020 03:00 0.0 \n", + "4 01/01/2020 04:00 0.0 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "0 0.0 \n", + "1 0.0 \n", + "2 24.0 \n", + "3 0.0 \n", + "4 0.0 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) UMIDADE RELATIVA DO AR, HORARIA (%) \\\n", + "0 0.0 0.97 \n", + "1 0.0 0.88 \n", + "2 0.0 0.88 \n", + "3 0.0 0.83 \n", + "4 0.0 0.89 \n", + "\n", + " RADIACAO GLOBAL (Kj/m²) VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n", + "0 0.0 11.0 \n", + "1 0.0 10.0 \n", + "2 0.0 345.0 \n", + "3 0.0 332.0 \n", + "4 0.0 316.0 \n", + "\n", + " VENTO, VELOCIDADE HORARIA (m/s) Data e Hora Data e Hora BR \n", + "0 0.0 2020-01-01 00:00:00 31/12/2019 21:00 \n", + "1 0.0 2020-01-01 01:00:00 31/12/2019 22:00 \n", + "2 0.0 2020-01-01 02:00:00 31/12/2019 23:00 \n", + "3 0.0 2020-01-01 03:00:00 01/01/2020 00:00 \n", + "4 0.0 2020-01-01 04:00:00 01/01/2020 01:00 " + ] + }, + "execution_count": 149, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Análise de Dados" + ] + }, + { + "cell_type": "code", + "execution_count": 150, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)Data e Hora
count8784.0000008784.0000008784.0000008784.0000008784.0000008784.0000008784.0000008784
mean0.0302822.4116581.5392760.63272576.901298184.8894580.2030972020-07-01 23:30:00
min0.0000000.0000000.0000000.0000000.0000000.0000000.0000002020-01-01 00:00:00
25%0.0000000.0000000.0000000.4900000.000000133.0000000.0000002020-04-01 11:45:00
50%0.0000000.0000000.0000000.6700000.000000171.0000000.0000002020-07-01 23:30:00
75%0.0000000.0000000.0000000.8200000.000000254.0000000.0000002020-10-01 11:15:00
max40.00000040.00000025.0000001.0000003886.000000360.0000008.0000002020-12-31 23:00:00
std0.6941427.2915064.8890040.241409414.22431181.7847190.753577NaN
\n", + "
" + ], + "text/plain": [ + " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "count 8784.000000 \n", + "mean 0.030282 \n", + "min 0.000000 \n", + "25% 0.000000 \n", + "50% 0.000000 \n", + "75% 0.000000 \n", + "max 40.000000 \n", + "std 0.694142 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "count 8784.000000 \n", + "mean 2.411658 \n", + "min 0.000000 \n", + "25% 0.000000 \n", + "50% 0.000000 \n", + "75% 0.000000 \n", + "max 40.000000 \n", + "std 7.291506 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n", + "count 8784.000000 \n", + "mean 1.539276 \n", + "min 0.000000 \n", + "25% 0.000000 \n", + "50% 0.000000 \n", + "75% 0.000000 \n", + "max 25.000000 \n", + "std 4.889004 \n", + "\n", + " UMIDADE RELATIVA DO AR, HORARIA (%) RADIACAO GLOBAL (Kj/m²) \\\n", + "count 8784.000000 8784.000000 \n", + "mean 0.632725 76.901298 \n", + "min 0.000000 0.000000 \n", + "25% 0.490000 0.000000 \n", + "50% 0.670000 0.000000 \n", + "75% 0.820000 0.000000 \n", + "max 1.000000 3886.000000 \n", + "std 0.241409 414.224311 \n", + "\n", + " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) VENTO, VELOCIDADE HORARIA (m/s) \\\n", + "count 8784.000000 8784.000000 \n", + "mean 184.889458 0.203097 \n", + "min 0.000000 0.000000 \n", + "25% 133.000000 0.000000 \n", + "50% 171.000000 0.000000 \n", + "75% 254.000000 0.000000 \n", + "max 360.000000 8.000000 \n", + "std 81.784719 0.753577 \n", + "\n", + " Data e Hora \n", + "count 8784 \n", + "mean 2020-07-01 23:30:00 \n", + "min 2020-01-01 00:00:00 \n", + "25% 2020-04-01 11:45:00 \n", + "50% 2020-07-01 23:30:00 \n", + "75% 2020-10-01 11:15:00 \n", + "max 2020-12-31 23:00:00 \n", + "std NaN " + ] + }, + "execution_count": 150, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 151, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAHgCAYAAABkaS3CAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADjq0lEQVR4nOzddXQUVxsH4N9u3EOIIcEluBOCBQ/uECgUrQOlQAukX9FiLUVaipUGaZEEdxIguLtb0ARihLhvduf7Y7rLzrpmJ/A+5+QkmZ259+7s7Mw710bAMAwDQgghhBCeElq6AIQQQgghmlCwQgghhBBeo2CFEEIIIbxGwQohhBBCeI2CFUIIIYTwGgUrhBBCCOE1ClYIIYQQwmsUrBBCCCGE1yhYISXenTt3MHv2bMTFxVm6KITw1tOnTzF79mw8efLE0kUhRG8UrJASLSMjA/369UNaWhr8/Px03q5du3Zo166d+QpG9LJx40YIBAK8fPnSbHlUqlQJo0aNMlv6liYQCDB79myVrxUUFGDQoEF49uwZatSoYdZyvHz5EgKBABs3bjRrPuTjQsEK4Y27d+9i4MCBqFixIuzt7VGuXDl07twZK1asULvN6NGj0ahRIyxbtqwYS6qf2bNnQyAQaP2h4OnDsXTpUggEAhw/flztOuvWrYNAIMD+/fvNXp7JkyejVKlSCAsLM3tehJiDgJ4NRPjgwoULaN++PSpUqICRI0fC19cXcXFxuHTpEp49e4anT58qbfPy5Uts3boVkydPhr29vV75FRYWAgBsbW1NUn5N7ty5gzt37sj+z87Oxtdff41+/fqhf//+suU+Pj7o3Lmz2cvDR2KxGCKRCHZ2dhAIBGbJo1KlSmjXrl2x3PHHx8fDz88PI0eOxPr161Wu0759e9y9excJCQmwsbExOs/8/HxYW1vD2tqaszw1NRUrV67Et99+Czc3N6Pz0YZhGBQUFMDGxgZWVlZmz498HChYIbzQo0cPXL16FU+ePIG7uzvnteTkZHh7e5skn9zcXDg6OpokLUOlpKTAy8sLs2bNUlttX9Ll5OTAycnJ0sXgKM5gBQA6deqEa9euISkpCXZ2dpzX3rx5gwoVKuCLL77A6tWrDc5DIpGgsLBQ72CdkJKGmoEILzx79gx16tRRClQAqAxUNm/ejCZNmsDBwQEeHh4YMmSIUgfbdu3aoW7durh+/Tratm0LR0dH/Pjjj7LXFJtdCgoKMGvWLFSrVg12dnbw8/PD1KlTUVBQwFnv2LFjaN26Ndzd3eHs7IyaNWvK0jXGo0ePMHDgQHh4eMDe3h5NmzZVaiKQ9u04d+4cvv32W3h5ecHd3R1ffvklCgsLkZ6ejhEjRqBUqVIoVaoUpk6dCvn7EWl/gt9++w3Lli1DxYoV4eDggKCgINy7d0+pTCdOnECbNm3g5OQEd3d39OnTBw8fPuSsI23mevDgAT755BOUKlUKrVu3BsDWKo0aNQpVqlSBvb09fH19MWbMGLx7907l+5Lvs3Lt2jUEBwfD09MTDg4OqFy5MsaMGaN1PzIMg3nz5qF8+fJwdHRE+/btcf/+faX1UlNT8f3336NevXpwdnaGq6srunXrhtu3byutu2LFCtSpUweOjo4oVaoUmjZtiq1bt2osx/Dhw5GRkYFDhw4pvRYeHg6JRIJhw4YBAH777Te0bNkSpUuXhoODA5o0aYKdO3cqbScQCDB+/Hhs2bIFderUgZ2dHSIjI2WvyQe/r169wjfffIOaNWvCwcEBpUuXxqBBg5T2sUAgwKZNm5TyioqKgkAgwMGDB2XL3rx5gzFjxsDHxwd2dnaoU6eOUs2Rqj4riYmJGD16NMqXLw87OzuUKVMGffr0MWsfJfJhsda+CiHmV7FiRVy8eBH37t1D3bp1Na47f/58zJgxA4MHD8Znn32Gt2/fYsWKFWjbti1u3rzJCXjevXuHbt26YciQIRg+fDh8fHxUpimRSNC7d2+cO3cOX3zxBWrVqoW7d+9i2bJlePLkCfbu3QsAuH//Pnr27In69etj7ty5sLOzw9OnT3H+/Hmj3v/9+/fRqlUrlCtXDtOnT4eTkxO2b9+Ovn37YteuXejXrx9n/QkTJsDX1xdz5szBpUuX8Ndff8Hd3R0XLlxAhQoVsGDBAhw+fBiLFy9G3bp1MWLECM72//zzD7KysjBu3Djk5+fj999/R4cOHXD37l3ZPjp+/Di6deuGKlWqYPbs2cjLy8OKFSvQqlUr3LhxA5UqVeKkOWjQIFSvXh0LFiyQBUjHjh3D8+fPMXr0aPj6+uL+/fv466+/cP/+fVy6dEltk09ycjK6dOkCLy8vTJ8+He7u7nj58iV2796tdV/OnDkT8+bNQ/fu3dG9e3fcuHEDXbp0kTX9ST1//hx79+7FoEGDULlyZSQlJWHt2rUICgrCgwcPULZsWQBs35Jvv/0WAwcOxMSJE5Gfn487d+7g8uXL+OSTT9SWo3///vj666+xdetWTnMfAGzduhUVK1ZEq1atAAC///47evfujWHDhqGwsBDh4eEYNGgQDh48iB49enC2PXHiBLZv347x48fD09NT6XOQunr1Ks6fP48hQ4agfPnyePHiBVatWoV27drhwYMHcHR0RNOmTVGlShVs374dI0eO5GwfERGBUqVKITg4GACQlJSEFi1ayAImLy8vHDlyBGPHjkVmZia+++47tftiwIABuH//PiZMmIBKlSohOTkZx44dQ2xsrNryE8LBEMIDR48eZaysrBgrKysmMDCQmTp1KhMVFcUUFhZy1nv58iVjZWXFzJ8/n7P87t27jLW1NWd5UFAQA4BZs2aNUn5BQUFMUFCQ7P9///2XEQqFzNmzZznrrVmzhgHAnD9/nmEYhlm2bBkDgHn79q3B7/Xt27cMAGbWrFmyZR07dmTq1avH5Ofny5ZJJBKmZcuWTPXq1WXLNmzYwABggoODGYlEIlseGBjICAQC5quvvpItKyoqYsqXL895ny9evGAAMA4ODszr169lyy9fvswAYCZNmiRb1rBhQ8bb25t59+6dbNnt27cZoVDIjBgxQrZs1qxZDABm6NChSu81NzdXadm2bdsYAMyZM2eU3teLFy8YhmGYPXv2MACYq1evKm2vSXJyMmNra8v06NGDs39+/PFHBgAzcuRI2bL8/HxGLBZztn/x4gVjZ2fHzJ07V7asT58+TJ06dfQqh9SgQYMYe3t7JiMjQ7bs0aNHDAAmNDRUtkxxPxUWFjJ169ZlOnTowFkOgBEKhcz9+/eV8lI8pnJycpTWOXfuHAOA+eeff2TLQkNDGRsbGyY1NVW2rKCggHF3d2fGjBkjWzZ27FimTJkyTEpKCifNIUOGMG5ubrL3ID3GNmzYwDAMw6SlpTEAmMWLFyuVhxBdUTMQ4YXOnTvj4sWL6N27N27fvo1ff/0VwcHBKFeuHKcpZPfu3ZBIJBg8eDBSUlJkP76+vqhevTpOnjzJSdfOzg6jR4/Wmv+OHTtQq1Yt+Pv7c9Lt0KEDAMjSldba7Nu3DxKJxCTvPTU1FSdOnMDgwYORlZUly/vdu3cIDg5GTEwM3rx5w9lm7NixnFqJgIAAMAyDsWPHypZZWVmhadOmeP78uVKeffv2Rbly5WT/N2/eHAEBATh8+DAAICEhAbdu3cKoUaPg4eEhW69+/fro3LmzbD15X331ldIyBwcH2d/5+flISUlBixYtAAA3btxQu0+k+/ngwYMQiURq11N0/PhxFBYWYsKECZz9o+qu387ODkIhewoUi8V49+6drFlPvmzu7u54/fo1rl69qnM5pIYPH478/HxOjZC0+UjaBARw91NaWhoyMjLQpk0blfsoKCgItWvX1pq3Yt+sgoICNGnSBKVKleKkGxISApFIxCnj0aNHkZ6ejpCQEABs09quXbvQq1cvMAzD+Y4EBwcjIyND7efp4OAAW1tbnDp1CmlpaVrLTYgqFKwQ3mjWrBl2796NtLQ0XLlyBaGhocjKysLAgQPx4MEDAEBMTAwYhkH16tXh5eXF+Xn48CGSk5M5aZYrV06nET8xMTG4f/++UprSOSmk6YaEhKBVq1b47LPP4OPjgyFDhmD79u1GBS5Pnz4FwzCYMWOGUv6zZs3i5C9VoUIFzv/SUR6Kc824ubmpvEBUr15daVmNGjVkfQhevXoFAKhZs6bSerVq1UJKSgpycnI4yytXrqy0bmpqKiZOnAgfHx84ODjAy8tLtl5GRobS+lJBQUEYMGAA5syZA09PT/Tp0wcbNmxQ6j+kSFpuxffn5eWFUqVKcZZJJBIsW7YM1atXh52dHTw9PeHl5YU7d+5wyjZt2jQ4OzujefPmqF69OsaNG6dzs1+3bt3g4eHB6d+ybds2NGjQAHXq1JEtO3jwIFq0aAF7e3t4eHjAy8sLq1evVrmPVO1nVQoKCrBw4UL4+/vDwcEB9vb2cHBwkAVDUg0aNIC/vz8iIiJkyyIiIuDp6SkL1t++fYv09HT89ddfSseo9GZA8RiVsrOzwy+//IIjR47Ax8cHbdu2xa+//orExESd3gchAPVZITxka2uLZs2aoVmzZqhRowZGjx6NHTt2YNasWZBIJBAIBDhy5IjKYZHOzs6c/+XvWDWRSCSoV68eli5dqvJ1aRDg4OCAM2fO4OTJkzh06BAiIyMRERGBDh064OjRowYN1ZQGOt9//72sf4CiatWqcf5Xl4+q5UwxDfhTta8HDx6MCxcu4IcffkDDhg3h7OwMiUSCrl27agzwBAIBdu7ciUuXLuHAgQOIiorCmDFjsGTJEly6dEnpczbEggULMGPGDIwZMwY///wzPDw8IBQK8d1333HKVqtWLTx+/BgHDx5EZGQkdu3ahVWrVmHmzJmYM2eOxjxsbGwwePBgrFu3DklJSYiNjUVMTAx+/fVX2Tpnz55F79690bZtW6xatQplypSBjY0NNmzYoLITr67H9MSJExEWFoZp06ahdevWcHNzg0AgQK9evZT2fUhICObPn4+UlBS4uLhg//79GDp0qGwYtHT94cOHK/Vtkapfv77asnz33Xfo1asX9u7di6ioKMyYMQMLFy7EiRMn0KhRI53eD/m4UbBCeK1p06YA2GYJAKhatSoYhkHlypVNOhNn1apVcfv2bXTs2FHrPB9CoRAdO3ZEx44dsXTpUixYsAD/+9//cPLkSXTq1EnvvKtUqQKAvbAZsr0hYmJilJY9efJE1tmxYsWKAIDHjx8rrffo0SN4enpqHZqclpaG6OhozJkzBzNnztSYtzotWrRAixYtMH/+fGzduhXDhg1DeHg4PvvsM5XrS8sdExMj268AWzOgWMO0c+dOtG/fXmmitPT0dHh6enKWOTk5ISQkBCEhISgsLET//v0xf/58hIaGah02PGzYMKxZswYRERF48eIFBAIBhg4dKnt9165dsLe3R1RUFGeI84YNGzSmq01ERARGjRqFefPmyZbl5eUhNTVVad2QkBDMmTMHu3btgo+PDzIzMzFkyBDZ615eXnBxcYFYLDb4GK1atSqmTJmCKVOmICYmBg0bNsSSJUuwefNmg9IjHxdqBiK8cPLkSZU1ANK+EdLmiP79+8PKygpz5sxRWp9hGKUhsboaPHgw3rx5g3Xr1im9lpeXJ2vyUHWib9iwIQBobaJQx9vbG+3atcPatWtlQZm8t2/fGpSuJnv37uX0g7ly5QouX76Mbt26AQDKlCmDhg0bYtOmTUhPT5etd+/ePRw9ehTdu3fXmoe0lkfxc1q+fLnWbdPS0pS202U/d+rUCTY2NlixYgVne1V5WllZKeWxY8cOpf5BiseUra0tateuDYZhdOpP06pVK1SqVAmbN29GREQEgoKCUL58eU45BAIBxGKxbNnLly9lI9AMJRAIlMq3fPlylTVatWrVQr169RAREYGIiAiUKVMGbdu25ZRxwIAB2LVrl8oh7pqO0dzcXOTn53OWVa1aFS4uLgZ/Z8jHh2pWCC9MmDABubm56NevH/z9/VFYWIgLFy4gIiIClSpVkrWLV61aFfPmzUNoaChevnyJvn37wsXFBS9evMCePXvwxRdf4Pvvv9c7/08//RTbt2/HV199hZMnT6JVq1YQi8V49OgRtm/fjqioKDRt2hRz587FmTNn0KNHD1SsWBHJyclYtWoVypcvL5tbxBArV65E69atUa9ePXz++eeoUqUKkpKScPHiRbx+/Vrl3B/GqFatGlq3bo2vv/4aBQUFWL58OUqXLo2pU6fK1lm8eDG6deuGwMBAjB07VjZ02c3NTafJ7FxdXWX9E0QiEcqVK4ejR4/ixYsXWrfdtGkTVq1ahX79+qFq1arIysrCunXr4OrqqjFQ8vLywvfff4+FCxeiZ8+e6N69O27evIkjR44o1Zb07NkTc+fOxejRo9GyZUvcvXsXW7Zs4dTIAECXLl3g6+uLVq1awcfHBw8fPsSff/6JHj16wMXFRet7EQgE+OSTT7BgwQIAwNy5czmv9+jRA0uXLkXXrl3xySefIDk5GStXrkS1atU4Mx/rq0ePHti8eTPc3d1Rq1YtXLhwASdPnlTaD1IhISGYOXMm7O3tMXbsWFnnY6lFixbh5MmTCAgIwOeff47atWsjNTUVN27cwPHjx1UG8gBbY9exY0cMHjwYtWvXhrW1Nfbs2YOkpCRO7Q0hGllgBBIhSo4cOcKMGTOG8ff3Z5ydnRlbW1umWrVqzIQJE5ikpCSl9Xft2sW0bt2acXJyYpycnBh/f39m3LhxzOPHj2XrBAUFqR1yqjh0mWHY4aK//PILU6dOHcbOzo4pVaoU06RJE2bOnDmyoafR0dFMnz59mLJlyzK2trZM2bJlmaFDhzJPnjzR+b2qGrrMMAzz7NkzZsSIEYyvry9jY2PDlCtXjunZsyezc+dO2TrSIb6KQ3qlw4cVh1SPHDmScXJykv0vHVa6ePFiZsmSJYyfnx9jZ2fHtGnThrl9+7ZSWY8fP860atWKcXBwYFxdXZlevXoxDx480ClvhmGY169fM/369WPc3d0ZNzc3ZtCgQUx8fLzS+1ccunzjxg1m6NChTIUKFRg7OzvG29ub6dmzJ3Pt2jWN+5ZhGEYsFjNz5sxhypQpwzg4ODDt2rVj7t27x1SsWFFp6PKUKVNk67Vq1Yq5ePGi0rGxdu1apm3btkzp0qUZOzs7pmrVqswPP/zAGY6szf379xkAjJ2dHZOWlqb0elhYGFO9enXGzs6O8ff3ZzZs2CDbr/IAMOPGjVOZh+I+TU1NZUaOHMl4enoyzs7OTPfu3ZknT54o7QepmJgYBgADgDl37pzKPJKSkphx48Yxfn5+jI2NDePr68t07NiR+euvv2TrKA5dTklJYcaNG8f4+/szTk5OjJubGxMQEMBs375d804jRA5Nt0/IR+Tly5eoXLkyFi9ebFANFCGEWAL1WSGEEEIIr1GwQgghhBBeo2CFEEIIIbxGfVYIIYQQwmtUs0IIIYQQXqNghRBCCCG8RsEKIYQQQniNghVCCCGE8BoFK4QQQgjhNQpWCCGEEMJrFKwQQgghhNcoWCGEEEIIr1GwQgghhBBeo2CFEEIIIbxGwQohhBBCeI2CFUIIIYTwGgUrhBBCCOE1ClYIIYQQwmsUrBBCCCGE1yhYIYQQQgivUbBCCCGEEF6jYIUQQgghvEbBCiGEEEJ4jYIVQgghhPAaBSuEEEII4TUKVgghhBDCaxSsEEIIIYTXKFghhBBCCK9RsEIIIYQQXqNghRBCCCG8RsEKIYQQQnjN2tIFMJZEIkF8fDxcXFwgEAgsXRxCCCGE6IBhGGRlZaFs2bIQCjXXnZT4YCU+Ph5+fn6WLgYhhBBCDBAXF4fy5ctrXKdYg5VFixYhNDQUEydOxPLlywEA+fn5mDJlCsLDw1FQUIDg4GCsWrUKPj4+OqXp4uICgH2zrq6u5io6IYQQQkwoMzMTfn5+suu4JsUWrFy9ehVr165F/fr1OcsnTZqEQ4cOYceOHXBzc8P48ePRv39/nD9/Xqd0pU0/rq6uFKwQQgghJYwuXTiKpYNtdnY2hg0bhnXr1qFUqVKy5RkZGQgLC8PSpUvRoUMHNGnSBBs2bMCFCxdw6dKl4igaIYQQQniuWIKVcePGoUePHujUqRNn+fXr1yESiTjL/f39UaFCBVy8eFFlWgUFBcjMzOT8EM02nH+BoMUn8Tot19JFIYQQQvRm9mAlPDwcN27cwMKFC5VeS0xMhK2tLdzd3TnLfXx8kJiYqDK9hQsXws3NTfZDnWu1m3PgAV69y8XCw48sXRRCCCFEb2btsxIXF4eJEyfi2LFjsLe3N0maoaGhmDx5sux/aQcdop1ILLF0EYgGYrEYIpHI0sUghBCTsbW11TosWRdmDVauX7+O5ORkNG7cWLZMLBbjzJkz+PPPPxEVFYXCwkKkp6dzaleSkpLg6+urMk07OzvY2dmZs9iEFCuGYZCYmIj09HRLF4UQQkxKKBSicuXKsLW1NSodswYrHTt2xN27dznLRo8eDX9/f0ybNg1+fn6wsbFBdHQ0BgwYAAB4/PgxYmNjERgYaM6iEcIb0kDF29sbjo6ONLkhIeSDIJ20NSEhARUqVDDq3GbWYMXFxQV169blLHNyckLp0qVly8eOHYvJkyfDw8MDrq6umDBhAgIDA9GiRQtzFo0QXhCLxbJApXTp0pYuDiGEmJSXlxfi4+NRVFQEGxsbg9Ox+Ay2y5Ytg1AoxIABAziTwhHyMZD2UXF0dLRwSQghxPSkzT9isbhkBSunTp3i/G9vb4+VK1di5cqVxV0UQniDmn4IIR8iU53b6KnLhBBCCOE1ClYIIcQCkpOTERwcDH9/f9SvXx99+vShSS5LgMWLF6Nnz54oKCiwdFE+Khbvs0IIIR8jb29vREVFWboYRA9paWkQCoXYvXu30UNxiX6oZoUQQgjRQalSpTBlyhTeBSpt27bF1q1biz3fwsJCVKpUCdeuXTN7XhSsEEIMMmrUKAgEAggEAtja2qJatWqYO3cuioqKALCd6aWvCwQCeHl5oXv37kpzL8mnI//TtWtXzno3b97EoEGD4OPjA3t7e1SvXh2ff/45njx5AgB4+fIlBAIBbt26xflf+lO6dGl06dIFN2/elKXZrl07fPfdd0rrqvrZuHEjACAvLw8eHh7w9PRU2xSwa9cutGvXDm5ubnB2dkb9+vUxd+5cpKamctbLycmBu7s7vL291c5evGnTJjRr1gyOjo5wcXFBUFAQDh48qPZzUdzvqn6kAx3y8vIwa9Ys1KhRA3Z2dvD09MSgQYNw//59WXqVKlXSmNaoUaNk6wYHB8PKygpXr15VKteoUaPQt29fteXWRvHzlSf9HOXdv38fgwcPhpeXF+zs7FCjRg3MnDkTubncZ6TJvz9HR0fUq1cPf//9t8oybNu2DVZWVhg3bpzSa/oc74r7IS4uDmPGjEHZsmVha2uLihUrYuLEiXj37p3W/bJ//34kJSVhyJAhWtc1NVtbW3z//feYNm2a2fOiYIUQYrCuXbsiISEBMTExmDJlCmbPno3Fixdz1nn8+DESEhIQFRWFgoIC9OjRA4WFhSrTkf/Ztm2b7PWDBw+iRYsWKCgowJYtW/Dw4UNs3rwZbm5umDFjhsYyHj9+XJZ/dnY2unXrpjRbsJ+fHyfvKVOmoE6dOpxlISEhANhApE6dOvD398fevXuV8vvf//6HkJAQNGvWDEeOHMG9e/ewZMkS3L59G//++y9n3R07dqBZs2aoUKEC9u/fr5TW999/jy+//BIhISG4c+cOrly5gtatW6NPnz74888/Vb7fli1bcso9ePBgpf3bsmVLFBQUoFOnTli/fj3mzZuHJ0+e4PDhwygqKkJAQIDsyfdXr16Vbbdr1y7OZ5qQkIDff/8dABAbG4sLFy5g/PjxWL9+vcbPxNwuXbqEgIAAFBYW4tChQ3jy5Anmz5+PjRs3onPnzkrH39y5c5GQkIB79+5h+PDh+Pzzz3HkyBGldMPCwjB16lRs27YN+fn5KvPW5XiX9/z5czRt2hQxMTHYtm0bnj59ijVr1iA6OhqBgYFKAa6iP/74A6NHjzbJlPaGGDZsGM6dO8cJcM2CKeEyMjIYAExGRoali8JbFacdZCpOO8h8vumqpYtCFOTl5TEPHjxg8vLyLF0UvY0cOZLp06cPZ1nnzp2ZFi1aMAzDMCdPnmQAMGlpabLX9+/fzwBgbt++rTEdeTk5OYynpyfTt29fla9L03/x4gUDgLl586bK/xmGYc6fP88AYCIjIxmGYZigoCBm4sSJSmnOmjWLadCggcr82rVrx6xZs4ZZvXo107lzZ85rly9fZgAwy5cv11hWqTZt2jAbNmxgli1bxnTv3p3z2sWLFxkAzB9//KGUzuTJkxkbGxsmNjZWZT7y1O3fRYsWMQKBgLl16xZnuVgsZpo2bcrUrl2bkUgknNdUfaZSs2fPZoYMGcI8fPiQcXNzY3Jzc3Uqh65UfZ5S8p+jRCJhateuzTRt2pQRi8Wc9W7dusUIBAJm0aJFsmUVK1Zkli1bxlnPw8ODmTRpEmfZ8+fPGQcHByY9PZ0JCAhgtmzZwnnd0OO9a9euTPny5ZX2V0JCAuPo6Mh89dVX6nYJk5yczAgEAubevXuc5QCYNWvWMD169GAcHBwYf39/5sKFC0xMTAwTFBTEODo6MoGBgczTp09l20iP+bCwMMbPz49xcnJivv76a6aoqIj55ZdfGB8fH8bLy4uZN2+eUjnat2/P/PTTTyrLqOkcp8/1m2pWCOEZhmGQW1hkkR/2PGc4BwcHtXeRGRkZCA8PBwC92vyjoqKQkpKCqVOnqnxd8ant2soHQOOdribPnj3DxYsXMXjwYAwePBhnz57Fq1evZK9v2bIFzs7O+Oabb7SWNSYmBteuXUP//v0xdOhQHD9+HG/evJG9vm3bNjg7O+PLL79USmfKlCkQiUSymg5DbN26FZ07d0aDBg04y4VCISZNmoQHDx7g9u3bOqXFMAw2bNiA4cOHw9/fH9WqVcPOnTsNLpsxbt26hQcPHmDy5MlKtQ0NGjRAp06dOLV28iQSCXbt2oW0tDSlY3TDhg3o0aMH3NzcMHz4cISFhWkshy7He2pqKqKiovDNN9/Ijk0pX19fDBs2DBEREWq/l+fOnYOjoyNq1aql9NrPP/+MESNG4NatW/D398cnn3yCL7/8EqGhobh27RoYhsH48eM52zx79gxHjhxBZGQktm3bhrCwMPTo0QOvX7/G6dOn8csvv+Cnn37C5cuXOds1b94cZ8+e1bg/jEWjgQjhmTyRGLVnWmaUyIO5wXC01f+0wDAMoqOjERUVhQkTJnBeK1++PAC2fwYA9O7dG/7+/px1Dh48CGdnZ86yH3/8ET/++CNiYmIAQGkbfaWnp+Pnn3+Gs7MzmjdvblAa69evR7du3VCqVCkAbB+NDRs2YPbs2QDYAKRKlSo6zdS5fv169OrVC66urnB1dUX79u2xadMm/PjjjwCAJ0+eoGrVqiovdGXLloWrq6usv44hnjx5gvbt26t8TXrxe/LkCRo2bKg1rePHjyM3NxfBwcEAILuYf/rppwaXT52WLVsqBSF5eXmyckr3iaoLuHT5uXPnOMumTZuGn376CQUFBSgqKoKHhwc+++wz2esSiQQbN27EihUrAABDhgzBlClT8OLFC1SuXJmTli7Hu1RMTAwYhtFY1rS0NLx9+xbe3t5Kr7969Qo+Pj4qm4BGjx6NwYMHy95fYGAgZsyYIfuMJk6ciNGjR3O2kUgkWL9+PVxcXFC7dm20b98ejx8/xuHDhyEUClGzZk388ssvOHnyJAICAmTblS1blhO0mwPVrBBCDCYNMuzt7dGtWzeEhITILtxSZ8+exfXr17Fx40bUqFEDa9asUUqnffv2uHXrFufnq6++AgCja3tatmwJZ2dnlCpVCrdv30ZERAR8fHz0TkcsFmPTpk0YPny4bNnw4cOxceNGSCQSvcoqFovxzz//YNiwYZy0NmzYwFnP2PeujanSX79+PUJCQmBtzQa6Q4cOxfnz5/Hs2TOTpC8vIiJC6Vhp2rSp0nr6vLcffvgBt27dwokTJxAQEIBly5ahWrVqstePHTuGnJwcdO/eHQDg6emJzp07q+ybo8vxbkxZ5eXl5cHe3l7la/Xr15f9LT3e69Wrx1mWn5/PmdunUqVKcHFx4axTu3ZtTjDk4+OD5ORkTl4ODg5KHZdNjWpWCOEZBxsrPJgbbLG89dG+fXusXr0atra2KFu2rOxiJa9y5cpwd3dHzZo1kZycjJCQEJw5c4azjpOTE+fiIK9GjRoAgEePHhn0NPaIiAjUrl0bpUuX1qvJSFFUVBTevHkj62grJRaLER0djc6dO6NGjRo4d+4cRCKRxtqVI0eOID4+Hv3791dK6/Tp0wgKCpKlVVhYqFS7Eh8fj8zMTNm+MUSNGjXw8OFDla9Jl+uSfmpqKvbs2QORSITVq1dz3sv69esxf/58g8uoip+fn9KxIt+EIi3zw4cP0ahRI6XtHz58qPS+PD09Ua1aNVSrVg07duxAvXr10LRpU9SuXRsA27E2NTWVk49EIsGdO3cwZ84czsVcl+Ndqlq1ahAIBHj48CH69eunsqylSpWCl5eXyu09PT2Rlpam8jX540865b2qZdJAW/F16TqqlslvA7DHgLoymgrVrBDCMwKBAI621hb50fc5HtIgo0KFCioDFUXjxo3DvXv3sGfPHp3z6NKlCzw9PfHrr7+qfF1xZI8iPz8/VK1a1ahABWAvWEOGDFG6qx8yZIis/8Inn3yC7OxstQ9jlZZ1/fr1KtPq16+f7G59yJAhyM7Oxtq1a5XS+e2332BjY4MBAwYY/H6GDBmC48ePK/VLkUgkWLZsGWrXrq3Un0WVLVu2oHz58rh9+zbnvSxZsgQbN26EWCw2uIyGaNiwIfz9/bFs2TKli+rt27dx/PhxDB06VO32fn5+CAkJQWhoKADg3bt32LdvH8LDwznv7+bNm0hLS8PRo0fVpqXteC9dujQ6d+6MVatWIS8vj/NaYmIitmzZgpCQELXfy0aNGiExMVFtwFJc7t27pzIwNCWqWSGEFBtHR0d8/vnnmDVrFvr27Ss7CRcUFCAxMZGzrrW1NTw9PeHk5IS///4bgwYNQu/evfHtt9+iWrVqSElJwfbt2xEbGyvryGgub9++xYEDB7B//37UrVuX89qIESPQr18/pKamIiAgAFOnTsWUKVPw5s0b9OvXD2XLlpUNR23dujWGDh2KgwcPqkzr008/xfDhw7FixQoEBgZi4sSJ+OGHH1BYWIi+fftCJBJh8+bN+P3337F8+XL4+fkZ/J4mTZqEffv2oVevXliyZAkCAgKQlJSEBQsW4OHDhzh+/LhOwWtYWBgGDhyo9F78/PwQGhqKyMhI9OjRAwDb6VRxnpTSpUsb9T4UCQQChIWFoXPnzhgwYABCQ0Ph6+uLy5cvY8qUKQgMDFSak0XRxIkTUbduXVy7dg3nzp1D6dKlMXjwYKX90b17d4SFhSnNCSSl7niX9+eff6Jly5YIDg7GvHnzULlyZdy/fx8//PADypUrp7FmqlGjRvD09MT58+fRs2dP7TvHTM6ePYuff/7ZrHlQzQohpFiNHz8eDx8+xI4dO2TLIiMjUaZMGc5P69atZa/36dMHFy5cgI2NDT755BP4+/tj6NChyMjIwLx588xe5n/++QdOTk7o2LGj0msdO3aEg4MDNm/eDAD45ZdfsHXrVly+fBlt2rRBpUqVMHnyZNSrVw+ffvop/v33X7Vpde3aFQKBQBZ8LV++HKtWrcK2bdtQt25dNG3aFGfOnMHevXuVOjLry97eHidOnMCIESPw448/olq1aujatSusrKxw6dIltGjRQmsa169fx+3bt1XW8Li5uaFjx46cUTOnTp1Co0aNOD9z5swBwE6W1q5dO6Pek1TLli1x6dIlWFlZoVu3bqhWrRpCQ0MxcuRIHDt2DHZ2dhq3r127Nrp06YKZM2di/fr16Nevn8pAY8CAAdi/fz9SUlLUpqXqeJdXvXp1XLt2DVWqVMHgwYNRtWpVfPHFF2jfvj0uXrwIDw8PtWlbWVlh9OjR2LJli8b3Y04XL15ERkYGBg4caNZ8BIy5e3CZWWZmJtzc3JCRkQFXV1dLF4eXKk0/BADoUtsHf41Q7ohGLCc/P182okBdRzlScmVmZqJr1644c+aMTs1kH7OgoCC0b99eqYM20SwxMRF16tTBjRs3ULFixWLPPyQkBA0aNJCNYlOk6Rynz/WbalYIIcQMYmNjkZycjPj4eKUp1wlXRkYGnj17hu+//97SRSlxfH19ERYWhtjY2GLPu7CwEPXq1cOkSZPMnhcFK4QQYgYRERGoU6cOvL29Ub16dUsXh9fc3Nzw+vVrpbl2iG769u2LNm3aFHu+tra2+Omnn5QmtDMHClYIIcQMfvjhBxQUFODKlSt0ESbESBSsEEIIIYTXKFghhAdKeD93QghRyVTnNgpWCLEg6eyQ5p6qmhBCLEH60FArK/1mx1ZEY+kIsSArKyu4u7vLnrXh6Oio9yyyhBDCRxKJBG/fvoWjo6PRQ/cpWCHEwnx9fQFA6eFghBBS0gmFQlSoUMHomzAKVgixMIFAgDJlysDb2xsikcjSxSGEEJOxtbXlPOjRUBSsEKJG2LkXOBvzFms/bQI7a+PaW3VhZWVldLsuIYR8iKiDLSFq/HzwAU49fotd199YuiiEEPJRo2CFEC1yC4ssXQRCCPmoUbBCCCGEEF6jYIUQQgghvEbBCiGE8IBILMHQvy7hl8hHli4KIbxDwcpHhCZ0J4S/jj9IwsXn77D61DNLF4UQ3qFghRBCeKBQLLF0EQjhLQpWPiI0iTshhJCSiIIVQgghhPAaBSuEEEII4TUKVgghhBDCaxSsEEIIIYTXKFghhBBCCK9RsEIIIYQQXjNrsLJw4UI0a9YMLi4u8Pb2Rt++ffH48WPOOvn5+Rg3bhxKly4NZ2dnDBgwAElJSeYsFiGEEEJKELMGK6dPn8a4ceNw6dIlHDt2DCKRCF26dEFOTo5snUmTJuHAgQPYsWMHTp8+jfj4ePTv39+cxSKEEEJICWJtzsQjIyM5/2/cuBHe3t64fv062rZti4yMDISFhWHr1q3o0KEDAGDDhg2oVasWLl26hBYtWiilWVBQgIKCAtn/mZmZ5nwLhBBCCLGwYu2zkpGRAQDw8PAAAFy/fh0ikQidOnWSrePv748KFSrg4sWLKtNYuHAh3NzcZD9+fn7mLzghhBBCLKbYghWJRILvvvsOrVq1Qt26dQEAiYmJsLW1hbu7O2ddHx8fJCYmqkwnNDQUGRkZsp+4uDhzF50QQgghFmTWZiB548aNw71793Du3Dmj0rGzs4OdnZ2JSkUIIYQQviuWmpXx48fj4MGDOHnyJMqXLy9b7uvri8LCQqSnp3PWT0pKgq+vb3EU7aPCWLoAhBBCiAHMGqwwDIPx48djz549OHHiBCpXrsx5vUmTJrCxsUF0dLRs2ePHjxEbG4vAwEBzFo0QQgghJYRZm4HGjRuHrVu3Yt++fXBxcZH1Q3Fzc4ODgwPc3NwwduxYTJ48GR4eHnB1dcWECRMQGBiociQQMY7A0gUghBBCDGDWYGX16tUAgHbt2nGWb9iwAaNGjQIALFu2DEKhEAMGDEBBQQGCg4OxatUqcxaLEEIIISWIWYMVhtHeS8Le3h4rV67EypUrzVkUQgghhJRQ9GwgQgghhPAaBSuEEEII4TUKVgghhBDCaxSsfEAy8kTIyhdZuhiEEEKISRXbDLbEvAqLJGgw5ygA4NmC7rAS0kBlQgghHwaqWflApGS/fxJ1nkhswZIQQgghpkXBioFEYglCd9/BoTsJli4KIYQQ8kGjYMVA4VfjsO1KHMZtvWHpohBCCCEfNApWDPQ2M9/SRSCEEEI+ChSsEEIIIYTXKFj5iGh/+AEhhBDCPxSsGIgu/IQQQkjxoGDlI0IzrxBCCCmJKFghhFhcRp4It+PSLV0MQnjj1bscxKXmWroYvEHBioEYagcixGQ6LjmNPivP4/STt5YuCiEWl1coRtDiU2jz60mIxBJLF4cXKFj5QMjHTgxFUqSEkc7AfPR+ooVLQojlpeUWyv4uKKJgBaBgxWAMdbElhBBiZmIxXWsAClY+GPKdZwUC6kpLCCEfgqgHVNsIULDywdClGYjic0IIKVkK6MG0AChYMVhsap6li0AIIYR8FChYMVBMUpali8ChSzMQNQ4RQggpiShYMZCQ+oUQYnLUVEk+Fmk5hej95zlsPP/C0kUpEShYMZCQ9hwhhBADrTz5FHdeZ2D2gQeWLkqJQJdcA1HNCiGE8NuN2DRce5lq6WKolEcdZ/VibekClFR8DlVoUjhCyMeuoEiM/qsuAADuzQmGsx1d7koyqlkxkFD4PlwpKcFBySglIYQYT37m1+z8IguWhJgCBSsGkm8GEkssHwYwav4mpCS5+oKfVfaEEMuiYMVAchUrEJeQmhU+N10RAgAxydmWLgIhhIeoEc9A8nOZSHjwnCkKREhJVCSWYNeN15YuBiGE56hmxUB8q1nhTrdvsWIQopetV2IxbdddSxeDEN6i0zmLghUD8a3PCvk4lJTO3Lq6+jLN0kXgjQ/so7U4VfuzJH5/SmCRzYKCFQMJOc1Alj+aqBnIfF6n8eM5UGeevEWDOUdx5G6CpYtCTKygSIzvIm5ZuhgftOiHSWgw5yiOP0iydFGIAShYMZCAx81AVG9oWhsvvLR0EQAAI9ZfQWZ+Eb7ecsPSRSEmdi4mxdJF+OAozts5dtM1ZOYX4bN/rlmmQAYqibVB5kDBiglISsjBVDJKScjHhWEY/HvplaWLQYwkkTDYcP4FbsWlmyX9w3cTEHnP+FrVnddf48yTtyYoUfGi0UAmQKOBiLk9TebXU76J6UQ/TMapxyXv4sF3xX0PefBuAub895yfl4t6mCxdBkBmvgjf/Fej+nBuVzjYWhmUVkxSFr7fcRuAactYHKhmxUDyXwRLNAMViSWcvjLcSeFUl4cCmpIrKbPA0kUgZvL0Lc0tYxZmPC0XFinfocYkme6GQnHQRm7B++cIqcpbHcV1S/J5hIIVA8k3/RR3B1uRWILWv5xEjxXnijVfQgj52G04/wI1fjqCU4+TzZK+SCxBm19Pyv439F74f3vuouaMI3iRkmOiklkWBSsmUNxDl5+9zUZiZj4eJmTKOl9RrQkhJRN9d81DXQ2zsaRNPZPMNHrLVMHFlsuxYBhg7elnsmWKnY5LEt4EKytXrkSlSpVgb2+PgIAAXLlyxdJF0khdM1BaTiF+jXyEZ/9V7Z54lIS/zjwzW49uaZxEk8IBGXkiLI56ZNLqWL7Yfi2u2PM8+TgZa06b79gFjB/p8DotF79EPkJSZr6JSlT8PtKvq9kV93nQXPlF3k/EhgsvTJKWvrFKkViC5cef4AoPntnFi2AlIiICkydPxqxZs3Djxg00aNAAwcHBSE42TzWbKchH7fLNQD/uuYtVp56hxx9nAQBjNl7DgsOPzPZh04R078098AArTz5D52VnLF0Uk8rIE2Hfrfhiz3f0hqtYdOQRzj99Z7Y8rr407nvxadgVrD71DF/+e91EJSIfCvkzozlG6AiKqZriyotUrD393CRpCeWmXi8Sa+/7sv3aayw/HoPBay+aJH9j8GI00NKlS/H5559j9OjRAIA1a9bg0KFDWL9+PaZPn26RMonEErx6l6v2dfmOSi/f5coO3GP/TTiUL5LgqdxD2a69SkNpZzuTlE2+XDHJWbCztkJy1vs7y+cpOXDLKVTaLjmrgFOmD83xh+8nezL1+7TkfnuXrdwprjjLc+VlKnzd7M2StqoOf/q8N2mV+a249BJ7bCcbuQ+Iahl5Itnf119xg2JT7N/UnEJOOgkZ78/BuqQvf+zLr6/pugOwHbLdHGx0LmdSZr4s/TS568LdNxlwsdeczvmn7+f/eZmSg0qeTjrna2oCxsIzzhQWFsLR0RE7d+5E3759ZctHjhyJ9PR07Nu3j7N+QUEBCgref8iZmZnw8/NDRkYGXF1dTVauxIx8tFgYbbL0CCGEkJKqjJs9LoZ2NGmamZmZcHNz0+n6bfGalZSUFIjFYvj4+HCW+/j44NGjR0rrL1y4EHPmzDF7uQQCaIxeC4rEyBex1Wjy68lH824ONrL/XeysOVVwxpKmqypvxXIrlulDZer3yaf9Jl8WoHjKI83T2c4aViY8dlXlIU+f98anz8hQDMMgM7+Is6ykvhe+kZ1/7a2RJbePjdm/6o45ddcEdXILiyASMyrXV/W9UJWnLuW0FgrgZGettFyXdPIKxSj8r7nIxd6y4YLFgxV9hYaGYvLkybL/pTUrpubjao/bs7qYPF1CCCGE6MfiwYqnpyesrKyQlMR9uFRSUhJ8fX2V1rezs4OdnWn6fhBCCCGE/yw+GsjW1hZNmjRBdPT7/iESiQTR0dEIDAy0YMkIIYQQwgcWr1kBgMmTJ2PkyJFo2rQpmjdvjuXLlyMnJ0c2OkgTaf/gzMxMcxeTEEIIISYivW7rMs6HF8FKSEgI3r59i5kzZyIxMRENGzZEZGSkUqdbVbKy2AnAzNFvhRBCCCHmlZWVBTc3N43rWHzosrEkEgni4+Ph4uJi8kl6pJ134+LiTDosmhiPPht+os+Fv+iz4a+P9bNhGAZZWVkoW7YshELNvVJ4UbNiDKFQiPLly5s1D1dX14/qACpJ6LPhJ/pc+Is+G/76GD8bbTUqUhbvYEsIIYQQogkFK4QQQgjhNQpWNLCzs8OsWbNoXhceos+Gn+hz4S/6bPiLPhvtSnwHW0IIIYR82KhmhRBCCCG8RsEKIYQQQniNghVCCCGE8BoFK4QQQgjhNQpWCCGEEMJrFKwQQgghhNcoWCGEEEIIr1GwQgghhBBeo2CFEEIIIbxGwQohhBBCeI2CFUIIIYTwGgUrhBBCCOE1ClYIIYQQwmsUrBBCCCGE16wtXQBjSSQSxMfHw8XFBQKBwNLFIYQQQogOGIZBVlYWypYtC6FQc91JiQ9W4uPj4efnZ+liEEIIIcQAcXFxKF++vMZ1ijVYWbRoEUJDQzFx4kQsX74cAJCfn48pU6YgPDwcBQUFCA4OxqpVq+Dj46NTmi4uLgDYN+vq6mquohNCCCHEhDIzM+Hn5ye7jmtSbMHK1atXsXbtWtSvX5+zfNKkSTh06BB27NgBNzc3jB8/Hv3798f58+d1Slfa9OPq6krBCiGEEFLC6NKFo1g62GZnZ2PYsGFYt24dSpUqJVuekZGBsLAwLF26FB06dECTJk2wYcMGXLhwAZcuXSqOohFCCDGn3FTg4irg9GIg6YGlS0NKqGIJVsaNG4cePXqgU6dOnOXXr1+HSCTiLPf390eFChVw8eJFlWkVFBQgMzOT80MIIYSndo4BokKBk/OA1YGWLg0poczeDBQeHo4bN27g6tWrSq8lJibC1tYW7u7unOU+Pj5ITExUmd7ChQsxZ84ccxSVEEKIqT0/aekSkA+AWWtW4uLiMHHiRGzZsgX29vYmSTM0NBQZGRmyn7i4OJOkSwghhBB+Mmuwcv36dSQnJ6Nx48awtraGtbU1Tp8+jT/++APW1tbw8fFBYWEh0tPTOdslJSXB19dXZZp2dnayzrTUqZYQQgj58Jm1Gahjx464e/cuZ9no0aPh7++PadOmwc/PDzY2NoiOjsaAAQMAAI8fP0ZsbCwCA6ltkxBCCCFmDlZcXFxQt25dzjInJyeULl1atnzs2LGYPHkyPDw84OrqigkTJiAwMBAtWrQwZ9EIIYQQUkJYfAbbZcuWQSgUYsCAAZxJ4QghhJhZYS4gEADW9uxvU6Vp62iatAj5j4BhGMbShTBGZmYm3NzckJGRQf1XCCFEV3d3ArvGsn9X7QB8usf4NE8uAE7/AgzfDVTryC6b7cZdZ3aG8fmQD4I+12966jIhhHyMpIEKADw7YZo0T//C/j4y1TTpEfIfClYIIYQA538vnnze3CiefEqKa+uBm5stXQreo2CFEEIIcGwm8Oa6+fNZ1978eZQUOSnAwUnAvnGAKN/SpeE1ClaKi0TMPiODvMcwQM478+cjLgLy0syfDyElXU6KYduJ8oF8nj36pCCL/wFAYfb7vxmx5cpRAlCwUlz+6QP8WhlIum/pkvBH5HRgcRXgvgk69mmypjXwSyUg44158yHkY7WkBrDIz9KleK8wB1hYHvituqVLQkyEgpXi8vIs+5vaJt+7vIb9fWymefN5+5D9/eSIefMh5GOVz7MRPsn/fecLeFbbQwxGwYqhbkcAx2ezTRnaPDpsWB4SCXD0J+DeLsO21wfDsHnd3Wn+vAghpnVnBxv0qzsfpT4H9k8A3j0r3nKp8+4ZtzwPDwBHprPN5R+6NzeA/d8C2W8tXZISxeKTwpVYe75gf1dpD1QJ0rxu+FDD8ngSCVxYwf5dd4BhaRiSV72B5s2LEGJauz9jf1dqC1TvpPz6v/2AtJdAzDFgyqNiLZpKm3oDma+BZ6eASXeBiOHs8jINgIYGni9LCmkH4+xkoNsiy5alBKGaFWPlmbHTbE6y+dJWFH+r+PLSRiIBUl9YuhSElDy5ajrIpr1kf2clFFtRNMp8zf7OiOUuT7pnWHq5qdwBDJkm6J+mmKapJT9Q/1p6HFBUaLq80l6xAw2U8ok1bT5mRMEKARJuA6d5FOHv+wb4oyFwfZOlS0IIKU4X/9S//4u4iB288Gtl9sL79gmwfYRx5SgqfJ+mWGRcWuowEtXLX18Hltc13RDvx0eA3+sDWwdzl7+6ACyvB6wPNk0+ZkbBCgHu7bZ0Cbhub2N/n1ls2XIQQopfSox+68t3os1PZ5u0jZUj15+kMMf49FRRF6zcCWd/G1rLpOjSavb3s2juculgj/iSMUkfBSuaZL8FdowGnp/Wb7uY48DOsfyY2+P0YuDEPM3rWNlw/097CWwNAVY0BR7sN1vR9JJ0H9g+kr1rUiTKB3Z/AdzaWvzlUqeoENjzNXVYJqzcVGDnGOBptPZ1dZWZAOwYxd4hf8iyktjz8Mtz3OWy79gO7nJTPERRlPv+b6GZunZmvgGSNDQFaZIey54P466wnXVv/Kt+XaGV8rLkR8CtLYblbSEUrGgSOQ24vxv4p7d+220ZANzbyY4WsqTCXODkPLaGIltD/xfFL+P2EezdybsYYPun5i2jrsK6AA/2Av/2VX7tTgT7s/fr4i6Vetc3ALe3cp+/Qj5ex2awo/o29zddmge+Zeco2tDNdGny0aHJ7Hl4Yw/u8pv/st8xxecQWdsbn2dRMU0mZ+jgi51j2fNhWGfgxiZg/3j16wpUXOY3djcsXwuiYEWT9FjVy9VFw0kPgAK5GQkz47UPFWQYIOEOd6ZFhmE7vBrbVio/I6JYoRNVXrpcLYXCo+HNPbwx6b7+VavSmR4z37CdxbKS3r+WnaR6G03SXmkO4IyVo2JYIsMAiXf1n1WzMIcmEyzpMl6bPk1pp9kPXfor1ctz1c1+LVCz/AOSqsc5WqCiZkXVvpNI/rvuqOiIywM0dFlfz06wwwAVPT/FzlLrXuH9sozXwIrGmtO7HQ7s/QqoEAiM+a+t9cIf5p8obYk/UJQHfH3RvPkoijkGbBkIlK5meBq/12d/G/qo+bw049MwxJ3t7JD38s2Bz47pvt2aNuzJafguoJqKYamEEKKOqmYgVU78DJxbCjQeAfReYd4yGYBqVvSlboI26ZTx8rUxmoamSV3fwP6OlQsaLhTDgVKUx/5+fhIQFOOdiLR9+d1TEyaqZ/lTn5swbz3c+G900+sr+m0nvYviW0doQvjIFOczXSb7LDF03B/nlrK/b/xjvqIYgYIVXUX9T/XyjDfAv/2B6xt1S6eoAAgfxj4WXJW1QaqbENRJvMfW9Mg/LfVJFLB5ANsBT5Eoj81fKupH4OR83fNTlPaSff/PT71f9uoiW8u0Ngg4/4fhaWfEGb6tyvTMUBVvqEtrLF0CIu/INHYGZ3N4EsX9fhSnB/uALYPMl35+BtsZX5ExNyPSNO/uBCJD2aZTY0kkwK7PgXPLtK+blQSsbSO3QIfA5XY4sHUI+/BEzvII9r0oLjfGmd80NIGpYkTgdWkN24mbB01D1Aykq4t/Au2mKy8/qiaIUefmZkBcADw6CDQdo/x6wi390vunN3vgPjsJzE5nl0nH0yv2UwHYIOnRQf3y0GT3l0DcJXZYnLRJZUPX968n3AJafWu6/FTR9Ubq3DKg02xzlkSOlkJFTgNafFU8RSGaZSW+f05Vu1DA1sm06SvOb1GcjJ1vRJuzS0wzVJiT5lLg1Tkd0tWjBuXFaeDuduAugNaTNK8rnU1XH3u+ZH9fWAG0/1Fu+X8znZ9bBnQ0UdP+iZ9Nk44uIqexv2v1Mv8s6lpQzYo+1I2L14e4wPg05MkibBXRs6pnT+gy4ZL8Y8sB9mT+6gLw4gy302/2WzZQkUq8x3ZcLS7SjsCWqrIV5SnvE1XePi6e8hgj8Z76DuWmlHAHeHqcP8+oAbhBvbHfcVE+e0wUFbKfu7neZ847IEXFMP7CHODFWc3P2EmPU13rCrDbvTjLHSigiV53+DoyJk1171uf0T3qOvQqKshW3tfqpqvITtZ+PEiPHU3nE4M6VZugWcxcc83ogWpWiHZLar7/u+UEoMs85eUAsKaVDomZsH/MisbAzFTNcwyY086xwOND3H2iysrmQOgbGP3ezTX6IzP+/Wdnzg7Haa+41esz0wDhB3a/tPcrtv9ao0/ZobXmsqyO6uWHJrO/2/8EBP2gep3lddWne2kV+4R4fTuB88WVtYBnTRUv6PHdk+jY5PFPb7b5vYNc86Gq2myAPRa0HQ+7P2MHcGjyewP1ryU/BLxrad6+BPvAzhTE7C6vff83o+HurbhIipSfL1JcHh9if8vvE3VM8QypRBPNaKlI1R26OSjOyMmH48fUpB3tzRmoAO87yKsj7cytr5dn2d/6dgLni1vbVC9XNdeIOroGK9J+ghf+fL9M32kJ5GkLVLR5fdW47TXhQYdjClYs6cBEIO5y8eR1bxc7sZopHvBlLgzDdoIzxvPTwGw3YH5Z4x6G+O4Z8Hcn9rka2ogLgbBg9kR5eS2b/5lfuessr8e2w8t7eABYVBFYXJ0d0v0hOv0r29nbXM9XMdT5P4CfvYDVrQ1/iGf8LfZOd7YbMMeD/c0XGXFAtIn6NtzfC/zdmR1Ft3kgcOoX06QrJd/h3xRUjQZSFawk3gP+as+eK6Lnvl8u0bcp0PIXcrWurHt/UwWwgzGKVHRF4NPs32pQM5Al6TqCyBSk87YUV3BkiNTnbCc4Y0hnGxblAPvGA6MPaV5fnd1fAG+uAduG6NY0EneJ239HF/Id+bYMLN45X4qLdKTZo4OAla1lyyLv2Az2d9Jdw2dp/rfv+z4KfKwlOvubadLZMZL9/Ucj9vfTY0C7aaZJG1Du8P/2oenSllLVCrQ15P3Tn88ued8BVrFmhQe1CgY7/D33/2cnVD8ChE+zf6tBNSt8ouq5N4okYvZuPycFyM9Ufl2kpXrYVOIMqCbOS9NcU6Fr9auuku/r/uTmuKvcWWJVNdswDFsDkhlvmvKZ0vPTwKPDQGwxB6OFOcDDg+yjHaTEIuDRIe6cRKru5sxJIgYeRxo/S3HGG/bk/vAg9z3kpfPj2V9ERyqildwU1asaE3jKN5+lm3jqBVPR1oTIU1Szwicrm2lf58o6djiZsy/gWV359YNahuUZi2HYC0BYZ/233dgTKCjG2oO8NPb5KdpkvwXC/psZVlPtxqOD72tD+FQLEn+L+/yqyQ8B17LFk/eer4CH+9lhjQP/mzvo3DLj5u4xhRub2O+CgwcwzYjmwGW13/8d8DXQbRH7t6pZrAl/6dVnxYhgJfU5O3rSxVdzR+YSx/K1S1SzUtJIq0yzE993hpN3W00HM1MydLI2Uz3y3NSkVcHaWGpiL20U5+YpjiHIUg//eyq3fC2Kulmei5O0Bs8UHZulbsu168ffMF26xDBqB/io6rOiz0g8Iy/MfJp88gNCwUpJkaOmyrK4GTKV9dq2QIoOM1oWRydTPs3vYQqpz9mO2ny350sgVs8+PYSYg7YmScU+Kqq+X+aa7dgYGToOnuDpdPraULCiD0t2tDpjos5ylpBwG/izifb19J0N2BAl4cKuj0NTLF0C3V0w4tELhOhK2w3Vg336pXdfxTO5iuP5bfo6vUi39RJum7ccZkLBij7SXrDT5VuCITPfmqNXPQC84VEVeMxR/dbXZyZLRcbMoWAuxdWhWhevr2tfRx5fm9UIS9UM2PJyU9XPa8Jnpu7Ib857WEOfKZTxhn0u0QeEghVNFGcM/audJUrBLwyjPBzOkgx5joehblkoUC0p/u6g3/pbBho/WoeYj/wzvlTZGqJ55Iz8CDGLK8Y+K6a09xvDtlvV4v1ziT4QFKxoos/Tjwkh+qPvGH9pe3KytlluRTwKVlQ1DZWE+VOkHdj1VaBiWosSjoKVkuLRYeC3mqpHAEn93tD85ZAU80yk67Xc3enr9VV2sjhjXVpjfBrGurkFiL2ovHx9MDub6t+dzJOvuIid+XPHaOPTWt0SuLRa/+2OTANWNOU+cO/oDHbisrx048ulDsPwa6baj82xWex5Li8N6mtLFJYv8efOoWSojDfsZ6/4+RfHdAyZCcCyetrXYxjTDKs/NrN4rid6oGBFHb5F3dmJ7I8maUbMJ8FXqi7Gxkp+YHwakSacwdNQ+7RUEZvrWSFvrrFDd1V1PDRE5HT9t7m8BngXwx2qf+EPdnTUtTDTlEsVPtUWfIzOL2fPc5f/0n2brATVx5i+IxtPaHhYqbmdWqjbM9By3xn/jCEAOP8793rCg+shBSvE8tJjgatmvMDoQ90MsPk8mAROlMuepNN0fIS9Nqn/nfT1mV32xVng2nrT5G8Kqqq7GYVnu/DgRGuU3FS2Js8S0xc8PKh9HUu48If6JkRdbkYYRv/O9vrMbPvyvH5pmzLvDxQFK4QfpI+2t7T1XVQvN/fMwLqQiIAjPwCrAk2T3oombHqn9Xgw3aaewB0ejTKQfwCdOo8MfD4UX+wYxdbkbRtS/HlHmPghg6ZSmM3WrqlybqnmbRlG/+HL+trY3bzpf4QoWCFE1VNWFe/On+g5RNqcRDmGbSc/jTjDvL9be6PnkOPioGnKc32nQzdFs5+pSd+DLu/lxWn29+ur7OfGtydY84qOtWiGzKZtzDT8xpCIDXgStKlZvnaSghV1SnrV8Yfk1QXzpZ2bqjzkNiVGedi6Ps8W4ZND/w0zf3QYmO/7fir8Tb30T8ucNRTyU/S/fQIsLA+cXKC8nlgE/NnUfOUoDru/ABZXBZ6dBBaUY5+lpKttQ4CfPc1XNl290NDRn/cMOLe/ugjcU/G04uIw14P7qIePVAk9A5OPyq7PzJf2zX+Vl0V8qrzMkMcM8MHVdezv8KGAuBDYOYb9X9OoMnXCPzFduRRJywUAx2ex/XNUNU8l3GY70ZZkdyLY0Sz/9mWfgHt8tu7bPok0V6n0s13Fd4QXzPQ9/cDmLCmJzBqsLFy4EM2aNYOLiwu8vb3Rt29fPH78mLNOfn4+xo0bh9KlS8PZ2RkDBgxAUlKSOYtFyHu6zGaZ/BDITzd7UXBxZfHU6CXeNV/ary4Abx+ZL31DvDjD7ttzy4ybfdmcH83TaGDfOLaMYhPPsGopD/ZaugSqGXJ8WjuYvhzmcGe7pUtgNmYNVk6fPo1x48bh0qVLOHbsGEQiEbp06YKcnPdt7pMmTcKBAwewY8cOnD59GvHx8ejfv785i0XIe7o81GtVC/OXAwCifgQeHzZ/Pmtamy/tDd3Ml7ahXp5l9+3x2cC69prXtVTz7+b+7KM8js8Grm+wTBlM7dAUfvavMeS5PjZ6BCuW7EIQFWq5vM3M2pyJR0Zyqyw3btwIb29vXL9+HW3btkVGRgbCwsKwdetWdOjA9hvYsGEDatWqhUuXLqFFi2K6SKhEfVY+Cop9UwDLzqVR0ps4iPHMWfNV3PQZFl+c9H2mVknts/YBKdZPICODnavCw8MDAHD9+nWIRCJ06vR+pk1/f39UqFABFy+qngysoKAAmZmZnB/ygcvU8dHnppJuonlMiOXo+4BLKU19k4qr2xIfayMMJS60dAlUu/in+dIuqf3beK7YghWJRILvvvsOrVq1Qt26dQEAiYmJsLW1hbu7O2ddHx8fJCaqnq114cKFcHNzk/34+fmZu+iEEFJ8ivuRFuZEoyqJiRRbsDJu3Djcu3cP4eHhRqUTGhqKjIwM2U9cXJyJSkgID1zQ8Y4v2YydWLOSgMgf2Y7FAPD2MXD0J/PlJy/1ObffTvyt93/nvAP+7qg9jYsrNb+e8dqgooEBcNu485dOSkLNisXn/Shm+tSWHJtpvnJYCg+CTrP2WZEaP348Dh48iDNnzqB8+fKy5b6+vigsLER6ejqndiUpKQm+vr4q07Kzs4OdnZ25i8yLD4d8hLQ9/0nKnJ1+j89m53V4eRb46iybl+IkeeayXqGD7l9BwOz/HnVw4Fvd0shL0/z6ViNmgi2OmZZ1GaFmaTo/vO9DOY/qEay8MvFU+wSAmWtWGIbB+PHjsWfPHpw4cQKVK1fmvN6kSRPY2NggOjpatuzx48eIjY1FYKCJphQnpKTRdrEFoNdFQN/AWzqXR+Kd/7YvxrtoTcHa0+OmySPpA+rAynd000dMxKw1K+PGjcPWrVuxb98+uLi4yPqhuLm5wcHBAW5ubhg7diwmT54MDw8PuLq6YsKECQgMDLTwSCBCLOiXSsDE20CpSqZJ74gRT4h+dtI0ZTDW5b/0f/CcsTIUOnbrXJtgpA/qAl/c7+VD2ndEnllrVlavXo2MjAy0a9cOZcqUkf1ERLx/ENqyZcvQs2dPDBgwAG3btoWvry927zbRo+cJKalM+aC1K2sN31bbQ+GKy5Efij/P4pjzhpQMNMLH4sxas8LocIdgb2+PlStXYuVKLZ3iih1F6OQjdHGVpUtAiBHMFVRQsGJpxdLBlhBSQkSFAla2li4FP1jsbvoDulH6oJq0PmaW/xxpWj5C+CgrCSjItkzeJWE0irnIX1zTLTQtwgd1gS9B78WS3zmiFQUrhPDRpZXAr1Usk3dxjv7hq2cngPPLLV2Kku/UIkuXQHdLagCLKqh+jfqsWBwFK4TwlZinz1X5kEkvStfWW7AQJag2QpuS9lBGRqzmBQpWLI2CFXU+qKpYQkiJ8SQSmO0GFOZoX5eQjwQFK4QQwkcXVli6BISweHDzTsEKIXwm/2ycj1VxPytHIgESbhdvnqpkJ1m6BESK+qxYHAUrhPDZX0GWzZ8Hd1T42bP48mIYtmNtemzx5UlKAApWLI2CFbV4cJImhBQ/GgVUgtF5+0NFwQohRL3irP6e7WbYdv/2A16a8km3dBdNCN/QDLaEkJLt2Qn2hxBzBZrUZ8XiqGaFEELk5adbugTviT/i2YR5hYIVS6NgRR0+dCwkhHzczv5m6RIQwgsUrBBCiAzPblIsOpMuIfzx0fRZEYvFEIn0mK9BVAA4+5mvQISUBLaeH9f3oKCQP+/XyhWwKQU401OwdeboBcDG9Onae3GPC4aBTf47WInzTJ8XUemDD1YYhkFiYiLS09P13RBotcQsZSKkxLC2ByoNsXQpis+bZP587+2cAfeWli5FySK0AiTqnu9jBGt7oNJQ7jJxIdxfHYFvzFYI+FYj9wH64IMVaaDi7e0NR0dHCHTt1S2RACn55i0cIXxn4wiIci1diuLjWRFI4ckDJO3cgIIMS5eiZBFYA4wZOiUrfA8YBsgVAcm2AwEAZWK2mD5PPuFBH84POlgRi8WyQKV06dL6bSyRANbUA5x85GysAOYj+h7Y2/Pney/O5E9ZSgqhEJCYYZ+p+B442ACAO5IrdoP3893UJGRmH3QHW2kfFUdHRwuXhBBCyIfG0QaAlS1E9nreDBO9fdDBipTOTT+EEEJKsOJtrpBdWugaY3YfRbBCCCGEkJKLghW1LN+hiBBCiD6ohuNDRcEKIYSQEi1s2150GfqNSdNs0XMEdh2KNmmaJZflb94pWOEhQbnGGn9mL1mDl3Hxal+/dP0OAGBjxH4IyjVGraD+SnnsOHAMgnKNUSmgh2yZdH1BucYQlm+C8k26YvSkWUhOSdVatvB9UQCAUxeucZZ71euA7p9OwN2HMSrfa/An38DKrymu3roPABrfl/RnY8R+bIzYD/dabdXuv72RJ1Wm51GnHYIGfIazl2+o3PbLqfNg5dcUOw4c0/YxKaXtUqM16rQfiHE/LkTM81il9fPy8jHrt9Wo0bov7CoHwLNuBwz6YiruP36mNS8pxf0lb9R3s2RlsanYHJVb9MTUecuRn2/8UFz5Y0NQrjGcq7dCk66fYPdh7sm8UkAPLF+nPIxz9pI1aNj5/Xwto76bhb5jJqvNr1JAD1leVn5NUbZxF4ydMgdp6Zmc9VLTMvDdzMWo2Lw7bCs1R9nGXTBm8mzEvknQ+p7WbdmNBp1C4Fy9FdxrtUWjLkOxcNEvnDKrOv7823K/T09fxGL0pFko36Qr7CoHoHKLnhj6TSiu3X7AWe/gsTMIGvAZXGq0hmPVlmjWfTg2RuzXWk5Fuh77+uRryu+J/H6z8msKv6bd8MXUn5Gaxh2Gre5YWbhiPaz8mmLx6k0a94NUfn4BZixehVmTv5AtE4vF+CZ0Ico06oLun07gnMMAIDMrG/9b9Cf82/aHfZUW8G3YGZ1CvsLuw9Fg/hum+9PEzzB9wR+QSCSgGhvLo2CFhxJuHpX9LJ/zPVxdnDnLvv9qhGzd4+GrOa8l3DyKJvVryV53cnRAckoaLl67zckjLHwvKpTzVcpbmtfra5FYt3gGjpy8gE+//Ymzzoals5Xy7BvcjrPO4zN7kHDzKKK2rkRBQSF6jJiIwkLuDMKxbxJw4dodjB8dgvXh+wAAfmV9OOlO+fJT1KlZlbMspHcXvfepdD+d2fU3yvp4oefI75D09h1nndy8PITvP4qp34zE+oh9eqd9+1g4Fkwfj4cxL9Cg8xBEn70sW6egoBCdhnyN9eH7MW/qN3hydg8O//sHisRiBPQcIQswNVG1vxR1bd8SCTeP4vmF/Vg2ewrWbt6NWUvW6PxeNJE/Dm9GbUNwUCAGfzUdj5++NEn6iuZ+/zUSbh5F7JXD2LJiPs5cuoFvZ/wqez01LQMteo3E8XNXsGbR//D0/D6Er1qIpy/j0Kz7p3j+6rXatNeH78V3s37Dt2OH4tbRbTi/dwOmfjMS2dnZnPUUj72Em0dxbm+Y7PVrtx+gSbfhePI8Fmt/+R8enNyJPX8vgX+1Spgyd6lsvRXrw9FnzGS0atoAlw/+gzvHwzGkdzC+Cl2A7+cuM+Fe49I3X1N9T6T7LfbKYWxYOhuRJy/i69AFOpV5ffg+Nm01x7iinYeOw9XZGa2aNYS0BiB8XxRi3yQgasufaFzXHz/9ulK2fnpGFlr2GY1/dh5C6PjRuBG5FWd2/Y2Q3l0wdf7vyMhkj4FuHVohKycXR06c16kcxLw+6HlWVGIY3Sa5kogBkYnHzVvb69Rr3NfbU/a3m4szBALuMgBISU0HAJQu5a70GidLayt80q8r1kfsR2DTBgCA1/FJOHXxOiZ9Pgzb9kZy1pfPq6yvF74dMwQzFq9GXl4+HBzsAQDubi4a8wQAb08P2XrfffYJeo+ehEdPX6B+7RqydTZE7EfPTm3w9YiBaNFrJJbOmgwHB3tO2s5ODrC2stKanzbS/eTr7YkfJ4xB+L4oXL55D727BMnW2XHgOGpXr4zp40ahbONgxL1JhJ+KgE5d2gBQpWJ59OrcFh0Hf4Wx38/Fswv7YWVlheV/b8XF63dwM2obGtRh90HF8mWxa91iBPQcgbHfz8W9Ezs0jlxTt7/k2dnaysriV84XndocwrEzl/HL//TeZUrkjw1fb2DetHH4be2/uPMwBjWrVTI+AwUuzo6y/MqV8cbIQb2wbd/74/V/v6xEfNJbPD2/T7ZehXJlELVlJaq37otx/1uEI5v/VJn2/qNnMLhXZ4wd2le2rE7NqoBvPSDxrmyZpmOPYRiMmjQL1Sv74eyeMAiF7+/9GtatiYljPwEAxL1JxJS5S/HdZ59gQegE2TpTvvoUtrY2+HbGrxjUsxMCGtfTcw9pZki+pvqeyO+3cmW8MahnJ2zYrr0W6fTF68jLL8Dc77/CPzsP4sLV22jZrIHGbcL3RaFX5zacZWkZmajkVxZ1/avhYcwL7Dp8Qvbaj4v+xMu4eDw5uxdlfb1ky2tUrYihfbvC3o59vIGVlRW6d2iF8H1R6NG9u9ayE/P6+IIVUS6woKxl8h59BLBxKPZsxwzpg3YDv8Dvc7+Ho4MDNm4/gK7tWsLH00Prtg72dpBIJCgSGzaFdUZmFsL3HwUA2Nq+f2YHwzDYELEfK+dPh3+1yqhWyQ87Dx3HpwN7GpSPrvLy8vHPzoNseWy4h39Y+F4MH9Adbq4u6Na+FTZuP4AZkz7XOw+hUIiJnw1Fv7FTcP3OQzRvVBdb9xxB57YBskBFft1Jnw/DsPH/w+37T9Cwbk2VaRqyv+49eooL1+6gog4Bl77EYrFsPzau52/y9BW9SUjGgeNnENCoLgBAIpEgfH8UhvXrphRMODjY45uRg/DTr6uQmpYBj1JuSun5epXG6UvX8ep1PCqWN+x8cOv+Y9x//AxbVy7gBCpS7m4uANg7f5GoCN9/9anSOl8OH4AfF/2JbXsjTR6sGJOvKb8nL+PiEXX6ImxttD+zJ2zbXgztGwwbGxsM7dMVYeF7tQYr567ewqcDpM3ZbLA/vH8PdAz5EnaVW8DH0wOH//0DAPe4kQ9UpJyduHNyNW9YF4tWbtBabmJ+H1+w8oFp2Wc0hELu3Xh2DLfaslFdf1SpUA47D0bj04E9sHHHfiydNUVjNTkAxDyPxZp/d6Fpg9pwcXaSLR867kdYKZycH5zaiQrlysj+L9+0KwAgJ5etnerdJQj+1SrLXj9+9jJy8/IR3C4QADC8f3eEhe8zW7Ai3U+5eflgGAZN6tdCx9bNZa/HPI/FpRt3sfvv39jyDOiOyXOW4qfvPjNonh7//2oaXsbFo3mjunjyIhbtWzZVuW6t6ux+efL8ldpgRdf9dfD4WThXb4UisRgFBYUQCoX4c940vcuvSkZmNpyrtwIA5OUXwMbGGn/98hOqVjLPg/+mLfgDP/26CmKJBPn5BQhoVBdLZ00BALx9l4b0jCzZvlNUq3plMAyDpy/j0FxFsDJr8hfo/9n3qBTQEzWqVERgk/ro3qEVBn5Wh9M2fvfRU9l7lhrevzvW/PI/Wb8kfy21Sk+ex8LN1RllfJQvjra2NqhSoRyevFDu46SJ/GdhynxN9T2R7jfpZwcAS2ep76MEsP1Idh6KxsX9G9m0+3dHm/5j8fvcH5SCCKn0jCxkZGYrBR7ubi64HrkVickp8CpdClZWVgDYGum09Eytn5lUWV8vxMUnQSKRUJ8JC/v4ghUbR+DHeO3rScRA0j3T5m1tr30dPUWsXqj2hC1vzJA+2BCxHxXK+SInNx/dO7TCnxsilNaTngQlEgb5BQVo3bwh/l48k7POsllT0KlNc86ysgonxLN7wuBob49LN+5iwYr1WLPoR87r68P3IaR3F1hbs4fg0L5d8cO83/HsZZxZLn4RqxfCv1pl3Hv8FFPn/Y6Ny+bARu5Ob33EPgQHBcLToxQAoHuH1hg7ZS5OnLuCjm0C9M5P2klP/gRuTH96XfdX+5ZNsXphKHJy87Fs3RZYW1thQI+OatPdsvswvpw2X/b/kc0r0Cagscp1XZydcCOS7RCZm5eP42ev4KvQBShdyg295JoJTOWHr0Zg1OBeYBggLj4RPy76Ez1GfIszu/+WrcMY+MySMj5euHhgE+49eoozl27gwvXbGDlpFv7edRyRGxbJakpqVq2I/Ru4fTtcXZyNytsU5D8LedVb9zUqXVN9T6T7Lb+gEJt3H8at+48xYYzmB2Ju2xuJqpXKy2ofG9atiYrlyyBi/1FOc528vHz2+W32dnYqX1esddP3M5PWLBcUFMLBSq9NiYl9fMGKQADYOmlfTyK2SJONvvzK+qJa5Qpa1xvWrxumzv8ds5euxacDussueoqkJ0GhUIgy3p5KfSIAwNe7tNY8K/uVg7ubC2pWq4Tkd6kI+Xo6zuxmOyampmVgT+RJiERFWP3PTtk2YrEY68P3Yf708Vrfj6uLE3Jy89k7HrlanvSMLABsXx95fmV9Ub1KBVSvUgFFRWL0GzsF907sgJ2dLcRiMTbtOIDE5HewrtCMW56I/QYFKw9jXrD7oUI5AECNyhVky9StW6NKRZWv67O/nBwdZJ/N+qWz0KDzEIRt26v2ZN+7S5CsaQUAyvl6q31PQqGA87nXr10DR89cxC+rNsmCFVcXJ2RkZSttm56RBTdXZ6Xlmnh6uMvyq16lApbP+R6BvUfh5Plr6NC6GdzdXPDwqfp9KhAIUE1L4FvXvxrq+lfDN6MG46tPb6JNv7E4ffE62rdijwNbGxu1x3qNquzn9ejpSzSqq74prEaVCsjIzEZ84lulGoDCQhGevXqtttZNHcXPwlT5mup7Ir/fFv34LXp8+i3mLP0LP09VP7w4LHwf7j9+xklbIpFgffg+tcdv6VLuEAgESMvIVPm6Iq/SpeDu5oJHOnYKT03LgJOjA3seVBggQIoX1Wx9JDxKuaF357Y4ffE6xgzpo3Y96UmwSsXyKgMVQ4wbNRj3Hj/DniNsJ7cte46gfBlv3D4WjltHt8l+lsycjI07DkCsQ/+YmlUroaioCLfuP+Ysv3H3IQD1F34AGNizE6ytrbBq03YAwOHoc8jKzsXNqG2c8mxbtRC7j5yQBUC6kkgk+GN9OCpXKIdG/zXrDOkTjONnL+P2/SdK6y5btwW1a1RR6s8iZej+EgqF+HHCGPz06yrk5al+griLsxOqVa4g+9H3M7cSWsnubgGgZpVKuH7nodJ6N+490viZ6JTXf1X5efn5EAqFGNyzM7buiURicgpnvby8fKzatAPB7QJV9ldRp3b1KgDeN11q07BOTdSuUQVL1v773/BWLulxM6BHR9jYWGPJ2n+V1lnz707k5OZhaN+uOpdTV8bma8rvyU8Tx+K3tf8iPvGtytfvPozBtdsPcGrnX5y0T+38Cxev38EjNUGpra0NateoggdPnv+3RHPNiVAoxJDewdiy54jKsmTn5KKo6P1Tm+89fsZ+hz/2kcs8eOoyBSsl3Lu0dCQmp3B+1M2rsXHZHKTcPcHpO2KI9IwspTw1neAdHRzw+Sf9MGvJGjAMg7BtezGwRyfZXa30Z+zQPkhJTUfkyQtay1CnZlV0CWqBMZPnIPrsZbyIfYPIk+fxzY+LENK7C8qVUV9DIBAI8O2YoVi0ciNy8/IQFr4PPTq2RoM6NTjlGdyrM9xdXbBlz2GNZZF+Bs9fvcb+o6fRKeQrXLl5H2G/zZRdYCd9PgzNG9ZBr1HfYceBY4h9k4Crt+5jwOc/4GHMC4T9NlNt3xhj9tegnp1gJRRi5X8XHGMwDGSf94vYN/hr8y5Enb6IPnLD1id9PgyHos9h/u9/42HMc9x79BT/W/QnLl6/i4ljh3LSy8jMxq17jzk/cW8SZa9nZeciMTkFCUlvceXmPfwwbzm8SpdCy/9GtS2YPh6+3qXReeg3OHLiPOLeJOLMpesIHjYOoqIirJw/Xe17+Xr6Avy8bB3OX72FV6/jcen6HYyYOANeXl4IbFJftl6RWKx0rEuH8goEAmxYOhtPnseiTb+xOBx9Ds9fvcadB08w//e/0WfMJADsCKVf/zcRy//eiv8t+hOPnr7As5dxWLp2M6bO/x1TvvzU5J1rTZGvKb8ngU0boH6t6liwIkzl62Hb9qJ5wzpo26IJJ+22LZqgWcM6CNu2V23awUGBOHfllq67BfOnjYNfWR8E9ByBf3YcxIMnzxHzPBbrw/eiUZehyM55fy47e+UmurQN1DltYj4fXzPQB6bTkK+Vlm1btRBD+gQrLXdwsDdJbcnoybOVli0MnYDp40er3Wb8qBAs/WsLfl21CbcfPMG6xTOU1nFzdUHH1s0RFr4XPTq1UZEKV8TqXzBryRp8OX0+4hNTUL6MN/p1a48Z32kfwTNycE/879eVWLE+Aoeiz2Hrn/OV1hEKhejXtT3Ctu3DuFEhatOSfgaODvaoWL4M2rdsir9+/YlTTW9vb4cTO9ZiwR/r8eOiP/HqTQJcnJzQvmVTXDqwCXX9q6lM+/qdB0btL2tra4wfHYJfV23C1yMGwcnR8KbNzKxslGnEznFjZ2eLiuXKYO73X2HauFGydVo2a4Ajm1dg7rJ1WPLXZggFQtTzr4boiNVK7/HUxWtoFMwNYMYO7Yu/f2P7SM38bTVm/rYaAFt936xBHRzdugqlPdwBAKU93HHpwCbMXbYOX06bj8S3KfBwd0O39i2xecU8TodvRZ3aBGB9+D6s/ncH3qVlwNPDHYGN6yP6aBRKyw2Su//4mew9S9nZ2SL/+SUAQPNGdXHt8GbM/yMMn0/9GSmp6Sjj7YmWTRtg+ZzvZdt89/kwVKlYHr+t+Qe/h22DWCJBnRpVsHphKEaHcGs6KwX0wKjBvTB7yldqy68rffJVxZTfk0mfD8OoSbMw7ZtRnKHOhYUibN59BNPGjVS53YDuHbBk7WYsmD6e039GauzQvmjabTgyMrPg5q59hKNHKTdcOrAJi1ZuxLzf/8arNwko5eaKev7VsHjGd7LmyjcJybhw7TY2/zFPa5rE/ASMJXuJmUBmZibc3NyQkZEBV1dXzmv5+fl48eIFKleuDHt7PS/SEjGQqH2iLkI+aLbOQKFyH5QPlk89IOmu9vXMJDcvD6XrdsCRf1egnZ79WD5mg76Yisb1/BE68UtAYpq+JdPm/460jEz89esMwM4FKFBu5sovYvDizVtUPj8F9tlxJsmXl7ouAloo3xgbS9P1WxE1AxFCCE+cPH8NHVo2o0BFT4tnfKd2eLOhvEt74OcfTPu8IWI4agYihBCe6NGpjU5NoISrkl/Z/4ZGm66hYIqKyfSI5VDNCiGEEEJ4jYIVQgghhPDaRxGsqJoDgRBCCDGGhAEAhh2QQcyKN31WVq5cicWLFyMxMRENGjTAihUr0Lx5c+0bamBrawuhUIj4+Hh4eXnB1tZW9+e8SMRAUYkeKEWI8QQf2fcgP//jer8fGgFjngnMBBLOccEwQKEEeJuRD2FeKmzzkk2fJ+HgRbASERGByZMnY82aNQgICMDy5csRHByMx48fw9tb/eRe2giFQlSuXBkJCQmIj9fheUDyGAmQoXq2RUI+Gtb2QJHq2W8/SFl2QCZ970ssoZV5ajlssgGRwsSXkiI4vr2JCo82QMgUqd6OmAwv5lkJCAhAs2bN8OeffwJgm238/PwwYcIETJ/OnYWyoKAABQXvZ2jNzMyEn5+fxnHaDMOgqKhIp2ncZdJfA5v76v1eCCElWPnmwOsrli4F4TuGgZUoC9aFmRCYcAQSbzn7AlXbA/3WmDRZfeZZsXjNSmFhIa5fv47Q0FDZMqFQiE6dOuHixYtK6y9cuBBz5szRKw+BQAAbGxuVsx+qZWcDfMiT/BBClD2i7zwhSrITgRdnLFoEiwcrKSkpEIvF8PHx4Sz38fHBo0ePlNYPDQ3F5MmTZf9La1ZMzskTaPsDcGk1ULktEHcFyP3vgWkuZYG8NKAoDyjbGLBxZKsfX5wGanQDPKoAl1YC1bsAKTEAGECUD7j4ApIiIOke4F4BqDsQSHsJ5L5jZwl19ASS7gOZr9l8yjcDSlVmZ06s0QWIuwq4+wF3trNVkv49gPt7ANeygLM38O4pULUjm17MUbZcDYayZZGysgW8awMJtwB7d7Zs+Rnq94NnDSDlv4fvOXoCdfoCr68CCbfZ9L1rAzlvgRbfABlx7HvzrQ9c+IPdptnngLiQ3Q8CAZAZD3hWBxLvsfuw7gCgXGO27KWrAbfD2e3SX7Gzp7r7seu8PAfciQCENkDlNuz2OclAxdbAuxggOwmoHMTu+0eH2Nf8WgBxl9j9WJgLJN8HrB2A1pOAO+FAViJQpT2bl6SI/Xn3FKjWiW2UfhYNdP4ZeLiffc9S7f8H3NsNWNmwn3ud/sCjg8C7Z0ClVkDSA8C3Lru/rq5jt6nQkj1eGIbd91LlmwFOXmxzy5NIQJTLLre2B6q0AxxKsbNnXvnrfTr2roDQmt1/sZfY8uamsGWXSIDCLMDOlf1sHEuzZXy4/32eVdoBz0+x+6JURaB8UyA7GXh1gT0Oyzdn91+FQKBSa/Z93d0J+DUDnkSxn5/ACqjRFXDxAR4dBvLTgTc32LRenWfzcfAA8lLZv71rs+lZ2wE5KYCNPZtneiyQ/AAo24j9jogLgdRn78vqUQXIeMMepw4e7ElTyqEU0HEWcGMTYGXHfr/e3AAaDgUyXgNPj7NlzE9n1097yX5WSffY40WUzx67ldsCbx8B5ZoAPnWBzDfA02igVCV2O4kIuLeL/e6IC7nfD0dPdjvfesDFlexnDLDfrfx0dkZcr5rsMSrKZ5uXGw1j91mNLkDMMSDuMuAXwJa5Zjf2/8S7QO0+wJub7PezIIPd517+7HFsZcd+tlnx7OfYaiJwextQI5j9vqY8BSoGAm5+bB4+ddhjHgCCprHnmdxUIPa/50o1Hcsel+4V2HNKpTbs+3f0AHLeAbc2s8dNbipQqzf7Gd3eBiUdfgLOLGH3g18A0PAT9jg9PptN09mH/Z75BQBRoUCdfuw+zEtlz3NCa3b/J9xm96lHFXa/Jz9ij1WAPZeUrsaeT6Sf250IwL0ie87OTwceH2GPQ/+egL0b+33KSgBenmffk3et9+8t4zVQqxe7nx3cAbEIuLWF/W5a2bB5ufkBT4+x52Cf2uz5tWJroHQVtmzS2rimY9njDAyQ+pxNXygEPGuy67T6jj3vxN94f17VpnoX9tiPu8Sm7VKW/SxubwVq9gAeH2LXC17AfqeS7rF5pMSwx1jCHfa8YusMVO/MriMuZM8Bolz2/FOlHXB3B5tO3QEABOwx4lmNPZYrBAI2hj+qwxQs3gwUHx+PcuXK4cKFCwgMfP/AqKlTp+L06dO4fPmyxu31qUYihBBCCD+UqOn2PT09YWVlhaSkJM7ypKQk+Pr6qtmKEEIIIR8LizcD2draokmTJoiOjkbfvn0BsB1so6OjMX78eK3bSyuGMjMzzVlMQgghhJiQ9LqtSwOPxYMVAJg8eTJGjhyJpk2bonnz5li+fDlycnIwevRordtmZbFPwjRLvxVCCCGEmFVWVhbc3Nw0rsOLYCUkJARv377FzJkzkZiYiIYNGyIyMlKp060qZcuWRVxcHFxcXHSf8E1H0s67cXFx1B+GZ+iz4Sf6XPiLPhv++lg/G4ZhkJWVhbJly2pd1+IdbPmMOu/yF302/ESfC3/RZ8Nf9NloZ/EOtoQQQgghmlCwQgghhBBeo2BFAzs7O8yaNQt2dnaWLgpRQJ8NP9Hnwl/02fAXfTbaUZ8VQgghhPAa1awQQgghhNcoWCGEEEIIr1GwQgghhBBeo2CFEEIIIbxGwQohhBBCeI2CFUIIIYTwGgUrhBBCCOE1ClYIIYQQwmsUrBBCCCGE1yhYIYQQQgivUbBCCCGEEF6jYIUQQgghvEbBCiGEEEJ4jYIVQgghhPCataULYCyJRIL4+Hi4uLhAIBBYujiEEEII0QHDMMjKykLZsmUhFGquOynxwUp8fDz8/PwsXQxCCCGEGCAuLg7ly5fXuI5Jg5UzZ85g8eLFuH79OhISErBnzx707dtX4zanTp3C5MmTcf/+ffj5+eGnn37CqFGjdM7TxcUFAPtmXV1djSg9IYQQQopLZmYm/Pz8ZNdxTUwarOTk5KBBgwYYM2YM+vfvr3X9Fy9eoEePHvjqq6+wZcsWREdH47PPPkOZMmUQHBysU57Sph9XV1cKVgghhJASRpcuHCYNVrp164Zu3brpvP6aNWtQuXJlLFmyBABQq1YtnDt3DsuWLdM5WDE3hmGQI8qBs60zZ7lIIpL9bS2whkAggEgigo3QRvZbKq8oDw7WDjrlJZKIYGtlq1PZ8ovyYSWwgkAgAANGtlw+b32JJCJYCawgYSSwFiofHgzDoIgpMioPfTAMg3xxPuyt7HU6oPOK8mBvZV+sZdSH4rGhj7yiPFgLrVVurypd+c+qSFIkO1Y0lS1XlAsnGydYC61RKC4EwJ5IrAXWZtunIokIDMOwxx0kSnmIJCKV+YslYjBgVB6nUoXiQp2/T5YgloiRL86HnZUdxIwYAgggYSSwElpZ9Pg15jg1ZRrFkaYuiiRFYBgGNlaq85ae4yWMRHY821vbG52vSCKCSMxeE6wEVlq/g9LvPADZdwbgXhN03YfS9cQSMcSM2OLfI4v2Wbl48SI6derEWRYcHIzvvvtO7TYFBQUoKCiQ/Z+ZmWmu4gEA6v9THwBQybUSDvQ7AAA48/oMxkWPk63To0oPNPZujJ8v/YyfAn7CvMvzEFIzBD+1+Am99/bGi4wXGF1nNCY3naw2HwkjwfQz03H69Wns6LUDFVwraCzXjic7MPfiXJWvfdPgG3zd8Gt93ypeZLxA7729AQDeDt6IHBCp9OWcdnYaIl9E4sTgE/B08NQ7D319euRT3H57G50rdsbSdks1rrvl4RYsurIIAOBu546oAVFwtHFUu74uFztT+uvOX1hxcwU2d9+MBl4N9Np25a2VWHN7DQDg2MBj8HXylb126PkhTD87HUuClqBLpS6y5RNOTMCN5BvY33c/BuwfgOru1fF38N8QiUVKn+vj1McYeGCg7P+wLmEYe3Ss7H8HawcwDIOogVHwsPfQq+yapOWnoW1EW9n/1gJr9KveDzNazIBAIEBafho67+yMAnEBnG2cETkgEm52bpAwEgw+OBhFkiLs6r0L1kJrpff1KPURPj38KfpV74cfA340WZmNJS1nkaQIjf5tpHa9Xb13oUapGsVYMtam+5uw5NoSrA9ej6a+TQH8dxGUFKm9WCvaeG8jll5fig1dN6CJTxOTlGvWhVk4/PwwDvY7CB8nH522USy3Id95kViExpsbA2C/e6XtS8NaaC0L/FffWo1Vt1ehjFMZJOQkyLb7o/0faF+hvc75KNr5ZCfmXJzDWWYjtMFfnf+SfS6Kvo7+GuffnAcAlHMuhzfZbwAA05tPx7Baw5CWn4buu7ujVblW+C3oN7V530q+hZGRI/FF/S9k550FrRegV9VeBr8fY1l06HJiYiJ8fLgHnY+PDzIzM5GXl6dym4ULF8LNzU32Y87OtQzzvrbiZeZL2d/fnfyOs96h54fw86WfAQDzLs8DAEQ8jkCBuAAvMl4AADbc36Axr7FRY3Hk5RHkFuViZ8xOleuIJWKIJCIceHZAbaACAKtur9KYlzq/Xv1V9ndyXjJi0mOU1jny4ggYMFh4eaFBeejr9tvbAIBjr45pXVcaqABAekE6LidcRoG4QOW6DMOg++7u6L67O4okRZzXJIxEVqtgSiturgAAg/ad9IQBAN9Ef8N5bfrZ6QCAKaencJaffn0aWYVZ+O3ab0jNT8XlxMu4nnQdjTc3xro76zjr/naNe+KSD1QA9s4xX5yPA88O6F12TfY/28/5v4gpwo4nOzDrwiwAwL6n+2SfYbYoW3YcZBVm4UnaEzzPeI6k3CSce3MOjTc3xuYHm2Vpbbq/CfnifGx7tM2kZTZG5MtINN7cGHuf7kVsZqzGdZdcW1JMpeL67dpvYMBg5oWZsmVzLs5B4LZAJOYkAmBrGuRrlxUtub4EDBili60xdsfsRr44H+GPw3Xe5tuT36LF1hZIy08DwzDov78/eu3pBbFErHMaO57skP29+OpiNNvSjPNdk55v5QMVad7GULXvRBIR53NRJA1UAMgCFeD9uXHf033IFmUj6mWU2n2w48kOfHrkU0gYCee88+M5ywb8JW6eldDQUGRkZMh+4uLizJJPkaQII46MUPmahJHolEaLrS04/+cVqQ7AAOBa0jXZ3xkFGUoXUIZh0G9/PwRFBBl00OQX5XOCL1XOvTmnlKc6R18d1bsMxS3yZSSabm6Kf+7/o/TajPMzEJ8Tj4ScBCTlJnFeGxM1Bi23tURWYZbG9EUSkeyEremzVSTfZGeImDQ2iBRLxDoFVfLrSIPcP27+wVlH23s1FwFUN0vteboHABCfE89ZbiWwAsBthu26qysmnJgAAPjl6i+y5fp8JsXlh9M/AGCPv7d5bzWumyPKMVs5RGKR0jlGkXRfA8CumF0oEBdg66OtYBgGPff0RPDOYK1pmKPWUszoHmicijuFQkkhol5GIUeUg+cZz/E6+7XWfS/vz1t/yv4++uooxIxYFjQ/TXuqczqm4mTjZPC2J+JOyP5OzU9VuY6mG2FLsmiw4uvri6Qk7oUiKSkJrq6ucHBQ3cfDzs5O1pnWnJ1qU/JScOvtLZWv6RqsKH6Rm29pjnmX5mndbnfMbvTc05MTLEhraQy5qLzNfYtmW5rh62j9moZ0fZ/monjXra/DLw4DABZfW6z02r5n+2R/KwZl15Ouo0BcgLOvzyK/KF9l2kWSInTa0QnddnXDujvr0HxLc0S9jNKpXC8zXmp8XcJItF5oLyVcwsADAxEUEaQ1P/lgRT5Qkn/f99/d15qOtGympK0fkmJ+0oufYpCm6qKp7UJqadqOb3MFWxkFGQjaHoR++/ppXE8oUHF5YIDcoly8yX6Dt3lv8TZX80XfWmB8sFIkKcIvV94HoU/Snui0Xa4oV/Y3AwYX4i8YlL+m/h1/3f3LoDSN4Witvmlbm5vJN2V/WwmtNKzJPxYNVgIDAxEdHc1ZduzYMQQGBlqoRO+p+qKKJWIwDGPUnXHE4wid1nuT/QaZhe/741xJvKJXPtKOwQDbTAVwqwh1IQF7ocgV5VokcPnfuf+ZLC1N5VdXgzTt7DQ029IMGQUZSq8l5yYjNT8VSblJslqK6Wem61SW3KJcja9/dvQzNN/SHO/y3qldZ8HlBXia/hTZomyt+XGCFbn3OvXMVB1Ky6VpP2YXZiNHlKO1Bk+eyguihvyk6+tSo2TKYEXCSDgXP1PQFqyoC5TVyRXlam3euJl8E63DWyOrMIvTtK2KqouZUCDEo9RHsv+1nQtNUbPSZ28fbH74vnnPVqi9o+fxV8cRsDVA9n9eUZ6saRFQX6OninwNkyJLdPY1tOOu9Dogpc8+4AOTBivZ2dm4desWbt26BYAdmnzr1i3ExrJts6GhoRgx4n3TyldffYXnz59j6tSpePToEVatWoXt27dj0qRJpiyWQVSdRAfsH4DPj31ebGVoHd5aFrQsvqpcO6DJtyfYttq4rDiDI2iGYZCQnYCArQH44ugXKtcpFBdy7gCzC7MtXiOjirryA++DMnUuxl9UWpZekK68oh7f/azCLKX9JA1OryZeBQBEx0YrbSdlb6X7CetignL5AbaZTF8MGGQWZiK7MJtzYbyaeBWB2wLRYmsLvYJMbSdMdcfSpYRLWtM2ZbAy4cQEBGwNQHx2vPaVTUSfmpW0/DQEbA3AJ4c/0bjer1d+5fyvKbCUXqTlmwuEAiH+vvu37H9t33VTBCuxWdy+Pe39tHdanXF+Buf/ZdeX6RTYq6KuyUgkFmkNtvUlloi1Nv+p64enjbRvmxRfm3vUMemevnbtGho1aoRGjdge7pMnT0ajRo0wcybbISghIUEWuABA5cqVcejQIRw7dgwNGjTAkiVL8Pfff/Ni2LKqg/BZxjNcTrhssjwyCzO13gnNuTAHrba10noXpOjU61MAgA33Nhj8JZUwEhx8fhAAcDnxssoahk47OiFgSwAKxAWIy4pD4LZAfH1c/5FI8kRikcnb6y8nqv/ctNUECAQCFIoLZXfWx18dR8jBEOX19IhWWm5rie9Pfy/7f/+z/Wi1rRXW31uv0/bSIYn6UjzxS+la9qMvj6LVtlYI3BaIMVFjwDAMMgoyMCZqjGydA89174Sr7WKmLuCYf3m+1rQ1dQDV15nXZwCwTbTFRZ+aldOvTwMAHrx7oHE9xVo9Tf0/hAIhHqc+5jQ1WgmtOH3btH13NNVKGEpxCK2q85K2c54+/V7UGXZ4mMlrJ4YfHo4WW1tobF6r5l5Nr9pLdY7HHjc6jeJk0t5P7dq107gTN27cqHKbmzdvKq9sYeb4ksmLz45H8K5g1Peqj83dNqtdT91dsa7ke7LrS8JIOH0KWoe35rzOMAzSCtIAALGZsTjy4ggAcNqGU/NT9R7q2m13N6VOr+akrWZFAAE67OiAjIIMXB12FZNOqa750/cuS36Ek7Q2Ytn1ZbJlmubm0beJQErdnbBQINTpBP4w9aHs7xvJNzDl9BStI7UyCjJkc7eoyledq4lXlcokZsR4lv5Mazml65qaKQMgbfLEbM1KXlEeGIbROAxfV4rNNppqRqwEVth4fyNnmeLnZe5mIFXXE/lz8/LryxF2LwyL2y5G18pddU5368Ot+L7Z99pX1OBh6kPU9Kipdb0CcQFEYpHSXF2q3Ht3DwA0jniKeBwBkUSEOS25o4Us1Um+uJS40UDFxdTVe4qkF/Y7b+/odJdoKvpE5NpORPInOgYM526/QFyAJdeWICgiCFseblHaNiUvRW1ZzBWoFEmKkJafpvyCll0iEAhkd2/Soegq1zPiLkvV8aapPdzUzRGGNt1pC1TeZL9B6/DWGHpoKNLz05Ve13RTsPbOWqWaxxxRDnY+UT20X5GqEXUpeSk6bauOPkNejVUkKUKRpAgttrZAq22tNDZr6fq9Vtzf2mpWFI9pxQ6z2o4bXZug3+W9U5mWqhEr8t+VsHthALjTFuhi04NNJumDpMv3puOOjgjcFqhXbfHh54c1vq5Yw5dVmIWW21rqnH5JRMGKGuauWZGvsdC1060pqGo+EIlFKk/iuaJcjRdg+XkApJMvSTXd3FR2V6Z4Itn+eDvab2+PlbdW6lX27ELDmrOkvjj2BdpGtFW6M5cPylRVKctfCLY+2qo2fWOe+q1qP2tKz9S1BsYOp1YkPYkffckOcX+U+ghtItogLpM71YCmO29boa3S8fou753OE5Mpznvx69Vf0X57e60XAoZhkJybrPI1Q5vfDJWanwoJI0ERU6TxYqfr56d4XtPWZ0UxXX1rVnTp1H8p4RLabW+H6Wemo1BcyLmhUDWwQNW52ZCby1bbWpmkOUWTtPw02TlF2ygm+UD4dfZrvfK5m3JX/8KB/Z5qG9HFFxSsqGHOmpUL8RdkkysVt5TcFM6JODU/FV8d/wrttyt3Wht/YrzG/SCdCwNgO6GFP9I+WRPDMLIJ9NbeWatP0RG4LZAz0ZG+pB1XFe9KpBfW9Px0paYugNtMtPfpXrXpqwo4EnMSdTohqgo+iqO3vkgsMsvJKjEnEQnZCUrHj+L8PJqOr9isWGQWcGeoXntnLaJfqe94LLXp/ialu3LpiJKl1zXPhDzj/Ax03NERf9z4Ayl5KRCJ3zf9vM5iLyJp+WnFMo+LfLOTKc5JirWWmoINVbUi8iOBAGgcsaarv++wHXaPvDyC7ru7o21EW9k5StV7VrXMkO9KEVOkNijVlbbmWPnZmbWdB/SZ+wXg3mQaenM9/ex0dNjRAafj2D5PfBwcIUXBihrmrFn58tiXFptVs8uuLui4oyMOPj+IlLwUBEUEaRwWrevBezP5pk7t+dJZXKUKxAWcWh1tX+iuu7riXso9ncqkjuIJWnoCls6Wq7S+jndfuUXcId7hj8LReWdnpdlhdZVekI747HiznkBGRY1Chx0dTJ5u8K5gdNnVRem9K9akaGomeJX5SmXHaHWdhOVp2ud2VnZqX5MwEtkcPOvurkP77e0x5NAQ2eunX5/G33f/RtuItui4o6PWchjrTdb74NyQ4fcA20SQUZCBTfc3KY1i07SdUCBUupgrjiAbHTUaSTnGNdvKnzekwZR0tJeqeVqScpOUmuMMrdXstLOTxqZdbeKyTDMpaXZhNjrv7KzXNoMPDkb77e3xPOO5wTe/0u4I0lnZi7NPlr4oWFHD3H1WLC30bKjK2hRFut49NvNtptN66+5yp3nvvrs72m9vL7tjfZz2WGsae2L2aF1HE8W7sB/P/YibyTfVXgwUmxM0kQ4PFEvEsr5I/zxQnkFXqlBcqLa26OdLPyN4VzA+P6r7cHl9+1TceXtHr/WNpXgTYIpJw/T1Nu+t2v2kav4Wxer732/8DqB4OjTKP/ZAY7AiF4BLa7XiMuMglojRcltLtA5vrTKA01Szci3xmk7zOymuI18TpQtVF0jpd7SMcxml1+Zfno/Jp7jPWTPmfK3LozzU0adZUNO+VvVoE22eprOz5y68vBA/nf9J7+3lSd9HcfbJ0teHfUU2wocerOhK174R8y9p7iSsbm4A6Z3b+TfnkZiTiEEHBmnNy9j+FaqqjFfcXIEXmarvsFTNs6KO9E4l9GwoZ7m6zny99/ZG112aRzHoMyHg/86bbiI9c1D8XhXXxFTyfZHyivI4w8bl8bkaXNN3Uf470XlnZ3TZ1QXd93TXWqun6bukKj9VwaViR3DpQ/90paq/hbSmRF355KeNB4w7XwsFQrzMeGlQ/xVjL+5xWXEQSURGHXe6zDmkq+Luk6UPuiKrYUxnyQ+JrrPeapsHpunmplqrKk05h40mqk5sVxOvcoYNa1tfmyMvj3D+/+KY6knpjOmDo4p0lkpzPlfGGIrV5qbu2AtA5Ygvxb5IquaYeJ31Wuvswpak6WKq7jX5mV/1TVNX5pjFVfjfpUnXG4U32W9kNTT6Tpq2+tZq9NrbC8tvLNdrO8C4ju5nX59F993d8VnUZ2bv6KtNNfdqAKByxB5fULBCNJKfV8NYmtpkj8ce1/nuwugLnJ5xqDEPDpNS1x/GXPRt/y4umx9u5nSQNUewIt+pUVcxaTHotrsbuu/ubvLymIo55o0xBXM8rFB6g6DrMHXg/UMim25uqldehRK26U/XCRnlvcp8pfc2UtufbAfAzldkju+BPkrblwYA9NjTw6Ll0ISCFcILlxIuaXz0uby7bw0bpielb9ODt6O3XusbcwIzhXd573g9QZT8UH2+NLucijsFQP+HBxbnHbGhHWw1MUX5zRGsSL+i+tQ8ano8ha7MWbOgaV9b+nvwNP0pr/urABSskBLocdpjvR/KKE/fZh1Vk9pp0nNPT73WN7V229tZNH9tHqQ+kHXCtHT1t5Shd7bFeUcs7VBpynK8ytIvsFbVp0GfYIVhGDxKfYTnGc81TtAnhFDnJ4GbUpuINsWWV2re+6H1x19Zdur7d/nvsPDKQouWQRsKVkiJpM/zZxRpe34KMa+Mggwsub4EQPFe7DUx9M62OO+Ix0WPUzuxmKH7cfjh4ZzaC0OCx/vv7uu83f5n+zHowCD02dtH42hEoUCIk7En9S5LSSI/Z438nFWWUpyTkxqCghVSIt19e9fg5+PIP7uIWIa0tsqS1d+c+X0MrVkp5pqhP2/+afLqevlmVUOeVL3s+jIcfqF5VmApXS+Iugxw4HNnUF3Iv0dDn6T8MaFghZRIsVmx+PbEt5YuBjFCSl6KRWtW2m9vj1xRLm4l3zI4aLqTcgc3k29CLBHjUeojlc+yMaWTcSfx560/lZYbEzTJd9w1dFIwXR+YqmsTrAACrQFL0PYgja/zHU2PoZ/in5GJEBO5mHARr7Neo7xLeUsXhRig/fb2WNB6gUXLMDZqLO69uwdfJ1+Dth8VOQoA0K1SN9lw9b199qKqe1VTFVFJ2N0wTGw8kbPMmKBPvjbF0GAlNlP7rMKAcjnVNckKBUKttTzFUStnbGd+eYrvvbjmGPpQUGhHSrRuu7tZugjECDeTb1o0/3vv2Ec3GPusLvl5dfru66vygZimoulxAcYypBkIYGcFVveg0bisOMSk/TdDq0JMFXIwROU2AggQdjfMoLKYytXEq/jk8CdmS59qVvRDe4uUeHwZUUL0p2vzQUljzifZ5ovzlYamG/MdkL/jNzRYAYCRkSNVLu++uzv67++P9Px0nWuABAKBxTtfn31z1qzpZ4uMe4r8x4aCFVLiWfqkRogic9Z+AMDoyNGc/435DsgHOsZMt65upJLUq6xXKqfWV8XQWoe4TNM8WBCgZhq+oWCFaGTOp0+bCl9n9iQfL1VPkzblKB7FB34aU7NyPem67G9jala0WXBZ9/5JQgjRxKeJ3nl032O6GYjN2UxDtcH6o2CFaFQSAgH64hO+UVXTsfXR1mLNT1f7nu2TzflhzmBFn/mNhEIh7K3tzVYWSzO0I/PHjIIVUuIdfnEYJ2JPaF+RkGIikSiPVJE+ZNIcjA3Y76WwHY0tPe27lLXA2mLTv19NvArA9DdB8unliw2bI+pjRkOXSYk34/wMSxeBEA4J3l/077y9AyuhlclrKZ+kPUGNUjUAGN9vSzopGV+CFcBytbpjosZgb5+9nM/QFE7EnUATnyawElpZfHr9kohqVgghxMSkD0bMEeVg2OFhGHJwCGd6dVMYsH8A0vLTEPUyyugZUFfcXAGAP8FKVmGWrIbDEmLSYpSGWRtry8Mt2P10NwDg2Ktjpk38I0A1K4QQYmK/XfsNtUvXhp+Ln1nzGRM1RuMDDnWVI8oBAJPXJhjq25OWn53aHKMMz7w+Aw87D5pe3wAUrBBCiBlcTriMiq4VzZqHKQIVecb20+BLzYyxIh5HaB2KbYhTcadktW5EPxSsEEKIGWx9aL7RP+ZibLDxoQQr15KuWboIRAH1WSGEEDPIEmVh7Z21li6GXihYIXxFwQohhBAAxvfToGCFmAsFKzyyquMqSxeBEPIRMzbYsPSDKcmHi4IVHjFkemlCPkTm7phKVDM2WPni2BcmKgkhXBSs6KG8c3mzpi8Q0IOzCCGWQ804hK8oWNGDtdC8g6foKZ+EEEuiYIXwFQUrejB3sGLOp3wSUpLQwymLX3x2PO13wlt0ddSDlUD5se+mRM1AhLDMMXso0WzooaG8mcGWEEUUrOjBSmjeYEVIHwchxEJS81OpGYjwFl0d9WAtoGYgQsiHi5qBiFSAb4Cli8BBV0c9tC7f2qzpUzMQIcSSPoaalanNplq6CCVC9VLVLV0EDgpW9PBZ3c8sXQRCPgrmuMN3s3PTa/01ndaYvAx89zH0WTH3FBTEPChY0YONlY2li6CXvtX6WroI5COyu/duSxdBrfZ+7fFFPf0mLGtVrpWZSsNfH0MzULYo29JFIAagYMUC2pRrY/Y8RtYeienNp5s9H0KkqpeqzruqY6k+1frA1srW0sXgPTEjtnQRzI76BuqGb90SzPKprVy5EpUqVYK9vT0CAgJw5coVtetu3LgRAoGA82Nvb2+OYvFGzyo9zZ5HM99mcLJxwvrg9WbPi3xcNnXdpPa1dZ3XmSQPUw9dFkJIky7q4GOoWanmXs3SRSAGMHmwEhERgcmTJ2PWrFm4ceMGGjRogODgYCQnJ6vdxtXVFQkJCbKfV69embpYJtPMt5nRaRRHZN+2fFsAbHnl54cZUH2A2fMmH7bGPo3VvlbaoTTqlq5bjKXRjVAgNMmd4pH+R0xQGv76GDrYVnCtYOkiEAOY/Kq5dOlSfP755xg9ejRq166NNWvWwNHREevXq7/DFwgE8PX1lf34+PioXbegoACZmZmcn+LUtVJX4xMphhs8dSfmzhU7G5ymi42LwduSD4OHvYfWdUwxH5GpL5qmCFSql6qOcs7lTFAa/voYOtiaY3LPv7v8bfI0LY1vNZEmDVYKCwtx/fp1dOrU6X0GQiE6deqEixcvqt0uOzsbFStWhJ+fH/r06YP79++rXXfhwoVwc3OT/fj5+ZnyLWhV15N/d436MPQAHFRjkMY7avJx+C3oN63r2AiN74jeokwLvdZv7K352DT0uD828Jjsb4ZheNeOb2p7Y/ZaughmZ46a7ea+zU2eJuEy6aeWkpICsVisVDPi4+ODxMREldvUrFkT69evx759+7B582ZIJBK0bNkSr1+/Vrl+aGgoMjIyZD9xcXGmfAta1S5d2yxRdH2v+iZPU0r+RH0n5Y5BaQSVD0J7v/amKhIpoZxtnAEAkQMi1a4jrX00phaiS6UuWNlxJX5p84tO69cuXVvj64Y2A/k6+Sot29tnr97plBSXEy9bughmZ46alQ89iOUDi3eLDgwMxIgRI9CwYUMEBQVh9+7d8PLywtq1a1Wub2dnB1dXV85PcQsoY9zMfqru8oprTof0gnSDthMIBOhXvZ9pC8MTg2sMtnQRShxNgcigmoOwquMqbOuxDUcHHDUofSGEaFu+LbwcvQwtIodAIDD6cRbSzqdV3auaokjEQiiw0K6+p/lung1l0mDF09MTVlZWSEpK4ixPSkqCr6/yHYoqNjY2aNSoEZ4+fWrKovGat4M3XGzN2B9EIP+nYV9UK4HVBzvkr3U5885MrIsapWqYLe21nVQH/uYiFAjRpnwblLIvhTLOZYo1b3VshDZ0kSK852DtYOkiAADWdObfhIgmvfrY2tqiSZMmiI6Oli2TSCSIjo5GYGCgTmmIxWLcvXsXZcrw4yRnLvJ3nPKd2swatBjhQw1UAH7caW3oukGv9Z1snHReV9+ZW3X1if8nZknXHCq7VeZdh0FdNfBqAACo6kY1Oh+6CY0moIlPE0sXAy62Lrz7vpj8CjR58mSsW7cOmzZtwsOHD/H1118jJycHo0ePBgCMGDECoaGhsvXnzp2Lo0eP4vnz57hx4waGDx+OV69e4bPPPuyp7eXvOOVHPhzqd8is+Tb0bqi0zFqo/QGN5mjn5QtLfylthbZwtXXVKyA83P+w2teWt1uO3lV7v19gprc3sfFE3gTX6gLOw/0PY2evnfB08DQ47YZeDQHAYs2gc1vNxbou6/B9s+9Nkp58p2HCLzZCG7Qq+/HNnKwLkwcrISEh+O233zBz5kw0bNgQt27dQmRkpKzTbWxsLBISEmTrp6Wl4fPPP0etWrXQvXt3ZGZm4sKFC6hdW3OHuQ+J/ERMpexLmTWv6u7vZxg9OuAotnTfgpktZmrdjmpWzJ//ycEndd5G0xBiGysbo/tV6cLRxhGBZXSrMbUUPxc/1PSoaVQaazuvxYbgDRhea7iJSqUfR2tHtCjTwiSjrADoHbiZs4mScAkFQgSWNc93anbgbL3Wt/R5UZFZrkDjx4/Hq1evUFBQgMuXLyMg4P2J89SpU9i4caPs/2XLlsnWTUxMxKFDh9CoUSNzFIu3zD23gXzNgUgikv3t4+SD+l710bdaXyxrt0xjGqaYO4OvLF2zIg0EdZnDRBeVXCtx3pOl35+pHRt4DHt679G6nuLwZ0NPvo42jmjq29Ri3wHp52eqWX31vfH4udXPcLdzN0nefDGy9khLF0Gtup51sbTdUpOnW9W9aomeJ+jDvV0uQYpzimv55ifpSUsgEKhsHpKn7gTXvXJ3AGwfiuhB0SrX4TtDao30aa7Ttq4pa63+7fav0gydpgxWDLngd6vczYCM1L/k6+SLaqU0T5neulxr/NHhD4UkP6ygzVD6Hm92VnZazw8lzXdNvkMtj1qWLoZa2obim1JJmZWZghULkJ40pbPJjqozqljyAwBXW1cc6ncIxwce56zjZqu5E6a6Pis/NPsB4T3CcXLwSXg7ehtfWBPSdY4OQy5i+kzZrW5d6URSX9TX72nAmtQpXcdkaamiGFjrcrc/O3A2NnffjHbl25mlTKXsuE2nW7tvxZ8d/uTNyApTsVSwJYAAJn5Uk8VZC61lHZf5xBLPZirvUr7Y8zQEBSsW9EubXxDeMxxj640t1nwruFaAjxN34j4bKxsMqzVM7Taq7sYO9TsETwdP1PGsI7sw8OluRde29uJomx1Sc4jSsoVtFiK8R7hJg1VV78Wc708s0f6UXkcbRzTwaoA6nvoHUrpcoH9o9gNnvXpe9VQ22fCtDV5Xhta81fesb5Lvo0AgMPmDJYlq0v1MtYDKKFgx0MI2C41Ow8bKBnVK1+FN51VfR/Vz4aiqWVFVY/BPt394M/W0rn0MDL2Ijag9Qu1rAb7cDq7Tmk9TWsfOyg51PE37+cs37eni09qfYmqzqQbnJx0ho8vDC811Ai6pI9V29Nqh03rSz1Lf5yWFBYdhUzf1T8jWlQDqg5XP631udPqWwsfg1ZigcHHQYpOUQfo95VvAxI+rZAlkzg5no+uMNlvammj6ouh6QbW3tse6Luuws9dObAjWb+4QU9NlSDYAg2c2ndJ0isrl64PXKz0wUlVZzHGyVHWC0XTSkTASve6+FY+Rdn7tsLfPXmzstlHnNPRhyjt6U1axa3sWkS78Pfx1Wk/aRCtmtNdiybO3tjdJU5hAIFC772p4mG6kkK7BGwBUc9fcZ6mkPljQ0GM0elA0ansY3s9FfoSYqhsrPqBgxUDmbFv8rsl3aOrT1GzpG0Kfu1ehQIiaHjUtPi25rmU2NGhQFcAdHXAUzXyb6ZavGe5cpO9F17SLJEVG51nVvSrsrOy0rie/nw292KsbKq3L+zXlk5zXdVlnsrS0sbFihyyLxCIta5qHppoVU9ZqlXUuq3O/t+29tqs95jwdPC1y7hlTd4zRaRjaDGRof8GQmiEA2Cb9g/0OYmevnRjqPxT/FYJXKFjhIaFAaNK5DXS9GGv6ghjSVOFs66z3NrJtbQzfVkoAAc6GnDVoW0OH+OkzvbwpL56KNH2W8vukSFKE6qWqq13XXOTvfK0F6mvAFN+HMX1RTFlLY2tli9L2pU2Wni7qedXTeV3ZBccENAUrxj5vSYmOH5GN0IYzZ5Q8CSPRKYgy9c3CxMYTzTZbtC70fT/7+u5DaHN2glZHG0dUdK2Imh4135/redZNiYIVA5m7vVM+ODg35JxZ81Jnbsu5sr8NuYOyEdoYHCwMrjnYJEPq3O3dta5jij4j/ar1w8WhF2X/tyrHzkKp6YLmaONodL5SJwefxPmh51W+pnisutu7y57y3bdaX7jZuZl9RBrAPZnaWNnIJllTNTOruhOvqoumrrWcgWUCYS2wRgUX3Udy8Ymng6fSKD5VGnk3wvTm002XsUD9PjbleVAAgV5zTgmFqr+3Ekai03fa1OdwoUCIyq6VjUpDup/NdX2R/15VcatSoubPomDFAnQ5EPtU6wOAHW9vbLRu6B0EZ04WNScGbXQJFlTpXrm7yYbUBZUP0vi6qv2jbzOfp4MnpyapvEt5RA+KRuSASKV1G3s3xrkh51TOSDqwxkDZ3+382umVv6vt+yeQazvGNnbdiKMDjsrmzzBmOnpD/dDsBxzuf1ivZwwZczdcxrkMIgdEYkevHbx8qqwuFEfxqeLn4mfSTtumrnHVRJ/aRnXfUQkjUWoiKimT2hlS2yqbk8XU8Q01A30YzN1T2t/DH9GDorG5+2az5iNP8QInX5uiqapem7JOZQGwk3npYl2XdTpNkR45IBJ+Ln6y/22FtirX0zY7r6oTrimaDLwdvWFvba+03NXOVW0AOqPFDEQNiELUgCj80f4PlesoUve+pVQdqzZCG4OeiGzMflE8voQCIfxc/DQGVqa+w/Rx8oGjjSM2dt2I4wOPaw1kNeHjaBJz0NTB1tC+e2s7rZXV7hmanrr5iSSMROl792ntTwEAHfw6yJbxbbQLYNj3a3O34rtGWBIFKzzm7ehtkueBmOKkquvIGlX299uP0yGn4eXgxVl+uP9hlf0lfBy13z0CbBNLXFac7H9171PaQVGefAfmym7KVbeKJ43vm5rmIXLaCAVClHUui7LOZSEQCGRBjaqnLI+ty87P82PAj0qv6Xsi5uOJWx/6HuM2VjbwcfJBPU/d+4EossQEXpYggACj6o5S+Zo+/Wjk+Tr5oowTN1jWtxmonV87rA9er7RcOmpK/nwTUCYA0YOizTKNvSkZUlMlPb9p+w7r+x3h2zmBghUio3jylf/iGBOs2FnZwcPeQyl9b0dvfNvoW6X1NX1J5IcEWwutDa6Glr/4O1o74sLQCxrXH1lnJOeurLgcH3gc54ac4zTxSE1sPBEnBp3AgBoDjM5H5zs6I67Phow80iUgMKa2R/q4iA+JqS8yAgjQsmxLHB1wVOn5VW62btjXZ5/+aaqprdG3GUTVjY003b1993KWezt6F2sfjW6VuuFMyBm9tjHmPKuLklwbSMEKUYvTDGSCL9E3Db/h/C+EEO382mFcw3Gc5S8yXqjc/uTgk/is3mec8s1pOUdl2oB+X0wXWxfO/6pOpNI8ivMR7vbW9mqbjAQCAbwcvVS+Jn+9kr94KU5WV5x6VO4BwDRzlCgy9ALt5+qHvX32GrRtan6qQdvxgXzfKG2k36MyzmVwuP9hLG4rN/mYACjtoP+oKKFAqDrIVFhU1U3zEGT57/iA6mzQ/lOLnwBobx6Vrq+qOUofinMqSVkLrVHKvpTK19QxZkI2Xc53Jbk2kIIVIqOpz4opOtK1Kd8GKzqskMuQ/aXYubNWadWTlHk6eKKKWxUA7PNgBAIB+lbrizMhZ/B1g6/1+oJrW1fVibSmR02cG3IOqzqt0jkfS+E8dVnuc1U3F0RxVPn6ufrh3JBzKqvu1dHlBKxpaK0uVDWx6WJlx5UAgN5Vexuctznosi9mtpipsrZOam3ntSqXO9k4KY1iM6SpWuXkhQJuM1B9r/rY0XuH2lFuADvrtrXAGk42TpgZOBNnQs7IBidoU61UNZwbcg7/dvtX7/JLfd3ga/wW9JvK13S9Wbr0yaX32/Cs6YVPzFvnxBMMw6CoqAhisX4zQJax5bap5ufny/4WFgmVXteVsEjIScuQsmgjn76PrQ8KhAVKyxXZSmw5+XjaeKKSYyXYCe3AiBjkF+VzXtf3PQCAm9BNlkZ+fj7E/2/vvMOiOro//t3CLr1JRwQUxAJBRSHYC4qIisSosWt8jbFEjbEmvlHjq6ixxhhNDIgxiqJBJdYYe0GxgIgKImKlRaVIXdg9vz/47XUvu8vuIkbU+3kenoede2bmTLkz507lS5XiFUqFTNiq4jvz0RkI+ALmtwEMUFZWBluRLSRSCSNfUV6BMoFyOEp6lFfp0dmmM9Ly0wAAlkJLCEQvjTV5XGKIISl/GYc8DAMy0JgfclkzvpnOeWetZw0ofChq8i+QCpj4ZBIZ8z+vkqfSb/UyUIesQlarcpcjhhgVkgpUgH3AWfW4GT0r2M9M+aZKdUMgFcAQhqx6pQtGPCO4GrpCwBMguHEwolOj8aXPlxrDaWfVDidCT4APPi4/uqxTnHI9tcnz6npo8mPMM2b5UdeOuRu7I7MoU8m/v4M/mpm9PF1X09d4bUZdeTye0qJ9AU/Amgb6rfdvEPAF0BOpN4b0BHq4MOwC+Dw++Dw+ayRD0VhQlwb5qGUnx044+0S3YxbOfXJO552armauSiPHRnpGaGPTBtdyr6GHcw8AtZuu0cbQeZungXj0No8LASgsLISZmRkKCgpgaqr8pSCRSJCVlYWSkhKdw67+IjsYOzD/l1eW41nZM90VBmCpb6lyl4guumhCUdes4izmZVV0r05RRREKywuZ33ZGdi+HJf+/kivqUVNY6pBIJXha+hQAYG9kDx6Ph5KKEuSX57PilY/k6BKfYjqBqvls+Rx19fzTF+qjrLKMpQcRIas4C0BVw6l4vLm6uOXhGouMa/xSVZTVF+orzf1rIqckh3VpoKa8KK0sRV5ZHoCqufrcklwAVYuSxULlkz+rl706rA2sVS5YflWql08DgwYQC8Ss+gIAYqGYObtG7sdC3wIV0goUVRQBqF29VDzfQttzOuTISIbs4mwAVfWgSFKklT8HYwet3uvq6fmn5B9UyNSfZmttaM0a7VDXjuWW5KpcR2QgNICZvhm+ufEN0kvTcXTgUZYOZx6fweTjVVO310Zeg4AngPdvut1gfPijwyiQFOCTAy8v+Lw24hraR7VHmbTqvbwx+gbzzGsreyGv4jN1lEvL0fb3qoX024K2Mdv0VSEjmVIamlk2Q8rzFLV+VOkw8tBIJP6TCADo17gflnZaytI9cWQivr3wLWLTYwEASzsuRb8m/SCVSVEmLWNG+XJLctFjdw+NaVTUI7MoE4F/BKqV+73P75h3dh6zKUFTHq69uhbhyeEq46orNPXfirzTIysymQwZGRkQCARwcHCASCTSybKszGO/yK4WL3eNFEuKISiu3WIteyN7nU93ra6LJhR1leXJmOFVRffq5JXlsToGZzNnpa8mRT1qCksdpRWl4BdVdQSu5q7g8XiolFUyXxtCnhAuZi5MOekSn2I6AcDZ1JnpWKvnn5GeEYorigEALuYuTOckzZMyelSS5rjl4VqILWBlWPNZJXJZIz0j3TvUfGilj5wXkhfQK65Ku7OJM/Ciyt3ByAFGIuVpj+plrw4nYyfo6+lmaGtD9fKR61lSUcLUF6DqID356cJyP7ZGtiivLGcM3trUy1eBiMAvqNLRxcwFmcWZKKnQ/HHkauGq1XtdPT0u5IK7+XdVyqoqX3XtGK+Ap9LoMRGZgFfMw9iGY7E4fbHSotfqX/C1mSLm8/ho2aAl1nZbi+knpzNudXmqsy5TKtXTIOQLsTN4J1pta/XKeizrtAxzz87FPN95EPAF+F+H/zE7+OTGiYAvgBH/ZbnVas3KOz6F9E4bKxKJBDKZDE5OTjA01P20UL4euwLr679spCv5leBLareOQyQWQV+sW4NfXRdNKOrKF/GZhWuK7tXRIz3wK1/Go6+vr2SsKOpRU1jqkAlk4JfzGf9yo6SlQcuXcSg0HLrEp5hOubzcWKmef0KRkDkqXF9fn4nTzswOuSW5aGjaEA8LH2qMWx6unlhPs37/LysUCXXOO4FIAJnsZUOuyb+EJ2Hqp1hfDH7Zy//1Rcp+RSRilb06xPri12KsVC8fuZ5SgZSpLwA77+R+RGJRVb2SvSzPfxsP/apzgfg8PoQVQq2OodfX19fqvVaVHn6xan8GBgZK5aOuHROWClVOjeuJ9GCmbwajHCOYC821WgPj2cATyc+SAQAtG7RE6vNUlnFdHfl6OMX1QnweX6ety6+ThJEJrxyGvG0LbhyMbk7dmLU+PB6v1uukqhPWKUx7fd5yY+a9WGBb29NXOf495HPOdX0ipq5YG1qjeYPmSruDNPJ2twMcr4hi3a1+fsjrQD6KZyqueei8Jmq8ZZ3PBw888MFXWu+hanRa8fBKbaa45dOzimHXdPhcbVDsnGu7APv6qOsY3HRwrfwqpqUur9YAgMvDL+Py8Mvo27gv41bX61Hq2/oWrhfneC9QPOlWE7UymN6SlV+vejJvXV4G+K4iEohe++WQtoa2aN6gOQyFmjtBdScVqyvL6u7alLnS+SUa+jl171h9q198Hl+nD5e66uA1haMv1Nd53ePbDmescLwXmIpN4W7hrrRjgIPjdaDH12MWMvN5fDQybfRaLs6rHqaqzt5S3xIigfKZI9qOYtS0jqS2UwvyM1Cq61unN5HrqFqQS5DqYHQot+ojRRx1B2escLw3iAQieFh6KC1ufdvncnXhfUrrm4TH46GJWRO0aNACHpYeMBGZoJlls1c2lCUSCdzc3HDhQtWJy9qWp6JRIJFI4OLigtw7uSply6Xl4IEHkUAERxNHnW+p1sYIkq/Z8LH1gYORw7960KI61I40vd0bZlm8ze8/Z6zUU7p27Yrp06crue+L2gf/Jv7M7w0rNsDT2hMTBk9Qkv3+++/B4/Ewuv9oxm3hwoVo1aoV6zePxwOPx4OdiR06enTE6H6jsW3TNpSXl6vUbdFXi/CB7QfYvXu30jPF8IRCIaysrNC5c2esXbtWKbxu3boxsop/n3/+udp8GTNmDCOnp6cHV1dXzJ49W+ksCk9rT4iEIqWwo3dFAwDizsbB09oThQWat+t+NugzCAQCXL5cdZbG/fv3mfA8rT3hae0JO2M7VjyRkZE4deoUeDwe8vPz8ccff+AD2w+Qk5WjMg53d3fMmDGD+R0XFweBQIDg4GCN+gFV9UUet1gsRrPGzTB5+GQcO3CM9YUpb5APHDiALl26wMTEBIaGhgjoGIB9Ufu0igsAoqKiIBAIMHnyZKVn8nTL/6ytrdGnTx/cuKH7tscW7i2wbZPyoV0LFy7EwK4vrxnggYeCvAIs+2YZnJ2dIRKJ4ODggE8//RQPHz5k+dW2DgHA48ePIRKJ4OnpqVI/xXSampqiXbt22L9/P+vZb1t/g7m5udLUR2lpKdq7t0dHj46ss3tqYtOmTXB1dUX79u0BAGIS4+tJX8PP1Q/BfsE4efwkS/7777/HF198wepwRSIRZs6ciYXfLESLBi2UDmEsqywDj8eDlYEVfuz+Y50fUd/TuScz6iAWiHHoo0PYGLCxTuMA3nzH/G8bOW86va8bzlh5B7C2tUb8+XhkZ2az3CMiItCokeavopYtWyIrKwuJqYmI2BuBXv17YfMPm9GpYye8ePGCJVtaUorDew9j7JSxiIhQfRKpPLyHDx/i5MmTGDRoEMLCwtC+fXul8MaPH4+srCzW34oVK2rUt3fv3sjKysK9e/ewZs0a/Pzzz1iwYIGS3K/hvyqFPWDAAI35oUjW4ywkXk7ElClTmPQ6OTkx4Z1KPoXRk0bDo7kHK54hQ4awwunfvz/MLc2xf6fyPSpnzpzB3bt3MW7cOMYtPDwcX3zxBc6cOYPMTO3O2JHnZXp6OrZFbUMTjyaY9dksTPqcfRXB+vXrERISgg4dOuDSpUtISkpC6KBQfDfrO3y/4Hs1obMJDw/H7NmzERUVpfbwtNTUVGRlZeHo0aMoLy9HcHAwJBLtOmVdyXueh2G9h+HimYvYtGkT7t69i507d+Lu3bto164d7t27x5LXtg5FRkZi8ODBKCwsxKVLl1TGvWXLFmRlZeHKlSvo0KEDPv74Y60Msz/++ANuHm5wdXPF8UPHNcoTEX788Ud2Pfk1HGnJadh+eDs+HvUxxo4ay3SSGRkZ2Lx5M5YsWYKGxg3B5/GZbd/Dhw/HuXPncOvWrRo7OVWGyqt0ipNaTcKqLquU4pAbL69yu3tNvIrh8Camc16H4fG2X2763hkrRISSihKt/soqy1h/is9KK0uVnmv6e12WtqWVJdp3bc/qCC9cuICnT59q9WUuFAphZ2cHOwc7NG3RFMPHD0fk/kjcTL6J5cuXs2T/iv0LTTya4D/T/oMzZ87g0aNHasNzcHCAl5cXvvjiC5w+fRrJyclY/T371lNDQ8OquBX+NB0OJBaLYWdnBycnJwwYMAABAQE4duyYkpyZuZlS2Lpua90btRddenXBxIkTERUVhdLSUggEAiY8K1srGBoZvszD//8zMDBghaOnp4d+g/qpNFYiIiLg5+eHli2rtm8XFRVh165dmDhxIoKDgxEZGamVrvK8bNiwIdr5tcOMb2dgwcoFiPg1AnGn4wAAjx89xldffYXp06dj6dKlaNGiBdzc3DB52mR8teArbP1pK5KuJtUYT0ZGBi5cuIC5c+eiadOmiImJUSlnY2MDOzs7tGnTBtOnT8ejR4+QkqL+kK1XIWxRGHKzc/Hrnl8RFBSERo0aoXPnzjh69Cj09PSURoC0qUNEhC1btmDkyJEYNmwYwsPZB2TJMTc3h52dHZo2bYrFixejsrISJ0+eVCmrSHh4OPoO6ou+g/oiZofqPFTk6tWrSE9PZ73Tt2/fRv/+/eHWzA1DPx2Kp/88xdOnVeflTJw4EcuXL4epqSmMREZoZtkM5vrmAAALCwt06NABO3fuVIpH1fqWumKi98R/rfOvq862tu32v23kvOtrZN7pc1ZUUVpZCr8db+Yyt8jAyNe2gjt0WChWL1qNCTOqpoMiIiIwfPjwWofX2L0xevfujZiYGPzvf/9j3GO2x6Dvx31hYmqCoKAgREZG4r///a/G8Jo1a4agoCDE7ovFqK9G1Vqv6iQnJ+PChQtwdnauszDlEBH2Re3DN8u+QbNmzeDm5oY9e/Zg5MiRtQrvo+EfYevGrbh0/hIaBVWNeBUVFWHPnj1Ys2YNIxcdHY1mzZrBw8MDI0aMwPTp0zFwQu1uVg75JASrF67G3wf/hn8Xf+yL2YeKigrMnDlTSXbw6MFYt2QdDsUcwgc+6i9327JlC4KDg2FmZoYRI0YgPDwcw4YNUytfUFDAdIoiUd13hDKZDPv/2I++H/eFlS37YD4DAwNMmjQJ8+fPx/Pnz2FpqXxysLo6dPLkSZSUlCAgIACOjo5o37491qxZAyMj1WdkVFZWMgaNpnQ+zHiIuLg4LNm8BCBgxX9XIPNRJhyc1B8WePbsWTRt2hQmJi93p3h7e2Pbtm0YN2Mczpw5A3t7e1hZWWH79u3Q19dHaGgoI1u9M/P19cXZs2eV3J1MnIAazqrTZAQI+cJaGwqvazdQfdtl9KZ4mw2a925k5V2lS68uKCoqwpULV1BSXILo6Gh8+qnqS+u0xaOZB+7fv8/8TktLw/Wr19F7QG8AwIgRI7BlyxatvzyaNWuGBw8esNx++uknGBsbs/62b99eYzgHDhyAsbEx9PX14eXlhdzcXMyaNUtJbuTwkUphV1+/UBNxp+NQVlqGDt2rFv/JO+ba0sSjCbzbeiP692jGLTo6GkSETz55eex4eHg4RowYAaBquqKgoADx5+NrFSefz4e7uzsyH1ZNJaWnpcPMzAz29srbWfVEemjo0hAP0h8oPZMjk8kQGRnJ6PfJJ5/g3LlzyMhQvim7YcOGMDY2hrm5OXbs2IH+/fujWbNmSnKaWL14Ndo5t0M753Zo4dACxsbGWLp0KfP8ae5TFOQXoLF7Y5X+mzdvDiLC3bsvT33Vpg6Fh4fjk08+gUAggKenJxo3bqxyndbQoUNhbGwMsViML7/8Ei4uLhg8uOazOfbu2IugoCCYmZvBzMIMHbp1wN6ovTX6efDgARwc2MbMp59+Cm9vb/Ty64WItRGIjo5GXl4evv32W6xfvx7z58+Hm5sbAgMD8eTJE5ZfBwcH5n00EZlALBSjeYPmGj+oNHX82mynVoeB0ECzkJa86Y753556qm/TNnXNezeyYiA0wKVhqueeq3P72W3Wb8WFaMUVxawTTrVBLFC+k6Wu0NPTQ7+P+2Ff1D48fvAYTZs2xQcfvNrV50TEemkiIiLQoVsHWDSo2tHQp08fjBs3DidOnECPHprvsageHlA1d/7NN9+w3GxtbWsMp1u3bti4cSOKi4uxZs0aCIVCDBw4UKm8Vq5aicBe7Lsyqjf2NbF3x170DukNobDqNRk6dChmzZqF9PR0NGlS89X16ggdFooV/12BFy9ewMTEBBERERg0aBDztZyamor4+Hjs3VvVcQmFQgwZMgR7ft+DNu3b1CpOIqqzQ+uO/30cxcXF6NOnDwDAysoKPXv2REREBBYvXsySPXv2LAwNDXHx4kUsXboUmzZtqlWcYyePxYBPBgD4/+P2TRzxww8/4K8Tf7HkdPl6VleH5OTn5yMmJgbnzp1j3OTG6pgxY1hhrVmzBgEBAbh37x6+/PJL/PDDDypHcORIpVLE7orFhvUbGLe+H/fFyoUrMXHmRLWHWJaWlipNY+rp6WHDhg0st7Fjx2Lq1KlISEjAvn37cP36daxYsQJTp07FH3/8wcgZGBgwd6Y1Mm2k8v3UhGIHOavtLPx26zfM9p2NkH3KNx9rc37Rjz1+xKzTszDPb55OenC8+7x3xgqPx9P6NMHqXxiK/mQke62H8piamqKgoEDJ/UXBCxibqr5XKHRYKIYGDkVaShomjZ+kUkYXUm6nwNW16h4RqVSKrVu3Ijs7G952Ly/8kkqliIiI0MpYuX37Npxd2EPtZmZmcHNz00kvIyMjxk9ERAS8vb0RHh6O9gPas+Rs7Wx1DlvO8+fPcfzQcVRWVGJX5C7GXZ7eJUuW1CrcoNAgrPjvCkRHR6Nz5844f/48wsJeHpkdHh6OyspKllFFRBCJRZi3bB5MTLU7oEre6UilUty9exe9Q6tGw5q4N0FBQQEyMzOVDLcKSQUeZTyCbwdfteH+tuU3PH/+nLUmRyaTISkpCYsWLWJ1tK6urjA3N4eHhwdyc3MxZMgQnDlzRjv9FTpBC0sLNGpcNW1mLDKGs6kzyxiwsrGCmbkZ7t25pxQOUFXveDweqy6oq0Pyxas7duxAWVkZ/PxeThkTEWQyGe7cuYOmTZsy7nZ2dnBzc4Obmxu2bNmCPn364NatW7CxsVGpz/kT55GTlaO0CFsqleLimYto37W9Sn9WVlYaF+6ePHkSN2/exK+//opZs2ahT58+MDIywuDBg/Hjjz+yZJ8/fw5ra2vmt7aGirov+FEtR2FUS+Up3vXd1+N/F/+n1dHwPrY+ODH4hFZ6aOJNjzS8ysjOm9a9PsJNA9VTPDw8cO3aNSX3WzduwbmJ6vUZbs3c4NbMDXdT7ta4hkAb7qXdw9GjR5mvzUOHDuHFixfYfWI39pzcgz0n9yAxMRFRUVGIiYlBfn5+jeGlpKTgyJEjGBA64JX0qg6fz8fXX3+N+fPno6xU9a6U2rB9+3bY2tvij1N/MGlNTEzEqlWrEBkZqfJOFW0wMjZC8IBgREREYMuWLWjatCk6deoEoGrNw2+//YZVq1Yx8SUmJuL69euwsbPBoZhDOse3f+d+5OXloWe/ngCAkNAQ6OnpYdWqVUqyuyJ3obSkFH0+6qMyrPzn+Tjw5wHs3LmTpV9CQgLy8vLw119/qfQHAJMnT0ZycjIzYlSX8Pl89A/tj4N/HMTTHPZljKWlpfjpp58QGBiodrRDsQ6VlpYCqDIav/rqK6Vy6NSpk9pdcEDVOhAfH58ajdmY7TEICg1CYmIi8y7tObkHQaFBiNmufqFt69atkZKSonZ6oaysDJMnT8bPP/8MgUAAqVSKioqqiworKiqU6mxycjJat26tNr66oqtTV/w96G+0s2v32uNSx6tMyXDrXeoHnLFST5k4cSLu3LmDqVOnIikpCRl3M7B141YcjjmMMRPHqPUXHhOOk8knYW5urnVclZWVyM7ORnZmNu7cuoPtm7djTMgYeLfyZubxw8PDERwcjGaezeDe3B3uzd3h6emJwYMHw9zcnLXORB5eZmYmbty4gfXr16NLly5o1aoVpn81nRV3SUlJVdwKf3l5ebpkFQYNGgSBQIAd4TtY7gX5BUphFxdX3bQs/3JJu5Wm1CHJ09urXy9WWj09PTFu3Dg8ffoUR44c0UlHRYaMHIILFy5g06ZNrHVFBw4cQF5eHsaNG8fEJ//r1bdXjR0Z8DIvHz9+jPhL8Vj93Wp8N+s7fPb5Z/DtWDVa4tTICStWrMDatWvxzTffICUlBenp6fjph5+w+rvVGD1ptNrFtX9G/wnLBpYYPHgwSzdvb2/06dOnxvU8hoaGGD9+PBYsWFD3u+IImLdwHqxsrDB+0HgcPnwYjx49wpkzZxAYGIiKigqlqZLqyOvQhg0bkJiYiGvXruE///mPUjkMHToUW7duRWWl+hWo06dPx88//6y0RgQAnv3zDKf+OoWQISHw9PRk6pd7c3f0H9wfJw6fQEGe8ogqUDV1VVRUhJs3b6p8vnjxYvTp04cxQDp06ICYmBgkJSXhxx9/RIcO7IPXzp49i169etWYLyrR4qO/PowMvOk1K6/Ca9m6rOsUXz3LP85Yqac0btwYZ86cQUpKCgICAjAscBiO7j+KVeGr0LFHR7X+DI0MYWqm2+VmN2/ehL29PVp5tMLYAWNxdP9RjJ86HqdOn4KxsTFycnJw8OBB1py+HD6fj9DQUFZHJQ+vUaNG6Nq1K6KjozFv3jycPXsWxsbsKazNmzfD3t6e9Td06FCd9BcKhVXnoPwYgZLiEsb9P+P+oxT2+vXrWX5H9x+NNm3aoHXr1mjdujV8fHxw9epVXL9+HQH9ApTiMjMzQ48ePV5poW07/3bw8PBAYWEhRo16OWweHh6OgIAAmJmZKfkJ7BeIm4k3kXozVW248rxs0qQJRgwZgfTUdKzcvBLrf2Snefr06di7dy/Onj2Ltm3bwtPTE3/s+gP/XfFfzFqkvFBZTkxUDPqH9FfZiA0cOBCxsbHMtllVTJkyBbdv32YWqUZGRtZZg2jZwBI7juxAuw7tMGHCBDRp0gSDBw9GkyZNcPnyZTRurHrxrRx5HVqxYgU2bNiAFi1aqFwMHBoaitzcXBw6pH6Uq3fv3nB1dVU5urI7ajcMDQ3h11l5R+KHnT+Evr4+/tz9p8pwGzRogNDQUJUL0JOTkxEdHY1FixYxbh9//DGCg4PRqVMnJCUlYd26dcyzuLg4FBQU4OOPP1abjncJbUZH6oOBxaEeHr3lZwkXFhbCzMwMBQUFSudzlJWVISMjA66urrW6Nv7mU/YXTEurlsz/xZJi3C+8XyudnUycdL4ttboumlDUNeVZCqQkVXKvzrPSZ8gufnmwnIelB4R89rImRT1qCksdJRUlyCjI0Nq/LvEpphMAmlo0hZ5AT6Xso8JHKJRUnV7bokELlZ2mNnHLZawMrWBrWPPCYLmsicgEjUx1O8L8zvM7qJBVaNRHzgvJC2YBuLuFO9Ly0gBULaRUdTFb9bJXh6uZa53dILtgwQKcPn0ap06dUqrfLqYuMBIZseoL8HLNCvAyPx2NHVEuLcfT0ipDqTb18t8iqygLz8ueA6jSU5v3WjE9SUlJ6NmzJ9LT05UMf10YMmQIvL298fXXX6t8XlPbeSHzAiYcqzoiIXFkosqD49r+3hbl0qoTq2+M1v3k4up4bfVi/dY2TLm/iMAIjdNQs07PwpH7R5TCX3N1DSKSlaf+VOkw8tBIJP6TCADo36Q/lnSs3dq2/LJ8dNrVSe1zVXE/LX2KbtHd1PqJCo7CvLPzmH5LUx7+mPAjfk76WWO8r0JN/Xd1uJEVjvcT7iPqjXP48GGNpxVzsPnggw+wfPlylVvFtUUikcDLywtffvllrfxzIxCvn/o2BVMfeO92A3FwvBbe6vHJN0N8fO3Ojnnfqb51WldEIhHmz59fN8q8Q3BGWP2GG1nh4OCof3D9xlvBuzQCwO36qd9wxsr7wLvTntRfuDzm4HgneVeMmLd95Oi9MFZeyxrit7vc3024Mqk1b3tDxlG31NRmajOaUt/qkzZ9QF3r/JbvXal3o2avxVjZsGEDXFxcoK+vDz8/P41z07t370azZs2Yezpq2haoC3p6VTtB5EdKc+jGu/JFwcHBoRsSiQQAIBAo7/R5V6lP7V19MxTqA3W+wHbXrl2YMWMGNm3aBD8/P6xduxaBgYFITU1Vefz0hQsXMHToUISFhaFv377YsWMHBgwYgGvXrsHT0/OVdBEIBDA3N0dubi6AqoOpdKkEsgoZ63dZ2csTUssrypWea4ukXIIy0u20VV3jUtRVJpFBRjIld1V6KcZTVlYGKZ996mX157qimG/a+NclPsV0yuWlAtUnzVZKKll6qKoX2sQtl6kor0AZX4N+/y9biUqd804qkSqlrSYkEgkrffL/JWUSlMmU/VYve3WUl5WDL637b5zqcZeXlUMgFSi9Z4p5x6SpXIIKaYVO9epNUVFeobJcauLfTo9MJsM///wDQ0ND5l6st503YYhwBkfdUuc1cfXq1Rg/fjzGjh0LANi0aRMOHjyIiIgIzJ07V0l+3bp16N27N3NS6uLFi3Hs2DH8+OOPtb74TBE7OzsAYAwWXcgtYvsR5r/MrnJpOZ6VPquVTpX6lTrfK1RdF00o6ppTnMN0dIru1SmqKEJheSHzm5fHg4DH/rJS1KOmsNQhkUqY8zC08a9LfIrpBACeIU/lGRAAkFeWh9LKqqPVBfkClUPA2sQtlykRleCF6EWN+sll9YX6KNcvr1G2OjklOZDKXhpemvKivLIcz8qq6ifPkIfckqq41dW94opiFJSrPjlVEZmBDCKBSBfVtaJ6/ZYaSCEWiFn1BQDEQjEk+hKWH4lYgkqqRJGkCEDt6uW/RUF5AYorqk5RFuYLtXqv30R6+Hw+GjVqpLLD1Wa65G3sqOvT1FVtdKlr/etTfgB1bKxIJBJcvXoV8+a9vDGTz+cjICAAcXFxKv3ExcVhxowZLLfAwEDs27dPpXx5eTnKy1829IWFhSrl5PB4PNjb28PGxoa5J0Nbpu2dxvodGxrL/H/72W0sv7Fcp/DkzP9wPprbN9csWIMumlDUde3JtcjIz1Byr87fD/7GDzd/YH5v67MNZmL2aaqKetQUljru5t3F8lPLtfavS3y/nP2FdcjW1qCtsNC3UCm798penHp0CgCwb8A+lTfCfnvoW6YDVxe3XL+xnmMR6hpao35y2Z4uPfFF8y9qlK3OT6d/Qurzl6fXasqLxNxELE+uyufwwHDMOFr1ji3qsAjNbZTr3slHJ7Hm5hqNeqzsuhKuFq66qK4V1ev30o5L0cy6Ge7l38Pyky/fsx7OPTCt+TSWn3m+85Bbmovwu1WnCtemXv5bRKVEIepuFIAqPbV5r99EekQikdrbn7W5Pd7TyhOXsy/DUl/97dO1pTZhaqOzurbCTKR8orQ6rAysXvoTa++vOtrcUF2d6h+W1eHxeLAzstP6MFMjPSOddXid1Kmx8vTpU0ilUtjask/ytLW1RUpKiko/2dnZKuWzs1WfphkWFsY6UlpbBAKBzvOv8zvNx+TjkwFUNZ6KJzl62XvB094Txx4cQ5BrEEa1GIX1CevxcdOPMeMU2/gyEBpgR58d2JS0CUUVRWjt2Br6It1GVpZ0W4LwG+Fo3qA5rv9zHV+0/gIbEzciLqvKCPyj/x8Yc3gMXlS8QOeGnVm6jms1DuuurcOQZkNqPMk30D0QJ7JO4NyTc/i46cewNVM+kbWnW0/8dus3RPaOrNWpwC3tWsLf2R92RnZa+R/+wXCsvLISK7us1Cj/TcdvmBMcB7oPhJ2ZndovvGCPYNwsuAlfe18YGqg+kXVcm3GIuBGBwR6D1cY9se1EnHx0EqHNQzWOls1uPxsxaTH4T+v/6Jx3c9rPQVBMEABgW9A2jf69HbzR1KYpLPQt0NCiIUKahyA9Px3tGrZTOpUYAHo26Ykfkn7A46LHSs9sDG2QW5KLINcgeNp51qoh1cToVqPxR9ofSMtLQ1enrvBy8IJYIEZz2+bwd/ZHTFrVvUjTfKcx+TzSeySS/klCZ9fOKKkswens0+jo2LFW9fLfor9Hf1z85yK6OnWFvr4+XBq4MO+wIiK+CM0bNMfsdrPrXXq8rLzQ26U3Gpo0VFsXvvb9GssvL8dnH3xWJ3FGBEZg/F/jYaFvgcUdFmvtb6L3RDx88RAfWKu+70qRSa0m4XHRY/Rr0o/lPqz5MKxPWA8pSWEhtoCUpJjrqzxLAABf+32Nvx/+DR54+Nz7c631rI6RnhG6OnVlPqgU2Ra0TaUfc31zNNBvgGdlz+Bh4YEA5wAcyjiEjIIM9HTuiaYWTbG221p8uONDNDar+foJAOjXpB8uZF7AhcwLAKrK4E1Sp8ftZ2ZmwtHRERcuXIC/vz/jPnv2bJw+fRqXLl1S8iMSibB161bWfTA//fQTFi1ahJycHCV5VSMrTk5OWh3Xy8HBwcHBwVE/0OW4/TodWbGysoJAIFAyMnJycpi1I9Wxs7PTSV4sFkMs1jykx8HBwcHBwfFuUKfjuSKRCD4+Pjh+/DjjJpPJcPz4cdZIiyL+/v4seQA4duyYWnkODg4ODg6O94s6X2Y+Y8YMjB49Gm3btoWvry/Wrl2L4uJiZnfQqFGj4OjoiLCwMADAtGnT0KVLF6xatQrBwcHYuXMnrly5gl9++UWr+OSzWJoW2nJwcHBwcHDUH+T9tlarUeg1sH79emrUqBGJRCLy9fWlixcvMs+6dOlCo0ePZslHR0dT06ZNSSQSUcuWLengwYNax/Xo0SNC1TVy3B/3x/1xf9wf98f9vWV/jx490tjX1+kC2zeBTCZDZmYmTExM6nxvv3zx7qNHj7jFu/UMrmzqJ1y51F+4sqm/vK9lQ0R48eIFHBwc1G6Vl1N/T0/SEj6fj4YNG77WOExNTd+rCvQ2wZVN/YQrl/oLVzb1l/exbMzMzLSSey8uMuTg4ODg4OB4e+GMFQ4ODg4ODo56DWes1IBYLMaCBQu4c13qIVzZ1E+4cqm/cGVTf+HKRjNv/QJbDg4ODg4OjncbbmSFg4ODg4ODo17DGSscHBwcHBwc9RrOWOHg4ODg4OCo13DGCgcHBwcHB0e9hjNWODg4ODg4OOo1OhkrGzduxAcffMCcsufv74/Dhw+zZH755Rd07doVpqam4PF4yM/PVxlWaWkpjIyMcPfuXWRlZWHYsGFo2rQp+Hw+pk+friS/efNmdOrUCRYWFrCwsEBAQADi4+NVht2tWzf8+uuvuH79OoYOHQonJycYGBigefPmWLdunZL8qVOn0KZNG4jFYri5uSEyMpL1/MyZM+jXrx8cHBzA4/Gwb98+pTBycnIwZswYODg4wNDQEL1790ZaWppK/XRJU0xMDHr16oUGDRqAx+MhMTFRZVhhYWFo164dTExMYGNjg+7du8PHxwf6+vpwcnLCihUrGFkiQlBQEHg8HhwdHaGvrw8vLy8cOnQIAPDgwQMYGBigqKgIALB79240a9ZMSU7OwoUL0axZMxgZGTHpuHTpkpKOimUeExODnj17wtramqlLR48eVfKzYcMGuLi4QF9fH35+fqz8ef78Ob744gt4eHjAwMAAjRo1wtSpU1FQUMAK4+HDhwgODoahoSFsbGwwa9YsVFZW1lAyVWEPHz4cpqamMDc3x7hx45j8AID79++Dx+Mp/V28eJEVTvW6Ex0djcmTJ6NBgwYwNjbGwIEDMWTIEKVwrK2tlfRVzD9Ac70FgCdPnmDEiBFo0KABDAwM4OXlhStXrijJ1fU7U70+DhgwAKmpqSyZsrIypbzIycmpsVy0eR8mTJiAJk2awMDAANbW1ggJCUFKSorK8BTrl7u7O5ydnZXqeVxcHLp37w4jIyOIxWKIRCLo6+sjICCAecd1LZsXL15g+vTpcHZ2hoGBAdq3b4/Lly+r1PFtKJuKigrMmTMHXl5eMDIygoODA0aNGoXMzEyW3JIlS9C+fXsYGhrC3NxcbXjVdWzXrh0aN27MKpv09HSEhoYybUiLFi1gY2MDAwMDtWWjTV9z8+ZNDBw4EC4uLuDxeFi7dq1aPceOHYv58+fj/v37GDduHFxdXWFgYIAmTZpgwYIFkEgkLPmkpCR06tRJZbsMaNcnEBG+/fZb2NvbK6W1JmpqSwGga9euSu3Q559/rjFcTf1DbfVVQusbA4koNjaWDh48SHfu3KHU1FT6+uuvSU9Pj5KTkxmZNWvWUFhYGIWFhREAysvLUxnW/v37qXnz5kRElJGRQVOnTqWtW7dSq1ataNq0aUryw4YNow0bNlBCQgLdvn2bxowZQ2ZmZvT48WOW3LNnz0hPT4+ys7MpPDycpk6dSqdOnaL09HTatm0bGRgY0Pr16xn5e/fukaGhIc2YMYNu3bpF69evJ4FAQEeOHGFkDh06RN988w3FxMQQANq7dy8rTplMRh9++CF16tSJ4uPjKSUlhT777DNq1KgRFRUVqc1PbdL022+/0aJFi2jz5s0EgBISElSGFRgYSFu2bKHk5GQ6d+4ciUQiMjQ0pPj4eIqKiiIDAwP6+eefiYho9erV9OGHHxIAGjVqFN26dYvmz59Penp6dOPGDVq3bh0FBQUREdH58+dJIBDQihUrlOTkbN++nY4dO0bp6emUnJxM48aNI1NTU8rNzWXpqFjm06ZNo+XLl1N8fDzduXOH5s2bR3p6enTt2jVGfufOnSQSiSgiIoJu3rxJ48ePJ3Nzc8rJySEiohs3btBHH31EsbGxdPfuXTp+/Di5u7vTwIEDmTAqKyvJ09OTAgICKCEhgQ4dOkRWVlY0b948teVCRNS7d2/y9vamixcv0tmzZ8nNzY2GDh3KPM/IyCAA9Pfff1NWVhbzJ5FIWOFUrzuBgYHk5OREx48fpytXrtCHH35I1tbW1Lt3b8rKyqLHjx+Th4cHdenSRUlfxfzTpt4+f/6cnJ2dacyYMXTp0iW6d+8eHT16lO7evcvS8XW8M4r1MTExkfr06aP0Pnz++edKedG+ffsay0Wb9+Hnn3+m06dPU0ZGBl29epX69etHTk5OVFlZyZJTrF+///478Xg8MjAwoLNnzzL1fNu2bWRqakphYWH05ZdfkrGxMc2cOZMuX75M/fv3J1dXVyotLdW5bAYPHkwtWrSg06dPU1paGi1YsIBMTU3/lfbsdZRNfn4+BQQE0K5duyglJYXi4uLI19eXfHx8WHLffvstrV69mmbMmEFmZmZqw1PUMTIykgCQubk5XblyhebPn09CoZAaNmxIoaGhlJSURNOnTyehUEju7u6UkJCgtmy06Wvi4+Np5syZFBUVRXZ2drRmzRqVOlZWVpKVlRVdunSJDh8+TGPGjKGjR49Seno67d+/n2xsbOirr75i5AsKCsjW1paGDx9OycnJSu0ykXZ9wrJly8jMzIz27dtH169fZ6VVHZraUqKqS4bHjx/Pas8KCgrUhkmkXf9QG31V8cq3LltYWNCvv/6q5H7y5MkajZVPP/2U5syZo+TepUsXlRWoOpWVlWRiYkJbt25luf/222/k5+en1t+kSZOoW7duzO/Zs2dTy5YtWTJDhgyhwMBAlf5VGSupqakEgGW0SaVSsra2ps2bN2tMixx1aSJ62TmqM1YU+emnn8jMzIwA0OnTp4mIaM6cOeTh4UEJCQnk6OhI/fr1U0qLn58fTZgwgbp3704bN24koqpGNTg4mBW+XE4dBQUFTEeuiLoyl9OiRQtatGgR89vX15cmT57M/JZKpeTg4EBhYWFqw4iOjiaRSEQVFRVEVGUs8Pl8ys7OZmQ2btxIpqamVF5erjKMW7duEQC6fPky43b48GHi8Xj05MkTItKtPOQAIIFAQLt372bcbt++TQCoc+fOGvUdM2YMk3/a1Ns5c+ZQx44dNer1ut8ZIqLc3FxWfczPzyc9PT2VeREXF6dRZ13y//r16wRAyUhTrF+DBw+mPn36sOqXn58f2djY0Pz580kmk5GdnR19//33jP/8/HwSi8UUFRXFqtua8qekpIQEAgEdOHCAJdOmTRv65ptvWG5vY9nIiY+PJwD04MEDpWdbtmyp0VhRZPDgwRQQEMDS0cPDg3g8HhUUFDBl89133xGPx6Njx46pLRtFtOlrnJ2d1RorZ86cIXt7e5LJZCqfr1ixglxdXZnfP/30E1lYWLDaHXm7rI7qfYKmeqgObdpSbfteRTT1D7XVVxW1XrMilUqxc+dOFBcXw9/fXye/MpkMBw4cQEhISG2jR0lJCSoqKmBpaclyj42NrTHcgoIClp+4uDgEBASwZAIDAxEXF6e1LuXl5QAAfX19xo3P50MsFuPcuXNah6MuTZoYM2YMunbtyvyOi4tD27ZtAYAJKzAwEKmpqRgyZAg2bNigcvg8MDAQ586dw7lz59C/f38mLF3yRyKR4JdffoGZmRm8vb0Zd01lLpPJ8OLFC0ZfiUSCq1evsuLm8/kICAiosWwKCgpgamoKoVDI6O/l5QVbW1uW/oWFhbh586bKMOLi4mBubs7kIQAEBASAz+crTW/1798fNjY26NixI2JjY1nPTp06BR6Ph/v37zNuUqmUlSb59Fl8fDxsbGwwYsQIWFhYMPor6qtYt7Upl9jYWLRt2xaDBg2CjY0NWrdujc2bNyul9994Z+RTc/Jwrl69ioqKCqW8aNSokU7vniaKi4uxZcsWuLq6wsnJiXF3dnbG5cuXmfjj4uLQs2dPVv3q2LEjcnNzYWNjAx8fH2RnZyMqKop5p83MzODn54cLFy6w6ram/KmsrIRUKmW1FwBgYGCg1F68zWVTUFAAHo9X43SPKlxcXLBw4ULmd1xcHHx9fVk6tmrVCkQEsViMjIwMZGdnIzAwEHw+H+fOnVNbNnVJbGws+vXrBx6Pp/K5qrLp3LkzRCIR4yZvl/Py8lSGUb1PkKdVsWzkaa2pTda2Ld2+fTusrKzg6emJefPmoaSkhPVcVdnUVN9qo686dDZWbty4AWNjY4jFYnz++efYu3cvWrRooVMY8nl9Pz8/XaNnmDNnDhwcHFiZUF5ejiNHjjAdbXUuXLiAXbt24bPPPmPcsrOzWR0ZANja2qKwsBClpaVa6SJ/kefNm4e8vDxIJBIsX74cjx8/RlZW1iulSRvs7e3RqFEj5ndWVhbS0tLQoUMHeHp6MmkCAC8vL4SEhCA7O1spHFtbWzx69AgffPABHBwcAKjPn+r+Dxw4AGNjY+jr62PNmjU4duwYrKysmOeaynzlypUoKirC4MGDAQBPnz6FVCrVKm45T58+xeLFi7UqX/kzVWRnZ8PGxoblJhQKYWlpyfgxNjbGqlWrsHv3bhw8eBAdO3bEgAEDWAaLoaEhPDw8oKenxwqneuNta2uLoKAgHD9+HD4+PigrK0NQUBCkUilLX5lMxuSfNvX23r172LhxI9zd3XH06FFMnDgRU6dOxdatWxk//8Y7I5PJMH36dFZ9zM7OhkgkUpkX6spFF3766ScYGxvD2NgYhw8fxrFjx1idhJOTE4iIVRdsbW1Z8cs7oYULFyIoKAgA4OPjgx49ejBz7ra2tozRq23ZmJiYwN/fH4sXL0ZmZiakUil+//13xMXFsdqLt7lsysrKMGfOHAwdOlTnW4SbNGnCajuysrJw+PBhlo6tW7cGj8fDnDlzmI+BTZs2QSqVMnmoqmzqkv3796stm7t372L9+vWYMGEC41abtqh6nyCX07Vd1KYtHTZsGH7//XecPHkS8+bNw7Zt2zBixAiWn+plo6l/qI2+6hBqFmHj4eGBxMREFBQUYM+ePRg9ejROnz6tk8Gyf/9+9O3bF3x+7QZ2li1bhp07d+LUqVOsr5MTJ07AxsYGLVu2VPKTnJyMkJAQLFiwAL169apVvOrQ09NDTEwMxo0bB0tLSwgEAgQEBCAoKAik5W0G6tKkDWFhYazfKSkpyM/Px/nz5xm3EydOAADmzp1bY1jl5eVqX8Ca6NatGxITE/H06VNs3rwZgwcPxqVLl5hOv6Yy37FjBxYtWoT9+/crGQnaUlhYiODgYLRo0YJl+b8urKysMGPGDOZ3u3btkJmZie+//57JP19fX7ULOxVp0KAB3N3d4eXlBRcXF5SWluLcuXM4deoUevTowcj5+vrq9M7IZDK0bdsWS5cuBVDVwCcnJ2PTpk0YPXo0gH/nnZk8eTKSk5N1GmV8VYYPH46ePXsiKysLK1euxODBg3H+/Hnm3YqOjoajo2ONYcjf3QkTJiA4OBhLly7FokWLcPHiRURERDDv3ZMnT3Ruz7Zt24ZPP/0Ujo6OEAgEaNOmDYYOHYqrV68yMm9r2VRUVGDw4MEgImzcuFFn/8ePH2f9lslkePToERISEhg3ExMTmJqa4s8//8QPP/wAoKoNaNOmDascalM22nD79m1kZmay3k/FOHv37o1BgwZh/PjxtY7jVfqE2qBo9Hp5ecHe3h49evRAeno6mjRpAkC5bP5NdC5BkUgENzc3+Pj4ICwsDN7e3ipXpNdEbGxsrTpEoOoLfNmyZfjrr7/wwQcfaBXurVu30KNHD3z22WeYP38+65mdnZ3SKvecnByYmprCwMBAa718fHyQmJiI/Px8ZGVl4ciRI3j27BkaN278SmnSlSlTpuD58+f48MMP0bBhQ8b95MmTAIAPP/wQQqEQFRUVAICBAwcyU0iZmZmoqKhg5aG6/LGzs2O5GRkZwc3NDR9++CHCw8MhFAoRHh7OPFdXNjt37sR//vMfREdHs0aUrKysIBAItIr7xYsX6N27N0xMTLB3717WSIY6/eXPVGFnZ4fc3FyWW2VlJZ4/f67WD1D19SbfDaKOyspKpR1yimmys7PDixcvYGVlxYQl17d3794a06VYb+3t7ZU+Ipo3b46HDx8yv1/3OzNlyhQcOHAAJ0+eZNVHOzs7SCSSGvPiVTAzM4O7uzs6d+6MPXv2ICUlBXv37mWeV69f8jQpxi/fydGiRQvGLScnh5WHOTk5yM3N1eqdUcyfJk2a4PTp0ygqKsKjR48QHx+PiooKVnvxNpaN3FB58OABjh07pvOoSnWmTJnC7EpR1DEnJwfOzs5IT09ndrXMnz8fT548YfJQVdnUFbGxsejZs6eSEZGZmYlu3bqhffv2+OWXX1jPdGmL1PUJivWwejjqykaXtlQR+WhUTW2apv6hNvqq45XNTZlMxqzZ0Ia0tDQ8ePAAPXv21DmuFStWYPHixThy5AhrPQFQ9RX0559/Ks1N3rx5E926dcPo0aOxZMkSpTD9/f2VrMVjx47pvA5HjpmZGaytrZGWloYrV65onCutKU26QESYMmUK9u7di9mzZzPzznIcHR3h4uKCxMREJCYmIjAwEACwZs0abNmyBUDVtlBDQ0PWWpPa5o9ivVBX5lFRURg7diyioqIQHBzMeiYSieDj48OKWyaT4fjx46y4CwsL0atXL4hEIsTGxio1Hv7+/rhx4wbL+JA3oupGA/39/ZGfn6/0las4DaOKxMRE2Nvbq30OAAKBgJWm1NRUPHz4kEmTv78/kpKS8OzZMyas33//HUDV2iRFHTWVS4cOHZS2pN65cwfOzs4AXu87o1gfT5w4AVdXV5a8j48P9PT0asyLuoKqNhKw2qnq9cvf3x9///03q35dvnwZhoaGSE1NhaurK+zs7HD8+HEmDwsLCxEXF4fi4mJW3dblnTEyMoK9vT3y8vJw9OhRpizexrKRGyppaWn4+++/0aBBA7WymlDUsVevXkpr7BTT5OPjAzs7O2zatIkxTtSVTV2xf/9+pbJ58uQJunbtCh8fH2zZskVpNMff3x9nzpxhtcvHjh2Dh4cHLCwsGLea+gTFeiinsLAQly5dUls22ral1ZHneU1tmqb6Vht91aLLaty5c+cyWwKTkpJo7ty5xOPx6K+//mJksrKyKCEhgdlaeObMGUpISKBnz54REdH3339P/fr1Uwo7ISGBEhISyMfHh4YNG0YJCQl08+ZN5vmyZctIJBLRnj17WFurXrx4QUREly9fJgsLC2YXCFHV1lZra2saMWIEy4/illr5Vr9Zs2bR7du3acOGDUpb/V68eMHoB4BWr15NCQkJrFXu0dHRdPLkSUpPT6d9+/aRs7MzffTRRzXmp6Y0EVVtXUxISKCDBw8SANq5cyclJCRQVlYWq1yaNm1KZmZmdOrUKUpNTSUrKyv6+OOP6cqVK7Rz504yNDRkbZE7f/48AaAxY8bQ7du3acGCBcTn82nYsGEsHc+fP09CoZBWrlzJyCluTSsqKqJ58+ZRXFwc3b9/n65cuUJjx44lsVjM7I5SVebbt28noVBIGzZsYKU9Pz+fkdm5cyeJxWKKjIykW7du0WeffUbm5ubMTpmCggLy8/MjLy8vunv3Lisc+TZV+dblXr16UWJiIh05coSsra212rrcunVrunTpEp07d47c3d1ZW5cjIyNpx44ddPv2bbp9+zYtWbKE+Hw+RUREMDKXLl0id3d3Onr0KFN3/P39yc7OjqKioujKlSvk6+tL9vb2FBcXRxkZGXT06FHS19dntp0fOXKEjIyMyM3NjaWfNvU2Pj6ehEIhLVmyhNLS0mj79u1kaGhIv//+OxG93ndm4sSJTH1UDKekpISR+fzzz6lRo0Z04sQJunLlCvn7+5O/v3+N5aLpfUhPT6elS5fSlStX6MGDB3T+/Hnq168fWVpasrZpdu/encaMGcPUr+3bt7O2Lsvr+ezZs8nU1JR2795NM2fOJLFYTCKRiA4ePEghISFkaWmptBtCm/w5cuQIHT58mO7du0d//fUXeXt7k5+fH7P1/W0rG4lEQv3796eGDRtSYmIiK1zF3S8PHjyghIQEWrRoERkbGzPtqmKb1717d+rYsSOjY2xsLAkEAvr2228pISGBKZvvvvuO4uLi6O7duzRkyBDi8XgUEhJCSUlJasuGSHNfU15ezsjY29vTzJkzKSEhgdLS0oiIKCcnh/T09Oiff/5h/Dx+/Jjc3NyoR48e9PjxY1b65eTn55OtrS2NHDmSkpOTVbbL2vQJy5YtI3Nzc9q/fz+TVm22LtfUlt69e5e+++47unLlCmVkZND+/fupcePGzC5FxbJR3CqvqX+orb6q0MlY+fTTT8nZ2ZlEIhFZW1tTjx49WIYKEdGCBQsIgNLfli1biIioY8eOKrfzqvLj7OzMPHd2dlYps2DBAiIimj9/Pg0fPlwrXRTDJaraZt2qVSsSiUTUuHFjRlfF56rCGT16NCOzbt06atiwIenp6VGjRo1o/vz5arfGapsmoqotfppkRo8erVIGAAmFQnJ0dKRly5apzHMHBwcSiUTUsmVLsra2pmPHjinJRUdHU9OmTRm5gwcPMs9KS0spNDSUCcfe3p769+9P8fHxjIyqMu/SpYvGPCUiWr9+PTVq1IhEIhH5+vrSxYsXNZYLAMrIyGDk7t+/T0FBQWRgYEBWVlb01VdfsToBVTx79oyGDh1KxsbGZGpqSmPHjmU1GJGRkdS8eXMyNDQkU1NT8vX1ZW311KSf/Byc/v37U5cuXcja2pr09PTI2dmZhg4dSt27d2f0dXR0pE2bNinpqKneEhH9+eef5OnpSWKxmJo1a0a//PIL8+x1vjPq0q0oV1paSpMmTSILCwsyNDSk0NBQVuOuCk3vw5MnTygoKIhsbGxIT0+PGjZsSMOGDaOUlBRWOM7OzrRgwQJW/XJzcyMnJyeleh4WFkYNGzYkQ0NDatiwIVlYWJBYLKYePXqQj4+PyvZMU/7s2rWLGjduTCKRiOzs7Gjy5MksQ/1tKxv5VnJVfydPnmTk1LVVijLq2kWgauu/vGzmzJlDtra2pKenR+7u7tSzZ0+ysbHRWDaa8lBdWrp06UJERL/++it16NCBFaa6ell9POD69evUsWNHEovFKttlbfoEmUxG//3vf8nW1pZJa2pqqtqykVNTW/rw4UPq3LkzWVpaklgsJjc3N5o1a5bSOSvy90aRmvqHV9G3Oq98zoou/PPPPyQUCllnSNQVXl5etGvXrjoP933h6tWrZGZmpnSo2avyOsv8fYB7Z+ovXNnUX15n2fTr14+WL19e5+Fy1My/ejfQ8+fPsXr1aqVtTK+KRCLBwIEDme2FHLpTWVmJ9evXsxan1gWvq8zfF7h3pv7ClU395XW2Ox07dsTQoUPrPFyOmuERabm3loODg4ODg4PjDcDduszBwcHBwcFRr+GMFQ4ODg4ODo56DWescHBwcHBwcNRrOGOFg4ODg4ODo17DGSscHBwcHBwc9RrOWOHg4ODg4OCo13DGCgfHO8aYMWPA4/HA4/Ggp6cHW1tb9OzZExEREZDJZDqFFRkZCXNz89ejqBa4uLhg7dq1Su4LFy5Eq1at/nV9AODUqVNM/vJ4PBgYGKBly5ZKF9dVLwdXV1fMnj0bZWVlb0RvDo63Gc5Y4eB4B+nduzeysrJw//59HD58GN26dcO0adPQt29fVFZWvmn16gWKF8rVhtTUVGRlZeHWrVuYMGECJk6cqHSpm7wc7t27hzVr1uDnn3/GggULXileDo73Ec5Y4eB4BxGLxbCzs4OjoyPatGmDr7/+Gvv378fhw4cRGRnJyK1evRpeXl4wMjKCk5MTJk2ahKKiIgBVIwhjx45FQUEBM0KwcOFCAMC2bdvQtm1bmJiYwM7ODsOGDWPdbK2K8vJyzJw5E46OjjAyMoKfnx9OnTpVJ+mVyWT47rvv0LBhQ4jFYrRq1QpHjhxhnt+/fx88Hg+7du1Cly5doK+vj+3bt+PZs2cYOnQoHB0dYWhoCC8vL0RFRWkVp42NDezs7ODq6oqpU6fC1dUV165dY8nIy8HJyQkDBgxAQEAAjh07Vidp5uB4n+CMFQ6O94Tu3bvD29sbMTExjBufz8cPP/yAmzdvYuvWrThx4gRmz54NAGjfvj3Wrl0LU1NTZGVlISsrCzNnzgRQNSqxePFiXL9+Hfv27cP9+/cxZsyYGuOfMmUK4uLisHPnTiQlJWHQoEHo3bs30tLSXjlt69atw6pVq7By5UokJSUhMDAQ/fv3Vwp77ty5mDZtGm7fvo3AwECUlZXBx8cHBw8eRHJyMj777DOMHDkS8fHxWsdNRDhy5AgePnwIPz8/tXLJycm4cOECRCJRrdPJwfHe8obvJuLg4KhjRo8eTSEhISqfDRkyhJo3b67W7+7du6lBgwbM7y1btpCZmZnGOC9fvkwAWDdTK/LgwQMSCAT05MkTlnuPHj1o3rx5asOV3/JuZGTE+tPT0yNvb29GzsHBgZYsWcLy265dO5o0aRIRvbxJd+3atRrTEhwcTF999ZXa5/LbtOW6CIVC4vP59L///Y8lN3r0aBIIBGRkZERisZgAEJ/Ppz179mjUgYODg43wzZpKHBwc/yZEBB6Px/z++++/ERYWhpSUFBQWFqKyshJlZWUoKSmBoaGh2nCuXr2KhQsX4vr168jLy2MW7j58+BAtWrRQkr9x4wakUimaNm3Kci8vL0eDBg1q1HnWrFlKozY//PADzpw5AwAoLCxEZmYmOnTowJLp0KEDrl+/znJr27Yt67dUKsXSpUsRHR2NJ0+eQCKRoLy8vMa0yzl79ixMTExQXl6O+Ph4TJkyBZaWlpg4cSIj061bN2zcuBHFxcVYs2YNhEIhBg4cqDFsDg4ONpyxwsHxHnH79m24uroCqFrH0bdvX0ycOBFLliyBpaUlzp07h3HjxkEikajtsIuLixEYGIjAwEBs374d1tbWePjwIQIDAyGRSFT6KSoqgkAgwNWrVyEQCFjPjI2Na9TZysoKbm5uLDdLS0ttk8zCyMiI9fv777/HunXrsHbtWmbtzvTp09WmQxFXV1dmp1TLli1x6dIlLFmyhGWsGBkZMbpHRETA29sb4eHhGDduXK305+B4X+GMFQ6O94QTJ07gxo0b+PLLLwFUjY7IZDKsWrUKfH7V8rXo6GiWH5FIBKlUynJLSUnBs2fPsGzZMjg5OQEArly5UmPcrVu3hlQqRW5uLjp16lRXSQIAmJqawsHBAefPn0eXLl0Y9/Pnz8PX17dGv+fPn0dISAhGjBgBoGqh7p07d1SODmlCIBCgtLRU7XM+n4+vv/4aM2bMwLBhw2BgYKBzHBwc7yvcAlsOjneQ8vJyZGdn48mTJ7h27RqWLl2KkJAQ9O3bF6NGjQIAuLm5oaKiAuvXr8e9e/ewbds2bNq0iRWOi4sLioqKcPz4cTx9+hQlJSVo1KgRRCIR4y82NhaLFy+uUZ+mTZti+PDhGDVqFGJiYpCRkYH4+HiEhYXh4MGDr5zeWbNmYfny5di1axdSU1Mxd+5cJCYmYtq0aTX6c3d3x7Fjx3DhwgXcvn0bEyZMQE5OjlZx5ubmIjs7Gw8ePMDu3buxbds2hISE1Ohn0KBBEAgE2LBhg9Zp4+DgALfAloPjXWP06NEEgACQUCgka2trCggIoIiICJJKpSzZ1atXk729PRkYGFBgYCD99ttvBIDy8vIYmc8//5waNGhAAGjBggVERLRjxw5ycXEhsVhM/v7+FBsbSwAoISFBrV4SiYS+/fZbcnFxIT09PbK3t6fQ0FBKSkpS68fZ2ZnWrFmj5L5gwQLWAlupVEoLFy4kR0dHZvHt4cOHmefyBbbV9Xv27BmFhISQsbEx2djY0Pz582nUqFFqFygTvVxgq5jHrq6uNHPmTCoqKmLk1C10DgsLI2tra5YsBwdHzfCIiN6YpcTBwcHBwcHBoQFuGoiDg4ODg4OjXsMZKxwcHBwcHBz1Gs5Y4eDg4ODg4KjXcMYKBwcHBwcHR72GM1Y4ODg4ODg46jWcscLBwcHBwcFRr+GMFQ4ODg4ODo56DWescHBwcHBwcNRrOGOFg4ODg4ODo17DGSscHBwcHBwc9RrOWOHg4ODg4OCo1/wfSplwKRrp2cEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df.set_index('Data e Hora BR', inplace=True)\n", + "\n", + "df[['PRECIPITAÇÃO TOTAL, HORÁRIO (mm)', 'TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)',\n", + " 'UMIDADE RELATIVA DO AR, HORARIA (%)']].plot(subplots=True)\n", + "\n", + "plt.suptitle('Séries Temporais das Variáveis')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 152, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Data e HoraPRECIPITAÇÃO TOTAL, HORÁRIO (mm)
02020-01-01 00:00:000.0
12020-01-01 01:00:000.0
22020-01-01 02:00:000.0
32020-01-01 03:00:000.0
42020-01-01 04:00:000.0
.........
87792020-12-31 19:00:000.0
87802020-12-31 20:00:000.0
87812020-12-31 21:00:000.0
87822020-12-31 22:00:000.0
87832020-12-31 23:00:000.0
\n", + "

8784 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " Data e Hora PRECIPITAÇÃO TOTAL, HORÁRIO (mm)\n", + "0 2020-01-01 00:00:00 0.0\n", + "1 2020-01-01 01:00:00 0.0\n", + "2 2020-01-01 02:00:00 0.0\n", + "3 2020-01-01 03:00:00 0.0\n", + "4 2020-01-01 04:00:00 0.0\n", + "... ... ...\n", + "8779 2020-12-31 19:00:00 0.0\n", + "8780 2020-12-31 20:00:00 0.0\n", + "8781 2020-12-31 21:00:00 0.0\n", + "8782 2020-12-31 22:00:00 0.0\n", + "8783 2020-12-31 23:00:00 0.0\n", + "\n", + "[8784 rows x 2 columns]" + ] + }, + "execution_count": 152, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.groupby('Data e Hora')['PRECIPITAÇÃO TOTAL, HORÁRIO (mm)'].sum().reset_index()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Agrupei os valores de precipitação por data " + ] + }, + { + "cell_type": "code", + "execution_count": 153, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Data e Hora BRDataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)Data e Hora
031/12/2019 21:0001/01/202000:000.00.00.00.970.011.00.02020-01-01 00:00:00
131/12/2019 22:0001/01/202001:000.00.00.00.880.010.00.02020-01-01 01:00:00
231/12/2019 23:0001/01/202002:000.024.00.00.880.0345.00.02020-01-01 02:00:00
301/01/2020 00:0001/01/202003:000.00.00.00.830.0332.00.02020-01-01 03:00:00
401/01/2020 01:0001/01/202004:000.00.00.00.890.0316.00.02020-01-01 04:00:00
\n", + "
" + ], + "text/plain": [ + " Data e Hora BR Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "0 31/12/2019 21:00 01/01/2020 00:00 0.0 \n", + "1 31/12/2019 22:00 01/01/2020 01:00 0.0 \n", + "2 31/12/2019 23:00 01/01/2020 02:00 0.0 \n", + "3 01/01/2020 00:00 01/01/2020 03:00 0.0 \n", + "4 01/01/2020 01:00 01/01/2020 04:00 0.0 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "0 0.0 \n", + "1 0.0 \n", + "2 24.0 \n", + "3 0.0 \n", + "4 0.0 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) UMIDADE RELATIVA DO AR, HORARIA (%) \\\n", + "0 0.0 0.97 \n", + "1 0.0 0.88 \n", + "2 0.0 0.88 \n", + "3 0.0 0.83 \n", + "4 0.0 0.89 \n", + "\n", + " RADIACAO GLOBAL (Kj/m²) VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n", + "0 0.0 11.0 \n", + "1 0.0 10.0 \n", + "2 0.0 345.0 \n", + "3 0.0 332.0 \n", + "4 0.0 316.0 \n", + "\n", + " VENTO, VELOCIDADE HORARIA (m/s) Data e Hora \n", + "0 0.0 2020-01-01 00:00:00 \n", + "1 0.0 2020-01-01 01:00:00 \n", + "2 0.0 2020-01-01 02:00:00 \n", + "3 0.0 2020-01-01 03:00:00 \n", + "4 0.0 2020-01-01 04:00:00 " + ] + }, + "execution_count": 153, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head().reset_index()" + ] + }, + { + "cell_type": "code", + "execution_count": 154, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dtype('\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Data e Hora BRDataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)Data e HoraMês
031/12/2019 21:0001/01/202000:000.00.00.00.970.011.00.02020-01-01 00:00:00January
131/12/2019 22:0001/01/202001:000.00.00.00.880.010.00.02020-01-01 01:00:00January
231/12/2019 23:0001/01/202002:000.024.00.00.880.0345.00.02020-01-01 02:00:00January
301/01/2020 00:0001/01/202003:000.00.00.00.830.0332.00.02020-01-01 03:00:00January
401/01/2020 01:0001/01/202004:000.00.00.00.890.0316.00.02020-01-01 04:00:00January
\n", + "" + ], + "text/plain": [ + " Data e Hora BR Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "0 31/12/2019 21:00 01/01/2020 00:00 0.0 \n", + "1 31/12/2019 22:00 01/01/2020 01:00 0.0 \n", + "2 31/12/2019 23:00 01/01/2020 02:00 0.0 \n", + "3 01/01/2020 00:00 01/01/2020 03:00 0.0 \n", + "4 01/01/2020 01:00 01/01/2020 04:00 0.0 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "0 0.0 \n", + "1 0.0 \n", + "2 24.0 \n", + "3 0.0 \n", + "4 0.0 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) UMIDADE RELATIVA DO AR, HORARIA (%) \\\n", + "0 0.0 0.97 \n", + "1 0.0 0.88 \n", + "2 0.0 0.88 \n", + "3 0.0 0.83 \n", + "4 0.0 0.89 \n", + "\n", + " RADIACAO GLOBAL (Kj/m²) VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n", + "0 0.0 11.0 \n", + "1 0.0 10.0 \n", + "2 0.0 345.0 \n", + "3 0.0 332.0 \n", + "4 0.0 316.0 \n", + "\n", + " VENTO, VELOCIDADE HORARIA (m/s) Data e Hora Mês \n", + "0 0.0 2020-01-01 00:00:00 January \n", + "1 0.0 2020-01-01 01:00:00 January \n", + "2 0.0 2020-01-01 02:00:00 January \n", + "3 0.0 2020-01-01 03:00:00 January \n", + "4 0.0 2020-01-01 04:00:00 January " + ] + }, + "execution_count": 158, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head().reset_index()" + ] + }, + { + "cell_type": "code", + "execution_count": 159, + "metadata": {}, + "outputs": [], + "source": [ + "precipitacao_mensal = df.groupby('Data e Hora')['PRECIPITAÇÃO TOTAL, HORÁRIO (mm)'].sum().reset_index()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 160, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Data e HoraTEMPERATURA DO AR - BULBO SECO, HORARIA (°C)
02020-01-01 00:00:000.0
12020-01-01 01:00:000.0
22020-01-01 02:00:0024.0
32020-01-01 03:00:000.0
42020-01-01 04:00:000.0
.........
87792020-12-31 19:00:000.0
87802020-12-31 20:00:000.0
87812020-12-31 21:00:000.0
87822020-12-31 22:00:000.0
87832020-12-31 23:00:000.0
\n", + "

8784 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " Data e Hora TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)\n", + "0 2020-01-01 00:00:00 0.0\n", + "1 2020-01-01 01:00:00 0.0\n", + "2 2020-01-01 02:00:00 24.0\n", + "3 2020-01-01 03:00:00 0.0\n", + "4 2020-01-01 04:00:00 0.0\n", + "... ... ...\n", + "8779 2020-12-31 19:00:00 0.0\n", + "8780 2020-12-31 20:00:00 0.0\n", + "8781 2020-12-31 21:00:00 0.0\n", + "8782 2020-12-31 22:00:00 0.0\n", + "8783 2020-12-31 23:00:00 0.0\n", + "\n", + "[8784 rows x 2 columns]" + ] + }, + "execution_count": 160, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.groupby('Data e Hora')['TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)'].sum().reset_index()" + ] + }, + { + "cell_type": "code", + "execution_count": 161, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)Data e HoraMês
Data e Hora BR
31/12/2019 21:0001/01/202000:000.00.00.00.970.011.00.02020-01-01 00:00:00January
31/12/2019 22:0001/01/202001:000.00.00.00.880.010.00.02020-01-01 01:00:00January
31/12/2019 23:0001/01/202002:000.024.00.00.880.0345.00.02020-01-01 02:00:00January
01/01/2020 00:0001/01/202003:000.00.00.00.830.0332.00.02020-01-01 03:00:00January
01/01/2020 01:0001/01/202004:000.00.00.00.890.0316.00.02020-01-01 04:00:00January
\n", + "
" + ], + "text/plain": [ + " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 01/01/2020 00:00 0.0 \n", + "31/12/2019 22:00 01/01/2020 01:00 0.0 \n", + "31/12/2019 23:00 01/01/2020 02:00 0.0 \n", + "01/01/2020 00:00 01/01/2020 03:00 0.0 \n", + "01/01/2020 01:00 01/01/2020 04:00 0.0 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 \n", + "31/12/2019 22:00 0.0 \n", + "31/12/2019 23:00 24.0 \n", + "01/01/2020 00:00 0.0 \n", + "01/01/2020 01:00 0.0 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 \n", + "31/12/2019 22:00 0.0 \n", + "31/12/2019 23:00 0.0 \n", + "01/01/2020 00:00 0.0 \n", + "01/01/2020 01:00 0.0 \n", + "\n", + " UMIDADE RELATIVA DO AR, HORARIA (%) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.97 \n", + "31/12/2019 22:00 0.88 \n", + "31/12/2019 23:00 0.88 \n", + "01/01/2020 00:00 0.83 \n", + "01/01/2020 01:00 0.89 \n", + "\n", + " RADIACAO GLOBAL (Kj/m²) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 \n", + "31/12/2019 22:00 0.0 \n", + "31/12/2019 23:00 0.0 \n", + "01/01/2020 00:00 0.0 \n", + "01/01/2020 01:00 0.0 \n", + "\n", + " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 11.0 \n", + "31/12/2019 22:00 10.0 \n", + "31/12/2019 23:00 345.0 \n", + "01/01/2020 00:00 332.0 \n", + "01/01/2020 01:00 316.0 \n", + "\n", + " VENTO, VELOCIDADE HORARIA (m/s) Data e Hora Mês \n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 2020-01-01 00:00:00 January \n", + "31/12/2019 22:00 0.0 2020-01-01 01:00:00 January \n", + "31/12/2019 23:00 0.0 2020-01-01 02:00:00 January \n", + "01/01/2020 00:00 0.0 2020-01-01 03:00:00 January \n", + "01/01/2020 01:00 0.0 2020-01-01 04:00:00 January " + ] + }, + "execution_count": 161, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 162, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 162, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head().reset_index" + ] + }, + { + "cell_type": "code", + "execution_count": 163, + "metadata": {}, + "outputs": [], + "source": [ + "df['Mês'] = df['Data e Hora'].dt.strftime('%B')" + ] + }, + { + "cell_type": "code", + "execution_count": 164, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)Data e HoraMês
Data e Hora BR
31/12/2019 21:0001/01/202000:000.00.00.00.970.011.00.02020-01-01 00:00:00January
31/12/2019 22:0001/01/202001:000.00.00.00.880.010.00.02020-01-01 01:00:00January
31/12/2019 23:0001/01/202002:000.024.00.00.880.0345.00.02020-01-01 02:00:00January
01/01/2020 00:0001/01/202003:000.00.00.00.830.0332.00.02020-01-01 03:00:00January
01/01/2020 01:0001/01/202004:000.00.00.00.890.0316.00.02020-01-01 04:00:00January
\n", + "
" + ], + "text/plain": [ + " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 01/01/2020 00:00 0.0 \n", + "31/12/2019 22:00 01/01/2020 01:00 0.0 \n", + "31/12/2019 23:00 01/01/2020 02:00 0.0 \n", + "01/01/2020 00:00 01/01/2020 03:00 0.0 \n", + "01/01/2020 01:00 01/01/2020 04:00 0.0 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 \n", + "31/12/2019 22:00 0.0 \n", + "31/12/2019 23:00 24.0 \n", + "01/01/2020 00:00 0.0 \n", + "01/01/2020 01:00 0.0 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 \n", + "31/12/2019 22:00 0.0 \n", + "31/12/2019 23:00 0.0 \n", + "01/01/2020 00:00 0.0 \n", + "01/01/2020 01:00 0.0 \n", + "\n", + " UMIDADE RELATIVA DO AR, HORARIA (%) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.97 \n", + "31/12/2019 22:00 0.88 \n", + "31/12/2019 23:00 0.88 \n", + "01/01/2020 00:00 0.83 \n", + "01/01/2020 01:00 0.89 \n", + "\n", + " RADIACAO GLOBAL (Kj/m²) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 \n", + "31/12/2019 22:00 0.0 \n", + "31/12/2019 23:00 0.0 \n", + "01/01/2020 00:00 0.0 \n", + "01/01/2020 01:00 0.0 \n", + "\n", + " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 11.0 \n", + "31/12/2019 22:00 10.0 \n", + "31/12/2019 23:00 345.0 \n", + "01/01/2020 00:00 332.0 \n", + "01/01/2020 01:00 316.0 \n", + "\n", + " VENTO, VELOCIDADE HORARIA (m/s) Data e Hora Mês \n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 2020-01-01 00:00:00 January \n", + "31/12/2019 22:00 0.0 2020-01-01 01:00:00 January \n", + "31/12/2019 23:00 0.0 2020-01-01 02:00:00 January \n", + "01/01/2020 00:00 0.0 2020-01-01 03:00:00 January \n", + "01/01/2020 01:00 0.0 2020-01-01 04:00:00 January " + ] + }, + "execution_count": 164, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 165, + "metadata": {}, + "outputs": [], + "source": [ + "df['Ano'] = df['Data e Hora'].dt.year" + ] + }, + { + "cell_type": "code", + "execution_count": 166, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)Data e HoraMêsAno
Data e Hora BR
31/12/2019 21:0001/01/202000:000.00.00.00.970.011.00.02020-01-01 00:00:00January2020
31/12/2019 22:0001/01/202001:000.00.00.00.880.010.00.02020-01-01 01:00:00January2020
31/12/2019 23:0001/01/202002:000.024.00.00.880.0345.00.02020-01-01 02:00:00January2020
01/01/2020 00:0001/01/202003:000.00.00.00.830.0332.00.02020-01-01 03:00:00January2020
01/01/2020 01:0001/01/202004:000.00.00.00.890.0316.00.02020-01-01 04:00:00January2020
\n", + "
" + ], + "text/plain": [ + " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 01/01/2020 00:00 0.0 \n", + "31/12/2019 22:00 01/01/2020 01:00 0.0 \n", + "31/12/2019 23:00 01/01/2020 02:00 0.0 \n", + "01/01/2020 00:00 01/01/2020 03:00 0.0 \n", + "01/01/2020 01:00 01/01/2020 04:00 0.0 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 \n", + "31/12/2019 22:00 0.0 \n", + "31/12/2019 23:00 24.0 \n", + "01/01/2020 00:00 0.0 \n", + "01/01/2020 01:00 0.0 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 \n", + "31/12/2019 22:00 0.0 \n", + "31/12/2019 23:00 0.0 \n", + "01/01/2020 00:00 0.0 \n", + "01/01/2020 01:00 0.0 \n", + "\n", + " UMIDADE RELATIVA DO AR, HORARIA (%) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.97 \n", + "31/12/2019 22:00 0.88 \n", + "31/12/2019 23:00 0.88 \n", + "01/01/2020 00:00 0.83 \n", + "01/01/2020 01:00 0.89 \n", + "\n", + " RADIACAO GLOBAL (Kj/m²) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 \n", + "31/12/2019 22:00 0.0 \n", + "31/12/2019 23:00 0.0 \n", + "01/01/2020 00:00 0.0 \n", + "01/01/2020 01:00 0.0 \n", + "\n", + " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 11.0 \n", + "31/12/2019 22:00 10.0 \n", + "31/12/2019 23:00 345.0 \n", + "01/01/2020 00:00 332.0 \n", + "01/01/2020 01:00 316.0 \n", + "\n", + " VENTO, VELOCIDADE HORARIA (m/s) Data e Hora \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 2020-01-01 00:00:00 \n", + "31/12/2019 22:00 0.0 2020-01-01 01:00:00 \n", + "31/12/2019 23:00 0.0 2020-01-01 02:00:00 \n", + "01/01/2020 00:00 0.0 2020-01-01 03:00:00 \n", + "01/01/2020 01:00 0.0 2020-01-01 04:00:00 \n", + "\n", + " Mês Ano \n", + "Data e Hora BR \n", + "31/12/2019 21:00 January 2020 \n", + "31/12/2019 22:00 January 2020 \n", + "31/12/2019 23:00 January 2020 \n", + "01/01/2020 00:00 January 2020 \n", + "01/01/2020 01:00 January 2020 " + ] + }, + "execution_count": 166, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 167, + "metadata": {}, + "outputs": [], + "source": [ + "precip_mensal = df.groupby(['Ano', 'Mês'])['PRECIPITAÇÃO TOTAL, HORÁRIO (mm)'].sum().reset_index()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": {}, + "outputs": [], + "source": [ + "df['TEMPERATURA DO AR - BULBO SECO, HORARIA (°C'] = pd.to_numeric(df['TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)'], errors='coerce')" + ] + }, + { + "cell_type": "code", + "execution_count": 193, + "metadata": {}, + "outputs": [], + "source": [ + "Temperatura_média = df.groupby(['Mês'])['TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)'].mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 194, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Mês\n", + "April 2.504167\n", + "August 2.432796\n", + "December 2.604839\n", + "February 3.231322\n", + "January 2.706989\n", + "July 1.571237\n", + "June 1.938889\n", + "March 2.399194\n", + "May 2.077957\n", + "November 2.684722\n", + "October 2.376344\n", + "September 2.462500\n", + "Name: TEMPERATURA DO AR - BULBO SECO, HORARIA (°C), dtype: float64" + ] + }, + "execution_count": 194, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Temperatura_média\n" + ] + }, + { + "cell_type": "code", + "execution_count": 195, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
MêsTEMPERATURA DO AR - BULBO SECO, HORARIA (°C)
0April2.504167
1August2.432796
2December2.604839
3February3.231322
4January2.706989
5July1.571237
6June1.938889
7March2.399194
8May2.077957
9November2.684722
10October2.376344
11September2.462500
\n", + "
" + ], + "text/plain": [ + " Mês TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)\n", + "0 April 2.504167\n", + "1 August 2.432796\n", + "2 December 2.604839\n", + "3 February 3.231322\n", + "4 January 2.706989\n", + "5 July 1.571237\n", + "6 June 1.938889\n", + "7 March 2.399194\n", + "8 May 2.077957\n", + "9 November 2.684722\n", + "10 October 2.376344\n", + "11 September 2.462500" + ] + }, + "execution_count": 195, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Temperatura_média.reset_index()" + ] + }, + { + "cell_type": "code", + "execution_count": 171, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)Data e HoraMêsAnoTEMPERATURA DO AR - BULBO SECO, HORARIA (°C
Data e Hora BR
31/12/2019 21:0001/01/202000:000.00.00.00.970.011.00.02020-01-01 00:00:00January20200.0
31/12/2019 22:0001/01/202001:000.00.00.00.880.010.00.02020-01-01 01:00:00January20200.0
31/12/2019 23:0001/01/202002:000.024.00.00.880.0345.00.02020-01-01 02:00:00January202024.0
01/01/2020 00:0001/01/202003:000.00.00.00.830.0332.00.02020-01-01 03:00:00January20200.0
01/01/2020 01:0001/01/202004:000.00.00.00.890.0316.00.02020-01-01 04:00:00January20200.0
\n", + "
" + ], + "text/plain": [ + " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 01/01/2020 00:00 0.0 \n", + "31/12/2019 22:00 01/01/2020 01:00 0.0 \n", + "31/12/2019 23:00 01/01/2020 02:00 0.0 \n", + "01/01/2020 00:00 01/01/2020 03:00 0.0 \n", + "01/01/2020 01:00 01/01/2020 04:00 0.0 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 \n", + "31/12/2019 22:00 0.0 \n", + "31/12/2019 23:00 24.0 \n", + "01/01/2020 00:00 0.0 \n", + "01/01/2020 01:00 0.0 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 \n", + "31/12/2019 22:00 0.0 \n", + "31/12/2019 23:00 0.0 \n", + "01/01/2020 00:00 0.0 \n", + "01/01/2020 01:00 0.0 \n", + "\n", + " UMIDADE RELATIVA DO AR, HORARIA (%) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.97 \n", + "31/12/2019 22:00 0.88 \n", + "31/12/2019 23:00 0.88 \n", + "01/01/2020 00:00 0.83 \n", + "01/01/2020 01:00 0.89 \n", + "\n", + " RADIACAO GLOBAL (Kj/m²) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 \n", + "31/12/2019 22:00 0.0 \n", + "31/12/2019 23:00 0.0 \n", + "01/01/2020 00:00 0.0 \n", + "01/01/2020 01:00 0.0 \n", + "\n", + " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 11.0 \n", + "31/12/2019 22:00 10.0 \n", + "31/12/2019 23:00 345.0 \n", + "01/01/2020 00:00 332.0 \n", + "01/01/2020 01:00 316.0 \n", + "\n", + " VENTO, VELOCIDADE HORARIA (m/s) Data e Hora \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 2020-01-01 00:00:00 \n", + "31/12/2019 22:00 0.0 2020-01-01 01:00:00 \n", + "31/12/2019 23:00 0.0 2020-01-01 02:00:00 \n", + "01/01/2020 00:00 0.0 2020-01-01 03:00:00 \n", + "01/01/2020 01:00 0.0 2020-01-01 04:00:00 \n", + "\n", + " Mês Ano TEMPERATURA DO AR - BULBO SECO, HORARIA (°C \n", + "Data e Hora BR \n", + "31/12/2019 21:00 January 2020 0.0 \n", + "31/12/2019 22:00 January 2020 0.0 \n", + "31/12/2019 23:00 January 2020 24.0 \n", + "01/01/2020 00:00 January 2020 0.0 \n", + "01/01/2020 01:00 January 2020 0.0 " + ] + }, + "execution_count": 171, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 172, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dtype('O')" + ] + }, + "execution_count": 172, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "(precip_mensal['Mês'].dtype)" + ] + }, + { + "cell_type": "code", + "execution_count": 174, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACel0lEQVR4nOzdeZyN9f//8ecZxjCYGTvD2GUnIUkoZAuJUiRLkiKRVGixpLR8kiRLG5GRhNJmrUipZAmVNbKTbcY6xszr94ffnK/pjMzhXOeMM4/77eZW57quc53XPOfMOdd5nff1vlxmZgIAAAAAAAD8KCTQBQAAAAAAACDzoSkFAAAAAAAAv6MpBQAAAAAAAL+jKQUAAAAAAAC/oykFAAAAAAAAv6MpBQAAAAAAAL+jKQUAAAAAAAC/oykFAAAAAAAAv6MpBQAAcJWaOnWqxo0bF+gyAAAALgtNKQAAgKvQvHnz9NBDD+m6665L1/Y7duyQy+XSlClT3MuGDRsml8vlUIXBw9ucEhMTlZyc7GBFAAAEB5pSAABcJVwuV7r+fffdd4EuNWDGjx+fqukSrHbs2KEePXpo+vTpuvHGGwNdjltK8yYkJES7du3yWB8fH68cOXLI5XLpkUceCUCFzjIz9e/fX7lz51aePHk0duzYNLc7cOCABg4cqAoVKig8PFw5c+ZUzZo1NXLkSB07dsy/RQMAEEBZA10AAABIn2nTpqW6PXXqVC1atMhjecWKFf1ZVoYyfvx45c+fX926dQt0KY5au3atJk2apDvuuOOK9vPMM89o0KBBPqrq/4SFhWnGjBl68sknUy2fM2eOzx8rI4mNjdWcOXP07rvv6tSpUxo0aJDq1KmjOnXquLdZuXKlWrZsqRMnTqhz586qWbOmJOnXX3/VSy+9pGXLlmnhwoWB+hEAAPArmlIAAFwlOnfunOr2Tz/9pEWLFnksDxZmpjNnzihHjhzU8S9t27b1yX6yZs2qrFl9fzjYsmXLNJtSsbGxuu222zR79myfP2ZGsGLFCj3++OPuv8k///xTy5cvdzeljh07pjvuuENZsmTRmjVrVKFChVT3f+GFF/TOO+/4vW4AAAKF0/cAAAgiycnJGjNmjCpXrqzs2bOrUKFC6tWrl44ePZpqu5IlS6pVq1b67rvvVKtWLeXIkUNVq1Z1n/o3Z84cVa1aVdmzZ1fNmjW1Zs2aVPfv1q2bcuXKpb/++kvNmjVTzpw5FR0drREjRsjMrqimBQsWuGuaNGmSJGny5Mlq1KiRChYsqLCwMFWqVEkTJkzwuP/vv/+upUuXuk9lvPnmmyVdfE6gKVOmyOVyaceOHT6r42JSMtu5c6datWqlXLlyqWjRonrrrbckSevXr1ejRo2UM2dOlShRQrGxsR77OHbsmPr376+YmBiFhYWpbNmyevnllz3mLzp27Ji6deumyMhIRUVFqWvXrmmeFpZWLlfyM6bo1KmT1q5dq40bN7qX7d+/X9988406deqU5n0SEhI0dOhQlS1bVmFhYYqJidGTTz6phISEVNulnPr36aefqkqVKgoLC1PlypU1f/78VNsdP35c/fv3V8mSJRUWFqaCBQvq1ltv1erVq93bfP/997rrrrtUvHhx92M+9thjOn36tFc/b4rSpUtr+vTp+u233/TTTz9p3rx5KleunHv9pEmTtGfPHo0ePdqjISVJhQoV0jPPPHNZjw0AwNWIkVIAAASRXr16acqUKerevbseffRRbd++XePGjdOaNWv0ww8/KDQ01L3t1q1b1alTJ/Xq1UudO3fW//73P7Vu3VoTJ07UkCFD1Lt3b0nSqFGj1KFDB23atEkhIf/3fVZSUpKaN2+uG264Qa+88ormz5+voUOH6ty5cxoxYsRl1bRp0yZ17NhRvXr1Us+ePVW+fHlJ0oQJE1S5cmW1adNGWbNm1eeff67evXsrOTlZffr0kSSNGTNGffv2Va5cufT0009LOv8h/3JcSR3/JSkpSS1atFCDBg30yiuvaPr06XrkkUeUM2dOPf3007r33nvVrl07TZw4UV26dFHdunVVqlQpSdKpU6fUsGFD7dmzR7169VLx4sX1448/avDgwdq3b5/GjBkj6fzIrttvv13Lly/XQw89pIoVK2ru3Lnq2rVrun72K/0ZJalBgwYqVqyYYmNj3c+FmTNnKleuXLrttts8tk9OTlabNm20fPlyPfjgg6pYsaLWr1+v119/XZs3b9ann36aavvly5drzpw56t27t3Lnzq2xY8eqffv22rlzp/LlyydJeuihh/TJJ5/okUceUaVKlXT48GEtX75cf/75p3ty+FmzZunUqVN6+OGHlS9fPv3yyy968803tXv3bs2aNStdP+uFUh7z2muvlXS+Ode6dWv3+nnz5ilHjhy68847vd43AABByQAAwFWpT58+duFb+ffff2+SbPr06am2mz9/vsfyEiVKmCT78ccf3csWLFhgkixHjhz2999/u5dPmjTJJNm3337rXta1a1eTZH379nUvS05Otttuu82yZctm//zzz2XXNH/+fI+f9dSpUx7LmjVrZqVLl061rHLlytawYUOPbYcOHWppHfZMnjzZJNn27dt9WkdaUjJ78cUX3cuOHj1qOXLkMJfLZR999JF7+caNG02SDR061L3s+eeft5w5c9rmzZtT7XfQoEGWJUsW27lzp5mZffrppybJXnnlFfc2586ds/r165skmzx5snt5Wrlcyc+Ysr9//vnHBg4caGXLlnWvq127tnXv3t3MzCRZnz593OumTZtmISEh9v3336fa38SJE02S/fDDD+5lkixbtmy2detW97LffvvNJNmbb77pXhYZGZnqMdKS1s86atQoc7lcqf4GLvb8SUtSUpKtXbvWNm7c6LEuT548Vr169XTtBwCAzIDT9wAACBKzZs1SZGSkbr31Vh06dMj9r2bNmsqVK5e+/fbbVNtXqlRJdevWdd9OmfemUaNGKl68uMfyv/76y+MxL7yCWsppVWfPntXixYsvq6ZSpUqpWbNmHo9z4XxOcXFxOnTokBo2bKi//vpLcXFx6c4ovZys44EHHnD/f1RUlMqXL6+cOXOqQ4cO7uXly5dXVFRUqsxnzZql+vXrK0+ePKmybNKkiZKSkrRs2TJJ0ldffaWsWbPq4Ycfdt83S5Ys6tu3b7rq81XWnTp10tatW7Vy5Ur3fy926t6sWbNUsWJFVahQIdXP1qhRI0nyeJ40adJEZcqUcd+uVq2aIiIiUuUVFRWln3/+WXv37k3Xz3ry5EkdOnRIN954o8zM45TV9AoJCVH16tXdo+suFB8fr9y5c1/WfgEACEacvgcAQJDYsmWL4uLiVLBgwTTXHzx4MNXtCxtPkhQZGSlJiomJSXP5v+eACgkJUenSpVMtu+aaayTJPUeTtzWlnKr2bz/88IOGDh2qFStW6NSpU6nWxcXFuWv0FafqyJ49uwoUKJBqWWRkpIoVK+Yxt1NkZGSqzLds2aJ169Z53D9FSpZ///23ihQpoly5cqVan1aTJC2+yrpGjRqqUKGCYmNjFRUVpcKFC7ubTP+2ZcsW/fnnn5f82VL8+7krSXny5EmV1yuvvKKuXbsqJiZGNWvWVMuWLdWlS5dUz9mdO3fqueee07x58zye3040OyMiInT8+HGf7xcAgKsVTSkAAIJEcnKyChYsqOnTp6e5/t8f+LNkyZLmdhdbbv+awNyJmtK6wt22bdvUuHFjVahQQaNHj1ZMTIyyZcumr776Sq+//rrHJN9pSWuSc+n8HE9pcaqOK8k8OTlZt956q8cV7VKkNASvhC9+xgt16tRJEyZMUO7cuXX33XenmpPsQsnJyapatapGjx6d5vp/N0rTk1eHDh1Uv359zZ07VwsXLtSrr76ql19+WXPmzFGLFi2UlJSkW2+9VUeOHNFTTz2lChUqKGfOnNqzZ4+6devm9c+aHhUqVNDatWt19uxZZcuWzef7BwDgakNTCgCAIFGmTBktXrxY9erVS7Op4mvJycn666+/UjVDNm/eLOn8Fex8VdPnn3+uhIQEzZs3L9UImX+f0iVdvPmUJ08eSeevShcVFeVe/vfffztShxPKlCmjEydOqEmTJv+5XYkSJbRkyRKdOHEi1WipTZs2XfIxfP0zdurUSc8995z27dunadOmXXS7MmXK6LffflPjxo0v+ju8HEWKFFHv3r3Vu3dvHTx4UNddd51eeOEFtWjRQuvXr9fmzZv1wQcfqEuXLu77LFq0yGeP/2+tW7fWihUrNHv2bHXs2NGxxwEA4GrBnFIAAASJDh06KCkpSc8//7zHunPnzunYsWM+f8xx48a5/9/MNG7cOIWGhqpx48Y+qyllVMyFo2Di4uI0efJkj21z5syZ5j5T5h9KmXdJOj+H0AcffHDJx7+cOpzQoUMHrVixQgsWLPBYd+zYMZ07d06S1LJlS507d04TJkxwr09KStKbb755ycfw9c9YpkwZjRkzRqNGjdL1119/0e06dOigPXv26J133vFYd/r0aZ08edKrx01KSvI4/a5gwYKKjo5WQkKCpLR/VjPTG2+84dVjeeOhhx5SkSJF9Pjjj7sbuBc6ePCgRo4c6djjAwCQ0TBSCgCAINGwYUP16tVLo0aN0tq1a9W0aVOFhoZqy5YtmjVrlt544w2fXoo+e/bsmj9/vrp27ao6dero66+/1pdffqkhQ4a4T8vzRU1NmzZVtmzZ1Lp1a/Xq1UsnTpzQO++8o4IFC2rfvn2ptq1Zs6YmTJigkSNHqmzZsipYsKAaNWqkpk2bqnjx4urRo4eeeOIJZcmSRe+//74KFCignTt3puvn9aYOJzzxxBOaN2+eWrVqpW7duqlmzZo6efKk1q9fr08++UQ7duxQ/vz51bp1a9WrV0+DBg3Sjh07VKlSJc2ZMyddcyQ58TP269fvktvcd999+vjjj/XQQw/p22+/Vb169ZSUlKSNGzfq448/1oIFC1SrVq10P+bx48dVrFgx3Xnnnapevbpy5cqlxYsXa+XKlXrttdcknT+VrkyZMho4cKD27NmjiIgIzZ4922NuKV/KkyeP5s6dq5YtW+raa69V586dVbNmTUnS6tWrNWPGjFQXHwAAINjRlAIAIIhMnDhRNWvW1KRJkzRkyBBlzZpVJUuWVOfOnVWvXj2fPlaWLFk0f/58Pfzww3riiSeUO3duDR06VM8995xPaypfvrw++eQTPfPMMxo4cKAKFy6shx9+WAUKFND999+fatvnnntOf//9t1555RUdP35cDRs2VKNGjRQaGqq5c+eqd+/eevbZZ1W4cGH1799fefLkUffu3dP183pThxPCw8O1dOlSvfjii5o1a5amTp2qiIgIXXPNNRo+fLh7AvKQkBDNmzdP/fv314cffiiXy6U2bdrotddeU40aNTLkzxgSEqJPP/1Ur7/+uqZOnaq5c+cqPDxcpUuXVr9+/byeLys8PFy9e/fWwoULNWfOHCUnJ6ts2bIaP368+6qEoaGh+vzzz/Xoo49q1KhRyp49u+644w498sgjql69uhM/pqTzV7PcsGGDXn31VX355ZeaNm2aQkJCVLFiRQ0aNCjVFS0BAAh2LrucWUsBAECm1q1bN33yySc6ceJEoEsBAADAVYo5pQAAAAAAAOB3NKUAAAAAAADgdzSlAAAAAAAA4HfMKQUAAAAAAAC/Y6QUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8LmugC3BacnKy9u7dq9y5c8vlcgW6HAAAAAAAgKBmZjp+/Liio6MVEnLx8VBB35Tau3evYmJiAl0GAAAAAABAprJr1y4VK1bsouuDvimVO3duSeeDiIiICHA1AAAAAAAAwS0+Pl4xMTHunszFBH1TKuWUvYiICJpSAAAAAAAAfnKpaZSY6BwAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfpehmlIvvfSSXC6X+vfv71525swZ9enTR/ny5VOuXLnUvn17HThwIHBFAgAAAAAA4IplmKbUypUrNWnSJFWrVi3V8scee0yff/65Zs2apaVLl2rv3r1q165dgKoEAAAAAACAL2SIptSJEyd077336p133lGePHncy+Pi4vTee+9p9OjRatSokWrWrKnJkyfrxx9/1E8//RTAigEAAAAAAHAlsga6AEnq06ePbrvtNjVp0kQjR450L1+1apUSExPVpEkT97IKFSqoePHiWrFihW644QaPfSUkJCghIcF9Oz4+XpKUmJioxMREB38KAAAAAAAApLf/EvCm1EcffaTVq1dr5cqVHuv279+vbNmyKSoqKtXyQoUKaf/+/Wnub9SoURo+fLjH8oULFyo8PNwnNQMAAAAAACBtp06dStd2AW1K7dq1S/369dOiRYuUPXt2n+xz8ODBGjBggPt2fHy8YmJi1LRpU0VERPjkMQAAAAAg4ykb6AIyoK2BLgDIlFLOWruUgDalVq1apYMHD+q6665zL0tKStKyZcs0btw4LViwQGfPntWxY8dSjZY6cOCAChcunOY+w8LCFBYW5rE8NDRUoaGhPv8ZAAAAACBjOBPoAjIgPgMCgZDe/ktAm1KNGzfW+vXrUy3r3r27KlSooKeeekoxMTEKDQ3VkiVL1L59e0nSpk2btHPnTtWtWzcQJQMAAAAAAMAHAtqUyp07t6pUqZJqWc6cOZUvXz738h49emjAgAHKmzevIiIi1LdvX9WtWzfNSc4BAAAAAABwdQj4ROeX8vrrryskJETt27dXQkKCmjVrpvHjxwe6LAAAAAAAAFwBl5lZoItwUnx8vCIjIxUXF8dE5wAAAACCWKFAF5ABHQh0AUCmlN5eTIgfawIAAAAAAAAk0ZQCAAAAAABAANCUAgAAAAAAgN/RlAIAAAAAAIDf0ZQCAAAAAACA39GUAgAAAAAAgN/RlAIAAAAAAIDf0ZQCAAAAAACA39GUAgAAAAAAgN/RlAIAAAAAAIDf0ZQCAAAAAACA39GUAgAAAAAAgN/RlAIAAAAAAIDf0ZQCAAAAAACA39GUAgAAAAAAgN/RlAIAAAAAAIDf0ZQCAAAAAACA39GUAgAAAAAAgN/RlAIAAAAAAIDf0ZQCAAAAAACA39GUAgAAAAAAgN/RlAIAAAAAAIDf0ZQCAAAAAACA39GUAgAAAAAAgN/RlAIAAAAAAIDf0ZQCAAAAAACA32UNdAEAAAAAMpOwQBeQQSUEugAA8DtGSgEAAAAAAMDvaEoBAAAAAADA72hKAQAAAAAAwO9oSgEAAAAAAMDvaEoBAAAAAADA72hKAQAAAAAAwO9oSgEAAAAAAMDvaEoBAAAAAADA72hKAQAAAAAAwO9oSgEAAAAAAMDvsga6AAAAAACZydlAFxDE/gl0AUGqdaALyIA+D3QBCBKMlAIAAAAAAIDf0ZQCAAAAAACA39GUAgAAAAAAgN/RlAIAAAAAAIDf0ZQCAAAAAACA3wW0KTVhwgRVq1ZNERERioiIUN26dfX111+71998881yuVyp/j300EMBrBgAAAAAAAC+kDWQD16sWDG99NJLKleunMxMH3zwgW6//XatWbNGlStXliT17NlTI0aMcN8nPDw8UOUCAAAAAADARwLalGrdunWq2y+88IImTJign376yd2UCg8PV+HChQNRHgAAAAAAABwS0KbUhZKSkjRr1iydPHlSdevWdS+fPn26PvzwQxUuXFitW7fWs88++5+jpRISEpSQkOC+HR8fL0lKTExUYmKicz8AAAAAgHTIEegCMihffFYhW0++yDXUB/sINny2xn9Lb/8l4E2p9evXq27dujpz5oxy5cqluXPnqlKlSpKkTp06qUSJEoqOjta6dev01FNPadOmTZozZ85F9zdq1CgNHz7cY/nChQs59Q8AAAAIuBmBLiCD+soH+4j1wT6CjS9y7eqDfQQbX+SKYHbq1Kl0becyM3O4lv909uxZ7dy5U3Fxcfrkk0/07rvvaunSpe7G1IW++eYbNW7cWFu3blWZMmXS3F9aI6ViYmJ06NAhRUREOPZz+M/dgS4gg5oZ6AJwUWUDXUAGtdUH++D1wBOvBQCQ8UUGuoAMKs4H+yBbT77IlWMuTxxz4b/Fx8crf/78iouL+89eTMBHSmXLlk1ly57/0FqzZk2tXLlSb7zxhiZNmuSxbZ06dSTpP5tSYWFhCgsL81geGhqq0NBgGHbJMMm0BcPvNlidCXQBGZQvnrO8HnjitQAAMr7TgS4gg/LFexjZeuKYyxkcc+G/pbf/EuJwHV5LTk5ONdLpQmvXrpUkFSlSxI8VAQAAAAAAwNcCOlJq8ODBatGihYoXL67jx48rNjZW3333nRYsWKBt27YpNjZWLVu2VL58+bRu3To99thjatCggapVqxbIsgEAAAAAAHCFAtqUOnjwoLp06aJ9+/YpMjJS1apV04IFC3Trrbdq165dWrx4scaMGaOTJ08qJiZG7du31zPPPBPIkgEAAAAAAOADAW1KvffeexddFxMTo6VLl/qxGgAAAAAAAPhLhptTCgAAAAAAAMGPphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPwuoBOd43J8GegCgljrQBeQAX0e6AIAAAggjg08cWyAzOiXQBcABC1GSgEAAAAAAMDvaEoBAAAAAADA72hKAQAAAAAAwO9oSgEAAAAAAMDvaEoBAAAAAADA72hKAQAAAAAAwO9oSgEAAAAAAMDvaEoBAAAAAADA72hKAQAAAAAAwO9oSgEAAAAAAMDvsga6ACDj+CXQBQSpY4EuAAAAALgCxwJdQBALC3QBGVBCoAvwK0ZKAQAAAAAAwO9oSgEAAAAAAMDvaEoBAAAAAADA72hKAQAAAAAAwO9oSgEAAAAAAMDvaEoBAAAAAADA72hKAQAAAAAAwO9oSgEAAAAAAMDvaEoBAAAAAADA72hKAQAAAAAAwO+yBroAeMsCXUAQOxjoAoLU2UAXEMQWBroAAAhyvM4CkDiedRLZZnaMlAIAAAAAAIDf0ZQCAAAAAACA39GUAgAAAAAAgN951ZSKj49XcnKyx/KkpCTFx8f7rCgAAAAAAAAEt3Q3pebOnatatWrpzJkzHuvOnDmj2rVr6/PPP/dpcQAAAAAAAAhO6W5KTZgwQU8++aTCw8M91uXMmVNPPfWUxo0b59PiAAAAAAAAEJzS3ZTasGGDbr755ouub9CggdavX++LmgAAAAAAABDk0t2UOnr0qM6dO3fR9YmJiTp69KhPigIAAAAAAEBwS3dTqmTJkvr1118vuv7XX39ViRIlfFIUAAAAAAAAglu6m1Lt2rXT008/rQMHDnis279/v5555hm1b9/ep8UBAAAAAAAgOLnMzNKz4fHjx1W3bl3t3LlTnTt3Vvny5SVJGzdu1PTp0xUTE6OffvpJuXPndrRgb8XHxysyMlJxcXGKiIgIdDk+4Ap0ARlUup7Gl0C2nsjVOWTrDF/k2toH+whGXGEXmVFYoAvIgBJ8sA/ev9LGsYEzyNUZvshVItu0+CrbwEpvLyZreneYO3du/fDDDxo8eLBmzpzpnj8qKipKnTt31gsvvJDhGlIAAAAAAADImNI9UupCZqZDhw7JzFSgQAG5XBm3u8lIqcyCb0CcQa7OIVtnMFLKOYyUQmbESClPjJRyDscGziBXZzBSyjmMlLokl8ulAgUKXHZxAAAAAAAAyNzSPdH5oUOH1KtXL91zzz3asGGDkzUBAAAAAAAgyKW7KdWtWzcVKlRId9xxh1q2bKnLOOsPAAAAAAAAkORFU2r16tW6++671aFDB+3fv1///PPPFT/4hAkTVK1aNUVERCgiIkJ169bV119/7V5/5swZ9enTR/ny5VOuXLnUvn17HThw4IofFwAAAAAAAIGV7qZU27ZtNXjwYPXr10/VqlVTwYIFr/jBixUrppdeekmrVq3Sr7/+qkaNGun222/X77//Lkl67LHH9Pnnn2vWrFlaunSp9u7dq3bt2l3x4wIAAAAAACCw0n31veTkZH300Uc6evSoOnfurMjISEcKyps3r1599VXdeeedKlCggGJjY3XnnXdKkjZu3KiKFStqxYoVuuGGG9K1P66+l1lwVQ1nkKtzyNYZXH3POVx9D5kRV9/zxNX3nMOxgTPI1Rlcfc85wTFVks+vvhcSEqJOnTr5pLi0JCUladasWTp58qTq1q2rVatWKTExUU2aNHFvU6FCBRUvXvw/m1IJCQlKSPi/N8v4+HhJUmJiohITEx2r339yBLqADMoXv1uy9USuziFbZ/gi11Af7CMYBcN7KOAtXmc98f7lHLJ1Brk6w1fHBWTrKTiOudLbf0n3SCmnrF+/XnXr1tWZM2eUK1cuxcbGqmXLloqNjVX37t1TNZgk6frrr9ctt9yil19+Oc39DRs2TMOHD/dYHhsbq/DwcEd+BgAAAAAAAJx36tQpderUyXcjpZxSvnx5rV27VnFxcfrkk0/UtWtXLV269LL3N3jwYA0YMMB9Oz4+XjExMWratGmQnL7nzGmTV784H+yDbD2Rq3PI1hm+yLWsD/YRjLYGugBc1N2BLiCDmumDfUT5YB/B5pgP9sH7V9o4NnAGuTrDF7lKZJsWX2UbWClnrV1KwJtS2bJlU9my5z8A1KxZUytXrtQbb7yhu+++W2fPntWxY8cUFRXl3v7AgQMqXLjwRfcXFhamsDDP8/9DQ0MVGhoMp2ScDnQBGZQvfrdk64lcnUO2zvBFrmd8sI9gFAzvocEqOIb5+x6vs84gV+eQrTPI1Rm+Oi4gW0/BccyV3v5Luq++5y/JyclKSEhQzZo1FRoaqiVLlrjXbdq0STt37lTdunUDWCEAAAAAAACuVEBHSg0ePFgtWrRQ8eLFdfz4ccXGxuq7777TggULFBkZqR49emjAgAHKmzevIiIi1LdvX9WtWzfdV94DAAAAAABAxpSuptTYsWPTvcNHH3003dsePHhQXbp00b59+xQZGalq1appwYIFuvXWWyVJr7/+ukJCQtS+fXslJCSoWbNmGj9+fLr3DwAAAAAAgIwpXVffK1WqVPp25nLpr7/+uuKifCk+Pl6RkZGXnPH96uEKdAEZlC8uIkm2nsjVOWTrDF/kWsgH+whGBwJdAC6qdaALyKA+98E+MtxMFxlAsg/2wftX2jg2cAa5OsMXuUpkmxZfZRtY6e3FpGuk1Pbt231WGAAAAAAAAMDXPwAAAAAAAPC7y5rofPfu3Zo3b5527typs2fPplo3evRonxQGAAAAAACA4OV1U2rJkiVq06aNSpcurY0bN6pKlSrasWOHzEzXXXedEzUCAAAAAAAgyHjdlBo8eLAGDhyo4cOHK3fu3Jo9e7YKFiyoe++9V82bN3eiRgAA/OifQBcQxJhE3hMTyGdswTHZLAAAGZXXc0r9+eef6tKliyQpa9asOn36tHLlyqURI0bo5Zdf9nmBAAAAAAAACD5eN6Vy5szpnkeqSJEi2rZtm3vdoUOHfFcZAAAAAAAAgpbXp+/dcMMNWr58uSpWrKiWLVvq8ccf1/r16zVnzhzdcMMNTtQIAAAAAACAION1U2r06NE6ceKEJGn48OE6ceKEZs6cqXLlynHlPQAAAAAAAKSL102p0qVLu/8/Z86cmjhxok8LAgAAAAAAQPDzek6pXbt2affu3e7bv/zyi/r376+3337bp4UBAAAAAAAgeHndlOrUqZO+/fZbSdL+/fvVpEkT/fLLL3r66ac1YsQInxcIAAAAAACA4ON1U2rDhg26/vrrJUkff/yxqlatqh9//FHTp0/XlClTfF0fAAAAAAAAgpDXTanExESFhYVJkhYvXqw2bdpIkipUqKB9+/b5tjoAAAAAAAAEJa+bUpUrV9bEiRP1/fffa9GiRWrevLkkae/evcqXL5/PCwQAAAAAAEDw8frqey+//LLuuOMOvfrqq+ratauqV68uSZo3b577tD4AAK5eFugCgtixQBcQpBYGugAAAIDL4nVT6uabb9ahQ4cUHx+vPHnyuJc/+OCDCg8P92lxAAAAAAAACE5eN6UkKUuWLKkaUpJUsmRJX9QDAAAAAACATMDrOaUOHDig++67T9HR0cqaNauyZMmS6h8AAAAAAABwKV6PlOrWrZt27typZ599VkWKFJHL5XKiLgAAAAAAAAQxr5tSy5cv1/fff69rr73WgXIAAAAAAACQGXh9+l5MTIzMuDIRAAAAAAAALp/XTakxY8Zo0KBB2rFjhwPlAAAAAAAAIDPw+vS9u+++W6dOnVKZMmUUHh6u0NDQVOuPHDnis+IAAAAAAAAQnLxuSo0ZM8aBMgAAAAAAAJCZeN2U6tq1qxN1AAAAAAAAIBPxuiklSdu2bdPkyZO1bds2vfHGGypYsKC+/vprFS9eXJUrV/Z1jQAAICicDXQBQYpcAQDA1cnric6XLl2qqlWr6ueff9acOXN04sQJSdJvv/2moUOH+rxAAAAAAAAABB+vm1KDBg3SyJEjtWjRImXLls29vFGjRvrpp598WhwAAAAAAACCk9dNqfXr1+uOO+7wWF6wYEEdOnTIJ0UBAAAAAAAguHndlIqKitK+ffs8lq9Zs0ZFixb1SVEAAAAAAAAIbl43pe655x499dRT2r9/v1wul5KTk/XDDz9o4MCB6tKlixM1AgAAAAAAIMh43ZR68cUXVaFCBcXExOjEiROqVKmSGjRooBtvvFHPPPOMEzUCAAAAAAAgyLjMzC7njjt37tSGDRt04sQJ1ahRQ+XKlfN1bT4RHx+vyMhIxcXFKSIiItDl+IAr0AVkUJf1NP4XsvVErs4hW2eQq3PI1hnk6hyydQa5OodsnUGuzvBFrhLZpsVX2QZWensxWS/3AYoXL67ixYtf7t0BAAAAAACQiaW7KTVixIh0bffcc89ddjEAAAAAAADIHNJ9+l5ISIiio6NVsGBBXewuLpdLq1ev9mmBV4rT9zILhuU6g1ydQ7bOIFfnkK0zyNU5ZOsMcnUO2TqDXJ3B6XvO4fS9NLVo0ULffPONatWqpfvvv1+tWrVSSIjX86QDAAAAAAAA6b/63pdffqlt27apTp06euKJJ1S0aFE99dRT2rRpk5P1AQAAAAAAIAh5NdQpOjpagwcP1qZNmzRz5kwdPHhQtWvXVr169XT69GmnagQAAAAAAECQueyr79WuXVs7duzQH3/8oTVr1igxMVE5cuTwZW0AAAAAAAAIUl5PCrVixQr17NlThQsX1ptvvqmuXbtq7969QTKJOAAAAAAAAPwh3SOlXnnlFU2ZMkWHDh3Svffeq++//17VqlVzsjYAAAAAAAAEKZeZpet6gyEhISpevLhatWqlbNmyXXS70aNHp/vBR40apTlz5mjjxo3KkSOHbrzxRr388ssqX768e5ubb75ZS5cuTXW/Xr16aeLEiel6jPRehvDqwSUz08alXp1Brs4hW2eQq3PI1hnk6hyydQa5OodsnUGuzvBFrhLZpsVX2QZWensx6R4p1aBBA7lcLv3+++8X3cbl8u4JtXTpUvXp00e1a9fWuXPnNGTIEDVt2lR//PGHcubM6d6uZ8+eGjFihPt2eHi4V48DAAAAAACAjCXdTanvvvvO5w8+f/78VLenTJmiggULatWqVWrQoIF7eXh4uAoXLuzzxwcAAAAAAEBgXPbV95wQFxcnScqbN2+q5dOnT9eHH36owoULq3Xr1nr22WcvOloqISFBCQkJ7tvx8fGSpMTERCUmJjpUuT9xhcO0+eJ3S7aeyNU5ZOsMcnUO2TqDXJ1Dts4gV+eQrTPI1Rm++mxNtp6CoW+hdPdf0j2nlNOSk5PVpk0bHTt2TMuXL3cvf/vtt1WiRAlFR0dr3bp1euqpp3T99ddrzpw5ae5n2LBhGj58uMfy2NhYTvsDAAAAAABw2KlTp9SpU6dLzimVYZpSDz/8sL7++mstX75cxYoVu+h233zzjRo3bqytW7eqTJkyHuvTGikVExOjQ4cOBclE55GBLiCDivPBPsjWE7k6h2ydQa7OIVtnkKtzyNYZ5OocsnUGuTrDF7lKZJsWX2UbWPHx8cqfP7/vJjp30iOPPKIvvvhCy5Yt+8+GlCTVqVNHki7alAoLC1NYWJjH8tDQUIWGhvqm4IA6HegCMihf/G7J1hO5OodsnUGuziFbZ5Crc8jWGeTqHLJ1Brk6w1efrcnWUzD0LZTu/ktAm1Jmpr59+2ru3Ln67rvvVKpUqUveZ+3atZKkIkWKOFwdAAAAAAAAnHLZTalTp05p586dOnv2bKrl1apVS/c++vTpo9jYWH322WfKnTu39u/fL0mKjIxUjhw5tG3bNsXGxqply5bKly+f1q1bp8cee0wNGjTw6nEAAAAAAACQsXg9p9Q///yj7t276+uvv05zfVJSUvof3OVKc/nkyZPVrVs37dq1S507d9aGDRt08uRJxcTE6I477tAzzzyT7vmh4uPjFRkZecnzGK8eaWcGX0yNRraeyNU5ZOsMcnUO2TqDXJ1Dts4gV+eQrTPI1Rm+mpqabD1liGm/r1h6ezFej5Tq37+/jh07pp9//lk333yz5s6dqwMHDmjkyJF67bXXvNrXpfphMTExWrp0qbclAgAAAAAAIIPzuin1zTff6LPPPlOtWrUUEhKiEiVK6NZbb1VERIRGjRql2267zYk6AQAAAAAAEERCvL3DyZMnVbBgQUlSnjx59M8//0iSqlatqtWrV/u2OgAAAAAAAAQlr5tS5cuX16ZNmyRJ1atX16RJk7Rnzx5NnDiRK+IBAAAAAAAgXbw+fa9fv37at2+fJGno0KFq3ry5pk+frmzZsmnKlCm+rg8AAAAAAABByOur7/3bqVOntHHjRhUvXlz58+f3VV0+w9X3MguuquEMcnUO2TqDXJ1Dts4gV+eQrTPI1Tlk6wxydQZX33NO5rr6nlen7yUmJqpMmTL6888/3cvCw8N13XXXZciGFAAAAAAAADImr5pSoaGhOnPmjFO1AAAAAAAAIJPweqLzPn366OWXX9a5c+ecqAcAAAAAAACZgNcTna9cuVJLlizRwoULVbVqVeXMmTPV+jlz5visOAAAAAAAAAQnr5tSUVFRat++vRO1AAAAAAAAIJPwuik1efJkJ+oAAAAAAABAJuL1nFIAAAAAAADAlfJ6pFSpUqXkcrkuuv6vv/66ooIAAAAAAAAQ/LxuSvXv3z/V7cTERK1Zs0bz58/XE0884au6AAAAAAAAEMS8bkr169cvzeVvvfWWfv311ysuCAAAAAAAAMHPZ3NKtWjRQrNnz/bV7gAAAAAAABDEfNaU+uSTT5Q3b15f7Q4AAAAAAABBzOvT92rUqJFqonMz0/79+/XPP/9o/PjxPi0OAAAAAAAAwcnrptTtt9+eqikVEhKiAgUK6Oabb1aFChV8WhwAAAAAAACCk8vMLNBFOCk+Pl6RkZGKi4tTREREoMvxAdelN8mUfPE0JltP5OocsnUGuTqHbJ1Brs4hW2eQq3PI1hnk6gxftRHI1lNwtGjS24vxek6pLFmy6ODBgx7LDx8+rCxZsni7OwAAAAAAAGRCXjelLjawKiEhQdmyZbviggAAAAAAABD80j2n1NixYyVJLpdL7777rnLlyuVel5SUpGXLljGnFAAAAAAAANIl3U2p119/XdL5kVITJ05MdapetmzZVLJkSU2cONH3FQIAAAAAACDopLsptX37dknSLbfcojlz5ihPnjyOFQUAAAAAAIDglu6mVIpvv/3WiToAAAAAAACQiXjdlJKk3bt3a968edq5c6fOnj2bat3o0aN9UhgAAAAAAACCl9dNqSVLlqhNmzYqXbq0Nm7cqCpVqmjHjh0yM1133XVO1AgAAAAAAIAgE+LtHQYPHqyBAwdq/fr1yp49u2bPnq1du3apYcOGuuuuu5yoEQAAAAAAAEHG66bUn3/+qS5dukiSsmbNqtOnTytXrlwaMWKEXn75ZZ8XCAAAAAAAgODjdVMqZ86c7nmkihQpom3btrnXHTp0yHeVAQAAAAAAIGh5PafUDTfcoOXLl6tixYpq2bKlHn/8ca1fv15z5szRDTfc4ESNAAAAAAAACDJeN6VGjx6tEydOSJKGDx+uEydOaObMmSpXrhxX3gMAAAAAAEC6eNWUSkpK0u7du1WtWjVJ50/lmzhxoiOFAQAAAAAAIHh5NadUlixZ1LRpUx09etSpegAAAAAAAJAJeD3ReZUqVfTXX385UQsAAAAAAAAyCa+bUiNHjtTAgQP1xRdfaN++fYqPj0/1DwAAAAAAALgUl5mZN3cICfm/PpbL5XL/v5nJ5XIpKSnJd9X5QHx8vCIjIxUXF6eIiIhAl+MDrktvkil59TS+CLL1RK7OIVtnkKtzyNYZ5OocsnUGuTqHbJ1Brs7wRa4S2abFV9kGVnp7MV5ffe/bb7+9osIAAAAAAAAAr5tSDRs2dKIOAAAAAAAAZCJezyklSd9//706d+6sG2+8UXv27JEkTZs2TcuXL/dpcQAAAAAAAAhOXjelZs+erWbNmilHjhxavXq1EhISJElxcXF68cUXfV4gAAAAAAAAgs9lXX1v4sSJeueddxQaGupeXq9ePa1evdqnxQEAAAAAACA4ed2U2rRpkxo0aOCxPDIyUseOHfNqX6NGjVLt2rWVO3duFSxYUG3bttWmTZtSbXPmzBn16dNH+fLlU65cudS+fXsdOHDA27IBAAAAAACQgXjdlCpcuLC2bt3qsXz58uUqXbq0V/taunSp+vTpo59++kmLFi1SYmKimjZtqpMnT7q3eeyxx/T5559r1qxZWrp0qfbu3at27dp5WzYAAAAAAAAyEK+vvtezZ0/169dP77//vlwul/bu3asVK1Zo4MCBevbZZ73a1/z581PdnjJligoWLKhVq1apQYMGiouL03vvvafY2Fg1atRIkjR58mRVrFhRP/30k2644QZvywcAAAAAAEAG4HVTatCgQUpOTlbjxo116tQpNWjQQGFhYRo4cKD69u17RcXExcVJkvLmzStJWrVqlRITE9WkSRP3NhUqVFDx4sW1YsWKNJtSCQkJ7snXJSk+Pl6SlJiYqMTExCuqL2PIEegCMihf/G7J1hO5OodsnUGuziFbZ5Crc8jWGeTqHLJ1Brk6w1efrcnWUzD0LZTu/ovLzOxyHuDs2bPaunWrTpw4oUqVKilXrlyXsxu35ORktWnTRseOHdPy5cslSbGxserevXuqJpMkXX/99brlllv08ssve+xn2LBhGj58uMfy2NhYhYeHX1GNAAAAAAAA+G+nTp1Sp06dFBcXp4iIiItu5/VIqRTZsmVT7ty5lTt37ituSElSnz59tGHDBndD6nINHjxYAwYMcN+Oj49XTEyMmjZt+p9BXD0iA11ABhXng32QrSdydQ7ZOoNcnUO2ziBX55CtM8jVOWTrDHJ1hi9ylcg2Lb7KNrBSzlq7FK+bUufOndPw4cM1duxYnThxQpKUK1cu9e3bV0OHDlVoaKi3u9QjjzyiL774QsuWLVOxYsXcywsXLqyzZ8/q2LFjioqKci8/cOCAChcunOa+wsLCFBYW5rE8NDT0smrLeE4HuoAMyhe/W7L1RK7OIVtnkKtzyNYZ5OocsnUGuTqHbJ1Brs7w1WdrsvUUDH0Lpbv/4vXV9/r27au3335br7zyitasWaM1a9bolVde0XvvvadHH33Uq32ZmR555BHNnTtX33zzjUqVKpVqfc2aNRUaGqolS5a4l23atEk7d+5U3bp1vS0dAAAAAAAAGYTXc0pFRkbqo48+UosWLVIt/+qrr9SxY0f3ZOXp0bt3b8XGxuqzzz5T+fLlUz1GjhznJzx7+OGH9dVXX2nKlCmKiIhwT6b+448/pusx4uPjFRkZecnzGK8erkAXkEFd1tRo/0K2nsjVOWTrDHJ1Dtk6g1ydQ7bOIFfnkK0zyNUZvshVItu0+CrbwEpvL8br0/fCwsJUsmRJj+WlSpVStmzZvNrXhAkTJEk333xzquWTJ09Wt27dJEmvv/66QkJC1L59eyUkJKhZs2YaP368t2UDAAAAAAAgA/F6pNSIESO0ceNGTZ482T13U0JCgnr06KFy5cpp6NChjhR6uRgplVnwDYgzyNU5ZOsMcnUO2TqDXJ1Dts4gV+eQrTPI1RmMlHIOI6X+05o1a7RkyRIVK1ZM1atXlyT99ttvOnv2rBo3bqx27dq5t50zZ85llA4AAAAAAIBg53VTKioqSu3bt0+1LCYmxmcFAQAAAAAAIPh53ZSaPHmyE3UAAAAAAAAgEwkJdAEAAAAAAADIfLweKXX48GE999xz+vbbb3Xw4EElJyenWn/kyBGfFQcAAAAAAIDg5HVT6r777tPWrVvVo0cPFSpUSC4Xs+UDAAAAAADAO143pb7//nstX77cfeU9AAAAAAAAwFtezylVoUIFnT592olaAAAAAAAAkEl43ZQaP368nn76aS1dulSHDx9WfHx8qn8AAAAAAADApXh9+l5UVJTi4+PVqFGjVMvNTC6XS0lJST4rDgAAAAAAAMHJ66bUvffeq9DQUMXGxjLROQAAAAAAAC6L102pDRs2aM2aNSpfvrwT9QAAAAAAACAT8HpOqVq1amnXrl1O1AIAAAAAAIBMwuuRUn379lW/fv30xBNPqGrVqgoNDU21vlq1aj4rDgAAAAAAAMHJZWbmzR1CQjwHV7lcrgw70Xl8fLwiIyMVFxeniIiIQJfjA8zhlTavnsYXQbaeyNU5ZOsMcnUO2TqDXJ1Dts4gV+eQrTPI1Rm+yFUi27T4KtvASm8vxuuRUtu3b7+iwgAAAAAAAACvm1IlSpRwog4AAAAAAABkIl5PdC5J06ZNU7169RQdHa2///5bkjRmzBh99tlnPi0OAAAAAAAAwcnrptSECRM0YMAAtWzZUseOHXPPIRUVFaUxY8b4uj4AAAAAAAAEIa+bUm+++abeeecdPf3008qSJYt7ea1atbR+/XqfFgcAAAAAAIDg5HVTavv27apRo4bH8rCwMJ08edInRQEAAAAAACC4ed2UKlWqlNauXeuxfP78+apYsaIvagIAAAAAAECQS/fV90aMGKGBAwdqwIAB6tOnj86cOSMz0y+//KIZM2Zo1KhRevfdd52sFQAAAAAAAEHCZWaWng2zZMmiffv2qWDBgpo+fbqGDRumbdu2SZKio6M1fPhw9ejRw9FiL0d8fLwiIyMVFxeniIiIQJfjA65AF5BBpetpfAlk64lcnUO2ziBX55CtM8jVOWTrDHJ1Dtk6g1yd4YtcJbJNi6+yDaz09mLS3ZQKCQnR/v37VbBgQfeyU6dO6cSJE6mWZTQ0pTIL3mycQa7OIVtnkKtzyNYZ5OocsnUGuTqHbJ1Brs6gKeWczNWUSvfpe5LkcqV+woSHhys8PPzyKgQAAAAAAECm5VVT6pprrvFoTP3bkSNHrqggAAAAAAAABD+vmlLDhw9XZGSkU7UAAAAAAAAgk/CqKXXPPfdk6PmjAAAAAAAAcHUISe+GlzptDwAAAAAAAEivdDel0nmRPgAAAAAAAOCS0n36XnJyspN1AAAAAAAAIBNJ90gpAAAAAAAAwFdoSgEAAAAAAMDvaEoBAAAAAADA72hKAQAAAAAAwO8uqyk1bdo01atXT9HR0fr7778lSWPGjNFnn33m0+IAAAAAAAAQnLxuSk2YMEEDBgxQy5YtdezYMSUlJUmSoqKiNGbMGF/XBwAAAAAAgCDkdVPqzTff1DvvvKOnn35aWbJkcS+vVauW1q9f79PiAAAAAAAAEJy8bkpt375dNWrU8FgeFhamkydP+qQoAAAAAAAABDevm1KlSpXS2rVrPZbPnz9fFStW9EVNAAAAAAAACHJZvb3DgAED1KdPH505c0Zmpl9++UUzZszQqFGj9O677zpRIwAAAAAAAIKM102pBx54QDly5NAzzzyjU6dOqVOnToqOjtYbb7yhe+65x4kaAQAAAAAAEGS8Pn1Pku69915t2bJFJ06c0P79+7V792716NHjsgpYtmyZWrdurejoaLlcLn366aep1nfr1k0ulyvVv+bNm1/WYwEAAAAAACBjuKymVIrw8HAVLFjwigo4efKkqlevrrfeeuui2zRv3lz79u1z/5sxY8YVPSYAAAAAAAACK12n79WoUUMulytdO1y9erVXBbRo0UItWrT4z23CwsJUuHBhr/YLAAAAAACAjCtdTam2bdu6///MmTMaP368KlWqpLp160qSfvrpJ/3+++/q3bu3I0V+9913KliwoPLkyaNGjRpp5MiRypcvnyOPBQAAAAAAAOelqyk1dOhQ9/8/8MADevTRR/X88897bLNr1y7fVqfzp+61a9dOpUqV0rZt2zRkyBC1aNFCK1asUJYsWTy2T0hIUEJCgvt2fHy8JCkxMVGJiYk+r8//cgS6gAzKF79bsvVErs4hW2eQq3PI1hnk6hyydQa5OodsnUGuzvDVZ2uy9RQMfQulu//iMjPzZseRkZH69ddfVa5cuVTLt2zZolq1aikuLs6b3aUuxuXS3LlzU43M+re//vpLZcqU0eLFi9W4cWOP9cOGDdPw4cM9lsfGxio8PPyyawMAAAAAAMClnTp1Sp06dVJcXJwiIiIuul26RkpdKEeOHPrhhx88mlI//PCDsmfP7n2lXipdurTy58+vrVu3ptmUGjx4sAYMGOC+HR8fr5iYGDVt2vQ/g7h6RAa6gAzq8puh/4dsPZGrc8jWGeTqHLJ1Brk6h2ydQa7OIVtnkKszfJGrRLZp8VW2gZVy1tqleN2U6t+/vx5++GGtXr1a119/vSTp559/1vvvv69nn33W2915bffu3Tp8+LCKFCmS5vqwsDCFhYV5LA8NDVVoaKjT5fnB6UAXkEH54ndLtp7I1Tlk6wxydQ7ZOoNcnUO2ziBX55CtM8jVGb76bE22noKhb6F091+8bkoNGjRIpUuX1htvvKEPP/xQklSxYkVNnjxZHTp08HZ3OnHihLZu3eq+vX37dq1du1Z58+ZV3rx5NXz4cLVv316FCxfWtm3b9OSTT6ps2bJq1qyZ148FAAAAAACAjMHrOaV87bvvvtMtt9zisbxr166aMGGC2rZtqzVr1ujYsWOKjo5W06ZN9fzzz6tQoULp2n98fLwiIyMveR7j1cMV6AIyKF88jcnWE7k6h2ydQa7OIVtnkKtzyNYZ5OocsnUGuTrDV20EsvUU0BaNz6S3FxPwppTTaEplFrzZOINcnUO2ziBX55CtM8jVOWTrDHJ1Dtk6g1ydQVPKOcHRoklvLybEjzUBAAAAAAAAkmhKAQAAAAAAIABoSgEAAAAAAMDvaEoBAAAAAADA77Jezp12796tefPmaefOnTp79myqdaNHj/ZJYQAAAAAAAAheXjellixZojZt2qh06dLauHGjqlSpoh07dsjMdN111zlRIwAAAAAAAIKM16fvDR48WAMHDtT69euVPXt2zZ49W7t27VLDhg111113OVEjAAAAAAAAgozXTak///xTXbp0kSRlzZpVp0+fVq5cuTRixAi9/PLLPi8QAAAAAAAAwcfrplTOnDnd80gVKVJE27Ztc687dOiQ7yoDAAAAAABA0PJ6TqkbbrhBy5cvV8WKFdWyZUs9/vjjWr9+vebMmaMbbrjBiRoBAAAAAAAQZLxuSo0ePVonTpyQJA0fPlwnTpzQzJkzVa5cOa68BwAAAAAAgHRxmZkFuggnxcfHKzIyUnFxcYqIiAh0OT7gCnQBGZQvnsZk64lcnUO2ziBX55CtM8jVOWTrDHJ1Dtk6g1yd4as2Atl6Co4WTXp7MV7PKQUAAAAAAABcqXSdvpc3b15t3rxZ+fPnV548eeRyXbybeeTIEZ8VBwAAAAAAgOCUrqbU66+/rty5c0uSxowZ42Q9AAAAAAAAyASYU+qqwzm3aeNccWeQq3PI1hnk6hyydQa5OodsnUGuziFbZ5CrM5hTyjnB0aJJby8mXSOl4uPj0/3AwdH4AQAAAAAAgJPS1ZSKior6z3mkLpSUlHRFBQEAAAAAACD4pasp9e2337r/f8eOHRo0aJC6deumunXrSpJWrFihDz74QKNGjXKmSgAAAAAAAAQVr+eUaty4sR544AF17Ngx1fLY2Fi9/fbb+u6773xZ3xVjTqnMgnPFnUGuziFbZ5Crc8jWGeTqHLJ1Brk6h2ydQa7OYE4p52SuOaVCvN3xihUrVKtWLY/ltWrV0i+//OLt7gAAAAAAAJAJed2UiomJ0TvvvOOx/N1331VMTIxPigIAAAAAAEBwS9ecUhd6/fXX1b59e3399deqU6eOJOmXX37Rli1bNHv2bJ8XCAAAAAAAgODj9Uipli1bavPmzWrdurWOHDmiI0eOqHXr1tq8ebNatmzpRI0AAAAAAAAIMl5PdH61YaLzzIIJDJ1Brs4hW2eQq3PI1hnk6hyydQa5OodsnUGuzmCic+cER4vGsYnOJen7779X586ddeONN2rPnj2SpGnTpmn58uWXVy0AAAAAAAAylUs2pX7++WclJia6b8+ePVvNmjVTjhw5tHr1aiUkJEiS4uLi9OKLLzpXKQAAAAAAAIJGuppSTZs21fHjxyVJI0eO1MSJE/XOO+8oNDTUvV29evW0evVq5yoFAAAAAABA0Ljk1fceffRRJSYmqmHDhlq9erU2bdqkBg0aeGwXGRmpY8eOOVEjAAAAAAAAgswlm1KS9Pjjj6tu3bqSpMKFC2vr1q0qWbJkqm2WL1+u0qVL+7xAAAAAAAAABJ90T3R+4403SpJ69uypfv366eeff5bL5dLevXs1ffp0DRw4UA8//LBjhQIAAAAAACB4pGuk1IUGDRqk5ORkNW7cWKdOnVKDBg0UFhamgQMHqm/fvk7UCAAAAAAAgCDjMjO7nDuePXtWW7du1YkTJ1SpUiXlypXL17X5RHx8vCIjIxUXF6eIiIhAl+MDrkAXkEFd1tP4X8jWE7k6h2ydQa7OIVtnkKtzyNYZ5OocsnUGuTrDF7lKZJsWX2UbWOntxXg9UipFtmzZVKlSpcu9OwAAAAAAADKxdDel7r///nRt9/777192MQAAAAAAAMgc0t2UmjJlikqUKKEaNWroMs/4AwAAAAAAACR50ZR6+OGHNWPGDG3fvl3du3dX586dlTdvXidrAwAAAAAAQJAKSe+Gb731lvbt26cnn3xSn3/+uWJiYtShQwctWLCAkVMAAAAAAADwSrqbUpIUFhamjh07atGiRfrjjz9UuXJl9e7dWyVLltSJEyecqhEAAAAAAABBxqumVKo7hoTI5XLJzJSUlOTLmgAAAAAAABDkvGpKJSQkaMaMGbr11lt1zTXXaP369Ro3bpx27typXLlyOVUjAAAAAAAAgky6Jzrv3bu3PvroI8XExOj+++/XjBkzlD9/fidrAwAAAAAAQJByWTpnKQ8JCVHx4sVVo0YNuVyui243Z84cnxXnC/Hx8YqMjFRcXJwiIiICXY4PXDz7zM0Xk+2TrSdydQ7ZOoNcnUO2ziBX55CtM8jVOWTrDHJ1hq8udka2noLjQnLp7cWk+/S9Ll266JZbblFUVJQiIyMv+s9by5YtU+vWrRUdHS2Xy6VPP/001Xoz03PPPaciRYooR44catKkibZs2eL14wAAAAAAACDjSPfpe1OmTHGkgJMnT6p69eq6//771a5dO4/1r7zyisaOHasPPvhApUqV0rPPPqtmzZrpjz/+UPbs2R2pCQAAAAAAAM5Kd1PKKS1atFCLFi3SXGdmGjNmjJ555hndfvvtkqSpU6eqUKFC+vTTT3XPPff4s1QAAAAAAAD4iFdX3/O37du3a//+/WrSpIl7WWRkpOrUqaMVK1YEsDIAAAAAAABciYCPlPov+/fvlyQVKlQo1fJChQq51/1bQkKCEhIS3Lfj4+MlSYmJiUpMTHSoUn/KEegCMihf/G7J1hO5OodsnUGuziFbZ5Crc8jWGeTqHLJ1Brk6w1efrcnWUzD0LZTu/ku6r77nDy6XS3PnzlXbtm0lST/++KPq1aunvXv3qkiRIu7tOnToIJfLpZkzZ3rsY9iwYRo+fLjH8tjYWIWHhztWOwAAAAAAAKRTp06pU6dOl7z6XoYeKVW4cGFJ0oEDB1I1pQ4cOKBrr702zfsMHjxYAwYMcN+Oj49XTEyMmjZt+p9BXD28v8Jh5hDng32QrSdydQ7ZOoNcnUO2ziBX55CtM8jVOWTrDHJ1hi9ylcg2Lb7KNrBSzlq7lAzdlCpVqpQKFy6sJUuWuJtQ8fHx+vnnn/Xwww+neZ+wsDCFhYV5LA8NDVVoaKiT5frJ6UAXkEH54ndLtp7I1Tlk6wxydQ7ZOoNcnUO2ziBX55CtM8jVGb76bE22noKhb6F0918C3pQ6ceKEtm7d6r69fft2rV27Vnnz5lXx4sXVv39/jRw5UuXKlVOpUqX07LPPKjo62n2KHwAAAAAAAK4+AW9K/frrr7rlllvct1NOvevataumTJmiJ598UidPntSDDz6oY8eO6aabbtL8+fOVPXv2QJUMAAAAAACAK5ShJjp3Qnx8vCIjIy85udbVwxXoAjIoXzyNydYTuTqHbJ1Brs4hW2eQq3PI1hnk6hyydQa5OsNXbQSy9RQcLZr09mJC/FgTAAAAAAAAIImmFAAAAAAAAAKAphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/C7DN6WGDRsml8uV6l+FChUCXRYAAAAAAACuQNZAF5AelStX1uLFi923s2a9KsoGAAAAAADARVwV3Z2sWbOqcOHCgS4DAAAAAAAAPpLhT9+TpC1btig6OlqlS5fWvffeq507dwa6JAAAAAAAAFyBDD9Sqk6dOpoyZYrKly+vffv2afjw4apfv742bNig3Llze2yfkJCghIQE9+34+HhJUmJiohITE/1Wt3NyBLqADMoXv1uy9USuziFbZ5Crc8jWGeTqHLJ1Brk6h2ydQa7O8NVna7L1FAx9C6W7/+IyM3O4Fp86duyYSpQoodGjR6tHjx4e64cNG6bhw4d7LI+NjVV4eLg/SgQAAAAAAMi0Tp06pU6dOikuLk4REREX3e6qa0pJUu3atdWkSRONGjXKY11aI6ViYmJ06NCh/wzi6hEZ6AIyqDgf7INsPZGrc8jWGeTqHLJ1Brk6h2ydQa7OIVtnkKszfJGrRLZp8VW2gRUfH6/8+fNfsimV4U/f+7cTJ05o27Ztuu+++9JcHxYWprCwMI/loaGhCg0Ndbo8Pzgd6AIyKF/8bsnWE7k6h2ydQa7OIVtnkKtzyNYZ5OocsnUGuTrDV5+tydZTMPQtlO7+S4af6HzgwIFaunSpduzYoR9//FF33HGHsmTJoo4dOwa6NAAAAAAAAFymDD9Savfu3erYsaMOHz6sAgUK6KabbtJPP/2kAgUKBLo0AAAAAAAAXKYM35T66KOPAl0CAAAAAAAAfCzDn74HAAAAAACA4ENTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfnfVNKXeeustlSxZUtmzZ1edOnX0yy+/BLokAAAAAAAAXKaroik1c+ZMDRgwQEOHDtXq1atVvXp1NWvWTAcPHgx0aQAAAAAAALgMV0VTavTo0erZs6e6d++uSpUqaeLEiQoPD9f7778f6NIAAAAAAABwGTJ8U+rs2bNatWqVmjRp4l4WEhKiJk2aaMWKFQGsDAAAAAAAAJcra6ALuJRDhw4pKSlJhQoVSrW8UKFC2rhxo8f2CQkJSkhIcN+Oi4uTJB05ckSJiYnOFusX2QNdQAZ12Af7IFtP5OocsnUGuTqHbJ1Brs4hW2eQq3PI1hnk6gxf5CqRbVp8lW1gHT9+XJJkZv+5XYZvSnlr1KhRGj58uMfyUqVKBaAa+E/+QBcQpMjVOWTrDHJ1Dtk6g1ydQ7bOIFfnkK0zyNUZ5Oqc4Mr2+PHjioyMvOj6DN+Uyp8/v7JkyaIDBw6kWn7gwAEVLlzYY/vBgwdrwIAB7tvJyck6cuSI8uXLJ5fL5Xi9mUV8fLxiYmK0a9cuRUREBLqcoEK2ziBXZ5Crc8jWGeTqHLJ1Brk6h2ydQa7OIVtnkKszzEzHjx9XdHT0f26X4ZtS2bJlU82aNbVkyRK1bdtW0vlG05IlS/TII494bB8WFqawsLBUy6KiovxQaeYUERHBH65DyNYZ5OoMcnUO2TqDXJ1Dts4gV+eQrTPI1Tlk6wxy9b3/GiGVIsM3pSRpwIAB6tq1q2rVqqXrr79eY8aM0cmTJ9W9e/dAlwYAAAAAAIDLcFU0pe6++279888/eu6557R//35de+21mj9/vsfk5wAAAAAAALg6XBVNKUl65JFH0jxdD4ERFhamoUOHepwqiStHts4gV2eQq3PI1hnk6hyydQa5OodsnUGuziFbZ5BrYLnsUtfnAwAAAAAAAHwsJNAFAAAAAAAAIPOhKQUAAAAAAAC/oykFAAAAAAAAv6MpBb9JTk4OdAkA/IgpCwEAAAD8F5pS8JuQkPNPt02bNkmiSQUEqy+//FIJCQlyuVw0ppDhXfgcTfl/nrdXhvd3ZHYX/g2cOXMmgJVcfVJef+Pi4gJcCQB/oSkFv1q0aJEqVqyoHTt2uJtU8C0+DCCQ3nzzTT366KOaNGmSzp49S2PKx8jSt5KTk+VyuSRJ586dU0JCgiS5l+HypLy/z5gxQwcOHJDEc9cffvvtNx08eFCSNHz4cK1evTrAFWVeKX8DTz31lB599FGdO3cuwBVdPVwul+bOnauHHnrI/XyGs1Jen48fPx7gSoIL73vpR1cAflWjRg3Vr19f8+bNk0QDxQkpB0I7d+6UxAvilSA773Xr1k0333yzPvroI02YMIHGlI+lNEtOnDgR4EqufsnJye7XyzFjxqh9+/Zq1KiR+vbt626k4PKYmY4dO6Z7771XH3zwgSQafU7bsGGDOnXqpLfeeksPP/ywhg8fruzZswe6rEznwve6xYsX66uvvlKPHj2UNWvWAFZ1dUjJbvPmzRoyZIiaNm2q/PnzB7iqzMHlcumjjz5Snz599M8//wS6nKDhcrk0ZcoUjRw5MtClZHg0peCYtBpO+fPn1zXXXKMPP/xQkhgt5ZBPP/1U11xzjY4cOcIHgXRKSkqSJO3bt0/btm2TxIcobzzxxBNat26dcufOrTfffFPly5fXjBkzaEw54JVXXtHgwYMDXcZVL+X9Z8iQIXr55Zd10003aciQIXrrrbfUt29fHT16NMAVXt2ioqI0bNgwffPNNzT5/KBKlSq69957NXHiRH3wwQdavHixKlWq5H5vg3+kHDd89tlnmjFjhm699VbVqVOHkVLp4HK5tHLlSs2dO1c33nijOnfuzHGDw1LyPXz4sJ599lnVrl1bBQoUCHBVV7+UXHfs2KGBAwfSlE4HOgJwTMoB/19//eU+JUKSRo0apT179mjcuHGBKi3o1apVS9WrV9fcuXMlMSLtYt555x39+OOPSkpKUpYsWfTJJ5+oXr16uuWWW1SnTh398MMPSkxMDHSZGd7SpUsVHx+vSpUqSZLCw8P15ptvqkKFCjSmHJA/f3599NFH+vPPPwNdylVv/fr1+vTTTxUbG6snnnhCuXPnVvbs2dW0aVPlyZPHvR3P2//278ZHygfzm266SatXr9bvv/8uiRydkJyc7H6Pr1KlirJkyaLixYtr2bJl2rt3r7JkyULufnbs2DG9+uqrmjFjhvtLrqxZs3Islg4jR47U4MGDtXLlSp09e5bnr8NcLpcWLFigcePGqXHjxrr//vsDXVJQcLlc+umnnzRt2jR17txZgwYNCnRJGR5NKfjchW+648ePV9u2bXXnnXdq9erVOnr0qPLnz682bdpo5cqVSk5O5s3mCqWVX+HChVWyZEnNnDlTEiPS0mJmGj58uHr06KHffvtN69at08CBA9WrVy+9/fbbCg0NVffu3TV//nydPXs20OVmaA0bNtSECROUNWtWzZw5U8uXL1euXLk0btw4GlNX6N9ZmZnq16+va665RitWrJDk2RBA+sXFxSlr1qy65ZZb9Omnn6pVq1Z6/fXX9cADDyguLk6fffaZJEZNXsy6det07tw5ZcmSRZK0cOFCLV++3L2+UaNGatmypYYOHar4+Hhy9LGUU1BDQkK0c+dONWvWTBs2bFCXLl00b948vfnmm9q3bx+5O+zfzaaoqChNnTpVzZs312+//abJkydLOn8sxvvff/vss8/UtWtX7dmzR1OnTtXJkyc5bnBQcnKyfv75Zw0fPlxLliyhceojx44d0xtvvKGXX35Z27dvdy/nefwfDHDIq6++as8//7y99dZbds8991i+fPmsQ4cONnfuXFu8eLFlzZrVvv/++0CXGTR27txpycnJ7ttbt261fPny2dSpUwNYVcaUktPZs2ft2muvtZo1a9rUqVPtqaeeSrVd8+bNrVy5cjZv3jxLSEgIRKkZ3tmzZ93/v2XLFqtZs6Y1b97cfv75ZzMzO378uHXt2tXq1Kljb7zxhjvHC5+ruLQTJ06kuv3II49YqVKl7PTp0wGq6OqT1nNu+/btVq1aNRs2bJhFRETYxIkT3et+/PFHq1+/vv3222/+LPOqMXz4cHO5XLZ48WI7e/asbdiwwSpXrmx58+a13r172/z5883M7Pvvv7fatWu7XxOSkpICWXbQuDDH4cOHW61atey7775zLxs2bJjVqFHDnnnmGdu3b5+ZmXXr1s3WrVvn91qD2YW/h82bN9vWrVtt9+7dZmb2999/W6tWreyWW26x2NjYNO+TmaW8Ju/du9f2799vGzdudK+78847rXLlyvbhhx+63+c4bnBGXFycvfrqqxYSEmJjx44NdDlBY8mSJXbnnXdaWFiYLVmyxMx4Dv8XmlLwmQvfZGfNmmX58+e3P/74w73ss88+s0GDBlnOnDntrrvusqxZs9p9991np06d4o/0MlyY99ixY61WrVrWqVMn27Ztm8XHx5uZ2X333We9e/f22B7/10w5e/asVapUyVwul7Vp08bjudi8eXOrVKmSzZo1K1UDBqkNHTrU1q5dax9//LE1b97cWrVqZT/99JOZnW9MdevWzW688UYbOXIkOXpp0qRJduedd7o//JuZHT582GrWrGnjx483Mw50LuXC178LG8zHjh2ze++918LDw+2xxx5zLz9z5oy1atXK2rVrx2vnf2jWrJkVK1bMFi9ebGZmu3fvtgULFtj1119vderUsYYNG9qyZcssOjraHn744QBXG5yefPJJK1SokM2bN8+2b9+eat3w4cOtRo0a1rRpU2vYsKEVLFjQEhMTA1NoELrwdXfo0KFWpUoVq1ChghUqVMjeeustMzP766+/rGXLltaoUSObMWNGoErNcFKy+/TTT61OnTpWsWJFu+aaa2zIkCHubdq1a2dVqlSx2NhYO3XqVKBKDSopue/fv982bdpkhw8fdh9XPPvss+Zyuey9994LZIlXpZRcT548aUePHnUv/+2336xNmzZWpUoV95cGHK+ljaYUfG7WrFk2cuRIe+WVV8zMPD6Abt++3Z599lmrV6+e5cmTx/bv329m/JFerjfeeMOGDRtm//vf/6xp06ZWpEgR69q1qy1btszmzJlj2bNnt/Xr1we6zAwl5bl25MgRMzv/HK1bt64VKlTIli9f7vEhtG7dularVi07fvy432vNqC7MaM6cOeZyuWzlypVmZjZ79mxr0qSJR2OqTZs21rNnT/7WvfTqq6/avffea9myZbNOnTrZ2LFjLSkpye6++27r2LFjoMvL8C58vr366qvWsWNHa9Omja1Zs8bMzH766Se74YYbrF69ejZy5Eh74403rHHjxlalShX3+xeNqdQufF9v0qSJFSpUyKNpunr1amvTpo01adLE8ubNaxEREe7XCPjGjz/+aGXLlrUff/zRzM43U/fv329z5851jy555513rF+/ftajRw93Q+rcuXMBqzkYjRw50goUKGCLFi2yU6dO2V133WURERG2YcMGMzPbtm2btW7d2qpVq2aLFi0KcLUZx/z58y1Hjhw2fvx4+/PPP+311183l8tlX375pXubO++804oWLWoff/xxACsNDinvhXPmzLFrr73WihcvbvXq1bP777/f/vnnH0tOTnaPgJ08eXJgi72KpOT6+eefW+PGja1ixYrWrFkz++ijjywxMdF++eUX69Chg1WrVs2WLl0a4GozLppS8Jnk5GQ7efKk5cyZ01wulz300EPudSkH9CkHQklJSZaQkGDXX3+99erVKyD1Xq0u/HA0ffp0y5s3r23atMm9bNq0afbwww9bWFiYde3a1UJCQqx3796WkJBAM8D+781jwYIF1rVrV/fBfGJiolWtWtWqVKliv/zyi0dWf//9t99rvRrExsbauHHj7O233061fM6cOXbrrbemakydPn3a/fzluZi2/2p+LF261B577DErWrSotWrVynr06GEul8s+//xzP1Z4dbkwz1GjRllkZKQ9+uijVr16dcuXL599+OGHZnb+w/1jjz1mMTEx1rx581Qf4BlZklpaz9HGjRtbkSJFbNGiRR6nOv/44482YcIECw8Pt1GjRpkZf/+X69+5ff7551aoUCE7d+6crVu3zp566ikrV66chYaG2vXXX5/mFyk8n33r1KlT1qJFC5s2bZqZmc2dO9fy5MnjHsWa8vfwxx9/2MCBA2kIXqB3797ukVE7duywMmXKuD8TXPg607lzZ9u2bVtAagw2ixcvtvDwcHvjjTfs6NGj9vzzz5vL5XJP9XHy5EkbMWKEuVwu93Mal/bll19aeHi4jRgxwlatWmVNmza16Oho++GHH8zMbPny5XbPPfdYTEyMLV++PMDVZkw0peAzKW8ghw8ftkqVKlnZsmXT/HBv9n8HVsOGDbM777zTr3UGiy+++MKef/55e+ONN8zMc0Ta6tWr7bHHHrOqVatasWLF3AenfBg43zBJefNYsWJFqjmmqlSpYlWqVLGVK1eS1SVs2bLFihcvbi6Xy1577TUzO/9NfYo5c+ZYs2bNrG7duu5vjM0YdXIxF+Yyb948++CDD2zSpElmlnoetMOHD1u/fv2sXbt25nK50jyIR2o7duywBx980JYtW+Ze1q1bNytUqJBNnTrVnW/Kqc8p+AB/cV988YW7qW92vjEVHR1tixYtSjO3iRMnWrFixWzPnj3+LDMopUyN8M8//1j58uWtbNmylj9/fuvZs6fFxsba/v37LUuWLDZz5swAVxrckpOT7cCBA1a4cGH7448/7LvvvrNcuXLZhAkTzOx8w2rIkCEeDRUaU+ffy6677jqbOHGixcXFWdGiRe3BBx90vxaPHz/eFixYEOAqg0dycrKdO3fO+vTpYwMGDDAzswMHDlhMTIz16dPHvd3Zs2ft3Llz9tJLL6WaggVpS05OthMnTthtt91mw4cPN7PzxxHFixdPlauZ2bJly6xbt240WC+CphQu2399ADp48KAVK1bM6tWrl+rD6L89+OCDVr16dTt58qQTJQal5ORkO3TokLlcLnO5XPbEE0+416X8Ti4cmXb06FErX768xyTemdW2bdusbNmy7mZeipRvM1MmPy9atKitXr06ECVmWP9u0p0+fdo+/fRTq1atmtWsWdO9/MKREtOnT7d+/frRMLmEC/N56qmnLDo62m688UYrUKCANWvWzFavXu2R4alTp+yNN96w7Nmz259//unvkq8a06ZNM5fLZRUqVPA4fax79+5WpEgRmzZtmh07dizVOprSF7dx40YrVKiQde3aNVWmKY2pxYsXpxoZbWa2Zs0aq169uv31118BqTlYfPzxx1arVi336UybNm2ykSNH2hdffGFxcXFmdn60Q926dflQ72MXe03o0qWLNW3a1MLDw+399993L9+7d6/Vr1/fPvjgg/+8f2Y1YsQI69SpkxUpUsQeeugh92vF6dOnrVu3bvb888/b2bNnyc2HOnfubG+99Zbt2bPHoxH42Wef2Zw5cwJc4dUnKSnJGjRoYKtXr7Z9+/ZZkSJF7MEHH3Sv/+yzz9zve8yNdnE0pXBZLvxwNGnSJHvsscfsrrvusl9++cU9T8+BAwesaNGiVr9+/TQbU3///bfdcccd9uuvv/qt7mCQ8uaxdetWK1q0qNWoUeOic0al/J4GDhxoXbp08VuNGcm/D2Z+/vlnK1WqlG3ZssVjm5QPUQkJCVa3bl2+zbjAvxsiFzbxvvrqKytRooQ1btzYY/1/7QOeXnvtNYuOjna/Ls6YMcNcLpfVr1/fVq9e7X6uXvi8rl+/vr388ssBqTcjSut5dvvtt7tPUfj3qNKU0yC//vprf5V41UnrQ+HHH39sVapUsfvvvz9VY6pJkyYWExNjX3zxRarfxauvvmpZsmRxXwkOl+fnn3+2Fi1a2K233urxAfLMmTO2b98+a9WqldWuXZsROT504XP58OHD7vlQzcymTJlixYsXt1atWrmXxcXFWYsWLezmm2/O1L+Hc+fOpRqJeuEppZ999pkVK1bMateu7f7QfvbsWRsyZIiVKFHCtm7dGpCag1FSUpIlJydbz549rWHDhlaqVKlU06ecOHHC7rvvPnv++ecZIeyFlOf2DTfcYD179rSyZctar1693McZhw4dsttvv505utKBphSuyFNPPWWFChWynj17WqtWraxo0aL25ptv2t69e83sfGOqRIkSVr58+TS/Hf33Zc7h6b8+yG/cuNGioqKsVatW//nmfd9991ndunXtzJkzme4bp5Sfd+nSpfbzzz/b0qVLrWjRoqk+RKVss2jRIvf530jbyy+/bHfccYfdcMMNNn78eNuxY4eZmX311Vd2zTXXWNOmTd3bcpW9S1uwYIH7ikzHjh2zhx56yD3P0ezZsy0qKspee+01K1OmjNWvX99+/fVXj7/h2rVr29ChQ/1deob379PLmjVrZoULF7ZFixZ5fEh84YUXMvUHx/RKGYmT4pNPPrGKFSva/fffb6tWrXIvv/baa61Nmzbu2wkJCfbBBx+4J5dH+lzs/X/16tXWqlUra9y4sXvEVFJSkn3wwQdWv359u+GGG9yvvzyvr8z06dNTvZc9/fTTdu2111revHmtY8eONm/ePDP7v6vvVatWzdq1a2d16tSxa6+9NtP+Hv7dMP3000+tVq1aVqlSJWvcuLF7MvN3333XSpYsaQ0bNrQOHTrYHXfcYfny5WOk+hU4d+6c+7XjwIEDdvLkSTt8+LCZme3Zs8fKli1rxYoVc5+lkpSUZEOGDLHixYvb5s2bA1Z3RpeUlOTO9dSpU+5Gn9n598ICBQqkOmvA7PzrRfny5T2ujApPNKVw2d577z0rUaJEqisYuVwui4mJsddee839LdK+ffusbdu2me4N2RcuPCB9//337emnn7aePXvan3/+6f626Y8//rDIyEhr3bp1miN7tm7darfeemumG5F24Qf3xYsXu0dCbN261QoWLGh9+vTxaIr27dvXHnnkkUzZvLuYC5+DQ4cOtbx587qv5JQ3b17r1KmT+7n15ZdfWqVKlaxGjRqBKveqsnz5cnO5XFarVi2bPn26mZktWbLE9u/fb2vWrLEyZcq4TzOdOnWquVwuq1SpUqoLG/z8888WFhZmv/32W0B+hozKm9PLLsT7VGo//vij+/n2+uuv2yOPPOJxcP3xxx9bgQIF7L777kvVmPp3Q4XX1Ms3e/Zsj6u2rVq1ylq3bm3169d3X+zghx9+sHHjxjFJv48sW7bMXC6XPf3002ZmNnbsWCtYsKBNnDjRPvjgA2vYsKHVrVvX3n33XTMzW7hwoT355JPWr18/GzNmTKb9PWzfvt1cLpe1a9fOzMxWrlxpYWFhNmjQIHv77bft1ltvtYoVK9qYMWPM7PwXCMOGDbO2bdva888/bxs3bgxk+VetTz75JFXjf/bs2Va9enW75ppr7MYbb3SP1lm4cKFFRUVZrVq1rFmzZtauXTsagf9h5cqVdvDgQfftefPmWfv27e3GG2+0oUOHur/8evrppy1fvnx233332dNPP21du3a1yMhIck0nmlK4LKdPn7aJEyfauHHjzOz8NyKRkZH2wQcf2KOPPmo5c+a0119/3Xbu3JnqfhzwX56nnnrKChYsaJ07d7Ybb7zRypYta++//74dOnTIzM43pvLmzWs33nijxySy586d85i8NzPZvXu3TZo0yV588UX3sjlz5liWLFmsV69e9s0339iaNWtswIABFhUVxcSOF/H333/boEGDbMmSJe5lCxYssJo1a1q3bt3s5MmTdvr0aZs1a5Z17NiRU/XS4dNPPzWXy2UNGjSw1q1b20cffeReN3bsWGvUqJH7QGjatGnWp08fu+eee1K9jh49epTTocw3p5chte3bt1udOnWsdevWtm/fPnv//fctX758NnjwYPcIyRTDhg2zqKgou+uuu+z33393L+c9//KkPJ+TkpJs27ZtVqFCBWvbtq3H5cTXrl1rhQoVshtvvDHV64cZ2ftKbGysZcuWzYYPH24vvviieySr2fk5o3r16mXXX3/9RT94ZsbfQ3Jysi1YsMAKFSpkHTt2tM8//9xjNG/fvn2tQoUKqY4pcPl+//13q1GjhrVu3dq2bNlif/31l+XKlcteeuklGzNmjA0YMMBcLpf7WHjnzp02YMAAe/jhh+2ll15ihNRFLFq0yCIiImz06NGWkJBgP/74o2XLls369+9v9913nzVp0sRKlizp/tJg5syZVq9ePWvatKn17NmTzxReoCmFy/b777/b3r17bfv27VatWjUbPXq0mZ3/8Jo7d26LjIx0n5bCN6SXb9KkSVa8eHH3tx/ff/+9uVwuK1eunE2aNMk9h9e6deusadOmfMi6wN9//20ul8siIiLspZdeSrVuwYIFVrZsWStatKiVLVvWqlSpwqklF/HZZ5+Zy+WyggULehxAfv3115YtWzb79ttvzSz1N8I8Fy/tvvvus4YNG1q7du3s5ptvdl+WefDgwXbNNdfYvn37LC4uzlq1auX+EsAsc37QSY/LPb0MaXv77bftlltusbvvvtuOHz9uM2fOtMKFC9tTTz2VasTU66+/bg0bNrSuXbvyd+9DKVl++eWXdtNNN1n79u3tu+++S7VN8+bNrWTJkvb4448HosRM4cMPP7TQ0FBzuVzu0T0px7WHDh2yEiVK2LBhwwJZYoaTnJxsCxcutIIFC1pISIh7/qILjxEaNmxot912W6BKDDoffvihNW7c2O666y577rnnrH///qnWv/fee+ZyuVI1VnFpjz76qJUpU8beeustGzhwoL3wwgvudevXr7fevXtb6dKl7Zdffkl1P47TvENTCl4ZO3asexhziqVLl1rlypXdp4+sWrXK+vTpY6+99hp/kFfo1KlTNnr0aHvrrbfM7PxQ3MjISHvvvfesU6dOli9fPnv77bftwIEDqe7Hh4L/M3HiRMuWLZt1797dff58ysHkgQMH7M8//7S1a9faP//8E8gyM5R/X8Vxz5491qdPH3O5XDZlyhQzS31gWblyZXv11Vf9X+hV7MyZM2Z2/iCyZ8+e9tNPP1m7du3cp+IcOHDAihQpYkWKFLHSpUtb1apVmaMrDb48vQz/58IvkiZPnmz16tWzu+++2+Lj423GjBlWpEgRe/LJJ+3nn3+2s2fPWrt27WzWrFmpRvjAexfmNmPGDGvRooX77/7rr7+2unXr2p133uluTJ08edJ69OhhH3/8MZn7UFpfpM6ZM8eyZ89u99xzj8XFxaXaplOnTnbffff5s8Srwrlz52zRokVWrlw5q1u3rvvKYymfDV566SWrW7cu721X6MK//enTp1vz5s2tePHi1qNHDzM7/3xOyfzhhx+2pk2bWnx8vHsZAwfSduFn2H79+lm5cuWsXLlyHlfvXrdunTVs2NB9HEyul4emFNLt+PHj7onNLxx1Mnv2bCtQoIDNnDnT1q1bZ61bt7Zu3bq519OYSr+0XsDWrl1r+/bts61bt1rlypXt9ddfN7Pzc6bkyJHDChUqZJ9++ulF7w+zCRMmmMvlspdffpmMLmHGjBnWvXt327RpU6o5t/bt22ddunSxHDlypBotFRcXZ6VLl7aJEycGotyryjfffOOeeyTF3r17rWjRovb+++/bvn37rF27dnbTTTfZF198YUeOHLGxY8fa+PHjM+3cJP+F08uc9V+NqVmzZlnVqlWtcOHCds0111jlypXdz01eYy/PhR8slyxZYj179rQsWbLYAw88kKox1bBhQ6tTp4516dLFbrnlFqtVq5bHFwm4fBdm+O/Lt8fGxlrWrFnt8ccfd38ZePr0aatevbo99thjfq0zI0rrbz9lxFS+fPmsXbt2duLECfd29913nzVu3Nj9JQ0u34XvZbGxsXbttddadHS0rV271sz+73czYsQIu+666ziWSKcLG6ZDhgwxl8tld911V6o5pszM2rZtay1atPB3eUElq4CLSE5OVkhIiPt2rly59OijjypXrlwaN26ckpOTNXjwYLVr106xsbF66KGHlCtXLhUqVEizZ8923y9LliyBKP+q5HK5JElvvvmmkpOT1a9fP1WvXl2SNH/+fGXJkkUtWrSQJP3zzz/q1q2bChcurFatWqW6f2ZkZnK5XNqwYYMOHjyo+Ph4tW3bVpL00EMP6dy5c3r00Uflcrk0cODATJ3VxcTHx+uZZ55RfHy8fv31V11//fW66aab3M+zCRMmKDExUbfddpt69eql6Ohoff/99woPD1ePHj0CXX6G9u2336px48aSpFmzZqlt27a66aabVKVKFf3vf/9TbGys7rrrLo0YMUJDhw7Vq6++qgcffFB9+/Z17yMpKUlZs/K2naJkyZLq0aOHZsyYof79++vdd99Vzpw51a9fPyUnJ+uhhx5SyZIlJUmRkZGqXr26wsPDVaFCBfc+eH+6OJfL5X5d7datmyTp3XffVc+ePTVhwgRVr15dv/76q+Lj49WjRw9lzZpVSUlJZHqZUo63Hn/8cS1dulS1atVSzZo19cUXX+jEiROaOnWqmjdvrqioKH355Zf65ZdfVLJkSU2aNEkhISEex2y4PCkZ/u9//9Ovv/6q0NBQPfXUUypXrpw6duyo5ORkdevWTcuWLVP58uUVHx+v5ORkvfLKKwGuPLBSXiu+++47LV26VNu2bdPdd9+tKlWq6NZbb1VsbKw6deqkhg0bqnz58ipQoIDmzp2r5cuXKywsLNDlX7VSck9OTna/9nbs2FFZsmTR2LFj9fTTT+vFF19UtWrVJEn79+9Xzpw5debMGeXKlSuQpWdoKbmGhoa6l73wwgtKTEzU9OnT9cEHH6hbt27Knz+/JCksLEx58uRRYmJiqvvACwFtieGqsG7dulS39+zZYyNGjLBixYrZyJEj3cu/+eYb+/77793derrwl+fYsWP28MMPW8GCBe2dd95xL586daoVKVLEvvzyS9uyZYu1bt3aHnnkEff6zPyNf8o3QHPmzLFixYpZ1apVLSoqypo2bWrr1q1zf/P55ptvWlhYmA0fPjyQ5WZY586ds8GDB9vEiRNt1apV9uqrr1pUVJR17NjRRo0aZWfPnrV//vnHHnvsMXO5XHbnnXfazJkz3d9y8jd/cVu2bLEGDRpYo0aN7Oabb7a+fftavnz5bMyYMTZ69Ghr1KiRff/992Z2fr6+m2++2fr06RPgqjMuTi/znwuzfv/99+2mm26yu+++2/76669U6zPze5CvLFy40PLnz+++mlNSUpKNHj3arr32WuvUqZP7W/t/v9by2utbo0ePtjx58tiAAQOsdOnSVrFiRYuNjXVPATBz5kzLlSuXlStXzhYvXsxI1v9v9uzZliNHDmvbtq3VrVvXoqOj7Z577nFfaGLhwoVWuXJlc7lctnTp0jSvGI30S3nt/eqrr6xNmzbWs2dPmzRpknv91KlTrW7dulagQAHr0KGD9erVy/LmzcvV4C4hJddvv/3WHn/8cRs3blyq+aIeffRRK1y4sLVu3dpeeOEF69+/v+XOndvj8zK8Q1MK/2n+/PlWoEABe++991It3717t/Xv398iIyM9zq014+DUG2l9ONq2bZs9+eSTFh0dneoN5uabb7Z8+fJZsWLF7Lrrrsu05+GnldmiRYssT5487tOjVq9ebS6Xyxo1amSrVq1yv8m88sorljdvXjt8+LBfa75afPXVV5Y7d273HHGnT5+2Z5991lwul9WsWdNefvll++qrr+yxxx6zXLly2Q8//GBmxvD7dNi0aZO1a9fOWrdubYsWLbL58+dbu3btrEWLFuZyuaxt27bu187t27fTOLkETi/zn383pho0aGCdO3e2Xbt2BbCq4PPhhx9adHS0+8q6Zmbx8fH23HPPWXh4uPXo0cP9vp/y+sDz+cr9+7V2yJAh9tlnn7lv33HHHValShX78MMP3af0vf/++1a/fn2asv/fjh07rEKFCqlO5f/444+tWbNm1qlTJ9uzZ4+dO3fOvvzySytbtqzt3bs3gNUGj2XLllmuXLmsW7du1rRpUytZsmSqU0lnzpxp119/vRUuXNj+97//2e7duwNY7dVj/vz5FhYWZk2bNrWCBQtas2bN7IMPPnCvf/LJJ83lclmlSpXsueeec89tictHUwr/6bfffrOHHnrIKleubJMnT061bunSpZYzZ05zuVwe6+C9f7+g/fXXXzZw4ECLjo62CRMmuJd/+eWXtnDhwkw7Ii3l4HH79u3ug8aEhATr37+/+5LDf/31l5UuXdq6detmpUuXthtuuMF+/fVX931TrliItPXu3dt69+7tvl2pUiVr27atPf7449a8eXNzuVz20ksvWefOnS0qKsp95T1c2saNG6158+bWtGlT+/PPP+3cuXP2+++/W48ePTzmfjBjRM+lXKwxdeTIEdu8ebPFxsbaxIkT3a+Tmf2D45W4MOv33nvP6tSp4/7CisaI99LKbNmyZVahQgVbuHBhquU7d+60okWL2jXXXGM9evTgeexDF/4eFi5caHPnzrXu3bu7v3BJ0a5dO6tatapNnz7dPd9iZh55+e/n7+bNm61o0aK2aNGiVMtTrti5dOlSMzufVcqIM1y5WbNm2WuvvWZmZvv377fx48dbvnz5rF+/fu5t3nnnHbvrrrtoBHrhueees/Hjx5uZ2a+//modO3a0evXqpfq827t3b7v++us9rvqLy0NTCm4Xe1P9/fffrU+fPla+fPlUI6bWr19v9913n82cOZMDpMtwYd5fffWVFSlSxObOnZtqm61bt1qPHj0sX758Nm3aNI99ZNbc9+zZY/nz57eKFSva9OnTzez8weTvv/9uR48etdq1a9sDDzxgZudPK00Z5ZPyoR//7d1337V69erZkSNHrEaNGlavXj33m+6uXbts5syZlpiYaCdOnLDbb7/dihYt6jEhLC5u8+bN1rRpU2vatKktW7Ys1brM+OHmSnF6mf9cmPVtt91mt99+e+CKCRIvvfSS+wP7/v377brrrrNWrVrZ+vXr3dts27bN7rzzTnv++eetRo0atnz58kCVG1QufD4PGDDAoqKirFChQuZyuezRRx/1aJ7cddddVqBAAVuwYIG/S80QUt6fLnwt/e233+zIkSO2detWK1GihPs4NiEhwb1N1apVbcCAAX6tNVilPGdXr15t3377rd177702atQo9/qjR4+6G1MXZn7s2DG/13o1Scl1y5YttmvXLuvdu7fNmzfPvX7t2rXuxtSFI6b27dvn91qDFU0pmFnqN+axY8faI488Yg888ID76gKbNm2yPn36WKlSpWzEiBH2yy+/WMuWLa179+4c8F+GC/NesGCBzZw507p27WpVq1ZNNWTczOyLL76w0NBQc7lcNmfOHH+XmiF9++23FhISYrVr17Y2bdrYjBkz3OvmzJljtWrVsi1btpjZ/51rX6NGDeYv8ELt2rXN5XJZw4YNL3qqY2Jioh06dMj27Nnj5+qufps3b7bmzZtb8+bN3XNJ4fJxepn/pGTdu3dvu+eee1J9+IR34uPjrU2bNhYSEuJuNP3+++8WHR1tTZs2tddee80WL15sTZo0sY4dO9qRI0csd+7cNnr06ABXfvW78DVj1apVduutt9oPP/xgu3btsh49eth1111n//vf/zwaU0OGDMnUx7vbt2+3hg0bmpnZ3LlzLTo62j1HUceOHa1o0aKprn569uxZa9iwoY0dOzYQ5QalOXPmWPbs2a1UqVKWN29e69ChQ6r1x44ds0mTJpnL5bJBgwYFqMqrz8cff2wFCxa0AgUKWO7cue2FF15Itf63336z++67zypXruz+Qhy+Q1MKqb6Zf+655ywqKsruvvtuK126tMXExLgPlLZt22YjR460HDlyWPny5a1OnTruuQ0Yup9+F+b9zDPPWLFixWzXrl22cuVK69q1q1WqVMk+/fRT9zYrV660zp072wcffJCpD4T+7f7777drr73W2rdvb7fccotNnTrVzMwmTJhgRYsWdZ83P2TIEHvuuefILp1S/panTZtmVapUsV9//TXVcvjO5s2b7bbbbrNatWq55/DC5eP0Mv/5559/rF69eqlG8+DS0poHaufOndalSxfLli2be8TUn3/+aXfeeadVqFDBypQpYw0bNnSPRq1bt6599NFH/i8+SH300UfWrFkzu/fee92/l4SEBOvVq5fVrl07zcaUWeb9Ivb333+3smXL2jXXXGMulyvVh/Njx45Zo0aNrHDhwjZ16lSbPXu2DRo0yPLkyWObN28OYNVXv5Tn5tGjR61hw4Y2depUW79+vb333nuWI0cOjwujHDlyxN577z3mOrqElFwPHz5slSpVskmTJtns2bOtS5cuFhMTk2r6FLPzI9R69uxp27dvD0C1wY2mFNwOHDhgXbt2dV9hIDEx0Vq2bGmFCxdOdYrJrl27bO3ate6Dq8w2p5Gv7N6923r37m1fffWVe9mqVausW7duVqZMGZs4caJt2LDBWrVqZQ899FCmHZH279OZUibU/vLLL61bt262YMECa9eunTVo0MDmzp1rR48etaJFi1qZMmWsXr16FhkZaWvWrAlA5Ve33bt3W5EiRVINC4fv/fHHHzZgwABO2/MRTi/zn9OnTwe6hKtWyujTlOfrrl27rHPnzpYtWzb38dbx48ft8OHD9vfff7vvN3jwYIuOjuYDkY8kJibaY489ZiVKlLCqVaumWnf27Fnr1auX3XDDDTZ06FAu5nGBN99801wul5UsWdK9LOXY9Pjx49a9e3erUKGClS5d2mrXrs3V3nxk4cKFdvfdd1uHDh3c80MlJibaxx9/nGZjii9j0mfx4sXWr18/69Onj3vk79atW61///5Wvnx5j8YUo4OdQVMKZnZ+DpmIiAirVauWbdy4MdW6li1bWpEiRez777/3aIjwQeryzJw50/2GnnLp5xTr1q2zJ554wlwul11zzTVWs2bNTDsiLeX5tXPnTo9TFw8ePGgVKlSwcePG2cGDB61du3ZWr149+/zzz+3AgQM2cOBAGzx4sP3xxx+BKD0ojB071vLly2e///57oEvJFHg99Q1OL0NGNnPmTAsPD7c///zTzP7v+fr333/b7bffbuHh4bZq1apU91mzZo21bt061alS8F5ar7EnTpywF154wUqUKGH9+vVLNT/i2bNn7e6777YHHngg0x1//VvKz3/27Flbvny5vfbaa1ajRg2rXr26e87JC7+kPnDggO3evZsLy/jQkiVLLCwszHLmzJnq2DalMRUZGWldunQJYIVXn4SEBBs+fLiFhoZa9erVU63bvHmz9e/f3ypXrmyvv/56QOrLTGhKwczOv3k0btzYsmbN6j5d78I379atW5vL5WKiaB85deqUde7c2Vwul8XGxpqZZ8Np48aN9vPPP2f6EWk7d+60fPnymcvlspYtW9rMmTPdw5HnzZtn9evXt4MHD9off/xh7dq1s5tvvtlmzZoV4KqDw9atW61Lly40S3DV4fQyZBQpr58p//3pp5+sWbNmVqpUKfeXgCnrPv74Y3O5XOZyuWzdunWp9vPWW295fGmI9LvwfWzFihX23XffuUelpXwwrVOnjj3++OOpRkUlJiamedplZpLycy9atMiefvpp9+jzdevWWbVq1axatWruKxKanW+eXGwuSlyZZcuWWe7cua1z586pMk9MTLRp06ZZdHQ0k297aefOnfbCCy+Yy+VyX8kwxZYtW+yBBx6w2rVr29GjRwNTYCbhMjMTMpXk5GSFhIR4LP/nn3/UqlUrHT9+XPPmzVPZsmVlZnK5XJKkJ554Qi+99JKyZMni75KvaufOnVPWrFk9lp89e1YdOnTQjz/+qM8//1x16tRxr7swd+niv7PM4O+//9add96p0NBQJSQk6LrrrtOiRYs0ZMgQRUVFadq0aerdu7datGihP/74Q/369VP27Nk1ffp0RUREBLr8q17KczEpKYm/fVxVzpw5o+zZswe6DGRiH330kRYuXKhBgwYpOjpauXLlkiStXbtWQ4YM0YYNG7Rw4UJVqFBBkrR8+XJNmzZNFSpUUN++fdM8doD3LjymGjx4sGbOnKnIyEht27ZNbdq00fDhw1W0aFGNGjVKCxcuVP369TVixIhUrx+Z+ThMkubMmaN7771XzzzzjFq1aqXq1atLkjZs2KB7771XkvT+++9r1qxZmjlzppYvX66iRYsGsuSrWspzdsuWLdq1a5dy5MihmJgYFStWTIsWLdIdd9yhDh066M0331TOnDklSUlJSTp16pRy584d4OozrpRcDxw4oJMnT6pAgQLKnTu3EhIS9OKLL2r06NEaOXKk+vXr577PX3/99f/au/e4nO//f+CPdyflkJSmnEWOH7VKByotlil91JbRPokcFskaM1OmZms0CnNYRa0a60MbjTlbbA6JvtvIKRWmRQ5dpJbO1/X6/eHT9anh92GsK/W4/8X7/b6u2/P99nZd79fjeh3Qpk0bdOrUSYWVN38MpVqY+l+qZ8+eRW1tLV566SXlF4dMJsPo0aNRWVmJ7du3PxRMAWDj9AmVlZUpH0AB4Ntvv0V+fj46deoEc3NzmJmZAQDc3d3x888/Y8eOHQ2CKfqvvLw8BAcHQ6FQYNKkSZAkCatXr4aenh527NgBGxsbHDlyBFpaWsjJyUGbNm3QtWtXVZdNREQtVGlpKSwtLVFaWgojIyPY2NjA3t4eU6ZMAQDk5uYiKCgIWVlZ+Prrr2FsbIxFixbByMgI0dHRAB7/oxb9NWvWrMGSJUuwc+dO2NjYYMmSJVi8eDEOHToER0dHVFRUYPny5di4cSPmzp2L2bNnq7rkJiE7Oxtubm4ICQmBv7//Q/tzc3MxadIkFBYWQlNTE9988w2srKxUUGnzUNfuSk1Nxfvvv4/WrVujbdu2qKysRGxsLOzs7PDjjz9i7Nix8Pb2xqpVqxq0N+jR6q7r9u3bERYWhvLycrRu3RouLi6YO3cudHV18fnnnyMqKgpLlizBO++8o+qSWxaV9M8ilajfdTk0NFSYmJgIExMT0bZtW5GYmKgc9y2TycSQIUOEmZmZcs4Dejqvv/66CAwMVF7T4OBg0aZNG2Fvby/09fWFra2tiIqKUh5fN1dE/QnlqaGLFy8KV1dXMWrUKJGTkyPKyspERkaGcHd3F5s2bRJCtNyu9URE1LTU1taKkJAQERsbK3755RcRGRkp9PT0hLe3t1i+fLmoqakR58+fF/7+/kKSJNG7d29hbm7eYueQbAx+fn5i6dKlQogHQyX19PREdHS0EEIoV9grKysTcXFxLW5RmT9TKBTKe3Dv3r2ib9++DSbYf9T9mZGRIW7evNlYJTZr6enpQldXV3l/pqamCkmSxKeffqo85tChQ0KSJBEYGMjPiyeUlpYm2rRpI1atWiX++OMPsXDhQqGtrS02b94shBDi5s2bIjw8XEiS9NAE5/T3YijVAn388cfC2NhYHDhwQAghxMSJE4Wurq5Yvny5crysTCYT3bt3FxMnTlRhpS+umJgYIUmSCAkJERkZGcLW1lY5ofnly5fF3LlzhYWFhfjiiy+EEA/mM3BwcBDu7u6qLLvJy83NFaNGjRKjRo1Szn1GRETUFO3Zs0e0a9dOZGVlCSEerFgYGhoqJEkS1tbWYtmyZeLixYsiKytLZGRkKIOQljqH5N+lqqpK1NTUiCFDhohvv/1WZGZmirZt2yobndXV1eKTTz5psBqyEC1rteO6H67Ly8tFZWWlyM/PV076vnXrVtGpUydx7949IUTD+/P48ePi5MmTjV9wM1UXLq1cuVL4+voKIR6sztm9e/cGq+sVFRUJIYQ4fPgwOxA8AYVCIeRyuZgxY4YICgoSQjwIoHr27ClmzZqlPK62tlbIZDLlZzM1npY7OLoFycjIQG5uLoAHY7+PHj2KDRs2wMXFBTt27MDu3bvh7OyMBQsWIC4uDnfu3IGBgQHOnDmDpKQk1Rb/gpo5cya++uorfPbZZ4iOjkbnzp1hYWEBADAxMUFQUBDMzMywe/duVFRUQEtLC4cOHcKOHTtUXHnTZmpqinXr1kFNTQ3h4eE4duyYqksiIiJ6JFdXV/j6+mL9+vUAAG1tbWzbtg0eHh4YPnw40tLSMGDAAJw+fRp2dnZQV1eHXC7nkL1ndOLECVy/fh0AsHjxYqSlpUFDQwOenp6YP38+HBwcEB0djZkzZwIA7t+/j59++gnnzp1r8D4tZaqKuqk9srOzMXHiRAwZMgS9e/fGsGHD8Mknn8DR0RFyuRyLFy8GgAb35zfffINDhw6hpqZGRdU3D+I/s+nUTZdSWloKbW1t5OfnY+jQoRg9ejTWrl0LANi3bx8SExNx//59DB8+XDknHT2eJElQU1NDWVkZbG1tIZPJYGlpiVGjRmHdunUAgO3btyMtLQ0GBgaYN28e+vXrp+KqWxhVp2L09/rtt9+Era2tGDt2rLh8+bKorKwU8fHxoqqqShw5ckR07txZrF27VgghxPjx44Wenp4ICwsTpaWlyvdoSb8UPQ/1u9Bu2rRJSJIk9PX1GyzfKsSDVUwetaIhVzr733Jzc4W7u7uws7MTGRkZqi6HiIjokeLj44W9vb24e/eusLCwEPb29qKkpEQIIcS1a9fE5s2b2TPqOcrLyxPW1tbC19dXOTSybiXDEydOCBcXF2Fubi4uXbokhBDixo0bwtXVVdjZ2bXI5926Z9YzZ86I9u3bi8DAQBEfHy9SU1OFh4eHUFdXF15eXiI5OVkYGBiIwMBAUVBQIM6fPy9CQkKEnp4ee+o8JydOnBApKSlCCCHWr18vBg4cKDp37iz8/f2Vx9TW1ooZM2aIgIAAZU82erS6e1smkym3TZkyRVhZWYmePXuKwMBA5WdveXm5eOutt0R4eDg/j1WEoVQLsGHDBjFixAgxfvx4UVBQoNz+9ttviylTpijnL5g9e7bygYljk5/e48KkzZs3C0mSRFBQkCgsLFRuP3v2rOjXr99DoRQ9mezsbDFu3DiRn5+v6lKIiIgey9raWkiSJJycnMSdO3ceeQwbQs9PQkKCMDY2Ftra2mL//v0N9m3evFmMHDlS6OrqCnNzc/Hyyy8La2tr5bNwSwymbt++LSwsLERwcPBD29etWyfatWsn3N3dxffffy+MjIxE586dRe/evUW/fv3Er7/+qqKqmw+FQiFqa2vFyJEjhZubm3K7q6ur0NDQEBkZGaKsrEyUlpaKkJAQ0alTJwaB/0NdO3bXrl3CwcFB7Nq1SwjxYCikhYWF6NKlS4NjFy5cKHr06CHy8vJUUi8Jwf7BzZj4zyoDb7/9NjQ1NZGQkIB58+YhPDwcffv2RU5ODgYPHgxNTU0AwPXr15GYmAgzMzNIkvTQqnv0ePVXNTxy5Aju3r0LSZLw2muvwdvbGxUVFZg2bRpKSkrg5eUFY2NjfPTRR2jdujUGDx6s4upfTP3790dycjK0tLRUXQoREdFD6p6jgoKCsGzZMqxYsQL6+vqPfL7ikL1nV/cs1qNHD7Rt2xYvvfQStmzZgn79+qFHjx4AAG9vb9ja2iIzMxM3b95E165d4enpCXV19Ra72uG1a9dQU1MDHx8f5QrbCoUChoaG8PHxwb1797Bs2TLMnj0bZ8+exenTp9GmTRv06tULRkZGqi6/WVBXV8fSpUvh5uaGlJQUTJgwASkpKXBxccGECROgoaGBXr16ITs7G3v37uWQvf9BkiTs2LEDb731Fj766CPo6+sDAIyMjLBo0SIEBgbCzMxMucr80aNH8cMPP6BPnz4qrrzlkoT4zyBWapbqP/gkJSUhKSkJnTp1QnR0NLZs2YKgoCBMmDABFy9eRFVVFbKysqChocFA6inUv1YLFizAjh07oKamho4dO+L69es4ceIEDA0NkZycDF9fXwDApEmTUF1dja+++gqampoNQi0iIiJqPq5fvw5ra2sEBQUhODhY1eU0O39+hiouLgYAbNu2DUlJSejVqxeWLFmC7t27P/Y96sKYligpKQkBAQGoqKgAgIfaAFeuXIGlpSWCg4N5/z4nf77GCoUCZWVlCAgIQPv27bFmzRplQJqSkoIbN26ga9eusLGx+f/ex/RAUVERXF1d8eabb2LBggUN9tXW1uL69etYuXIlqqqq0K1bN4wfPx6mpqYqqpYAgK3gZq6uxxMA+Pn5wc/PD4WFhQgMDISXlxdiYmIgl8thY2OD06dPQ0NDA3K5nIHUE7p165byWkVHRyMhIQGbNm3ChQsXMG7cOPz222/IyMgAAPj4+GDr1q0AAGdnZyQnJ0NTUxO1tbUMpIiIiJqpLl26ICQkBFFRUbhw4YKqy2lW6gdSR48exfHjx5Gbm4sOHTpg+vTp8PX1xZUrVxAWFoaCggIAD56HDx482OB9WmogBUDZO2Tbtm0A8FAbwMTEBCYmJrh16xaA/07KTX+dJEnIzMxEamoqAEBNTQ26urp47bXXkJSUhOzsbOWxEyZMwJw5czBu3DgGUk+opKQEN2/ehL29PYAH92zdfauhoYEePXpg9erViI2NxYcffshAqglgS7gF+HMwNXXqVFy/fh1z5syBh4cHUlJSEB0drQxIWvIX89NYvXo1rK2tcefOHQDAhQsXEBwcDGtra2zfvh2LFi3C+vXrMXbsWJSWlqK6uhpvvPEGdu7cCR8fH+W/S0vsKk5ERNSSuLm5YcyYMRx28xwJIZSB1HvvvYc33ngD48aNg6urKyZPnozi4mLMmDEDkyZNwpUrV+Du7g4nJyfs378fTk5OKq6+6ejZsyd0dXWxceNG5OfnK7crFAoAD3qe6ejowMrKCsDDoRU9HSEE7t69iy+++ALjxo3DpEmT8PXXXwN4MJLC3d0dS5Yswf3791Vc6YtLS0sLmpqauHLlCoCGbeH9+/fj+++/Vx7LkLVpYCjVQtT/zzhlyhRMnToVhYWFmD9/Pq5duwY1NTUGJE9h/fr1WLBgAaKiomBgYADgwZj8qqoq7NmzB76+vli2bBnefvttKBQKbNy4ERs2bIBCocCYMWOgoaGB2tpafrETERG1AL1790ZSUhLU1NQgl8tVXc4Lr/7wp59//hk7d+7Ezp07sW/fPqSkpGD37t3KOZJmzJiBefPmwcPDA+bm5igoKFCODCCga9euiImJwb59+xAaGorz588DgDLwW7lyJQoLC+Ho6KjKMpsNSZKgr6+PmJgYnDhxAnfu3MGKFStgZWWFtLQ09O/fH6Wlpbhx44aqS30h1A+V6oJUAwMD9OzZE0lJSQ/dz/v27UNsbCzKy8sBMGRtKjinVAtT/0s8ISEBGzZsgL+/P6ZOncp5pJ5QXFwcZs+ejZSUFHh6eiq3L1q0CBkZGfi///s/fPbZZ5g1axYAQCaTYfLkyXBycsIHH3ygoqqJiIiImpeEhAQcPHgQurq6iImJUW7Pzc2FlZUVAgICsHz58ode15LnkHoUuVyO+Ph4zJ49G71794a9vT2MjY3x22+/Ye/evTh48CAsLCxUXeYLq66NlZOTg/z8fOjr68PY2BhdunRBcXExCgsLERoailu3bkEulyMzMxMhISFYsmSJqktv0uqua1paGnbv3o3z58/Dy8sLnp6eqK6uhq2tLQYPHoyxY8eiR48e2Lt3L5KTk3Hs2DH84x//UHX5VA9DqRaofvjk7u4ODQ0NbN++XbVFvSB++uknjBgxAosXL0ZYWJhy++zZs1FbW4v09HRUVlZi06ZNGDx4MGQyGQICAnDnzh2kp6ezJxoRERHRc3Dr1i3MnTsX+/btwyuvvKKcn6eqqgqtWrVCVFQUkpOTkZaWhg4dOnD+zidw8uRJLF++HDk5OdDT04O5uTneeecdDjt9BnXtrm3btuHdd9+FpqYmhBDQ1tZGfHw8HBwclMceOHAAp06dwqpVq3DgwAGYmZmpsPIXw3fffYfJkyfDx8cHhoaGSEhIwKBBg7Bz5078/vvveP/993Hx4kXU1tbC2NgY69atg7m5uarLpj9hKNVC1X1ABgYG4u7du/jqq6+gpaWl6rKavLy8PEybNg0dOnRAaGgohgwZAi8vL5w5cwbnzp3D7du38eqrr6JVq1a4efMm+vTpA4VCgaNHj0JTU5O/zBERERH9BY9aqfiXX37BunXrkJycjMTERPj4+Cj3xcTEIDY2Funp6Wjbtm1jl/vCksvlUFNTgyRJXB36L6h/zWpra6GhoYHMzEy8+uqriIyMhLu7Oy5duoT4+Hhs3boVhw4dwtChQxu8R0VFBXR0dFRR/guloKAA7u7uCAgIwMyZMyGEQPv27REQEIClS5dCXV0dNTU1qKysRGlpKXR1ddGuXTtVl02PwFCqBZPJZPD09ERsbCy7MD6FvLw8BAUFQV1dHSUlJSgvL8e2bdvQs2dPAA+WIT179iwuXboEU1NTDB8+HOrq6sovJiIiIiJ6cvUb+gUFBSgtLcWAAQOgpqaGq1ev4qOPPsKRI0fw8ccfY9y4cfjjjz8wceJEaGpqYvfu3Zye4inUH1HBqT3+mvz8fHTv3h2SJEEulyMpKUnZa6/uPr558ybmzZuH7OxsHDhwAB07dlS+nte9ocddj4KCAnh4eODo0aMoLCyEs7Mz3NzcsGHDBgDAiRMnMHDgQOjq6jZ2yfSUGH23YB07dkRaWhoDqadkamqKNWvWoKqqCmfPnkVwcLAykKqtrYWhoSFGjBgBf39/ODs7Q11dHXK5nIEUERER0VOqv8peWFgY3N3d4eLiAmtra6xYsQIvvfQSgoODMXz4cPj5+WHAgAEIDg5GdXU1UlNTlT1+6MnUb/wzGHl6VVVV8Pb2homJCYQQUFdXR2lpKU6fPo3S0lIAD+5pIyMj/Otf/4JMJoNMJmvwHrzu/6VQKCBJEsrLyyGTyfDjjz/i+vXrKCkpgZqaGm7fvo3MzEy4urrCzc0NsbGxAIAzZ85g9erVuHz5sorPgJ4EQ6kWTltbW9UlvJBMTU0RGxsLOzs7JCYm4tixYwAADQ2NRy4tyiF7RERERE+vroEeERGBDRs2ICIiAgUFBejQoQPWrl2LS5cuYcCAAViwYAGmTJkCLS0tmJmZ4fDhw9DW1kZVVRWHoFGj0dLSQmRkJNq2bQtLS0sIIeDh4QFjY2MkJibi3r17ynva1NQUmpqayrCKGqrrIZmbm4uAgAA4OjrCzc0NgwYNwqxZs1BcXAwfHx+MHDkSFhYW2LBhg/L/+pYtW3D58mUYGRmp+CzoSfATmugv6t27N9auXQshBJYsWYL09HQA/HWDiIiI6FlVVVUp/1xSUoIDBw4gMjISbm5uOHToEDIzM7Fw4UKYmZlBLpdj4MCBePfdd+Hs7Iy4uDjlIj6tWrVS0RlQS/DnXniSJGHYsGGIi4tDRUUFbG1tYWJigtdffx2JiYmIi4vDrVu3UFZWhoSEBKipqSlHXNB/1QVSZ86cwSuvvILWrVsjODgYp06dwsyZM3Hy5Em8+eabMDQ0hK+vL06fPo20tDRs27YN7733HtatW4e4uDgYGxur+lToCXBOKaJnlJeXh7lz5+LWrVv48ssvuVIGERER0TM4cOAAsrKy4OTkBBsbG5SUlMDZ2Rn79+/H6dOn8cYbbyAyMhIzZ85ERUUFNm7cCGdnZ/Tt2xdZWVmIjo7Gjh07sH79enh4eKj6dKiZqgtObt68iatXr8LOzk65r6amBqdOnYK3tze6deuGw4cPIywsDN999x0uXbqEl19+GZcvX8b+/fthYWGhwrNoeuoHUkOHDsW7776LTz75pMFUKFu2bMGqVasgSRKmT5+O48ePIzU1Fd27d0enTp2wYsUKtsleIJzkhugZmZqaIjIyEvHx8Zyfi4iIiOgZJCYmIjQ0FGPHjoWzszMAoH379tDR0YGXlxeysrLw+eefY9q0aQAeLDCzefNm6OnpoW/fvjA3N4e/vz9atWrF5zL6W6mpqaGgoAAWFha4e/cunJycMHToULz66qsYMmQIbGxskJKSgmnTpsHBwQHHjh3DrFmzsGfPHnTo0AGWlpbo0aOHqk+jyam7riNHjsSYMWOwdOlSAA/m4qqbp9fb2xslJSX48MMPIYRAQkICFi5cCGNjYygUCq6y94JhTymi54zL5xIRERE9vS1btmDatGlITEzE6NGjoaurq1x5a8+ePZg3bx4MDQ1x5MgRAMD9+/cxfvx4lJeXIy0trcEcnlVVVRy6R3+7/Px8eHp6oqKiAu3atcOgQYOQkpKC/v37Y/DgwXB3d4ckSQgJCYGJiQn279/PqT6ewNWrVzF+/HgYGxtj/vz5cHBwUO6rvxqfo6MjDA0NkZqaCrlcznl8X1AMpYiIiIiISKWKioowfvx4jBs3DoGBgcrtZWVlyMvLw40bN3DmzBls2rQJrVu3Rrdu3VBUVITS0lL8/PPP0NTUZKOUVOLSpUv44IMPoFAoEBISAmNjYxw/fhzr1q1DTU0Nzp07h969e+PcuXPw8PDAd9991yBYoUfLy8tDUFAQhBBYtGiRMpiqf+2cnZ3RpUsXfP3116oslZ4Ru3MQEREREZHK3b59G126dFH+PSYmBlOmTIGVlRXmzJmDzZs348svv8TQoUPRvXt3eHp64pdffoGmpiZqa2sZSJFK9OnTBxEREaisrERoaChu3boFb29vHDt2DPv370dsbCz++c9/4uWXX0ZYWBgALoz0JExNTbFmzRpIkoRPP/20waJSCoUC165dg46ODlxcXADgkSug04uBPaWIiIiIiEilioqKYGlpidGjR+Ott95CdHQ0cnNz4eDgAE9PT5SUlGDhwoUIDAzEnDlzGryWPaSoKcjLy8M777wDAAgJCYGTk1OD/bW1tQ0m66Yn87geU8HBwdi3bx927dqFrl27qrhKehYMpYiIiIiISOUOHjwILy8vGBgYoF27dli5ciXMzc1hYGCA4uJijBgxAu7u7ggPD1d1qUSPVD9ACQsLw7Bhw1RdUrNQ/7pGRETghx9+QHh4OI4dOwZzc3NVl0fPiKEUERERERE1CUVFRSgrK0OvXr0abC8uLoanpyd8fHzg7++vouqI/re8vDy89957kMlkWLVqFezs7FRdUrNQd10zMzNRXFyMjIwMWFlZqboseg44pxQRERERETUJhoaGDwVSRUVF8PX1RVVVFaZNm6aiyoiejKmpKSIjI9G1a1d07txZ1eU0G6ampoiKioKdnR1OnTrFQKoZYU8pIiIiIiJqcmQyGeLj43Hs2DHcvn0b6enpXGWPXhjV1dXQ0tJSdRnNTk1NDTQ1NVVdBj1H7ClFRERERERNzrVr15Ceno4+ffrg+PHjXGWPXigMpP4eDKSaH/aUIiIiIiKiJunevXto3749JEliDykiomaIoRQRERERETVpQghIkqTqMoiI6Dnj8D0iIiIiImrSGEgRETVPDKWIiIiIiIiIiKjRMZQiIiIiIiIiIqJGx1CKiIiIiIiIiIgaHUMpIiIiIiIiIiJqdAyliIiIiIiIiIio0TGUIiIiImrCcnJy8Omnn6KyslLVpRARERE9V5IQQqi6CCIiIiJ6mFwuh729PfT19TF48GAsW7ZM1SURERERPTfsKUVERETUSPz8/CBJEmbOnPnQvsDAQEiSBD8/P+W2qKgovPLKK/j+++9x8uRJZGZmNmK1RERERH8v9pQiIiIiaiR+fn44dOgQSktLcePGDejo6AAAKisrYWxsDF1dXTg7OyMpKUm1hRIRERE1AvaUIiIiImpElpaW6NatG1JTU5XbUlNT0b17d1hYWCi3KRQKREREoFevXtDR0YG5uTm2bt2q3F9cXAwfHx8YGhpCR0cHpqamSExMbNRzISIiInoWDKWIiIiIGtnUqVMbBEgJCQmYMmVKg2MiIiKwceNGxMbG4vz585g7dy4mTpyIw4cPAwBCQ0Nx4cIF7N27F9nZ2YiJiUHHjh0b9TyIiIiIngWH7xERERE1Ej8/P9y7dw9xcXHo1q0bcnJyAAD9+/dHQUEBpk+fDj09Paxfvx76+vpIS0vD0KFDla+fPn06ysvL8e9//xtjx45Fx44dkZCQoKrTISIiInomGqougIiIiKilMTQ0xJgxY5CUlAQhBMaMGdOgl9OlS5dQXl4OFxeXBq+rrq5WDvELCAiAl5cXfv31V4waNQqenp4YNmxYo54HERER0bNgKEVERESkAlOnTsXs2bMBAF988UWDfWVlZQCA3bt3o0uXLg32tWrVCgDg6uqK/Px87NmzBz/88ANGjhyJwMBAREVFNUL1RERERM+OoRQRERGRCowePRrV1dWQJAmvvfZag30DBw5Eq1at8Pvvv8PJyemx72FoaIjJkydj8uTJcHR0xPz58xlKERER0QuDoRQRERGRCqirqyM7O1v55/ratWuH999/H3PnzoVCoYCDgwNKSkqQnp4OXV1dTJ48GWFhYbCyssKgQYNQVVWFXbt2YcCAAao4FSIiIqK/hKEUERERkYro6uo+dl94eDgMDQ0RERGBK1euQE9PD5aWlli4cCEAQEtLCyEhIbh69Sp0dHTg6OiILVu2NFbpRERERM+Mq+8REREREREREVGjU1N1AURERERERERE1PIwlCIiIiIiIiIiokbHUIqIiIiIiIiIiBodQykiIiIiIiIiImp0DKWIiIiIiIiIiKjRMZQiIiIiIiIiIqJGx1CKiIiIiIiIiIgaHUMpIiIiIiIiIiJqdAyliIiIiIiIiIio0TGUIiIiIiIiIiKiRsdQioiIiIiIiIiIGh1DKSIiIiIiIiIianT/D1WI2lo0/q2ZAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12, 6))\n", + "plt.bar(df['Mês'], df['TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)'], color='#FFFF00', alpha=0.7)\n", + "plt.xlabel('Mês')\n", + "plt.ylabel('Média de Temperatura Mensal °C')\n", + "plt.title('Temperatura média Mensal °C')\n", + "plt.grid(axis='y')\n", + "plt.xticks(rotation=45)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACPB0lEQVR4nOzdd3gU1fv+8XsDIZQ0CBAIvQiIFJHQBEQpoQiIgPQqKgrS9SNgoSpiAUSqighIl26hK0WKCgKKdBGQ3kMNIXl+f/DLflkTNIFkNyTv13V5SWZmZx9OhpnZe8854zAzEwAAAAAAAOBGXp4uAAAAAAAAAKkPoRQAAAAAAADcjlAKAAAAAAAAbkcoBQAAAAAAALcjlAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HaEUgAAAAAAAHA7QikAAAAAAAC4HaEUAABIFTp06KD8+fPf1WsHDhwoh8ORuAXF0969e1WgQAEVKFBA3377rWbMmKFGjRp5pJb7zb38zgEAQNIjlAIAAEniiy++kMPhcP6XPn16FSlSRC+//LJOnjzp6fLu2TvvvKOFCxcm+ft89tlnKlmypJo0aaKmTZuqffv26tChQ6K+R4cOHeRwOOTv769r167FWr9v3z7n7/GDDz5I1PcGAACpV1pPFwAAAFK2wYMHq0CBArp+/brWr1+v8ePH69tvv9Xvv/+ujBkzuq2OTz/9VNHR0Xf12jfeeEN9+/Z1WfbOO++oadOmSd5r6ZVXXlGGDBnk5+engQMHKjIyUpkzZ07090mbNq2uXr2qJUuWqFmzZi7rpk+frvTp0+v69euJ/r4AACD1oqcUAABIUnXr1lWbNm303HPP6YsvvlDPnj118OBBLVq06I6vuXLlSqLX4e3tLR8fn7t6bdq0aZU+ffpErih+smfPLj8/P0mSr69vkgRSkuTj46MaNWpo5syZsdbNmDFDTz75ZJK8LwAASL0IpQAAgFtVr15dknTw4EFJt4aO+fr66sCBA6pXr578/PzUunVrSVJ0dLRGjRqlhx56SOnTp1dwcLA6d+6s8+fPx9rvd999p2rVqsnPz0/+/v4qV66cZsyY4Vz/z/mF/vrrL+dwtJEjRypfvnzKkCGDqlWrpt9//91l3/+cU8rhcOjKlSuaMmWKc1hbzJC6Q4cOqUuXLipatKgyZMigoKAgPfPMM/rrr79i1XzhwgX16tVL+fPnl4+Pj3Lnzq127drpzJkzkqTr16/rzTff1COPPKKAgABlypRJVatW1ffffx9rX1euXFGfPn2UJ08e+fj4qGjRovrggw9kZvH4rdzSqlUrfffdd7pw4YJz2c8//6x9+/apVatWcb7mwoUL6tmzp/N9CxcurOHDh7v0Sru9rT/55BMVKlRIPj4+KleunH7++WeX/Z04cUIdO3ZU7ty55ePjo5w5c+qpp55yab9FixbpySefVEhIiHx8fFSoUCENGTJEUVFR8f67AgAAz2P4HgAAcKsDBw5IkoKCgpzLbt68qdq1a6tKlSr64IMPnMP6OnfurC+++EIdO3ZU9+7ddfDgQY0ZM0a//vqrfvzxR3l7e0u6NX/Vs88+q4ceekj9+vVTYGCgfv31Vy1duvSOYUqMqVOn6tKlS+ratauuX7+ujz76SNWrV9dvv/2m4ODgOF8zbdo0PffccypfvrxeeOEFSVKhQoUk3QpxNmzYoBYtWih37tz666+/NH78eD3++OP6448/nH+3y5cvq2rVqtq1a5eeffZZPfLIIzpz5owWL16sv//+W1mzZtWFCxc0adIktWzZUi+88ILCw8P1+eefq3bt2vrpp5/08MMPS5LMTA0bNtT333+vTp066eGHH9ayZcv06quv6ujRoxo5cmS8fjeNGzfWiy++qPnz5+vZZ5+VdKuXVLFixfTII4/E2v7q1auqVq2ajh49qs6dOytv3rzasGGD+vXrp+PHj2vUqFEu28+YMUOXLl1S586d5XA49N5776lx48b6888/nb/LJk2aaOfOnerWrZvy58+vU6dOacWKFTp8+LAzVPziiy/k6+ur3r17y9fXV6tXr9Zbb72l8PBwvf/++/H6uwIAgGTAAAAAksDkyZNNkq1cudJOnz5tR44csVmzZllQUJBlyJDB/v77bzMza9++vUmyvn37urx+3bp1JsmmT5/usnzp0qUuyy9cuGB+fn5WoUIFu3btmsu20dHRzj+3b9/e8uXL5/z54MGDJsmlFjOzzZs3myTr1auXc9mAAQPsn7dNmTJlsvbt28f6e1+9ejXWso0bN5okmzp1qnPZW2+9ZZJs/vz5sbaPqTsyMtIiIiJc1p0/f96Cg4Pt2WefdS5buHChSbKhQ4e6bNu0aVNzOBy2f//+WO9xu/bt21umTJmcr6lRo4aZmUVFRVmOHDls0KBBzvZ6//33na8bMmSIZcqUyfbu3euyv759+1qaNGns8OHDZvZ/bR0UFGTnzp1zbrdo0SKTZEuWLHH+3f75HnGJq407d+5sGTNmtOvXr7v8vW7/nQMAgOSF4XsAACBJ1axZU9myZVOePHnUokUL+fr6asGCBcqVK5fLdi+99JLLz3PnzlVAQIBq1aqlM2fOOP8rW7asfH19nUPYVqxYoUuXLqlv376x5n26fcjdnTRq1MillvLly6tChQr69ttv7+rvmyFDBuefIyMjdfbsWRUuXFiBgYHaunWrc928efNUunRpPf3007H2EVN32rRplS5dOkm3hjKeO3dON2/eVGhoqMu+vv32W6VJk0bdu3d32U+fPn1kZvruu+/iXX+rVq30ww8/6MSJE1q9erVOnDhxx95mc+fOVdWqVZU5c2aX31HNmjUVFRWltWvXumzfvHlzlzmxqlatKkn6888/Jd1qu3Tp0umHH36Ic4hmjNvb+NKlSzpz5oyqVq2qq1evavfu3fH+uwIAAM9i+B4AAEhSY8eOVZEiRZQ2bVoFBweraNGi8vJy/V4sbdq0yp07t8uyffv26eLFi8qePXuc+z116pSk/xsOWKJEibuq74EHHoi1rEiRIpozZ85d7e/atWsaNmyYJk+erKNHj7rM6XTx4kXnnw8cOKAmTZr85/6mTJmiDz/8ULt371ZkZKRzeYECBZx/PnTokEJCQpwTosd48MEHnevjK2Zer9mzZ2vbtm0qV66cChcuHOecWPv27dOOHTuULVu2OPcV8zuKkTdvXpefYwKqmADKx8dHw4cPV58+fRQcHKyKFSuqfv36ateunXLkyOF83c6dO/XGG29o9erVCg8Pd9nn7W0MAACSN0IpAACQpMqXL6/Q0NB/3cbHxydWUBUdHa3s2bNr+vTpcb7mTkGIp3Xr1k2TJ09Wz549ValSJQUEBMjhcKhFixYuk3/Hx5dffqkOHTqoUaNGevXVV5U9e3alSZNGw4YNc4Zxic3Hx0eNGzfWlClT9Oeff2rgwIF33DY6Olq1atXS//73vzjXFylSxOXnNGnSxLnd7cFdz5491aBBAy1cuFDLli3Tm2++qWHDhmn16tUqU6aMLly4oGrVqsnf31+DBw9WoUKFlD59em3dulWvvfZagtsYAAB4DqEUAABIlgoVKqSVK1eqcuXKLsO14tpOkn7//XcVLlw4we+zb9++WMv27t3r8qS+uNxpaOBXX32l9u3b68MPP3Quu379ussT7aRbdf/zKX9x7atgwYKaP3++y/sNGDDAZbt8+fJp5cqVunTpkktvqZihbPny5fvX9/mnVq1a6fPPP5eXl5datGhxx+0KFSqky5cvq2bNmgna/38pVKiQ+vTpoz59+mjfvn16+OGH9eGHH+rLL7/UDz/8oLNnz2r+/Pl67LHHnK+JeZojAAC4fzCnFAAASJaaNWumqKgoDRkyJNa6mzdvOkOesLAw+fn5adiwYbp+/brLdrf3wLmThQsX6ujRo86ff/rpJ23evFl169b919dlypQpVtAk3eoN9M/3/fjjjxUVFeWyrEmTJtq+fbsWLFgQax8xr4/pWXT7/jZv3qyNGze6bF+vXj1FRUVpzJgxLstHjhwph8Pxn3+Xf3riiSc0ZMgQjRkzxmXY3D81a9ZMGzdu1LJly2Ktu3Dhgm7evJmg97169Wqs32GhQoXk5+eniIgISXG3yY0bNzRu3LgEvRcAAPA8ekoBAIBkqVq1aurcubOGDRumbdu2KSwsTN7e3tq3b5/mzp2rjz76SE2bNpW/v79Gjhyp5557TuXKlVOrVq2UOXNmbd++XVevXtWUKVP+9X0KFy6sKlWq6KWXXlJERIRGjRqloKCgOw5Ji1G2bFmtXLlSI0aMUEhIiAoUKKAKFSqofv36mjZtmgICAlS8eHFt3LhRK1euVFBQkMvrX331VX311Vd65pln9Oyzz6ps2bI6d+6cFi9erAkTJqh06dKqX7++5s+fr6efflpPPvmkDh48qAkTJqh48eK6fPmyc18NGjTQE088oddff11//fWXSpcureXLl2vRokXq2bOnszdZfHl5eemNN974z+1effVVLV68WPXr11eHDh1UtmxZXblyRb/99pu++uor/fXXX8qaNWu833fv3r2qUaOGmjVrpuLFiytt2rRasGCBTp486eyx9eijjypz5sxq3769unfvLofDoWnTpsUrgAQAAMkLoRQAAEi2JkyYoLJly2rixInq37+/0qZNq/z586tNmzaqXLmyc7tOnTope/bsevfddzVkyBB5e3urWLFi6tWr13++R7t27eTl5aVRo0bp1KlTKl++vMaMGaOcOXP+6+tGjBihF154QW+88YauXbum9u3bq0KFCvroo4+UJk0aTZ8+XdevX1flypW1cuVK1a5d2+X1vr6+WrdunQYMGKAFCxbo008/VWBgoJ566innpO8dOnTQiRMnNHHiRC1btkzFixfXl19+qblz5+qHH35w7svLy0uLFy/WW2+9pdmzZ2vy5MnKnz+/3n//ffXp0ycBLZ4wGTNm1Jo1a/TOO+9o7ty5mjp1qvz9/VWkSBENGjRIAQEBCdpfnjx51LJlS61atUrTpk1T2rRpVaxYMc2ZM8c5KXxQUJC+/vpr9enTR2+88YYyZ86sNm3aqEaNGrHaGAAAJG8O42slAACQCv31118qUKCA3n//fb3yyiueLkdDhw7V1atX9c4773i6FAAAALdgTikAAIBkoEGDBvryyy89XQYAAIDbMHwPAADAg3788Uft2LFDv/zyi8s8UQAAACkdoRQAAIAHXbhwQX379pWXl5fefvttT5cDAADgNswpBQAAAAAAALdjTikAAAAAAAC4HaEUAAAAAAAA3C7FzykVHR2tY8eOyc/PTw6Hw9PlAAAAAAAApGhmpkuXLikkJEReXnfuD5XiQ6ljx44pT548ni4DAAAAAAAgVTly5Ihy5859x/UpPpTy8/OTdKsh/P39PVwNAAAAAABAyhYeHq48efI4M5k7SfGhVMyQPX9/f0IpAAAAAAAAN/mvaZSY6BwAAAAAAABuRygFAAAAAAAAtyOUAgAAAAAAgNsRSgEAAAAAAMDtCKUAAAAAAADgdoRSAAAAAAAAcDtCKQAAAAAAALgdoRQAAAAAAADcjlAKAAAAAAAAbkcoBQAAAAAAALcjlAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HaEUgAAAAAAAHA7QikAAAAAAAC4HaEUAAAAAAAA3I5QCgAAAAAAAG5HKAUAAAAAAAC3I5QCAAAAAACA26X1dAEAgLvUoIGnK0h+lizxdAUAAAAA4omeUgAAAAAAAHA7QikAAAAAAAC4HaEUAAAAAAAA3I5QCgAAAAAAAG5HKAUAAAAAAAC3I5QCAAAAAACA2xFKAQAAAAAAwO0IpQAAAAAAAOB2hFIAAAAAAABwO0IpAAAAAAAAuB2hFAAAAAAAANyOUAoAAAAAAABuRygFAAAAAAAAtyOUAgAAAAAAgNsRSgEAAAAAAMDtCKUAAAAAAADgdoRSAAAAAAAAcDtCKQAAAAAAALgdoRQAAAAAAADcjlAKAAAAAAAAbkcoBQAAAAAAALcjlAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HaEUgAAAAAAAHA7QikAAAAAAAC4HaEUAAAAAAAA3I5QCgAAAAAAAG5HKAUAAAAAAAC3I5QCAAAAAACA2xFKAQAAAAAAwO0IpQAAAAAAAOB2hFIAAAAAAABwO0IpAAAAAAAAuB2hFAAAAAAAANyOUAoAAAAAAABuRygFAAAAAAAAtyOUAgAAAAAAgNsRSgEAAAAAAMDtCKUAAAAAAADgdoRSAAAAAAAAcDtCKQAAAAAAALgdoRQAAAAAAADcjlAKAAAAAAAAbkcoBQAAAAAAALcjlAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HYeDaUGDhwoh8Ph8l+xYsWc669fv66uXbsqKChIvr6+atKkiU6ePOnBigEAAAAAAJAYPN5T6qGHHtLx48ed/61fv965rlevXlqyZInmzp2rNWvW6NixY2rcuLEHqwUAAAAAAEBiSOvxAtKmVY4cOWItv3jxoiZNmqQZM2aoevXqkqTJkyfrwQcf1KZNm1SxYkV3lwoAAAAAAIBE4vFQat++fQoJCVH69OlVqVIlDRs2THnz5tWWLVsUGRmpmjVrOrctVqyY8ubNq40bN94xlIqIiFBERITz5/DwcElSZGSkIiMjk/YvAwDu5O3t6QqSH87zAAAAgMfFN3/xaChVoUIFffHFFypatKiOHz+uQYMGqWrVqvr999914sQJpUuXToGBgS6vCQ4O1okTJ+64z2HDhmnQoEGxli9fvlwZM2ZM7L8CAHhO+/aeriD5+fZbT1cAAAAApHpXr16N13YOM7MkriXeLly4oHz58mnEiBHKkCGDOnbs6NLrSZLKly+vJ554QsOHD49zH3H1lMqTJ4/OnDkjf3//JK0fANyqeXNPV5D8zJ7t6QoAAACAVC88PFxZs2bVxYsX/zWL8fjwvdsFBgaqSJEi2r9/v2rVqqUbN27owoULLr2lTp48GeccVDF8fHzk4+MTa7m3t7e8GeoCICVhqFpsnOcBAAAAj4tv/uLxp+/d7vLlyzpw4IBy5sypsmXLytvbW6tWrXKu37Nnjw4fPqxKlSp5sEoAAAAAAADcK4/2lHrllVfUoEED5cuXT8eOHdOAAQOUJk0atWzZUgEBAerUqZN69+6tLFmyyN/fX926dVOlSpV48h4AAAAAAMB9zqOh1N9//62WLVvq7NmzypYtm6pUqaJNmzYpW7ZskqSRI0fKy8tLTZo0UUREhGrXrq1x48Z5smQAAAAAAAAkgmQ10XlSCA8PV0BAwH9OrgUA950GDTxdQfKzZImnKwAAAABSvfhmMclqTikAAAAAAACkDoRSAAAAAAAAcDtCKQAAAAAAALgdoRQAAAAAAADcjlAKAAAAAAAAbkcoBQAAAAAAALcjlAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HaEUgAAAAAAAHA7QikAAAAAAAC4HaEUAAAAAAAA3I5QCgAAAAAAAG5HKAUAAAAAAAC3I5QCAAAAAACA2xFKAQAAAAAAwO0IpQAAAAAAAOB2hFIAAAAAAABwO0IpAAAAAAAAuB2hFAAAAAAAANyOUAoAAAAAAABuRygFAAAAAAAAtyOUAgAAAAAAgNsRSgEAAAAAAMDtCKUAAAAAAADgdoRSAAAAAAAAcDtCKQAAAAAAALgdoRQAAAAAAADcjlAKAAAAAAAAbkcoBQAAAAAAALcjlAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HaEUgAAAAAAAHA7QikAAAAAAAC4HaEUAAAAAAAA3I5QCgAAAAAAAG5HKAUAAAAAAAC3I5QCAAAAAACA2xFKAQAAAAAAwO0IpQAAAAAAAOB2hFIAAAAAAABwO0IpAAAAAAAAuB2hFAAAAAAAANyOUAoAAAAAAABuRygFAAAAAAAAtyOUAgAAAAAAgNsRSgEAAAAAAMDtCKUAAAAAAADgdoRSAAAAAAAAcDtCKQAAAAAAALgdoRQAAAAAAADcjlAKAAAAAAAAbkcoBQAAAAAAALcjlAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HZpE/qCgwcPat26dTp06JCuXr2qbNmyqUyZMqpUqZLSp0+fFDUCAAAAAAAghYl3KDV9+nR99NFH+uWXXxQcHKyQkBBlyJBB586d04EDB5Q+fXq1bt1ar732mvLly5eUNQMAAAAAAOA+F69QqkyZMkqXLp06dOigefPmKU+ePC7rIyIitHHjRs2aNUuhoaEaN26cnnnmmSQpGAAAAAAAAPc/h5nZf220bNky1a5dO147PHv2rP766y+VLVv2notLDOHh4QoICNDFixfl7+/v6XIAIPE0aODpCpKfJUs8XQEAAACQ6sU3i4lXT6n4BlKSFBQUpKCgoHhvDwAAAAAAgNQnwROdxzh16pROnTql6Ohol+WlSpW656IAAAAAAACQsiU4lNqyZYvat2+vXbt2KWbkn8PhkJnJ4XAoKioq0YsEAAAAAABAyuKV0Bc8++yzKlKkiDZs2KA///xTBw8edPn/3Xr33XflcDjUs2dP57Lr16+ra9euCgoKkq+vr5o0aaKTJ0/e9XsAAAAAAAAgeUhwT6k///xT8+bNU+HChROtiJ9//lkTJ06MNfSvV69e+uabbzR37lwFBATo5ZdfVuPGjfXjjz8m2nsDAAAAAADA/RLcU6pGjRravn17ohVw+fJltW7dWp9++qkyZ87sXH7x4kVNmjRJI0aMUPXq1VW2bFlNnjxZGzZs0KZNmxLt/QEAAAAAAOB+Ce4p9dlnn6l9+/b6/fffVaJECXl7e7usb9iwYYL217VrVz355JOqWbOmhg4d6ly+ZcsWRUZGqmbNms5lxYoVU968ebVx40ZVrFgxoaUDAAAAAAAgmUhwKLVx40b9+OOP+u6772KtS+hE57NmzdLWrVv1888/x1p34sQJpUuXToGBgS7Lg4ODdeLEiTvuMyIiQhEREc6fw8PDJUmRkZGKjIyMd20AkOz940sBSOI8DwAAAHhcfPOXBIdS3bp1U5s2bfTmm28qODg4wYXFOHLkiHr06KEVK1Yoffr0d72ffxo2bJgGDRoUa/ny5cuVMWPGRHsfAPC49u09XUHy8+23nq4AAAAASPWuXr0ar+0cZmYJ2bGfn5+2bdumQoUK3VVhMRYuXKinn35aadKkcS6LioqSw+GQl5eXli1bppo1a+r8+fMuvaXy5cunnj17qlevXnHuN66eUnny5NGZM2fk7+9/TzUDQLLSvLmnK0h+Zs/2dAUAAABAqhceHq6sWbPq4sWL/5rFJLinVOPGjfX999/fcyhVo0YN/fbbby7LOnbsqGLFium1115Tnjx55O3trVWrVqlJkyaSpD179ujw4cOqVKnSHffr4+MjHx+fWMu9vb1jzX8FAPc1hqrFxnkeAAAA8Lj45i8JDqWKFCmifv36af369SpZsmSsN+revXu89uPn56cSJUq4LMuUKZOCgoKcyzt16qTevXsrS5Ys8vf3V7du3VSpUiUmOQcAAAAAALjP3dXT93x9fbVmzRqtWbPGZZ3D4Yh3KBUfI0eOlJeXl5o0aaKIiAjVrl1b48aNS7T9AwAAAAAAwDMSPKfU/SY8PFwBAQH/OY4RAO47DRp4uoLkZ8kST1cAAAAApHrxzWK83FgTAAAAAAAAIOkuhu+Zmb766it9//33OnXqlKKjo13Wz58/P9GKAwAAAAAAQMqU4FCqZ8+emjhxop544gkFBwfL4XAkRV0AAAAAAABIwRIcSk2bNk3z589XvXr1kqIeAAAAAAAApAIJnlMqICBABQsWTIpaAAAAAAAAkEokOJQaOHCgBg0apGvXriVFPQAAAAAAAEgFEjx8r1mzZpo5c6ayZ8+u/Pnzy9vb22X91q1bE604AAAAAAAApEwJDqXat2+vLVu2qE2bNkx0DgAAAAAAgLuS4FDqm2++0bJly1SlSpWkqAcAAAAAAACpQILnlMqTJ4/8/f2TohYAAAAAAACkEgkOpT788EP973//019//ZUE5QAAAAAAACA1SPDwvTZt2ujq1asqVKiQMmbMGGui83PnziVacQAAAAAAAEiZEhxKjRo1KgnKAAAAAAAAQGpyV0/fAwAAAAAAAO5FvOaUunLlSoJ2mtDtAQAAAAAAkLrEK5QqXLiw3n33XR0/fvyO25iZVqxYobp162r06NGJViAAAAAAAABSnngN3/vhhx/Uv39/DRw4UKVLl1ZoaKhCQkKUPn16nT9/Xn/88Yc2btyotGnTql+/furcuXNS1w0AAAAAAID7WLxCqaJFi2revHk6fPiw5s6dq3Xr1mnDhg26du2asmbNqjJlyujTTz9V3bp1lSZNmqSuGQAAAAAAAPc5h5mZp4tISuHh4QoICNDFixfl7+/v6XIAIPE0aODpCpKfJUs8XQEAAACQ6sU3i4nXnFIAAAAAAABAYiKUAgAAAAAAgNsRSgEAAAAAAMDtCKUAAAAAAADgdoRSAAAAAAAAcLu08dlox44d8d5hqVKl7roYwGN4ilnceJIZACR/XMNi4/oFAMB9IV6h1MMPPyyHwyEzi3N9zDqHw6GoqKhELRAAAAAAAAApT7xCqYMHDyZ1HQAAAAAAAEhF4hVK5cuXL6nrAAAAAAAAQCoSr1AqLn/88YcOHz6sGzduuCxv2LDhPRcFAAAAAACAlC3BodSff/6pp59+Wr/99pvLPFMOh0OSmFMKAAAAAAAA/8kroS/o0aOHChQooFOnTiljxozauXOn1q5dq9DQUP3www9JUCIAAAAAAABSmgT3lNq4caNWr16trFmzysvLS15eXqpSpYqGDRum7t2769dff02KOgEAAAAAAJCCJDiUioqKkp+fnyQpa9asOnbsmIoWLap8+fJpz549iV4gAABu1aCBpytIfpYs8XQFAAAASIESHEqVKFFC27dvV4ECBVShQgW99957SpcunT755BMVLFgwKWoEAAAAAABACpPgUOqNN97QlStXJEmDBw9W/fr1VbVqVQUFBWn27NmJXiAAAAAAAABSngSHUrVr13b+uXDhwtq9e7fOnTunzJkzO5/ABwAAAAAAAPybBD9975/Cw8O1du1a5pMCAAAAAABAvCU4lGrWrJnGjBkjSbp27ZpCQ0PVrFkzlSxZUvPmzUv0AgEAAAAAAJDyJDiUWrt2rapWrSpJWrBggcxMFy5c0OjRozV06NBELxAAAAAAAAApT4JDqYsXLypLliySpKVLl6pJkybKmDGjnnzySe3bty/RCwQAAAAAAEDKk+CJzvPkyaONGzcqS5YsWrp0qWbNmiVJOn/+vNKnT5/oBQK4zzVo4OkKkp8lSzxdAQAAAAB4XIJDqZ49e6p169by9fVVvnz59Pjjj0u6NayvZMmSiV0fAAAAAAAAUqAEh1JdunRR+fLldeTIEdWqVUteXrdGABYsWJA5pQAAAAAAABAvCQ6lJCk0NFShoaEuy5588slEKQgAAAAAAAApX4JDqaioKH3xxRdatWqVTp06pejoaJf1q1evTrTiAAAAAAAAkDIlOJTq0aOHvvjiCz355JMqUaKEHA5HUtQFAAAAAACAFCzBodSsWbM0Z84c1atXLynqAQAAAAAAQCrgldAXpEuXToULF06KWgAAAAAAAJBKJDiU6tOnjz766COZWVLUAwAAAAAAgFQgwcP31q9fr++//17fffedHnroIXl7e7usnz9/fqIVBwAAAAAAgJQpwaFUYGCgnn766aSoBQAAAAAAAKlEgkOpyZMnJ0UdAAAAAAAASEUSPKeUJN28eVMrV67UxIkTdenSJUnSsWPHdPny5UQtDgAAAAAAAClTgntKHTp0SHXq1NHhw4cVERGhWrVqyc/PT8OHD1dERIQmTJiQFHUCAAAAAAAgBUlwT6kePXooNDRU58+fV4YMGZzLn376aa1atSpRiwMAAAAAAEDKlOCeUuvWrdOGDRuULl06l+X58+fX0aNHE60wAAAAAAAApFwJ7ikVHR2tqKioWMv//vtv+fn5JUpRAAAAAAAASNkSHEqFhYVp1KhRzp8dDocuX76sAQMGqF69eolZGwAAAAAAAFKoBA/f+/DDD1W7dm0VL15c169fV6tWrbRv3z5lzZpVM2fOTIoaAQAAAAAAkMIkOJTKnTu3tm/frlmzZmnHjh26fPmyOnXqpNatW7tMfA4AAAAAAADcSYJDKUlKmzat2rRpk9i1AAAAAAAAIJWIdyi1du3aeG332GOP3XUxAAAAAAAASB3iHUo9/vjjcjgckiQzi3Mbh8MR55P5kIgaNPB0BcnPkiWergAAAAAAACRQvEOpzJkzy8/PTx06dFDbtm2VNWvWpKwLAAAAAAAAKZhXfDc8fvy4hg8fro0bN6pkyZLq1KmTNmzYIH9/fwUEBDj/AwAAAAAAAP5LvEOpdOnSqXnz5lq2bJl2796tUqVK6eWXX1aePHn0+uuv6+bNmwl+8/Hjx6tUqVLy9/eXv7+/KlWqpO+++865/vr16+ratauCgoLk6+urJk2a6OTJkwl+HwAAAAAAACQv8Q6lbpc3b1699dZbWrlypYoUKaJ3331X4eHhCd5P7ty59e6772rLli365ZdfVL16dT311FPauXOnJKlXr15asmSJ5s6dqzVr1ujYsWNq3Ljx3ZQMAAAAAACAZCTBoVRERIRmzJihmjVrqkSJEsqaNau++eYbZcmSJcFv3qBBA9WrV08PPPCAihQporffflu+vr7atGmTLl68qEmTJmnEiBGqXr26ypYtq8mTJ2vDhg3atGlTgt8LAAAAAAAAyUe8Jzr/6aefNHnyZM2aNUv58+dXx44dNWfOnLsKo+ISFRWluXPn6sqVK6pUqZK2bNmiyMhI1axZ07lNsWLFlDdvXm3cuFEVK1ZMlPcFAAAAAACA+8U7lKpYsaLy5s2r7t27q2zZspKk9evXx9quYcOGCSrgt99+U6VKlXT9+nX5+vpqwYIFKl68uLZt26Z06dIpMDDQZfvg4GCdOHHijvuLiIhQRESE8+eYYYWRkZGKjIxMUG3Jkre3pytIfhLj90q7xo22TRqJdS6ibWPjmE0aKeH6mZJxzMbGMQsAgEfFN39xmJnFZ0Mvr/8e6edwOBQVFRWvN45x48YNHT58WBcvXtRXX32lzz77TGvWrNG2bdvUsWNHl4BJksqXL68nnnhCw4cPj3N/AwcO1KBBg2ItnzFjhjJmzJig2gAAAAAAAJAwV69eVatWrXTx4kX5+/vfcbt4h1LuUrNmTRUqVEjNmzdXjRo1dP78eZfeUvny5VPPnj3Vq1evOF8fV0+pPHny6MyZM//aEPeN5s09XUHyM3v2ve+Ddo0bbZs0EqNdJdo2LhyzSSOxjlkkDY7Z2DhmAQDwqPDwcGXNmvU/Q6l4D99zl+joaEVERKhs2bLy9vbWqlWr1KRJE0nSnj17dPjwYVWqVOmOr/fx8ZGPj0+s5d7e3vJOCd3b6Y4eW2L8XmnXuNG2SSOxzkW0bWwcs0kjJVw/UzKO2dg4ZgEA8Kj45i8eDaX69eununXrKm/evLp06ZJmzJihH374QcuWLVNAQIA6deqk3r17K0uWLPL391e3bt1UqVIlJjkHAAAAAAC4z3k0lDp16pTatWun48ePKyAgQKVKldKyZctUq1YtSdLIkSPl5eWlJk2aKCIiQrVr19a4ceM8WTIAAAAAAAASgUdDqUmTJv3r+vTp02vs2LEaO3asmyoCAAAAAACAO/z3I/UAAAAAAACARHbXPaW2bNmiXbt2SZKKFy+uRx55JNGKAgAAAAAAQMqW4FDq1KlTatGihX744QcFBgZKki5cuKAnnnhCs2bNUrZs2RK7RgAAAAAAAKQwCR6+161bN126dEk7d+7UuXPndO7cOf3+++8KDw9X9+7dk6JGAAAAAAAApDAJ7im1dOlSrVy5Ug8++KBzWfHixTV27FiFhYUlanEAAAAAAABImRLcUyo6Olre3t6xlnt7eys6OjpRigIAAAAAAEDKluBQqnr16urRo4eOHTvmXHb06FH16tVLNWrUSNTiAAAAAAAAkDIlOJQaM2aMwsPDlT9/fhUqVEiFChVSgQIFFB4ero8//jgpagQAAAAAAEAKk+A5pfLkyaOtW7dq5cqV2r17tyTpwQcfVM2aNRO9OAAAAAAAAKRMCQ6lJMnhcKhWrVqqVatWYtcDAAAAAACAVOCuQqkrV65ozZo1Onz4sG7cuOGyrnv37olSGAAAAAAAAFKueIVS8+bNU1hYmPz8/PTrr7+qXr16unr1qq5cuaIsWbLozJkzypgxo7Jnz04oBQAAAAAAgP8Ur4nOt23bprCwMElSr1691KBBA50/f14ZMmTQpk2bdOjQIZUtW1YffPBBkhYLAAAAAACAlCFeoVRoaKgyZMgg6VZA1adPH3l5eSlNmjSKiIhQnjx59N5776l///5JWiwAAAAAAABShngN3+vcubO+/vprSZK3t7e8vG5lWdmzZ9fhw4f14IMPKiAgQEeOHEm6SgEAAAAAAJBixCuUatOmjV544QVt3bpVZcqU0c8//6wHHnhA1apV01tvvaUzZ85o2rRpKlGiRFLXCwAAAAAAgBQgXsP3PvjgA23dulWS9M477yhnzpySpLfffluZM2fWSy+9pNOnT2vixIlJVykAAAAAAABSjHj1lLpdaGio88/Zs2fX0qVLE7UgAAAAAAAApHzx6il1u4MHD2rfvn2xlu/bt09//fVXYtQEAAAAAACAFC7BoVSHDh20YcOGWMs3b96sDh06KCoqStu3b9e1a9cSpUAAAAAAAACkPAkevvfrr7+qcuXKsZZXrFhR7dq106OPPqpTp04pJCREP/74Y6IUCQAAAAAAgJQlwaGUw+HQpUuXYi2/ePGiHA6Hvv/+ex07down8QEAAAAAAOCOEjx877HHHtOwYcMUFRXlXBYVFaVhw4YpLCxMGTNmlLe3t/r165eohQIAAAAAACDlSHBPqeHDh+uxxx5T0aJFVbVqVUnSunXrFB4ertWrV0uS8uXLpwEDBiRupQAAAAAAAEgxEtxTqnjx4tqxY4eaNWumU6dO6dKlS2rXrp12797NkD0AAAAAAADES4J7SklSSEiI3nnnncSuBQAAAAAAAKnEXYVSknT16lUdPnxYN27ccFleqlSpey4KAAAAAAAAKVuCQ6nTp0+rY8eO+u677+Jcf/sE6AAAAAAAAEBcEjynVM+ePXXhwgVt3rxZGTJk0NKlSzVlyhQ98MADWrx4cVLUCAAAAAAAgBQmwT2lVq9erUWLFik0NFReXl7Kly+fatWqJX9/fw0bNkxPPvlkUtQJAAAAAACAFCTBPaWuXLmi7NmzS5IyZ86s06dPS5JKliyprVu3Jm51AAAAAAAASJESHEoVLVpUe/bskSSVLl1aEydO1NGjRzVhwgTlzJkz0QsEAAAAAABAypPg4Xs9evTQ8ePHJUkDBgxQnTp1NH36dKVLl05ffPFFYtcHAAAAAACAFCjBoVSbNm2cfy5btqwOHTqk3bt3K2/evMqaNWuiFgcAAAAAAICUKcHD9wYPHqyrV686f86YMaMeeeQRZcqUSYMHD07U4gAAAAAAAJAyJTiUGjRokC5fvhxr+dWrVzVo0KBEKQoAAAAAAAApW4JDKTOTw+GItXz79u3KkiVLohQFAAAAAACAlC3ec0plzpxZDodDDodDRYoUcQmmoqKidPnyZb344otJUiQAAAAAAABSlniHUqNGjZKZ6dlnn9WgQYMUEBDgXJcuXTrlz59flSpVSpIiAQAAAAAAkLLEO5Rq3769JKlAgQJ69NFH5e3tnWRFAQAAAAAAIGWLVygVHh4uf39/SVKZMmV07do1Xbt2Lc5tY7YDAAAAAAAA7iReoVTmzJl1/PhxZc+eXYGBgXFOdB4zAXpUVFSiFwkAAAAAAICUJV6h1OrVq51P1vv++++TtCAAAAAAAACkfPEKpapVqxbnnwEAAAAAAIC7Ee+Jzm93/vx5TZo0Sbt27ZIkFS9eXB07dnT2pgIAAAAAAAD+jVdCX7B27Vrlz59fo0eP1vnz53X+/HmNHj1aBQoU0Nq1a5OiRgAAAAAAAKQwCe4p1bVrVzVv3lzjx49XmjRpJElRUVHq0qWLunbtqt9++y3RiwQAAAAAAEDKkuCeUvv371efPn2cgZQkpUmTRr1799b+/fsTtTgAAAAAAACkTAkOpR555BHnXFK327Vrl0qXLp0oRQEAAAAAACBlS/Dwve7du6tHjx7av3+/KlasKEnatGmTxo4dq3fffVc7duxwbluqVKnEqxQAAAAAAAApRoJDqZYtW0qS/ve//8W5zuFwyMzkcDgUFRV17xUCAAAAAAAgxUlwKHXw4MGkqAMAAAAAAACpSIJDqXz58iVFHQAAAAAAAEhF4hVKLV68WHXr1pW3t7cWL178r9s2bNgwUQoDAAAAAABAyhWvUKpRo0Y6ceKEsmfPrkaNGt1xO+aRAgAAAAAAQHzEK5SKjo6O888AAAAAAADA3fDydAEAAAAAAABIfRIcSnXv3l2jR4+OtXzMmDHq2bNnYtQEAAAAAACAFC7BodS8efNUuXLlWMsfffRRffXVV4lSFAAAAAAAAFK2BIdSZ8+eVUBAQKzl/v7+OnPmTKIUBQAAAAAAgJQtwaFU4cKFtXTp0ljLv/vuOxUsWDBRigIAAAAAAEDKFq+n792ud+/eevnll3X69GlVr15dkrRq1Sp9+OGHGjVqVGLXBwAAAAAAgBQowaHUs88+q4iICL399tsaMmSIJCl//vwaP3682rVrl+gFAgAAAAAAIOVJcCglSS+99JJeeuklnT59WhkyZJCvr29i1wUAAAAAAIAULMFzSknSzZs3tXLlSs2fP19mJkk6duyYLl++nKjFAQAAAAAAIGVKcCh16NAhlSxZUk899ZS6du2q06dPS5KGDx+uV155JUH7GjZsmMqVKyc/Pz9lz55djRo10p49e1y2uX79urp27aqgoCD5+vqqSZMmOnnyZELLBgAAAAAAQDKS4FCqR48eCg0N1fnz55UhQwbn8qefflqrVq1K0L7WrFmjrl27atOmTVqxYoUiIyMVFhamK1euOLfp1auXlixZorlz52rNmjU6duyYGjdunNCyAQAAAAAAkIwkeE6pdevWacOGDUqXLp3L8vz58+vo0aMJ2tfSpUtdfv7iiy+UPXt2bdmyRY899pguXryoSZMmacaMGc4n/U2ePFkPPvigNm3apIoVKya0fAAAAAAAACQDCe4pFR0draioqFjL//77b/n5+d1TMRcvXpQkZcmSRZK0ZcsWRUZGqmbNms5tihUrprx582rjxo339F4AAAAAAADwnAT3lAoLC9OoUaP0ySefSJIcDocuX76sAQMGqF69enddSHR0tHr27KnKlSurRIkSkqQTJ04oXbp0CgwMdNk2ODhYJ06ciHM/ERERioiIcP4cHh4uSYqMjFRkZORd15dseHt7uoLkJzF+r7Rr3GjbpJFY5yLaNjaO2aSREq6fKRnHbGwcswAAeFR88xeHxTw+L56OHDmiOnXqyMy0b98+hYaGat++fcqaNavWrl2r7Nmz31XBL730kr777jutX79euXPnliTNmDFDHTt2dAmZJKl8+fJ64oknNHz48Fj7GThwoAYNGhRr+YwZM5QxY8a7qg0AAAAAAADxc/XqVbVq1UoXL16Uv7//HbdLcCglSTdv3tTs2bO1fft2Xb58WY888ohat27tMvF5Qrz88statGiR1q5dqwIFCjiXr169WjVq1ND58+ddekvly5dPPXv2VK9evWLtK66eUnny5NGZM2f+tSHuG82be7qC5Gf27HvfB+0aN9o2aSRGu0q0bVw4ZpNGYh2zSBocs7FxzAIA4FHh4eHKmjXrf4ZSCRq+FxkZqWLFiunrr79W69at1bp163sq0szUrVs3LViwQD/88INLICVJZcuWlbe3t1atWqUmTZpIkvbs2aPDhw+rUqVKce7Tx8dHPj4+sZZ7e3vLOyV0b6c7emyJ8XulXeNG2yaNxDoX0baxccwmjZRw/UzJOGZj45gFAMCj4pu/JCiU8vb21vXr1++qoLh07dpVM2bM0KJFi+Tn5+ecJyogIEAZMmRQQECAOnXqpN69eytLlizy9/dXt27dVKlSJZ68BwAAAAAAcB9L8NP3unbtquHDh+vmzZv3/Objx4/XxYsX9fjjjytnzpzO/2bf1uV65MiRql+/vpo0aaLHHntMOXLk0Pz58+/5vQEAAAAAAOA5CX763s8//6xVq1Zp+fLlKlmypDJlyuSyPiGBUXyms0qfPr3Gjh2rsWPHJrRUAAAAAAAAJFMJDqUCAwOd8zsBAAAAAAAAdyPBodTkyZOTog4AAAAAAACkIvGeUyo6OlrDhw9X5cqVVa5cOfXt21fXrl1LytoAAAAAAACQQsU7lHr77bfVv39/+fr6KleuXProo4/UtWvXpKwNAAAAAAAAKVS8Q6mpU6dq3LhxWrZsmRYuXKglS5Zo+vTpio6OTsr6AAAAAAAAkALFO5Q6fPiw6tWr5/y5Zs2acjgcOnbsWJIUBgAAAAAAgJQr3qHUzZs3lT59epdl3t7eioyMTPSiAAAAAAAAkLLF++l7ZqYOHTrIx8fHuez69et68cUXlSlTJuey+fPnJ26FAAAAAAAASHHiHUq1b98+1rI2bdokajEAAAAAAABIHeIdSk2ePDkp6wAAAAAAAEAqEu85pQAAAAAAAIDEQigFAAAAAAAAtyOUAgAAAAAAgNsRSgEAAAAAAMDtCKUAAAAAAADgdoRSAAAAAAAAcDtCKQAAAAAAALgdoRQAAAAAAADcjlAKAAAAAAAAbkcoBQAAAAAAALcjlAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HaEUgAAAAAAAHA7QikAAAAAAAC4HaEUAAAAAAAA3I5QCgAAAAAAAG5HKAUAAAAAAAC3I5QCAAAAAACA2xFKAQAAAAAAwO0IpQAAAAAAAOB2hFIAAAAAAABwO0IpAAAAAAAAuB2hFAAAAAAAANyOUAoAAAAAAABuRygFAAAAAAAAtyOUAgAAAAAAgNsRSgEAAAAAAMDtCKUAAAAAAADgdoRSAAAAAAAAcDtCKQAAAAAAALgdoRQAAAAAAADcjlAKAAAAAAAAbkcoBQAAAAAAALcjlAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HZpPV0AAAAAACARNGjg6QqSnyVL7n0ftGtsidGugOgpBQAAAAAAAA8glAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HaEUgAAAAAAAHA7QikAAAAAAAC4HaEUAAAAAAAA3I5QCgAAAAAAAG5HKAUAAAAAAAC3I5QCAAAAAACA2xFKAQAAAAAAwO0IpQAAAAAAAOB2hFIAAAAAAABwO0IpAAAAAAAAuB2hFAAAAAAAANyOUAoAAAAAAABuRygFAAAAAAAAt/NoKLV27Vo1aNBAISEhcjgcWrhwoct6M9Nbb72lnDlzKkOGDKpZs6b27dvnmWIBAAAAAACQaDwaSl25ckWlS5fW2LFj41z/3nvvafTo0ZowYYI2b96sTJkyqXbt2rp+/bqbKwUAAAAAAEBiSuvJN69bt67q1q0b5zoz06hRo/TGG2/oqaeekiRNnTpVwcHBWrhwoVq0aOHOUgEAAAAAAJCIku2cUgcPHtSJEydUs2ZN57KAgABVqFBBGzdu9GBlAAAAAAAAuFce7Sn1b06cOCFJCg4OdlkeHBzsXBeXiIgIRUREOH8ODw+XJEVGRioyMjIJKnUzb29PV5D8JMbvlXaNG22bNBLrXETbxsYxmzRSwvUzJeOYjY1jFqkV54PYuDdIGpxn8R/im784zMySuJZ4cTgcWrBggRo1aiRJ2rBhgypXrqxjx44pZ86czu2aNWsmh8Oh2bNnx7mfgQMHatCgQbGWz5gxQxkzZkyS2gEAAAAAAHDL1atX1apVK128eFH+/v533C7Z9pTKkSOHJOnkyZMuodTJkyf18MMP3/F1/fr1U+/evZ0/h4eHK0+ePAoLC/vXhrhvNG/u6QqSnzsElAlCu8aNtk0aidGuEm0bF47ZpJFYxyySBsdsbByzSK04H8TGvUHS4DyL/xAzau2/JNtQqkCBAsqRI4dWrVrlDKHCw8O1efNmvfTSS3d8nY+Pj3x8fGIt9/b2lndK6HZJN8nYEuP3SrvGjbZNGol1LqJtY+OYTRop4fqZknHMxsYxi9SK80Fs3BskDc6z+A/xzV88GkpdvnxZ+/fvd/588OBBbdu2TVmyZFHevHnVs2dPDR06VA888IAKFCigN998UyEhIc4hfgAAAAAAALg/eTSU+uWXX/TEE084f44Zdte+fXt98cUX+t///qcrV67ohRde0IULF1SlShUtXbpU6dOn91TJAAAAAAAASAQeDaUef/xx/ds86w6HQ4MHD9bgwYPdWBUAAAAAAACSmpenCwAAAAAAAEDqk2wnOgcAAACQAjVo4OkKkp8lSzxdAQB4BD2lAAAAAAAA4HaEUgAAAAAAAHA7QikAAAAAAAC4HaEUAAAAAAAA3I5QCgAAAAAAAG5HKAUAAAAAAAC3I5QCAAAAAACA2xFKAQAAAAAAwO0IpQAAAAAAAOB2hFIAAAAAAABwO0IpAAAAAAAAuB2hFAAAAAAAANyOUAoAAAAAAABuRygFAAAAAAAAtyOUAgAAAAAAgNsRSgEAAAAAAMDtCKUAAAAAAADgdoRSAAAAAAAAcDtCKQAAAAAAALgdoRQAAAAAAADcjlAKAAAAAAAAbkcoBQAAAAAAALcjlAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HaEUgAAAAAAAHA7QikAAAAAAAC4HaEUAAAAAAAA3I5QCgAAAAAAAG5HKAUAAAAAAAC3I5QCAAAAAACA2xFKAQAAAAAAwO0IpQAAAAAAAOB2hFIAAAAAAABwO0IpAAAAAAAAuB2hFAAAAAAAANyOUAoAAAAAAABuRygFAAAAAAAAtyOUAgAAAAAAgNsRSgEAAAAAAMDtCKUAAAAAAADgdoRSAAAAAAAAcDtCKQAAAAAAALgdoRQAAAAAAADcjlAKAAAAAAAAbkcoBQAAAAAAALcjlAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HaEUgAAAAAAAHA7QikAAAAAAAC4HaEUAAAAAAAA3I5QCgAAAAAAAG5HKAUAAAAAAAC3I5QCAAAAAACA2xFKAQAAAAAAwO0IpQAAAAAAAOB2hFIAAAAAAABwO0IpAAAAAAAAuB2hFAAAAAAAANwuracLAAAAqUSDBp6uIPlZssTTFeDfcMzGxjELAEhE9JQCAAAAAACA2xFKAQAAAAAAwO3ui1Bq7Nixyp8/v9KnT68KFSrop59+8nRJAAAAAAAAuAfJPpSaPXu2evfurQEDBmjr1q0qXbq0ateurVOnTnm6NAAAAAAAANylZB9KjRgxQs8//7w6duyo4sWLa8KECcqYMaM+//xzT5cGAAAAAACAu5SsQ6kbN25oy5YtqlmzpnOZl5eXatasqY0bN3qwMgAAAAAAANyLtJ4u4N+cOXNGUVFRCg4OdlkeHBys3bt3x/maiIgIRUREOH++ePGiJOncuXOKjIxMumLhOWfPerqClIu2TRq0a9KhbZMG7Zp0aNukQbsmHdo2adCuSYe2TRq0K/7DpUuXJElm9q/bJetQ6m4MGzZMgwYNirW8QIECHqgGbpE1q6crSLlo26RBuyYd2jZp0K5Jh7ZNGrRr0qFtkwbtmnRo26RBuyKeLl26pICAgDuuT9ahVNasWZUmTRqdPHnSZfnJkyeVI0eOOF/Tr18/9e7d2/lzdHS0zp07p6CgIDkcjiStNzUJDw9Xnjx5dOTIEfn7+3u6nBSDdk06tG3SoF2TDm2bNGjXpEPbJg3aNenQtkmDdk06tG3SoF2Thpnp0qVLCgkJ+dftknUolS5dOpUtW1arVq1So0aNJN0KmVatWqWXX345ztf4+PjIx8fHZVlgYGASV5p6+fv78w83CdCuSYe2TRq0a9KhbZMG7Zp0aNukQbsmHdo2adCuSYe2TRq0a+L7tx5SMZJ1KCVJvXv3Vvv27RUaGqry5ctr1KhRunLlijp27Ojp0gAAAAAAAHCXkn0o1bx5c50+fVpvvfWWTpw4oYcfflhLly6NNfk5AAAAAAAA7h/JPpSSpJdffvmOw/XgGT4+PhowYECsoZK4N7Rr0qFtkwbtmnRo26RBuyYd2jZp0K5Jh7ZNGrRr0qFtkwbt6lkO+6/n8wEAAAAAAACJzMvTBQAAAAAAACD1IZQCAAAAAACA2xFKAQAAAAAAwO0IpZComKIMADwjOjra0yUAAAAACUIohUTxzTffKCIiQg6Hg2AKADzAy+vWJX3Pnj2SCKnigzZKOrffC8T8mfsDAPCcmHPwxYsXPVxJ6nH7fcb169c9WEnyRiiFe/bxxx+re/fumjhxom7cuEEw5Qbbt2/XqVOnJEmDBg3S1q1bPVxR6sMxnngIBhLPihUr9OCDD+qvv/5yhlS4s5g2mjlzpk6ePCmJf9uJITo6Wg6HQ5J08+ZNRURESJJzGZCccQ5InmJ+L5cuXfJwJfcvh8OhBQsW6MUXX3R+jkDSirnPeO2119S9e3fdvHnTwxUlT9yx4p516NBBjz/+uGbNmqXx48cTTCWx33//Xa1atdLYsWP10ksvadCgQUqfPr2ny0p1HA6HvvjiCw0dOtTTpdz3Yi7Yhw8flsQHgntRpkwZVa1aVYsXL5ZE4PdfzEwXLlxQ69atNWXKFEkEJ/cqOjra+W961KhRatKkiapXr65u3bo5gz8kPc6jdy/mHHD58mUPV4LbORwOzZo1S127dtXp06c9Xc59JeZ8sHfvXvXv319hYWHKmjWrh6tK2W4/B69cuVLffvutOnXqpLRp03qwquSLUAp37dVXX9WOHTvk5+enjz/+WEWLFtXMmTMJppJYiRIl1Lp1a02YMEFTpkzRypUrVbx4cUVFRXm6tFQh5pj+66+/9Morr3BxSSQLFy5UkSJFdO7cOUKBeIorcMqaNauKFCmiL7/8UpLoLRUPgYGBGjhwoFavXk1okghijrn+/ftr+PDhqlKlivr376+xY8eqW7duOn/+vIcrTHlirv/Hjx/XgQMHJBGu3qv33ntP/fr183QZ0P/dd509e1ZvvvmmypUrp2zZsnm4qvuLw+HQzz//rAULFujRRx9VmzZt+IyWxGLOwYsWLdLMmTNVq1YtVahQgZ5Sd8DdKu7KmjVrFB4eruLFi0uSMmbMqI8//ljFihUjmEoi0dHRzg+hJUqUUJo0aZQ3b16tXbtWx44dU5o0aWhrN3A4HNq0aZOmTZumNm3aqG/fvp4uKUUIDQ1V6dKltWDBAkn08ImPmA//f/75p3N4lCQNGzZMR48e1ZgxYzxVWrL1z/A+5qaxSpUq2rp1q3bu3CmJXib36rffftPChQs1Y8YMvfrqq/Lz81P69OkVFhamzJkzO7ejne/ep59+qg0bNigqKkpp0qTRV199pcqVK+uJJ55QhQoV9OOPPyoyMtLTZd63smbNqlmzZmnXrl2eLiXVczgcWrZsmcaMGaMaNWro2Wef9XRJ96WhQ4eqX79++vnnn3Xjxg0+N7jBhQsX9P7772vmzJnOLwzSpk3LPW4cCKVwV6pVq6bx48crbdq0mj17ttavXy9fX1+NGTOGYCoJxAyH8PLy0uHDh1W7dm39/vvvateunRYvXqyPP/5Yx48f55tRN7hw4YI++ugjDR8+XAcPHnQu5xiPv7jaKkeOHMqfP79mz54tiR4+/+b2m5lx48apUaNGatq0qbZu3arz588ra9asatiwoX7++WdFR0dzbErasWOHbt68qTRp0kiSli9frvXr1zvXV69eXfXq1dOAAQMUHh7OufQeXbx4UWnTptUTTzyhhQsXqn79+ho5cqSee+45Xbx4UYsWLZJEb567ZWYaNGiQOnXqpO3bt2vHjh165ZVX1LlzZ33yySfy9vZWx44dtXTpUt24ccPT5SZ7/zxHmpmqVq2qIkWKaOPGjZJiB9pwn+joaG3evFmDBg3SqlWr+EB/lxYtWqT27dvr6NGjmjp1qq5cucJntET2z2MzMDBQU6dOVZ06dbR9+3ZNnjxZ0q17XNr9HwxIoBs3bjj/vG/fPitbtqzVqVPHNm/ebGZmly5dsvbt21uFChXso48+soiICDMzi46O9ki997uoqCjnnwcNGmShoaH2ww8/OJcNHDjQypQpY2+88YYdP37czMw6dOhgO3bscHutqcWqVausadOm5uPjY6tWrTIzju+7cfjwYZd2279/vwUFBdnUqVM9WNX94/3337chQ4bY2LFjrUWLFhYUFGTNmjWzBQsW2MqVKy1t2rS2bt06T5fpcYMGDTKHw2ErV660Gzdu2O+//24PPfSQZcmSxbp06WJLly41M7N169ZZuXLlnNey28+9uLO4zn0HDx60UqVK2cCBA83f398mTJjgXLdhwwarWrWqbd++3Z1lphgx7X3jxg17+OGHrWzZsjZ16lR77bXXXLarU6eOPfDAA7Z48WLnfRj+3eXLl11+fvnll61AgQJ27do1D1WEGBcvXrT333/fvLy8bPTo0Z4uJ9mLOU8cO3bMTpw4Ybt373aua9q0qT300EP25ZdfOo9t7mHv3e33DHv37rX9+/fb33//bWZmhw4dsvr169sTTzxhM2bMiPM1qR2hFO7agAEDbNu2bTZnzhyrU6eO1a9f3zZt2mRmt4KpDh062KOPPmpDhw51CbJwd/73v/9ZcHCwLV682A4ePOiybtCgQVamTBkLCwuzatWqWfbs2S0yMtIzhaYwMRfqK1eu2Pnz553Lt2/fbg0bNrQSJUo4Q0Iu6v/u9ovv6NGjLTQ01Fq1amUHDhyw8PBwMzNr27atdenSJdb2cG2PuXPnWtasWe2PP/5wLlu0aJH17dvXMmXKZM8884ylTZvW2rZta1evXk31x2bt2rUtd+7ctnLlSjMz+/vvv23ZsmVWvnx5q1ChglWrVs3Wrl1rISEh9tJLL3m42vvH7cfk7cHHhQsXrHXr1pYxY0br1auXc/n169etfv361rhxY/5934OYe6obN25Y8eLFzeFwWMOGDWP9O69Tp44VL17c5s6dy33Yf5g4caI1bdrUGV6bmZ09e9bKli1r48aNMzOu8e4S084nTpywPXv22NmzZ52/kzfffNMcDodNmjTJkyUmazHtt3DhQqtQoYI9+OCDVqRIEevfv79zm8aNG1uJEiVsxowZdvXqVU+VmmLcfm4YMGCAlShRwooVK2bBwcE2duxYMzP7888/rV69ela9enWbOXOmp0pNtgilEG+330DOnz/fHA6H/fzzz2ZmNm/ePKtZs2asYKphw4b2/PPPcyG/Rxs2bLDChQvbhg0bzOzWjf2JEydswYIFzm85Pv30U+vRo4d16tTJGUjdvHnTYzWnBDHH7ZIlS6xGjRr24IMPWu3atW3WrFkWGRlpP/30kzVr1sxKlSpla9as8XC194+PPvrIBg4caB988IGFhYVZzpw5rX379rZ27VqbP3++pU+f3n777TdPl5lszZ0714YOHWrvvfeemVmsD5sHDx60N9980ypXrmyZM2e2EydOmFnq/EB1e9vUrFnTgoODY33o3Lp1qzVs2NBq1qxpWbJkMX9/f+e1DXd2+/H0/vvvW8uWLa1hw4b266+/mpnZpk2brGLFila5cmUbOnSoffTRR1ajRg0rUaKEs/0JphIupt3PnTtnZreO8UqVKllwcLCtX78+VptWqlTJQkND7dKlS26v9X7y/vvvW+vWrS1dunTWqlUrGz16tEVFRVnz5s2tZcuWni4v1Yg5vufPn28PP/yw5c2b1ypXrmzPPvusnT592qKjo529XydPnuzZYpOxpUuXWoYMGWzcuHG2a9cuGzlypDkcDvvmm2+c2zRt2tRy5cplc+bM8WClKcvQoUMtW7ZstmLFCrt69ao988wz5u/vb7///ruZmR04cMAaNGhgpUqVshUrVni42uSFUAoJNmPGDBszZox98sknLsvnz59vtWrVcgmmrl275rxBSo0fiO7WP9tqyZIlFhwcbDdv3rQdO3bYa6+9Zg888IB5e3tb+fLl47zZpKdU4vjmm28sY8aMNnjwYNuyZYuFhYVZSEiI/fjjj2Zmtn79emvRooXlyZPH1q9f7+Fqk6fbPyRNnz7dsmTJYnv27HEumzZtmr300kvm4+Nj7du3Ny8vL+vSpYtFRERw3rhNdHS0XblyxTJlymQOh8NefPFF57qYNo4JoqOioiwiIsLKly9vnTt39ki9nhZX4FGjRg3LmTOnrVixItaQpg0bNtj48eMtY8aMNmzYMDPjunUnt7ftsGHDLCAgwLp3726lS5e2oKAg+/LLL83sVpv26tXL8uTJY3Xq1HH50oRrVMLFHI/Lli2z9u3bO7+oioyMtJIlS1qJEiXsp59+inXcHjp0yO21Jmf/FoauWbPGevXqZbly5bL69etbp06dzOFw2JIlS9xYYeq2cuVKy5gxo3300Ud2/vx5GzJkiDkcDufQ/itXrtjgwYPN4XDYtGnTPFxt8tSlSxdnz6i//vrLChUq5LwXuP34b9OmjR04cMAjNaY0V69etbp16zqPyQULFljmzJmdPS1j7jn++OMPe+WVV+g48A+EUkiQffv2Wd68ec3hcNiHH35oZrd67cSYP3++1a5d2ypVquRMhc34NvRuxQzNOX36tBUtWtQKFy5sWbNmteeff95mzJhhJ06csDRp0tjs2bM9XGnKEx0dbZcvX7Ynn3zSBg0aZGZm4eHhljdvXuvatavLtmvXrrUOHTpwYf8PX3/9tQ0ZMsQ++ugjM4vdw2fr1q3Wq1cvK1mypOXOndsZthIM3BJzHj179qwVL17cChcuHOcHULP/a7OBAwda06ZN3VpncvP11187P7yb3QqmQkJCbMWKFXEGIxMmTLDcuXPb0aNH3Vnmfemvv/6yF154wdauXetc1qFDBwsODrapU6c6j8OY4bkxCKTu3vz5851flGzcuNFljqkSJUpYiRIl7Oeff+a8eQe3348uXrzYpkyZYhMnTjQz1/m6zp49az169LDGjRubw+GI8wM9Eld0dLTdvHnTunbtar179zYzs5MnT1qePHlc7rtu3LhhN2/etHfffddlCDtuuXHjhj3yyCM2YcIEu3jxouXKlcteeOEF5/E9btw4W7ZsmYerTFmio6Pt5MmTliNHDvvjjz/shx9+MF9fXxs/fryZ3Qqs+vfvH+tzAsHU/yGUwr/6503NtWvXbOHChVaqVCkrW7asc/nt3zhPnz7devTowYX7Hs2ZM8dCQ0Od3Wr37NljQ4cOta+//touXrxoZre+LapUqRIXlyQSFRVljz32mG3dutWOHz9uOXPmtBdeeMG5ftGiRfbnn3+amTEm/19ER0fbmTNnzOFwmMPhsFdffdW5LuY8cXtPn/Pnz1vRokVjTdyb2vzbOfTUqVOWO3duq1y5sssXAP/0wgsvWOnSpe3KlStJUWKyt3v3bgsODrb27du7DMmLCaZWrlzp0rvMzOzXX3+10qVLO/9tI27Tpk0zh8NhxYoVizXcsWPHjpYzZ06bNm2aXbhwwWUdYcndO3DggBUuXNgZ7MeIuQeLmfw8V65ctnXrVk+UmKzdfk597bXXLCQkxB599FHLli2b1a5d27Zu3RrrvHv16lX76KOPLH369LZr1y53l5wqtWnTxsaOHWtHjx6NFagsWrTI5s+f7+EKk7/Bgwdbq1atLGfOnPbiiy86j+tr165Zhw4dbMiQIXbjxg3Ox3fpTu3Wrl07CwsLs4wZM9rnn3/uXH7s2DGrWrWqTZky5V9fn5oRSuGO/nlhvv2m59tvv7V8+fJZjRo1Yq3/t30g/jZv3mx169a1WrVqxboAX79+3Y4fP27169e3cuXKkbQngZgLRsWKFe3555+3woULW+fOnZ29e86cOWNPPfUUcxrEQ0xb7t+/33LlymVlypS545xRMeeMV155xdq1a+e2GpOb28+dEydOtF69etkzzzxjP/30k3MumZMnT1quXLmsatWqcQZThw4dsqefftp++eUXt9XtaXHd6M2ZM8dKlChhzz77rEt4UrNmTcuTJ499/fXXLu39/vvvW5o0aZxPM8UtcV3Pn3rqKeewmn/2fIwZ9vTdd9+5q8QU55/H8+bNm61AgQK2b9++WNvE3AdERERYpUqV6Ln7Lz788EMLCQlxnhtnzpxpDofDqlatalu3bnW26e3tX7VqVRs+fLhH6k0toqKiLDo62p5//nmrVq2aFShQwGX4+eXLl61t27Y2ZMgQelvarX/zt/dGvX0qj0WLFlnu3LmtXLlyzi9Ybty4Yf3797d8+fLZ/v37PVJzSnD7tfDs2bPOeTvNzL744gvLmzev1a9f37ns4sWLVrduXXv88cf5vPYvCKXwn4YPH25PP/20VaxY0caNG2d//fWXmZl9++23VqRIEQsLC3Nuy9Nd7s6dwrutW7da/fr1rUaNGs4eU1FRUTZlyhSrWrWqVaxY0dnmnOjuXlRUlPN3cPXqVeeNkZnZV199ZdmyZXPpGWhm9vrrr1vRokVjPQkR/x5G79692wIDA61+/fr/elPUtm1bq1Spkl2/fj1Vf6P02muvWXBwsD3//PNWv359y5Url3388cd27NgxM7sVTOXLl8+KFi0aZ8+efz7iPLWI6U0a46uvvrIHH3zQnn32WduyZYtz+cMPP2wNGzZ0/hwREWFTpkxxTtaN2P45HLJ27dqWI0cOW7FiRazr0Ntvv8216R7EnPvWrFljmzdvtjVr1liuXLlcwtWYbVasWOGc6xCuli1b5nza1YULF+zFF190zns2b948CwwMtA8//NAKFSpkVatWtV9++SXWdadcuXI2YMAAd5eeYt28edN5r3Dy5Em7cuWKnT171szMjh49aoULF7bcuXM7e/lGRUVZ//79LW/evLZ3716P1Z0c/POL6oULF1poaKgVL17catSo4ZzM/LPPPrP8+fNbtWrVrFmzZvb0009bUFAQvSjv0vTp010+577++uv28MMPW5YsWaxly5a2ePFiM/u/p++VKlXKGjdubBUqVLCHH36Yz2v/gVAKsdz+gXLAgAGWJUsW51PdsmTJYq1atXJ+u/TNN99Y8eLFrUyZMp4qN0WZN29erKcxbNmyxRo0aGBVq1Z1TrT5448/2pgxY5gw9h79/PPPdurUKefPixcvtiZNmtijjz5qAwYMcH7wev311y0oKMjatm1rr7/+urVv394CAgK4sMfh9vPH559/bq+//ro9//zztmvXLue3eH/88YcFBARYgwYN4vw2f//+/VarVq1U1cMnLpMmTbJ8+fK5PM3M4XBYnjx57MMPP3R+O3f8+HFr1KhRqr7R2bBhg3Py/JEjR9rLL78cKzCeM2eOZcuWzdq2besSTP0zRE3NIeh/SchwyNul5mPzbtx+DK5cudLZ42z//v2WPXt269q1a6zAuVu3bvbyyy+n+iD/n9avX28Oh8NCQ0Nt+vTpZma2atUqO3HihP36669WqFAh53DIqVOnmsPhsOLFi7s8jGPz5s3m4+Nj27dv98jfISX56quvXEL/efPmWenSpa1IkSL26KOPOnufL1++3AIDAy00NNRq165tjRs3JlCxW0/XdTgc1rhxYzO7dR/r4+Njffv2tU8++cRq1aplDz74oI0aNcrMbn2JMHDgQGvUqJENGTLEdu/e7cny71tr1641h8Nhr7/+upmZjR492rJnz24TJkywKVOmWLVq1axSpUr22Wefmdmt4/d///uf9ejRw0aNGsXntXgglMIdHTp0yPr27WurVq1yLlu2bJmVLVvWOnToYFeuXLFr167Z3LlzrWXLlgzVuwsxN45RUVF24MABK1asmDVq1MjWrFnjst22bdssODjYHn30UZs1a5bLOm72786KFSvM39/fRowYYREREbZhwwZLly6d9ezZ09q2bWs1a9a0/PnzO0PC2bNnW+XKlS0sLMyef/55Jtf8D6+99pplz57d2rRpY48++qgVLlzYPv/8cztz5oyZ3QqmsmTJYo8++misCaVv3rwZa2Lk1ObatWs2YcIEGzNmjJnd+mY0ICDApkyZYt27d7dMmTLZyJEj7fDhwy6vS43ng4MHD1qFChWsQYMGdvz4cfv8888tKCjI+vXr5+zZG2PgwIEWGBhozzzzjO3cudO5PDW2W3wkxnBI3L2///7bJk6caO+8845z2fz58y1NmjTWuXNnW716tf3666/Wu3dvCwwM5LoUh4ULF5rD4bDHHnvMGjRo4HIPNXr0aKtevbrzy6lp06ZZ165drUWLFi7nhPPnzzOcNxHs3LnTypQpYw0aNLB9+/bZn3/+ab6+vvbuu+/aqFGjrHfv3uZwOJzH++HDh61379720ksv2bvvvpvqe0iZ3TonL1u2zIKDg61ly5a2ZMmSWD34unXrZsWKFXP5/IZ7N2PGDEuXLp0NGjTI3nnnHWdvS7Nbc0Z17tzZypcvf8fglPuMf0cohTgtWrTIHA6HZc+ePdZJ7bvvvrN06dLZ999/b2auqS83oncnpt2++eYbq1KlijVp0sR++OEHl23q1Klj+fPntz59+niixBSpe/fuVqhQIRs7dqy98sor9vbbbzvX/fbbb9alSxcrWLCg/fTTTy6v48Ly7yZOnGh58+Z1fhu6bt06czgc9sADD9jEiROdcyLt2LHDwsLCOG/cwc6dO+3YsWN28OBBK1WqlI0YMcLMbn1h4OfnZwEBAc4hKam9Z8Qnn3xiTzzxhDVv3twuXbpks2fPthw5cthrr73m0mNq5MiRVq1aNWvfvj3HXQLc7XBI3L1Dhw6Zw+Ewf39/e/fdd13WLVu2zAoXLmy5cuWywoULW4kSJRhy+i/atm1r1apVs8aNG9vjjz9uU6dONTOzfv36WZEiRez48eN28eJFq1+/vvOLADOu9Unhyy+/tBo1atgzzzxjb731lvXs2dNl/aRJk8zhcLh84Ier6OhoW758uWXPnt28vLyc827d/nmsWrVq9uSTT3qqxBTryy+/NG9vb3M4HM7eaDH3X2fOnLF8+fLZwIEDPVnifYtQCmYW+wlYR48eta5du5rD4bAvvvjCzFxPdg899JC9//777i80hbj9w9DMmTOtbt26zrHG3333nVWqVMmaNm3qDKauXLlinTp1sjlz5vBBKhHcfqPZo0cPe+CBB+yBBx6I9USjHTt2WLVq1ZzHeszrUnsA8G+uXr1qI0aMsLFjx5rZra75AQEBNmnSJGvVqpUFBQXZJ598YidPnnR5Hcf1LaNHj3Z2D4+xZs0ae+ihh5xDR7Zs2WJdu3a1Dz/8MNV/aLr93+LkyZOtcuXK1rx5cwsPD7eZM2dazpw57X//+59t3rzZbty4YY0bN7a5c+e69FJFbIk5HBJ3b8KECZYuXTrr2LGjc26dmGP35MmTtmvXLtu2bZudPn3ak2UmW9evXzezWx8kn3/+edu0aZM1btzYOR3CyZMnLWfOnJYzZ04rWLCglSxZkrlRk8jt54Xp06dbnTp1LG/evNapUyczu3Vcx1zPXnrpJQsLC7Pw8HDuu+7g5s2btmLFCnvggQesUqVKzidAx7TXu+++a5UqVeJ4vkdxHXfz58+39OnTW4sWLezixYsu27Rq1cratm3rzhJTDEIp2MyZM61jx462Z88elzkKjh8/bu3atbMMGTK49Ja6ePGiFSxY0CZMmOCJcu97t1+YV61aZc8//7ylSZPGnnvuOZdgqlq1alahQgVr166dPfHEExYaGhorPMTdu/1C3b9/f3M4HPbMM8+4zDFlZtaoUSOrW7euu8u7b8R1wd62bZsdP37c9u/fbw899JCNHDnSzG7NR5MhQwYLDg62hQsX3vH1qdWlS5ecE5vf3jNi3rx5li1bNps9e7bt2LHDGjRoYB06dHCuJ5i6czA1d+5cK1mypOXIkcOKFCliDz30kPMLFo69uDEcMnkZP368ORwOGz58OMdsPKxevdo5r0uMY8eOWa5cuezzzz+348ePW+PGja1KlSr29ddf27lz52z06NE2btw45n1JYrefF2bMmGEPP/ywhYSE2LZt28zs/87JgwcPtkceeYTfw23i+rcf02MqKCjIGjdubJcvX3Zu17ZtW6tRo4YzmEXC3f5ZKyb0izFjxgxLmzat9enTx/kl67Vr16x06dLWq1cvt9aZUqQVUrXw8HC98cYbCg8P1y+//KLy5curSpUq6tChg3LkyKHx48crMjJSTz75pDp37qyQkBCtW7dOGTNmVKdOnTxd/n3Jy8tLktSnTx+tWbNGoaGhKlu2rL7++mtdvnxZU6dOVZ06dRQYGKhvvvlGP/30k/Lnz6+JEyfKy8tL0dHRzn0g4cxMDodD3t7ezmVvv/22IiMjNX36dE2ZMkUdOnRQ1qxZJUk+Pj7KnDmzIiMjXV6DWxwOhyTp448/VnR0tHr06KHSpUtLkpYuXao0adKobt26kqTTp087zy3169d3eX1q9M9/y76+vurevbt8fX01ZswYRUdHq1+/fmrcuLFmzJihF198Ub6+vgoODta8efOcr0uTJo0nyk82HA6H8991hw4dJEmfffaZnn/+eY0fP16lS5fWL7/8ovDwcHXq1Elp06ZVVFRUqm+3O8mfP786deqkmTNnqmfPnvrss8+UKVMm9ejRQ9HR0XrxxReVP39+SVJAQIBKly6tjBkzqlixYs590LYJE3P8/v777zp16pTCw8PVqFEjSdKLL76omzdvqnv37nI4HHrllVdS9Xnz33z//feqUaOGJGnu3Llq1KiRqlSpohIlSuiDDz7QjBkz9Mwzz2jw4MEaMGCA3n//fb3wwgvq1q2bcx9RUVFKm5aPR4kp5viOjo52nhtatmypNGnSaPTo0Xr99df1zjvvqFSpUpKkEydOKFOmTLp+/bp8fX09WXqyENN+P/zwg9asWaMDBw6oefPmKlGihGrVqqUZM2aoVatWqlatmooWLaps2bJpwYIFWr9+vXx8fDxd/n0r5v7sgw8+0C+//CJvb2+99tpreuCBB9SyZUtFR0erQ4cOWrt2rYoWLarw8HBFR0frvffe83Dl9ymPRmLwuJs3b1q/fv1swoQJtmXLFnv//fctMDDQWrZsacOGDbMbN27Y6dOnrVevXuZwOKxp06Y2e/ZsZ/LOtxh3Z/ny5ZY1a1bn092ioqJsxIgR9vDDD1urVq2cvXj+2b60972J+Qbp+++/tz59+tiYMWNc5ovq3r275ciRwxo0aGBvv/229ezZ0/z8/GzHjh2eKvm+cOHCBXvppZcse/bs9umnnzqXT5061XLmzGnffPON7du3zxo0aGAvv/yycz29KW755/F19OhRGzx4sOXOnduGDh3qXL569Wpbt26ds904H7i6/Zvkzz//3KpUqWLNmze3P//802U9x92dMRzS/WLabv78+ZY7d24rWbKkBQYGWlhYmO3YscPZph9//LH5+PjYoEGDPFlusrZv3z577LHHrHr16vb4449bt27dLCgoyEaNGmUjRoyw6tWr27p168zs1px9jz/+uHXt2tXDVadsMcf3t99+aw0bNrTnn3/eJk6c6Fw/depUq1SpkmXLls2aNWtmnTt3tixZsqT6p+z907x58yxDhgzWqFEjq1SpkoWEhFiLFi2cD5tYvny5PfTQQ+ZwOGzNmjVxPtkYCTdixAjLnDmz9e7d2woWLGgPPvigzZgxwzmcevbs2ebr62sPPPCArVy5kt6W94BQCvbtt9+an5+fc76Sa9eu2ZtvvmkOh8PKli1rw4cPt2+//dZ69eplvr6+9uOPP5qZ0SX0Hnz55ZcWEhLifBKZmVl4eLi99dZbljFjRuvUqZMzmIq5IaXbfuJYunSp+fj4WFhYmGXPnt1q165tU6ZMca7/3//+53wk9FtvveXyWGjcEtcHzwMHDtj//vc/CwkJcbnhfPzxxy0oKMhy585tjzzyCPMb/MPSpUstW7ZsNmnSJJflf//9t/Xs2dMCAgJizXVmRrByJ/8Mph577DFr06aNHTlyxINV3V8YDpm04jp/rlixwjJnzuwcdrZ161ZzOBxWvXp127Jli7Nt33vvPcuSJYudPXvWrTXfT/bs2WONGze2Bg0a2IoVK2zp0qXWuHFjq1u3rjkcDmvUqJHz/Hnw4EGCVDdYu3at+fr6WocOHSwsLMzy58/vMsRp9uzZVr58ecuRI4d98MEH9vfff3uw2uTnr7/+smLFirlMmzJnzhyrXbu2tWrVyo4ePWo3b960b775xgoXLmzHjh3zYLX3t3+eD/r372+LFi1y/vz0009biRIl7Msvv3QO6fv888+tatWqfPF1jwilYGZmXbp0sS5dujh/Ll68uDVq1Mj69OljderUMYfDYe+++661adPGAgMDnU/ew3+L60Z97dq1VqxYMVu+fLnL8sOHD1uuXLmsSJEi1qlTJ05sSeCtt96ycePGmZnZL7/8Yi1btrTKlSvb5MmTndt06dLFypcvH+uJU3D1z8Duzz//tFdeecVCQkJs/PjxzuXffPONLV++nB4+cdi+fbu9+OKL9tBDD7kcg2a3JjjPlCmTORyOWOtwZ7efcydNmmQVKlRwhn4EJ/Fzp2Dq3LlztnfvXpsxY4ZNmDDB+W+Za1X8xHzgOXjwoPODTkREhPXs2dP5WPc///zTChYsaB06dLCCBQtaxYoV7ZdffnG+Nubppbiz3bt3W506dSwsLMx27dplN2/etJ07d1qnTp1izV9kRg+/pDZ37lz78MMPzczsxIkTNm7cOAsKCrIePXo4t/n000/tmWeeIVCx2NepvXv3Wq5cuWzFihUuy2OeMrtmzRozu3Ucx/TgQcLd3u7Lly+3BQsWWMeOHZ2dMWI0btzYSpYsadOnT3fOxUxv4XtHKAUzM/vss8+scuXKdu7cOStTpoxVrlzZ+YH8yJEjNnv2bIuMjLTLly/bU089Zbly5Yo16Rv+3bvvvuu8cJw4ccIeeeQRq1+/vv3222/ObQ4cOGBNmza1IUOGWJkyZWz9+vWeKjfFiLlQ7Nu3z44cOWJdunSxxYsXO9dv27bNGUzd3mPq+PHjbq81ubv9Yvvtt99azpw5bcGCBS7b7N+/3zp16mRBQUE2bdq0WPtIzR9e73SzsnPnTuvatasVLVrUpcfUb7/9Zm3btrXZs2en6na7G7ffXD755JP21FNPea6Y+xTDIZPG0aNHLWvWrPbggw/a9OnTzezWB6CdO3fa+fPnrVy5cvbcc8+Z2a0huzG91mPCFMTP3r17LSwszMLCwmzt2rUu6/jgmLRizg1bt26177//3lq3bm3Dhg1zrj9//rwzmOrdu7dz+YULF9xea3IRc0zefj7dvn27nTt3zvbv32/58uVz3m9FREQ4tylZsqRLG+Lu3H696927twUGBlpwcLA5HA7r3r17rLDvmWeesWzZstmyZcvcXWqKRSgFp3LlypnD4bBq1ardsWt4ZGSknTlzxo4ePerm6u5v4eHh1rBhQ/Py8nIGTTt37rSQkBALCwuzDz/80FauXGk1a9a0li1b2rlz58zPz89GjBjh4cpThjlz5lj27NktW7Zs5ufnZ2+//bbL+u3bt1vbtm3toYcecn5IgKvbL9jLli2z2bNnW/v27a1kyZIuXZvNzL7++mvz9vY2h8Nh8+fPd3epydLt7Td69Gh7+eWX7bnnnnM+7XHPnj3WtWtXK1CggA0ePNh++uknq1evnnXs2JEP/3cppt26dOliLVq0cLmRR/wwHDLxff/99+bl5WXlypWzhg0b2syZM53r5s+fb6GhobZv3z4z+795eMqUKcMcMXdh7969VqdOHatTp45zLim4x/z58y19+vRWoEABy5IlizVr1sxl/YULF2zixInmcDisb9++HqoyeTl48KBVq1bNzMwWLFhgISEhzrm1WrZsably5XJ5AuqNGzesWrVqNnr0aE+Um2Lcfp3bsmWL1apVy3788Uc7cuSIderUyR555BH74IMPYgVT/fv3574sERFKwfmPcdq0aVaiRAn75ZdfXJYj4eKaB+rw4cPWrl07S5cunbPH1K5du6xp06ZWrFgxK1SokFWrVs3ZA61SpUo2a9Ys9xefQsS0/dmzZ6148eI2ceJEmzdvnrVr187y5MnjMrzM7NY3es8//7wdPHjQA9Umb7d/q/zGG29Y7ty57ciRI/bzzz9b+/btrXjx4rZw4ULnNj///LO1adPGpkyZwgXbXNvvrbfessDAQGvevLkVLFjQ8uTJ4wyqDxw4YEOHDrUMGTJY0aJFrUKFCs45uDgf353Tp09b5cqVXXqkImEYDpn4nn32WXv44YetSZMm9sQTT9jUqVPNzGz8+PGWK1cu55w6/fv3t7feeovz6D3Yu3evPfnkkxYaGuqcOxVJI+Z8cP78eatWrZpNnTrVfvvtN5s0aZJlyJAh1qTy586ds0mTJjF35/+3c+dOK1y4sBUpUsQcDofLl6QXLlyw6tWrW44cOWzq1Kk2b94869u3r2XOnNn27t3rwapTjlmzZlnt2rWtdevWzmM5IiLCOnfubOXKlYszmDLjC8PEQigFp7///tty5szp0sUW9yamx1nMye3IkSPWpk0bS5cunbM7+aVLl+zs2bN26NAh5+v69etnISEhBCT3aOXKldajRw/r2rWrs5fE/v37rWfPnla0aNFYwRQ9Kf7d33//bV26dLFvv/3WuWzLli3WoUMHK1SokE2YMMF+//13q1+/vr344ov08PmHkydPWvv27Z1PfIyMjLR69epZjhw5XIaXHDlyxLZt2+YMs5iD695cu3bN0yXc9xgOeXf+OUws5gEx33zzjXXo0MGWLVtmjRs3tscee8wWLFhg58+ft1y5clmhQoWscuXKFhAQYL/++qsHKk9Z/vjjD+vduzfD9txg+fLl1rx5c2vWrJlzfqjIyEibM2dOnMEUwbarjz/+2BwOh+XPn9+5LOYe6tKlS9axY0crVqyYFSxY0MqVK8dTChNJZGSk9erVy/Lly2clS5Z0WXfjxg3r3LmzVaxY0QYMGMCDvpIIoRRcjB492oKCgmznzp2eLuW+N3v2bMuYMaPt2rXLzP7vwnvo0CF76qmnLGPGjLZlyxaX1/z666/WoEEDly67uDsRERE2aNAg8/b2ttKlS7us27t3r/Xs2dMeeughGzlypEfqu9/Mnj3beaO0YcMGl3U7duywV1991RwOhxUpUsTKli1LD59/+Oyzz8zf399CQ0Nt9+7dLuvq1atnOXPmtHXr1sUK8PgQheSC4ZAJE/Nv9/Dhw7GGMZ86dcqKFStmY8aMsVOnTlnjxo2tcuXKtmTJEjt58qS98sor1q9fP/vjjz88UXqKxjk1aa1atcp8fHwsU6ZMLsdvTDAVEBBg7dq182CFyU/MufXGjRu2fv16+/DDD61MmTJWunRp5/y+t385dfLkSfv777956ME9iOs8cPnyZXv77bctX7581qNHD5e5k2/cuGHNmze35557jvvaJEIoBRf79++3du3acdG+CzFtFvP/TZs2We3ata1AgQLOD6Ex6+bMmWMOh8McDoft2LHDZT9jx46N9aEVd+fw4cP29ttvm8PhcD75Jca+ffvsueees3Llytn58+c9U+B95OrVq9amTRtzOBw2Y8YMM4sdOO3evds2b95MD584nDx50mrUqGFp06Z1Dte7/TzboEEDczgcTGaMZI3hkAlz+PBhCwoKMofDYfXq1bPZs2c7hyotXrzYqlataqdOnbI//vjDGjdubI8//rjNnTvXw1UD92bt2rXm5+dnbdq0cT6dzOzWPcG0adMsJCSEh8n8fzH3UStWrLDXX3/d2TNyx44dVqpUKStVqpRLG65ateqO8/4ifm6/99q4caP98MMPzt7qMV9oV6hQwfr06ePSKyoyMjLO6VmQOBxmZgJuY2ZyOByKiopSmjRpPF3OfWHWrFlavny5+vbtq5CQEPn6+kqStm3bpv79++v333/X8uXLVaxYMUnS+vXrNW3aNBUrVkzdunVT2rRpPVl+ihBz3J48eVJXrlxRtmzZ5Ofnp4iICL3zzjsaMWKEhg4dqh49ejhf8+effypTpkwKDg72YOXJz82bN+M8Jm/cuKFmzZppw4YNWrJkiSpUqOBcF9P+MaKjo+Xl5eWWepObO/3dT58+rfr16+vSpUtavHixChcu7NJur776qt59913Ou0jWrl+/rvTp03u6jPvCoUOH1LRpU3l7eysiIkKPPPKIVqxYof79+yswMFDTpk1Tly5dVLduXf3xxx/q0aOH0qdPr+nTp8vf39/T5QP/Kub6tW/fPh05ckQZMmRQnjx5lDt3bq1YsUJPP/20mjVrpo8//liZMmWSJEVFRenq1avy8/PzcPXJx/z589W6dWu98cYbql+/vkqXLi1J+v3339W6dWtJ0ueff665c+dq9uzZWr9+vXLlyuXJku9bt99z9evXT7Nnz1ZAQIAOHDighg0batCgQcqVK5eGDRum5cuXq2rVqho8eLDLNS81398mJUIp4B6Fh4frkUceUXh4uHLkyKHy5curcuXK6tixoyRp79696t69u7Zv364vv/xSOXPm1BtvvKEcOXJo3Lhxku4cAiB+Yi4yCxcu1FtvvaWrV68qY8aMqlWrlnr16iV/f3+NGjVKH3zwgd5++21169bN0yUnS5cvX3YGqpI0d+5cHTp0SMHBwSpdurRKlSolSapfv75++eUXLVq0yCWYguvNym+//aabN28qe/bszhvIM2fOqE6dOrp+/boWLlwYK5iSxBcCQAqyb98+9e3bV9HR0WrXrp0cDoc++ugjBQYGatGiRSpfvrzWrl2rdOnSac+ePcqUKZNy587t6bKBfxVz3Zo/f75eeeUVZcyYUb6+vrp+/bomTJigihUr6vvvv1fDhg3VokULjRw50uX+Arfs2rVL9erVU79+/fTCCy/EWr937161a9dOx44dk7e3t+bMmaOyZct6oNKUZfTo0Xr77be1ZMkSlS9fXm+//bYGDhyo1atXq2rVqrp27Zree+89TZ06Vb169dLLL7/s6ZJTPo/0zwJSkJs3b1q/fv1swoQJtmXLFnv//fctMDDQWrRoYe+9955FRkbazp077YUXXjCHw2GFChWy0qVLM+dOIlu5cqVlypTJRo4caZcuXbL+/ftb+vTpnY/bPnHihA0ZMsQcDkesCc5h9vTTT1vXrl2dcxT07dvXMmXKZJUrV7YsWbJYhQoV7IMPPnBuHzP32e0TdKd2t3cJf/PNN61gwYJWsGBB8/X1tcmTJzvb9syZMxYaGmqlSpVyzjkHIOXavXu31a1b18LCwmzPnj12+fJl27hxo9WvX9+mTZtmZtwL4P7z448/mr+/v40bN87MzObPn28Oh8OGDh3q3Gb16tXmcDisa9euHOP/X3R0tLMtvvvuOytSpIjLg43iaqeNGzfaiRMn3FViitehQwd75513zOzWlCqBgYHO4zjmCXuXL1+2Tz/9lIf1uAmhFJAIvv32W/Pz83M+bvjatWv25ptvmsPhsHLlytnw4cNt9+7dtn37dtu4caPzBMecO/cuOjraoqKirHPnzta9e3czuxVA5c+f37p06eLc7ubNm3bmzBnn7wKuxo8fbw6Hw/r162cbN260ChUqOCc0P3DggPXq1cvKlCljY8eONbNb4+6rVKli9evX92TZydKgQYMsZ86ctnz5cjMza9Omjfn7+9t7773nnL/szJkzljdvXmvTpo0HKwXgLnv37rWwsDALCwtzzisH3I9iQpMRI0ZY27ZtzezWU2Pz5s3r8nS906dPm5nZmjVrUvUXMDFfWF29etWuX79uhw4dck6i/dVXX1lwcLBduHDBzFw/F2zYsME2b97s/oJTsIiICIuMjLTQ0FCbO3eu/fTTT+br6+v8svrGjRs2ePBgl6dMm/EUaXdgQCSQCOrWrau2bdtq4sSJkqT06dNr3rx5euqpp/TYY49p5cqVevDBB7Vt2zZVrFhRadKkUVRUFEP2EoHD4ZCXl5cuX76sChUq6MyZM3rkkUcUFhamMWPGSJIWLlyolStXKigoSH369FHRokU9XHXy8+KLL2rKlCl69913NW7cOIWEhKhMmTKSpIIFC6p79+4qVaqUvvnmG127dk3p0qXT6tWrtWjRIg9X7nkbN27U3r17Jd2aA2LdunX65JNPVKtWLS1atEjffPONnnjiCb322mv69NNPdfbsWQUFBWnHjh364osvPFs8ALd44IEHNGbMGHl5eWnIkCFav369p0sCEsT+/4wvMcPNw8PDlT59eh06dEiVKlVSnTp19PHHH0uSli5dqsmTJ+vKlSt67LHHnHOqpjYxQ/p37dqlNm3aKDQ0VIUKFdKjjz6qwYMHq2rVqoqKitLAgQMlyeVzwZw5c7R69WpFRkZ6qPr736ZNm3T06FFJ0sCBA7Vy5UqlTZtWjRo10quvvqoqVapo3LhxevHFFyVJV65c0Q8//KDff//dZT9MqeAGnk7FgJTis88+s8qVK9u5c+esTJkyVrlyZeejXP/++2+bOXMmPaMSScy3dGfOnHEu69ixo5UtW9by589vXbt2dbb11atXrWXLljZkyBDa/w5u7yo+bdo0czgcliVLlliPI1+xYkWcT4hLzU/rPHjwoFWoUMEaNmxoBw4csOvXr9tnn31mERERtnbtWgsJCbGPP/7YzMyaNWtmgYGB9tZbb1l4eLhzH3wDB6Qee/futfr161vFihVt48aNni4HSJBNmzbZ7Nmzzcxs4sSJVrx4cQsJCbEXXnjBuc3Nmzetc+fO9tJLLzl7BKVGMfdWO3bssICAAOvatat99tlnNn/+fHvqqacsTZo01qRJE5s+fboFBQVZ165d7ciRI7Zz507r16+fBQYGpuoeZvdq3759Vq5cOWvbtq1zCpWYJ55v2rTJatWqZaVLl7b9+/ebmdnx48etbt26VrFiRe7LPIBQCkhE5cqVM4fDYdWqVbvjI1sJRu5NzEX+66+/tipVqtjXX39tZre6jpcpU8Zy5crlsm3//v0tX758tm/fPo/Um5zdKUyaOXOmORwO6969ux07dsy5/LfffrOiRYvGCqVSu08++cSqV69uzZo1syNHjjiXP//889axY0fn/HEvv/yyM7Bmbg0g9dq1a5c1bdrUDh065OlSgHiJjo62mzdvWo0aNaxevXrO5XXr1rW0adPaxo0b7fLlyxYeHm79+vWz4OBgAhUzO3XqlJUpU8b69u0ba/mYMWPMz8/P6tevb4sXL7YcOXJYSEiIFSpUyIoWLWpbt271UNUpx+eff245c+a09OnT27Jly1zWzZw502rUqGH+/v5WunRpe/jhh61cuXLOezaCKfdi7BCQCOz/P4Wke/fuGj58uD788ENlyZIl1lO1JDFk7x45HA4tWrRILVu21IABA5QlSxZJUo4cOfTGG2+oa9euKlWqlPOpZuvWrdOKFStUuHBhD1eevNz+lLi1a9fq3Llzcjgcql27tlq0aKFr166pU6dOunjxopo0aaKcOXNqwIABypgxo0qWLOnh6pOHmH/fzz//vLy9vfX555+rT58+GjJkiIoUKaI9e/aoZMmS8vb2liQdPXpUkydPVqlSpeRwOOI8PwBI+YoVK6bp06crXbp0ni4FiLc0adLonXfeUb169TR79mw1b95cs2fPVq1atdS8eXOlTZtWBQoU0K5du/Tdd9+l2iF7t/v7778VGRmp1q1bO5+sGx0drWzZsql169a6cOGChg8frpdfflm//fabtm3bpkyZMqlAgQLKkSOHp8u/b8Xc4+bLl0++vr7Knj27Zs2apaJFiypfvnySpBYtWqhChQr66aefdOLECeXOnVuNGjVSmjRpeCq6BzjM/v8AYQD37OjRoypXrpy6d++uvn37/r/27jyq6jr/4/jzsoh0Etc7xbgvdFxGSUhzDXGZXBhhhMwZUnAZEzHXTDBhFjOmQB3NBMWANCc5R7EyFwydMcGFqXHJJQVNww1BEcZQkHvv7w9/3B/kNPMr7d6LvR5/wfd77z3vzxfO+X6+r/tZ7F3OQ6moqIhhw4bx3HPPMW/evFrnqqqquHjxIkuWLKGiooKWLVsyevRovLy87FStY6oZhsybN48PP/wQJycnmjVrxsWLFzlw4ABGo5H169czduxYAMaNG0dlZSXvvvsurq6utUKtn7Ka1zItLY20tDQee+wxVq5cyYYNG5g+fTrPP/88X375JRUVFRw5cgQXFxcFUiIi4tC+fZ8ym83cvHmTiIgIGjZsyPLly60P7unp6Vy+fJkWLVrQs2dPWrVqZa+yHUpaWhoRERHcunULuPeanj17Fh8fH6KiovTc8AB8u29aUlICwKZNm0hLS6Nt27YsWrToP/5/VoeHYlt6ohB5gJo3b050dDQJCQmcOHHC3uU8lEpLS7ly5Qp9+/YF7t7gq7N1FxcXWrduzbJly0hKSuLVV19VIPUthYWF1g7RypUrSUlJYd26dZw4cYKQkBC++uor9u/fD0BoaCgbN24EwN/fn/Xr1+Pq6kpVVZUCqf9VPeIJIDw8nPDwcC5dukRkZCTBwcEkJiZiMpno2bMnhw8fxsXFBZPJpEBKREQcmsFgIDc3l4yMDACcnJzw8PDg2WefJS0tjZMnT1pf+/zzzzNz5kxCQkIUSNVQPUp/06ZNAPfc+9u1a0e7du0oLCwE/m8xefn+agZSe/fuZd++fZw+fZrGjRszadIkxo4dy9mzZ4mNjaWgoAC422/btWtXrc9RIGUfeqoQecCGDx/OiBEjNGz5R1KvXj1cXV05e/YsUDsUyMzM5KOPPrK+Vjf32pYtW0aPHj24du0aACdOnCAqKooePXrwwQcfsGDBAlatWsXIkSMpKyujsrKSUaNGsWXLFkJDQ63XWkOaa/t2MDVhwgQuXrzIzJkzCQwMJD09nZUrV1oDPXV4RETEkVksFq5fv87bb79NSEgI48aN47333gPujpwOCAhg0aJFfPPNN3au1LG1adMGDw8P1q5dy/nz563HzWYzcHckj7u7O76+vsC9oZX8/1gsFmsgNXv2bEaNGkVISAjDhg0jLCyMkpISXnzxRcaNG8fZs2cJCAjAz8+PzMxM/Pz87Fy9gEIpkQeuffv2pKWl4eTkhMlksnc5dVrNUKn6Bt60aVPatGlDWloax48fB7DeiHbs2EFSUhLl5eWAbu41rVq1innz5pGQkEDTpk2Bu2sdVFRUsG3bNsaOHcsbb7zB7373O8xmM2vXrmX16tWYzWZGjBiBi4sLVVVVuqbfoWYwNX78eCZMmMClS5eYO3cuFy5cwMnJSYGeiIjUCQaDgSZNmpCYmMiBAwe4du0aixcvxtfXl6ysLDp27EhZWRmXL1+2d6kOrUWLFiQmJrJjxw5iYmLu6bcuWbKES5cu0b9/f3uWWafVnBL52WefsWXLFrZs2cKOHTtIT09n69at1jW9XnzxRebMmUNgYCDe3t4UFBRYR7CLfWlNKRFxSNU3maysLLZu3crx48cJDg4mKCiIyspKnn76abp27crIkSNp3bo127dvZ/369WRnZ/OLX/zC3uU7lOTkZKZNm0Z6ejpBQUHW4wsWLGD//v384x//4M9//jNTp04FoLi4mLCwMPz8/HjllVfsVHXdVLNzlJKSwurVq5k8eTITJkzQOlIiIuKwqu9Rp06d4vz58zRp0gRPT0+aN29OSUkJly5dIiYmhsLCQkwmE7m5uURHR7No0SJ7l+7QTCYTa9asYdq0abRv356+ffvi6enJV199xfbt29m1axfdu3e3d5l1XkpKCrt27cLDw4PExETr8dOnT+Pr60tERARvvvnmPe/TGlKOQaGUiDiszZs3ExYWRmhoKEajkZSUFLp06cKWLVv4+uuvefnll/nyyy+pqqrC09OTFStW4O3tbe+yHcrf//53Bg4cyB/+8AdiY2Otx6dNm0ZVVRU5OTncvn2bdevW0bVrV4qLi4mIiODatWvk5ORoZM8PUDN8CggIwMXFhQ8++MC+RYmIiHyH6vvWpk2bmDFjBq6urlgsFurXr8+aNWvo16+f9bU7d+7k0KFDLF26lJ07d9KtWzc7Vl53HDx4kDfffJNTp07RqFEjvL29eemll7TcxwNQWFjIrFmz2LFjBwMGDLCug1ZRUYGbmxsJCQmsX7+erKwsGjdurHVRHZBCKRFxSAUFBQQEBBAREcGUKVOwWCw0bNiQiIgIXn/9dZydnblz5w63b9+mrKwMDw8PGjRoYO+yHU5eXh4TJ06kcePGxMTE8NRTTxEcHMzRo0c5duwYV69eZfDgwbi5uXHlyhU6dOiA2Wxm7969uLq66hukH6i6gx8ZGcn169d59913tf27iIg4hJqLQldVVeHi4kJubi6DBw8mPj6egIAA8vPzWbNmDRs3bmT37t307t271mfcunULd3d3e5RfZ5lMJpycnDAYDNrF+D78u2v3+eefs2LFCtavX09qaiqhoaHWc4mJiSQlJZGTk8Ojjz5q63Ll/0GhlIjY1XdNaSooKCAwMJC9e/dy6dIl/P39GT58OKtXrwbgwIEDdO7cGQ8PD1uXXOfk5eUxffp0nJ2dKS0tpby8nE2bNtGmTRsAioqK+OKLL8jPz8fLy4tnnnkGZ2dna0dVfpji4mKCgoJISkrSlFIREXEo58+fp1WrVhgMBkwmE2lpadbRJNUP/FeuXGHOnDmcPHmSnTt30qxZM+v7NSX9+6t5zXT9fpiagVRBQQFlZWV06tQJJycnzp07x+9//3s+/fRT/vjHPxISEsK//vUvXnjhBVxdXdm6dauuuYNSPCsidmM2mzEYDJSXl1NcXMzf/vY3Ll68SGlpKU5OTly9epXc3FyGDRvG8OHDSUpKAuDo0aMsW7aMM2fO2LkFdYOXlxfLly+noqKCL774gqioKGsgVVVVhdFoZODAgUyePBl/f3+cnZ0xmUwKpO5Ts2bNyMrKUiAlIiIOpaKigjFjxtCuXTssFgvOzs6UlZVx+PBhysrKgLuhyeOPP85vf/tbiouLKS4urvUZerj//mpeM12/76/mLnuxsbEEBAQwZMgQevToweLFi/nZz35GVFQUzzzzDOHh4XTq1ImoqCgqKyvJyMiwjlATx6NQSkTsovqbjtOnTxMREUH//v0ZPnw4Xbp0YerUqZSUlBAaGsqgQYPo3r07q1evtt6INmzYwJkzZ3j88cft3Iq6w8vLi6SkJHr16kVqairZ2dkAuLi48O8GzGrK3oNRv359e5cgIiJSS7169YiPj+fRRx/Fx8cHi8VCYGAgnp6epKamcuPGDWto4uXlhaurqzWsErGX6v/JuLg4Vq9eTVxcHAUFBTRu3Ji33nqL/Px8OnXqxLx58xg/fjz16tWjW7du7Nmzh/r161NRUaEpkw5KfxURsbnqQOro0aMMGDCARx55hKioKA4dOsSUKVM4ePAgzz33HEajkbFjx3L48GGysrLYtGkTs2fPZsWKFSQnJ+Pp6WnvptQp7du356233sJisbBo0SJycnIAfVsnIiLyMPv26BCDwUCfPn1ITk7m1q1bPP3007Rr145f//rXpKamkpycTGFhITdv3iQlJQUnJyfrCGsRW6uoqLD+XFpays6dO4mPj2f48OHs3r2b3Nxc5s+fT7du3TCZTHTu3JkZM2bg7+9PcnKydbMZNzc3O7VA/hutKSUiNlUzkOrduzczZszgT3/6U62pYhs2bGDp0qUYDAYmTZrEvn37yMjIoFWrVjz22GMsXrxYu73ch7y8PGbNmkVhYSHvvPOOrqWIiMhDqrrfdeXKFc6dO0evXr2s5+7cucOhQ4cYM2YMLVu2ZM+ePcTGxrJ582by8/N58sknOXPmDJmZmXTv3t2OrZCfqp07d3LkyBH8/Pzo2bMnpaWl+Pv7k5mZyeHDhxk1ahTx8fFMmTKFW7dusXbtWvz9/XniiSc4cuQIK1eu5MMPP2TVqlUEBgbauznyHbRgiIjYlJOTEwUFBQwaNIgRI0bw+uuvA3fniVevYzRmzBhKS0t59dVXsVgspKSkMH/+fDw9PTGbzdpl7z55eXkRHx/PmjVrtN6RiIjIQ6y639W9e3euX7+On58fvXv3ZvDgwTz11FP07NmT9PR0Jk6cSL9+/cjOzmbq1Kls27aNxo0b4+PjQ+vWre3dDPkJSk1NJSYmhpEjR+Lv7w9Aw4YNcXd3Jzg4mCNHjvCXv/yFiRMnAnc37nn//fdp1KgRTzzxBN7e3kyePBk3Nzf1dx2cRkqJiM2dO3eO0aNH4+npydy5c+nXr5/1XM3dSPr374/RaCQjIwOTyaR1jn4k2pZYRETk4XX+/HmCgoK4desWDRo0oEuXLqSnp9OxY0e6du1KQEAABoOB6Oho2rVrR2Zmpqb2i11t2LCBiRMnkpqaytChQ/Hw8LA+I2zbto05c+ZgNBr59NNPAfjmm28YPXo05eXlZGVl1XpmqKio0NQ9B6dQSkTsIi8vj+nTp2OxWFiwYIE1mKoZSvn7+9O8eXPee+89e5YqIiIiUqfl5+fzyiuvYDabiY6OxtPTk3379rFixQru3LnDsWPHaN++PceOHSMwMJDNmzfX6pOJ2EpRURGjR48mJCSEyMhI6/GbN2+Sl5fH5cuXOXr0KOvWreORRx6hZcuWFBUVUVZWxmeffYarq6u+zK5j9NW4iNiFl5cXy5cvx2Aw8Nprr9VadNtsNnPhwgXc3d0ZMmQIwL/dIU5ERERE/rsOHToQFxfH7du3iYmJobCwkDFjxpCdnU1mZiZJSUn86le/4sknnyQ2NhbQRihiP1evXqV58+bW3xMTExk/fjy+vr7MnDmT999/n3feeYfevXvTqlUrgoKC+Pzzz3F1daWqqkqBVB2jkVIiYlffNWIqKiqKHTt28PHHH9OiRQs7VykiIiJS9+Xl5fHSSy8BEB0djZ+fX63zVVVVtTafEbG1oqIifHx8GDp0KL/5zW9YuXIlp0+fpl+/fgQFBVFaWsr8+fOJjIxk5syZtd6rEVJ1k0IpEbG7msFUXFwcn3zyCQsXLiQ7Oxtvb297lyciIiLy0KjZ74qNjaVPnz72Lkmkll27dhEcHEzTpk1p0KABS5Yswdvbm6ZNm1JSUsLAgQMJCAhg4cKF9i5VHgCFUiLiEPLy8pg9eza5ubmUlJSwf/9+fH197V2WiIiIyEOnut9VXFzM0qVL6dWrl71LEqmlqKiImzdv0rZt21rHS0pKCAoKIjQ0lMmTJ9upOnmQtKaUiDgELy8vEhIS6NWrF4cOHVIgJSIiIvIj8fLyIj4+nhYtWvDzn//c3uWI3MNoNN4TSBUVFTF27FgqKiqYOHGinSqTB00jpUTEody5cwdXV1d7lyEiIiLy0KusrKRevXr2LkPkPyouLmbNmjVkZ2dz9epVcnJytMveQ0QjpUTEoSiQEhEREbENBVJSF1y4cIGcnBw6dOjAvn37tMveQ0YjpURERERERETEYd24cYOGDRtiMBg0Quoho1BKRERERERERByexWLBYDDYuwx5gDR9T0REREREREQcngKph49CKRERERERERERsTmFUiIiIiIiIiIiYnMKpURERERERERExOYUSomIiIiIiIiIiM0plBIREREREREREZtTKCUiIiLiwE6dOsVrr73G7du37V2KiIiIyANlsFgsFnsXISIiIiL3MplM9O3blyZNmtC1a1feeOMNe5ckIiIi8sBopJSIiIiIjYSHh2MwGJgyZco95yIjIzEYDISHh1uPJSQkMGDAAD766CMOHjxIbm6uDasVERER+XFppJSIiIiIjYSHh7N7927Kysq4fPky7u7uANy+fRtPT088PDzw9/cnLS3NvoWKiIiI2IBGSomIiIjYkI+PDy1btiQjI8N6LCMjg1atWtG9e3frMbPZTFxcHG3btsXd3R1vb282btxoPV9SUkJoaChGoxF3d3e8vLxITU21aVtERERE7odCKREREREbmzBhQq0AKSUlhfHjx9d6TVxcHGvXriUpKYnjx48za9YsXnjhBfbs2QNATEwMJ06cYPv27Zw8eZLExESaNWtm03aIiIiI3A9N3xMRERGxkfDwcG7cuEFycjItW7bk1KlTAHTs2JGCggImTZpEo0aNWLVqFU2aNCErK4vevXtb3z9p0iTKy8v561//ysiRI2nWrBkpKSn2ao6IiIjIfXGxdwEiIiIiPzVGo5ERI0aQlpaGxWJhxIgRtUY55efnU15ezpAhQ2q9r7Ky0jrFLyIiguDgYP75z3/yy1/+kqCgIPr06WPTdoiIiIjcD4VSIiIiInYwYcIEpk2bBsDbb79d69zNmzcB2Lp1K82bN691zs3NDYBhw4Zx/vx5tm3bxieffMKgQYOIjIwkISHBBtWLiIiI3D+FUiIiIiJ2MHToUCorKzEYDDz77LO1znXu3Bk3Nze+/vpr/Pz8vvMzjEYjYWFhhIWF0b9/f+bOnatQSkREROoMhVIiIiIiduDs7MzJkyetP9fUoEEDXn75ZWbNmoXZbKZfv36UlpaSk5ODh4cHYWFhxMbG4uvrS5cuXaioqODjjz+mU6dO9miKiIiIyA+iUEpERETETjw8PL7z3MKFCzEajcTFxXH27FkaNWqEj48P8+fPB6BevXpER0dz7tw53N3d6d+/Pxs2bLBV6SIiIiL3TbvviYiIiIiIiIiIzTnZuwAREREREREREfnpUSglIiIiIiIiIiI2p1BKRERERERERERsTqGUiIiIiIiIiIjYnEIpERERERERERGxOYVSIiIiIiIiIiJicwqlRERERERERETE5hRKiYiIiIiIiIiIzSmUEhERERERERERm1MoJSIiIiIiIiIiNqdQSkREREREREREbE6hlIiIiIiIiIiI2Nz/AC/CanuW+SEDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12, 6))\n", + "plt.bar(precip_mensal['Mês'], precip_mensal['Precipitacao_Mensal_mm'], color='#FF0000', alpha=0.7)\n", + "plt.xlabel('Mês')\n", + "plt.ylabel('Precipitação Mensal (mm)')\n", + "plt.title('Precipitação Mensal')\n", + "plt.grid(axis='y')\n", + "plt.xticks(rotation=45)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/exercicios/projeto-guiado/projeto_leticia_vidal.ipynb b/exercicios/projeto-guiado/projeto_leticia_vidal.ipynb index bd72b6f..a3589d0 100644 --- a/exercicios/projeto-guiado/projeto_leticia_vidal.ipynb +++ b/exercicios/projeto-guiado/projeto_leticia_vidal.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 115, "metadata": {}, "outputs": [], "source": [ @@ -13,7 +13,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 116, "metadata": {}, "outputs": [], "source": [ @@ -22,7 +22,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 117, "metadata": {}, "outputs": [ { @@ -51,7 +51,7 @@ "dtype: object" ] }, - "execution_count": 3, + "execution_count": 117, "metadata": {}, "output_type": "execute_result" } @@ -62,7 +62,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 118, "metadata": {}, "outputs": [ { @@ -328,7 +328,7 @@ "4 3,3 ,2 NaN " ] }, - "execution_count": 4, + "execution_count": 118, "metadata": {}, "output_type": "execute_result" } @@ -339,7 +339,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 119, "metadata": {}, "outputs": [ { @@ -612,7 +612,7 @@ "8783 ,9 NaN " ] }, - "execution_count": 5, + "execution_count": 119, "metadata": {}, "output_type": "execute_result" } @@ -623,7 +623,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 120, "metadata": {}, "outputs": [], "source": [ @@ -632,7 +632,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 121, "metadata": {}, "outputs": [ { @@ -1024,7 +1024,7 @@ "19 2,2 " ] }, - "execution_count": 7, + "execution_count": 121, "metadata": {}, "output_type": "execute_result" } @@ -1035,7 +1035,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 122, "metadata": {}, "outputs": [ { @@ -1053,7 +1053,7 @@ "dtype: int64" ] }, - "execution_count": 8, + "execution_count": 122, "metadata": {}, "output_type": "execute_result" } @@ -1065,7 +1065,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 123, "metadata": {}, "outputs": [ { @@ -1074,7 +1074,7 @@ "(8784, 9)" ] }, - "execution_count": 9, + "execution_count": 123, "metadata": {}, "output_type": "execute_result" } @@ -1085,7 +1085,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 124, "metadata": {}, "outputs": [ { @@ -1222,7 +1222,7 @@ "4 ,2 " ] }, - "execution_count": 10, + "execution_count": 124, "metadata": {}, "output_type": "execute_result" } @@ -1233,7 +1233,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 125, "metadata": {}, "outputs": [], "source": [ @@ -1246,7 +1246,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 126, "metadata": {}, "outputs": [ { @@ -1264,7 +1264,7 @@ "dtype: object" ] }, - "execution_count": 12, + "execution_count": 126, "metadata": {}, "output_type": "execute_result" } @@ -1275,7 +1275,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 127, "metadata": {}, "outputs": [], "source": [ @@ -1287,7 +1287,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 128, "metadata": {}, "outputs": [ { @@ -1305,7 +1305,7 @@ "dtype: int64" ] }, - "execution_count": 14, + "execution_count": 128, "metadata": {}, "output_type": "execute_result" } @@ -1316,7 +1316,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 129, "metadata": {}, "outputs": [], "source": [ @@ -1325,7 +1325,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 130, "metadata": {}, "outputs": [ { @@ -1567,7 +1567,7 @@ "[8784 rows x 9 columns]" ] }, - "execution_count": 16, + "execution_count": 130, "metadata": {}, "output_type": "execute_result" } @@ -1578,7 +1578,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 131, "metadata": {}, "outputs": [], "source": [ @@ -1587,7 +1587,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 132, "metadata": {}, "outputs": [], "source": [ @@ -1596,7 +1596,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 133, "metadata": {}, "outputs": [ { @@ -1838,7 +1838,7 @@ "[8784 rows x 9 columns]" ] }, - "execution_count": 19, + "execution_count": 133, "metadata": {}, "output_type": "execute_result" } @@ -1849,7 +1849,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 134, "metadata": {}, "outputs": [], "source": [ @@ -1858,7 +1858,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 135, "metadata": {}, "outputs": [], "source": [ @@ -1867,7 +1867,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 136, "metadata": {}, "outputs": [ { @@ -2109,7 +2109,7 @@ "[8784 rows x 9 columns]" ] }, - "execution_count": 22, + "execution_count": 136, "metadata": {}, "output_type": "execute_result" } @@ -2120,7 +2120,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 137, "metadata": {}, "outputs": [ { @@ -2138,7 +2138,7 @@ "dtype: object" ] }, - "execution_count": 23, + "execution_count": 137, "metadata": {}, "output_type": "execute_result" } @@ -2149,7 +2149,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 138, "metadata": {}, "outputs": [ { @@ -2391,7 +2391,7 @@ "[8784 rows x 9 columns]" ] }, - "execution_count": 24, + "execution_count": 138, "metadata": {}, "output_type": "execute_result" } @@ -2402,7 +2402,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 139, "metadata": {}, "outputs": [], "source": [ @@ -2411,7 +2411,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 140, "metadata": {}, "outputs": [ { @@ -2653,7 +2653,7 @@ "[8784 rows x 9 columns]" ] }, - "execution_count": 26, + "execution_count": 140, "metadata": {}, "output_type": "execute_result" } @@ -2664,7 +2664,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 141, "metadata": {}, "outputs": [], "source": [ @@ -2673,7 +2673,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 142, "metadata": {}, "outputs": [ { @@ -2940,7 +2940,7 @@ "[8784 rows x 10 columns]" ] }, - "execution_count": 28, + "execution_count": 142, "metadata": {}, "output_type": "execute_result" } @@ -2951,7 +2951,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 143, "metadata": {}, "outputs": [ { @@ -3218,7 +3218,7 @@ "[8784 rows x 10 columns]" ] }, - "execution_count": 29, + "execution_count": 143, "metadata": {}, "output_type": "execute_result" } @@ -3229,7 +3229,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 144, "metadata": {}, "outputs": [], "source": [ @@ -3238,7 +3238,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 145, "metadata": {}, "outputs": [ { @@ -3381,7 +3381,7 @@ "4 0.0 2020-01-01 04:00:00 " ] }, - "execution_count": 31, + "execution_count": 145, "metadata": {}, "output_type": "execute_result" } @@ -3392,7 +3392,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 146, "metadata": {}, "outputs": [], "source": [ @@ -3401,7 +3401,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 147, "metadata": {}, "outputs": [ { @@ -3557,7 +3557,7 @@ "4 2020-01-01 01:00:00-03:00 " ] }, - "execution_count": 33, + "execution_count": 147, "metadata": {}, "output_type": "execute_result" } @@ -3568,7 +3568,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 148, "metadata": {}, "outputs": [], "source": [ @@ -3577,7 +3577,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 149, "metadata": {}, "outputs": [ { @@ -3726,7 +3726,7 @@ "4 0.0 2020-01-01 04:00:00 01/01/2020 01:00 " ] }, - "execution_count": 35, + "execution_count": 149, "metadata": {}, "output_type": "execute_result" } @@ -3744,7 +3744,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 150, "metadata": {}, "outputs": [ { @@ -3933,7 +3933,7 @@ "std NaN " ] }, - "execution_count": 36, + "execution_count": 150, "metadata": {}, "output_type": "execute_result" } @@ -3944,12 +3944,12 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 151, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAHgCAYAAABkaS3CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAADjq0lEQVR4nOzddXQUVxsH4N9u3EOIIcEluBOCBQ/uECgUrQOlQAukX9FiLUVaipUGaZEEdxIguLtb0ARihLhvduf7Y7rLzrpmJ/A+5+QkmZ259+7s7Mw710bAMAwDQgghhBCeElq6AIQQQgghmlCwQgghhBBeo2CFEEIIIbxGwQohhBBCeI2CFUIIIYTwGgUrhBBCCOE1ClYIIYQQwmsUrBBCCCGE1yhYISXenTt3MHv2bMTFxVm6KITw1tOnTzF79mw8efLE0kUhRG8UrJASLSMjA/369UNaWhr8/Px03q5du3Zo166d+QpG9LJx40YIBAK8fPnSbHlUqlQJo0aNMlv6liYQCDB79myVrxUUFGDQoEF49uwZatSoYdZyvHz5EgKBABs3bjRrPuTjQsEK4Y27d+9i4MCBqFixIuzt7VGuXDl07twZK1asULvN6NGj0ahRIyxbtqwYS6qf2bNnQyAQaP2h4OnDsXTpUggEAhw/flztOuvWrYNAIMD+/fvNXp7JkyejVKlSCAsLM3tehJiDgJ4NRPjgwoULaN++PSpUqICRI0fC19cXcXFxuHTpEp49e4anT58qbfPy5Uts3boVkydPhr29vV75FRYWAgBsbW1NUn5N7ty5gzt37sj+z87Oxtdff41+/fqhf//+suU+Pj7o3Lmz2cvDR2KxGCKRCHZ2dhAIBGbJo1KlSmjXrl2x3PHHx8fDz88PI0eOxPr161Wu0759e9y9excJCQmwsbExOs/8/HxYW1vD2tqaszw1NRUrV67Et99+Czc3N6Pz0YZhGBQUFMDGxgZWVlZmz498HChYIbzQo0cPXL16FU+ePIG7uzvnteTkZHh7e5skn9zcXDg6OpokLUOlpKTAy8sLs2bNUlttX9Ll5OTAycnJ0sXgKM5gBQA6deqEa9euISkpCXZ2dpzX3rx5gwoVKuCLL77A6tWrDc5DIpGgsLBQ72CdkJKGmoEILzx79gx16tRRClQAqAxUNm/ejCZNmsDBwQEeHh4YMmSIUgfbdu3aoW7durh+/Tratm0LR0dH/Pjjj7LXFJtdCgoKMGvWLFSrVg12dnbw8/PD1KlTUVBQwFnv2LFjaN26Ndzd3eHs7IyaNWvK0jXGo0ePMHDgQHh4eMDe3h5NmzZVaiKQ9u04d+4cvv32W3h5ecHd3R1ffvklCgsLkZ6ejhEjRqBUqVIoVaoUpk6dCvn7EWl/gt9++w3Lli1DxYoV4eDggKCgINy7d0+pTCdOnECbNm3g5OQEd3d39OnTBw8fPuSsI23mevDgAT755BOUKlUKrVu3BsDWKo0aNQpVqlSBvb09fH19MWbMGLx7907l+5Lvs3Lt2jUEBwfD09MTDg4OqFy5MsaMGaN1PzIMg3nz5qF8+fJwdHRE+/btcf/+faX1UlNT8f3336NevXpwdnaGq6srunXrhtu3byutu2LFCtSpUweOjo4oVaoUmjZtiq1bt2osx/Dhw5GRkYFDhw4pvRYeHg6JRIJhw4YBAH777Te0bNkSpUuXhoODA5o0aYKdO3cqbScQCDB+/Hhs2bIFderUgZ2dHSIjI2WvyQe/r169wjfffIOaNWvCwcEBpUuXxqBBg5T2sUAgwKZNm5TyioqKgkAgwMGDB2XL3rx5gzFjxsDHxwd2dnaoU6eOUs2Rqj4riYmJGD16NMqXLw87OzuUKVMGffr0MWsfJfJhsda+CiHmV7FiRVy8eBH37t1D3bp1Na47f/58zJgxA4MHD8Znn32Gt2/fYsWKFWjbti1u3rzJCXjevXuHbt26YciQIRg+fDh8fHxUpimRSNC7d2+cO3cOX3zxBWrVqoW7d+9i2bJlePLkCfbu3QsAuH//Pnr27In69etj7ty5sLOzw9OnT3H+/Hmj3v/9+/fRqlUrlCtXDtOnT4eTkxO2b9+Ovn37YteuXejXrx9n/QkTJsDX1xdz5szBpUuX8Ndff8Hd3R0XLlxAhQoVsGDBAhw+fBiLFy9G3bp1MWLECM72//zzD7KysjBu3Djk5+fj999/R4cOHXD37l3ZPjp+/Di6deuGKlWqYPbs2cjLy8OKFSvQqlUr3LhxA5UqVeKkOWjQIFSvXh0LFiyQBUjHjh3D8+fPMXr0aPj6+uL+/fv466+/cP/+fVy6dEltk09ycjK6dOkCLy8vTJ8+He7u7nj58iV2796tdV/OnDkT8+bNQ/fu3dG9e3fcuHEDXbp0kTX9ST1//hx79+7FoEGDULlyZSQlJWHt2rUICgrCgwcPULZsWQBs35Jvv/0WAwcOxMSJE5Gfn487d+7g8uXL+OSTT9SWo3///vj666+xdetWTnMfAGzduhUVK1ZEq1atAAC///47evfujWHDhqGwsBDh4eEYNGgQDh48iB49enC2PXHiBLZv347x48fD09NT6XOQunr1Ks6fP48hQ4agfPnyePHiBVatWoV27drhwYMHcHR0RNOmTVGlShVs374dI0eO5GwfERGBUqVKITg4GACQlJSEFi1ayAImLy8vHDlyBGPHjkVmZia+++47tftiwIABuH//PiZMmIBKlSohOTkZx44dQ2xsrNryE8LBEMIDR48eZaysrBgrKysmMDCQmTp1KhMVFcUUFhZy1nv58iVjZWXFzJ8/n7P87t27jLW1NWd5UFAQA4BZs2aNUn5BQUFMUFCQ7P9///2XEQqFzNmzZznrrVmzhgHAnD9/nmEYhlm2bBkDgHn79q3B7/Xt27cMAGbWrFmyZR07dmTq1avH5Ofny5ZJJBKmZcuWTPXq1WXLNmzYwABggoODGYlEIlseGBjICAQC5quvvpItKyoqYsqXL895ny9evGAAMA4ODszr169lyy9fvswAYCZNmiRb1rBhQ8bb25t59+6dbNnt27cZoVDIjBgxQrZs1qxZDABm6NChSu81NzdXadm2bdsYAMyZM2eU3teLFy8YhmGYPXv2MACYq1evKm2vSXJyMmNra8v06NGDs39+/PFHBgAzcuRI2bL8/HxGLBZztn/x4gVjZ2fHzJ07V7asT58+TJ06dfQqh9SgQYMYe3t7JiMjQ7bs0aNHDAAmNDRUtkxxPxUWFjJ169ZlOnTowFkOgBEKhcz9+/eV8lI8pnJycpTWOXfuHAOA+eeff2TLQkNDGRsbGyY1NVW2rKCggHF3d2fGjBkjWzZ27FimTJkyTEpKCifNIUOGMG5ubrL3ID3GNmzYwDAMw6SlpTEAmMWLFyuVhxBdUTMQ4YXOnTvj4sWL6N27N27fvo1ff/0VwcHBKFeuHKcpZPfu3ZBIJBg8eDBSUlJkP76+vqhevTpOnjzJSdfOzg6jR4/Wmv+OHTtQq1Yt+Pv7c9Lt0KEDAMjSldba7Nu3DxKJxCTvPTU1FSdOnMDgwYORlZUly/vdu3cIDg5GTEwM3rx5w9lm7NixnFqJgIAAMAyDsWPHypZZWVmhadOmeP78uVKeffv2Rbly5WT/N2/eHAEBATh8+DAAICEhAbdu3cKoUaPg4eEhW69+/fro3LmzbD15X331ldIyBwcH2d/5+flISUlBixYtAAA3btxQu0+k+/ngwYMQiURq11N0/PhxFBYWYsKECZz9o+qu387ODkIhewoUi8V49+6drFlPvmzu7u54/fo1rl69qnM5pIYPH478/HxOjZC0+UjaBARw91NaWhoyMjLQpk0blfsoKCgItWvX1pq3Yt+sgoICNGnSBKVKleKkGxISApFIxCnj0aNHkZ6ejpCQEABs09quXbvQq1cvMAzD+Y4EBwcjIyND7efp4OAAW1tbnDp1CmlpaVrLTYgqFKwQ3mjWrBl2796NtLQ0XLlyBaGhocjKysLAgQPx4MEDAEBMTAwYhkH16tXh5eXF+Xn48CGSk5M5aZYrV06nET8xMTG4f/++UprSOSmk6YaEhKBVq1b47LPP4OPjgyFDhmD79u1GBS5Pnz4FwzCYMWOGUv6zZs3i5C9VoUIFzv/SUR6Kc824ubmpvEBUr15daVmNGjVkfQhevXoFAKhZs6bSerVq1UJKSgpycnI4yytXrqy0bmpqKiZOnAgfHx84ODjAy8tLtl5GRobS+lJBQUEYMGAA5syZA09PT/Tp0wcbNmxQ6j+kSFpuxffn5eWFUqVKcZZJJBIsW7YM1atXh52dHTw9PeHl5YU7d+5wyjZt2jQ4OzujefPmqF69OsaNG6dzs1+3bt3g4eHB6d+ybds2NGjQAHXq1JEtO3jwIFq0aAF7e3t4eHjAy8sLq1evVrmPVO1nVQoKCrBw4UL4+/vDwcEB9vb2cHBwkAVDUg0aNIC/vz8iIiJkyyIiIuDp6SkL1t++fYv09HT89ddfSseo9GZA8RiVsrOzwy+//IIjR47Ax8cHbdu2xa+//orExESd3gchAPVZITxka2uLZs2aoVmzZqhRowZGjx6NHTt2YNasWZBIJBAIBDhy5IjKYZHOzs6c/+XvWDWRSCSoV68eli5dqvJ1aRDg4OCAM2fO4OTJkzh06BAiIyMRERGBDh064OjRowYN1ZQGOt9//72sf4CiatWqcf5Xl4+q5UwxDfhTta8HDx6MCxcu4IcffkDDhg3h7OwMiUSCrl27agzwBAIBdu7ciUuXLuHAgQOIiorCmDFjsGTJEly6dEnpczbEggULMGPGDIwZMwY///wzPDw8IBQK8d1333HKVqtWLTx+/BgHDx5EZGQkdu3ahVWrVmHmzJmYM2eOxjxsbGwwePBgrFu3DklJSYiNjUVMTAx+/fVX2Tpnz55F79690bZtW6xatQplypSBjY0NNmzYoLITr67H9MSJExEWFoZp06ahdevWcHNzg0AgQK9evZT2fUhICObPn4+UlBS4uLhg//79GDp0qGwYtHT94cOHK/Vtkapfv77asnz33Xfo1asX9u7di6ioKMyYMQMLFy7EiRMn0KhRI53eD/m4UbBCeK1p06YA2GYJAKhatSoYhkHlypVNOhNn1apVcfv2bXTs2FHrPB9CoRAdO3ZEx44dsXTpUixYsAD/+9//cPLkSXTq1EnvvKtUqQKAvbAZsr0hYmJilJY9efJE1tmxYsWKAIDHjx8rrffo0SN4enpqHZqclpaG6OhozJkzBzNnztSYtzotWrRAixYtMH/+fGzduhXDhg1DeHg4PvvsM5XrS8sdExMj268AWzOgWMO0c+dOtG/fXmmitPT0dHh6enKWOTk5ISQkBCEhISgsLET//v0xf/58hIaGah02PGzYMKxZswYRERF48eIFBAIBhg4dKnt9165dsLe3R1RUFGeI84YNGzSmq01ERARGjRqFefPmyZbl5eUhNTVVad2QkBDMmTMHu3btgo+PDzIzMzFkyBDZ615eXnBxcYFYLDb4GK1atSqmTJmCKVOmICYmBg0bNsSSJUuwefNmg9IjHxdqBiK8cPLkSZU1ANK+EdLmiP79+8PKygpz5sxRWp9hGKUhsboaPHgw3rx5g3Xr1im9lpeXJ2vyUHWib9iwIQBobaJQx9vbG+3atcPatWtlQZm8t2/fGpSuJnv37uX0g7ly5QouX76Mbt26AQDKlCmDhg0bYtOmTUhPT5etd+/ePRw9ehTdu3fXmoe0lkfxc1q+fLnWbdPS0pS202U/d+rUCTY2NlixYgVne1V5WllZKeWxY8cOpf5BiseUra0tateuDYZhdOpP06pVK1SqVAmbN29GREQEgoKCUL58eU45BAIBxGKxbNnLly9lI9AMJRAIlMq3fPlylTVatWrVQr169RAREYGIiAiUKVMGbdu25ZRxwIAB2LVrl8oh7pqO0dzcXOTn53OWVa1aFS4uLgZ/Z8jHh2pWCC9MmDABubm56NevH/z9/VFYWIgLFy4gIiIClSpVkrWLV61aFfPmzUNoaChevnyJvn37wsXFBS9evMCePXvwxRdf4Pvvv9c7/08//RTbt2/HV199hZMnT6JVq1YQi8V49OgRtm/fjqioKDRt2hRz587FmTNn0KNHD1SsWBHJyclYtWoVypcvL5tbxBArV65E69atUa9ePXz++eeoUqUKkpKScPHiRbx+/Vrl3B/GqFatGlq3bo2vv/4aBQUFWL58OUqXLo2pU6fK1lm8eDG6deuGwMBAjB07VjZ02c3NTafJ7FxdXWX9E0QiEcqVK4ejR4/ixYsXWrfdtGkTVq1ahX79+qFq1arIysrCunXr4OrqqjFQ8vLywvfff4+FCxeiZ8+e6N69O27evIkjR44o1Zb07NkTc+fOxejRo9GyZUvcvXsXW7Zs4dTIAECXLl3g6+uLVq1awcfHBw8fPsSff/6JHj16wMXFRet7EQgE+OSTT7BgwQIAwNy5czmv9+jRA0uXLkXXrl3xySefIDk5GStXrkS1atU4Mx/rq0ePHti8eTPc3d1Rq1YtXLhwASdPnlTaD1IhISGYOXMm7O3tMXbsWFnnY6lFixbh5MmTCAgIwOeff47atWsjNTUVN27cwPHjx1UG8gBbY9exY0cMHjwYtWvXhrW1Nfbs2YOkpCRO7Q0hGllgBBIhSo4cOcKMGTOG8ff3Z5ydnRlbW1umWrVqzIQJE5ikpCSl9Xft2sW0bt2acXJyYpycnBh/f39m3LhxzOPHj2XrBAUFqR1yqjh0mWHY4aK//PILU6dOHcbOzo4pVaoU06RJE2bOnDmyoafR0dFMnz59mLJlyzK2trZM2bJlmaFDhzJPnjzR+b2qGrrMMAzz7NkzZsSIEYyvry9jY2PDlCtXjunZsyezc+dO2TrSIb6KQ3qlw4cVh1SPHDmScXJykv0vHVa6ePFiZsmSJYyfnx9jZ2fHtGnThrl9+7ZSWY8fP860atWKcXBwYFxdXZlevXoxDx480ClvhmGY169fM/369WPc3d0ZNzc3ZtCgQUx8fLzS+1ccunzjxg1m6NChTIUKFRg7OzvG29ub6dmzJ3Pt2jWN+5ZhGEYsFjNz5sxhypQpwzg4ODDt2rVj7t27x1SsWFFp6PKUKVNk67Vq1Yq5ePGi0rGxdu1apm3btkzp0qUZOzs7pmrVqswPP/zAGY6szf379xkAjJ2dHZOWlqb0elhYGFO9enXGzs6O8ff3ZzZs2CDbr/IAMOPGjVOZh+I+TU1NZUaOHMl4enoyzs7OTPfu3ZknT54o7QepmJgYBgADgDl37pzKPJKSkphx48Yxfn5+jI2NDePr68t07NiR+euvv2TrKA5dTklJYcaNG8f4+/szTk5OjJubGxMQEMBs375d804jRA5Nt0/IR+Tly5eoXLkyFi9ebFANFCGEWAL1WSGEEEIIr1GwQgghhBBeo2CFEEIIIbxGfVYIIYQQwmtUs0IIIYQQXqNghRBCCCG8RsEKIYQQQniNghVCCCGE8BoFK4QQQgjhNQpWCCGEEMJrFKwQQgghhNcoWCGEEEIIr1GwQgghhBBeo2CFEEIIIbxGwQohhBBCeI2CFUIIIYTwGgUrhBBCCOE1ClYIIYQQwmsUrBBCCCGE1yhYIYQQQgivUbBCCCGEEF6jYIUQQgghvEbBCiGEEEJ4jYIVQgghhPAaBSuEEEII4TUKVgghhBDCaxSsEEIIIYTXKFghhBBCCK9RsEIIIYQQXqNghRBCCCG8RsEKIYQQQnjN2tIFMJZEIkF8fDxcXFwgEAgsXRxCCCGE6IBhGGRlZaFs2bIQCjXXnZT4YCU+Ph5+fn6WLgYhhBBCDBAXF4fy5ctrXKdYg5VFixYhNDQUEydOxPLlywEA+fn5mDJlCsLDw1FQUIDg4GCsWrUKPj4+OqXp4uICgH2zrq6u5io6IYQQQkwoMzMTfn5+suu4JsUWrFy9ehVr165F/fr1OcsnTZqEQ4cOYceOHXBzc8P48ePRv39/nD9/Xqd0pU0/rq6uFKwQQgghJYwuXTiKpYNtdnY2hg0bhnXr1qFUqVKy5RkZGQgLC8PSpUvRoUMHNGnSBBs2bMCFCxdw6dKl4igaIYQQQniuWIKVcePGoUePHujUqRNn+fXr1yESiTjL/f39UaFCBVy8eFFlWgUFBcjMzOT8EM02nH+BoMUn8Tot19JFIYQQQvRm9mAlPDwcN27cwMKFC5VeS0xMhK2tLdzd3TnLfXx8kJiYqDK9hQsXws3NTfZDnWu1m3PgAV69y8XCw48sXRRCCCFEb2btsxIXF4eJEyfi2LFjsLe3N0maoaGhmDx5sux/aQcdop1ILLF0EYgGYrEYIpHI0sUghBCTsbW11TosWRdmDVauX7+O5ORkNG7cWLZMLBbjzJkz+PPPPxEVFYXCwkKkp6dzaleSkpLg6+urMk07OzvY2dmZs9iEFCuGYZCYmIj09HRLF4UQQkxKKBSicuXKsLW1NSodswYrHTt2xN27dznLRo8eDX9/f0ybNg1+fn6wsbFBdHQ0BgwYAAB4/PgxYmNjERgYaM6iEcIb0kDF29sbjo6ONLkhIeSDIJ20NSEhARUqVDDq3GbWYMXFxQV169blLHNyckLp0qVly8eOHYvJkyfDw8MDrq6umDBhAgIDA9GiRQtzFo0QXhCLxbJApXTp0pYuDiGEmJSXlxfi4+NRVFQEGxsbg9Ox+Ay2y5Ytg1AoxIABAziTwhHyMZD2UXF0dLRwSQghxPSkzT9isbhkBSunTp3i/G9vb4+VK1di5cqVxV0UQniDmn4IIR8iU53b6KnLhBBCCOE1ClYIIcQCkpOTERwcDH9/f9SvXx99+vShSS5LgMWLF6Nnz54oKCiwdFE+Khbvs0IIIR8jb29vREVFWboYRA9paWkQCoXYvXu30UNxiX6oZoUQQgjRQalSpTBlyhTeBSpt27bF1q1biz3fwsJCVKpUCdeuXTN7XhSsEEIMMmrUKAgEAggEAtja2qJatWqYO3cuioqKALCd6aWvCwQCeHl5oXv37kpzL8mnI//TtWtXzno3b97EoEGD4OPjA3t7e1SvXh2ff/45njx5AgB4+fIlBAIBbt26xflf+lO6dGl06dIFN2/elKXZrl07fPfdd0rrqvrZuHEjACAvLw8eHh7w9PRU2xSwa9cutGvXDm5ubnB2dkb9+vUxd+5cpKamctbLycmBu7s7vL291c5evGnTJjRr1gyOjo5wcXFBUFAQDh48qPZzUdzvqn6kAx3y8vIwa9Ys1KhRA3Z2dvD09MSgQYNw//59WXqVKlXSmNaoUaNk6wYHB8PKygpXr15VKteoUaPQt29fteXWRvHzlSf9HOXdv38fgwcPhpeXF+zs7FCjRg3MnDkTubncZ6TJvz9HR0fUq1cPf//9t8oybNu2DVZWVhg3bpzSa/oc74r7IS4uDmPGjEHZsmVha2uLihUrYuLEiXj37p3W/bJ//34kJSVhyJAhWtc1NVtbW3z//feYNm2a2fOiYIUQYrCuXbsiISEBMTExmDJlCmbPno3Fixdz1nn8+DESEhIQFRWFgoIC9OjRA4WFhSrTkf/Ztm2b7PWDBw+iRYsWKCgowJYtW/Dw4UNs3rwZbm5umDFjhsYyHj9+XJZ/dnY2unXrpjRbsJ+fHyfvKVOmoE6dOpxlISEhANhApE6dOvD398fevXuV8vvf//6HkJAQNGvWDEeOHMG9e/ewZMkS3L59G//++y9n3R07dqBZs2aoUKEC9u/fr5TW999/jy+//BIhISG4c+cOrly5gtatW6NPnz74888/Vb7fli1bcso9ePBgpf3bsmVLFBQUoFOnTli/fj3mzZuHJ0+e4PDhwygqKkJAQIDsyfdXr16Vbbdr1y7OZ5qQkIDff/8dABAbG4sLFy5g/PjxWL9+vcbPxNwuXbqEgIAAFBYW4tChQ3jy5Anmz5+PjRs3onPnzkrH39y5c5GQkIB79+5h+PDh+Pzzz3HkyBGldMPCwjB16lRs27YN+fn5KvPW5XiX9/z5czRt2hQxMTHYtm0bnj59ijVr1iA6OhqBgYFKAa6iP/74A6NHjzbJlPaGGDZsGM6dO8cJcM2CKeEyMjIYAExGRoali8JbFacdZCpOO8h8vumqpYtCFOTl5TEPHjxg8vLyLF0UvY0cOZLp06cPZ1nnzp2ZFi1aMAzDMCdPnmQAMGlpabLX9+/fzwBgbt++rTEdeTk5OYynpyfTt29fla9L03/x4gUDgLl586bK/xmGYc6fP88AYCIjIxmGYZigoCBm4sSJSmnOmjWLadCggcr82rVrx6xZs4ZZvXo107lzZ85rly9fZgAwy5cv11hWqTZt2jAbNmxgli1bxnTv3p3z2sWLFxkAzB9//KGUzuTJkxkbGxsmNjZWZT7y1O3fRYsWMQKBgLl16xZnuVgsZpo2bcrUrl2bkUgknNdUfaZSs2fPZoYMGcI8fPiQcXNzY3Jzc3Uqh65UfZ5S8p+jRCJhateuzTRt2pQRi8Wc9W7dusUIBAJm0aJFsmUVK1Zkli1bxlnPw8ODmTRpEmfZ8+fPGQcHByY9PZ0JCAhgtmzZwnnd0OO9a9euTPny5ZX2V0JCAuPo6Mh89dVX6nYJk5yczAgEAubevXuc5QCYNWvWMD169GAcHBwYf39/5sKFC0xMTAwTFBTEODo6MoGBgczTp09l20iP+bCwMMbPz49xcnJivv76a6aoqIj55ZdfGB8fH8bLy4uZN2+eUjnat2/P/PTTTyrLqOkcp8/1m2pWCOEZhmGQW1hkkR/2PGc4BwcHtXeRGRkZCA8PBwC92vyjoqKQkpKCqVOnqnxd8ant2soHQOOdribPnj3DxYsXMXjwYAwePBhnz57Fq1evZK9v2bIFzs7O+Oabb7SWNSYmBteuXUP//v0xdOhQHD9+HG/evJG9vm3bNjg7O+PLL79USmfKlCkQiUSymg5DbN26FZ07d0aDBg04y4VCISZNmoQHDx7g9u3bOqXFMAw2bNiA4cOHw9/fH9WqVcPOnTsNLpsxbt26hQcPHmDy5MlKtQ0NGjRAp06dOLV28iQSCXbt2oW0tDSlY3TDhg3o0aMH3NzcMHz4cISFhWkshy7He2pqKqKiovDNN9/Ijk0pX19fDBs2DBEREWq/l+fOnYOjoyNq1aql9NrPP/+MESNG4NatW/D398cnn3yCL7/8EqGhobh27RoYhsH48eM52zx79gxHjhxBZGQktm3bhrCwMPTo0QOvX7/G6dOn8csvv+Cnn37C5cuXOds1b94cZ8+e1bg/jEWjgQjhmTyRGLVnWmaUyIO5wXC01f+0wDAMoqOjERUVhQkTJnBeK1++PAC2fwYA9O7dG/7+/px1Dh48CGdnZ86yH3/8ET/++CNiYmIAQGkbfaWnp+Pnn3+Gs7MzmjdvblAa69evR7du3VCqVCkAbB+NDRs2YPbs2QDYAKRKlSo6zdS5fv169OrVC66urnB1dUX79u2xadMm/PjjjwCAJ0+eoGrVqiovdGXLloWrq6usv44hnjx5gvbt26t8TXrxe/LkCRo2bKg1rePHjyM3NxfBwcEAILuYf/rppwaXT52WLVsqBSF5eXmyckr3iaoLuHT5uXPnOMumTZuGn376CQUFBSgqKoKHhwc+++wz2esSiQQbN27EihUrAABDhgzBlClT8OLFC1SuXJmTli7Hu1RMTAwYhtFY1rS0NLx9+xbe3t5Kr7969Qo+Pj4qm4BGjx6NwYMHy95fYGAgZsyYIfuMJk6ciNGjR3O2kUgkWL9+PVxcXFC7dm20b98ejx8/xuHDhyEUClGzZk388ssvOHnyJAICAmTblS1blhO0mwPVrBBCDCYNMuzt7dGtWzeEhITILtxSZ8+exfXr17Fx40bUqFEDa9asUUqnffv2uHXrFufnq6++AgCja3tatmwJZ2dnlCpVCrdv30ZERAR8fHz0TkcsFmPTpk0YPny4bNnw4cOxceNGSCQSvcoqFovxzz//YNiwYZy0NmzYwFnP2PeujanSX79+PUJCQmBtzQa6Q4cOxfnz5/Hs2TOTpC8vIiJC6Vhp2rSp0nr6vLcffvgBt27dwokTJxAQEIBly5ahWrVqstePHTuGnJwcdO/eHQDg6emJzp07q+ybo8vxbkxZ5eXl5cHe3l7la/Xr15f9LT3e69Wrx1mWn5/PmdunUqVKcHFx4axTu3ZtTjDk4+OD5ORkTl4ODg5KHZdNjWpWCOEZBxsrPJgbbLG89dG+fXusXr0atra2KFu2rOxiJa9y5cpwd3dHzZo1kZycjJCQEJw5c4azjpOTE+fiIK9GjRoAgEePHhn0NPaIiAjUrl0bpUuX1qvJSFFUVBTevHkj62grJRaLER0djc6dO6NGjRo4d+4cRCKRxtqVI0eOID4+Hv3791dK6/Tp0wgKCpKlVVhYqFS7Eh8fj8zMTNm+MUSNGjXw8OFDla9Jl+uSfmpqKvbs2QORSITVq1dz3sv69esxf/58g8uoip+fn9KxIt+EIi3zw4cP0ahRI6XtHz58qPS+PD09Ua1aNVSrVg07duxAvXr10LRpU9SuXRsA27E2NTWVk49EIsGdO3cwZ84czsVcl+Ndqlq1ahAIBHj48CH69eunsqylSpWCl5eXyu09PT2Rlpam8jX540865b2qZdJAW/F16TqqlslvA7DHgLoymgrVrBDCMwKBAI621hb50fc5HtIgo0KFCioDFUXjxo3DvXv3sGfPHp3z6NKlCzw9PfHrr7+qfF1xZI8iPz8/VK1a1ahABWAvWEOGDFG6qx8yZIis/8Inn3yC7OxstQ9jlZZ1/fr1KtPq16+f7G59yJAhyM7Oxtq1a5XS+e2332BjY4MBAwYY/H6GDBmC48ePK/VLkUgkWLZsGWrXrq3Un0WVLVu2oHz58rh9+zbnvSxZsgQbN26EWCw2uIyGaNiwIfz9/bFs2TKli+rt27dx/PhxDB06VO32fn5+CAkJQWhoKADg3bt32LdvH8LDwznv7+bNm0hLS8PRo0fVpqXteC9dujQ6d+6MVatWIS8vj/NaYmIitmzZgpCQELXfy0aNGiExMVFtwFJc7t27pzIwNCWqWSGEFBtHR0d8/vnnmDVrFvr27Ss7CRcUFCAxMZGzrrW1NTw9PeHk5IS///4bgwYNQu/evfHtt9+iWrVqSElJwfbt2xEbGyvryGgub9++xYEDB7B//37UrVuX89qIESPQr18/pKamIiAgAFOnTsWUKVPw5s0b9OvXD2XLlpUNR23dujWGDh2KgwcPqkzr008/xfDhw7FixQoEBgZi4sSJ+OGHH1BYWIi+fftCJBJh8+bN+P3337F8+XL4+fkZ/J4mTZqEffv2oVevXliyZAkCAgKQlJSEBQsW4OHDhzh+/LhOwWtYWBgGDhyo9F78/PwQGhqKyMhI9OjRAwDb6VRxnpTSpUsb9T4UCQQChIWFoXPnzhgwYABCQ0Ph6+uLy5cvY8qUKQgMDFSak0XRxIkTUbduXVy7dg3nzp1D6dKlMXjwYKX90b17d4SFhSnNCSSl7niX9+eff6Jly5YIDg7GvHnzULlyZdy/fx8//PADypUrp7FmqlGjRvD09MT58+fRs2dP7TvHTM6ePYuff/7ZrHlQzQohpFiNHz8eDx8+xI4dO2TLIiMjUaZMGc5P69atZa/36dMHFy5cgI2NDT755BP4+/tj6NChyMjIwLx588xe5n/++QdOTk7o2LGj0msdO3aEg4MDNm/eDAD45ZdfsHXrVly+fBlt2rRBpUqVMHnyZNSrVw+ffvop/v33X7Vpde3aFQKBQBZ8LV++HKtWrcK2bdtQt25dNG3aFGfOnMHevXuVOjLry97eHidOnMCIESPw448/olq1aujatSusrKxw6dIltGjRQmsa169fx+3bt1XW8Li5uaFjx46cUTOnTp1Co0aNOD9z5swBwE6W1q5dO6Pek1TLli1x6dIlWFlZoVu3bqhWrRpCQ0MxcuRIHDt2DHZ2dhq3r127Nrp06YKZM2di/fr16Nevn8pAY8CAAdi/fz9SUlLUpqXqeJdXvXp1XLt2DVWqVMHgwYNRtWpVfPHFF2jfvj0uXrwIDw8PtWlbWVlh9OjR2LJli8b3Y04XL15ERkYGBg4caNZ8BIy5e3CZWWZmJtzc3JCRkQFXV1dLF4eXKk0/BADoUtsHf41Q7ohGLCc/P182okBdRzlScmVmZqJr1644c+aMTs1kH7OgoCC0b99eqYM20SwxMRF16tTBjRs3ULFixWLPPyQkBA0aNJCNYlOk6Rynz/WbalYIIcQMYmNjkZycjPj4eKUp1wlXRkYGnj17hu+//97SRSlxfH19ERYWhtjY2GLPu7CwEPXq1cOkSZPMnhcFK4QQYgYRERGoU6cOvL29Ub16dUsXh9fc3Nzw+vVrpbl2iG769u2LNm3aFHu+tra2+Omnn5QmtDMHClYIIcQMfvjhBxQUFODKlSt0ESbESBSsEEIIIYTXKFghhAdKeD93QghRyVTnNgpWCLEg6eyQ5p6qmhBCLEH60FArK/1mx1ZEY+kIsSArKyu4u7vLnrXh6Oio9yyyhBDCRxKJBG/fvoWjo6PRQ/cpWCHEwnx9fQFA6eFghBBS0gmFQlSoUMHomzAKVgixMIFAgDJlysDb2xsikcjSxSGEEJOxtbXlPOjRUBSsEKJG2LkXOBvzFms/bQI7a+PaW3VhZWVldLsuIYR8iKiDLSFq/HzwAU49fotd199YuiiEEPJRo2CFEC1yC4ssXQRCCPmoUbBCCCGEEF6jYIUQQgghvEbBCiGE8IBILMHQvy7hl8hHli4KIbxDwcpHhCZ0J4S/jj9IwsXn77D61DNLF4UQ3qFghRBCeKBQLLF0EQjhLQpWPiI0iTshhJCSiIIVQgghhPAaBSuEEEII4TUKVgghhBDCaxSsEEIIIYTXKFghhBBCCK9RsEIIIYQQXjNrsLJw4UI0a9YMLi4u8Pb2Rt++ffH48WPOOvn5+Rg3bhxKly4NZ2dnDBgwAElJSeYsFiGEEEJKELMGK6dPn8a4ceNw6dIlHDt2DCKRCF26dEFOTo5snUmTJuHAgQPYsWMHTp8+jfj4ePTv39+cxSKEEEJICWJtzsQjIyM5/2/cuBHe3t64fv062rZti4yMDISFhWHr1q3o0KEDAGDDhg2oVasWLl26hBYtWiilWVBQgIKCAtn/mZmZ5nwLhBBCCLGwYu2zkpGRAQDw8PAAAFy/fh0ikQidOnWSrePv748KFSrg4sWLKtNYuHAh3NzcZD9+fn7mLzghhBBCLKbYghWJRILvvvsOrVq1Qt26dQEAiYmJsLW1hbu7O2ddHx8fJCYmqkwnNDQUGRkZsp+4uDhzF50QQgghFmTWZiB548aNw71793Du3Dmj0rGzs4OdnZ2JSkUIIYQQviuWmpXx48fj4MGDOHnyJMqXLy9b7uvri8LCQqSnp3PWT0pKgq+vb3EU7aPCWLoAhBBCiAHMGqwwDIPx48djz549OHHiBCpXrsx5vUmTJrCxsUF0dLRs2ePHjxEbG4vAwEBzFo0QQgghJYRZm4HGjRuHrVu3Yt++fXBxcZH1Q3Fzc4ODgwPc3NwwduxYTJ48GR4eHnB1dcWECRMQGBiociQQMY7A0gUghBBCDGDWYGX16tUAgHbt2nGWb9iwAaNGjQIALFu2DEKhEAMGDEBBQQGCg4OxatUqcxaLEEIIISWIWYMVhtHeS8Le3h4rV67EypUrzVkUQgghhJRQ9GwgQgghhPAaBSuEEEII4TUKVgghhBDCaxSsfEAy8kTIyhdZuhiEEEKISRXbDLbEvAqLJGgw5ygA4NmC7rAS0kBlQgghHwaqWflApGS/fxJ1nkhswZIQQgghpkXBioFEYglCd9/BoTsJli4KIYQQ8kGjYMVA4VfjsO1KHMZtvWHpohBCCCEfNApWDPQ2M9/SRSCEEEI+ChSsEEIIIYTXKFj5iGh/+AEhhBDCPxSsGIgu/IQQQkjxoGDlI0IzrxBCCCmJKFghhFhcRp4It+PSLV0MQnjj1bscxKXmWroYvEHBioEYagcixGQ6LjmNPivP4/STt5YuCiEWl1coRtDiU2jz60mIxBJLF4cXKFj5QMjHTgxFUqSEkc7AfPR+ooVLQojlpeUWyv4uKKJgBaBgxWAMdbElhBBiZmIxXWsAClY+GPKdZwUC6kpLCCEfgqgHVNsIULDywdClGYjic0IIKVkK6MG0AChYMVhsap6li0AIIYR8FChYMVBMUpali8ChSzMQNQ4RQggpiShYMZCQ+oUQYnLUVEk+Fmk5hej95zlsPP/C0kUpEShYMZCQ9hwhhBADrTz5FHdeZ2D2gQeWLkqJQJdcA1HNCiGE8NuN2DRce5lq6WKolEcdZ/VibekClFR8DlVoUjhCyMeuoEiM/qsuAADuzQmGsx1d7koyqlkxkFD4PlwpKcFBySglIYQYT37m1+z8IguWhJgCBSsGkm8GEkssHwYwav4mpCS5+oKfVfaEEMuiYMVAchUrEJeQmhU+N10RAgAxydmWLgIhhIeoEc9A8nOZSHjwnCkKREhJVCSWYNeN15YuBiGE56hmxUB8q1nhTrdvsWIQopetV2IxbdddSxeDEN6i0zmLghUD8a3PCvk4lJTO3Lq6+jLN0kXgjQ/so7U4VfuzJH5/SmCRzYKCFQMJOc1Alj+aqBnIfF6n8eM5UGeevEWDOUdx5G6CpYtCTKygSIzvIm5ZuhgftOiHSWgw5yiOP0iydFGIAShYMZCAx81AVG9oWhsvvLR0EQAAI9ZfQWZ+Eb7ecsPSRSEmdi4mxdJF+OAozts5dtM1ZOYX4bN/rlmmQAYqibVB5kDBiglISsjBVDJKScjHhWEY/HvplaWLQYwkkTDYcP4FbsWlmyX9w3cTEHnP+FrVnddf48yTtyYoUfGi0UAmQKOBiLk9TebXU76J6UQ/TMapxyXv4sF3xX0PefBuAub895yfl4t6mCxdBkBmvgjf/Fej+nBuVzjYWhmUVkxSFr7fcRuAactYHKhmxUDyXwRLNAMViSWcvjLcSeFUl4cCmpIrKbPA0kUgZvL0Lc0tYxZmPC0XFinfocYkme6GQnHQRm7B++cIqcpbHcV1S/J5hIIVA8k3/RR3B1uRWILWv5xEjxXnijVfQgj52G04/wI1fjqCU4+TzZK+SCxBm19Pyv439F74f3vuouaMI3iRkmOiklkWBSsmUNxDl5+9zUZiZj4eJmTKOl9RrQkhJRN9d81DXQ2zsaRNPZPMNHrLVMHFlsuxYBhg7elnsmWKnY5LEt4EKytXrkSlSpVgb2+PgIAAXLlyxdJF0khdM1BaTiF+jXyEZ/9V7Z54lIS/zjwzW49uaZxEk8IBGXkiLI56ZNLqWL7Yfi2u2PM8+TgZa06b79gFjB/p8DotF79EPkJSZr6JSlT8PtKvq9kV93nQXPlF3k/EhgsvTJKWvrFKkViC5cef4AoPntnFi2AlIiICkydPxqxZs3Djxg00aNAAwcHBSE42TzWbKchH7fLNQD/uuYtVp56hxx9nAQBjNl7DgsOPzPZh04R078098AArTz5D52VnLF0Uk8rIE2Hfrfhiz3f0hqtYdOQRzj99Z7Y8rr407nvxadgVrD71DF/+e91EJSIfCvkzozlG6AiKqZriyotUrD393CRpCeWmXi8Sa+/7sv3aayw/HoPBay+aJH9j8GI00NKlS/H5559j9OjRAIA1a9bg0KFDWL9+PaZPn26RMonEErx6l6v2dfmOSi/f5coO3GP/TTiUL5LgqdxD2a69SkNpZzuTlE2+XDHJWbCztkJy1vs7y+cpOXDLKVTaLjmrgFOmD83xh+8nezL1+7TkfnuXrdwprjjLc+VlKnzd7M2StqoOf/q8N2mV+a249BJ7bCcbuQ+Iahl5Itnf119xg2JT7N/UnEJOOgkZ78/BuqQvf+zLr6/pugOwHbLdHGx0LmdSZr4s/TS568LdNxlwsdeczvmn7+f/eZmSg0qeTjrna2oCxsIzzhQWFsLR0RE7d+5E3759ZctHjhyJ9PR07Nu3j7N+QUEBCgref8iZmZnw8/NDRkYGXF1dTVauxIx8tFgYbbL0CCGEkJKqjJs9LoZ2NGmamZmZcHNz0+n6bfGalZSUFIjFYvj4+HCW+/j44NGjR0rrL1y4EHPmzDF7uQQCaIxeC4rEyBex1Wjy68lH824ONrL/XeysOVVwxpKmqypvxXIrlulDZer3yaf9Jl8WoHjKI83T2c4aViY8dlXlIU+f98anz8hQDMMgM7+Is6ykvhe+kZ1/7a2RJbePjdm/6o45ddcEdXILiyASMyrXV/W9UJWnLuW0FgrgZGettFyXdPIKxSj8r7nIxd6y4YLFgxV9hYaGYvLkybL/pTUrpubjao/bs7qYPF1CCCGE6MfiwYqnpyesrKyQlMR9uFRSUhJ8fX2V1rezs4OdnWn6fhBCCCGE/yw+GsjW1hZNmjRBdPT7/iESiQTR0dEIDAy0YMkIIYQQwgcWr1kBgMmTJ2PkyJFo2rQpmjdvjuXLlyMnJ0c2OkgTaf/gzMxMcxeTEEIIISYivW7rMs6HF8FKSEgI3r59i5kzZyIxMRENGzZEZGSkUqdbVbKy2AnAzNFvhRBCCCHmlZWVBTc3N43rWHzosrEkEgni4+Ph4uJi8kl6pJ134+LiTDosmhiPPht+os+Fv+iz4a+P9bNhGAZZWVkoW7YshELNvVJ4UbNiDKFQiPLly5s1D1dX14/qACpJ6LPhJ/pc+Is+G/76GD8bbTUqUhbvYEsIIYQQogkFK4QQQgjhNQpWNLCzs8OsWbNoXhceos+Gn+hz4S/6bPiLPhvtSnwHW0IIIYR82KhmhRBCCCG8RsEKIYQQQniNghVCCCGE8BoFK4QQQgjhNQpWCCGEEMJrFKwQQgghhNcoWCGEEEIIr1GwQgghhBBeo2CFEEIIIbxGwQohhBBCeI2CFUIIIYTwGgUrhBBCCOE1ClYIIYQQwmsUrBBCCCGE16wtXQBjSSQSxMfHw8XFBQKBwNLFIYQQQogOGIZBVlYWypYtC6FQc91JiQ9W4uPj4efnZ+liEEIIIcQAcXFxKF++vMZ1ijVYWbRoEUJDQzFx4kQsX74cAJCfn48pU6YgPDwcBQUFCA4OxqpVq+Dj46NTmi4uLgDYN+vq6mquohNCCCHEhDIzM+Hn5ye7jmtSbMHK1atXsXbtWtSvX5+zfNKkSTh06BB27NgBNzc3jB8/Hv3798f58+d1Slfa9OPq6krBCiGEEFLC6NKFo1g62GZnZ2PYsGFYt24dSpUqJVuekZGBsLAwLF26FB06dECTJk2wYcMGXLhwAZcuXSqOohFCCDGn3FTg4irg9GIg6YGlS0NKqGIJVsaNG4cePXqgU6dOnOXXr1+HSCTiLPf390eFChVw8eJFlWkVFBQgMzOT80MIIYSndo4BokKBk/OA1YGWLg0poczeDBQeHo4bN27g6tWrSq8lJibC1tYW7u7unOU+Pj5ITExUmd7ChQsxZ84ccxSVEEKIqT0/aekSkA+AWWtW4uLiMHHiRGzZsgX29vYmSTM0NBQZGRmyn7i4OJOkSwghhBB+Mmuwcv36dSQnJ6Nx48awtraGtbU1Tp8+jT/++APW1tbw8fFBYWEh0tPTOdslJSXB19dXZZp2dnayzrTUqZYQQgj58Jm1Gahjx464e/cuZ9no0aPh7++PadOmwc/PDzY2NoiOjsaAAQMAAI8fP0ZsbCwCA6ltkxBCCCFmDlZcXFxQt25dzjInJyeULl1atnzs2LGYPHkyPDw84OrqigkTJiAwMBAtWrQwZ9EIIYQQUkJYfAbbZcuWQSgUYsCAAZxJ4QghhJhZYS4gEADW9uxvU6Vp62iatAj5j4BhGMbShTBGZmYm3NzckJGRQf1XCCFEV3d3ArvGsn9X7QB8usf4NE8uAE7/AgzfDVTryC6b7cZdZ3aG8fmQD4I+12966jIhhHyMpIEKADw7YZo0T//C/j4y1TTpEfIfClYIIYQA538vnnze3CiefEqKa+uBm5stXQreo2CFEEIIcGwm8Oa6+fNZ1978eZQUOSnAwUnAvnGAKN/SpeE1ClaKi0TMPiODvMcwQM478+cjLgLy0syfDyElXU6KYduJ8oF8nj36pCCL/wFAYfb7vxmx5cpRAlCwUlz+6QP8WhlIum/pkvBH5HRgcRXgvgk69mmypjXwSyUg44158yHkY7WkBrDIz9KleK8wB1hYHvituqVLQkyEgpXi8vIs+5vaJt+7vIb9fWymefN5+5D9/eSIefMh5GOVz7MRPsn/fecLeFbbQwxGwYqhbkcAx2ezTRnaPDpsWB4SCXD0J+DeLsO21wfDsHnd3Wn+vAghpnVnBxv0qzsfpT4H9k8A3j0r3nKp8+4ZtzwPDwBHprPN5R+6NzeA/d8C2W8tXZISxeKTwpVYe75gf1dpD1QJ0rxu+FDD8ngSCVxYwf5dd4BhaRiSV72B5s2LEGJauz9jf1dqC1TvpPz6v/2AtJdAzDFgyqNiLZpKm3oDma+BZ6eASXeBiOHs8jINgIYGni9LCmkH4+xkoNsiy5alBKGaFWPlmbHTbE6y+dJWFH+r+PLSRiIBUl9YuhSElDy5ajrIpr1kf2clFFtRNMp8zf7OiOUuT7pnWHq5qdwBDJkm6J+mmKapJT9Q/1p6HFBUaLq80l6xAw2U8ok1bT5mRMEKARJuA6d5FOHv+wb4oyFwfZOlS0IIKU4X/9S//4u4iB288Gtl9sL79gmwfYRx5SgqfJ+mWGRcWuowEtXLX18Hltc13RDvx0eA3+sDWwdzl7+6ACyvB6wPNk0+ZkbBCgHu7bZ0Cbhub2N/n1ls2XIQQopfSox+68t3os1PZ5u0jZUj15+kMMf49FRRF6zcCWd/G1rLpOjSavb3s2juculgj/iSMUkfBSuaZL8FdowGnp/Wb7uY48DOsfyY2+P0YuDEPM3rWNlw/097CWwNAVY0BR7sN1vR9JJ0H9g+kr1rUiTKB3Z/AdzaWvzlUqeoENjzNXVYJqzcVGDnGOBptPZ1dZWZAOwYxd4hf8iyktjz8Mtz3OWy79gO7nJTPERRlPv+b6GZunZmvgGSNDQFaZIey54P466wnXVv/Kt+XaGV8rLkR8CtLYblbSEUrGgSOQ24vxv4p7d+220ZANzbyY4WsqTCXODkPLaGIltD/xfFL+P2EezdybsYYPun5i2jrsK6AA/2Av/2VX7tTgT7s/fr4i6Vetc3ALe3cp+/Qj5ex2awo/o29zddmge+Zeco2tDNdGny0aHJ7Hl4Yw/u8pv/st8xxecQWdsbn2dRMU0mZ+jgi51j2fNhWGfgxiZg/3j16wpUXOY3djcsXwuiYEWT9FjVy9VFw0kPgAK5GQkz47UPFWQYIOEOd6ZFhmE7vBrbVio/I6JYoRNVXrpcLYXCo+HNPbwx6b7+VavSmR4z37CdxbKS3r+WnaR6G03SXmkO4IyVo2JYIsMAiXf1n1WzMIcmEyzpMl6bPk1pp9kPXfor1ctz1c1+LVCz/AOSqsc5WqCiZkXVvpNI/rvuqOiIywM0dFlfz06wwwAVPT/FzlLrXuH9sozXwIrGmtO7HQ7s/QqoEAiM+a+t9cIf5p8obYk/UJQHfH3RvPkoijkGbBkIlK5meBq/12d/G/qo+bw049MwxJ3t7JD38s2Bz47pvt2aNuzJafguoJqKYamEEKKOqmYgVU78DJxbCjQeAfReYd4yGYBqVvSlboI26ZTx8rUxmoamSV3fwP6OlQsaLhTDgVKUx/5+fhIQFOOdiLR9+d1TEyaqZ/lTn5swbz3c+G900+sr+m0nvYviW0doQvjIFOczXSb7LDF03B/nlrK/b/xjvqIYgYIVXUX9T/XyjDfAv/2B6xt1S6eoAAgfxj4WXJW1QaqbENRJvMfW9Mg/LfVJFLB5ANsBT5Eoj81fKupH4OR83fNTlPaSff/PT71f9uoiW8u0Ngg4/4fhaWfEGb6tyvTMUBVvqEtrLF0CIu/INHYGZ3N4EsX9fhSnB/uALYPMl35+BtsZX5ExNyPSNO/uBCJD2aZTY0kkwK7PgXPLtK+blQSsbSO3QIfA5XY4sHUI+/BEzvII9r0oLjfGmd80NIGpYkTgdWkN24mbB01D1Aykq4t/Au2mKy8/qiaIUefmZkBcADw6CDQdo/x6wi390vunN3vgPjsJzE5nl0nH0yv2UwHYIOnRQf3y0GT3l0DcJXZYnLRJZUPX968n3AJafWu6/FTR9Ubq3DKg02xzlkSOlkJFTgNafFU8RSGaZSW+f05Vu1DA1sm06SvOb1GcjJ1vRJuzS0wzVJiT5lLg1Tkd0tWjBuXFaeDuduAugNaTNK8rnU1XH3u+ZH9fWAG0/1Fu+X8znZ9bBnQ0UdP+iZ9Nk44uIqexv2v1Mv8s6lpQzYo+1I2L14e4wPg05MkibBXRs6pnT+gy4ZL8Y8sB9mT+6gLw4gy302/2WzZQkUq8x3ZcLS7SjsCWqrIV5SnvE1XePi6e8hgj8Z76DuWmlHAHeHqcP8+oAbhBvbHfcVE+e0wUFbKfu7neZ847IEXFMP7CHODFWc3P2EmPU13rCrDbvTjLHSigiV53+DoyJk1171uf0T3qOvQqKshW3tfqpqvITtZ+PEiPHU3nE4M6VZugWcxcc83ogWpWiHZLar7/u+UEoMs85eUAsKaVDomZsH/MisbAzFTNcwyY086xwOND3H2iysrmQOgbGP3ezTX6IzP+/Wdnzg7Haa+41esz0wDhB3a/tPcrtv9ao0/ZobXmsqyO6uWHJrO/2/8EBP2gep3lddWne2kV+4R4fTuB88WVtYBnTRUv6PHdk+jY5PFPb7b5vYNc86Gq2myAPRa0HQ+7P2MHcGjyewP1ryU/BLxrad6+BPvAzhTE7C6vff83o+HurbhIipSfL1JcHh9if8vvE3VM8QypRBPNaKlI1R26OSjOyMmH48fUpB3tzRmoAO87yKsj7cytr5dn2d/6dgLni1vbVC9XNdeIOroGK9J+ghf+fL9M32kJ5GkLVLR5fdW47TXhQYdjClYs6cBEIO5y8eR1bxc7sZopHvBlLgzDdoIzxvPTwGw3YH5Z4x6G+O4Z8Hcn9rka2ogLgbBg9kR5eS2b/5lfuessr8e2w8t7eABYVBFYXJ0d0v0hOv0r29nbXM9XMdT5P4CfvYDVrQ1/iGf8LfZOd7YbMMeD/c0XGXFAtIn6NtzfC/zdmR1Ft3kgcOoX06QrJd/h3xRUjQZSFawk3gP+as+eK6Lnvl8u0bcp0PIXcrWurHt/UwWwgzGKVHRF4NPs32pQM5Al6TqCyBSk87YUV3BkiNTnbCc4Y0hnGxblAPvGA6MPaV5fnd1fAG+uAduG6NY0EneJ239HF/Id+bYMLN45X4qLdKTZo4OAla1lyyLv2Az2d9Jdw2dp/rfv+z4KfKwlOvubadLZMZL9/Ucj9vfTY0C7aaZJG1Du8P/2oenSllLVCrQ15P3Tn88ued8BVrFmhQe1CgY7/D33/2cnVD8ChE+zf6tBNSt8ouq5N4okYvZuPycFyM9Ufl2kpXrYVOIMqCbOS9NcU6Fr9auuku/r/uTmuKvcWWJVNdswDFsDkhlvmvKZ0vPTwKPDQGwxB6OFOcDDg+yjHaTEIuDRIe6cRKru5sxJIgYeRxo/S3HGG/bk/vAg9z3kpfPj2V9ERyqildwU1asaE3jKN5+lm3jqBVPR1oTIU1Szwicrm2lf58o6djiZsy/gWV359YNahuUZi2HYC0BYZ/233dgTKCjG2oO8NPb5KdpkvwXC/psZVlPtxqOD72tD+FQLEn+L+/yqyQ8B17LFk/eer4CH+9lhjQP/mzvo3DLj5u4xhRub2O+CgwcwzYjmwGW13/8d8DXQbRH7t6pZrAl/6dVnxYhgJfU5O3rSxVdzR+YSx/K1S1SzUtJIq0yzE993hpN3W00HM1MydLI2Uz3y3NSkVcHaWGpiL20U5+YpjiHIUg//eyq3fC2Kulmei5O0Bs8UHZulbsu168ffMF26xDBqB/io6rOiz0g8Iy/MfJp88gNCwUpJkaOmyrK4GTKV9dq2QIoOM1oWRydTPs3vYQqpz9mO2ny350sgVs8+PYSYg7YmScU+Kqq+X+aa7dgYGToOnuDpdPraULCiD0t2tDpjos5ylpBwG/izifb19J0N2BAl4cKuj0NTLF0C3V0w4tELhOhK2w3Vg336pXdfxTO5iuP5bfo6vUi39RJum7ccZkLBij7SXrDT5VuCITPfmqNXPQC84VEVeMxR/dbXZyZLRcbMoWAuxdWhWhevr2tfRx5fm9UIS9UM2PJyU9XPa8Jnpu7Ib857WEOfKZTxhn0u0QeEghVNFGcM/audJUrBLwyjPBzOkgx5joehblkoUC0p/u6g3/pbBho/WoeYj/wzvlTZGqJ55Iz8CDGLK8Y+K6a09xvDtlvV4v1ziT4QFKxoos/Tjwkh+qPvGH9pe3KytlluRTwKVlQ1DZWE+VOkHdj1VaBiWosSjoKVkuLRYeC3mqpHAEn93tD85ZAU80yk67Xc3enr9VV2sjhjXVpjfBrGurkFiL2ovHx9MDub6t+dzJOvuIid+XPHaOPTWt0SuLRa/+2OTANWNOU+cO/oDHbisrx048ulDsPwa6baj82xWex5Li8N6mtLFJYv8efOoWSojDfsZ6/4+RfHdAyZCcCyetrXYxjTDKs/NrN4rid6oGBFHb5F3dmJ7I8maUbMJ8FXqi7Gxkp+YHwakSacwdNQ+7RUEZvrWSFvrrFDd1V1PDRE5HT9t7m8BngXwx2qf+EPdnTUtTDTlEsVPtUWfIzOL2fPc5f/0n2brATVx5i+IxtPaHhYqbmdWqjbM9By3xn/jCEAOP8793rCg+shBSvE8tJjgatmvMDoQ90MsPk8mAROlMuepNN0fIS9Nqn/nfT1mV32xVng2nrT5G8Kqqq7GYVnu/DgRGuU3FS2Js8S0xc8PKh9HUu48If6JkRdbkYYRv/O9vrMbPvyvH5pmzLvDxQFK4QfpI+2t7T1XVQvN/fMwLqQiIAjPwCrAk2T3oombHqn9Xgw3aaewB0ejTKQfwCdOo8MfD4UX+wYxdbkbRtS/HlHmPghg6ZSmM3WrqlybqnmbRlG/+HL+trY3bzpf4QoWCFE1VNWFe/On+g5RNqcRDmGbSc/jTjDvL9be6PnkOPioGnKc32nQzdFs5+pSd+DLu/lxWn29+ur7OfGtydY84qOtWiGzKZtzDT8xpCIDXgStKlZvnaSghV1SnrV8Yfk1QXzpZ2bqjzkNiVGedi6Ps8W4ZND/w0zf3QYmO/7fir8Tb30T8ucNRTyU/S/fQIsLA+cXKC8nlgE/NnUfOUoDru/ABZXBZ6dBBaUY5+lpKttQ4CfPc1XNl290NDRn/cMOLe/ugjcU/G04uIw14P7qIePVAk9A5OPyq7PzJf2zX+Vl0V8qrzMkMcM8MHVdezv8KGAuBDYOYb9X9OoMnXCPzFduRRJywUAx2ex/XNUNU8l3GY70ZZkdyLY0Sz/9mWfgHt8tu7bPok0V6n0s13Fd4QXzPQ9/cDmLCmJzBqsLFy4EM2aNYOLiwu8vb3Rt29fPH78mLNOfn4+xo0bh9KlS8PZ2RkDBgxAUlKSOYtFyHu6zGaZ/BDITzd7UXBxZfHU6CXeNV/ary4Abx+ZL31DvDjD7ttzy4ybfdmcH83TaGDfOLaMYhPPsGopD/ZaugSqGXJ8WjuYvhzmcGe7pUtgNmYNVk6fPo1x48bh0qVLOHbsGEQiEbp06YKcnPdt7pMmTcKBAwewY8cOnD59GvHx8ejfv785i0XIe7o81GtVC/OXAwCifgQeHzZ/Pmtamy/tDd3Ml7ahXp5l9+3x2cC69prXtVTz7+b+7KM8js8Grm+wTBlM7dAUfvavMeS5PjZ6BCuW7EIQFWq5vM3M2pyJR0Zyqyw3btwIb29vXL9+HW3btkVGRgbCwsKwdetWdOjA9hvYsGEDatWqhUuXLqFFi2K6SKhEfVY+Cop9UwDLzqVR0ps4iPHMWfNV3PQZFl+c9H2mVknts/YBKdZPICODnavCw8MDAHD9+nWIRCJ06vR+pk1/f39UqFABFy+qngysoKAAmZmZnB/ygcvU8dHnppJuonlMiOXo+4BLKU19k4qr2xIfayMMJS60dAlUu/in+dIuqf3beK7YghWJRILvvvsOrVq1Qt26dQEAiYmJsLW1hbu7O2ddHx8fJCaqnq114cKFcHNzk/34+fmZu+iEEFJ8ivuRFuZEoyqJiRRbsDJu3Djcu3cP4eHhRqUTGhqKjIwM2U9cXJyJSkgID1zQ8Y4v2YydWLOSgMgf2Y7FAPD2MXD0J/PlJy/1ObffTvyt93/nvAP+7qg9jYsrNb+e8dqgooEBcNu485dOSkLNisXn/Shm+tSWHJtpvnJYCg+CTrP2WZEaP348Dh48iDNnzqB8+fKy5b6+vigsLER6ejqndiUpKQm+vr4q07Kzs4OdnZ25i8yLD4d8hLQ9/0nKnJ1+j89m53V4eRb46iybl+IkeeayXqGD7l9BwOz/HnVw4Fvd0shL0/z6ViNmgi2OmZZ1GaFmaTo/vO9DOY/qEay8MvFU+wSAmWtWGIbB+PHjsWfPHpw4cQKVK1fmvN6kSRPY2NggOjpatuzx48eIjY1FYKCJphQnpKTRdrEFoNdFQN/AWzqXR+Kd/7YvxrtoTcHa0+OmySPpA+rAynd000dMxKw1K+PGjcPWrVuxb98+uLi4yPqhuLm5wcHBAW5ubhg7diwmT54MDw8PuLq6YsKECQgMDLTwSCBCLOiXSsDE20CpSqZJ74gRT4h+dtI0ZTDW5b/0f/CcsTIUOnbrXJtgpA/qAl/c7+VD2ndEnllrVlavXo2MjAy0a9cOZcqUkf1ERLx/ENqyZcvQs2dPDBgwAG3btoWvry927zbRo+cJKalM+aC1K2sN31bbQ+GKy5Efij/P4pjzhpQMNMLH4sxas8LocIdgb2+PlStXYuVKLZ3iih1F6OQjdHGVpUtAiBHMFVRQsGJpxdLBlhBSQkSFAla2li4FP1jsbvoDulH6oJq0PmaW/xxpWj5C+CgrCSjItkzeJWE0irnIX1zTLTQtwgd1gS9B78WS3zmiFQUrhPDRpZXAr1Usk3dxjv7hq2cngPPLLV2Kku/UIkuXQHdLagCLKqh+jfqsWBwFK4TwlZinz1X5kEkvStfWW7AQJag2QpuS9lBGRqzmBQpWLI2CFXU+qKpYQkiJ8SQSmO0GFOZoX5eQjwQFK4QQwkcXVli6BISweHDzTsEKIXwm/2ycj1VxPytHIgESbhdvnqpkJ1m6BESK+qxYHAUrhPDZX0GWzZ8Hd1T42bP48mIYtmNtemzx5UlKAApWLI2CFbV4cJImhBQ/GgVUgtF5+0NFwQohRL3irP6e7WbYdv/2A16a8km3dBdNCN/QDLaEkJLt2Qn2hxBzBZrUZ8XiqGaFEELk5adbugTviT/i2YR5hYIVS6NgRR0+dCwkhHzczv5m6RIQwgsUrBBCiAzPblIsOpMuIfzx0fRZEYvFEIn0mK9BVAA4+5mvQISUBLaeH9f3oKCQP+/XyhWwKQU401OwdeboBcDG9Onae3GPC4aBTf47WInzTJ8XUemDD1YYhkFiYiLS09P13RBotcQsZSKkxLC2ByoNsXQpis+bZP587+2cAfeWli5FySK0AiTqnu9jBGt7oNJQ7jJxIdxfHYFvzFYI+FYj9wH64IMVaaDi7e0NR0dHCHTt1S2RACn55i0cIXxn4wiIci1diuLjWRFI4ckDJO3cgIIMS5eiZBFYA4wZOiUrfA8YBsgVAcm2AwEAZWK2mD5PPuFBH84POlgRi8WyQKV06dL6bSyRANbUA5x85GysAOYj+h7Y2/Pney/O5E9ZSgqhEJCYYZ+p+B442ACAO5IrdoP3893UJGRmH3QHW2kfFUdHRwuXhBBCyIfG0QaAlS1E9nreDBO9fdDBipTOTT+EEEJKsOJtrpBdWugaY3YfRbBCCCGEkJKLghW1LN+hiBBCiD6ohuNDRcEKIYSQEi1s2150GfqNSdNs0XMEdh2KNmmaJZflb94pWOEhQbnGGn9mL1mDl3Hxal+/dP0OAGBjxH4IyjVGraD+SnnsOHAMgnKNUSmgh2yZdH1BucYQlm+C8k26YvSkWUhOSdVatvB9UQCAUxeucZZ71euA7p9OwN2HMSrfa/An38DKrymu3roPABrfl/RnY8R+bIzYD/dabdXuv72RJ1Wm51GnHYIGfIazl2+o3PbLqfNg5dcUOw4c0/YxKaXtUqM16rQfiHE/LkTM81il9fPy8jHrt9Wo0bov7CoHwLNuBwz6YiruP36mNS8pxf0lb9R3s2RlsanYHJVb9MTUecuRn2/8UFz5Y0NQrjGcq7dCk66fYPdh7sm8UkAPLF+nPIxz9pI1aNj5/Xwto76bhb5jJqvNr1JAD1leVn5NUbZxF4ydMgdp6Zmc9VLTMvDdzMWo2Lw7bCs1R9nGXTBm8mzEvknQ+p7WbdmNBp1C4Fy9FdxrtUWjLkOxcNEvnDKrOv7823K/T09fxGL0pFko36Qr7CoHoHKLnhj6TSiu3X7AWe/gsTMIGvAZXGq0hmPVlmjWfTg2RuzXWk5Fuh77+uRryu+J/H6z8msKv6bd8MXUn5Gaxh2Gre5YWbhiPaz8mmLx6k0a94NUfn4BZixehVmTv5AtE4vF+CZ0Ico06oLun07gnMMAIDMrG/9b9Cf82/aHfZUW8G3YGZ1CvsLuw9Fg/hum+9PEzzB9wR+QSCSgGhvLo2CFhxJuHpX9LJ/zPVxdnDnLvv9qhGzd4+GrOa8l3DyKJvVryV53cnRAckoaLl67zckjLHwvKpTzVcpbmtfra5FYt3gGjpy8gE+//Ymzzoals5Xy7BvcjrPO4zN7kHDzKKK2rkRBQSF6jJiIwkLuDMKxbxJw4dodjB8dgvXh+wAAfmV9OOlO+fJT1KlZlbMspHcXvfepdD+d2fU3yvp4oefI75D09h1nndy8PITvP4qp34zE+oh9eqd9+1g4Fkwfj4cxL9Cg8xBEn70sW6egoBCdhnyN9eH7MW/qN3hydg8O//sHisRiBPQcIQswNVG1vxR1bd8SCTeP4vmF/Vg2ewrWbt6NWUvW6PxeNJE/Dm9GbUNwUCAGfzUdj5++NEn6iuZ+/zUSbh5F7JXD2LJiPs5cuoFvZ/wqez01LQMteo3E8XNXsGbR//D0/D6Er1qIpy/j0Kz7p3j+6rXatNeH78V3s37Dt2OH4tbRbTi/dwOmfjMS2dnZnPUUj72Em0dxbm+Y7PVrtx+gSbfhePI8Fmt/+R8enNyJPX8vgX+1Spgyd6lsvRXrw9FnzGS0atoAlw/+gzvHwzGkdzC+Cl2A7+cuM+Fe49I3X1N9T6T7LfbKYWxYOhuRJy/i69AFOpV5ffg+Nm01x7iinYeOw9XZGa2aNYS0BiB8XxRi3yQgasufaFzXHz/9ulK2fnpGFlr2GY1/dh5C6PjRuBG5FWd2/Y2Q3l0wdf7vyMhkj4FuHVohKycXR06c16kcxLw+6HlWVGIY3Sa5kogBkYnHzVvb69Rr3NfbU/a3m4szBALuMgBISU0HAJQu5a70GidLayt80q8r1kfsR2DTBgCA1/FJOHXxOiZ9Pgzb9kZy1pfPq6yvF74dMwQzFq9GXl4+HBzsAQDubi4a8wQAb08P2XrfffYJeo+ehEdPX6B+7RqydTZE7EfPTm3w9YiBaNFrJJbOmgwHB3tO2s5ODrC2stKanzbS/eTr7YkfJ4xB+L4oXL55D727BMnW2XHgOGpXr4zp40ahbONgxL1JhJ+KgE5d2gBQpWJ59OrcFh0Hf4Wx38/Fswv7YWVlheV/b8XF63dwM2obGtRh90HF8mWxa91iBPQcgbHfz8W9Ezs0jlxTt7/k2dnaysriV84XndocwrEzl/HL//TeZUrkjw1fb2DetHH4be2/uPMwBjWrVTI+AwUuzo6y/MqV8cbIQb2wbd/74/V/v6xEfNJbPD2/T7ZehXJlELVlJaq37otx/1uEI5v/VJn2/qNnMLhXZ4wd2le2rE7NqoBvPSDxrmyZpmOPYRiMmjQL1Sv74eyeMAiF7+/9GtatiYljPwEAxL1JxJS5S/HdZ59gQegE2TpTvvoUtrY2+HbGrxjUsxMCGtfTcw9pZki+pvqeyO+3cmW8MahnJ2zYrr0W6fTF68jLL8Dc77/CPzsP4sLV22jZrIHGbcL3RaFX5zacZWkZmajkVxZ1/avhYcwL7Dp8Qvbaj4v+xMu4eDw5uxdlfb1ky2tUrYihfbvC3o59vIGVlRW6d2iF8H1R6NG9u9ayE/P6+IIVUS6woKxl8h59BLBxKPZsxwzpg3YDv8Dvc7+Ho4MDNm4/gK7tWsLH00Prtg72dpBIJCgSGzaFdUZmFsL3HwUA2Nq+f2YHwzDYELEfK+dPh3+1yqhWyQ87Dx3HpwN7GpSPrvLy8vHPzoNseWy4h39Y+F4MH9Adbq4u6Na+FTZuP4AZkz7XOw+hUIiJnw1Fv7FTcP3OQzRvVBdb9xxB57YBskBFft1Jnw/DsPH/w+37T9Cwbk2VaRqyv+49eooL1+6gog4Bl77EYrFsPzau52/y9BW9SUjGgeNnENCoLgBAIpEgfH8UhvXrphRMODjY45uRg/DTr6uQmpYBj1JuSun5epXG6UvX8ep1PCqWN+x8cOv+Y9x//AxbVy7gBCpS7m4uANg7f5GoCN9/9anSOl8OH4AfF/2JbXsjTR6sGJOvKb8nL+PiEXX6ImxttD+zJ2zbXgztGwwbGxsM7dMVYeF7tQYr567ewqcDpM3ZbLA/vH8PdAz5EnaVW8DH0wOH//0DAPe4kQ9UpJyduHNyNW9YF4tWbtBabmJ+H1+w8oFp2Wc0hELu3Xh2DLfaslFdf1SpUA47D0bj04E9sHHHfiydNUVjNTkAxDyPxZp/d6Fpg9pwcXaSLR867kdYKZycH5zaiQrlysj+L9+0KwAgJ5etnerdJQj+1SrLXj9+9jJy8/IR3C4QADC8f3eEhe8zW7Ai3U+5eflgGAZN6tdCx9bNZa/HPI/FpRt3sfvv39jyDOiOyXOW4qfvPjNonh7//2oaXsbFo3mjunjyIhbtWzZVuW6t6ux+efL8ldpgRdf9dfD4WThXb4UisRgFBYUQCoX4c940vcuvSkZmNpyrtwIA5OUXwMbGGn/98hOqVjLPg/+mLfgDP/26CmKJBPn5BQhoVBdLZ00BALx9l4b0jCzZvlNUq3plMAyDpy/j0FxFsDJr8hfo/9n3qBTQEzWqVERgk/ro3qEVBn5Wh9M2fvfRU9l7lhrevzvW/PI/Wb8kfy21Sk+ex8LN1RllfJQvjra2NqhSoRyevFDu46SJ/GdhynxN9T2R7jfpZwcAS2ep76MEsP1Idh6KxsX9G9m0+3dHm/5j8fvcH5SCCKn0jCxkZGYrBR7ubi64HrkVickp8CpdClZWVgDYGum09Eytn5lUWV8vxMUnQSKRUJ8JC/v4ghUbR+DHeO3rScRA0j3T5m1tr30dPUWsXqj2hC1vzJA+2BCxHxXK+SInNx/dO7TCnxsilNaTngQlEgb5BQVo3bwh/l48k7POsllT0KlNc86ysgonxLN7wuBob49LN+5iwYr1WLPoR87r68P3IaR3F1hbs4fg0L5d8cO83/HsZZxZLn4RqxfCv1pl3Hv8FFPn/Y6Ny+bARu5Ob33EPgQHBcLToxQAoHuH1hg7ZS5OnLuCjm0C9M5P2klP/gRuTH96XfdX+5ZNsXphKHJy87Fs3RZYW1thQI+OatPdsvswvpw2X/b/kc0r0Cagscp1XZydcCOS7RCZm5eP42ev4KvQBShdyg295JoJTOWHr0Zg1OBeYBggLj4RPy76Ez1GfIszu/+WrcMY+MySMj5euHhgE+49eoozl27gwvXbGDlpFv7edRyRGxbJakpqVq2I/Ru4fTtcXZyNytsU5D8LedVb9zUqXVN9T6T7Lb+gEJt3H8at+48xYYzmB2Ju2xuJqpXKy2ofG9atiYrlyyBi/1FOc528vHz2+W32dnYqX1esddP3M5PWLBcUFMLBSq9NiYl9fMGKQADYOmlfTyK2SJONvvzK+qJa5Qpa1xvWrxumzv8ds5euxacDussueoqkJ0GhUIgy3p5KfSIAwNe7tNY8K/uVg7ubC2pWq4Tkd6kI+Xo6zuxmOyampmVgT+RJiERFWP3PTtk2YrEY68P3Yf708Vrfj6uLE3Jy89k7HrlanvSMLABsXx95fmV9Ub1KBVSvUgFFRWL0GzsF907sgJ2dLcRiMTbtOIDE5HewrtCMW56I/QYFKw9jXrD7oUI5AECNyhVky9StW6NKRZWv67O/nBwdZJ/N+qWz0KDzEIRt26v2ZN+7S5CsaQUAyvl6q31PQqGA87nXr10DR89cxC+rNsmCFVcXJ2RkZSttm56RBTdXZ6Xlmnh6uMvyq16lApbP+R6BvUfh5Plr6NC6GdzdXPDwqfp9KhAIUE1L4FvXvxrq+lfDN6MG46tPb6JNv7E4ffE62rdijwNbGxu1x3qNquzn9ejpSzSqq74prEaVCsjIzEZ84lulGoDCQhGevXqtttZNHcXPwlT5mup7Ir/fFv34LXp8+i3mLP0LP09VP7w4LHwf7j9+xklbIpFgffg+tcdv6VLuEAgESMvIVPm6Iq/SpeDu5oJHOnYKT03LgJOjA3seVBggQIoX1Wx9JDxKuaF357Y4ffE6xgzpo3Y96UmwSsXyKgMVQ4wbNRj3Hj/DniNsJ7cte46gfBlv3D4WjltHt8l+lsycjI07DkCsQ/+YmlUroaioCLfuP+Ysv3H3IQD1F34AGNizE6ytrbBq03YAwOHoc8jKzsXNqG2c8mxbtRC7j5yQBUC6kkgk+GN9OCpXKIdG/zXrDOkTjONnL+P2/SdK6y5btwW1a1RR6s8iZej+EgqF+HHCGPz06yrk5al+griLsxOqVa4g+9H3M7cSWsnubgGgZpVKuH7nodJ6N+490viZ6JTXf1X5efn5EAqFGNyzM7buiURicgpnvby8fKzatAPB7QJV9ldRp3b1KgDeN11q07BOTdSuUQVL1v773/BWLulxM6BHR9jYWGPJ2n+V1lnz707k5OZhaN+uOpdTV8bma8rvyU8Tx+K3tf8iPvGtytfvPozBtdsPcGrnX5y0T+38Cxev38EjNUGpra0NateoggdPnv+3RHPNiVAoxJDewdiy54jKsmTn5KKo6P1Tm+89fsZ+hz/2kcs8eOoyBSsl3Lu0dCQmp3B+1M2rsXHZHKTcPcHpO2KI9IwspTw1neAdHRzw+Sf9MGvJGjAMg7BtezGwRyfZXa30Z+zQPkhJTUfkyQtay1CnZlV0CWqBMZPnIPrsZbyIfYPIk+fxzY+LENK7C8qVUV9DIBAI8O2YoVi0ciNy8/IQFr4PPTq2RoM6NTjlGdyrM9xdXbBlz2GNZZF+Bs9fvcb+o6fRKeQrXLl5H2G/zZRdYCd9PgzNG9ZBr1HfYceBY4h9k4Crt+5jwOc/4GHMC4T9NlNt3xhj9tegnp1gJRRi5X8XHGMwDGSf94vYN/hr8y5Enb6IPnLD1id9PgyHos9h/u9/42HMc9x79BT/W/QnLl6/i4ljh3LSy8jMxq17jzk/cW8SZa9nZeciMTkFCUlvceXmPfwwbzm8SpdCy/9GtS2YPh6+3qXReeg3OHLiPOLeJOLMpesIHjYOoqIirJw/Xe17+Xr6Avy8bB3OX72FV6/jcen6HYyYOANeXl4IbFJftl6RWKx0rEuH8goEAmxYOhtPnseiTb+xOBx9Ds9fvcadB08w//e/0WfMJADsCKVf/zcRy//eiv8t+hOPnr7As5dxWLp2M6bO/x1TvvzU5J1rTZGvKb8ngU0boH6t6liwIkzl62Hb9qJ5wzpo26IJJ+22LZqgWcM6CNu2V23awUGBOHfllq67BfOnjYNfWR8E9ByBf3YcxIMnzxHzPBbrw/eiUZehyM55fy47e+UmurQN1DltYj4fXzPQB6bTkK+Vlm1btRBD+gQrLXdwsDdJbcnoybOVli0MnYDp40er3Wb8qBAs/WsLfl21CbcfPMG6xTOU1nFzdUHH1s0RFr4XPTq1UZEKV8TqXzBryRp8OX0+4hNTUL6MN/p1a48Z32kfwTNycE/879eVWLE+Aoeiz2Hrn/OV1hEKhejXtT3Ctu3DuFEhatOSfgaODvaoWL4M2rdsir9+/YlTTW9vb4cTO9ZiwR/r8eOiP/HqTQJcnJzQvmVTXDqwCXX9q6lM+/qdB0btL2tra4wfHYJfV23C1yMGwcnR8KbNzKxslGnEznFjZ2eLiuXKYO73X2HauFGydVo2a4Ajm1dg7rJ1WPLXZggFQtTzr4boiNVK7/HUxWtoFMwNYMYO7Yu/f2P7SM38bTVm/rYaAFt936xBHRzdugqlPdwBAKU93HHpwCbMXbYOX06bj8S3KfBwd0O39i2xecU8TodvRZ3aBGB9+D6s/ncH3qVlwNPDHYGN6yP6aBRKyw2Su//4mew9S9nZ2SL/+SUAQPNGdXHt8GbM/yMMn0/9GSmp6Sjj7YmWTRtg+ZzvZdt89/kwVKlYHr+t+Qe/h22DWCJBnRpVsHphKEaHcGs6KwX0wKjBvTB7yldqy68rffJVxZTfk0mfD8OoSbMw7ZtRnKHOhYUibN59BNPGjVS53YDuHbBk7WYsmD6e039GauzQvmjabTgyMrPg5q59hKNHKTdcOrAJi1ZuxLzf/8arNwko5eaKev7VsHjGd7LmyjcJybhw7TY2/zFPa5rE/ASMJXuJmUBmZibc3NyQkZEBV1dXzmv5+fl48eIFKleuDHt7PS/SEjGQqH2iLkI+aLbOQKFyH5QPlk89IOmu9vXMJDcvD6XrdsCRf1egnZ79WD5mg76Yisb1/BE68UtAYpq+JdPm/460jEz89esMwM4FKFBu5sovYvDizVtUPj8F9tlxJsmXl7ouAloo3xgbS9P1WxE1AxFCCE+cPH8NHVo2o0BFT4tnfKd2eLOhvEt74OcfTPu8IWI4agYihBCe6NGpjU5NoISrkl/Z/4ZGm66hYIqKyfSI5VDNCiGEEEJ4jYIVQgghhPDaRxGsqJoDgRBCCDGGhAEAhh2QQcyKN31WVq5cicWLFyMxMRENGjTAihUr0Lx5c+0bamBrawuhUIj4+Hh4eXnB1tZW9+e8SMRAUYkeKEWI8QQf2fcgP//jer8fGgFjngnMBBLOccEwQKEEeJuRD2FeKmzzkk2fJ+HgRbASERGByZMnY82aNQgICMDy5csRHByMx48fw9tb/eRe2giFQlSuXBkJCQmIj9fheUDyGAmQoXq2RUI+Gtb2QJHq2W8/SFl2QCZ970ssoZV5ajlssgGRwsSXkiI4vr2JCo82QMgUqd6OmAwv5lkJCAhAs2bN8OeffwJgm238/PwwYcIETJ/OnYWyoKAABQXvZ2jNzMyEn5+fxnHaDMOgqKhIp2ncZdJfA5v76v1eCCElWPnmwOsrli4F4TuGgZUoC9aFmRCYcAQSbzn7AlXbA/3WmDRZfeZZsXjNSmFhIa5fv47Q0FDZMqFQiE6dOuHixYtK6y9cuBBz5szRKw+BQAAbGxuVsx+qZWcDfMiT/BBClD2i7zwhSrITgRdnLFoEiwcrKSkpEIvF8PHx4Sz38fHBo0ePlNYPDQ3F5MmTZf9La1ZMzskTaPsDcGk1ULktEHcFyP3vgWkuZYG8NKAoDyjbGLBxZKsfX5wGanQDPKoAl1YC1bsAKTEAGECUD7j4ApIiIOke4F4BqDsQSHsJ5L5jZwl19ASS7gOZr9l8yjcDSlVmZ06s0QWIuwq4+wF3trNVkv49gPt7ANeygLM38O4pULUjm17MUbZcDYayZZGysgW8awMJtwB7d7Zs+Rnq94NnDSDlv4fvOXoCdfoCr68CCbfZ9L1rAzlvgRbfABlx7HvzrQ9c+IPdptnngLiQ3Q8CAZAZD3hWBxLvsfuw7gCgXGO27KWrAbfD2e3SX7Gzp7r7seu8PAfciQCENkDlNuz2OclAxdbAuxggOwmoHMTu+0eH2Nf8WgBxl9j9WJgLJN8HrB2A1pOAO+FAViJQpT2bl6SI/Xn3FKjWiW2UfhYNdP4ZeLiffc9S7f8H3NsNWNmwn3ud/sCjg8C7Z0ClVkDSA8C3Lru/rq5jt6nQkj1eGIbd91LlmwFOXmxzy5NIQJTLLre2B6q0AxxKsbNnXvnrfTr2roDQmt1/sZfY8uamsGWXSIDCLMDOlf1sHEuzZXy4/32eVdoBz0+x+6JURaB8UyA7GXh1gT0Oyzdn91+FQKBSa/Z93d0J+DUDnkSxn5/ACqjRFXDxAR4dBvLTgTc32LRenWfzcfAA8lLZv71rs+lZ2wE5KYCNPZtneiyQ/AAo24j9jogLgdRn78vqUQXIeMMepw4e7ElTyqEU0HEWcGMTYGXHfr/e3AAaDgUyXgNPj7NlzE9n1097yX5WSffY40WUzx67ldsCbx8B5ZoAPnWBzDfA02igVCV2O4kIuLeL/e6IC7nfD0dPdjvfesDFlexnDLDfrfx0dkZcr5rsMSrKZ5uXGw1j91mNLkDMMSDuMuAXwJa5Zjf2/8S7QO0+wJub7PezIIPd517+7HFsZcd+tlnx7OfYaiJwextQI5j9vqY8BSoGAm5+bB4+ddhjHgCCprHnmdxUIPa/50o1Hcsel+4V2HNKpTbs+3f0AHLeAbc2s8dNbipQqzf7Gd3eBiUdfgLOLGH3g18A0PAT9jg9PptN09mH/Z75BQBRoUCdfuw+zEtlz3NCa3b/J9xm96lHFXa/Jz9ij1WAPZeUrsaeT6Sf250IwL0ie87OTwceH2GPQ/+egL0b+33KSgBenmffk3et9+8t4zVQqxe7nx3cAbEIuLWF/W5a2bB5ufkBT4+x52Cf2uz5tWJroHQVtmzS2rimY9njDAyQ+pxNXygEPGuy67T6jj3vxN94f17VpnoX9tiPu8Sm7VKW/SxubwVq9gAeH2LXC17AfqeS7rF5pMSwx1jCHfa8YusMVO/MriMuZM8Bolz2/FOlHXB3B5tO3QEABOwx4lmNPZYrBAI2hj+qwxQs3gwUHx+PcuXK4cKFCwgMfP/AqKlTp+L06dO4fPmyxu31qUYihBBCCD+UqOn2PT09YWVlhaSkJM7ypKQk+Pr6qtmKEEIIIR8LizcD2draokmTJoiOjkbfvn0BsB1so6OjMX78eK3bSyuGMjMzzVlMQgghhJiQ9LqtSwOPxYMVAJg8eTJGjhyJpk2bonnz5li+fDlycnIwevRordtmZbFPwjRLvxVCCCGEmFVWVhbc3Nw0rsOLYCUkJARv377FzJkzkZiYiIYNGyIyMlKp060qZcuWRVxcHFxcXHSf8E1H0s67cXFx1B+GZ+iz4Sf6XPiLPhv++lg/G4ZhkJWVhbJly2pd1+IdbPmMOu/yF302/ESfC3/RZ8Nf9NloZ/EOtoQQQgghmlCwQgghhBBeo2BFAzs7O8yaNQt2dnaWLgpRQJ8NP9Hnwl/02fAXfTbaUZ8VQgghhPAa1awQQgghhNcoWCGEEEIIr1GwQgghhBBeo2CFEEIIIbxGwQohhBBCeI2CFUIIIYTwGgUrhBBCCOE1ClYIIYQQwmsUrBBCCCGE1yhYIYQQQgivUbBCCCGEEF6jYIUQQgghvEbBCiGEEEJ4jYIVQgghhPCataULYCyJRIL4+Hi4uLhAIBBYujiEEEII0QHDMMjKykLZsmUhFGquOynxwUp8fDz8/PwsXQxCCCGEGCAuLg7ly5fXuI5Jg5UzZ85g8eLFuH79OhISErBnzx707dtX4zanTp3C5MmTcf/+ffj5+eGnn37CqFGjdM7TxcUFAPtmXV1djSg9IYQQQopLZmYm/Pz8ZNdxTUwarOTk5KBBgwYYM2YM+vfvr3X9Fy9eoEePHvjqq6+wZcsWREdH47PPPkOZMmUQHBysU57Sph9XV1cKVgghhJASRpcuHCYNVrp164Zu3brpvP6aNWtQuXJlLFmyBABQq1YtnDt3DsuWLdM5WDE3hmGQI8qBs60zZ7lIIpL9bS2whkAggEgigo3QRvZbKq8oDw7WDjrlJZKIYGtlq1PZ8ovyYSWwgkAgAANGtlw+b32JJCJYCawgYSSwFiofHgzDoIgpMioPfTAMg3xxPuyt7HU6oPOK8mBvZV+sZdSH4rGhj7yiPFgLrVVurypd+c+qSFIkO1Y0lS1XlAsnGydYC61RKC4EwJ5IrAXWZtunIokIDMOwxx0kSnmIJCKV+YslYjBgVB6nUoXiQp2/T5YgloiRL86HnZUdxIwYAgggYSSwElpZ9Pg15jg1ZRrFkaYuiiRFYBgGNlaq85ae4yWMRHY821vbG52vSCKCSMxeE6wEVlq/g9LvPADZdwbgXhN03YfS9cQSMcSM2OLfI4v2Wbl48SI6derEWRYcHIzvvvtO7TYFBQUoKCiQ/Z+ZmWmu4gEA6v9THwBQybUSDvQ7AAA48/oMxkWPk63To0oPNPZujJ8v/YyfAn7CvMvzEFIzBD+1+Am99/bGi4wXGF1nNCY3naw2HwkjwfQz03H69Wns6LUDFVwraCzXjic7MPfiXJWvfdPgG3zd8Gt93ypeZLxA7729AQDeDt6IHBCp9OWcdnYaIl9E4sTgE/B08NQ7D319euRT3H57G50rdsbSdks1rrvl4RYsurIIAOBu546oAVFwtHFUu74uFztT+uvOX1hxcwU2d9+MBl4N9Np25a2VWHN7DQDg2MBj8HXylb126PkhTD87HUuClqBLpS6y5RNOTMCN5BvY33c/BuwfgOru1fF38N8QiUVKn+vj1McYeGCg7P+wLmEYe3Ss7H8HawcwDIOogVHwsPfQq+yapOWnoW1EW9n/1gJr9KveDzNazIBAIEBafho67+yMAnEBnG2cETkgEm52bpAwEgw+OBhFkiLs6r0L1kJrpff1KPURPj38KfpV74cfA340WZmNJS1nkaQIjf5tpHa9Xb13oUapGsVYMtam+5uw5NoSrA9ej6a+TQH8dxGUFKm9WCvaeG8jll5fig1dN6CJTxOTlGvWhVk4/PwwDvY7CB8nH522USy3Id95kViExpsbA2C/e6XtS8NaaC0L/FffWo1Vt1ehjFMZJOQkyLb7o/0faF+hvc75KNr5ZCfmXJzDWWYjtMFfnf+SfS6Kvo7+GuffnAcAlHMuhzfZbwAA05tPx7Baw5CWn4buu7ujVblW+C3oN7V530q+hZGRI/FF/S9k550FrRegV9VeBr8fY1l06HJiYiJ8fLgHnY+PDzIzM5GXl6dym4ULF8LNzU32Y87OtQzzvrbiZeZL2d/fnfyOs96h54fw86WfAQDzLs8DAEQ8jkCBuAAvMl4AADbc36Axr7FRY3Hk5RHkFuViZ8xOleuIJWKIJCIceHZAbaACAKtur9KYlzq/Xv1V9ndyXjJi0mOU1jny4ggYMFh4eaFBeejr9tvbAIBjr45pXVcaqABAekE6LidcRoG4QOW6DMOg++7u6L67O4okRZzXJIxEVqtgSiturgAAg/ad9IQBAN9Ef8N5bfrZ6QCAKaencJaffn0aWYVZ+O3ab0jNT8XlxMu4nnQdjTc3xro76zjr/naNe+KSD1QA9s4xX5yPA88O6F12TfY/28/5v4gpwo4nOzDrwiwAwL6n+2SfYbYoW3YcZBVm4UnaEzzPeI6k3CSce3MOjTc3xuYHm2Vpbbq/CfnifGx7tM2kZTZG5MtINN7cGHuf7kVsZqzGdZdcW1JMpeL67dpvYMBg5oWZsmVzLs5B4LZAJOYkAmBrGuRrlxUtub4EDBili60xdsfsRr44H+GPw3Xe5tuT36LF1hZIy08DwzDov78/eu3pBbFErHMaO57skP29+OpiNNvSjPNdk55v5QMVad7GULXvRBIR53NRJA1UAMgCFeD9uXHf033IFmUj6mWU2n2w48kOfHrkU0gYCee88+M5ywb8JW6eldDQUGRkZMh+4uLizJJPkaQII46MUPmahJHolEaLrS04/+cVqQ7AAOBa0jXZ3xkFGUoXUIZh0G9/PwRFBBl00OQX5XOCL1XOvTmnlKc6R18d1bsMxS3yZSSabm6Kf+7/o/TajPMzEJ8Tj4ScBCTlJnFeGxM1Bi23tURWYZbG9EUSkeyEremzVSTfZGeImDQ2iBRLxDoFVfLrSIPcP27+wVlH23s1FwFUN0vteboHABCfE89ZbiWwAsBthu26qysmnJgAAPjl6i+y5fp8JsXlh9M/AGCPv7d5bzWumyPKMVs5RGKR0jlGkXRfA8CumF0oEBdg66OtYBgGPff0RPDOYK1pmKPWUszoHmicijuFQkkhol5GIUeUg+cZz/E6+7XWfS/vz1t/yv4++uooxIxYFjQ/TXuqczqm4mTjZPC2J+JOyP5OzU9VuY6mG2FLsmiw4uvri6Qk7oUiKSkJrq6ucHBQ3cfDzs5O1pnWnJ1qU/JScOvtLZWv6RqsKH6Rm29pjnmX5mndbnfMbvTc05MTLEhraQy5qLzNfYtmW5rh62j9moZ0fZ/monjXra/DLw4DABZfW6z02r5n+2R/KwZl15Ouo0BcgLOvzyK/KF9l2kWSInTa0QnddnXDujvr0HxLc0S9jNKpXC8zXmp8XcJItF5oLyVcwsADAxEUEaQ1P/lgRT5Qkn/f99/d15qOtGympK0fkmJ+0oufYpCm6qKp7UJqadqOb3MFWxkFGQjaHoR++/ppXE8oUHF5YIDcoly8yX6Dt3lv8TZX80XfWmB8sFIkKcIvV94HoU/Snui0Xa4oV/Y3AwYX4i8YlL+m/h1/3f3LoDSN4Witvmlbm5vJN2V/WwmtNKzJPxYNVgIDAxEdHc1ZduzYMQQGBlqoRO+p+qKKJWIwDGPUnXHE4wid1nuT/QaZhe/741xJvKJXPtKOwQDbTAVwqwh1IQF7ocgV5VokcPnfuf+ZLC1N5VdXgzTt7DQ029IMGQUZSq8l5yYjNT8VSblJslqK6Wem61SW3KJcja9/dvQzNN/SHO/y3qldZ8HlBXia/hTZomyt+XGCFbn3OvXMVB1Ky6VpP2YXZiNHlKO1Bk+eyguihvyk6+tSo2TKYEXCSDgXP1PQFqyoC5TVyRXlam3euJl8E63DWyOrMIvTtK2KqouZUCDEo9RHsv+1nQtNUbPSZ28fbH74vnnPVqi9o+fxV8cRsDVA9n9eUZ6saRFQX6OninwNkyJLdPY1tOOu9Dogpc8+4AOTBivZ2dm4desWbt26BYAdmnzr1i3ExrJts6GhoRgx4n3TyldffYXnz59j6tSpePToEVatWoXt27dj0qRJpiyWQVSdRAfsH4DPj31ebGVoHd5aFrQsvqpcO6DJtyfYttq4rDiDI2iGYZCQnYCArQH44ugXKtcpFBdy7gCzC7MtXiOjirryA++DMnUuxl9UWpZekK68oh7f/azCLKX9JA1OryZeBQBEx0YrbSdlb6X7CetignL5AbaZTF8MGGQWZiK7MJtzYbyaeBWB2wLRYmsLvYJMbSdMdcfSpYRLWtM2ZbAy4cQEBGwNQHx2vPaVTUSfmpW0/DQEbA3AJ4c/0bjer1d+5fyvKbCUXqTlmwuEAiH+vvu37H9t33VTBCuxWdy+Pe39tHdanXF+Buf/ZdeX6RTYq6KuyUgkFmkNtvUlloi1Nv+p64enjbRvmxRfm3vUMemevnbtGho1aoRGjdge7pMnT0ajRo0wcybbISghIUEWuABA5cqVcejQIRw7dgwNGjTAkiVL8Pfff/Ni2LKqg/BZxjNcTrhssjwyCzO13gnNuTAHrba10noXpOjU61MAgA33Nhj8JZUwEhx8fhAAcDnxssoahk47OiFgSwAKxAWIy4pD4LZAfH1c/5FI8kRikcnb6y8nqv/ctNUECAQCFIoLZXfWx18dR8jBEOX19IhWWm5rie9Pfy/7f/+z/Wi1rRXW31uv0/bSIYn6UjzxS+la9qMvj6LVtlYI3BaIMVFjwDAMMgoyMCZqjGydA89174Sr7WKmLuCYf3m+1rQ1dQDV15nXZwCwTbTFRZ+aldOvTwMAHrx7oHE9xVo9Tf0/hAIhHqc+5jQ1WgmtOH3btH13NNVKGEpxCK2q85K2c54+/V7UGXZ4mMlrJ4YfHo4WW1tobF6r5l5Nr9pLdY7HHjc6jeJk0t5P7dq107gTN27cqHKbmzdvKq9sYeb4ksmLz45H8K5g1Peqj83dNqtdT91dsa7ke7LrS8JIOH0KWoe35rzOMAzSCtIAALGZsTjy4ggAcNqGU/NT9R7q2m13N6VOr+akrWZFAAE67OiAjIIMXB12FZNOqa750/cuS36Ek7Q2Ytn1ZbJlmubm0beJQErdnbBQINTpBP4w9aHs7xvJNzDl9BStI7UyCjJkc7eoyledq4lXlcokZsR4lv5Mazml65qaKQMgbfLEbM1KXlEeGIbROAxfV4rNNppqRqwEVth4fyNnmeLnZe5mIFXXE/lz8/LryxF2LwyL2y5G18pddU5368Ot+L7Z99pX1OBh6kPU9Kipdb0CcQFEYpHSXF2q3Ht3DwA0jniKeBwBkUSEOS25o4Us1Um+uJS40UDFxdTVe4qkF/Y7b+/odJdoKvpE5NpORPInOgYM526/QFyAJdeWICgiCFseblHaNiUvRW1ZzBWoFEmKkJafpvyCll0iEAhkd2/Soegq1zPiLkvV8aapPdzUzRGGNt1pC1TeZL9B6/DWGHpoKNLz05Ve13RTsPbOWqWaxxxRDnY+UT20X5GqEXUpeSk6bauOPkNejVUkKUKRpAgttrZAq22tNDZr6fq9Vtzf2mpWFI9pxQ6z2o4bXZug3+W9U5mWqhEr8t+VsHthALjTFuhi04NNJumDpMv3puOOjgjcFqhXbfHh54c1vq5Yw5dVmIWW21rqnH5JRMGKGuauWZGvsdC1060pqGo+EIlFKk/iuaJcjRdg+XkApJMvSTXd3FR2V6Z4Itn+eDvab2+PlbdW6lX27ELDmrOkvjj2BdpGtFW6M5cPylRVKctfCLY+2qo2fWOe+q1qP2tKz9S1BsYOp1YkPYkffckOcX+U+ghtItogLpM71YCmO29boa3S8fou753OE5Mpznvx69Vf0X57e60XAoZhkJybrPI1Q5vfDJWanwoJI0ERU6TxYqfr56d4XtPWZ0UxXX1rVnTp1H8p4RLabW+H6Wemo1BcyLmhUDWwQNW52ZCby1bbWpmkOUWTtPw02TlF2ygm+UD4dfZrvfK5m3JX/8KB/Z5qG9HFFxSsqGHOmpUL8RdkkysVt5TcFM6JODU/FV8d/wrttyt3Wht/YrzG/SCdCwNgO6GFP9I+WRPDMLIJ9NbeWatP0RG4LZAz0ZG+pB1XFe9KpBfW9Px0paYugNtMtPfpXrXpqwo4EnMSdTohqgo+iqO3vkgsMsvJKjEnEQnZCUrHj+L8PJqOr9isWGQWcGeoXntnLaJfqe94LLXp/ialu3LpiJKl1zXPhDzj/Ax03NERf9z4Ayl5KRCJ3zf9vM5iLyJp+WnFMo+LfLOTKc5JirWWmoINVbUi8iOBAGgcsaarv++wHXaPvDyC7ru7o21EW9k5StV7VrXMkO9KEVOkNijVlbbmWPnZmbWdB/SZ+wXg3mQaenM9/ex0dNjRAafj2D5PfBwcIUXBihrmrFn58tiXFptVs8uuLui4oyMOPj+IlLwUBEUEaRwWrevBezP5pk7t+dJZXKUKxAWcWh1tX+iuu7riXso9ncqkjuIJWnoCls6Wq7S+jndfuUXcId7hj8LReWdnpdlhdZVekI747HiznkBGRY1Chx0dTJ5u8K5gdNnVRem9K9akaGomeJX5SmXHaHWdhOVp2ud2VnZqX5MwEtkcPOvurkP77e0x5NAQ2eunX5/G33f/RtuItui4o6PWchjrTdb74NyQ4fcA20SQUZCBTfc3KY1i07SdUCBUupgrjiAbHTUaSTnGNdvKnzekwZR0tJeqeVqScpOUmuMMrdXstLOTxqZdbeKyTDMpaXZhNjrv7KzXNoMPDkb77e3xPOO5wTe/0u4I0lnZi7NPlr4oWFHD3H1WLC30bKjK2hRFut49NvNtptN66+5yp3nvvrs72m9vL7tjfZz2WGsae2L2aF1HE8W7sB/P/YibyTfVXgwUmxM0kQ4PFEvEsr5I/zxQnkFXqlBcqLa26OdLPyN4VzA+P6r7cHl9+1TceXtHr/WNpXgTYIpJw/T1Nu+t2v2kav4Wxer732/8DqB4OjTKP/ZAY7AiF4BLa7XiMuMglojRcltLtA5vrTKA01Szci3xmk7zOymuI18TpQtVF0jpd7SMcxml1+Zfno/Jp7jPWTPmfK3LozzU0adZUNO+VvVoE22eprOz5y68vBA/nf9J7+3lSd9HcfbJ0teHfUU2wocerOhK174R8y9p7iSsbm4A6Z3b+TfnkZiTiEEHBmnNy9j+FaqqjFfcXIEXmarvsFTNs6KO9E4l9GwoZ7m6zny99/ZG112aRzHoMyHg/86bbiI9c1D8XhXXxFTyfZHyivI4w8bl8bkaXNN3Uf470XlnZ3TZ1QXd93TXWqun6bukKj9VwaViR3DpQ/90paq/hbSmRF355KeNB4w7XwsFQrzMeGlQ/xVjL+5xWXEQSURGHXe6zDmkq+Luk6UPuiKrYUxnyQ+JrrPeapsHpunmplqrKk05h40mqk5sVxOvcoYNa1tfmyMvj3D+/+KY6knpjOmDo4p0lkpzPlfGGIrV5qbu2AtA5Ygvxb5IquaYeJ31Wuvswpak6WKq7jX5mV/1TVNX5pjFVfjfpUnXG4U32W9kNTT6Tpq2+tZq9NrbC8tvLNdrO8C4ju5nX59F993d8VnUZ2bv6KtNNfdqAKByxB5fULBCNJKfV8NYmtpkj8ce1/nuwugLnJ5xqDEPDpNS1x/GXPRt/y4umx9u5nSQNUewIt+pUVcxaTHotrsbuu/ubvLymIo55o0xBXM8rFB6g6DrMHXg/UMim25uqldehRK26U/XCRnlvcp8pfc2UtufbAfAzldkju+BPkrblwYA9NjTw6Ll0ISCFcILlxIuaXz0uby7bw0bpielb9ODt6O3XusbcwIzhXd573g9QZT8UH2+NLucijsFQP+HBxbnHbGhHWw1MUX5zRGsSL+i+tQ8ano8ha7MWbOgaV9b+nvwNP0pr/urABSskBLocdpjvR/KKE/fZh1Vk9pp0nNPT73WN7V229tZNH9tHqQ+kHXCtHT1t5Shd7bFeUcs7VBpynK8ytIvsFbVp0GfYIVhGDxKfYTnGc81TtAnhFDnJ4GbUpuINsWWV2re+6H1x19Zdur7d/nvsPDKQouWQRsKVkiJpM/zZxRpe34KMa+Mggwsub4EQPFe7DUx9M62OO+Ix0WPUzuxmKH7cfjh4ZzaC0OCx/vv7uu83f5n+zHowCD02dtH42hEoUCIk7En9S5LSSI/Z438nFWWUpyTkxqCghVSIt19e9fg5+PIP7uIWIa0tsqS1d+c+X0MrVkp5pqhP2/+afLqevlmVUOeVL3s+jIcfqF5VmApXS+Iugxw4HNnUF3Iv0dDn6T8MaFghZRIsVmx+PbEt5YuBjFCSl6KRWtW2m9vj1xRLm4l3zI4aLqTcgc3k29CLBHjUeojlc+yMaWTcSfx560/lZYbEzTJd9w1dFIwXR+YqmsTrAACrQFL0PYgja/zHU2PoZ/in5GJEBO5mHARr7Neo7xLeUsXhRig/fb2WNB6gUXLMDZqLO69uwdfJ1+Dth8VOQoA0K1SN9lw9b199qKqe1VTFVFJ2N0wTGw8kbPMmKBPvjbF0GAlNlP7rMKAcjnVNckKBUKttTzFUStnbGd+eYrvvbjmGPpQUGhHSrRuu7tZugjECDeTb1o0/3vv2Ec3GPusLvl5dfru66vygZimoulxAcYypBkIYGcFVveg0bisOMSk/TdDq0JMFXIwROU2AggQdjfMoLKYytXEq/jk8CdmS59qVvRDe4uUeHwZUUL0p2vzQUljzifZ5ovzlYamG/MdkL/jNzRYAYCRkSNVLu++uzv67++P9Px0nWuABAKBxTtfn31z1qzpZ4uMe4r8x4aCFVLiWfqkRogic9Z+AMDoyNGc/435DsgHOsZMt65upJLUq6xXKqfWV8XQWoe4TNM8WBCgZhq+oWCFaGTOp0+bCl9n9iQfL1VPkzblKB7FB34aU7NyPem67G9jala0WXBZ9/5JQgjRxKeJ3nl032O6GYjN2UxDtcH6o2CFaFQSAgH64hO+UVXTsfXR1mLNT1f7nu2TzflhzmBFn/mNhEIh7K3tzVYWSzO0I/PHjIIVUuIdfnEYJ2JPaF+RkGIikSiPVJE+ZNIcjA3Y76WwHY0tPe27lLXA2mLTv19NvArA9DdB8unliw2bI+pjRkOXSYk34/wMSxeBEA4J3l/077y9AyuhlclrKZ+kPUGNUjUAGN9vSzopGV+CFcBytbpjosZgb5+9nM/QFE7EnUATnyawElpZfHr9kohqVgghxMSkD0bMEeVg2OFhGHJwCGd6dVMYsH8A0vLTEPUyyugZUFfcXAGAP8FKVmGWrIbDEmLSYpSGWRtry8Mt2P10NwDg2Ktjpk38I0A1K4QQYmK/XfsNtUvXhp+Ln1nzGRM1RuMDDnWVI8oBAJPXJhjq25OWn53aHKMMz7w+Aw87D5pe3wAUrBBCiBlcTriMiq4VzZqHKQIVecb20+BLzYyxIh5HaB2KbYhTcadktW5EPxSsEEKIGWx9aL7RP+ZibLDxoQQr15KuWboIRAH1WSGEEDPIEmVh7Z21li6GXihYIXxFwQohhBAAxvfToGCFmAsFKzyyquMqSxeBEPIRMzbYsPSDKcmHi4IVHjFkemlCPkTm7phKVDM2WPni2BcmKgkhXBSs6KG8c3mzpi8Q0IOzCCGWQ804hK8oWNGDtdC8g6foKZ+EEEuiYIXwFQUrejB3sGLOp3wSUpLQwymLX3x2PO13wlt0ddSDlUD5se+mRM1AhLDMMXso0WzooaG8mcGWEEUUrOjBSmjeYEVIHwchxEJS81OpGYjwFl0d9WAtoGYgQsiHi5qBiFSAb4Cli8BBV0c9tC7f2qzpUzMQIcSSPoaalanNplq6CCVC9VLVLV0EDgpW9PBZ3c8sXQRCPgrmuMN3s3PTa/01ndaYvAx89zH0WTH3FBTEPChY0YONlY2li6CXvtX6WroI5COyu/duSxdBrfZ+7fFFPf0mLGtVrpWZSsNfH0MzULYo29JFIAagYMUC2pRrY/Y8RtYeienNp5s9H0KkqpeqzruqY6k+1frA1srW0sXgPTEjtnQRzI76BuqGb90SzPKprVy5EpUqVYK9vT0CAgJw5coVtetu3LgRAoGA82Nvb2+OYvFGzyo9zZ5HM99mcLJxwvrg9WbPi3xcNnXdpPa1dZ3XmSQPUw9dFkJIky7q4GOoWanmXs3SRSAGMHmwEhERgcmTJ2PWrFm4ceMGGjRogODgYCQnJ6vdxtXVFQkJCbKfV69embpYJtPMt5nRaRRHZN+2fFsAbHnl54cZUH2A2fMmH7bGPo3VvlbaoTTqlq5bjKXRjVAgNMmd4pH+R0xQGv76GDrYVnCtYOkiEAOY/Kq5dOlSfP755xg9ejRq166NNWvWwNHREevXq7/DFwgE8PX1lf34+PioXbegoACZmZmcn+LUtVJX4xMphhs8dSfmzhU7G5ymi42LwduSD4OHvYfWdUwxH5GpL5qmCFSql6qOcs7lTFAa/voYOtiaY3LPv7v8bfI0LY1vNZEmDVYKCwtx/fp1dOrU6X0GQiE6deqEixcvqt0uOzsbFStWhJ+fH/r06YP79++rXXfhwoVwc3OT/fj5+ZnyLWhV15N/d436MPQAHFRjkMY7avJx+C3oN63r2AiN74jeokwLvdZv7K352DT0uD828Jjsb4ZheNeOb2p7Y/ZaughmZ46a7ea+zU2eJuEy6aeWkpICsVisVDPi4+ODxMREldvUrFkT69evx759+7B582ZIJBK0bNkSr1+/Vrl+aGgoMjIyZD9xcXGmfAta1S5d2yxRdH2v+iZPU0r+RH0n5Y5BaQSVD0J7v/amKhIpoZxtnAEAkQMi1a4jrX00phaiS6UuWNlxJX5p84tO69cuXVvj64Y2A/k6+Sot29tnr97plBSXEy9bughmZ46alQ89iOUDi3eLDgwMxIgRI9CwYUMEBQVh9+7d8PLywtq1a1Wub2dnB1dXV85PcQsoY9zMfqru8oprTof0gnSDthMIBOhXvZ9pC8MTg2sMtnQRShxNgcigmoOwquMqbOuxDUcHHDUofSGEaFu+LbwcvQwtIodAIDD6cRbSzqdV3auaokjEQiiw0K6+p/lung1l0mDF09MTVlZWSEpK4ixPSkqCr6/yHYoqNjY2aNSoEZ4+fWrKovGat4M3XGzN2B9EIP+nYV9UK4HVBzvkr3U5885MrIsapWqYLe21nVQH/uYiFAjRpnwblLIvhTLOZYo1b3VshDZ0kSK852DtYOkiAADWdObfhIgmvfrY2tqiSZMmiI6Oli2TSCSIjo5GYGCgTmmIxWLcvXsXZcrw4yRnLvJ3nPKd2swatBjhQw1UAH7caW3oukGv9Z1snHReV9+ZW3X1if8nZknXHCq7VeZdh0FdNfBqAACo6kY1Oh+6CY0moIlPE0sXAy62Lrz7vpj8CjR58mSsW7cOmzZtwsOHD/H1118jJycHo0ePBgCMGDECoaGhsvXnzp2Lo0eP4vnz57hx4waGDx+OV69e4bPPPuyp7eXvOOVHPhzqd8is+Tb0bqi0zFqo/QGN5mjn5QtLfylthbZwtXXVKyA83P+w2teWt1uO3lV7v19gprc3sfFE3gTX6gLOw/0PY2evnfB08DQ47YZeDQHAYs2gc1vNxbou6/B9s+9Nkp58p2HCLzZCG7Qq+/HNnKwLkwcrISEh+O233zBz5kw0bNgQt27dQmRkpKzTbWxsLBISEmTrp6Wl4fPPP0etWrXQvXt3ZGZm4sKFC6hdW3OHuQ+J/ERMpexLmTWv6u7vZxg9OuAotnTfgpktZmrdjmpWzJ//ycEndd5G0xBiGysbo/tV6cLRxhGBZXSrMbUUPxc/1PSoaVQaazuvxYbgDRhea7iJSqUfR2tHtCjTwiSjrADoHbiZs4mScAkFQgSWNc93anbgbL3Wt/R5UZFZrkDjx4/Hq1evUFBQgMuXLyMg4P2J89SpU9i4caPs/2XLlsnWTUxMxKFDh9CoUSNzFIu3zD23gXzNgUgikv3t4+SD+l710bdaXyxrt0xjGqaYO4OvLF2zIg0EdZnDRBeVXCtx3pOl35+pHRt4DHt679G6nuLwZ0NPvo42jmjq29Ri3wHp52eqWX31vfH4udXPcLdzN0nefDGy9khLF0Gtup51sbTdUpOnW9W9aomeJ+jDvV0uQYpzimv55ifpSUsgEKhsHpKn7gTXvXJ3AGwfiuhB0SrX4TtDao30aa7Ttq4pa63+7fav0gydpgxWDLngd6vczYCM1L/k6+SLaqU0T5neulxr/NHhD4UkP6ygzVD6Hm92VnZazw8lzXdNvkMtj1qWLoZa2obim1JJmZWZghULkJ40pbPJjqozqljyAwBXW1cc6ncIxwce56zjZqu5E6a6Pis/NPsB4T3CcXLwSXg7ehtfWBPSdY4OQy5i+kzZrW5d6URSX9TX72nAmtQpXcdkaamiGFjrcrc/O3A2NnffjHbl25mlTKXsuE2nW7tvxZ8d/uTNyApTsVSwJYAAJn5Uk8VZC61lHZf5xBLPZirvUr7Y8zQEBSsW9EubXxDeMxxj640t1nwruFaAjxN34j4bKxsMqzVM7Taq7sYO9TsETwdP1PGsI7sw8OluRde29uJomx1Sc4jSsoVtFiK8R7hJg1VV78Wc708s0f6UXkcbRzTwaoA6nvoHUrpcoH9o9gNnvXpe9VQ22fCtDV5Xhta81fesb5Lvo0AgMPmDJYlq0v1MtYDKKFgx0MI2C41Ow8bKBnVK1+FN51VfR/Vz4aiqWVFVY/BPt394M/W0rn0MDL2Ijag9Qu1rAb7cDq7Tmk9TWsfOyg51PE37+cs37eni09qfYmqzqQbnJx0ho8vDC811Ai6pI9V29Nqh03rSz1Lf5yWFBYdhUzf1T8jWlQDqg5XP631udPqWwsfg1ZigcHHQYpOUQfo95VvAxI+rZAlkzg5no+uMNlvammj6ouh6QbW3tse6Luuws9dObAjWb+4QU9NlSDYAg2c2ndJ0isrl64PXKz0wUlVZzHGyVHWC0XTSkTASve6+FY+Rdn7tsLfPXmzstlHnNPRhyjt6U1axa3sWkS78Pfx1Wk/aRCtmtNdiybO3tjdJU5hAIFC772p4mG6kkK7BGwBUc9fcZ6mkPljQ0GM0elA0ansY3s9FfoSYqhsrPqBgxUDmbFv8rsl3aOrT1GzpG0Kfu1ehQIiaHjUtPi25rmU2NGhQFcAdHXAUzXyb6ZavGe5cpO9F17SLJEVG51nVvSrsrOy0rie/nw292KsbKq3L+zXlk5zXdVlnsrS0sbFihyyLxCIta5qHppoVU9ZqlXUuq3O/t+29tqs95jwdPC1y7hlTd4zRaRjaDGRof8GQmiEA2Cb9g/0OYmevnRjqPxT/FYJXKFjhIaFAaNK5DXS9GGv6ghjSVOFs66z3NrJtbQzfVkoAAc6GnDVoW0OH+OkzvbwpL56KNH2W8vukSFKE6qWqq13XXOTvfK0F6mvAFN+HMX1RTFlLY2tli9L2pU2Wni7qedXTeV3ZBccENAUrxj5vSYmOH5GN0IYzZ5Q8CSPRKYgy9c3CxMYTzTZbtC70fT/7+u5DaHN2glZHG0dUdK2Imh4135/redZNiYIVA5m7vVM+ODg35JxZ81Jnbsu5sr8NuYOyEdoYHCwMrjnYJEPq3O3dta5jij4j/ar1w8WhF2X/tyrHzkKp6YLmaONodL5SJwefxPmh51W+pnisutu7y57y3bdaX7jZuZl9RBrAPZnaWNnIJllTNTOruhOvqoumrrWcgWUCYS2wRgUX3Udy8Ymng6fSKD5VGnk3wvTm002XsUD9PjbleVAAgV5zTgmFqr+3Ekai03fa1OdwoUCIyq6VjUpDup/NdX2R/15VcatSoubPomDFAnQ5EPtU6wOAHW9vbLRu6B0EZ04WNScGbXQJFlTpXrm7yYbUBZUP0vi6qv2jbzOfp4MnpyapvEt5RA+KRuSASKV1G3s3xrkh51TOSDqwxkDZ3+382umVv6vt+yeQazvGNnbdiKMDjsrmzzBmOnpD/dDsBxzuf1ivZwwZczdcxrkMIgdEYkevHbx8qqwuFEfxqeLn4mfSTtumrnHVRJ/aRnXfUQkjUWoiKimT2hlS2yqbk8XU8Q01A30YzN1T2t/DH9GDorG5+2az5iNP8QInX5uiqapem7JOZQGwk3npYl2XdTpNkR45IBJ+Ln6y/22FtirX0zY7r6oTrimaDLwdvWFvba+03NXOVW0AOqPFDEQNiELUgCj80f4PlesoUve+pVQdqzZCG4OeiGzMflE8voQCIfxc/DQGVqa+w/Rx8oGjjSM2dt2I4wOPaw1kNeHjaBJz0NTB1tC+e2s7rZXV7hmanrr5iSSMROl792ntTwEAHfw6yJbxbbQLYNj3a3O34rtGWBIFKzzm7ehtkueBmOKkquvIGlX299uP0yGn4eXgxVl+uP9hlf0lfBy13z0CbBNLXFac7H9171PaQVGefAfmym7KVbeKJ43vm5rmIXLaCAVClHUui7LOZSEQCGRBjaqnLI+ty87P82PAj0qv6Xsi5uOJWx/6HuM2VjbwcfJBPU/d+4EossQEXpYggACj6o5S+Zo+/Wjk+Tr5oowTN1jWtxmonV87rA9er7RcOmpK/nwTUCYA0YOizTKNvSkZUlMlPb9p+w7r+x3h2zmBghUio3jylf/iGBOs2FnZwcPeQyl9b0dvfNvoW6X1NX1J5IcEWwutDa6Glr/4O1o74sLQCxrXH1lnJOeurLgcH3gc54ac4zTxSE1sPBEnBp3AgBoDjM5H5zs6I67Phow80iUgMKa2R/q4iA+JqS8yAgjQsmxLHB1wVOn5VW62btjXZ5/+aaqprdG3GUTVjY003b1993KWezt6F2sfjW6VuuFMyBm9tjHmPKuLklwbSMEKUYvTDGSCL9E3Db/h/C+EEO382mFcw3Gc5S8yXqjc/uTgk/is3mec8s1pOUdl2oB+X0wXWxfO/6pOpNI8ivMR7vbW9mqbjAQCAbwcvVS+Jn+9kr94KU5WV5x6VO4BwDRzlCgy9ALt5+qHvX32GrRtan6qQdvxgXzfKG2k36MyzmVwuP9hLG4rN/mYACjtoP+oKKFAqDrIVFhU1U3zEGT57/iA6mzQ/lOLnwBobx6Vrq+qOUofinMqSVkLrVHKvpTK19QxZkI2Xc53Jbk2kIIVIqOpz4opOtK1Kd8GKzqskMuQ/aXYubNWadWTlHk6eKKKWxUA7PNgBAIB+lbrizMhZ/B1g6/1+oJrW1fVibSmR02cG3IOqzqt0jkfS+E8dVnuc1U3F0RxVPn6ufrh3JBzKqvu1dHlBKxpaK0uVDWx6WJlx5UAgN5Vexuctznosi9mtpipsrZOam3ntSqXO9k4KY1iM6SpWuXkhQJuM1B9r/rY0XuH2lFuADvrtrXAGk42TpgZOBNnQs7IBidoU61UNZwbcg7/dvtX7/JLfd3ga/wW9JvK13S9Wbr0yaX32/Cs6YVPzFvnxBMMw6CoqAhisX4zQJax5bap5ufny/4WFgmVXteVsEjIScuQsmgjn76PrQ8KhAVKyxXZSmw5+XjaeKKSYyXYCe3AiBjkF+VzXtf3PQCAm9BNlkZ+fj7E/2/vvMOiOro//t3CLr1JRwQUxAJBRSHYC4qIisSosWt8jbFEjbEmvlHjq6ixxhhNDIgxiqJBJdYYe0GxgIgKImKlRaVIXdg9vz/47XUvu8vuIkbU+3kenoede2bmTLkz507lS5XiFUqFTNiq4jvz0RkI+ALmtwEMUFZWBluRLSRSCSNfUV6BMoFyOEp6lFfp0dmmM9Ly0wAAlkJLCEQvjTV5XGKIISl/GYc8DAMy0JgfclkzvpnOeWetZw0ofChq8i+QCpj4ZBIZ8z+vkqfSb/UyUIesQlarcpcjhhgVkgpUgH3AWfW4GT0r2M9M+aZKdUMgFcAQhqx6pQtGPCO4GrpCwBMguHEwolOj8aXPlxrDaWfVDidCT4APPi4/uqxTnHI9tcnz6npo8mPMM2b5UdeOuRu7I7MoU8m/v4M/mpm9PF1X09d4bUZdeTye0qJ9AU/Amgb6rfdvEPAF0BOpN4b0BHq4MOwC+Dw++Dw+ayRD0VhQlwb5qGUnx044+0S3YxbOfXJO552armauSiPHRnpGaGPTBtdyr6GHcw8AtZuu0cbQeZungXj0No8LASgsLISZmRkKCgpgaqr8pSCRSJCVlYWSkhKdw67+IjsYOzD/l1eW41nZM90VBmCpb6lyl4guumhCUdes4izmZVV0r05RRREKywuZ33ZGdi+HJf+/kivqUVNY6pBIJXha+hQAYG9kDx6Ph5KKEuSX57PilY/k6BKfYjqBqvls+Rx19fzTF+qjrLKMpQcRIas4C0BVw6l4vLm6uOXhGouMa/xSVZTVF+orzf1rIqckh3VpoKa8KK0sRV5ZHoCqufrcklwAVYuSxULlkz+rl706rA2sVS5YflWql08DgwYQC8Ss+gIAYqGYObtG7sdC3wIV0goUVRQBqF29VDzfQttzOuTISIbs4mwAVfWgSFKklT8HYwet3uvq6fmn5B9UyNSfZmttaM0a7VDXjuWW5KpcR2QgNICZvhm+ufEN0kvTcXTgUZYOZx6fweTjVVO310Zeg4AngPdvut1gfPijwyiQFOCTAy8v+Lw24hraR7VHmbTqvbwx+gbzzGsreyGv4jN1lEvL0fb3qoX024K2Mdv0VSEjmVIamlk2Q8rzFLV+VOkw8tBIJP6TCADo17gflnZaytI9cWQivr3wLWLTYwEASzsuRb8m/SCVSVEmLWNG+XJLctFjdw+NaVTUI7MoE4F/BKqV+73P75h3dh6zKUFTHq69uhbhyeEq46orNPXfirzTIysymQwZGRkQCARwcHCASCTSybKszGO/yK4WL3eNFEuKISiu3WIteyN7nU93ra6LJhR1leXJmOFVRffq5JXlsToGZzNnpa8mRT1qCksdpRWl4BdVdQSu5q7g8XiolFUyXxtCnhAuZi5MOekSn2I6AcDZ1JnpWKvnn5GeEYorigEALuYuTOckzZMyelSS5rjl4VqILWBlWPNZJXJZIz0j3TvUfGilj5wXkhfQK65Ku7OJM/Ciyt3ByAFGIuVpj+plrw4nYyfo6+lmaGtD9fKR61lSUcLUF6DqID356cJyP7ZGtiivLGcM3trUy1eBiMAvqNLRxcwFmcWZKKnQ/HHkauGq1XtdPT0u5IK7+XdVyqoqX3XtGK+Ap9LoMRGZgFfMw9iGY7E4fbHSotfqX/C1mSLm8/ho2aAl1nZbi+knpzNudXmqsy5TKtXTIOQLsTN4J1pta/XKeizrtAxzz87FPN95EPAF+F+H/zE7+OTGiYAvgBH/ZbnVas3KOz6F9E4bKxKJBDKZDE5OTjA01P20UL4euwLr679spCv5leBLareOQyQWQV+sW4NfXRdNKOrKF/GZhWuK7tXRIz3wK1/Go6+vr2SsKOpRU1jqkAlk4JfzGf9yo6SlQcuXcSg0HLrEp5hOubzcWKmef0KRkDkqXF9fn4nTzswOuSW5aGjaEA8LH2qMWx6unlhPs37/LysUCXXOO4FIAJnsZUOuyb+EJ2Hqp1hfDH7Zy//1Rcp+RSRilb06xPri12KsVC8fuZ5SgZSpLwA77+R+RGJRVb2SvSzPfxsP/apzgfg8PoQVQq2OodfX19fqvVaVHn6xan8GBgZK5aOuHROWClVOjeuJ9GCmbwajHCOYC821WgPj2cATyc+SAQAtG7RE6vNUlnFdHfl6OMX1QnweX6ety6+ThJEJrxyGvG0LbhyMbk7dmLU+PB6v1uukqhPWKUx7fd5yY+a9WGBb29NXOf495HPOdX0ipq5YG1qjeYPmSruDNPJ2twMcr4hi3a1+fsjrQD6KZyqueei8Jmq8ZZ3PBw888MFXWu+hanRa8fBKbaa45dOzimHXdPhcbVDsnGu7APv6qOsY3HRwrfwqpqUur9YAgMvDL+Py8Mvo27gv41bX61Hq2/oWrhfneC9QPOlWE7UymN6SlV+vejJvXV4G+K4iEohe++WQtoa2aN6gOQyFmjtBdScVqyvL6u7alLnS+SUa+jl171h9q198Hl+nD5e66uA1haMv1Nd53ePbDmescLwXmIpN4W7hrrRjgIPjdaDH12MWMvN5fDQybfRaLs6rHqaqzt5S3xIigfKZI9qOYtS0jqS2UwvyM1Cq61unN5HrqFqQS5DqYHQot+ojRRx1B2escLw3iAQieFh6KC1ufdvncnXhfUrrm4TH46GJWRO0aNACHpYeMBGZoJlls1c2lCUSCdzc3HDhQtWJy9qWp6JRIJFI4OLigtw7uSply6Xl4IEHkUAERxNHnW+p1sYIkq/Z8LH1gYORw7960KI61I40vd0bZlm8ze8/Z6zUU7p27Yrp06crue+L2gf/Jv7M7w0rNsDT2hMTBk9Qkv3+++/B4/Ewuv9oxm3hwoVo1aoV6zePxwOPx4OdiR06enTE6H6jsW3TNpSXl6vUbdFXi/CB7QfYvXu30jPF8IRCIaysrNC5c2esXbtWKbxu3boxsop/n3/+udp8GTNmDCOnp6cHV1dXzJ49W+ksCk9rT4iEIqWwo3dFAwDizsbB09oThQWat+t+NugzCAQCXL5cdZbG/fv3mfA8rT3hae0JO2M7VjyRkZE4deoUeDwe8vPz8ccff+AD2w+Qk5WjMg53d3fMmDGD+R0XFweBQIDg4GCN+gFV9UUet1gsRrPGzTB5+GQcO3CM9YUpb5APHDiALl26wMTEBIaGhgjoGIB9Ufu0igsAoqKiIBAIMHnyZKVn8nTL/6ytrdGnTx/cuKH7tscW7i2wbZPyoV0LFy7EwK4vrxnggYeCvAIs+2YZnJ2dIRKJ4ODggE8//RQPHz5k+dW2DgHA48ePIRKJ4OnpqVI/xXSampqiXbt22L9/P+vZb1t/g7m5udLUR2lpKdq7t0dHj46ss3tqYtOmTXB1dUX79u0BAGIS4+tJX8PP1Q/BfsE4efwkS/7777/HF198wepwRSIRZs6ciYXfLESLBi2UDmEsqywDj8eDlYEVfuz+Y50fUd/TuScz6iAWiHHoo0PYGLCxTuMA3nzH/G8bOW86va8bzlh5B7C2tUb8+XhkZ2az3CMiItCokeavopYtWyIrKwuJqYmI2BuBXv17YfMPm9GpYye8ePGCJVtaUorDew9j7JSxiIhQfRKpPLyHDx/i5MmTGDRoEMLCwtC+fXul8MaPH4+srCzW34oVK2rUt3fv3sjKysK9e/ewZs0a/Pzzz1iwYIGS3K/hvyqFPWDAAI35oUjW4ywkXk7ElClTmPQ6OTkx4Z1KPoXRk0bDo7kHK54hQ4awwunfvz/MLc2xf6fyPSpnzpzB3bt3MW7cOMYtPDwcX3zxBc6cOYPMTO3O2JHnZXp6OrZFbUMTjyaY9dksTPqcfRXB+vXrERISgg4dOuDSpUtISkpC6KBQfDfrO3y/4Hs1obMJDw/H7NmzERUVpfbwtNTUVGRlZeHo0aMoLy9HcHAwJBLtOmVdyXueh2G9h+HimYvYtGkT7t69i507d+Lu3bto164d7t27x5LXtg5FRkZi8ODBKCwsxKVLl1TGvWXLFmRlZeHKlSvo0KEDPv74Y60Msz/++ANuHm5wdXPF8UPHNcoTEX788Ud2Pfk1HGnJadh+eDs+HvUxxo4ay3SSGRkZ2Lx5M5YsWYKGxg3B5/GZbd/Dhw/HuXPncOvWrRo7OVWGyqt0ipNaTcKqLquU4pAbL69yu3tNvIrh8Camc16H4fG2X2763hkrRISSihKt/soqy1h/is9KK0uVnmv6e12WtqWVJdp3bc/qCC9cuICnT59q9WUuFAphZ2cHOwc7NG3RFMPHD0fk/kjcTL6J5cuXs2T/iv0LTTya4D/T/oMzZ87g0aNHasNzcHCAl5cXvvjiC5w+fRrJyclY/T371lNDQ8OquBX+NB0OJBaLYWdnBycnJwwYMAABAQE4duyYkpyZuZlS2Lpua90btRddenXBxIkTERUVhdLSUggEAiY8K1srGBoZvszD//8zMDBghaOnp4d+g/qpNFYiIiLg5+eHli2rtm8XFRVh165dmDhxIoKDgxEZGamVrvK8bNiwIdr5tcOMb2dgwcoFiPg1AnGn4wAAjx89xldffYXp06dj6dKlaNGiBdzc3DB52mR8teArbP1pK5KuJtUYT0ZGBi5cuIC5c+eiadOmiImJUSlnY2MDOzs7tGnTBtOnT8ejR4+QkqL+kK1XIWxRGHKzc/Hrnl8RFBSERo0aoXPnzjh69Cj09PSURoC0qUNEhC1btmDkyJEYNmwYwsPZB2TJMTc3h52dHZo2bYrFixejsrISJ0+eVCmrSHh4OPoO6ou+g/oiZofqPFTk6tWrSE9PZ73Tt2/fRv/+/eHWzA1DPx2Kp/88xdOnVeflTJw4EcuXL4epqSmMREZoZtkM5vrmAAALCwt06NABO3fuVIpH1fqWumKi98R/rfOvq862tu32v23kvOtrZN7pc1ZUUVpZCr8db+Yyt8jAyNe2gjt0WChWL1qNCTOqpoMiIiIwfPjwWofX2L0xevfujZiYGPzvf/9j3GO2x6Dvx31hYmqCoKAgREZG4r///a/G8Jo1a4agoCDE7ovFqK9G1Vqv6iQnJ+PChQtwdnauszDlEBH2Re3DN8u+QbNmzeDm5oY9e/Zg5MiRtQrvo+EfYevGrbh0/hIaBVWNeBUVFWHPnj1Ys2YNIxcdHY1mzZrBw8MDI0aMwPTp0zFwQu1uVg75JASrF67G3wf/hn8Xf+yL2YeKigrMnDlTSXbw6MFYt2QdDsUcwgc+6i9327JlC4KDg2FmZoYRI0YgPDwcw4YNUytfUFDAdIoiUd13hDKZDPv/2I++H/eFlS37YD4DAwNMmjQJ8+fPx/Pnz2FpqXxysLo6dPLkSZSUlCAgIACOjo5o37491qxZAyMj1WdkVFZWMgaNpnQ+zHiIuLg4LNm8BCBgxX9XIPNRJhyc1B8WePbsWTRt2hQmJi93p3h7e2Pbtm0YN2Mczpw5A3t7e1hZWWH79u3Q19dHaGgoI1u9M/P19cXZs2eV3J1MnIAazqrTZAQI+cJaGwqvazdQfdtl9KZ4mw2a925k5V2lS68uKCoqwpULV1BSXILo6Gh8+qnqS+u0xaOZB+7fv8/8TktLw/Wr19F7QG8AwIgRI7BlyxatvzyaNWuGBw8esNx++uknGBsbs/62b99eYzgHDhyAsbEx9PX14eXlhdzcXMyaNUtJbuTwkUphV1+/UBNxp+NQVlqGDt2rFv/JO+ba0sSjCbzbeiP692jGLTo6GkSETz55eex4eHg4RowYAaBquqKgoADx5+NrFSefz4e7uzsyH1ZNJaWnpcPMzAz29srbWfVEemjo0hAP0h8oPZMjk8kQGRnJ6PfJJ5/g3LlzyMhQvim7YcOGMDY2hrm5OXbs2IH+/fujWbNmSnKaWL14Ndo5t0M753Zo4dACxsbGWLp0KfP8ae5TFOQXoLF7Y5X+mzdvDiLC3bsvT33Vpg6Fh4fjk08+gUAggKenJxo3bqxyndbQoUNhbGwMsViML7/8Ei4uLhg8uOazOfbu2IugoCCYmZvBzMIMHbp1wN6ovTX6efDgARwc2MbMp59+Cm9vb/Ty64WItRGIjo5GXl4evv32W6xfvx7z58+Hm5sbAgMD8eTJE5ZfBwcH5n00EZlALBSjeYPmGj+oNHX82mynVoeB0ECzkJa86Y753556qm/TNnXNezeyYiA0wKVhqueeq3P72W3Wb8WFaMUVxawTTrVBLFC+k6Wu0NPTQ7+P+2Ff1D48fvAYTZs2xQcfvNrV50TEemkiIiLQoVsHWDSo2tHQp08fjBs3DidOnECPHprvsageHlA1d/7NN9+w3GxtbWsMp1u3bti4cSOKi4uxZs0aCIVCDBw4UKm8Vq5aicBe7Lsyqjf2NbF3x170DukNobDqNRk6dChmzZqF9PR0NGlS89X16ggdFooV/12BFy9ewMTEBBERERg0aBDztZyamor4+Hjs3VvVcQmFQgwZMgR7ft+DNu3b1CpOIqqzQ+uO/30cxcXF6NOnDwDAysoKPXv2REREBBYvXsySPXv2LAwNDXHx4kUsXboUmzZtqlWcYyePxYBPBgD4/+P2TRzxww8/4K8Tf7HkdPl6VleH5OTn5yMmJgbnzp1j3OTG6pgxY1hhrVmzBgEBAbh37x6+/PJL/PDDDypHcORIpVLE7orFhvUbGLe+H/fFyoUrMXHmRLWHWJaWlipNY+rp6WHDhg0st7Fjx2Lq1KlISEjAvn37cP36daxYsQJTp07FH3/8wcgZGBgwd6Y1Mm2k8v3UhGIHOavtLPx26zfM9p2NkH3KNx9rc37Rjz1+xKzTszDPb55OenC8+7x3xgqPx9P6NMHqXxiK/mQke62H8piamqKgoEDJ/UXBCxibqr5XKHRYKIYGDkVaShomjZ+kUkYXUm6nwNW16h4RqVSKrVu3Ijs7G952Ly/8kkqliIiI0MpYuX37Npxd2EPtZmZmcHNz00kvIyMjxk9ERAS8vb0RHh6O9gPas+Rs7Wx1DlvO8+fPcfzQcVRWVGJX5C7GXZ7eJUuW1CrcoNAgrPjvCkRHR6Nz5844f/48wsJeHpkdHh6OyspKllFFRBCJRZi3bB5MTLU7oEre6UilUty9exe9Q6tGw5q4N0FBQQEyMzOVDLcKSQUeZTyCbwdfteH+tuU3PH/+nLUmRyaTISkpCYsWLWJ1tK6urjA3N4eHhwdyc3MxZMgQnDlzRjv9FTpBC0sLNGpcNW1mLDKGs6kzyxiwsrGCmbkZ7t25pxQOUFXveDweqy6oq0Pyxas7duxAWVkZ/PxeThkTEWQyGe7cuYOmTZsy7nZ2dnBzc4Obmxu2bNmCPn364NatW7CxsVGpz/kT55GTlaO0CFsqleLimYto37W9Sn9WVlYaF+6ePHkSN2/exK+//opZs2ahT58+MDIywuDBg/Hjjz+yZJ8/fw5ra2vmt7aGirov+FEtR2FUS+Up3vXd1+N/F/+n1dHwPrY+ODH4hFZ6aOJNjzS8ysjOm9a9PsJNA9VTPDw8cO3aNSX3WzduwbmJ6vUZbs3c4NbMDXdT7ta4hkAb7qXdw9GjR5mvzUOHDuHFixfYfWI39pzcgz0n9yAxMRFRUVGIiYlBfn5+jeGlpKTgyJEjGBA64JX0qg6fz8fXX3+N+fPno6xU9a6U2rB9+3bY2tvij1N/MGlNTEzEqlWrEBkZqfJOFW0wMjZC8IBgREREYMuWLWjatCk6deoEoGrNw2+//YZVq1Yx8SUmJuL69euwsbPBoZhDOse3f+d+5OXloWe/ngCAkNAQ6OnpYdWqVUqyuyJ3obSkFH0+6qMyrPzn+Tjw5wHs3LmTpV9CQgLy8vLw119/qfQHAJMnT0ZycjIzYlSX8Pl89A/tj4N/HMTTHPZljKWlpfjpp58QGBiodrRDsQ6VlpYCqDIav/rqK6Vy6NSpk9pdcEDVOhAfH58ajdmY7TEICg1CYmIi8y7tObkHQaFBiNmufqFt69atkZKSonZ6oaysDJMnT8bPP/8MgUAAqVSKioqqiworKiqU6mxycjJat26tNr66oqtTV/w96G+0s2v32uNSx6tMyXDrXeoHnLFST5k4cSLu3LmDqVOnIikpCRl3M7B141YcjjmMMRPHqPUXHhOOk8knYW5urnVclZWVyM7ORnZmNu7cuoPtm7djTMgYeLfyZubxw8PDERwcjGaezeDe3B3uzd3h6emJwYMHw9zcnLXORB5eZmYmbty4gfXr16NLly5o1aoVpn81nRV3SUlJVdwKf3l5ebpkFQYNGgSBQIAd4TtY7gX5BUphFxdX3bQs/3JJu5Wm1CHJ09urXy9WWj09PTFu3Dg8ffoUR44c0UlHRYaMHIILFy5g06ZNrHVFBw4cQF5eHsaNG8fEJ//r1bdXjR0Z8DIvHz9+jPhL8Vj93Wp8N+s7fPb5Z/DtWDVa4tTICStWrMDatWvxzTffICUlBenp6fjph5+w+rvVGD1ptNrFtX9G/wnLBpYYPHgwSzdvb2/06dOnxvU8hoaGGD9+PBYsWFD3u+IImLdwHqxsrDB+0HgcPnwYjx49wpkzZxAYGIiKigqlqZLqyOvQhg0bkJiYiGvXruE///mPUjkMHToUW7duRWWl+hWo06dPx88//6y0RgQAnv3zDKf+OoWQISHw9PRk6pd7c3f0H9wfJw6fQEGe8ogqUDV1VVRUhJs3b6p8vnjxYvTp04cxQDp06ICYmBgkJSXhxx9/RIcO7IPXzp49i169etWYLyrR4qO/PowMvOk1K6/Ca9m6rOsUXz3LP85Yqac0btwYZ86cQUpKCgICAjAscBiO7j+KVeGr0LFHR7X+DI0MYWqm2+VmN2/ehL29PVp5tMLYAWNxdP9RjJ86HqdOn4KxsTFycnJw8OBB1py+HD6fj9DQUFZHJQ+vUaNG6Nq1K6KjozFv3jycPXsWxsbsKazNmzfD3t6e9Td06FCd9BcKhVXnoPwYgZLiEsb9P+P+oxT2+vXrWX5H9x+NNm3aoHXr1mjdujV8fHxw9epVXL9+HQH9ApTiMjMzQ48ePV5poW07/3bw8PBAYWEhRo16OWweHh6OgIAAmJmZKfkJ7BeIm4k3kXozVW248rxs0qQJRgwZgfTUdKzcvBLrf2Snefr06di7dy/Onj2Ltm3bwtPTE3/s+gP/XfFfzFqkvFBZTkxUDPqH9FfZiA0cOBCxsbHMtllVTJkyBbdv32YWqUZGRtZZg2jZwBI7juxAuw7tMGHCBDRp0gSDBw9GkyZNcPnyZTRurHrxrRx5HVqxYgU2bNiAFi1aqFwMHBoaitzcXBw6pH6Uq3fv3nB1dVU5urI7ajcMDQ3h11l5R+KHnT+Evr4+/tz9p8pwGzRogNDQUJUL0JOTkxEdHY1FixYxbh9//DGCg4PRqVMnJCUlYd26dcyzuLg4FBQU4OOPP1abjncJbUZH6oOBxaEeHr3lZwkXFhbCzMwMBQUFSudzlJWVISMjA66urrW6Nv7mU/YXTEurlsz/xZJi3C+8XyudnUycdL4ttboumlDUNeVZCqQkVXKvzrPSZ8gufnmwnIelB4R89rImRT1qCksdJRUlyCjI0Nq/LvEpphMAmlo0hZ5AT6Xso8JHKJRUnV7bokELlZ2mNnHLZawMrWBrWPPCYLmsicgEjUx1O8L8zvM7qJBVaNRHzgvJC2YBuLuFO9Ly0gBULaRUdTFb9bJXh6uZa53dILtgwQKcPn0ap06dUqrfLqYuMBIZseoL8HLNCvAyPx2NHVEuLcfT0ipDqTb18t8iqygLz8ueA6jSU5v3WjE9SUlJ6NmzJ9LT05UMf10YMmQIvL298fXXX6t8XlPbeSHzAiYcqzoiIXFkosqD49r+3hbl0qoTq2+M1v3k4up4bfVi/dY2TLm/iMAIjdNQs07PwpH7R5TCX3N1DSKSlaf+VOkw8tBIJP6TCADo36Q/lnSs3dq2/LJ8dNrVSe1zVXE/LX2KbtHd1PqJCo7CvLPzmH5LUx7+mPAjfk76WWO8r0JN/Xd1uJEVjvcT7iPqjXP48GGNpxVzsPnggw+wfPlylVvFtUUikcDLywtffvllrfxzIxCvn/o2BVMfeO92A3FwvBbe6vHJN0N8fO3Ojnnfqb51WldEIhHmz59fN8q8Q3BGWP2GG1nh4OCof3D9xlvBuzQCwO36qd9wxsr7wLvTntRfuDzm4HgneVeMmLd95Oi9MFZeyxrit7vc3024Mqk1b3tDxlG31NRmajOaUt/qkzZ9QF3r/JbvXal3o2avxVjZsGEDXFxcoK+vDz8/P41z07t370azZs2Yezpq2haoC3p6VTtB5EdKc+jGu/JFwcHBoRsSiQQAIBAo7/R5V6lP7V19MxTqA3W+wHbXrl2YMWMGNm3aBD8/P6xduxaBgYFITU1Vefz0hQsXMHToUISFhaFv377YsWMHBgwYgGvXrsHT0/OVdBEIBDA3N0dubi6AqoOpdKkEsgoZ63dZ2csTUssrypWea4ukXIIy0u20VV3jUtRVJpFBRjIld1V6KcZTVlYGKZ996mX157qimG/a+NclPsV0yuWlAtUnzVZKKll6qKoX2sQtl6kor0AZX4N+/y9biUqd804qkSqlrSYkEgkrffL/JWUSlMmU/VYve3WUl5WDL637b5zqcZeXlUMgFSi9Z4p5x6SpXIIKaYVO9epNUVFeobJcauLfTo9MJsM///wDQ0ND5l6st503YYhwBkfdUuc1cfXq1Rg/fjzGjh0LANi0aRMOHjyIiIgIzJ07V0l+3bp16N27N3NS6uLFi3Hs2DH8+OOPtb74TBE7OzsAYAwWXcgtYvsR5r/MrnJpOZ6VPquVTpX6lTrfK1RdF00o6ppTnMN0dIru1SmqKEJheSHzm5fHg4DH/rJS1KOmsNQhkUqY8zC08a9LfIrpBACeIU/lGRAAkFeWh9LKqqPVBfkClUPA2sQtlykRleCF6EWN+sll9YX6KNcvr1G2OjklOZDKXhpemvKivLIcz8qq6ifPkIfckqq41dW94opiFJSrPjlVEZmBDCKBSBfVtaJ6/ZYaSCEWiFn1BQDEQjEk+hKWH4lYgkqqRJGkCEDt6uW/RUF5AYorqk5RFuYLtXqv30R6+Hw+GjVqpLLD1Wa65G3sqOvT1FVtdKlr/etTfgB1bKxIJBJcvXoV8+a9vDGTz+cjICAAcXFxKv3ExcVhxowZLLfAwEDs27dPpXx5eTnKy1829IWFhSrl5PB4PNjb28PGxoa5J0Nbpu2dxvodGxrL/H/72W0sv7Fcp/DkzP9wPprbN9csWIMumlDUde3JtcjIz1Byr87fD/7GDzd/YH5v67MNZmL2aaqKetQUljru5t3F8lPLtfavS3y/nP2FdcjW1qCtsNC3UCm798penHp0CgCwb8A+lTfCfnvoW6YDVxe3XL+xnmMR6hpao35y2Z4uPfFF8y9qlK3OT6d/Qurzl6fXasqLxNxELE+uyufwwHDMOFr1ji3qsAjNbZTr3slHJ7Hm5hqNeqzsuhKuFq66qK4V1ev30o5L0cy6Ge7l38Pyky/fsx7OPTCt+TSWn3m+85Bbmovwu1WnCtemXv5bRKVEIepuFIAqPbV5r99EekQikdrbn7W5Pd7TyhOXsy/DUl/97dO1pTZhaqOzurbCTKR8orQ6rAysXvoTa++vOtrcUF2d6h+W1eHxeLAzstP6MFMjPSOddXid1Kmx8vTpU0ilUtjask/ytLW1RUpKiko/2dnZKuWzs1WfphkWFsY6UlpbBAKBzvOv8zvNx+TjkwFUNZ6KJzl62XvB094Txx4cQ5BrEEa1GIX1CevxcdOPMeMU2/gyEBpgR58d2JS0CUUVRWjt2Br6It1GVpZ0W4LwG+Fo3qA5rv9zHV+0/gIbEzciLqvKCPyj/x8Yc3gMXlS8QOeGnVm6jms1DuuurcOQZkNqPMk30D0QJ7JO4NyTc/i46cewNVM+kbWnW0/8dus3RPaOrNWpwC3tWsLf2R92RnZa+R/+wXCsvLISK7us1Cj/TcdvmBMcB7oPhJ2ZndovvGCPYNwsuAlfe18YGqg+kXVcm3GIuBGBwR6D1cY9se1EnHx0EqHNQzWOls1uPxsxaTH4T+v/6Jx3c9rPQVBMEABgW9A2jf69HbzR1KYpLPQt0NCiIUKahyA9Px3tGrZTOpUYAHo26Ykfkn7A46LHSs9sDG2QW5KLINcgeNp51qoh1cToVqPxR9ofSMtLQ1enrvBy8IJYIEZz2+bwd/ZHTFrVvUjTfKcx+TzSeySS/klCZ9fOKKkswens0+jo2LFW9fLfor9Hf1z85yK6OnWFvr4+XBq4MO+wIiK+CM0bNMfsdrPrXXq8rLzQ26U3Gpo0VFsXvvb9GssvL8dnH3xWJ3FGBEZg/F/jYaFvgcUdFmvtb6L3RDx88RAfWKu+70qRSa0m4XHRY/Rr0o/lPqz5MKxPWA8pSWEhtoCUpJjrqzxLAABf+32Nvx/+DR54+Nz7c631rI6RnhG6OnVlPqgU2Ra0TaUfc31zNNBvgGdlz+Bh4YEA5wAcyjiEjIIM9HTuiaYWTbG221p8uONDNDar+foJAOjXpB8uZF7AhcwLAKrK4E1Sp8ftZ2ZmwtHRERcuXIC/vz/jPnv2bJw+fRqXLl1S8iMSibB161bWfTA//fQTFi1ahJycHCV5VSMrTk5OWh3Xy8HBwcHBwVE/0OW4/TodWbGysoJAIFAyMnJycpi1I9Wxs7PTSV4sFkMs1jykx8HBwcHBwfFuUKfjuSKRCD4+Pjh+/DjjJpPJcPz4cdZIiyL+/v4seQA4duyYWnkODg4ODg6O94s6X2Y+Y8YMjB49Gm3btoWvry/Wrl2L4uJiZnfQqFGj4OjoiLCwMADAtGnT0KVLF6xatQrBwcHYuXMnrly5gl9++UWr+OSzWJoW2nJwcHBwcHDUH+T9tlarUeg1sH79emrUqBGJRCLy9fWlixcvMs+6dOlCo0ePZslHR0dT06ZNSSQSUcuWLengwYNax/Xo0SNC1TVy3B/3x/1xf9wf98f9vWV/jx490tjX1+kC2zeBTCZDZmYmTExM6nxvv3zx7qNHj7jFu/UMrmzqJ1y51F+4sqm/vK9lQ0R48eIFHBwc1G6Vl1N/T0/SEj6fj4YNG77WOExNTd+rCvQ2wZVN/YQrl/oLVzb1l/exbMzMzLSSey8uMuTg4ODg4OB4e+GMFQ4ODg4ODo56DWes1IBYLMaCBQu4c13qIVzZ1E+4cqm/cGVTf+HKRjNv/QJbDg4ODg4OjncbbmSFg4ODg4ODo17DGSscHBwcHBwc9RrOWOHg4ODg4OCo13DGCgcHBwcHB0e9hjNWODg4ODg4OOo1OhkrGzduxAcffMCcsufv74/Dhw+zZH755Rd07doVpqam4PF4yM/PVxlWaWkpjIyMcPfuXWRlZWHYsGFo2rQp+Hw+pk+friS/efNmdOrUCRYWFrCwsEBAQADi4+NVht2tWzf8+uuvuH79OoYOHQonJycYGBigefPmWLdunZL8qVOn0KZNG4jFYri5uSEyMpL1/MyZM+jXrx8cHBzA4/Gwb98+pTBycnIwZswYODg4wNDQEL1790ZaWppK/XRJU0xMDHr16oUGDRqAx+MhMTFRZVhhYWFo164dTExMYGNjg+7du8PHxwf6+vpwcnLCihUrGFkiQlBQEHg8HhwdHaGvrw8vLy8cOnQIAPDgwQMYGBigqKgIALB79240a9ZMSU7OwoUL0axZMxgZGTHpuHTpkpKOimUeExODnj17wtramqlLR48eVfKzYcMGuLi4QF9fH35+fqz8ef78Ob744gt4eHjAwMAAjRo1wtSpU1FQUMAK4+HDhwgODoahoSFsbGwwa9YsVFZW1lAyVWEPHz4cpqamMDc3x7hx45j8AID79++Dx+Mp/V28eJEVTvW6Ex0djcmTJ6NBgwYwNjbGwIEDMWTIEKVwrK2tlfRVzD9Ac70FgCdPnmDEiBFo0KABDAwM4OXlhStXrijJ1fU7U70+DhgwAKmpqSyZsrIypbzIycmpsVy0eR8mTJiAJk2awMDAANbW1ggJCUFKSorK8BTrl7u7O5ydnZXqeVxcHLp37w4jIyOIxWKIRCLo6+sjICCAecd1LZsXL15g+vTpcHZ2hoGBAdq3b4/Lly+r1PFtKJuKigrMmTMHXl5eMDIygoODA0aNGoXMzEyW3JIlS9C+fXsYGhrC3NxcbXjVdWzXrh0aN27MKpv09HSEhoYybUiLFi1gY2MDAwMDtWWjTV9z8+ZNDBw4EC4uLuDxeFi7dq1aPceOHYv58+fj/v37GDduHFxdXWFgYIAmTZpgwYIFkEgkLPmkpCR06tRJZbsMaNcnEBG+/fZb2NvbK6W1JmpqSwGga9euSu3Q559/rjFcTf1DbfVVQusbA4koNjaWDh48SHfu3KHU1FT6+uuvSU9Pj5KTkxmZNWvWUFhYGIWFhREAysvLUxnW/v37qXnz5kRElJGRQVOnTqWtW7dSq1ataNq0aUryw4YNow0bNlBCQgLdvn2bxowZQ2ZmZvT48WOW3LNnz0hPT4+ys7MpPDycpk6dSqdOnaL09HTatm0bGRgY0Pr16xn5e/fukaGhIc2YMYNu3bpF69evJ4FAQEeOHGFkDh06RN988w3FxMQQANq7dy8rTplMRh9++CF16tSJ4uPjKSUlhT777DNq1KgRFRUVqc1PbdL022+/0aJFi2jz5s0EgBISElSGFRgYSFu2bKHk5GQ6d+4ciUQiMjQ0pPj4eIqKiiIDAwP6+eefiYho9erV9OGHHxIAGjVqFN26dYvmz59Penp6dOPGDVq3bh0FBQUREdH58+dJIBDQihUrlOTkbN++nY4dO0bp6emUnJxM48aNI1NTU8rNzWXpqFjm06ZNo+XLl1N8fDzduXOH5s2bR3p6enTt2jVGfufOnSQSiSgiIoJu3rxJ48ePJ3Nzc8rJySEiohs3btBHH31EsbGxdPfuXTp+/Di5u7vTwIEDmTAqKyvJ09OTAgICKCEhgQ4dOkRWVlY0b948teVCRNS7d2/y9vamixcv0tmzZ8nNzY2GDh3KPM/IyCAA9Pfff1NWVhbzJ5FIWOFUrzuBgYHk5OREx48fpytXrtCHH35I1tbW1Lt3b8rKyqLHjx+Th4cHdenSRUlfxfzTpt4+f/6cnJ2dacyYMXTp0iW6d+8eHT16lO7evcvS8XW8M4r1MTExkfr06aP0Pnz++edKedG+ffsay0Wb9+Hnn3+m06dPU0ZGBl29epX69etHTk5OVFlZyZJTrF+///478Xg8MjAwoLNnzzL1fNu2bWRqakphYWH05ZdfkrGxMc2cOZMuX75M/fv3J1dXVyotLdW5bAYPHkwtWrSg06dPU1paGi1YsIBMTU3/lfbsdZRNfn4+BQQE0K5duyglJYXi4uLI19eXfHx8WHLffvstrV69mmbMmEFmZmZqw1PUMTIykgCQubk5XblyhebPn09CoZAaNmxIoaGhlJSURNOnTyehUEju7u6UkJCgtmy06Wvi4+Np5syZFBUVRXZ2drRmzRqVOlZWVpKVlRVdunSJDh8+TGPGjKGjR49Seno67d+/n2xsbOirr75i5AsKCsjW1paGDx9OycnJSu0ykXZ9wrJly8jMzIz27dtH169fZ6VVHZraUqKqS4bHjx/Pas8KCgrUhkmkXf9QG31V8cq3LltYWNCvv/6q5H7y5MkajZVPP/2U5syZo+TepUsXlRWoOpWVlWRiYkJbt25luf/222/k5+en1t+kSZOoW7duzO/Zs2dTy5YtWTJDhgyhwMBAlf5VGSupqakEgGW0SaVSsra2ps2bN2tMixx1aSJ62TmqM1YU+emnn8jMzIwA0OnTp4mIaM6cOeTh4UEJCQnk6OhI/fr1U0qLn58fTZgwgbp3704bN24koqpGNTg4mBW+XE4dBQUFTEeuiLoyl9OiRQtatGgR89vX15cmT57M/JZKpeTg4EBhYWFqw4iOjiaRSEQVFRVEVGUs8Pl8ys7OZmQ2btxIpqamVF5erjKMW7duEQC6fPky43b48GHi8Xj05MkTItKtPOQAIIFAQLt372bcbt++TQCoc+fOGvUdM2YMk3/a1Ns5c+ZQx44dNer1ut8ZIqLc3FxWfczPzyc9PT2VeREXF6dRZ13y//r16wRAyUhTrF+DBw+mPn36sOqXn58f2djY0Pz580kmk5GdnR19//33jP/8/HwSi8UUFRXFqtua8qekpIQEAgEdOHCAJdOmTRv65ptvWG5vY9nIiY+PJwD04MEDpWdbtmyp0VhRZPDgwRQQEMDS0cPDg3g8HhUUFDBl89133xGPx6Njx46pLRtFtOlrnJ2d1RorZ86cIXt7e5LJZCqfr1ixglxdXZnfP/30E1lYWLDaHXm7rI7qfYKmeqgObdpSbfteRTT1D7XVVxW1XrMilUqxc+dOFBcXw9/fXye/MpkMBw4cQEhISG2jR0lJCSoqKmBpaclyj42NrTHcgoIClp+4uDgEBASwZAIDAxEXF6e1LuXl5QAAfX19xo3P50MsFuPcuXNah6MuTZoYM2YMunbtyvyOi4tD27ZtAYAJKzAwEKmpqRgyZAg2bNigcvg8MDAQ586dw7lz59C/f38mLF3yRyKR4JdffoGZmRm8vb0Zd01lLpPJ8OLFC0ZfiUSCq1evsuLm8/kICAiosWwKCgpgamoKoVDI6O/l5QVbW1uW/oWFhbh586bKMOLi4mBubs7kIQAEBASAz+crTW/1798fNjY26NixI2JjY1nPTp06BR6Ph/v37zNuUqmUlSb59Fl8fDxsbGwwYsQIWFhYMPor6qtYt7Upl9jYWLRt2xaDBg2CjY0NWrdujc2bNyul9994Z+RTc/Jwrl69ioqKCqW8aNSokU7vniaKi4uxZcsWuLq6wsnJiXF3dnbG5cuXmfjj4uLQs2dPVv3q2LEjcnNzYWNjAx8fH2RnZyMqKop5p83MzODn54cLFy6w6ram/KmsrIRUKmW1FwBgYGCg1F68zWVTUFAAHo9X43SPKlxcXLBw4ULmd1xcHHx9fVk6tmrVCkQEsViMjIwMZGdnIzAwEHw+H+fOnVNbNnVJbGws+vXrBx6Pp/K5qrLp3LkzRCIR4yZvl/Py8lSGUb1PkKdVsWzkaa2pTda2Ld2+fTusrKzg6emJefPmoaSkhPVcVdnUVN9qo686dDZWbty4AWNjY4jFYnz++efYu3cvWrRooVMY8nl9Pz8/XaNnmDNnDhwcHFiZUF5ejiNHjjAdbXUuXLiAXbt24bPPPmPcsrOzWR0ZANja2qKwsBClpaVa6SJ/kefNm4e8vDxIJBIsX74cjx8/RlZW1iulSRvs7e3RqFEj5ndWVhbS0tLQoUMHeHp6MmkCAC8vL4SEhCA7O1spHFtbWzx69AgffPABHBwcAKjPn+r+Dxw4AGNjY+jr62PNmjU4duwYrKysmOeaynzlypUoKirC4MGDAQBPnz6FVCrVKm45T58+xeLFi7UqX/kzVWRnZ8PGxoblJhQKYWlpyfgxNjbGqlWrsHv3bhw8eBAdO3bEgAEDWAaLoaEhPDw8oKenxwqneuNta2uLoKAgHD9+HD4+PigrK0NQUBCkUilLX5lMxuSfNvX23r172LhxI9zd3XH06FFMnDgRU6dOxdatWxk//8Y7I5PJMH36dFZ9zM7OhkgkUpkX6spFF3766ScYGxvD2NgYhw8fxrFjx1idhJOTE4iIVRdsbW1Z8cs7oYULFyIoKAgA4OPjgx49ejBz7ra2tozRq23ZmJiYwN/fH4sXL0ZmZiakUil+//13xMXFsdqLt7lsysrKMGfOHAwdOlTnW4SbNGnCajuysrJw+PBhlo6tW7cGj8fDnDlzmI+BTZs2QSqVMnmoqmzqkv3796stm7t372L9+vWYMGEC41abtqh6nyCX07Vd1KYtHTZsGH7//XecPHkS8+bNw7Zt2zBixAiWn+plo6l/qI2+6hBqFmHj4eGBxMREFBQUYM+ePRg9ejROnz6tk8Gyf/9+9O3bF3x+7QZ2li1bhp07d+LUqVOsr5MTJ07AxsYGLVu2VPKTnJyMkJAQLFiwAL169apVvOrQ09NDTEwMxo0bB0tLSwgEAgQEBCAoKAik5W0G6tKkDWFhYazfKSkpyM/Px/nz5xm3EydOAADmzp1bY1jl5eVqX8Ca6NatGxITE/H06VNs3rwZgwcPxqVLl5hOv6Yy37FjBxYtWoT9+/crGQnaUlhYiODgYLRo0YJl+b8urKysMGPGDOZ3u3btkJmZie+//57JP19fX7ULOxVp0KAB3N3d4eXlBRcXF5SWluLcuXM4deoUevTowcj5+vrq9M7IZDK0bdsWS5cuBVDVwCcnJ2PTpk0YPXo0gH/nnZk8eTKSk5N1GmV8VYYPH46ePXsiKysLK1euxODBg3H+/Hnm3YqOjoajo2ONYcjf3QkTJiA4OBhLly7FokWLcPHiRURERDDv3ZMnT3Ruz7Zt24ZPP/0Ujo6OEAgEaNOmDYYOHYqrV68yMm9r2VRUVGDw4MEgImzcuFFn/8ePH2f9lslkePToERISEhg3ExMTmJqa4s8//8QPP/wAoKoNaNOmDascalM22nD79m1kZmay3k/FOHv37o1BgwZh/PjxtY7jVfqE2qBo9Hp5ecHe3h49evRAeno6mjRpAkC5bP5NdC5BkUgENzc3+Pj4ICwsDN7e3ipXpNdEbGxsrTpEoOoLfNmyZfjrr7/wwQcfaBXurVu30KNHD3z22WeYP38+65mdnZ3SKvecnByYmprCwMBAa718fHyQmJiI/Px8ZGVl4ciRI3j27BkaN278SmnSlSlTpuD58+f48MMP0bBhQ8b95MmTAIAPP/wQQqEQFRUVAICBAwcyU0iZmZmoqKhg5aG6/LGzs2O5GRkZwc3NDR9++CHCw8MhFAoRHh7OPFdXNjt37sR//vMfREdHs0aUrKysIBAItIr7xYsX6N27N0xMTLB3717WSIY6/eXPVGFnZ4fc3FyWW2VlJZ4/f67WD1D19SbfDaKOyspKpR1yimmys7PDixcvYGVlxYQl17d3794a06VYb+3t7ZU+Ipo3b46HDx8yv1/3OzNlyhQcOHAAJ0+eZNVHOzs7SCSSGvPiVTAzM4O7uzs6d+6MPXv2ICUlBXv37mWeV69f8jQpxi/fydGiRQvGLScnh5WHOTk5yM3N1eqdUcyfJk2a4PTp0ygqKsKjR48QHx+PiooKVnvxNpaN3FB58OABjh07pvOoSnWmTJnC7EpR1DEnJwfOzs5IT09ndrXMnz8fT548YfJQVdnUFbGxsejZs6eSEZGZmYlu3bqhffv2+OWXX1jPdGmL1PUJivWwejjqykaXtlQR+WhUTW2apv6hNvqq45XNTZlMxqzZ0Ia0tDQ8ePAAPXv21DmuFStWYPHixThy5AhrPQFQ9RX0559/Ks1N3rx5E926dcPo0aOxZMkSpTD9/f2VrMVjx47pvA5HjpmZGaytrZGWloYrV65onCutKU26QESYMmUK9u7di9mzZzPzznIcHR3h4uKCxMREJCYmIjAwEACwZs0abNmyBUDVtlBDQ0PWWpPa5o9ivVBX5lFRURg7diyioqIQHBzMeiYSieDj48OKWyaT4fjx46y4CwsL0atXL4hEIsTGxio1Hv7+/rhx4wbL+JA3oupGA/39/ZGfn6/0las4DaOKxMRE2Nvbq30OAAKBgJWm1NRUPHz4kEmTv78/kpKS8OzZMyas33//HUDV2iRFHTWVS4cOHZS2pN65cwfOzs4AXu87o1gfT5w4AVdXV5a8j48P9PT0asyLuoKqNhKw2qnq9cvf3x9///03q35dvnwZhoaGSE1NhaurK+zs7HD8+HEmDwsLCxEXF4fi4mJW3dblnTEyMoK9vT3y8vJw9OhRpizexrKRGyppaWn4+++/0aBBA7WymlDUsVevXkpr7BTT5OPjAzs7O2zatIkxTtSVTV2xf/9+pbJ58uQJunbtCh8fH2zZskVpNMff3x9nzpxhtcvHjh2Dh4cHLCwsGLea+gTFeiinsLAQly5dUls22ral1ZHneU1tmqb6Vht91aLLaty5c+cyWwKTkpJo7ty5xOPx6K+//mJksrKyKCEhgdlaeObMGUpISKBnz54REdH3339P/fr1Uwo7ISGBEhISyMfHh4YNG0YJCQl08+ZN5vmyZctIJBLRnj17WFurXrx4QUREly9fJgsLC2YXCFHV1lZra2saMWIEy4/illr5Vr9Zs2bR7du3acOGDUpb/V68eMHoB4BWr15NCQkJrFXu0dHRdPLkSUpPT6d9+/aRs7MzffTRRzXmp6Y0EVVtXUxISKCDBw8SANq5cyclJCRQVlYWq1yaNm1KZmZmdOrUKUpNTSUrKyv6+OOP6cqVK7Rz504yNDRkbZE7f/48AaAxY8bQ7du3acGCBcTn82nYsGEsHc+fP09CoZBWrlzJyCluTSsqKqJ58+ZRXFwc3b9/n65cuUJjx44lsVjM7I5SVebbt28noVBIGzZsYKU9Pz+fkdm5cyeJxWKKjIykW7du0WeffUbm5ubMTpmCggLy8/MjLy8vunv3Lisc+TZV+dblXr16UWJiIh05coSsra212rrcunVrunTpEp07d47c3d1ZW5cjIyNpx44ddPv2bbp9+zYtWbKE+Hw+RUREMDKXLl0id3d3Onr0KFN3/P39yc7OjqKioujKlSvk6+tL9vb2FBcXRxkZGXT06FHS19dntp0fOXKEjIyMyM3NjaWfNvU2Pj6ehEIhLVmyhNLS0mj79u1kaGhIv//+OxG93ndm4sSJTH1UDKekpISR+fzzz6lRo0Z04sQJunLlCvn7+5O/v3+N5aLpfUhPT6elS5fSlStX6MGDB3T+/Hnq168fWVpasrZpdu/encaMGcPUr+3bt7O2Lsvr+ezZs8nU1JR2795NM2fOJLFYTCKRiA4ePEghISFkaWmptBtCm/w5cuQIHT58mO7du0d//fUXeXt7k5+fH7P1/W0rG4lEQv3796eGDRtSYmIiK1zF3S8PHjyghIQEWrRoERkbGzPtqmKb1717d+rYsSOjY2xsLAkEAvr2228pISGBKZvvvvuO4uLi6O7duzRkyBDi8XgUEhJCSUlJasuGSHNfU15ezsjY29vTzJkzKSEhgdLS0oiIKCcnh/T09Oiff/5h/Dx+/Jjc3NyoR48e9PjxY1b65eTn55OtrS2NHDmSkpOTVbbL2vQJy5YtI3Nzc9q/fz+TVm22LtfUlt69e5e+++47unLlCmVkZND+/fupcePGzC5FxbJR3CqvqX+orb6q0MlY+fTTT8nZ2ZlEIhFZW1tTjx49WIYKEdGCBQsIgNLfli1biIioY8eOKrfzqvLj7OzMPHd2dlYps2DBAiIimj9/Pg0fPlwrXRTDJaraZt2qVSsSiUTUuHFjRlfF56rCGT16NCOzbt06atiwIenp6VGjRo1o/vz5arfGapsmoqotfppkRo8erVIGAAmFQnJ0dKRly5apzHMHBwcSiUTUsmVLsra2pmPHjinJRUdHU9OmTRm5gwcPMs9KS0spNDSUCcfe3p769+9P8fHxjIyqMu/SpYvGPCUiWr9+PTVq1IhEIhH5+vrSxYsXNZYLAMrIyGDk7t+/T0FBQWRgYEBWVlb01VdfsToBVTx79oyGDh1KxsbGZGpqSmPHjmU1GJGRkdS8eXMyNDQkU1NT8vX1ZW311KSf/Byc/v37U5cuXcja2pr09PTI2dmZhg4dSt27d2f0dXR0pE2bNinpqKneEhH9+eef5OnpSWKxmJo1a0a//PIL8+x1vjPq0q0oV1paSpMmTSILCwsyNDSk0NBQVuOuCk3vw5MnTygoKIhsbGxIT0+PGjZsSMOGDaOUlBRWOM7OzrRgwQJW/XJzcyMnJyeleh4WFkYNGzYkQ0NDatiwIVlYWJBYLKYePXqQj4+PyvZMU/7s2rWLGjduTCKRiOzs7Gjy5MksQ/1tKxv5VnJVfydPnmTk1LVVijLq2kWgauu/vGzmzJlDtra2pKenR+7u7tSzZ0+ysbHRWDaa8lBdWrp06UJERL/++it16NCBFaa6ell9POD69evUsWNHEovFKttlbfoEmUxG//3vf8nW1pZJa2pqqtqykVNTW/rw4UPq3LkzWVpaklgsJjc3N5o1a5bSOSvy90aRmvqHV9G3Oq98zoou/PPPPyQUCllnSNQVXl5etGvXrjoP933h6tWrZGZmpnSo2avyOsv8fYB7Z+ovXNnUX15n2fTr14+WL19e5+Fy1My/ejfQ8+fPsXr1aqVtTK+KRCLBwIEDme2FHLpTWVmJ9evXsxan1gWvq8zfF7h3pv7ClU395XW2Ox07dsTQoUPrPFyOmuERabm3loODg4ODg4PjDcDduszBwcHBwcFRr+GMFQ4ODg4ODo56DWescHBwcHBwcNRrOGOFg4ODg4ODo17DGSscHBwcHBwc9RrOWOHg4ODg4OCo13DGCgfHO8aYMWPA4/HA4/Ggp6cHW1tb9OzZExEREZDJZDqFFRkZCXNz89ejqBa4uLhg7dq1Su4LFy5Eq1at/nV9AODUqVNM/vJ4PBgYGKBly5ZKF9dVLwdXV1fMnj0bZWVlb0RvDo63Gc5Y4eB4B+nduzeysrJw//59HD58GN26dcO0adPQt29fVFZWvmn16gWKF8rVhtTUVGRlZeHWrVuYMGECJk6cqHSpm7wc7t27hzVr1uDnn3/GggULXileDo73Ec5Y4eB4BxGLxbCzs4OjoyPatGmDr7/+Gvv378fhw4cRGRnJyK1evRpeXl4wMjKCk5MTJk2ahKKiIgBVIwhjx45FQUEBM0KwcOFCAMC2bdvQtm1bmJiYwM7ODsOGDWPdbK2K8vJyzJw5E46OjjAyMoKfnx9OnTpVJ+mVyWT47rvv0LBhQ4jFYrRq1QpHjhxhnt+/fx88Hg+7du1Cly5doK+vj+3bt+PZs2cYOnQoHB0dYWhoCC8vL0RFRWkVp42NDezs7ODq6oqpU6fC1dUV165dY8nIy8HJyQkDBgxAQEAAjh07Vidp5uB4n+CMFQ6O94Tu3bvD29sbMTExjBufz8cPP/yAmzdvYuvWrThx4gRmz54NAGjfvj3Wrl0LU1NTZGVlISsrCzNnzgRQNSqxePFiXL9+Hfv27cP9+/cxZsyYGuOfMmUK4uLisHPnTiQlJWHQoEHo3bs30tLSXjlt69atw6pVq7By5UokJSUhMDAQ/fv3Vwp77ty5mDZtGm7fvo3AwECUlZXBx8cHBw8eRHJyMj777DOMHDkS8fHxWsdNRDhy5AgePnwIPz8/tXLJycm4cOECRCJRrdPJwfHe8obvJuLg4KhjRo8eTSEhISqfDRkyhJo3b67W7+7du6lBgwbM7y1btpCZmZnGOC9fvkwAWDdTK/LgwQMSCAT05MkTlnuPHj1o3rx5asOV3/JuZGTE+tPT0yNvb29GzsHBgZYsWcLy265dO5o0aRIRvbxJd+3atRrTEhwcTF999ZXa5/LbtOW6CIVC4vP59L///Y8lN3r0aBIIBGRkZERisZgAEJ/Ppz179mjUgYODg43wzZpKHBwc/yZEBB6Px/z++++/ERYWhpSUFBQWFqKyshJlZWUoKSmBoaGh2nCuXr2KhQsX4vr168jLy2MW7j58+BAtWrRQkr9x4wakUimaNm3Kci8vL0eDBg1q1HnWrFlKozY//PADzpw5AwAoLCxEZmYmOnTowJLp0KEDrl+/znJr27Yt67dUKsXSpUsRHR2NJ0+eQCKRoLy8vMa0yzl79ixMTExQXl6O+Ph4TJkyBZaWlpg4cSIj061bN2zcuBHFxcVYs2YNhEIhBg4cqDFsDg4ONpyxwsHxHnH79m24uroCqFrH0bdvX0ycOBFLliyBpaUlzp07h3HjxkEikajtsIuLixEYGIjAwEBs374d1tbWePjwIQIDAyGRSFT6KSoqgkAgwNWrVyEQCFjPjI2Na9TZysoKbm5uLDdLS0ttk8zCyMiI9fv777/HunXrsHbtWmbtzvTp09WmQxFXV1dmp1TLli1x6dIlLFmyhGWsGBkZMbpHRETA29sb4eHhGDduXK305+B4X+GMFQ6O94QTJ07gxo0b+PLLLwFUjY7IZDKsWrUKfH7V8rXo6GiWH5FIBKlUynJLSUnBs2fPsGzZMjg5OQEArly5UmPcrVu3hlQqRW5uLjp16lRXSQIAmJqawsHBAefPn0eXLl0Y9/Pnz8PX17dGv+fPn0dISAhGjBgBoGqh7p07d1SODmlCIBCgtLRU7XM+n4+vv/4aM2bMwLBhw2BgYKBzHBwc7yvcAlsOjneQ8vJyZGdn48mTJ7h27RqWLl2KkJAQ9O3bF6NGjQIAuLm5oaKiAuvXr8e9e/ewbds2bNq0iRWOi4sLioqKcPz4cTx9+hQlJSVo1KgRRCIR4y82NhaLFy+uUZ+mTZti+PDhGDVqFGJiYpCRkYH4+HiEhYXh4MGDr5zeWbNmYfny5di1axdSU1Mxd+5cJCYmYtq0aTX6c3d3x7Fjx3DhwgXcvn0bEyZMQE5OjlZx5ubmIjs7Gw8ePMDu3buxbds2hISE1Ohn0KBBEAgE2LBhg9Zp4+DgALfAloPjXWP06NEEgACQUCgka2trCggIoIiICJJKpSzZ1atXk729PRkYGFBgYCD99ttvBIDy8vIYmc8//5waNGhAAGjBggVERLRjxw5ycXEhsVhM/v7+FBsbSwAoISFBrV4SiYS+/fZbcnFxIT09PbK3t6fQ0FBKSkpS68fZ2ZnWrFmj5L5gwQLWAlupVEoLFy4kR0dHZvHt4cOHmefyBbbV9Xv27BmFhISQsbEx2djY0Pz582nUqFFqFygTvVxgq5jHrq6uNHPmTCoqKmLk1C10DgsLI2tra5YsBwdHzfCIiN6YpcTBwcHBwcHBoQFuGoiDg4ODg4OjXsMZKxwcHBwcHBz1Gs5Y4eDg4ODg4KjXcMYKBwcHBwcHR72GM1Y4ODg4ODg46jWcscLBwcHBwcFRr+GMFQ4ODg4ODo56DWescHBwcHBwcNRrOGOFg4ODg4ODo17DGSscHBwcHBwc9RrOWOHg4ODg4OCo1/wfSplwKRrp2cEAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAHgCAYAAABkaS3CAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADjq0lEQVR4nOzddXQUVxsH4N9u3EOIIcEluBOCBQ/uECgUrQOlQAukX9FiLUVaipUGaZEEdxIguLtb0ARihLhvduf7Y7rLzrpmJ/A+5+QkmZ259+7s7Mw710bAMAwDQgghhBCeElq6AIQQQgghmlCwQgghhBBeo2CFEEIIIbxGwQohhBBCeI2CFUIIIYTwGgUrhBBCCOE1ClYIIYQQwmsUrBBCCCGE1yhYISXenTt3MHv2bMTFxVm6KITw1tOnTzF79mw8efLE0kUhRG8UrJASLSMjA/369UNaWhr8/Px03q5du3Zo166d+QpG9LJx40YIBAK8fPnSbHlUqlQJo0aNMlv6liYQCDB79myVrxUUFGDQoEF49uwZatSoYdZyvHz5EgKBABs3bjRrPuTjQsEK4Y27d+9i4MCBqFixIuzt7VGuXDl07twZK1asULvN6NGj0ahRIyxbtqwYS6qf2bNnQyAQaP2h4OnDsXTpUggEAhw/flztOuvWrYNAIMD+/fvNXp7JkyejVKlSCAsLM3tehJiDgJ4NRPjgwoULaN++PSpUqICRI0fC19cXcXFxuHTpEp49e4anT58qbfPy5Uts3boVkydPhr29vV75FRYWAgBsbW1NUn5N7ty5gzt37sj+z87Oxtdff41+/fqhf//+suU+Pj7o3Lmz2cvDR2KxGCKRCHZ2dhAIBGbJo1KlSmjXrl2x3PHHx8fDz88PI0eOxPr161Wu0759e9y9excJCQmwsbExOs/8/HxYW1vD2tqaszw1NRUrV67Et99+Czc3N6Pz0YZhGBQUFMDGxgZWVlZmz498HChYIbzQo0cPXL16FU+ePIG7uzvnteTkZHh7e5skn9zcXDg6OpokLUOlpKTAy8sLs2bNUlttX9Ll5OTAycnJ0sXgKM5gBQA6deqEa9euISkpCXZ2dpzX3rx5gwoVKuCLL77A6tWrDc5DIpGgsLBQ72CdkJKGmoEILzx79gx16tRRClQAqAxUNm/ejCZNmsDBwQEeHh4YMmSIUgfbdu3aoW7durh+/Tratm0LR0dH/Pjjj7LXFJtdCgoKMGvWLFSrVg12dnbw8/PD1KlTUVBQwFnv2LFjaN26Ndzd3eHs7IyaNWvK0jXGo0ePMHDgQHh4eMDe3h5NmzZVaiKQ9u04d+4cvv32W3h5ecHd3R1ffvklCgsLkZ6ejhEjRqBUqVIoVaoUpk6dCvn7EWl/gt9++w3Lli1DxYoV4eDggKCgINy7d0+pTCdOnECbNm3g5OQEd3d39OnTBw8fPuSsI23mevDgAT755BOUKlUKrVu3BsDWKo0aNQpVqlSBvb09fH19MWbMGLx7907l+5Lvs3Lt2jUEBwfD09MTDg4OqFy5MsaMGaN1PzIMg3nz5qF8+fJwdHRE+/btcf/+faX1UlNT8f3336NevXpwdnaGq6srunXrhtu3byutu2LFCtSpUweOjo4oVaoUmjZtiq1bt2osx/Dhw5GRkYFDhw4pvRYeHg6JRIJhw4YBAH777Te0bNkSpUuXhoODA5o0aYKdO3cqbScQCDB+/Hhs2bIFderUgZ2dHSIjI2WvyQe/r169wjfffIOaNWvCwcEBpUuXxqBBg5T2sUAgwKZNm5TyioqKgkAgwMGDB2XL3rx5gzFjxsDHxwd2dnaoU6eOUs2Rqj4riYmJGD16NMqXLw87OzuUKVMGffr0MWsfJfJhsda+CiHmV7FiRVy8eBH37t1D3bp1Na47f/58zJgxA4MHD8Znn32Gt2/fYsWKFWjbti1u3rzJCXjevXuHbt26YciQIRg+fDh8fHxUpimRSNC7d2+cO3cOX3zxBWrVqoW7d+9i2bJlePLkCfbu3QsAuH//Pnr27In69etj7ty5sLOzw9OnT3H+/Hmj3v/9+/fRqlUrlCtXDtOnT4eTkxO2b9+Ovn37YteuXejXrx9n/QkTJsDX1xdz5szBpUuX8Ndff8Hd3R0XLlxAhQoVsGDBAhw+fBiLFy9G3bp1MWLECM72//zzD7KysjBu3Djk5+fj999/R4cOHXD37l3ZPjp+/Di6deuGKlWqYPbs2cjLy8OKFSvQqlUr3LhxA5UqVeKkOWjQIFSvXh0LFiyQBUjHjh3D8+fPMXr0aPj6+uL+/fv466+/cP/+fVy6dEltk09ycjK6dOkCLy8vTJ8+He7u7nj58iV2796tdV/OnDkT8+bNQ/fu3dG9e3fcuHEDXbp0kTX9ST1//hx79+7FoEGDULlyZSQlJWHt2rUICgrCgwcPULZsWQBs35Jvv/0WAwcOxMSJE5Gfn487d+7g8uXL+OSTT9SWo3///vj666+xdetWTnMfAGzduhUVK1ZEq1atAAC///47evfujWHDhqGwsBDh4eEYNGgQDh48iB49enC2PXHiBLZv347x48fD09NT6XOQunr1Ks6fP48hQ4agfPnyePHiBVatWoV27drhwYMHcHR0RNOmTVGlShVs374dI0eO5GwfERGBUqVKITg4GACQlJSEFi1ayAImLy8vHDlyBGPHjkVmZia+++47tftiwIABuH//PiZMmIBKlSohOTkZx44dQ2xsrNryE8LBEMIDR48eZaysrBgrKysmMDCQmTp1KhMVFcUUFhZy1nv58iVjZWXFzJ8/n7P87t27jLW1NWd5UFAQA4BZs2aNUn5BQUFMUFCQ7P9///2XEQqFzNmzZznrrVmzhgHAnD9/nmEYhlm2bBkDgHn79q3B7/Xt27cMAGbWrFmyZR07dmTq1avH5Ofny5ZJJBKmZcuWTPXq1WXLNmzYwABggoODGYlEIlseGBjICAQC5quvvpItKyoqYsqXL895ny9evGAAMA4ODszr169lyy9fvswAYCZNmiRb1rBhQ8bb25t59+6dbNnt27cZoVDIjBgxQrZs1qxZDABm6NChSu81NzdXadm2bdsYAMyZM2eU3teLFy8YhmGYPXv2MACYq1evKm2vSXJyMmNra8v06NGDs39+/PFHBgAzcuRI2bL8/HxGLBZztn/x4gVjZ2fHzJ07V7asT58+TJ06dfQqh9SgQYMYe3t7JiMjQ7bs0aNHDAAmNDRUtkxxPxUWFjJ169ZlOnTowFkOgBEKhcz9+/eV8lI8pnJycpTWOXfuHAOA+eeff2TLQkNDGRsbGyY1NVW2rKCggHF3d2fGjBkjWzZ27FimTJkyTEpKCifNIUOGMG5ubrL3ID3GNmzYwDAMw6SlpTEAmMWLFyuVhxBdUTMQ4YXOnTvj4sWL6N27N27fvo1ff/0VwcHBKFeuHKcpZPfu3ZBIJBg8eDBSUlJkP76+vqhevTpOnjzJSdfOzg6jR4/Wmv+OHTtQq1Yt+Pv7c9Lt0KEDAMjSldba7Nu3DxKJxCTvPTU1FSdOnMDgwYORlZUly/vdu3cIDg5GTEwM3rx5w9lm7NixnFqJgIAAMAyDsWPHypZZWVmhadOmeP78uVKeffv2Rbly5WT/N2/eHAEBATh8+DAAICEhAbdu3cKoUaPg4eEhW69+/fro3LmzbD15X331ldIyBwcH2d/5+flISUlBixYtAAA3btxQu0+k+/ngwYMQiURq11N0/PhxFBYWYsKECZz9o+qu387ODkIhewoUi8V49+6drFlPvmzu7u54/fo1rl69qnM5pIYPH478/HxOjZC0+UjaBARw91NaWhoyMjLQpk0blfsoKCgItWvX1pq3Yt+sgoICNGnSBKVKleKkGxISApFIxCnj0aNHkZ6ejpCQEABs09quXbvQq1cvMAzD+Y4EBwcjIyND7efp4OAAW1tbnDp1CmlpaVrLTYgqFKwQ3mjWrBl2796NtLQ0XLlyBaGhocjKysLAgQPx4MEDAEBMTAwYhkH16tXh5eXF+Xn48CGSk5M5aZYrV06nET8xMTG4f/++UprSOSmk6YaEhKBVq1b47LPP4OPjgyFDhmD79u1GBS5Pnz4FwzCYMWOGUv6zZs3i5C9VoUIFzv/SUR6Kc824ubmpvEBUr15daVmNGjVkfQhevXoFAKhZs6bSerVq1UJKSgpycnI4yytXrqy0bmpqKiZOnAgfHx84ODjAy8tLtl5GRobS+lJBQUEYMGAA5syZA09PT/Tp0wcbNmxQ6j+kSFpuxffn5eWFUqVKcZZJJBIsW7YM1atXh52dHTw9PeHl5YU7d+5wyjZt2jQ4OzujefPmqF69OsaNG6dzs1+3bt3g4eHB6d+ybds2NGjQAHXq1JEtO3jwIFq0aAF7e3t4eHjAy8sLq1evVrmPVO1nVQoKCrBw4UL4+/vDwcEB9vb2cHBwkAVDUg0aNIC/vz8iIiJkyyIiIuDp6SkL1t++fYv09HT89ddfSseo9GZA8RiVsrOzwy+//IIjR47Ax8cHbdu2xa+//orExESd3gchAPVZITxka2uLZs2aoVmzZqhRowZGjx6NHTt2YNasWZBIJBAIBDhy5IjKYZHOzs6c/+XvWDWRSCSoV68eli5dqvJ1aRDg4OCAM2fO4OTJkzh06BAiIyMRERGBDh064OjRowYN1ZQGOt9//72sf4CiatWqcf5Xl4+q5UwxDfhTta8HDx6MCxcu4IcffkDDhg3h7OwMiUSCrl27agzwBAIBdu7ciUuXLuHAgQOIiorCmDFjsGTJEly6dEnpczbEggULMGPGDIwZMwY///wzPDw8IBQK8d1333HKVqtWLTx+/BgHDx5EZGQkdu3ahVWrVmHmzJmYM2eOxjxsbGwwePBgrFu3DklJSYiNjUVMTAx+/fVX2Tpnz55F79690bZtW6xatQplypSBjY0NNmzYoLITr67H9MSJExEWFoZp06ahdevWcHNzg0AgQK9evZT2fUhICObPn4+UlBS4uLhg//79GDp0qGwYtHT94cOHK/Vtkapfv77asnz33Xfo1asX9u7di6ioKMyYMQMLFy7EiRMn0KhRI53eD/m4UbBCeK1p06YA2GYJAKhatSoYhkHlypVNOhNn1apVcfv2bXTs2FHrPB9CoRAdO3ZEx44dsXTpUixYsAD/+9//cPLkSXTq1EnvvKtUqQKAvbAZsr0hYmJilJY9efJE1tmxYsWKAIDHjx8rrffo0SN4enpqHZqclpaG6OhozJkzBzNnztSYtzotWrRAixYtMH/+fGzduhXDhg1DeHg4PvvsM5XrS8sdExMj268AWzOgWMO0c+dOtG/fXmmitPT0dHh6enKWOTk5ISQkBCEhISgsLET//v0xf/58hIaGah02PGzYMKxZswYRERF48eIFBAIBhg4dKnt9165dsLe3R1RUFGeI84YNGzSmq01ERARGjRqFefPmyZbl5eUhNTVVad2QkBDMmTMHu3btgo+PDzIzMzFkyBDZ615eXnBxcYFYLDb4GK1atSqmTJmCKVOmICYmBg0bNsSSJUuwefNmg9IjHxdqBiK8cPLkSZU1ANK+EdLmiP79+8PKygpz5sxRWp9hGKUhsboaPHgw3rx5g3Xr1im9lpeXJ2vyUHWib9iwIQBobaJQx9vbG+3atcPatWtlQZm8t2/fGpSuJnv37uX0g7ly5QouX76Mbt26AQDKlCmDhg0bYtOmTUhPT5etd+/ePRw9ehTdu3fXmoe0lkfxc1q+fLnWbdPS0pS202U/d+rUCTY2NlixYgVne1V5WllZKeWxY8cOpf5BiseUra0tateuDYZhdOpP06pVK1SqVAmbN29GREQEgoKCUL58eU45BAIBxGKxbNnLly9lI9AMJRAIlMq3fPlylTVatWrVQr169RAREYGIiAiUKVMGbdu25ZRxwIAB2LVrl8oh7pqO0dzcXOTn53OWVa1aFS4uLgZ/Z8jHh2pWCC9MmDABubm56NevH/z9/VFYWIgLFy4gIiIClSpVkrWLV61aFfPmzUNoaChevnyJvn37wsXFBS9evMCePXvwxRdf4Pvvv9c7/08//RTbt2/HV199hZMnT6JVq1YQi8V49OgRtm/fjqioKDRt2hRz587FmTNn0KNHD1SsWBHJyclYtWoVypcvL5tbxBArV65E69atUa9ePXz++eeoUqUKkpKScPHiRbx+/Vrl3B/GqFatGlq3bo2vv/4aBQUFWL58OUqXLo2pU6fK1lm8eDG6deuGwMBAjB07VjZ02c3NTafJ7FxdXWX9E0QiEcqVK4ejR4/ixYsXWrfdtGkTVq1ahX79+qFq1arIysrCunXr4OrqqjFQ8vLywvfff4+FCxeiZ8+e6N69O27evIkjR44o1Zb07NkTc+fOxejRo9GyZUvcvXsXW7Zs4dTIAECXLl3g6+uLVq1awcfHBw8fPsSff/6JHj16wMXFRet7EQgE+OSTT7BgwQIAwNy5czmv9+jRA0uXLkXXrl3xySefIDk5GStXrkS1atU4Mx/rq0ePHti8eTPc3d1Rq1YtXLhwASdPnlTaD1IhISGYOXMm7O3tMXbsWFnnY6lFixbh5MmTCAgIwOeff47atWsjNTUVN27cwPHjx1UG8gBbY9exY0cMHjwYtWvXhrW1Nfbs2YOkpCRO7Q0hGllgBBIhSo4cOcKMGTOG8ff3Z5ydnRlbW1umWrVqzIQJE5ikpCSl9Xft2sW0bt2acXJyYpycnBh/f39m3LhxzOPHj2XrBAUFqR1yqjh0mWHY4aK//PILU6dOHcbOzo4pVaoU06RJE2bOnDmyoafR0dFMnz59mLJlyzK2trZM2bJlmaFDhzJPnjzR+b2qGrrMMAzz7NkzZsSIEYyvry9jY2PDlCtXjunZsyezc+dO2TrSIb6KQ3qlw4cVh1SPHDmScXJykv0vHVa6ePFiZsmSJYyfnx9jZ2fHtGnThrl9+7ZSWY8fP860atWKcXBwYFxdXZlevXoxDx480ClvhmGY169fM/369WPc3d0ZNzc3ZtCgQUx8fLzS+1ccunzjxg1m6NChTIUKFRg7OzvG29ub6dmzJ3Pt2jWN+5ZhGEYsFjNz5sxhypQpwzg4ODDt2rVj7t27x1SsWFFp6PKUKVNk67Vq1Yq5ePGi0rGxdu1apm3btkzp0qUZOzs7pmrVqswPP/zAGY6szf379xkAjJ2dHZOWlqb0elhYGFO9enXGzs6O8ff3ZzZs2CDbr/IAMOPGjVOZh+I+TU1NZUaOHMl4enoyzs7OTPfu3ZknT54o7QepmJgYBgADgDl37pzKPJKSkphx48Yxfn5+jI2NDePr68t07NiR+euvv2TrKA5dTklJYcaNG8f4+/szTk5OjJubGxMQEMBs375d804jRA5Nt0/IR+Tly5eoXLkyFi9ebFANFCGEWAL1WSGEEEIIr1GwQgghhBBeo2CFEEIIIbxGfVYIIYQQwmtUs0IIIYQQXqNghRBCCCG8RsEKIYQQQniNghVCCCGE8BoFK4QQQgjhNQpWCCGEEMJrFKwQQgghhNcoWCGEEEIIr1GwQgghhBBeo2CFEEIIIbxGwQohhBBCeI2CFUIIIYTwGgUrhBBCCOE1ClYIIYQQwmsUrBBCCCGE1yhYIYQQQgivUbBCCCGEEF6jYIUQQgghvEbBCiGEEEJ4jYIVQgghhPAaBSuEEEII4TUKVgghhBDCaxSsEEIIIYTXKFghhBBCCK9RsEIIIYQQXqNghRBCCCG8RsEKIYQQQnjN2tIFMJZEIkF8fDxcXFwgEAgsXRxCCCGE6IBhGGRlZaFs2bIQCjXXnZT4YCU+Ph5+fn6WLgYhhBBCDBAXF4fy5ctrXKdYg5VFixYhNDQUEydOxPLlywEA+fn5mDJlCsLDw1FQUIDg4GCsWrUKPj4+OqXp4uICgH2zrq6u5io6IYQQQkwoMzMTfn5+suu4JsUWrFy9ehVr165F/fr1OcsnTZqEQ4cOYceOHXBzc8P48ePRv39/nD9/Xqd0pU0/rq6uFKwQQgghJYwuXTiKpYNtdnY2hg0bhnXr1qFUqVKy5RkZGQgLC8PSpUvRoUMHNGnSBBs2bMCFCxdw6dKl4igaIYQQQniuWIKVcePGoUePHujUqRNn+fXr1yESiTjL/f39UaFCBVy8eFFlWgUFBcjMzOT8EM02nH+BoMUn8Tot19JFIYQQQvRm9mAlPDwcN27cwMKFC5VeS0xMhK2tLdzd3TnLfXx8kJiYqDK9hQsXws3NTfZDnWu1m3PgAV69y8XCw48sXRRCCCFEb2btsxIXF4eJEyfi2LFjsLe3N0maoaGhmDx5sux/aQcdop1ILLF0EYgGYrEYIpHI0sUghBCTsbW11TosWRdmDVauX7+O5ORkNG7cWLZMLBbjzJkz+PPPPxEVFYXCwkKkp6dzaleSkpLg6+urMk07OzvY2dmZs9iEFCuGYZCYmIj09HRLF4UQQkxKKBSicuXKsLW1NSodswYrHTt2xN27dznLRo8eDX9/f0ybNg1+fn6wsbFBdHQ0BgwYAAB4/PgxYmNjERgYaM6iEcIb0kDF29sbjo6ONLkhIeSDIJ20NSEhARUqVDDq3GbWYMXFxQV169blLHNyckLp0qVly8eOHYvJkyfDw8MDrq6umDBhAgIDA9GiRQtzFo0QXhCLxbJApXTp0pYuDiGEmJSXlxfi4+NRVFQEGxsbg9Ox+Ay2y5Ytg1AoxIABAziTwhHyMZD2UXF0dLRwSQghxPSkzT9isbhkBSunTp3i/G9vb4+VK1di5cqVxV0UQniDmn4IIR8iU53b6KnLhBBCCOE1ClYIIcQCkpOTERwcDH9/f9SvXx99+vShSS5LgMWLF6Nnz54oKCiwdFE+Khbvs0IIIR8jb29vREVFWboYRA9paWkQCoXYvXu30UNxiX6oZoUQQgjRQalSpTBlyhTeBSpt27bF1q1biz3fwsJCVKpUCdeuXTN7XhSsEEIMMmrUKAgEAggEAtja2qJatWqYO3cuioqKALCd6aWvCwQCeHl5oXv37kpzL8mnI//TtWtXzno3b97EoEGD4OPjA3t7e1SvXh2ff/45njx5AgB4+fIlBAIBbt26xflf+lO6dGl06dIFN2/elKXZrl07fPfdd0rrqvrZuHEjACAvLw8eHh7w9PRU2xSwa9cutGvXDm5ubnB2dkb9+vUxd+5cpKamctbLycmBu7s7vL291c5evGnTJjRr1gyOjo5wcXFBUFAQDh48qPZzUdzvqn6kAx3y8vIwa9Ys1KhRA3Z2dvD09MSgQYNw//59WXqVKlXSmNaoUaNk6wYHB8PKygpXr15VKteoUaPQt29fteXWRvHzlSf9HOXdv38fgwcPhpeXF+zs7FCjRg3MnDkTubncZ6TJvz9HR0fUq1cPf//9t8oybNu2DVZWVhg3bpzSa/oc74r7IS4uDmPGjEHZsmVha2uLihUrYuLEiXj37p3W/bJ//34kJSVhyJAhWtc1NVtbW3z//feYNm2a2fOiYIUQYrCuXbsiISEBMTExmDJlCmbPno3Fixdz1nn8+DESEhIQFRWFgoIC9OjRA4WFhSrTkf/Ztm2b7PWDBw+iRYsWKCgowJYtW/Dw4UNs3rwZbm5umDFjhsYyHj9+XJZ/dnY2unXrpjRbsJ+fHyfvKVOmoE6dOpxlISEhANhApE6dOvD398fevXuV8vvf//6HkJAQNGvWDEeOHMG9e/ewZMkS3L59G//++y9n3R07dqBZs2aoUKEC9u/fr5TW999/jy+//BIhISG4c+cOrly5gtatW6NPnz74888/Vb7fli1bcso9ePBgpf3bsmVLFBQUoFOnTli/fj3mzZuHJ0+e4PDhwygqKkJAQIDsyfdXr16Vbbdr1y7OZ5qQkIDff/8dABAbG4sLFy5g/PjxWL9+vcbPxNwuXbqEgIAAFBYW4tChQ3jy5Anmz5+PjRs3onPnzkrH39y5c5GQkIB79+5h+PDh+Pzzz3HkyBGldMPCwjB16lRs27YN+fn5KvPW5XiX9/z5czRt2hQxMTHYtm0bnj59ijVr1iA6OhqBgYFKAa6iP/74A6NHjzbJlPaGGDZsGM6dO8cJcM2CKeEyMjIYAExGRoali8JbFacdZCpOO8h8vumqpYtCFOTl5TEPHjxg8vLyLF0UvY0cOZLp06cPZ1nnzp2ZFi1aMAzDMCdPnmQAMGlpabLX9+/fzwBgbt++rTEdeTk5OYynpyfTt29fla9L03/x4gUDgLl586bK/xmGYc6fP88AYCIjIxmGYZigoCBm4sSJSmnOmjWLadCggcr82rVrx6xZs4ZZvXo107lzZ85rly9fZgAwy5cv11hWqTZt2jAbNmxgli1bxnTv3p3z2sWLFxkAzB9//KGUzuTJkxkbGxsmNjZWZT7y1O3fRYsWMQKBgLl16xZnuVgsZpo2bcrUrl2bkUgknNdUfaZSs2fPZoYMGcI8fPiQcXNzY3Jzc3Uqh65UfZ5S8p+jRCJhateuzTRt2pQRi8Wc9W7dusUIBAJm0aJFsmUVK1Zkli1bxlnPw8ODmTRpEmfZ8+fPGQcHByY9PZ0JCAhgtmzZwnnd0OO9a9euTPny5ZX2V0JCAuPo6Mh89dVX6nYJk5yczAgEAubevXuc5QCYNWvWMD169GAcHBwYf39/5sKFC0xMTAwTFBTEODo6MoGBgczTp09l20iP+bCwMMbPz49xcnJivv76a6aoqIj55ZdfGB8fH8bLy4uZN2+eUjnat2/P/PTTTyrLqOkcp8/1m2pWCOEZhmGQW1hkkR/2PGc4BwcHtXeRGRkZCA8PBwC92vyjoqKQkpKCqVOnqnxd8ant2soHQOOdribPnj3DxYsXMXjwYAwePBhnz57Fq1evZK9v2bIFzs7O+Oabb7SWNSYmBteuXUP//v0xdOhQHD9+HG/evJG9vm3bNjg7O+PLL79USmfKlCkQiUSymg5DbN26FZ07d0aDBg04y4VCISZNmoQHDx7g9u3bOqXFMAw2bNiA4cOHw9/fH9WqVcPOnTsNLpsxbt26hQcPHmDy5MlKtQ0NGjRAp06dOLV28iQSCXbt2oW0tDSlY3TDhg3o0aMH3NzcMHz4cISFhWkshy7He2pqKqKiovDNN9/Ijk0pX19fDBs2DBEREWq/l+fOnYOjoyNq1aql9NrPP/+MESNG4NatW/D398cnn3yCL7/8EqGhobh27RoYhsH48eM52zx79gxHjhxBZGQktm3bhrCwMPTo0QOvX7/G6dOn8csvv+Cnn37C5cuXOds1b94cZ8+e1bg/jEWjgQjhmTyRGLVnWmaUyIO5wXC01f+0wDAMoqOjERUVhQkTJnBeK1++PAC2fwYA9O7dG/7+/px1Dh48CGdnZ86yH3/8ET/++CNiYmIAQGkbfaWnp+Pnn3+Gs7MzmjdvblAa69evR7du3VCqVCkAbB+NDRs2YPbs2QDYAKRKlSo6zdS5fv169OrVC66urnB1dUX79u2xadMm/PjjjwCAJ0+eoGrVqiovdGXLloWrq6usv44hnjx5gvbt26t8TXrxe/LkCRo2bKg1rePHjyM3NxfBwcEAILuYf/rppwaXT52WLVsqBSF5eXmyckr3iaoLuHT5uXPnOMumTZuGn376CQUFBSgqKoKHhwc+++wz2esSiQQbN27EihUrAABDhgzBlClT8OLFC1SuXJmTli7Hu1RMTAwYhtFY1rS0NLx9+xbe3t5Kr7969Qo+Pj4qm4BGjx6NwYMHy95fYGAgZsyYIfuMJk6ciNGjR3O2kUgkWL9+PVxcXFC7dm20b98ejx8/xuHDhyEUClGzZk388ssvOHnyJAICAmTblS1blhO0mwPVrBBCDCYNMuzt7dGtWzeEhITILtxSZ8+exfXr17Fx40bUqFEDa9asUUqnffv2uHXrFufnq6++AgCja3tatmwJZ2dnlCpVCrdv30ZERAR8fHz0TkcsFmPTpk0YPny4bNnw4cOxceNGSCQSvcoqFovxzz//YNiwYZy0NmzYwFnP2PeujanSX79+PUJCQmBtzQa6Q4cOxfnz5/Hs2TOTpC8vIiJC6Vhp2rSp0nr6vLcffvgBt27dwokTJxAQEIBly5ahWrVqstePHTuGnJwcdO/eHQDg6emJzp07q+ybo8vxbkxZ5eXl5cHe3l7la/Xr15f9LT3e69Wrx1mWn5/PmdunUqVKcHFx4axTu3ZtTjDk4+OD5ORkTl4ODg5KHZdNjWpWCOEZBxsrPJgbbLG89dG+fXusXr0atra2KFu2rOxiJa9y5cpwd3dHzZo1kZycjJCQEJw5c4azjpOTE+fiIK9GjRoAgEePHhn0NPaIiAjUrl0bpUuX1qvJSFFUVBTevHkj62grJRaLER0djc6dO6NGjRo4d+4cRCKRxtqVI0eOID4+Hv3791dK6/Tp0wgKCpKlVVhYqFS7Eh8fj8zMTNm+MUSNGjXw8OFDla9Jl+uSfmpqKvbs2QORSITVq1dz3sv69esxf/58g8uoip+fn9KxIt+EIi3zw4cP0ahRI6XtHz58qPS+PD09Ua1aNVSrVg07duxAvXr10LRpU9SuXRsA27E2NTWVk49EIsGdO3cwZ84czsVcl+Ndqlq1ahAIBHj48CH69eunsqylSpWCl5eXyu09PT2Rlpam8jX540865b2qZdJAW/F16TqqlslvA7DHgLoymgrVrBDCMwKBAI621hb50fc5HtIgo0KFCioDFUXjxo3DvXv3sGfPHp3z6NKlCzw9PfHrr7+qfF1xZI8iPz8/VK1a1ahABWAvWEOGDFG6qx8yZIis/8Inn3yC7OxstQ9jlZZ1/fr1KtPq16+f7G59yJAhyM7Oxtq1a5XS+e2332BjY4MBAwYY/H6GDBmC48ePK/VLkUgkWLZsGWrXrq3Un0WVLVu2oHz58rh9+zbnvSxZsgQbN26EWCw2uIyGaNiwIfz9/bFs2TKli+rt27dx/PhxDB06VO32fn5+CAkJQWhoKADg3bt32LdvH8LDwznv7+bNm0hLS8PRo0fVpqXteC9dujQ6d+6MVatWIS8vj/NaYmIitmzZgpCQELXfy0aNGiExMVFtwFJc7t27pzIwNCWqWSGEFBtHR0d8/vnnmDVrFvr27Ss7CRcUFCAxMZGzrrW1NTw9PeHk5IS///4bgwYNQu/evfHtt9+iWrVqSElJwfbt2xEbGyvryGgub9++xYEDB7B//37UrVuX89qIESPQr18/pKamIiAgAFOnTsWUKVPw5s0b9OvXD2XLlpUNR23dujWGDh2KgwcPqkzr008/xfDhw7FixQoEBgZi4sSJ+OGHH1BYWIi+fftCJBJh8+bN+P3337F8+XL4+fkZ/J4mTZqEffv2oVevXliyZAkCAgKQlJSEBQsW4OHDhzh+/LhOwWtYWBgGDhyo9F78/PwQGhqKyMhI9OjRAwDb6VRxnpTSpUsb9T4UCQQChIWFoXPnzhgwYABCQ0Ph6+uLy5cvY8qUKQgMDFSak0XRxIkTUbduXVy7dg3nzp1D6dKlMXjwYKX90b17d4SFhSnNCSSl7niX9+eff6Jly5YIDg7GvHnzULlyZdy/fx8//PADypUrp7FmqlGjRvD09MT58+fRs2dP7TvHTM6ePYuff/7ZrHlQzQohpFiNHz8eDx8+xI4dO2TLIiMjUaZMGc5P69atZa/36dMHFy5cgI2NDT755BP4+/tj6NChyMjIwLx588xe5n/++QdOTk7o2LGj0msdO3aEg4MDNm/eDAD45ZdfsHXrVly+fBlt2rRBpUqVMHnyZNSrVw+ffvop/v33X7Vpde3aFQKBQBZ8LV++HKtWrcK2bdtQt25dNG3aFGfOnMHevXuVOjLry97eHidOnMCIESPw448/olq1aujatSusrKxw6dIltGjRQmsa169fx+3bt1XW8Li5uaFjx46cUTOnTp1Co0aNOD9z5swBwE6W1q5dO6Pek1TLli1x6dIlWFlZoVu3bqhWrRpCQ0MxcuRIHDt2DHZ2dhq3r127Nrp06YKZM2di/fr16Nevn8pAY8CAAdi/fz9SUlLUpqXqeJdXvXp1XLt2DVWqVMHgwYNRtWpVfPHFF2jfvj0uXrwIDw8PtWlbWVlh9OjR2LJli8b3Y04XL15ERkYGBg4caNZ8BIy5e3CZWWZmJtzc3JCRkQFXV1dLF4eXKk0/BADoUtsHf41Q7ohGLCc/P182okBdRzlScmVmZqJr1644c+aMTs1kH7OgoCC0b99eqYM20SwxMRF16tTBjRs3ULFixWLPPyQkBA0aNJCNYlOk6Rynz/WbalYIIcQMYmNjkZycjPj4eKUp1wlXRkYGnj17hu+//97SRSlxfH19ERYWhtjY2GLPu7CwEPXq1cOkSZPMnhcFK4QQYgYRERGoU6cOvL29Ub16dUsXh9fc3Nzw+vVrpbl2iG769u2LNm3aFHu+tra2+Omnn5QmtDMHClYIIcQMfvjhBxQUFODKlSt0ESbESBSsEEIIIYTXKFghhAdKeD93QghRyVTnNgpWCLEg6eyQ5p6qmhBCLEH60FArK/1mx1ZEY+kIsSArKyu4u7vLnrXh6Oio9yyyhBDCRxKJBG/fvoWjo6PRQ/cpWCHEwnx9fQFA6eFghBBS0gmFQlSoUMHomzAKVgixMIFAgDJlysDb2xsikcjSxSGEEJOxtbXlPOjRUBSsEKJG2LkXOBvzFms/bQI7a+PaW3VhZWVldLsuIYR8iKiDLSFq/HzwAU49fotd199YuiiEEPJRo2CFEC1yC4ssXQRCCPmoUbBCCCGEEF6jYIUQQgghvEbBCiGE8IBILMHQvy7hl8hHli4KIbxDwcpHhCZ0J4S/jj9IwsXn77D61DNLF4UQ3qFghRBCeKBQLLF0EQjhLQpWPiI0iTshhJCSiIIVQgghhPAaBSuEEEII4TUKVgghhBDCaxSsEEIIIYTXKFghhBBCCK9RsEIIIYQQXjNrsLJw4UI0a9YMLi4u8Pb2Rt++ffH48WPOOvn5+Rg3bhxKly4NZ2dnDBgwAElJSeYsFiGEEEJKELMGK6dPn8a4ceNw6dIlHDt2DCKRCF26dEFOTo5snUmTJuHAgQPYsWMHTp8+jfj4ePTv39+cxSKEEEJICWJtzsQjIyM5/2/cuBHe3t64fv062rZti4yMDISFhWHr1q3o0KEDAGDDhg2oVasWLl26hBYtWiilWVBQgIKCAtn/mZmZ5nwLhBBCCLGwYu2zkpGRAQDw8PAAAFy/fh0ikQidOnWSrePv748KFSrg4sWLKtNYuHAh3NzcZD9+fn7mLzghhBBCLKbYghWJRILvvvsOrVq1Qt26dQEAiYmJsLW1hbu7O2ddHx8fJCYmqkwnNDQUGRkZsp+4uDhzF50QQgghFmTWZiB548aNw71793Du3Dmj0rGzs4OdnZ2JSkUIIYQQviuWmpXx48fj4MGDOHnyJMqXLy9b7uvri8LCQqSnp3PWT0pKgq+vb3EU7aPCWLoAhBBCiAHMGqwwDIPx48djz549OHHiBCpXrsx5vUmTJrCxsUF0dLRs2ePHjxEbG4vAwEBzFo0QQgghJYRZm4HGjRuHrVu3Yt++fXBxcZH1Q3Fzc4ODgwPc3NwwduxYTJ48GR4eHnB1dcWECRMQGBiociQQMY7A0gUghBBCDGDWYGX16tUAgHbt2nGWb9iwAaNGjQIALFu2DEKhEAMGDEBBQQGCg4OxatUqcxaLEEIIISWIWYMVhtHeS8Le3h4rV67EypUrzVkUQgghhJRQ9GwgQgghhPAaBSuEEEII4TUKVgghhBDCaxSsfEAy8kTIyhdZuhiEEEKISRXbDLbEvAqLJGgw5ygA4NmC7rAS0kBlQgghHwaqWflApGS/fxJ1nkhswZIQQgghpkXBioFEYglCd9/BoTsJli4KIYQQ8kGjYMVA4VfjsO1KHMZtvWHpohBCCCEfNApWDPQ2M9/SRSCEEEI+ChSsEEIIIYTXKFj5iGh/+AEhhBDCPxSsGIgu/IQQQkjxoGDlI0IzrxBCCCmJKFghhFhcRp4It+PSLV0MQnjj1bscxKXmWroYvEHBioEYagcixGQ6LjmNPivP4/STt5YuCiEWl1coRtDiU2jz60mIxBJLF4cXKFj5QMjHTgxFUqSEkc7AfPR+ooVLQojlpeUWyv4uKKJgBaBgxWAMdbElhBBiZmIxXWsAClY+GPKdZwUC6kpLCCEfgqgHVNsIULDywdClGYjic0IIKVkK6MG0AChYMVhsap6li0AIIYR8FChYMVBMUpali8ChSzMQNQ4RQggpiShYMZCQ+oUQYnLUVEk+Fmk5hej95zlsPP/C0kUpEShYMZCQ9hwhhBADrTz5FHdeZ2D2gQeWLkqJQJdcA1HNCiGE8NuN2DRce5lq6WKolEcdZ/VibekClFR8DlVoUjhCyMeuoEiM/qsuAADuzQmGsx1d7koyqlkxkFD4PlwpKcFBySglIYQYT37m1+z8IguWhJgCBSsGkm8GEkssHwYwav4mpCS5+oKfVfaEEMuiYMVAchUrEJeQmhU+N10RAgAxydmWLgIhhIeoEc9A8nOZSHjwnCkKREhJVCSWYNeN15YuBiGE56hmxUB8q1nhTrdvsWIQopetV2IxbdddSxeDEN6i0zmLghUD8a3PCvk4lJTO3Lq6+jLN0kXgjQ/so7U4VfuzJH5/SmCRzYKCFQMJOc1Alj+aqBnIfF6n8eM5UGeevEWDOUdx5G6CpYtCTKygSIzvIm5ZuhgftOiHSWgw5yiOP0iydFGIAShYMZCAx81AVG9oWhsvvLR0EQAAI9ZfQWZ+Eb7ecsPSRSEmdi4mxdJF+OAozts5dtM1ZOYX4bN/rlmmQAYqibVB5kDBiglISsjBVDJKScjHhWEY/HvplaWLQYwkkTDYcP4FbsWlmyX9w3cTEHnP+FrVnddf48yTtyYoUfGi0UAmQKOBiLk9TebXU76J6UQ/TMapxyXv4sF3xX0PefBuAub895yfl4t6mCxdBkBmvgjf/Fej+nBuVzjYWhmUVkxSFr7fcRuAactYHKhmxUDyXwRLNAMViSWcvjLcSeFUl4cCmpIrKbPA0kUgZvL0Lc0tYxZmPC0XFinfocYkme6GQnHQRm7B++cIqcpbHcV1S/J5hIIVA8k3/RR3B1uRWILWv5xEjxXnijVfQgj52G04/wI1fjqCU4+TzZK+SCxBm19Pyv439F74f3vuouaMI3iRkmOiklkWBSsmUNxDl5+9zUZiZj4eJmTKOl9RrQkhJRN9d81DXQ2zsaRNPZPMNHrLVMHFlsuxYBhg7elnsmWKnY5LEt4EKytXrkSlSpVgb2+PgIAAXLlyxdJF0khdM1BaTiF+jXyEZ/9V7Z54lIS/zjwzW49uaZxEk8IBGXkiLI56ZNLqWL7Yfi2u2PM8+TgZa06b79gFjB/p8DotF79EPkJSZr6JSlT8PtKvq9kV93nQXPlF3k/EhgsvTJKWvrFKkViC5cef4AoPntnFi2AlIiICkydPxqxZs3Djxg00aNAAwcHBSE42TzWbKchH7fLNQD/uuYtVp56hxx9nAQBjNl7DgsOPzPZh04R078098AArTz5D52VnLF0Uk8rIE2Hfrfhiz3f0hqtYdOQRzj99Z7Y8rr407nvxadgVrD71DF/+e91EJSIfCvkzozlG6AiKqZriyotUrD393CRpCeWmXi8Sa+/7sv3aayw/HoPBay+aJH9j8GI00NKlS/H5559j9OjRAIA1a9bg0KFDWL9+PaZPn26RMonEErx6l6v2dfmOSi/f5coO3GP/TTiUL5LgqdxD2a69SkNpZzuTlE2+XDHJWbCztkJy1vs7y+cpOXDLKVTaLjmrgFOmD83xh+8nezL1+7TkfnuXrdwprjjLc+VlKnzd7M2StqoOf/q8N2mV+a249BJ7bCcbuQ+Iahl5Itnf119xg2JT7N/UnEJOOgkZ78/BuqQvf+zLr6/pugOwHbLdHGx0LmdSZr4s/TS568LdNxlwsdeczvmn7+f/eZmSg0qeTjrna2oCxsIzzhQWFsLR0RE7d+5E3759ZctHjhyJ9PR07Nu3j7N+QUEBCgref8iZmZnw8/NDRkYGXF1dTVauxIx8tFgYbbL0CCGEkJKqjJs9LoZ2NGmamZmZcHNz0+n6bfGalZSUFIjFYvj4+HCW+/j44NGjR0rrL1y4EHPmzDF7uQQCaIxeC4rEyBex1Wjy68lH824ONrL/XeysOVVwxpKmqypvxXIrlulDZer3yaf9Jl8WoHjKI83T2c4aViY8dlXlIU+f98anz8hQDMMgM7+Is6ykvhe+kZ1/7a2RJbePjdm/6o45ddcEdXILiyASMyrXV/W9UJWnLuW0FgrgZGettFyXdPIKxSj8r7nIxd6y4YLFgxV9hYaGYvLkybL/pTUrpubjao/bs7qYPF1CCCGE6MfiwYqnpyesrKyQlMR9uFRSUhJ8fX2V1rezs4OdnWn6fhBCCCGE/yw+GsjW1hZNmjRBdPT7/iESiQTR0dEIDAy0YMkIIYQQwgcWr1kBgMmTJ2PkyJFo2rQpmjdvjuXLlyMnJ0c2OkgTaf/gzMxMcxeTEEIIISYivW7rMs6HF8FKSEgI3r59i5kzZyIxMRENGzZEZGSkUqdbVbKy2AnAzNFvhRBCCCHmlZWVBTc3N43rWHzosrEkEgni4+Ph4uJi8kl6pJ134+LiTDosmhiPPht+os+Fv+iz4a+P9bNhGAZZWVkoW7YshELNvVJ4UbNiDKFQiPLly5s1D1dX14/qACpJ6LPhJ/pc+Is+G/76GD8bbTUqUhbvYEsIIYQQogkFK4QQQgjhNQpWNLCzs8OsWbNoXhceos+Gn+hz4S/6bPiLPhvtSnwHW0IIIYR82KhmhRBCCCG8RsEKIYQQQniNghVCCCGE8BoFK4QQQgjhNQpWCCGEEMJrFKwQQgghhNcoWCGEEEIIr1GwQgghhBBeo2CFEEIIIbxGwQohhBBCeI2CFUIIIYTwGgUrhBBCCOE1ClYIIYQQwmsUrBBCCCGE16wtXQBjSSQSxMfHw8XFBQKBwNLFIYQQQogOGIZBVlYWypYtC6FQc91JiQ9W4uPj4efnZ+liEEIIIcQAcXFxKF++vMZ1ijVYWbRoEUJDQzFx4kQsX74cAJCfn48pU6YgPDwcBQUFCA4OxqpVq+Dj46NTmi4uLgDYN+vq6mquohNCCCHEhDIzM+Hn5ye7jmtSbMHK1atXsXbtWtSvX5+zfNKkSTh06BB27NgBNzc3jB8/Hv3798f58+d1Slfa9OPq6krBCiGEEFLC6NKFo1g62GZnZ2PYsGFYt24dSpUqJVuekZGBsLAwLF26FB06dECTJk2wYcMGXLhwAZcuXSqOohFCCDGn3FTg4irg9GIg6YGlS0NKqGIJVsaNG4cePXqgU6dOnOXXr1+HSCTiLPf390eFChVw8eJFlWkVFBQgMzOT80MIIYSndo4BokKBk/OA1YGWLg0poczeDBQeHo4bN27g6tWrSq8lJibC1tYW7u7unOU+Pj5ITExUmd7ChQsxZ84ccxSVEEKIqT0/aekSkA+AWWtW4uLiMHHiRGzZsgX29vYmSTM0NBQZGRmyn7i4OJOkSwghhBB+Mmuwcv36dSQnJ6Nx48awtraGtbU1Tp8+jT/++APW1tbw8fFBYWEh0tPTOdslJSXB19dXZZp2dnayzrTUqZYQQgj58Jm1Gahjx464e/cuZ9no0aPh7++PadOmwc/PDzY2NoiOjsaAAQMAAI8fP0ZsbCwCA6ltkxBCCCFmDlZcXFxQt25dzjInJyeULl1atnzs2LGYPHkyPDw84OrqigkTJiAwMBAtWrQwZ9EIIYQQUkJYfAbbZcuWQSgUYsCAAZxJ4QghhJhZYS4gEADW9uxvU6Vp62iatAj5j4BhGMbShTBGZmYm3NzckJGRQf1XCCFEV3d3ArvGsn9X7QB8usf4NE8uAE7/AgzfDVTryC6b7cZdZ3aG8fmQD4I+12966jIhhHyMpIEKADw7YZo0T//C/j4y1TTpEfIfClYIIYQA538vnnze3CiefEqKa+uBm5stXQreo2CFEEIIcGwm8Oa6+fNZ1978eZQUOSnAwUnAvnGAKN/SpeE1ClaKi0TMPiODvMcwQM478+cjLgLy0syfDyElXU6KYduJ8oF8nj36pCCL/wFAYfb7vxmx5cpRAlCwUlz+6QP8WhlIum/pkvBH5HRgcRXgvgk69mmypjXwSyUg44158yHkY7WkBrDIz9KleK8wB1hYHvituqVLQkyEgpXi8vIs+5vaJt+7vIb9fWymefN5+5D9/eSIefMh5GOVz7MRPsn/fecLeFbbQwxGwYqhbkcAx2ezTRnaPDpsWB4SCXD0J+DeLsO21wfDsHnd3Wn+vAghpnVnBxv0qzsfpT4H9k8A3j0r3nKp8+4ZtzwPDwBHprPN5R+6NzeA/d8C2W8tXZISxeKTwpVYe75gf1dpD1QJ0rxu+FDD8ngSCVxYwf5dd4BhaRiSV72B5s2LEGJauz9jf1dqC1TvpPz6v/2AtJdAzDFgyqNiLZpKm3oDma+BZ6eASXeBiOHs8jINgIYGni9LCmkH4+xkoNsiy5alBKGaFWPlmbHTbE6y+dJWFH+r+PLSRiIBUl9YuhSElDy5ajrIpr1kf2clFFtRNMp8zf7OiOUuT7pnWHq5qdwBDJkm6J+mmKapJT9Q/1p6HFBUaLq80l6xAw2U8ok1bT5mRMEKARJuA6d5FOHv+wb4oyFwfZOlS0IIKU4X/9S//4u4iB288Gtl9sL79gmwfYRx5SgqfJ+mWGRcWuowEtXLX18Hltc13RDvx0eA3+sDWwdzl7+6ACyvB6wPNk0+ZkbBCgHu7bZ0Cbhub2N/n1ls2XIQQopfSox+68t3os1PZ5u0jZUj15+kMMf49FRRF6zcCWd/G1rLpOjSavb3s2juculgj/iSMUkfBSuaZL8FdowGnp/Wb7uY48DOsfyY2+P0YuDEPM3rWNlw/097CWwNAVY0BR7sN1vR9JJ0H9g+kr1rUiTKB3Z/AdzaWvzlUqeoENjzNXVYJqzcVGDnGOBptPZ1dZWZAOwYxd4hf8iyktjz8Mtz3OWy79gO7nJTPERRlPv+b6GZunZmvgGSNDQFaZIey54P466wnXVv/Kt+XaGV8rLkR8CtLYblbSEUrGgSOQ24vxv4p7d+220ZANzbyY4WsqTCXODkPLaGIltD/xfFL+P2EezdybsYYPun5i2jrsK6AA/2Av/2VX7tTgT7s/fr4i6Vetc3ALe3cp+/Qj5ex2awo/o29zddmge+Zeco2tDNdGny0aHJ7Hl4Yw/u8pv/st8xxecQWdsbn2dRMU0mZ+jgi51j2fNhWGfgxiZg/3j16wpUXOY3djcsXwuiYEWT9FjVy9VFw0kPgAK5GQkz47UPFWQYIOEOd6ZFhmE7vBrbVio/I6JYoRNVXrpcLYXCo+HNPbwx6b7+VavSmR4z37CdxbKS3r+WnaR6G03SXmkO4IyVo2JYIsMAiXf1n1WzMIcmEyzpMl6bPk1pp9kPXfor1ctz1c1+LVCz/AOSqsc5WqCiZkXVvpNI/rvuqOiIywM0dFlfz06wwwAVPT/FzlLrXuH9sozXwIrGmtO7HQ7s/QqoEAiM+a+t9cIf5p8obYk/UJQHfH3RvPkoijkGbBkIlK5meBq/12d/G/qo+bw049MwxJ3t7JD38s2Bz47pvt2aNuzJafguoJqKYamEEKKOqmYgVU78DJxbCjQeAfReYd4yGYBqVvSlboI26ZTx8rUxmoamSV3fwP6OlQsaLhTDgVKUx/5+fhIQFOOdiLR9+d1TEyaqZ/lTn5swbz3c+G900+sr+m0nvYviW0doQvjIFOczXSb7LDF03B/nlrK/b/xjvqIYgYIVXUX9T/XyjDfAv/2B6xt1S6eoAAgfxj4WXJW1QaqbENRJvMfW9Mg/LfVJFLB5ANsBT5Eoj81fKupH4OR83fNTlPaSff/PT71f9uoiW8u0Ngg4/4fhaWfEGb6tyvTMUBVvqEtrLF0CIu/INHYGZ3N4EsX9fhSnB/uALYPMl35+BtsZX5ExNyPSNO/uBCJD2aZTY0kkwK7PgXPLtK+blQSsbSO3QIfA5XY4sHUI+/BEzvII9r0oLjfGmd80NIGpYkTgdWkN24mbB01D1Aykq4t/Au2mKy8/qiaIUefmZkBcADw6CDQdo/x6wi390vunN3vgPjsJzE5nl0nH0yv2UwHYIOnRQf3y0GT3l0DcJXZYnLRJZUPX968n3AJafWu6/FTR9Ubq3DKg02xzlkSOlkJFTgNafFU8RSGaZSW+f05Vu1DA1sm06SvOb1GcjJ1vRJuzS0wzVJiT5lLg1Tkd0tWjBuXFaeDuduAugNaTNK8rnU1XH3u+ZH9fWAG0/1Fu+X8znZ9bBnQ0UdP+iZ9Nk44uIqexv2v1Mv8s6lpQzYo+1I2L14e4wPg05MkibBXRs6pnT+gy4ZL8Y8sB9mT+6gLw4gy302/2WzZQkUq8x3ZcLS7SjsCWqrIV5SnvE1XePi6e8hgj8Z76DuWmlHAHeHqcP8+oAbhBvbHfcVE+e0wUFbKfu7neZ847IEXFMP7CHODFWc3P2EmPU13rCrDbvTjLHSigiV53+DoyJk1171uf0T3qOvQqKshW3tfqpqvITtZ+PEiPHU3nE4M6VZugWcxcc83ogWpWiHZLar7/u+UEoMs85eUAsKaVDomZsH/MisbAzFTNcwyY086xwOND3H2iysrmQOgbGP3ezTX6IzP+/Wdnzg7Haa+41esz0wDhB3a/tPcrtv9ao0/ZobXmsqyO6uWHJrO/2/8EBP2gep3lddWne2kV+4R4fTuB88WVtYBnTRUv6PHdk+jY5PFPb7b5vYNc86Gq2myAPRa0HQ+7P2MHcGjyewP1ryU/BLxrad6+BPvAzhTE7C6vff83o+HurbhIipSfL1JcHh9if8vvE3VM8QypRBPNaKlI1R26OSjOyMmH48fUpB3tzRmoAO87yKsj7cytr5dn2d/6dgLni1vbVC9XNdeIOroGK9J+ghf+fL9M32kJ5GkLVLR5fdW47TXhQYdjClYs6cBEIO5y8eR1bxc7sZopHvBlLgzDdoIzxvPTwGw3YH5Z4x6G+O4Z8Hcn9rka2ogLgbBg9kR5eS2b/5lfuessr8e2w8t7eABYVBFYXJ0d0v0hOv0r29nbXM9XMdT5P4CfvYDVrQ1/iGf8LfZOd7YbMMeD/c0XGXFAtIn6NtzfC/zdmR1Ft3kgcOoX06QrJd/h3xRUjQZSFawk3gP+as+eK6Lnvl8u0bcp0PIXcrWurHt/UwWwgzGKVHRF4NPs32pQM5Al6TqCyBSk87YUV3BkiNTnbCc4Y0hnGxblAPvGA6MPaV5fnd1fAG+uAduG6NY0EneJ239HF/Id+bYMLN45X4qLdKTZo4OAla1lyyLv2Az2d9Jdw2dp/rfv+z4KfKwlOvubadLZMZL9/Ucj9vfTY0C7aaZJG1Du8P/2oenSllLVCrQ15P3Tn88ued8BVrFmhQe1CgY7/D33/2cnVD8ChE+zf6tBNSt8ouq5N4okYvZuPycFyM9Ufl2kpXrYVOIMqCbOS9NcU6Fr9auuku/r/uTmuKvcWWJVNdswDFsDkhlvmvKZ0vPTwKPDQGwxB6OFOcDDg+yjHaTEIuDRIe6cRKru5sxJIgYeRxo/S3HGG/bk/vAg9z3kpfPj2V9ERyqildwU1asaE3jKN5+lm3jqBVPR1oTIU1Szwicrm2lf58o6djiZsy/gWV359YNahuUZi2HYC0BYZ/233dgTKCjG2oO8NPb5KdpkvwXC/psZVlPtxqOD72tD+FQLEn+L+/yqyQ8B17LFk/eer4CH+9lhjQP/mzvo3DLj5u4xhRub2O+CgwcwzYjmwGW13/8d8DXQbRH7t6pZrAl/6dVnxYhgJfU5O3rSxVdzR+YSx/K1S1SzUtJIq0yzE993hpN3W00HM1MydLI2Uz3y3NSkVcHaWGpiL20U5+YpjiHIUg//eyq3fC2Kulmei5O0Bs8UHZulbsu168ffMF26xDBqB/io6rOiz0g8Iy/MfJp88gNCwUpJkaOmyrK4GTKV9dq2QIoOM1oWRydTPs3vYQqpz9mO2ny350sgVs8+PYSYg7YmScU+Kqq+X+aa7dgYGToOnuDpdPraULCiD0t2tDpjos5ylpBwG/izifb19J0N2BAl4cKuj0NTLF0C3V0w4tELhOhK2w3Vg336pXdfxTO5iuP5bfo6vUi39RJum7ccZkLBij7SXrDT5VuCITPfmqNXPQC84VEVeMxR/dbXZyZLRcbMoWAuxdWhWhevr2tfRx5fm9UIS9UM2PJyU9XPa8Jnpu7Ib857WEOfKZTxhn0u0QeEghVNFGcM/audJUrBLwyjPBzOkgx5joehblkoUC0p/u6g3/pbBho/WoeYj/wzvlTZGqJ55Iz8CDGLK8Y+K6a09xvDtlvV4v1ziT4QFKxoos/Tjwkh+qPvGH9pe3KytlluRTwKVlQ1DZWE+VOkHdj1VaBiWosSjoKVkuLRYeC3mqpHAEn93tD85ZAU80yk67Xc3enr9VV2sjhjXVpjfBrGurkFiL2ovHx9MDub6t+dzJOvuIid+XPHaOPTWt0SuLRa/+2OTANWNOU+cO/oDHbisrx048ulDsPwa6baj82xWex5Li8N6mtLFJYv8efOoWSojDfsZ6/4+RfHdAyZCcCyetrXYxjTDKs/NrN4rid6oGBFHb5F3dmJ7I8maUbMJ8FXqi7Gxkp+YHwakSacwdNQ+7RUEZvrWSFvrrFDd1V1PDRE5HT9t7m8BngXwx2qf+EPdnTUtTDTlEsVPtUWfIzOL2fPc5f/0n2brATVx5i+IxtPaHhYqbmdWqjbM9By3xn/jCEAOP8793rCg+shBSvE8tJjgatmvMDoQ90MsPk8mAROlMuepNN0fIS9Nqn/nfT1mV32xVng2nrT5G8Kqqq7GYVnu/DgRGuU3FS2Js8S0xc8PKh9HUu48If6JkRdbkYYRv/O9vrMbPvyvH5pmzLvDxQFK4QfpI+2t7T1XVQvN/fMwLqQiIAjPwCrAk2T3oombHqn9Xgw3aaewB0ejTKQfwCdOo8MfD4UX+wYxdbkbRtS/HlHmPghg6ZSmM3WrqlybqnmbRlG/+HL+trY3bzpf4QoWCFE1VNWFe/On+g5RNqcRDmGbSc/jTjDvL9be6PnkOPioGnKc32nQzdFs5+pSd+DLu/lxWn29+ur7OfGtydY84qOtWiGzKZtzDT8xpCIDXgStKlZvnaSghV1SnrV8Yfk1QXzpZ2bqjzkNiVGedi6Ps8W4ZND/w0zf3QYmO/7fir8Tb30T8ucNRTyU/S/fQIsLA+cXKC8nlgE/NnUfOUoDru/ABZXBZ6dBBaUY5+lpKttQ4CfPc1XNl290NDRn/cMOLe/ugjcU/G04uIw14P7qIePVAk9A5OPyq7PzJf2zX+Vl0V8qrzMkMcM8MHVdezv8KGAuBDYOYb9X9OoMnXCPzFduRRJywUAx2ex/XNUNU8l3GY70ZZkdyLY0Sz/9mWfgHt8tu7bPok0V6n0s13Fd4QXzPQ9/cDmLCmJzBqsLFy4EM2aNYOLiwu8vb3Rt29fPH78mLNOfn4+xo0bh9KlS8PZ2RkDBgxAUlKSOYtFyHu6zGaZ/BDITzd7UXBxZfHU6CXeNV/ary4Abx+ZL31DvDjD7ttzy4ybfdmcH83TaGDfOLaMYhPPsGopD/ZaugSqGXJ8WjuYvhzmcGe7pUtgNmYNVk6fPo1x48bh0qVLOHbsGEQiEbp06YKcnPdt7pMmTcKBAwewY8cOnD59GvHx8ejfv785i0XIe7o81GtVC/OXAwCifgQeHzZ/Pmtamy/tDd3Ml7ahXp5l9+3x2cC69prXtVTz7+b+7KM8js8Grm+wTBlM7dAUfvavMeS5PjZ6BCuW7EIQFWq5vM3M2pyJR0Zyqyw3btwIb29vXL9+HW3btkVGRgbCwsKwdetWdOjA9hvYsGEDatWqhUuXLqFFi2K6SKhEfVY+Cop9UwDLzqVR0ps4iPHMWfNV3PQZFl+c9H2mVknts/YBKdZPICODnavCw8MDAHD9+nWIRCJ06vR+pk1/f39UqFABFy+qngysoKAAmZmZnB/ygcvU8dHnppJuonlMiOXo+4BLKU19k4qr2xIfayMMJS60dAlUu/in+dIuqf3beK7YghWJRILvvvsOrVq1Qt26dQEAiYmJsLW1hbu7O2ddHx8fJCaqnq114cKFcHNzk/34+fmZu+iEEFJ8ivuRFuZEoyqJiRRbsDJu3Djcu3cP4eHhRqUTGhqKjIwM2U9cXJyJSkgID1zQ8Y4v2YydWLOSgMgf2Y7FAPD2MXD0J/PlJy/1ObffTvyt93/nvAP+7qg9jYsrNb+e8dqgooEBcNu485dOSkLNisXn/Shm+tSWHJtpvnJYCg+CTrP2WZEaP348Dh48iDNnzqB8+fKy5b6+vigsLER6ejqndiUpKQm+vr4q07Kzs4OdnZ25i8yLD4d8hLQ9/0nKnJ1+j89m53V4eRb46iybl+IkeeayXqGD7l9BwOz/HnVw4Fvd0shL0/z6ViNmgi2OmZZ1GaFmaTo/vO9DOY/qEay8MvFU+wSAmWtWGIbB+PHjsWfPHpw4cQKVK1fmvN6kSRPY2NggOjpatuzx48eIjY1FYKCJphQnpKTRdrEFoNdFQN/AWzqXR+Kd/7YvxrtoTcHa0+OmySPpA+rAynd000dMxKw1K+PGjcPWrVuxb98+uLi4yPqhuLm5wcHBAW5ubhg7diwmT54MDw8PuLq6YsKECQgMDLTwSCBCLOiXSsDE20CpSqZJ74gRT4h+dtI0ZTDW5b/0f/CcsTIUOnbrXJtgpA/qAl/c7+VD2ndEnllrVlavXo2MjAy0a9cOZcqUkf1ERLx/ENqyZcvQs2dPDBgwAG3btoWvry927zbRo+cJKalM+aC1K2sN31bbQ+GKy5Efij/P4pjzhpQMNMLH4sxas8LocIdgb2+PlStXYuVKLZ3iih1F6OQjdHGVpUtAiBHMFVRQsGJpxdLBlhBSQkSFAla2li4FP1jsbvoDulH6oJq0PmaW/xxpWj5C+CgrCSjItkzeJWE0irnIX1zTLTQtwgd1gS9B78WS3zmiFQUrhPDRpZXAr1Usk3dxjv7hq2cngPPLLV2Kku/UIkuXQHdLagCLKqh+jfqsWBwFK4TwlZinz1X5kEkvStfWW7AQJag2QpuS9lBGRqzmBQpWLI2CFXU+qKpYQkiJ8SQSmO0GFOZoX5eQjwQFK4QQwkcXVli6BISweHDzTsEKIXwm/2ycj1VxPytHIgESbhdvnqpkJ1m6BESK+qxYHAUrhPDZX0GWzZ8Hd1T42bP48mIYtmNtemzx5UlKAApWLI2CFbV4cJImhBQ/GgVUgtF5+0NFwQohRL3irP6e7WbYdv/2A16a8km3dBdNCN/QDLaEkJLt2Qn2hxBzBZrUZ8XiqGaFEELk5adbugTviT/i2YR5hYIVS6NgRR0+dCwkhHzczv5m6RIQwgsUrBBCiAzPblIsOpMuIfzx0fRZEYvFEIn0mK9BVAA4+5mvQISUBLaeH9f3oKCQP+/XyhWwKQU401OwdeboBcDG9Onae3GPC4aBTf47WInzTJ8XUemDD1YYhkFiYiLS09P13RBotcQsZSKkxLC2ByoNsXQpis+bZP587+2cAfeWli5FySK0AiTqnu9jBGt7oNJQ7jJxIdxfHYFvzFYI+FYj9wH64IMVaaDi7e0NR0dHCHTt1S2RACn55i0cIXxn4wiIci1diuLjWRFI4ckDJO3cgIIMS5eiZBFYA4wZOiUrfA8YBsgVAcm2AwEAZWK2mD5PPuFBH84POlgRi8WyQKV06dL6bSyRANbUA5x85GysAOYj+h7Y2/Pney/O5E9ZSgqhEJCYYZ+p+B442ACAO5IrdoP3893UJGRmH3QHW2kfFUdHRwuXhBBCyIfG0QaAlS1E9nreDBO9fdDBipTOTT+EEEJKsOJtrpBdWugaY3YfRbBCCCGEkJKLghW1LN+hiBBCiD6ohuNDRcEKIYSQEi1s2150GfqNSdNs0XMEdh2KNmmaJZflb94pWOEhQbnGGn9mL1mDl3Hxal+/dP0OAGBjxH4IyjVGraD+SnnsOHAMgnKNUSmgh2yZdH1BucYQlm+C8k26YvSkWUhOSdVatvB9UQCAUxeucZZ71euA7p9OwN2HMSrfa/An38DKrymu3roPABrfl/RnY8R+bIzYD/dabdXuv72RJ1Wm51GnHYIGfIazl2+o3PbLqfNg5dcUOw4c0/YxKaXtUqM16rQfiHE/LkTM81il9fPy8jHrt9Wo0bov7CoHwLNuBwz6YiruP36mNS8pxf0lb9R3s2RlsanYHJVb9MTUecuRn2/8UFz5Y0NQrjGcq7dCk66fYPdh7sm8UkAPLF+nPIxz9pI1aNj5/Xwto76bhb5jJqvNr1JAD1leVn5NUbZxF4ydMgdp6Zmc9VLTMvDdzMWo2Lw7bCs1R9nGXTBm8mzEvknQ+p7WbdmNBp1C4Fy9FdxrtUWjLkOxcNEvnDKrOv7823K/T09fxGL0pFko36Qr7CoHoHKLnhj6TSiu3X7AWe/gsTMIGvAZXGq0hmPVlmjWfTg2RuzXWk5Fuh77+uRryu+J/H6z8msKv6bd8MXUn5Gaxh2Gre5YWbhiPaz8mmLx6k0a94NUfn4BZixehVmTv5AtE4vF+CZ0Ico06oLun07gnMMAIDMrG/9b9Cf82/aHfZUW8G3YGZ1CvsLuw9Fg/hum+9PEzzB9wR+QSCSgGhvLo2CFhxJuHpX9LJ/zPVxdnDnLvv9qhGzd4+GrOa8l3DyKJvVryV53cnRAckoaLl67zckjLHwvKpTzVcpbmtfra5FYt3gGjpy8gE+//Ymzzoals5Xy7BvcjrPO4zN7kHDzKKK2rkRBQSF6jJiIwkLuDMKxbxJw4dodjB8dgvXh+wAAfmV9OOlO+fJT1KlZlbMspHcXvfepdD+d2fU3yvp4oefI75D09h1nndy8PITvP4qp34zE+oh9eqd9+1g4Fkwfj4cxL9Cg8xBEn70sW6egoBCdhnyN9eH7MW/qN3hydg8O//sHisRiBPQcIQswNVG1vxR1bd8SCTeP4vmF/Vg2ewrWbt6NWUvW6PxeNJE/Dm9GbUNwUCAGfzUdj5++NEn6iuZ+/zUSbh5F7JXD2LJiPs5cuoFvZ/wqez01LQMteo3E8XNXsGbR//D0/D6Er1qIpy/j0Kz7p3j+6rXatNeH78V3s37Dt2OH4tbRbTi/dwOmfjMS2dnZnPUUj72Em0dxbm+Y7PVrtx+gSbfhePI8Fmt/+R8enNyJPX8vgX+1Spgyd6lsvRXrw9FnzGS0atoAlw/+gzvHwzGkdzC+Cl2A7+cuM+Fe49I3X1N9T6T7LfbKYWxYOhuRJy/i69AFOpV5ffg+Nm01x7iinYeOw9XZGa2aNYS0BiB8XxRi3yQgasufaFzXHz/9ulK2fnpGFlr2GY1/dh5C6PjRuBG5FWd2/Y2Q3l0wdf7vyMhkj4FuHVohKycXR06c16kcxLw+6HlWVGIY3Sa5kogBkYnHzVvb69Rr3NfbU/a3m4szBALuMgBISU0HAJQu5a70GidLayt80q8r1kfsR2DTBgCA1/FJOHXxOiZ9Pgzb9kZy1pfPq6yvF74dMwQzFq9GXl4+HBzsAQDubi4a8wQAb08P2XrfffYJeo+ehEdPX6B+7RqydTZE7EfPTm3w9YiBaNFrJJbOmgwHB3tO2s5ODrC2stKanzbS/eTr7YkfJ4xB+L4oXL55D727BMnW2XHgOGpXr4zp40ahbONgxL1JhJ+KgE5d2gBQpWJ59OrcFh0Hf4Wx38/Fswv7YWVlheV/b8XF63dwM2obGtRh90HF8mWxa91iBPQcgbHfz8W9Ezs0jlxTt7/k2dnaysriV84XndocwrEzl/HL//TeZUrkjw1fb2DetHH4be2/uPMwBjWrVTI+AwUuzo6y/MqV8cbIQb2wbd/74/V/v6xEfNJbPD2/T7ZehXJlELVlJaq37otx/1uEI5v/VJn2/qNnMLhXZ4wd2le2rE7NqoBvPSDxrmyZpmOPYRiMmjQL1Sv74eyeMAiF7+/9GtatiYljPwEAxL1JxJS5S/HdZ59gQegE2TpTvvoUtrY2+HbGrxjUsxMCGtfTcw9pZki+pvqeyO+3cmW8MahnJ2zYrr0W6fTF68jLL8Dc77/CPzsP4sLV22jZrIHGbcL3RaFX5zacZWkZmajkVxZ1/avhYcwL7Dp8Qvbaj4v+xMu4eDw5uxdlfb1ky2tUrYihfbvC3o59vIGVlRW6d2iF8H1R6NG9u9ayE/P6+IIVUS6woKxl8h59BLBxKPZsxwzpg3YDv8Dvc7+Ho4MDNm4/gK7tWsLH00Prtg72dpBIJCgSGzaFdUZmFsL3HwUA2Nq+f2YHwzDYELEfK+dPh3+1yqhWyQ87Dx3HpwN7GpSPrvLy8vHPzoNseWy4h39Y+F4MH9Adbq4u6Na+FTZuP4AZkz7XOw+hUIiJnw1Fv7FTcP3OQzRvVBdb9xxB57YBskBFft1Jnw/DsPH/w+37T9Cwbk2VaRqyv+49eooL1+6gog4Bl77EYrFsPzau52/y9BW9SUjGgeNnENCoLgBAIpEgfH8UhvXrphRMODjY45uRg/DTr6uQmpYBj1JuSun5epXG6UvX8ep1PCqWN+x8cOv+Y9x//AxbVy7gBCpS7m4uANg7f5GoCN9/9anSOl8OH4AfF/2JbXsjTR6sGJOvKb8nL+PiEXX6ImxttD+zJ2zbXgztGwwbGxsM7dMVYeF7tQYr567ewqcDpM3ZbLA/vH8PdAz5EnaVW8DH0wOH//0DAPe4kQ9UpJyduHNyNW9YF4tWbtBabmJ+H1+w8oFp2Wc0hELu3Xh2DLfaslFdf1SpUA47D0bj04E9sHHHfiydNUVjNTkAxDyPxZp/d6Fpg9pwcXaSLR867kdYKZycH5zaiQrlysj+L9+0KwAgJ5etnerdJQj+1SrLXj9+9jJy8/IR3C4QADC8f3eEhe8zW7Ai3U+5eflgGAZN6tdCx9bNZa/HPI/FpRt3sfvv39jyDOiOyXOW4qfvPjNonh7//2oaXsbFo3mjunjyIhbtWzZVuW6t6ux+efL8ldpgRdf9dfD4WThXb4UisRgFBYUQCoX4c940vcuvSkZmNpyrtwIA5OUXwMbGGn/98hOqVjLPg/+mLfgDP/26CmKJBPn5BQhoVBdLZ00BALx9l4b0jCzZvlNUq3plMAyDpy/j0FxFsDJr8hfo/9n3qBTQEzWqVERgk/ro3qEVBn5Wh9M2fvfRU9l7lhrevzvW/PI/Wb8kfy21Sk+ex8LN1RllfJQvjra2NqhSoRyevFDu46SJ/GdhynxN9T2R7jfpZwcAS2ep76MEsP1Idh6KxsX9G9m0+3dHm/5j8fvcH5SCCKn0jCxkZGYrBR7ubi64HrkVickp8CpdClZWVgDYGum09Eytn5lUWV8vxMUnQSKRUJ8JC/v4ghUbR+DHeO3rScRA0j3T5m1tr30dPUWsXqj2hC1vzJA+2BCxHxXK+SInNx/dO7TCnxsilNaTngQlEgb5BQVo3bwh/l48k7POsllT0KlNc86ysgonxLN7wuBob49LN+5iwYr1WLPoR87r68P3IaR3F1hbs4fg0L5d8cO83/HsZZxZLn4RqxfCv1pl3Hv8FFPn/Y6Ny+bARu5Ob33EPgQHBcLToxQAoHuH1hg7ZS5OnLuCjm0C9M5P2klP/gRuTH96XfdX+5ZNsXphKHJy87Fs3RZYW1thQI+OatPdsvswvpw2X/b/kc0r0Cagscp1XZydcCOS7RCZm5eP42ev4KvQBShdyg295JoJTOWHr0Zg1OBeYBggLj4RPy76Ez1GfIszu/+WrcMY+MySMj5euHhgE+49eoozl27gwvXbGDlpFv7edRyRGxbJakpqVq2I/Ru4fTtcXZyNytsU5D8LedVb9zUqXVN9T6T7Lb+gEJt3H8at+48xYYzmB2Ju2xuJqpXKy2ofG9atiYrlyyBi/1FOc528vHz2+W32dnYqX1esddP3M5PWLBcUFMLBSq9NiYl9fMGKQADYOmlfTyK2SJONvvzK+qJa5Qpa1xvWrxumzv8ds5euxacDussueoqkJ0GhUIgy3p5KfSIAwNe7tNY8K/uVg7ubC2pWq4Tkd6kI+Xo6zuxmOyampmVgT+RJiERFWP3PTtk2YrEY68P3Yf708Vrfj6uLE3Jy89k7HrlanvSMLABsXx95fmV9Ub1KBVSvUgFFRWL0GzsF907sgJ2dLcRiMTbtOIDE5HewrtCMW56I/QYFKw9jXrD7oUI5AECNyhVky9StW6NKRZWv67O/nBwdZJ/N+qWz0KDzEIRt26v2ZN+7S5CsaQUAyvl6q31PQqGA87nXr10DR89cxC+rNsmCFVcXJ2RkZSttm56RBTdXZ6Xlmnh6uMvyq16lApbP+R6BvUfh5Plr6NC6GdzdXPDwqfp9KhAIUE1L4FvXvxrq+lfDN6MG46tPb6JNv7E4ffE62rdijwNbGxu1x3qNquzn9ejpSzSqq74prEaVCsjIzEZ84lulGoDCQhGevXqtttZNHcXPwlT5mup7Ir/fFv34LXp8+i3mLP0LP09VP7w4LHwf7j9+xklbIpFgffg+tcdv6VLuEAgESMvIVPm6Iq/SpeDu5oJHOnYKT03LgJOjA3seVBggQIoX1Wx9JDxKuaF357Y4ffE6xgzpo3Y96UmwSsXyKgMVQ4wbNRj3Hj/DniNsJ7cte46gfBlv3D4WjltHt8l+lsycjI07DkCsQ/+YmlUroaioCLfuP+Ysv3H3IQD1F34AGNizE6ytrbBq03YAwOHoc8jKzsXNqG2c8mxbtRC7j5yQBUC6kkgk+GN9OCpXKIdG/zXrDOkTjONnL+P2/SdK6y5btwW1a1RR6s8iZej+EgqF+HHCGPz06yrk5al+griLsxOqVa4g+9H3M7cSWsnubgGgZpVKuH7nodJ6N+490viZ6JTXf1X5efn5EAqFGNyzM7buiURicgpnvby8fKzatAPB7QJV9ldRp3b1KgDeN11q07BOTdSuUQVL1v773/BWLulxM6BHR9jYWGPJ2n+V1lnz707k5OZhaN+uOpdTV8bma8rvyU8Tx+K3tf8iPvGtytfvPozBtdsPcGrnX5y0T+38Cxev38EjNUGpra0NateoggdPnv+3RHPNiVAoxJDewdiy54jKsmTn5KKo6P1Tm+89fsZ+hz/2kcs8eOoyBSsl3Lu0dCQmp3B+1M2rsXHZHKTcPcHpO2KI9IwspTw1neAdHRzw+Sf9MGvJGjAMg7BtezGwRyfZXa30Z+zQPkhJTUfkyQtay1CnZlV0CWqBMZPnIPrsZbyIfYPIk+fxzY+LENK7C8qVUV9DIBAI8O2YoVi0ciNy8/IQFr4PPTq2RoM6NTjlGdyrM9xdXbBlz2GNZZF+Bs9fvcb+o6fRKeQrXLl5H2G/zZRdYCd9PgzNG9ZBr1HfYceBY4h9k4Crt+5jwOc/4GHMC4T9NlNt3xhj9tegnp1gJRRi5X8XHGMwDGSf94vYN/hr8y5Enb6IPnLD1id9PgyHos9h/u9/42HMc9x79BT/W/QnLl6/i4ljh3LSy8jMxq17jzk/cW8SZa9nZeciMTkFCUlvceXmPfwwbzm8SpdCy/9GtS2YPh6+3qXReeg3OHLiPOLeJOLMpesIHjYOoqIirJw/Xe17+Xr6Avy8bB3OX72FV6/jcen6HYyYOANeXl4IbFJftl6RWKx0rEuH8goEAmxYOhtPnseiTb+xOBx9Ds9fvcadB08w//e/0WfMJADsCKVf/zcRy//eiv8t+hOPnr7As5dxWLp2M6bO/x1TvvzU5J1rTZGvKb8ngU0boH6t6liwIkzl62Hb9qJ5wzpo26IJJ+22LZqgWcM6CNu2V23awUGBOHfllq67BfOnjYNfWR8E9ByBf3YcxIMnzxHzPBbrw/eiUZehyM55fy47e+UmurQN1DltYj4fXzPQB6bTkK+Vlm1btRBD+gQrLXdwsDdJbcnoybOVli0MnYDp40er3Wb8qBAs/WsLfl21CbcfPMG6xTOU1nFzdUHH1s0RFr4XPTq1UZEKV8TqXzBryRp8OX0+4hNTUL6MN/p1a48Z32kfwTNycE/879eVWLE+Aoeiz2Hrn/OV1hEKhejXtT3Ctu3DuFEhatOSfgaODvaoWL4M2rdsir9+/YlTTW9vb4cTO9ZiwR/r8eOiP/HqTQJcnJzQvmVTXDqwCXX9q6lM+/qdB0btL2tra4wfHYJfV23C1yMGwcnR8KbNzKxslGnEznFjZ2eLiuXKYO73X2HauFGydVo2a4Ajm1dg7rJ1WPLXZggFQtTzr4boiNVK7/HUxWtoFMwNYMYO7Yu/f2P7SM38bTVm/rYaAFt936xBHRzdugqlPdwBAKU93HHpwCbMXbYOX06bj8S3KfBwd0O39i2xecU8TodvRZ3aBGB9+D6s/ncH3qVlwNPDHYGN6yP6aBRKyw2Su//4mew9S9nZ2SL/+SUAQPNGdXHt8GbM/yMMn0/9GSmp6Sjj7YmWTRtg+ZzvZdt89/kwVKlYHr+t+Qe/h22DWCJBnRpVsHphKEaHcGs6KwX0wKjBvTB7yldqy68rffJVxZTfk0mfD8OoSbMw7ZtRnKHOhYUibN59BNPGjVS53YDuHbBk7WYsmD6e039GauzQvmjabTgyMrPg5q59hKNHKTdcOrAJi1ZuxLzf/8arNwko5eaKev7VsHjGd7LmyjcJybhw7TY2/zFPa5rE/ASMJXuJmUBmZibc3NyQkZEBV1dXzmv5+fl48eIFKleuDHt7PS/SEjGQqH2iLkI+aLbOQKFyH5QPlk89IOmu9vXMJDcvD6XrdsCRf1egnZ79WD5mg76Yisb1/BE68UtAYpq+JdPm/460jEz89esMwM4FKFBu5sovYvDizVtUPj8F9tlxJsmXl7ouAloo3xgbS9P1WxE1AxFCCE+cPH8NHVo2o0BFT4tnfKd2eLOhvEt74OcfTPu8IWI4agYihBCe6NGpjU5NoISrkl/Z/4ZGm66hYIqKyfSI5VDNCiGEEEJ4jYIVQgghhPDaRxGsqJoDgRBCCDGGhAEAhh2QQcyKN31WVq5cicWLFyMxMRENGjTAihUr0Lx5c+0bamBrawuhUIj4+Hh4eXnB1tZW9+e8SMRAUYkeKEWI8QQf2fcgP//jer8fGgFjngnMBBLOccEwQKEEeJuRD2FeKmzzkk2fJ+HgRbASERGByZMnY82aNQgICMDy5csRHByMx48fw9tb/eRe2giFQlSuXBkJCQmIj9fheUDyGAmQoXq2RUI+Gtb2QJHq2W8/SFl2QCZ970ssoZV5ajlssgGRwsSXkiI4vr2JCo82QMgUqd6OmAwv5lkJCAhAs2bN8OeffwJgm238/PwwYcIETJ/OnYWyoKAABQXvZ2jNzMyEn5+fxnHaDMOgqKhIp2ncZdJfA5v76v1eCCElWPnmwOsrli4F4TuGgZUoC9aFmRCYcAQSbzn7AlXbA/3WmDRZfeZZsXjNSmFhIa5fv47Q0FDZMqFQiE6dOuHixYtK6y9cuBBz5szRKw+BQAAbGxuVsx+qZWcDfMiT/BBClD2i7zwhSrITgRdnLFoEiwcrKSkpEIvF8PHx4Sz38fHBo0ePlNYPDQ3F5MmTZf9La1ZMzskTaPsDcGk1ULktEHcFyP3vgWkuZYG8NKAoDyjbGLBxZKsfX5wGanQDPKoAl1YC1bsAKTEAGECUD7j4ApIiIOke4F4BqDsQSHsJ5L5jZwl19ASS7gOZr9l8yjcDSlVmZ06s0QWIuwq4+wF3trNVkv49gPt7ANeygLM38O4pULUjm17MUbZcDYayZZGysgW8awMJtwB7d7Zs+Rnq94NnDSDlv4fvOXoCdfoCr68CCbfZ9L1rAzlvgRbfABlx7HvzrQ9c+IPdptnngLiQ3Q8CAZAZD3hWBxLvsfuw7gCgXGO27KWrAbfD2e3SX7Gzp7r7seu8PAfciQCENkDlNuz2OclAxdbAuxggOwmoHMTu+0eH2Nf8WgBxl9j9WJgLJN8HrB2A1pOAO+FAViJQpT2bl6SI/Xn3FKjWiW2UfhYNdP4ZeLiffc9S7f8H3NsNWNmwn3ud/sCjg8C7Z0ClVkDSA8C3Lru/rq5jt6nQkj1eGIbd91LlmwFOXmxzy5NIQJTLLre2B6q0AxxKsbNnXvnrfTr2roDQmt1/sZfY8uamsGWXSIDCLMDOlf1sHEuzZXy4/32eVdoBz0+x+6JURaB8UyA7GXh1gT0Oyzdn91+FQKBSa/Z93d0J+DUDnkSxn5/ACqjRFXDxAR4dBvLTgTc32LRenWfzcfAA8lLZv71rs+lZ2wE5KYCNPZtneiyQ/AAo24j9jogLgdRn78vqUQXIeMMepw4e7ElTyqEU0HEWcGMTYGXHfr/e3AAaDgUyXgNPj7NlzE9n1097yX5WSffY40WUzx67ldsCbx8B5ZoAPnWBzDfA02igVCV2O4kIuLeL/e6IC7nfD0dPdjvfesDFlexnDLDfrfx0dkZcr5rsMSrKZ5uXGw1j91mNLkDMMSDuMuAXwJa5Zjf2/8S7QO0+wJub7PezIIPd517+7HFsZcd+tlnx7OfYaiJwextQI5j9vqY8BSoGAm5+bB4+ddhjHgCCprHnmdxUIPa/50o1Hcsel+4V2HNKpTbs+3f0AHLeAbc2s8dNbipQqzf7Gd3eBiUdfgLOLGH3g18A0PAT9jg9PptN09mH/Z75BQBRoUCdfuw+zEtlz3NCa3b/J9xm96lHFXa/Jz9ij1WAPZeUrsaeT6Sf250IwL0ie87OTwceH2GPQ/+egL0b+33KSgBenmffk3et9+8t4zVQqxe7nx3cAbEIuLWF/W5a2bB5ufkBT4+x52Cf2uz5tWJroHQVtmzS2rimY9njDAyQ+pxNXygEPGuy67T6jj3vxN94f17VpnoX9tiPu8Sm7VKW/SxubwVq9gAeH2LXC17AfqeS7rF5pMSwx1jCHfa8YusMVO/MriMuZM8Bolz2/FOlHXB3B5tO3QEABOwx4lmNPZYrBAI2hj+qwxQs3gwUHx+PcuXK4cKFCwgMfP/AqKlTp+L06dO4fPmyxu31qUYihBBCCD+UqOn2PT09YWVlhaSkJM7ypKQk+Pr6qtmKEEIIIR8LizcD2draokmTJoiOjkbfvn0BsB1so6OjMX78eK3bSyuGMjMzzVlMQgghhJiQ9LqtSwOPxYMVAJg8eTJGjhyJpk2bonnz5li+fDlycnIwevRordtmZbFPwjRLvxVCCCGEmFVWVhbc3Nw0rsOLYCUkJARv377FzJkzkZiYiIYNGyIyMlKp060qZcuWRVxcHFxcXHSf8E1H0s67cXFx1B+GZ+iz4Sf6XPiLPhv++lg/G4ZhkJWVhbJly2pd1+IdbPmMOu/yF302/ESfC3/RZ8Nf9NloZ/EOtoQQQgghmlCwQgghhBBeo2BFAzs7O8yaNQt2dnaWLgpRQJ8NP9Hnwl/02fAXfTbaUZ8VQgghhPAa1awQQgghhNcoWCGEEEIIr1GwQgghhBBeo2CFEEIIIbxGwQohhBBCeI2CFUIIIYTwGgUrhBBCCOE1ClYIIYQQwmsUrBBCCCGE1yhYIYQQQgivUbBCCCGEEF6jYIUQQgghvEbBCiGEEEJ4jYIVQgghhPCataULYCyJRIL4+Hi4uLhAIBBYujiEEEII0QHDMMjKykLZsmUhFGquOynxwUp8fDz8/PwsXQxCCCGEGCAuLg7ly5fXuI5Jg5UzZ85g8eLFuH79OhISErBnzx707dtX4zanTp3C5MmTcf/+ffj5+eGnn37CqFGjdM7TxcUFAPtmXV1djSg9IYQQQopLZmYm/Pz8ZNdxTUwarOTk5KBBgwYYM2YM+vfvr3X9Fy9eoEePHvjqq6+wZcsWREdH47PPPkOZMmUQHBysU57Sph9XV1cKVgghhJASRpcuHCYNVrp164Zu3brpvP6aNWtQuXJlLFmyBABQq1YtnDt3DsuWLdM5WDE3hmGQI8qBs60zZ7lIIpL9bS2whkAggEgigo3QRvZbKq8oDw7WDjrlJZKIYGtlq1PZ8ovyYSWwgkAgAANGtlw+b32JJCJYCawgYSSwFiofHgzDoIgpMioPfTAMg3xxPuyt7HU6oPOK8mBvZV+sZdSH4rGhj7yiPFgLrVVurypd+c+qSFIkO1Y0lS1XlAsnGydYC61RKC4EwJ5IrAXWZtunIokIDMOwxx0kSnmIJCKV+YslYjBgVB6nUoXiQp2/T5YgloiRL86HnZUdxIwYAgggYSSwElpZ9Pg15jg1ZRrFkaYuiiRFYBgGNlaq85ae4yWMRHY821vbG52vSCKCSMxeE6wEVlq/g9LvPADZdwbgXhN03YfS9cQSMcSM2OLfI4v2Wbl48SI6derEWRYcHIzvvvtO7TYFBQUoKCiQ/Z+ZmWmu4gEA6v9THwBQybUSDvQ7AAA48/oMxkWPk63To0oPNPZujJ8v/YyfAn7CvMvzEFIzBD+1+Am99/bGi4wXGF1nNCY3naw2HwkjwfQz03H69Wns6LUDFVwraCzXjic7MPfiXJWvfdPgG3zd8Gt93ypeZLxA7729AQDeDt6IHBCp9OWcdnYaIl9E4sTgE/B08NQ7D319euRT3H57G50rdsbSdks1rrvl4RYsurIIAOBu546oAVFwtHFUu74uFztT+uvOX1hxcwU2d9+MBl4N9Np25a2VWHN7DQDg2MBj8HXylb126PkhTD87HUuClqBLpS6y5RNOTMCN5BvY33c/BuwfgOru1fF38N8QiUVKn+vj1McYeGCg7P+wLmEYe3Ss7H8HawcwDIOogVHwsPfQq+yapOWnoW1EW9n/1gJr9KveDzNazIBAIEBafho67+yMAnEBnG2cETkgEm52bpAwEgw+OBhFkiLs6r0L1kJrpff1KPURPj38KfpV74cfA340WZmNJS1nkaQIjf5tpHa9Xb13oUapGsVYMtam+5uw5NoSrA9ej6a+TQH8dxGUFKm9WCvaeG8jll5fig1dN6CJTxOTlGvWhVk4/PwwDvY7CB8nH522USy3Id95kViExpsbA2C/e6XtS8NaaC0L/FffWo1Vt1ehjFMZJOQkyLb7o/0faF+hvc75KNr5ZCfmXJzDWWYjtMFfnf+SfS6Kvo7+GuffnAcAlHMuhzfZbwAA05tPx7Baw5CWn4buu7ujVblW+C3oN7V530q+hZGRI/FF/S9k550FrRegV9VeBr8fY1l06HJiYiJ8fLgHnY+PDzIzM5GXl6dym4ULF8LNzU32Y87OtQzzvrbiZeZL2d/fnfyOs96h54fw86WfAQDzLs8DAEQ8jkCBuAAvMl4AADbc36Axr7FRY3Hk5RHkFuViZ8xOleuIJWKIJCIceHZAbaACAKtur9KYlzq/Xv1V9ndyXjJi0mOU1jny4ggYMFh4eaFBeejr9tvbAIBjr45pXVcaqABAekE6LidcRoG4QOW6DMOg++7u6L67O4okRZzXJIxEVqtgSiturgAAg/ad9IQBAN9Ef8N5bfrZ6QCAKaencJaffn0aWYVZ+O3ab0jNT8XlxMu4nnQdjTc3xro76zjr/naNe+KSD1QA9s4xX5yPA88O6F12TfY/28/5v4gpwo4nOzDrwiwAwL6n+2SfYbYoW3YcZBVm4UnaEzzPeI6k3CSce3MOjTc3xuYHm2Vpbbq/CfnifGx7tM2kZTZG5MtINN7cGHuf7kVsZqzGdZdcW1JMpeL67dpvYMBg5oWZsmVzLs5B4LZAJOYkAmBrGuRrlxUtub4EDBili60xdsfsRr44H+GPw3Xe5tuT36LF1hZIy08DwzDov78/eu3pBbFErHMaO57skP29+OpiNNvSjPNdk55v5QMVad7GULXvRBIR53NRJA1UAMgCFeD9uXHf033IFmUj6mWU2n2w48kOfHrkU0gYCee88+M5ywb8JW6eldDQUGRkZMh+4uLizJJPkaQII46MUPmahJHolEaLrS04/+cVqQ7AAOBa0jXZ3xkFGUoXUIZh0G9/PwRFBBl00OQX5XOCL1XOvTmnlKc6R18d1bsMxS3yZSSabm6Kf+7/o/TajPMzEJ8Tj4ScBCTlJnFeGxM1Bi23tURWYZbG9EUSkeyEremzVSTfZGeImDQ2iBRLxDoFVfLrSIPcP27+wVlH23s1FwFUN0vteboHABCfE89ZbiWwAsBthu26qysmnJgAAPjl6i+y5fp8JsXlh9M/AGCPv7d5bzWumyPKMVs5RGKR0jlGkXRfA8CumF0oEBdg66OtYBgGPff0RPDOYK1pmKPWUszoHmicijuFQkkhol5GIUeUg+cZz/E6+7XWfS/vz1t/yv4++uooxIxYFjQ/TXuqczqm4mTjZPC2J+JOyP5OzU9VuY6mG2FLsmiw4uvri6Qk7oUiKSkJrq6ucHBQ3cfDzs5O1pnWnJ1qU/JScOvtLZWv6RqsKH6Rm29pjnmX5mndbnfMbvTc05MTLEhraQy5qLzNfYtmW5rh62j9moZ0fZ/monjXra/DLw4DABZfW6z02r5n+2R/KwZl15Ouo0BcgLOvzyK/KF9l2kWSInTa0QnddnXDujvr0HxLc0S9jNKpXC8zXmp8XcJItF5oLyVcwsADAxEUEaQ1P/lgRT5Qkn/f99/d15qOtGympK0fkmJ+0oufYpCm6qKp7UJqadqOb3MFWxkFGQjaHoR++/ppXE8oUHF5YIDcoly8yX6Dt3lv8TZX80XfWmB8sFIkKcIvV94HoU/Snui0Xa4oV/Y3AwYX4i8YlL+m/h1/3f3LoDSN4Witvmlbm5vJN2V/WwmtNKzJPxYNVgIDAxEdHc1ZduzYMQQGBlqoRO+p+qKKJWIwDGPUnXHE4wid1nuT/QaZhe/741xJvKJXPtKOwQDbTAVwqwh1IQF7ocgV5VokcPnfuf+ZLC1N5VdXgzTt7DQ029IMGQUZSq8l5yYjNT8VSblJslqK6Wem61SW3KJcja9/dvQzNN/SHO/y3qldZ8HlBXia/hTZomyt+XGCFbn3OvXMVB1Ky6VpP2YXZiNHlKO1Bk+eyguihvyk6+tSo2TKYEXCSDgXP1PQFqyoC5TVyRXlam3euJl8E63DWyOrMIvTtK2KqouZUCDEo9RHsv+1nQtNUbPSZ28fbH74vnnPVqi9o+fxV8cRsDVA9n9eUZ6saRFQX6OninwNkyJLdPY1tOOu9Dogpc8+4AOTBivZ2dm4desWbt26BYAdmnzr1i3ExrJts6GhoRgx4n3TyldffYXnz59j6tSpePToEVatWoXt27dj0qRJpiyWQVSdRAfsH4DPj31ebGVoHd5aFrQsvqpcO6DJtyfYttq4rDiDI2iGYZCQnYCArQH44ugXKtcpFBdy7gCzC7MtXiOjirryA++DMnUuxl9UWpZekK68oh7f/azCLKX9JA1OryZeBQBEx0YrbSdlb6X7CetignL5AbaZTF8MGGQWZiK7MJtzYbyaeBWB2wLRYmsLvYJMbSdMdcfSpYRLWtM2ZbAy4cQEBGwNQHx2vPaVTUSfmpW0/DQEbA3AJ4c/0bjer1d+5fyvKbCUXqTlmwuEAiH+vvu37H9t33VTBCuxWdy+Pe39tHdanXF+Buf/ZdeX6RTYq6KuyUgkFmkNtvUlloi1Nv+p64enjbRvmxRfm3vUMemevnbtGho1aoRGjdge7pMnT0ajRo0wcybbISghIUEWuABA5cqVcejQIRw7dgwNGjTAkiVL8Pfff/Ni2LKqg/BZxjNcTrhssjwyCzO13gnNuTAHrba10noXpOjU61MAgA33Nhj8JZUwEhx8fhAAcDnxssoahk47OiFgSwAKxAWIy4pD4LZAfH1c/5FI8kRikcnb6y8nqv/ctNUECAQCFIoLZXfWx18dR8jBEOX19IhWWm5rie9Pfy/7f/+z/Wi1rRXW31uv0/bSIYn6UjzxS+la9qMvj6LVtlYI3BaIMVFjwDAMMgoyMCZqjGydA89174Sr7WKmLuCYf3m+1rQ1dQDV15nXZwCwTbTFRZ+aldOvTwMAHrx7oHE9xVo9Tf0/hAIhHqc+5jQ1WgmtOH3btH13NNVKGEpxCK2q85K2c54+/V7UGXZ4mMlrJ4YfHo4WW1tobF6r5l5Nr9pLdY7HHjc6jeJk0t5P7dq107gTN27cqHKbmzdvKq9sYeb4ksmLz45H8K5g1Peqj83dNqtdT91dsa7ke7LrS8JIOH0KWoe35rzOMAzSCtIAALGZsTjy4ggAcNqGU/NT9R7q2m13N6VOr+akrWZFAAE67OiAjIIMXB12FZNOqa750/cuS36Ek7Q2Ytn1ZbJlmubm0beJQErdnbBQINTpBP4w9aHs7xvJNzDl9BStI7UyCjJkc7eoyledq4lXlcokZsR4lv5Mazml65qaKQMgbfLEbM1KXlEeGIbROAxfV4rNNppqRqwEVth4fyNnmeLnZe5mIFXXE/lz8/LryxF2LwyL2y5G18pddU5368Ot+L7Z99pX1OBh6kPU9Kipdb0CcQFEYpHSXF2q3Ht3DwA0jniKeBwBkUSEOS25o4Us1Um+uJS40UDFxdTVe4qkF/Y7b+/odJdoKvpE5NpORPInOgYM526/QFyAJdeWICgiCFseblHaNiUvRW1ZzBWoFEmKkJafpvyCll0iEAhkd2/Soegq1zPiLkvV8aapPdzUzRGGNt1pC1TeZL9B6/DWGHpoKNLz05Ve13RTsPbOWqWaxxxRDnY+UT20X5GqEXUpeSk6bauOPkNejVUkKUKRpAgttrZAq22tNDZr6fq9Vtzf2mpWFI9pxQ6z2o4bXZug3+W9U5mWqhEr8t+VsHthALjTFuhi04NNJumDpMv3puOOjgjcFqhXbfHh54c1vq5Yw5dVmIWW21rqnH5JRMGKGuauWZGvsdC1060pqGo+EIlFKk/iuaJcjRdg+XkApJMvSTXd3FR2V6Z4Itn+eDvab2+PlbdW6lX27ELDmrOkvjj2BdpGtFW6M5cPylRVKctfCLY+2qo2fWOe+q1qP2tKz9S1BsYOp1YkPYkffckOcX+U+ghtItogLpM71YCmO29boa3S8fou753OE5Mpznvx69Vf0X57e60XAoZhkJybrPI1Q5vfDJWanwoJI0ERU6TxYqfr56d4XtPWZ0UxXX1rVnTp1H8p4RLabW+H6Wemo1BcyLmhUDWwQNW52ZCby1bbWpmkOUWTtPw02TlF2ygm+UD4dfZrvfK5m3JX/8KB/Z5qG9HFFxSsqGHOmpUL8RdkkysVt5TcFM6JODU/FV8d/wrttyt3Wht/YrzG/SCdCwNgO6GFP9I+WRPDMLIJ9NbeWatP0RG4LZAz0ZG+pB1XFe9KpBfW9Px0paYugNtMtPfpXrXpqwo4EnMSdTohqgo+iqO3vkgsMsvJKjEnEQnZCUrHj+L8PJqOr9isWGQWcGeoXntnLaJfqe94LLXp/ialu3LpiJKl1zXPhDzj/Ax03NERf9z4Ayl5KRCJ3zf9vM5iLyJp+WnFMo+LfLOTKc5JirWWmoINVbUi8iOBAGgcsaarv++wHXaPvDyC7ru7o21EW9k5StV7VrXMkO9KEVOkNijVlbbmWPnZmbWdB/SZ+wXg3mQaenM9/ex0dNjRAafj2D5PfBwcIUXBihrmrFn58tiXFptVs8uuLui4oyMOPj+IlLwUBEUEaRwWrevBezP5pk7t+dJZXKUKxAWcWh1tX+iuu7riXso9ncqkjuIJWnoCls6Wq7S+jndfuUXcId7hj8LReWdnpdlhdZVekI747HiznkBGRY1Chx0dTJ5u8K5gdNnVRem9K9akaGomeJX5SmXHaHWdhOVp2ud2VnZqX5MwEtkcPOvurkP77e0x5NAQ2eunX5/G33f/RtuItui4o6PWchjrTdb74NyQ4fcA20SQUZCBTfc3KY1i07SdUCBUupgrjiAbHTUaSTnGNdvKnzekwZR0tJeqeVqScpOUmuMMrdXstLOTxqZdbeKyTDMpaXZhNjrv7KzXNoMPDkb77e3xPOO5wTe/0u4I0lnZi7NPlr4oWFHD3H1WLC30bKjK2hRFut49NvNtptN66+5yp3nvvrs72m9vL7tjfZz2WGsae2L2aF1HE8W7sB/P/YibyTfVXgwUmxM0kQ4PFEvEsr5I/zxQnkFXqlBcqLa26OdLPyN4VzA+P6r7cHl9+1TceXtHr/WNpXgTYIpJw/T1Nu+t2v2kav4Wxer732/8DqB4OjTKP/ZAY7AiF4BLa7XiMuMglojRcltLtA5vrTKA01Szci3xmk7zOymuI18TpQtVF0jpd7SMcxml1+Zfno/Jp7jPWTPmfK3LozzU0adZUNO+VvVoE22eprOz5y68vBA/nf9J7+3lSd9HcfbJ0teHfUU2wocerOhK174R8y9p7iSsbm4A6Z3b+TfnkZiTiEEHBmnNy9j+FaqqjFfcXIEXmarvsFTNs6KO9E4l9GwoZ7m6zny99/ZG112aRzHoMyHg/86bbiI9c1D8XhXXxFTyfZHyivI4w8bl8bkaXNN3Uf470XlnZ3TZ1QXd93TXWqun6bukKj9VwaViR3DpQ/90paq/hbSmRF355KeNB4w7XwsFQrzMeGlQ/xVjL+5xWXEQSURGHXe6zDmkq+Luk6UPuiKrYUxnyQ+JrrPeapsHpunmplqrKk05h40mqk5sVxOvcoYNa1tfmyMvj3D+/+KY6knpjOmDo4p0lkpzPlfGGIrV5qbu2AtA5Ygvxb5IquaYeJ31Wuvswpak6WKq7jX5mV/1TVNX5pjFVfjfpUnXG4U32W9kNTT6Tpq2+tZq9NrbC8tvLNdrO8C4ju5nX59F993d8VnUZ2bv6KtNNfdqAKByxB5fULBCNJKfV8NYmtpkj8ce1/nuwugLnJ5xqDEPDpNS1x/GXPRt/y4umx9u5nSQNUewIt+pUVcxaTHotrsbuu/ubvLymIo55o0xBXM8rFB6g6DrMHXg/UMim25uqldehRK26U/XCRnlvcp8pfc2UtufbAfAzldkju+BPkrblwYA9NjTw6Ll0ISCFcILlxIuaXz0uby7bw0bpielb9ODt6O3XusbcwIzhXd573g9QZT8UH2+NLucijsFQP+HBxbnHbGhHWw1MUX5zRGsSL+i+tQ8ano8ha7MWbOgaV9b+nvwNP0pr/urABSskBLocdpjvR/KKE/fZh1Vk9pp0nNPT73WN7V229tZNH9tHqQ+kHXCtHT1t5Shd7bFeUcs7VBpynK8ytIvsFbVp0GfYIVhGDxKfYTnGc81TtAnhFDnJ4GbUpuINsWWV2re+6H1x19Zdur7d/nvsPDKQouWQRsKVkiJpM/zZxRpe34KMa+Mggwsub4EQPFe7DUx9M62OO+Ix0WPUzuxmKH7cfjh4ZzaC0OCx/vv7uu83f5n+zHowCD02dtH42hEoUCIk7En9S5LSSI/Z438nFWWUpyTkxqCghVSIt19e9fg5+PIP7uIWIa0tsqS1d+c+X0MrVkp5pqhP2/+afLqevlmVUOeVL3s+jIcfqF5VmApXS+Iugxw4HNnUF3Iv0dDn6T8MaFghZRIsVmx+PbEt5YuBjFCSl6KRWtW2m9vj1xRLm4l3zI4aLqTcgc3k29CLBHjUeojlc+yMaWTcSfx560/lZYbEzTJd9w1dFIwXR+YqmsTrAACrQFL0PYgja/zHU2PoZ/in5GJEBO5mHARr7Neo7xLeUsXhRig/fb2WNB6gUXLMDZqLO69uwdfJ1+Dth8VOQoA0K1SN9lw9b199qKqe1VTFVFJ2N0wTGw8kbPMmKBPvjbF0GAlNlP7rMKAcjnVNckKBUKttTzFUStnbGd+eYrvvbjmGPpQUGhHSrRuu7tZugjECDeTb1o0/3vv2Ec3GPusLvl5dfru66vygZimoulxAcYypBkIYGcFVveg0bisOMSk/TdDq0JMFXIwROU2AggQdjfMoLKYytXEq/jk8CdmS59qVvRDe4uUeHwZUUL0p2vzQUljzifZ5ovzlYamG/MdkL/jNzRYAYCRkSNVLu++uzv67++P9Px0nWuABAKBxTtfn31z1qzpZ4uMe4r8x4aCFVLiWfqkRogic9Z+AMDoyNGc/435DsgHOsZMt65upJLUq6xXKqfWV8XQWoe4TNM8WBCgZhq+oWCFaGTOp0+bCl9n9iQfL1VPkzblKB7FB34aU7NyPem67G9jala0WXBZ9/5JQgjRxKeJ3nl032O6GYjN2UxDtcH6o2CFaFQSAgH64hO+UVXTsfXR1mLNT1f7nu2TzflhzmBFn/mNhEIh7K3tzVYWSzO0I/PHjIIVUuIdfnEYJ2JPaF+RkGIikSiPVJE+ZNIcjA3Y76WwHY0tPe27lLXA2mLTv19NvArA9DdB8unliw2bI+pjRkOXSYk34/wMSxeBEA4J3l/077y9AyuhlclrKZ+kPUGNUjUAGN9vSzopGV+CFcBytbpjosZgb5+9nM/QFE7EnUATnyawElpZfHr9kohqVgghxMSkD0bMEeVg2OFhGHJwCGd6dVMYsH8A0vLTEPUyyugZUFfcXAGAP8FKVmGWrIbDEmLSYpSGWRtry8Mt2P10NwDg2Ktjpk38I0A1K4QQYmK/XfsNtUvXhp+Ln1nzGRM1RuMDDnWVI8oBAJPXJhjq25OWn53aHKMMz7w+Aw87D5pe3wAUrBBCiBlcTriMiq4VzZqHKQIVecb20+BLzYyxIh5HaB2KbYhTcadktW5EPxSsEEKIGWx9aL7RP+ZibLDxoQQr15KuWboIRAH1WSGEEDPIEmVh7Z21li6GXihYIXxFwQohhBAAxvfToGCFmAsFKzyyquMqSxeBEPIRMzbYsPSDKcmHi4IVHjFkemlCPkTm7phKVDM2WPni2BcmKgkhXBSs6KG8c3mzpi8Q0IOzCCGWQ804hK8oWNGDtdC8g6foKZ+EEEuiYIXwFQUrejB3sGLOp3wSUpLQwymLX3x2PO13wlt0ddSDlUD5se+mRM1AhLDMMXso0WzooaG8mcGWEEUUrOjBSmjeYEVIHwchxEJS81OpGYjwFl0d9WAtoGYgQsiHi5qBiFSAb4Cli8BBV0c9tC7f2qzpUzMQIcSSPoaalanNplq6CCVC9VLVLV0EDgpW9PBZ3c8sXQRCPgrmuMN3s3PTa/01ndaYvAx89zH0WTH3FBTEPChY0YONlY2li6CXvtX6WroI5COyu/duSxdBrfZ+7fFFPf0mLGtVrpWZSsNfH0MzULYo29JFIAagYMUC2pRrY/Y8RtYeienNp5s9H0KkqpeqzruqY6k+1frA1srW0sXgPTEjtnQRzI76BuqGb90SzPKprVy5EpUqVYK9vT0CAgJw5coVtetu3LgRAoGA82Nvb2+OYvFGzyo9zZ5HM99mcLJxwvrg9WbPi3xcNnXdpPa1dZ3XmSQPUw9dFkJIky7q4GOoWanmXs3SRSAGMHmwEhERgcmTJ2PWrFm4ceMGGjRogODgYCQnJ6vdxtXVFQkJCbKfV69embpYJtPMt5nRaRRHZN+2fFsAbHnl54cZUH2A2fMmH7bGPo3VvlbaoTTqlq5bjKXRjVAgNMmd4pH+R0xQGv76GDrYVnCtYOkiEAOY/Kq5dOlSfP755xg9ejRq166NNWvWwNHREevXq7/DFwgE8PX1lf34+PioXbegoACZmZmcn+LUtVJX4xMphhs8dSfmzhU7G5ymi42LwduSD4OHvYfWdUwxH5GpL5qmCFSql6qOcs7lTFAa/voYOtiaY3LPv7v8bfI0LY1vNZEmDVYKCwtx/fp1dOrU6X0GQiE6deqEixcvqt0uOzsbFStWhJ+fH/r06YP79++rXXfhwoVwc3OT/fj5+ZnyLWhV15N/d436MPQAHFRjkMY7avJx+C3oN63r2AiN74jeokwLvdZv7K352DT0uD828Jjsb4ZheNeOb2p7Y/ZaughmZ46a7ea+zU2eJuEy6aeWkpICsVisVDPi4+ODxMREldvUrFkT69evx759+7B582ZIJBK0bNkSr1+/Vrl+aGgoMjIyZD9xcXGmfAta1S5d2yxRdH2v+iZPU0r+RH0n5Y5BaQSVD0J7v/amKhIpoZxtnAEAkQMi1a4jrX00phaiS6UuWNlxJX5p84tO69cuXVvj64Y2A/k6+Sot29tnr97plBSXEy9bughmZ46alQ89iOUDi3eLDgwMxIgRI9CwYUMEBQVh9+7d8PLywtq1a1Wub2dnB1dXV85PcQsoY9zMfqru8oprTof0gnSDthMIBOhXvZ9pC8MTg2sMtnQRShxNgcigmoOwquMqbOuxDUcHHDUofSGEaFu+LbwcvQwtIodAIDD6cRbSzqdV3auaokjEQiiw0K6+p/lung1l0mDF09MTVlZWSEpK4ixPSkqCr6/yHYoqNjY2aNSoEZ4+fWrKovGat4M3XGzN2B9EIP+nYV9UK4HVBzvkr3U5885MrIsapWqYLe21nVQH/uYiFAjRpnwblLIvhTLOZYo1b3VshDZ0kSK852DtYOkiAADWdObfhIgmvfrY2tqiSZMmiI6Oli2TSCSIjo5GYGCgTmmIxWLcvXsXZcrw4yRnLvJ3nPKd2swatBjhQw1UAH7caW3oukGv9Z1snHReV9+ZW3X1if8nZknXHCq7VeZdh0FdNfBqAACo6kY1Oh+6CY0moIlPE0sXAy62Lrz7vpj8CjR58mSsW7cOmzZtwsOHD/H1118jJycHo0ePBgCMGDECoaGhsvXnzp2Lo0eP4vnz57hx4waGDx+OV69e4bPPPuyp7eXvOOVHPhzqd8is+Tb0bqi0zFqo/QGN5mjn5QtLfylthbZwtXXVKyA83P+w2teWt1uO3lV7v19gprc3sfFE3gTX6gLOw/0PY2evnfB08DQ47YZeDQHAYs2gc1vNxbou6/B9s+9Nkp58p2HCLzZCG7Qq+/HNnKwLkwcrISEh+O233zBz5kw0bNgQt27dQmRkpKzTbWxsLBISEmTrp6Wl4fPPP0etWrXQvXt3ZGZm4sKFC6hdW3OHuQ+J/ERMpexLmTWv6u7vZxg9OuAotnTfgpktZmrdjmpWzJ//ycEndd5G0xBiGysbo/tV6cLRxhGBZXSrMbUUPxc/1PSoaVQaazuvxYbgDRhea7iJSqUfR2tHtCjTwiSjrADoHbiZs4mScAkFQgSWNc93anbgbL3Wt/R5UZFZrkDjx4/Hq1evUFBQgMuXLyMg4P2J89SpU9i4caPs/2XLlsnWTUxMxKFDh9CoUSNzFIu3zD23gXzNgUgikv3t4+SD+l710bdaXyxrt0xjGqaYO4OvLF2zIg0EdZnDRBeVXCtx3pOl35+pHRt4DHt679G6nuLwZ0NPvo42jmjq29Ri3wHp52eqWX31vfH4udXPcLdzN0nefDGy9khLF0Gtup51sbTdUpOnW9W9aomeJ+jDvV0uQYpzimv55ifpSUsgEKhsHpKn7gTXvXJ3AGwfiuhB0SrX4TtDao30aa7Ttq4pa63+7fav0gydpgxWDLngd6vczYCM1L/k6+SLaqU0T5neulxr/NHhD4UkP6ygzVD6Hm92VnZazw8lzXdNvkMtj1qWLoZa2obim1JJmZWZghULkJ40pbPJjqozqljyAwBXW1cc6ncIxwce56zjZqu5E6a6Pis/NPsB4T3CcXLwSXg7ehtfWBPSdY4OQy5i+kzZrW5d6URSX9TX72nAmtQpXcdkaamiGFjrcrc/O3A2NnffjHbl25mlTKXsuE2nW7tvxZ8d/uTNyApTsVSwJYAAJn5Uk8VZC61lHZf5xBLPZirvUr7Y8zQEBSsW9EubXxDeMxxj640t1nwruFaAjxN34j4bKxsMqzVM7Taq7sYO9TsETwdP1PGsI7sw8OluRde29uJomx1Sc4jSsoVtFiK8R7hJg1VV78Wc708s0f6UXkcbRzTwaoA6nvoHUrpcoH9o9gNnvXpe9VQ22fCtDV5Xhta81fesb5Lvo0AgMPmDJYlq0v1MtYDKKFgx0MI2C41Ow8bKBnVK1+FN51VfR/Vz4aiqWVFVY/BPt394M/W0rn0MDL2Ijag9Qu1rAb7cDq7Tmk9TWsfOyg51PE37+cs37eni09qfYmqzqQbnJx0ho8vDC811Ai6pI9V29Nqh03rSz1Lf5yWFBYdhUzf1T8jWlQDqg5XP631udPqWwsfg1ZigcHHQYpOUQfo95VvAxI+rZAlkzg5no+uMNlvammj6ouh6QbW3tse6Luuws9dObAjWb+4QU9NlSDYAg2c2ndJ0isrl64PXKz0wUlVZzHGyVHWC0XTSkTASve6+FY+Rdn7tsLfPXmzstlHnNPRhyjt6U1axa3sWkS78Pfx1Wk/aRCtmtNdiybO3tjdJU5hAIFC772p4mG6kkK7BGwBUc9fcZ6mkPljQ0GM0elA0ansY3s9FfoSYqhsrPqBgxUDmbFv8rsl3aOrT1GzpG0Kfu1ehQIiaHjUtPi25rmU2NGhQFcAdHXAUzXyb6ZavGe5cpO9F17SLJEVG51nVvSrsrOy0rie/nw292KsbKq3L+zXlk5zXdVlnsrS0sbFihyyLxCIta5qHppoVU9ZqlXUuq3O/t+29tqs95jwdPC1y7hlTd4zRaRjaDGRof8GQmiEA2Cb9g/0OYmevnRjqPxT/FYJXKFjhIaFAaNK5DXS9GGv6ghjSVOFs66z3NrJtbQzfVkoAAc6GnDVoW0OH+OkzvbwpL56KNH2W8vukSFKE6qWqq13XXOTvfK0F6mvAFN+HMX1RTFlLY2tli9L2pU2Wni7qedXTeV3ZBccENAUrxj5vSYmOH5GN0IYzZ5Q8CSPRKYgy9c3CxMYTzTZbtC70fT/7+u5DaHN2glZHG0dUdK2Imh4135/redZNiYIVA5m7vVM+ODg35JxZ81Jnbsu5sr8NuYOyEdoYHCwMrjnYJEPq3O3dta5jij4j/ar1w8WhF2X/tyrHzkKp6YLmaONodL5SJwefxPmh51W+pnisutu7y57y3bdaX7jZuZl9RBrAPZnaWNnIJllTNTOruhOvqoumrrWcgWUCYS2wRgUX3Udy8Ymng6fSKD5VGnk3wvTm002XsUD9PjbleVAAgV5zTgmFqr+3Ekai03fa1OdwoUCIyq6VjUpDup/NdX2R/15VcatSoubPomDFAnQ5EPtU6wOAHW9vbLRu6B0EZ04WNScGbXQJFlTpXrm7yYbUBZUP0vi6qv2jbzOfp4MnpyapvEt5RA+KRuSASKV1G3s3xrkh51TOSDqwxkDZ3+382umVv6vt+yeQazvGNnbdiKMDjsrmzzBmOnpD/dDsBxzuf1ivZwwZczdcxrkMIgdEYkevHbx8qqwuFEfxqeLn4mfSTtumrnHVRJ/aRnXfUQkjUWoiKimT2hlS2yqbk8XU8Q01A30YzN1T2t/DH9GDorG5+2az5iNP8QInX5uiqapem7JOZQGwk3npYl2XdTpNkR45IBJ+Ln6y/22FtirX0zY7r6oTrimaDLwdvWFvba+03NXOVW0AOqPFDEQNiELUgCj80f4PlesoUve+pVQdqzZCG4OeiGzMflE8voQCIfxc/DQGVqa+w/Rx8oGjjSM2dt2I4wOPaw1kNeHjaBJz0NTB1tC+e2s7rZXV7hmanrr5iSSMROl792ntTwEAHfw6yJbxbbQLYNj3a3O34rtGWBIFKzzm7ehtkueBmOKkquvIGlX299uP0yGn4eXgxVl+uP9hlf0lfBy13z0CbBNLXFac7H9171PaQVGefAfmym7KVbeKJ43vm5rmIXLaCAVClHUui7LOZSEQCGRBjaqnLI+ty87P82PAj0qv6Xsi5uOJWx/6HuM2VjbwcfJBPU/d+4EossQEXpYggACj6o5S+Zo+/Wjk+Tr5oowTN1jWtxmonV87rA9er7RcOmpK/nwTUCYA0YOizTKNvSkZUlMlPb9p+w7r+x3h2zmBghUio3jylf/iGBOs2FnZwcPeQyl9b0dvfNvoW6X1NX1J5IcEWwutDa6Glr/4O1o74sLQCxrXH1lnJOeurLgcH3gc54ac4zTxSE1sPBEnBp3AgBoDjM5H5zs6I67Phow80iUgMKa2R/q4iA+JqS8yAgjQsmxLHB1wVOn5VW62btjXZ5/+aaqprdG3GUTVjY003b1993KWezt6F2sfjW6VuuFMyBm9tjHmPKuLklwbSMEKUYvTDGSCL9E3Db/h/C+EEO382mFcw3Gc5S8yXqjc/uTgk/is3mec8s1pOUdl2oB+X0wXWxfO/6pOpNI8ivMR7vbW9mqbjAQCAbwcvVS+Jn+9kr94KU5WV5x6VO4BwDRzlCgy9ALt5+qHvX32GrRtan6qQdvxgXzfKG2k36MyzmVwuP9hLG4rN/mYACjtoP+oKKFAqDrIVFhU1U3zEGT57/iA6mzQ/lOLnwBobx6Vrq+qOUofinMqSVkLrVHKvpTK19QxZkI2Xc53Jbk2kIIVIqOpz4opOtK1Kd8GKzqskMuQ/aXYubNWadWTlHk6eKKKWxUA7PNgBAIB+lbrizMhZ/B1g6/1+oJrW1fVibSmR02cG3IOqzqt0jkfS+E8dVnuc1U3F0RxVPn6ufrh3JBzKqvu1dHlBKxpaK0uVDWx6WJlx5UAgN5Vexuctznosi9mtpipsrZOam3ntSqXO9k4KY1iM6SpWuXkhQJuM1B9r/rY0XuH2lFuADvrtrXAGk42TpgZOBNnQs7IBidoU61UNZwbcg7/dvtX7/JLfd3ga/wW9JvK13S9Wbr0yaX32/Cs6YVPzFvnxBMMw6CoqAhisX4zQJax5bap5ufny/4WFgmVXteVsEjIScuQsmgjn76PrQ8KhAVKyxXZSmw5+XjaeKKSYyXYCe3AiBjkF+VzXtf3PQCAm9BNlkZ+fj7E/2/vvMOiOro//t3CLr1JRwQUxAJBRSHYC4qIisSosWt8jbFEjbEmvlHjq6ixxhhNDIgxiqJBJdYYe0GxgIgKImKlRaVIXdg9vz/47XUvu8vuIkbU+3kenoede2bmTLkz507lS5XiFUqFTNiq4jvz0RkI+ALmtwEMUFZWBluRLSRSCSNfUV6BMoFyOEp6lFfp0dmmM9Ly0wAAlkJLCEQvjTV5XGKIISl/GYc8DAMy0JgfclkzvpnOeWetZw0ofChq8i+QCpj4ZBIZ8z+vkqfSb/UyUIesQlarcpcjhhgVkgpUgH3AWfW4GT0r2M9M+aZKdUMgFcAQhqx6pQtGPCO4GrpCwBMguHEwolOj8aXPlxrDaWfVDidCT4APPi4/uqxTnHI9tcnz6npo8mPMM2b5UdeOuRu7I7MoU8m/v4M/mpm9PF1X09d4bUZdeTye0qJ9AU/Amgb6rfdvEPAF0BOpN4b0BHq4MOwC+Dw++Dw+ayRD0VhQlwb5qGUnx044+0S3YxbOfXJO552armauSiPHRnpGaGPTBtdyr6GHcw8AtZuu0cbQeZungXj0No8LASgsLISZmRkKCgpgaqr8pSCRSJCVlYWSkhKdw67+IjsYOzD/l1eW41nZM90VBmCpb6lyl4guumhCUdes4izmZVV0r05RRREKywuZ33ZGdi+HJf+/kivqUVNY6pBIJXha+hQAYG9kDx6Ph5KKEuSX57PilY/k6BKfYjqBqvls+Rx19fzTF+qjrLKMpQcRIas4C0BVw6l4vLm6uOXhGouMa/xSVZTVF+orzf1rIqckh3VpoKa8KK0sRV5ZHoCqufrcklwAVYuSxULlkz+rl706rA2sVS5YflWql08DgwYQC8Ss+gIAYqGYObtG7sdC3wIV0goUVRQBqF29VDzfQttzOuTISIbs4mwAVfWgSFKklT8HYwet3uvq6fmn5B9UyNSfZmttaM0a7VDXjuWW5KpcR2QgNICZvhm+ufEN0kvTcXTgUZYOZx6fweTjVVO310Zeg4AngPdvut1gfPijwyiQFOCTAy8v+Lw24hraR7VHmbTqvbwx+gbzzGsreyGv4jN1lEvL0fb3qoX024K2Mdv0VSEjmVIamlk2Q8rzFLV+VOkw8tBIJP6TCADo17gflnZaytI9cWQivr3wLWLTYwEASzsuRb8m/SCVSVEmLWNG+XJLctFjdw+NaVTUI7MoE4F/BKqV+73P75h3dh6zKUFTHq69uhbhyeEq46orNPXfirzTIysymQwZGRkQCARwcHCASCTSybKszGO/yK4WL3eNFEuKISiu3WIteyN7nU93ra6LJhR1leXJmOFVRffq5JXlsToGZzNnpa8mRT1qCksdpRWl4BdVdQSu5q7g8XiolFUyXxtCnhAuZi5MOekSn2I6AcDZ1JnpWKvnn5GeEYorigEALuYuTOckzZMyelSS5rjl4VqILWBlWPNZJXJZIz0j3TvUfGilj5wXkhfQK65Ku7OJM/Ciyt3ByAFGIuVpj+plrw4nYyfo6+lmaGtD9fKR61lSUcLUF6DqID356cJyP7ZGtiivLGcM3trUy1eBiMAvqNLRxcwFmcWZKKnQ/HHkauGq1XtdPT0u5IK7+XdVyqoqX3XtGK+Ap9LoMRGZgFfMw9iGY7E4fbHSotfqX/C1mSLm8/ho2aAl1nZbi+knpzNudXmqsy5TKtXTIOQLsTN4J1pta/XKeizrtAxzz87FPN95EPAF+F+H/zE7+OTGiYAvgBH/ZbnVas3KOz6F9E4bKxKJBDKZDE5OTjA01P20UL4euwLr679spCv5leBLareOQyQWQV+sW4NfXRdNKOrKF/GZhWuK7tXRIz3wK1/Go6+vr2SsKOpRU1jqkAlk4JfzGf9yo6SlQcuXcSg0HLrEp5hOubzcWKmef0KRkDkqXF9fn4nTzswOuSW5aGjaEA8LH2qMWx6unlhPs37/LysUCXXOO4FIAJnsZUOuyb+EJ2Hqp1hfDH7Zy//1Rcp+RSRilb06xPri12KsVC8fuZ5SgZSpLwA77+R+RGJRVb2SvSzPfxsP/apzgfg8PoQVQq2OodfX19fqvVaVHn6xan8GBgZK5aOuHROWClVOjeuJ9GCmbwajHCOYC821WgPj2cATyc+SAQAtG7RE6vNUlnFdHfl6OMX1QnweX6ety6+ThJEJrxyGvG0LbhyMbk7dmLU+PB6v1uukqhPWKUx7fd5yY+a9WGBb29NXOf495HPOdX0ipq5YG1qjeYPmSruDNPJ2twMcr4hi3a1+fsjrQD6KZyqueei8Jmq8ZZ3PBw888MFXWu+hanRa8fBKbaa45dOzimHXdPhcbVDsnGu7APv6qOsY3HRwrfwqpqUur9YAgMvDL+Py8Mvo27gv41bX61Hq2/oWrhfneC9QPOlWE7UymN6SlV+vejJvXV4G+K4iEohe++WQtoa2aN6gOQyFmjtBdScVqyvL6u7alLnS+SUa+jl171h9q198Hl+nD5e66uA1haMv1Nd53ePbDmescLwXmIpN4W7hrrRjgIPjdaDH12MWMvN5fDQybfRaLs6rHqaqzt5S3xIigfKZI9qOYtS0jqS2UwvyM1Cq61unN5HrqFqQS5DqYHQot+ojRRx1B2escLw3iAQieFh6KC1ufdvncnXhfUrrm4TH46GJWRO0aNACHpYeMBGZoJlls1c2lCUSCdzc3HDhQtWJy9qWp6JRIJFI4OLigtw7uSply6Xl4IEHkUAERxNHnW+p1sYIkq/Z8LH1gYORw7960KI61I40vd0bZlm8ze8/Z6zUU7p27Yrp06crue+L2gf/Jv7M7w0rNsDT2hMTBk9Qkv3+++/B4/Ewuv9oxm3hwoVo1aoV6zePxwOPx4OdiR06enTE6H6jsW3TNpSXl6vUbdFXi/CB7QfYvXu30jPF8IRCIaysrNC5c2esXbtWKbxu3boxsop/n3/+udp8GTNmDCOnp6cHV1dXzJ49W+ksCk9rT4iEIqWwo3dFAwDizsbB09oThQWat+t+NugzCAQCXL5cdZbG/fv3mfA8rT3hae0JO2M7VjyRkZE4deoUeDwe8vPz8ccff+AD2w+Qk5WjMg53d3fMmDGD+R0XFweBQIDg4GCN+gFV9UUet1gsRrPGzTB5+GQcO3CM9YUpb5APHDiALl26wMTEBIaGhgjoGIB9Ufu0igsAoqKiIBAIMHnyZKVn8nTL/6ytrdGnTx/cuKH7tscW7i2wbZPyoV0LFy7EwK4vrxnggYeCvAIs+2YZnJ2dIRKJ4ODggE8//RQPHz5k+dW2DgHA48ePIRKJ4OnpqVI/xXSampqiXbt22L9/P+vZb1t/g7m5udLUR2lpKdq7t0dHj46ss3tqYtOmTXB1dUX79u0BAGIS4+tJX8PP1Q/BfsE4efwkS/7777/HF198wepwRSIRZs6ciYXfLESLBi2UDmEsqywDj8eDlYEVfuz+Y50fUd/TuScz6iAWiHHoo0PYGLCxTuMA3nzH/G8bOW86va8bzlh5B7C2tUb8+XhkZ2az3CMiItCokeavopYtWyIrKwuJqYmI2BuBXv17YfMPm9GpYye8ePGCJVtaUorDew9j7JSxiIhQfRKpPLyHDx/i5MmTGDRoEMLCwtC+fXul8MaPH4+srCzW34oVK2rUt3fv3sjKysK9e/ewZs0a/Pzzz1iwYIGS3K/hvyqFPWDAAI35oUjW4ywkXk7ElClTmPQ6OTkx4Z1KPoXRk0bDo7kHK54hQ4awwunfvz/MLc2xf6fyPSpnzpzB3bt3MW7cOMYtPDwcX3zxBc6cOYPMTO3O2JHnZXp6OrZFbUMTjyaY9dksTPqcfRXB+vXrERISgg4dOuDSpUtISkpC6KBQfDfrO3y/4Hs1obMJDw/H7NmzERUVpfbwtNTUVGRlZeHo0aMoLy9HcHAwJBLtOmVdyXueh2G9h+HimYvYtGkT7t69i507d+Lu3bto164d7t27x5LXtg5FRkZi8ODBKCwsxKVLl1TGvWXLFmRlZeHKlSvo0KEDPv74Y60Msz/++ANuHm5wdXPF8UPHNcoTEX788Ud2Pfk1HGnJadh+eDs+HvUxxo4ay3SSGRkZ2Lx5M5YsWYKGxg3B5/GZbd/Dhw/HuXPncOvWrRo7OVWGyqt0ipNaTcKqLquU4pAbL69yu3tNvIrh8Camc16H4fG2X2763hkrRISSihKt/soqy1h/is9KK0uVnmv6e12WtqWVJdp3bc/qCC9cuICnT59q9WUuFAphZ2cHOwc7NG3RFMPHD0fk/kjcTL6J5cuXs2T/iv0LTTya4D/T/oMzZ87g0aNHasNzcHCAl5cXvvjiC5w+fRrJyclY/T371lNDQ8OquBX+NB0OJBaLYWdnBycnJwwYMAABAQE4duyYkpyZuZlS2Lpua90btRddenXBxIkTERUVhdLSUggEAiY8K1srGBoZvszD//8zMDBghaOnp4d+g/qpNFYiIiLg5+eHli2rtm8XFRVh165dmDhxIoKDgxEZGamVrvK8bNiwIdr5tcOMb2dgwcoFiPg1AnGn4wAAjx89xldffYXp06dj6dKlaNGiBdzc3DB52mR8teArbP1pK5KuJtUYT0ZGBi5cuIC5c+eiadOmiImJUSlnY2MDOzs7tGnTBtOnT8ejR4+QkqL+kK1XIWxRGHKzc/Hrnl8RFBSERo0aoXPnzjh69Cj09PSURoC0qUNEhC1btmDkyJEYNmwYwsPZB2TJMTc3h52dHZo2bYrFixejsrISJ0+eVCmrSHh4OPoO6ou+g/oiZofqPFTk6tWrSE9PZ73Tt2/fRv/+/eHWzA1DPx2Kp/88xdOnVeflTJw4EcuXL4epqSmMREZoZtkM5vrmAAALCwt06NABO3fuVIpH1fqWumKi98R/rfOvq862tu32v23kvOtrZN7pc1ZUUVpZCr8db+Yyt8jAyNe2gjt0WChWL1qNCTOqpoMiIiIwfPjwWofX2L0xevfujZiYGPzvf/9j3GO2x6Dvx31hYmqCoKAgREZG4r///a/G8Jo1a4agoCDE7ovFqK9G1Vqv6iQnJ+PChQtwdnauszDlEBH2Re3DN8u+QbNmzeDm5oY9e/Zg5MiRtQrvo+EfYevGrbh0/hIaBVWNeBUVFWHPnj1Ys2YNIxcdHY1mzZrBw8MDI0aMwPTp0zFwQu1uVg75JASrF67G3wf/hn8Xf+yL2YeKigrMnDlTSXbw6MFYt2QdDsUcwgc+6i9327JlC4KDg2FmZoYRI0YgPDwcw4YNUytfUFDAdIoiUd13hDKZDPv/2I++H/eFlS37YD4DAwNMmjQJ8+fPx/Pnz2FpqXxysLo6dPLkSZSUlCAgIACOjo5o37491qxZAyMj1WdkVFZWMgaNpnQ+zHiIuLg4LNm8BCBgxX9XIPNRJhyc1B8WePbsWTRt2hQmJi93p3h7e2Pbtm0YN2Mczpw5A3t7e1hZWWH79u3Q19dHaGgoI1u9M/P19cXZs2eV3J1MnIAazqrTZAQI+cJaGwqvazdQfdtl9KZ4mw2a925k5V2lS68uKCoqwpULV1BSXILo6Gh8+qnqS+u0xaOZB+7fv8/8TktLw/Wr19F7QG8AwIgRI7BlyxatvzyaNWuGBw8esNx++uknGBsbs/62b99eYzgHDhyAsbEx9PX14eXlhdzcXMyaNUtJbuTwkUphV1+/UBNxp+NQVlqGDt2rFv/JO+ba0sSjCbzbeiP692jGLTo6GkSETz55eex4eHg4RowYAaBquqKgoADx5+NrFSefz4e7uzsyH1ZNJaWnpcPMzAz29srbWfVEemjo0hAP0h8oPZMjk8kQGRnJ6PfJJ5/g3LlzyMhQvim7YcOGMDY2hrm5OXbs2IH+/fujWbNmSnKaWL14Ndo5t0M753Zo4dACxsbGWLp0KfP8ae5TFOQXoLF7Y5X+mzdvDiLC3bsvT33Vpg6Fh4fjk08+gUAggKenJxo3bqxyndbQoUNhbGwMsViML7/8Ei4uLhg8uOazOfbu2IugoCCYmZvBzMIMHbp1wN6ovTX6efDgARwc2MbMp59+Cm9vb/Ty64WItRGIjo5GXl4evv32W6xfvx7z58+Hm5sbAgMD8eTJE5ZfBwcH5n00EZlALBSjeYPmGj+oNHX82mynVoeB0ECzkJa86Y753556qm/TNnXNezeyYiA0wKVhqueeq3P72W3Wb8WFaMUVxawTTrVBLFC+k6Wu0NPTQ7+P+2Ff1D48fvAYTZs2xQcfvNrV50TEemkiIiLQoVsHWDSo2tHQp08fjBs3DidOnECPHprvsageHlA1d/7NN9+w3GxtbWsMp1u3bti4cSOKi4uxZs0aCIVCDBw4UKm8Vq5aicBe7Lsyqjf2NbF3x170DukNobDqNRk6dChmzZqF9PR0NGlS89X16ggdFooV/12BFy9ewMTEBBERERg0aBDztZyamor4+Hjs3VvVcQmFQgwZMgR7ft+DNu3b1CpOIqqzQ+uO/30cxcXF6NOnDwDAysoKPXv2REREBBYvXsySPXv2LAwNDXHx4kUsXboUmzZtqlWcYyePxYBPBgD4/+P2TRzxww8/4K8Tf7HkdPl6VleH5OTn5yMmJgbnzp1j3OTG6pgxY1hhrVmzBgEBAbh37x6+/PJL/PDDDypHcORIpVLE7orFhvUbGLe+H/fFyoUrMXHmRLWHWJaWlipNY+rp6WHDhg0st7Fjx2Lq1KlISEjAvn37cP36daxYsQJTp07FH3/8wcgZGBgwd6Y1Mm2k8v3UhGIHOavtLPx26zfM9p2NkH3KNx9rc37Rjz1+xKzTszDPb55OenC8+7x3xgqPx9P6NMHqXxiK/mQke62H8piamqKgoEDJ/UXBCxibqr5XKHRYKIYGDkVaShomjZ+kUkYXUm6nwNW16h4RqVSKrVu3Ijs7G952Ly/8kkqliIiI0MpYuX37Npxd2EPtZmZmcHNz00kvIyMjxk9ERAS8vb0RHh6O9gPas+Rs7Wx1DlvO8+fPcfzQcVRWVGJX5C7GXZ7eJUuW1CrcoNAgrPjvCkRHR6Nz5844f/48wsJeHpkdHh6OyspKllFFRBCJRZi3bB5MTLU7oEre6UilUty9exe9Q6tGw5q4N0FBQQEyMzOVDLcKSQUeZTyCbwdfteH+tuU3PH/+nLUmRyaTISkpCYsWLWJ1tK6urjA3N4eHhwdyc3MxZMgQnDlzRjv9FTpBC0sLNGpcNW1mLDKGs6kzyxiwsrGCmbkZ7t25pxQOUFXveDweqy6oq0Pyxas7duxAWVkZ/PxeThkTEWQyGe7cuYOmTZsy7nZ2dnBzc4Obmxu2bNmCPn364NatW7CxsVGpz/kT55GTlaO0CFsqleLimYto37W9Sn9WVlYaF+6ePHkSN2/exK+//opZs2ahT58+MDIywuDBg/Hjjz+yZJ8/fw5ra2vmt7aGirov+FEtR2FUS+Up3vXd1+N/F/+n1dHwPrY+ODH4hFZ6aOJNjzS8ysjOm9a9PsJNA9VTPDw8cO3aNSX3WzduwbmJ6vUZbs3c4NbMDXdT7ta4hkAb7qXdw9GjR5mvzUOHDuHFixfYfWI39pzcgz0n9yAxMRFRUVGIiYlBfn5+jeGlpKTgyJEjGBA64JX0qg6fz8fXX3+N+fPno6xU9a6U2rB9+3bY2tvij1N/MGlNTEzEqlWrEBkZqfJOFW0wMjZC8IBgREREYMuWLWjatCk6deoEoGrNw2+//YZVq1Yx8SUmJuL69euwsbPBoZhDOse3f+d+5OXloWe/ngCAkNAQ6OnpYdWqVUqyuyJ3obSkFH0+6qMyrPzn+Tjw5wHs3LmTpV9CQgLy8vLw119/qfQHAJMnT0ZycjIzYlSX8Pl89A/tj4N/HMTTHPZljKWlpfjpp58QGBiodrRDsQ6VlpYCqDIav/rqK6Vy6NSpk9pdcEDVOhAfH58ajdmY7TEICg1CYmIi8y7tObkHQaFBiNmufqFt69atkZKSonZ6oaysDJMnT8bPP/8MgUAAqVSKioqqiworKiqU6mxycjJat26tNr66oqtTV/w96G+0s2v32uNSx6tMyXDrXeoHnLFST5k4cSLu3LmDqVOnIikpCRl3M7B141YcjjmMMRPHqPUXHhOOk8knYW5urnVclZWVyM7ORnZmNu7cuoPtm7djTMgYeLfyZubxw8PDERwcjGaezeDe3B3uzd3h6emJwYMHw9zcnLXORB5eZmYmbty4gfXr16NLly5o1aoVpn81nRV3SUlJVdwKf3l5ebpkFQYNGgSBQIAd4TtY7gX5BUphFxdX3bQs/3JJu5Wm1CHJ09urXy9WWj09PTFu3Dg8ffoUR44c0UlHRYaMHIILFy5g06ZNrHVFBw4cQF5eHsaNG8fEJ//r1bdXjR0Z8DIvHz9+jPhL8Vj93Wp8N+s7fPb5Z/DtWDVa4tTICStWrMDatWvxzTffICUlBenp6fjph5+w+rvVGD1ptNrFtX9G/wnLBpYYPHgwSzdvb2/06dOnxvU8hoaGGD9+PBYsWFD3u+IImLdwHqxsrDB+0HgcPnwYjx49wpkzZxAYGIiKigqlqZLqyOvQhg0bkJiYiGvXruE///mPUjkMHToUW7duRWWl+hWo06dPx88//6y0RgQAnv3zDKf+OoWQISHw9PRk6pd7c3f0H9wfJw6fQEGe8ogqUDV1VVRUhJs3b6p8vnjxYvTp04cxQDp06ICYmBgkJSXhxx9/RIcO7IPXzp49i169etWYLyrR4qO/PowMvOk1K6/Ca9m6rOsUXz3LP85Yqac0btwYZ86cQUpKCgICAjAscBiO7j+KVeGr0LFHR7X+DI0MYWqm2+VmN2/ehL29PVp5tMLYAWNxdP9RjJ86HqdOn4KxsTFycnJw8OBB1py+HD6fj9DQUFZHJQ+vUaNG6Nq1K6KjozFv3jycPXsWxsbsKazNmzfD3t6e9Td06FCd9BcKhVXnoPwYgZLiEsb9P+P+oxT2+vXrWX5H9x+NNm3aoHXr1mjdujV8fHxw9epVXL9+HQH9ApTiMjMzQ48ePV5poW07/3bw8PBAYWEhRo16OWweHh6OgIAAmJmZKfkJ7BeIm4k3kXozVW248rxs0qQJRgwZgfTUdKzcvBLrf2Snefr06di7dy/Onj2Ltm3bwtPTE3/s+gP/XfFfzFqkvFBZTkxUDPqH9FfZiA0cOBCxsbHMtllVTJkyBbdv32YWqUZGRtZZg2jZwBI7juxAuw7tMGHCBDRp0gSDBw9GkyZNcPnyZTRurHrxrRx5HVqxYgU2bNiAFi1aqFwMHBoaitzcXBw6pH6Uq3fv3nB1dVU5urI7ajcMDQ3h11l5R+KHnT+Evr4+/tz9p8pwGzRogNDQUJUL0JOTkxEdHY1FixYxbh9//DGCg4PRqVMnJCUlYd26dcyzuLg4FBQU4OOPP1abjncJbUZH6oOBxaEeHr3lZwkXFhbCzMwMBQUFSudzlJWVISMjA66urrW6Nv7mU/YXTEurlsz/xZJi3C+8XyudnUycdL4ttboumlDUNeVZCqQkVXKvzrPSZ8gufnmwnIelB4R89rImRT1qCksdJRUlyCjI0Nq/LvEpphMAmlo0hZ5AT6Xso8JHKJRUnV7bokELlZ2mNnHLZawMrWBrWPPCYLmsicgEjUx1O8L8zvM7qJBVaNRHzgvJC2YBuLuFO9Ly0gBULaRUdTFb9bJXh6uZa53dILtgwQKcPn0ap06dUqrfLqYuMBIZseoL8HLNCvAyPx2NHVEuLcfT0ipDqTb18t8iqygLz8ueA6jSU5v3WjE9SUlJ6NmzJ9LT05UMf10YMmQIvL298fXXX6t8XlPbeSHzAiYcqzoiIXFkosqD49r+3hbl0qoTq2+M1v3k4up4bfVi/dY2TLm/iMAIjdNQs07PwpH7R5TCX3N1DSKSlaf+VOkw8tBIJP6TCADo36Q/lnSs3dq2/LJ8dNrVSe1zVXE/LX2KbtHd1PqJCo7CvLPzmH5LUx7+mPAjfk76WWO8r0JN/Xd1uJEVjvcT7iPqjXP48GGNpxVzsPnggw+wfPlylVvFtUUikcDLywtffvllrfxzIxCvn/o2BVMfeO92A3FwvBbe6vHJN0N8fO3Ojnnfqb51WldEIhHmz59fN8q8Q3BGWP2GG1nh4OCof3D9xlvBuzQCwO36qd9wxsr7wLvTntRfuDzm4HgneVeMmLd95Oi9MFZeyxrit7vc3024Mqk1b3tDxlG31NRmajOaUt/qkzZ9QF3r/JbvXal3o2avxVjZsGEDXFxcoK+vDz8/P41z07t370azZs2Yezpq2haoC3p6VTtB5EdKc+jGu/JFwcHBoRsSiQQAIBAo7/R5V6lP7V19MxTqA3W+wHbXrl2YMWMGNm3aBD8/P6xduxaBgYFITU1Vefz0hQsXMHToUISFhaFv377YsWMHBgwYgGvXrsHT0/OVdBEIBDA3N0dubi6AqoOpdKkEsgoZ63dZ2csTUssrypWea4ukXIIy0u20VV3jUtRVJpFBRjIld1V6KcZTVlYGKZ996mX157qimG/a+NclPsV0yuWlAtUnzVZKKll6qKoX2sQtl6kor0AZX4N+/y9biUqd804qkSqlrSYkEgkrffL/JWUSlMmU/VYve3WUl5WDL637b5zqcZeXlUMgFSi9Z4p5x6SpXIIKaYVO9epNUVFeobJcauLfTo9MJsM///wDQ0ND5l6st503YYhwBkfdUuc1cfXq1Rg/fjzGjh0LANi0aRMOHjyIiIgIzJ07V0l+3bp16N27N3NS6uLFi3Hs2DH8+OOPtb74TBE7OzsAYAwWXcgtYvsR5r/MrnJpOZ6VPquVTpX6lTrfK1RdF00o6ppTnMN0dIru1SmqKEJheSHzm5fHg4DH/rJS1KOmsNQhkUqY8zC08a9LfIrpBACeIU/lGRAAkFeWh9LKqqPVBfkClUPA2sQtlykRleCF6EWN+sll9YX6KNcvr1G2OjklOZDKXhpemvKivLIcz8qq6ifPkIfckqq41dW94opiFJSrPjlVEZmBDCKBSBfVtaJ6/ZYaSCEWiFn1BQDEQjEk+hKWH4lYgkqqRJGkCEDt6uW/RUF5AYorqk5RFuYLtXqv30R6+Hw+GjVqpLLD1Wa65G3sqOvT1FVtdKlr/etTfgB1bKxIJBJcvXoV8+a9vDGTz+cjICAAcXFxKv3ExcVhxowZLLfAwEDs27dPpXx5eTnKy1829IWFhSrl5PB4PNjb28PGxoa5J0Nbpu2dxvodGxrL/H/72W0sv7Fcp/DkzP9wPprbN9csWIMumlDUde3JtcjIz1Byr87fD/7GDzd/YH5v67MNZmL2aaqKetQUljru5t3F8lPLtfavS3y/nP2FdcjW1qCtsNC3UCm798penHp0CgCwb8A+lTfCfnvoW6YDVxe3XL+xnmMR6hpao35y2Z4uPfFF8y9qlK3OT6d/Qurzl6fXasqLxNxELE+uyufwwHDMOFr1ji3qsAjNbZTr3slHJ7Hm5hqNeqzsuhKuFq66qK4V1ev30o5L0cy6Ge7l38Pyky/fsx7OPTCt+TSWn3m+85Bbmovwu1WnCtemXv5bRKVEIepuFIAqPbV5r99EekQikdrbn7W5Pd7TyhOXsy/DUl/97dO1pTZhaqOzurbCTKR8orQ6rAysXvoTa++vOtrcUF2d6h+W1eHxeLAzstP6MFMjPSOddXid1Kmx8vTpU0ilUtjask/ytLW1RUpKiko/2dnZKuWzs1WfphkWFsY6UlpbBAKBzvOv8zvNx+TjkwFUNZ6KJzl62XvB094Txx4cQ5BrEEa1GIX1CevxcdOPMeMU2/gyEBpgR58d2JS0CUUVRWjt2Br6It1GVpZ0W4LwG+Fo3qA5rv9zHV+0/gIbEzciLqvKCPyj/x8Yc3gMXlS8QOeGnVm6jms1DuuurcOQZkNqPMk30D0QJ7JO4NyTc/i46cewNVM+kbWnW0/8dus3RPaOrNWpwC3tWsLf2R92RnZa+R/+wXCsvLISK7us1Cj/TcdvmBMcB7oPhJ2ZndovvGCPYNwsuAlfe18YGqg+kXVcm3GIuBGBwR6D1cY9se1EnHx0EqHNQzWOls1uPxsxaTH4T+v/6Jx3c9rPQVBMEABgW9A2jf69HbzR1KYpLPQt0NCiIUKahyA9Px3tGrZTOpUYAHo26Ykfkn7A46LHSs9sDG2QW5KLINcgeNp51qoh1cToVqPxR9ofSMtLQ1enrvBy8IJYIEZz2+bwd/ZHTFrVvUjTfKcx+TzSeySS/klCZ9fOKKkswens0+jo2LFW9fLfor9Hf1z85yK6OnWFvr4+XBq4MO+wIiK+CM0bNMfsdrPrXXq8rLzQ26U3Gpo0VFsXvvb9GssvL8dnH3xWJ3FGBEZg/F/jYaFvgcUdFmvtb6L3RDx88RAfWKu+70qRSa0m4XHRY/Rr0o/lPqz5MKxPWA8pSWEhtoCUpJjrqzxLAABf+32Nvx/+DR54+Nz7c631rI6RnhG6OnVlPqgU2Ra0TaUfc31zNNBvgGdlz+Bh4YEA5wAcyjiEjIIM9HTuiaYWTbG221p8uONDNDar+foJAOjXpB8uZF7AhcwLAKrK4E1Sp8ftZ2ZmwtHRERcuXIC/vz/jPnv2bJw+fRqXLl1S8iMSibB161bWfTA//fQTFi1ahJycHCV5VSMrTk5OWh3Xy8HBwcHBwVE/0OW4/TodWbGysoJAIFAyMnJycpi1I9Wxs7PTSV4sFkMs1jykx8HBwcHBwfFuUKfjuSKRCD4+Pjh+/DjjJpPJcPz4cdZIiyL+/v4seQA4duyYWnkODg4ODg6O94s6X2Y+Y8YMjB49Gm3btoWvry/Wrl2L4uJiZnfQqFGj4OjoiLCwMADAtGnT0KVLF6xatQrBwcHYuXMnrly5gl9++UWr+OSzWJoW2nJwcHBwcHDUH+T9tlarUeg1sH79emrUqBGJRCLy9fWlixcvMs+6dOlCo0ePZslHR0dT06ZNSSQSUcuWLengwYNax/Xo0SNC1TVy3B/3x/1xf9wf98f9vWV/jx490tjX1+kC2zeBTCZDZmYmTExM6nxvv3zx7qNHj7jFu/UMrmzqJ1y51F+4sqm/vK9lQ0R48eIFHBwc1G6Vl1N/T0/SEj6fj4YNG77WOExNTd+rCvQ2wZVN/YQrl/oLVzb1l/exbMzMzLSSey8uMuTg4ODg4OB4e+GMFQ4ODg4ODo56DWes1IBYLMaCBQu4c13qIVzZ1E+4cqm/cGVTf+HKRjNv/QJbDg4ODg4OjncbbmSFg4ODg4ODo17DGSscHBwcHBwc9RrOWOHg4ODg4OCo13DGCgcHBwcHB0e9hjNWODg4ODg4OOo1OhkrGzduxAcffMCcsufv74/Dhw+zZH755Rd07doVpqam4PF4yM/PVxlWaWkpjIyMcPfuXWRlZWHYsGFo2rQp+Hw+pk+friS/efNmdOrUCRYWFrCwsEBAQADi4+NVht2tWzf8+uuvuH79OoYOHQonJycYGBigefPmWLdunZL8qVOn0KZNG4jFYri5uSEyMpL1/MyZM+jXrx8cHBzA4/Gwb98+pTBycnIwZswYODg4wNDQEL1790ZaWppK/XRJU0xMDHr16oUGDRqAx+MhMTFRZVhhYWFo164dTExMYGNjg+7du8PHxwf6+vpwcnLCihUrGFkiQlBQEHg8HhwdHaGvrw8vLy8cOnQIAPDgwQMYGBigqKgIALB79240a9ZMSU7OwoUL0axZMxgZGTHpuHTpkpKOimUeExODnj17wtramqlLR48eVfKzYcMGuLi4QF9fH35+fqz8ef78Ob744gt4eHjAwMAAjRo1wtSpU1FQUMAK4+HDhwgODoahoSFsbGwwa9YsVFZW1lAyVWEPHz4cpqamMDc3x7hx45j8AID79++Dx+Mp/V28eJEVTvW6Ex0djcmTJ6NBgwYwNjbGwIEDMWTIEKVwrK2tlfRVzD9Ac70FgCdPnmDEiBFo0KABDAwM4OXlhStXrijJ1fU7U70+DhgwAKmpqSyZsrIypbzIycmpsVy0eR8mTJiAJk2awMDAANbW1ggJCUFKSorK8BTrl7u7O5ydnZXqeVxcHLp37w4jIyOIxWKIRCLo6+sjICCAecd1LZsXL15g+vTpcHZ2hoGBAdq3b4/Lly+r1PFtKJuKigrMmTMHXl5eMDIygoODA0aNGoXMzEyW3JIlS9C+fXsYGhrC3NxcbXjVdWzXrh0aN27MKpv09HSEhoYybUiLFi1gY2MDAwMDtWWjTV9z8+ZNDBw4EC4uLuDxeFi7dq1aPceOHYv58+fj/v37GDduHFxdXWFgYIAmTZpgwYIFkEgkLPmkpCR06tRJZbsMaNcnEBG+/fZb2NvbK6W1JmpqSwGga9euSu3Q559/rjFcTf1DbfVVQusbA4koNjaWDh48SHfu3KHU1FT6+uuvSU9Pj5KTkxmZNWvWUFhYGIWFhREAysvLUxnW/v37qXnz5kRElJGRQVOnTqWtW7dSq1ataNq0aUryw4YNow0bNlBCQgLdvn2bxowZQ2ZmZvT48WOW3LNnz0hPT4+ys7MpPDycpk6dSqdOnaL09HTatm0bGRgY0Pr16xn5e/fukaGhIc2YMYNu3bpF69evJ4FAQEeOHGFkDh06RN988w3FxMQQANq7dy8rTplMRh9++CF16tSJ4uPjKSUlhT777DNq1KgRFRUVqc1PbdL022+/0aJFi2jz5s0EgBISElSGFRgYSFu2bKHk5GQ6d+4ciUQiMjQ0pPj4eIqKiiIDAwP6+eefiYho9erV9OGHHxIAGjVqFN26dYvmz59Penp6dOPGDVq3bh0FBQUREdH58+dJIBDQihUrlOTkbN++nY4dO0bp6emUnJxM48aNI1NTU8rNzWXpqFjm06ZNo+XLl1N8fDzduXOH5s2bR3p6enTt2jVGfufOnSQSiSgiIoJu3rxJ48ePJ3Nzc8rJySEiohs3btBHH31EsbGxdPfuXTp+/Di5u7vTwIEDmTAqKyvJ09OTAgICKCEhgQ4dOkRWVlY0b948teVCRNS7d2/y9vamixcv0tmzZ8nNzY2GDh3KPM/IyCAA9Pfff1NWVhbzJ5FIWOFUrzuBgYHk5OREx48fpytXrtCHH35I1tbW1Lt3b8rKyqLHjx+Th4cHdenSRUlfxfzTpt4+f/6cnJ2dacyYMXTp0iW6d+8eHT16lO7evcvS8XW8M4r1MTExkfr06aP0Pnz++edKedG+ffsay0Wb9+Hnn3+m06dPU0ZGBl29epX69etHTk5OVFlZyZJTrF+///478Xg8MjAwoLNnzzL1fNu2bWRqakphYWH05ZdfkrGxMc2cOZMuX75M/fv3J1dXVyotLdW5bAYPHkwtWrSg06dPU1paGi1YsIBMTU3/lfbsdZRNfn4+BQQE0K5duyglJYXi4uLI19eXfHx8WHLffvstrV69mmbMmEFmZmZqw1PUMTIykgCQubk5XblyhebPn09CoZAaNmxIoaGhlJSURNOnTyehUEju7u6UkJCgtmy06Wvi4+Np5syZFBUVRXZ2drRmzRqVOlZWVpKVlRVdunSJDh8+TGPGjKGjR49Seno67d+/n2xsbOirr75i5AsKCsjW1paGDx9OycnJSu0ykXZ9wrJly8jMzIz27dtH169fZ6VVHZraUqKqS4bHjx/Pas8KCgrUhkmkXf9QG31V8cq3LltYWNCvv/6q5H7y5MkajZVPP/2U5syZo+TepUsXlRWoOpWVlWRiYkJbt25luf/222/k5+en1t+kSZOoW7duzO/Zs2dTy5YtWTJDhgyhwMBAlf5VGSupqakEgGW0SaVSsra2ps2bN2tMixx1aSJ62TmqM1YU+emnn8jMzIwA0OnTp4mIaM6cOeTh4UEJCQnk6OhI/fr1U0qLn58fTZgwgbp3704bN24koqpGNTg4mBW+XE4dBQUFTEeuiLoyl9OiRQtatGgR89vX15cmT57M/JZKpeTg4EBhYWFqw4iOjiaRSEQVFRVEVGUs8Pl8ys7OZmQ2btxIpqamVF5erjKMW7duEQC6fPky43b48GHi8Xj05MkTItKtPOQAIIFAQLt372bcbt++TQCoc+fOGvUdM2YMk3/a1Ns5c+ZQx44dNer1ut8ZIqLc3FxWfczPzyc9PT2VeREXF6dRZ13y//r16wRAyUhTrF+DBw+mPn36sOqXn58f2djY0Pz580kmk5GdnR19//33jP/8/HwSi8UUFRXFqtua8qekpIQEAgEdOHCAJdOmTRv65ptvWG5vY9nIiY+PJwD04MEDpWdbtmyp0VhRZPDgwRQQEMDS0cPDg3g8HhUUFDBl89133xGPx6Njx46pLRtFtOlrnJ2d1RorZ86cIXt7e5LJZCqfr1ixglxdXZnfP/30E1lYWLDaHXm7rI7qfYKmeqgObdpSbfteRTT1D7XVVxW1XrMilUqxc+dOFBcXw9/fXye/MpkMBw4cQEhISG2jR0lJCSoqKmBpaclyj42NrTHcgoIClp+4uDgEBASwZAIDAxEXF6e1LuXl5QAAfX19xo3P50MsFuPcuXNah6MuTZoYM2YMunbtyvyOi4tD27ZtAYAJKzAwEKmpqRgyZAg2bNigcvg8MDAQ586dw7lz59C/f38mLF3yRyKR4JdffoGZmRm8vb0Zd01lLpPJ8OLFC0ZfiUSCq1evsuLm8/kICAiosWwKCgpgamoKoVDI6O/l5QVbW1uW/oWFhbh586bKMOLi4mBubs7kIQAEBASAz+crTW/1798fNjY26NixI2JjY1nPTp06BR6Ph/v37zNuUqmUlSb59Fl8fDxsbGwwYsQIWFhYMPor6qtYt7Upl9jYWLRt2xaDBg2CjY0NWrdujc2bNyul9994Z+RTc/Jwrl69ioqKCqW8aNSokU7vniaKi4uxZcsWuLq6wsnJiXF3dnbG5cuXmfjj4uLQs2dPVv3q2LEjcnNzYWNjAx8fH2RnZyMqKop5p83MzODn54cLFy6w6ram/KmsrIRUKmW1FwBgYGCg1F68zWVTUFAAHo9X43SPKlxcXLBw4ULmd1xcHHx9fVk6tmrVCkQEsViMjIwMZGdnIzAwEHw+H+fOnVNbNnVJbGws+vXrBx6Pp/K5qrLp3LkzRCIR4yZvl/Py8lSGUb1PkKdVsWzkaa2pTda2Ld2+fTusrKzg6emJefPmoaSkhPVcVdnUVN9qo686dDZWbty4AWNjY4jFYnz++efYu3cvWrRooVMY8nl9Pz8/XaNnmDNnDhwcHFiZUF5ejiNHjjAdbXUuXLiAXbt24bPPPmPcsrOzWR0ZANja2qKwsBClpaVa6SJ/kefNm4e8vDxIJBIsX74cjx8/RlZW1iulSRvs7e3RqFEj5ndWVhbS0tLQoUMHeHp6MmkCAC8vL4SEhCA7O1spHFtbWzx69AgffPABHBwcAKjPn+r+Dxw4AGNjY+jr62PNmjU4duwYrKysmOeaynzlypUoKirC4MGDAQBPnz6FVCrVKm45T58+xeLFi7UqX/kzVWRnZ8PGxoblJhQKYWlpyfgxNjbGqlWrsHv3bhw8eBAdO3bEgAEDWAaLoaEhPDw8oKenxwqneuNta2uLoKAgHD9+HD4+PigrK0NQUBCkUilLX5lMxuSfNvX23r172LhxI9zd3XH06FFMnDgRU6dOxdatWxk//8Y7I5PJMH36dFZ9zM7OhkgkUpkX6spFF3766ScYGxvD2NgYhw8fxrFjx1idhJOTE4iIVRdsbW1Z8cs7oYULFyIoKAgA4OPjgx49ejBz7ra2tozRq23ZmJiYwN/fH4sXL0ZmZiakUil+//13xMXFsdqLt7lsysrKMGfOHAwdOlTnW4SbNGnCajuysrJw+PBhlo6tW7cGj8fDnDlzmI+BTZs2QSqVMnmoqmzqkv3796stm7t372L9+vWYMGEC41abtqh6nyCX07Vd1KYtHTZsGH7//XecPHkS8+bNw7Zt2zBixAiWn+plo6l/qI2+6hBqFmHj4eGBxMREFBQUYM+ePRg9ejROnz6tk8Gyf/9+9O3bF3x+7QZ2li1bhp07d+LUqVOsr5MTJ07AxsYGLVu2VPKTnJyMkJAQLFiwAL169apVvOrQ09NDTEwMxo0bB0tLSwgEAgQEBCAoKAik5W0G6tKkDWFhYazfKSkpyM/Px/nz5xm3EydOAADmzp1bY1jl5eVqX8Ca6NatGxITE/H06VNs3rwZgwcPxqVLl5hOv6Yy37FjBxYtWoT9+/crGQnaUlhYiODgYLRo0YJl+b8urKysMGPGDOZ3u3btkJmZie+//57JP19fX7ULOxVp0KAB3N3d4eXlBRcXF5SWluLcuXM4deoUevTowcj5+vrq9M7IZDK0bdsWS5cuBVDVwCcnJ2PTpk0YPXo0gH/nnZk8eTKSk5N1GmV8VYYPH46ePXsiKysLK1euxODBg3H+/Hnm3YqOjoajo2ONYcjf3QkTJiA4OBhLly7FokWLcPHiRURERDDv3ZMnT3Ruz7Zt24ZPP/0Ujo6OEAgEaNOmDYYOHYqrV68yMm9r2VRUVGDw4MEgImzcuFFn/8ePH2f9lslkePToERISEhg3ExMTmJqa4s8//8QPP/wAoKoNaNOmDascalM22nD79m1kZmay3k/FOHv37o1BgwZh/PjxtY7jVfqE2qBo9Hp5ecHe3h49evRAeno6mjRpAkC5bP5NdC5BkUgENzc3+Pj4ICwsDN7e3ipXpNdEbGxsrTpEoOoLfNmyZfjrr7/wwQcfaBXurVu30KNHD3z22WeYP38+65mdnZ3SKvecnByYmprCwMBAa718fHyQmJiI/Px8ZGVl4ciRI3j27BkaN278SmnSlSlTpuD58+f48MMP0bBhQ8b95MmTAIAPP/wQQqEQFRUVAICBAwcyU0iZmZmoqKhg5aG6/LGzs2O5GRkZwc3NDR9++CHCw8MhFAoRHh7OPFdXNjt37sR//vMfREdHs0aUrKysIBAItIr7xYsX6N27N0xMTLB3717WSIY6/eXPVGFnZ4fc3FyWW2VlJZ4/f67WD1D19SbfDaKOyspKpR1yimmys7PDixcvYGVlxYQl17d3794a06VYb+3t7ZU+Ipo3b46HDx8yv1/3OzNlyhQcOHAAJ0+eZNVHOzs7SCSSGvPiVTAzM4O7uzs6d+6MPXv2ICUlBXv37mWeV69f8jQpxi/fydGiRQvGLScnh5WHOTk5yM3N1eqdUcyfJk2a4PTp0ygqKsKjR48QHx+PiooKVnvxNpaN3FB58OABjh07pvOoSnWmTJnC7EpR1DEnJwfOzs5IT09ndrXMnz8fT548YfJQVdnUFbGxsejZs6eSEZGZmYlu3bqhffv2+OWXX1jPdGmL1PUJivWwejjqykaXtlQR+WhUTW2apv6hNvqq45XNTZlMxqzZ0Ia0tDQ8ePAAPXv21DmuFStWYPHixThy5AhrPQFQ9RX0559/Ks1N3rx5E926dcPo0aOxZMkSpTD9/f2VrMVjx47pvA5HjpmZGaytrZGWloYrV65onCutKU26QESYMmUK9u7di9mzZzPzznIcHR3h4uKCxMREJCYmIjAwEACwZs0abNmyBUDVtlBDQ0PWWpPa5o9ivVBX5lFRURg7diyioqIQHBzMeiYSieDj48OKWyaT4fjx46y4CwsL0atXL4hEIsTGxio1Hv7+/rhx4wbL+JA3oupGA/39/ZGfn6/0las4DaOKxMRE2Nvbq30OAAKBgJWm1NRUPHz4kEmTv78/kpKS8OzZMyas33//HUDV2iRFHTWVS4cOHZS2pN65cwfOzs4AXu87o1gfT5w4AVdXV5a8j48P9PT0asyLuoKqNhKw2qnq9cvf3x9///03q35dvnwZhoaGSE1NhaurK+zs7HD8+HEmDwsLCxEXF4fi4mJW3dblnTEyMoK9vT3y8vJw9OhRpizexrKRGyppaWn4+++/0aBBA7WymlDUsVevXkpr7BTT5OPjAzs7O2zatIkxTtSVTV2xf/9+pbJ58uQJunbtCh8fH2zZskVpNMff3x9nzpxhtcvHjh2Dh4cHLCwsGLea+gTFeiinsLAQly5dUls22ral1ZHneU1tmqb6Vht91aLLaty5c+cyWwKTkpJo7ty5xOPx6K+//mJksrKyKCEhgdlaeObMGUpISKBnz54REdH3339P/fr1Uwo7ISGBEhISyMfHh4YNG0YJCQl08+ZN5vmyZctIJBLRnj17WFurXrx4QUREly9fJgsLC2YXCFHV1lZra2saMWIEy4/illr5Vr9Zs2bR7du3acOGDUpb/V68eMHoB4BWr15NCQkJrFXu0dHRdPLkSUpPT6d9+/aRs7MzffTRRzXmp6Y0EVVtXUxISKCDBw8SANq5cyclJCRQVlYWq1yaNm1KZmZmdOrUKUpNTSUrKyv6+OOP6cqVK7Rz504yNDRkbZE7f/48AaAxY8bQ7du3acGCBcTn82nYsGEsHc+fP09CoZBWrlzJyCluTSsqKqJ58+ZRXFwc3b9/n65cuUJjx44lsVjM7I5SVebbt28noVBIGzZsYKU9Pz+fkdm5cyeJxWKKjIykW7du0WeffUbm5ubMTpmCggLy8/MjLy8vunv3Lisc+TZV+dblXr16UWJiIh05coSsra212rrcunVrunTpEp07d47c3d1ZW5cjIyNpx44ddPv2bbp9+zYtWbKE+Hw+RUREMDKXLl0id3d3Onr0KFN3/P39yc7OjqKioujKlSvk6+tL9vb2FBcXRxkZGXT06FHS19dntp0fOXKEjIyMyM3NjaWfNvU2Pj6ehEIhLVmyhNLS0mj79u1kaGhIv//+OxG93ndm4sSJTH1UDKekpISR+fzzz6lRo0Z04sQJunLlCvn7+5O/v3+N5aLpfUhPT6elS5fSlStX6MGDB3T+/Hnq168fWVpasrZpdu/encaMGcPUr+3bt7O2Lsvr+ezZs8nU1JR2795NM2fOJLFYTCKRiA4ePEghISFkaWmptBtCm/w5cuQIHT58mO7du0d//fUXeXt7k5+fH7P1/W0rG4lEQv3796eGDRtSYmIiK1zF3S8PHjyghIQEWrRoERkbGzPtqmKb1717d+rYsSOjY2xsLAkEAvr2228pISGBKZvvvvuO4uLi6O7duzRkyBDi8XgUEhJCSUlJasuGSHNfU15ezsjY29vTzJkzKSEhgdLS0oiIKCcnh/T09Oiff/5h/Dx+/Jjc3NyoR48e9PjxY1b65eTn55OtrS2NHDmSkpOTVbbL2vQJy5YtI3Nzc9q/fz+TVm22LtfUlt69e5e+++47unLlCmVkZND+/fupcePGzC5FxbJR3CqvqX+orb6q0MlY+fTTT8nZ2ZlEIhFZW1tTjx49WIYKEdGCBQsIgNLfli1biIioY8eOKrfzqvLj7OzMPHd2dlYps2DBAiIimj9/Pg0fPlwrXRTDJaraZt2qVSsSiUTUuHFjRlfF56rCGT16NCOzbt06atiwIenp6VGjRo1o/vz5arfGapsmoqotfppkRo8erVIGAAmFQnJ0dKRly5apzHMHBwcSiUTUsmVLsra2pmPHjinJRUdHU9OmTRm5gwcPMs9KS0spNDSUCcfe3p769+9P8fHxjIyqMu/SpYvGPCUiWr9+PTVq1IhEIhH5+vrSxYsXNZYLAMrIyGDk7t+/T0FBQWRgYEBWVlb01VdfsToBVTx79oyGDh1KxsbGZGpqSmPHjmU1GJGRkdS8eXMyNDQkU1NT8vX1ZW311KSf/Byc/v37U5cuXcja2pr09PTI2dmZhg4dSt27d2f0dXR0pE2bNinpqKneEhH9+eef5OnpSWKxmJo1a0a//PIL8+x1vjPq0q0oV1paSpMmTSILCwsyNDSk0NBQVuOuCk3vw5MnTygoKIhsbGxIT0+PGjZsSMOGDaOUlBRWOM7OzrRgwQJW/XJzcyMnJyeleh4WFkYNGzYkQ0NDatiwIVlYWJBYLKYePXqQj4+PyvZMU/7s2rWLGjduTCKRiOzs7Gjy5MksQ/1tKxv5VnJVfydPnmTk1LVVijLq2kWgauu/vGzmzJlDtra2pKenR+7u7tSzZ0+ysbHRWDaa8lBdWrp06UJERL/++it16NCBFaa6ell9POD69evUsWNHEovFKttlbfoEmUxG//3vf8nW1pZJa2pqqtqykVNTW/rw4UPq3LkzWVpaklgsJjc3N5o1a5bSOSvy90aRmvqHV9G3Oq98zoou/PPPPyQUCllnSNQVXl5etGvXrjoP933h6tWrZGZmpnSo2avyOsv8fYB7Z+ovXNnUX15n2fTr14+WL19e5+Fy1My/ejfQ8+fPsXr1aqVtTK+KRCLBwIEDme2FHLpTWVmJ9evXsxan1gWvq8zfF7h3pv7ClU395XW2Ox07dsTQoUPrPFyOmuERabm3loODg4ODg4PjDcDduszBwcHBwcFRr+GMFQ4ODg4ODo56DWescHBwcHBwcNRrOGOFg4ODg4ODo17DGSscHBwcHBwc9RrOWOHg4ODg4OCo13DGCgfHO8aYMWPA4/HA4/Ggp6cHW1tb9OzZExEREZDJZDqFFRkZCXNz89ejqBa4uLhg7dq1Su4LFy5Eq1at/nV9AODUqVNM/vJ4PBgYGKBly5ZKF9dVLwdXV1fMnj0bZWVlb0RvDo63Gc5Y4eB4B+nduzeysrJw//59HD58GN26dcO0adPQt29fVFZWvmn16gWKF8rVhtTUVGRlZeHWrVuYMGECJk6cqHSpm7wc7t27hzVr1uDnn3/GggULXileDo73Ec5Y4eB4BxGLxbCzs4OjoyPatGmDr7/+Gvv378fhw4cRGRnJyK1evRpeXl4wMjKCk5MTJk2ahKKiIgBVIwhjx45FQUEBM0KwcOFCAMC2bdvQtm1bmJiYwM7ODsOGDWPdbK2K8vJyzJw5E46OjjAyMoKfnx9OnTpVJ+mVyWT47rvv0LBhQ4jFYrRq1QpHjhxhnt+/fx88Hg+7du1Cly5doK+vj+3bt+PZs2cYOnQoHB0dYWhoCC8vL0RFRWkVp42NDezs7ODq6oqpU6fC1dUV165dY8nIy8HJyQkDBgxAQEAAjh07Vidp5uB4n+CMFQ6O94Tu3bvD29sbMTExjBufz8cPP/yAmzdvYuvWrThx4gRmz54NAGjfvj3Wrl0LU1NTZGVlISsrCzNnzgRQNSqxePFiXL9+Hfv27cP9+/cxZsyYGuOfMmUK4uLisHPnTiQlJWHQoEHo3bs30tLSXjlt69atw6pVq7By5UokJSUhMDAQ/fv3Vwp77ty5mDZtGm7fvo3AwECUlZXBx8cHBw8eRHJyMj777DOMHDkS8fHxWsdNRDhy5AgePnwIPz8/tXLJycm4cOECRCJRrdPJwfHe8obvJuLg4KhjRo8eTSEhISqfDRkyhJo3b67W7+7du6lBgwbM7y1btpCZmZnGOC9fvkwAWDdTK/LgwQMSCAT05MkTlnuPHj1o3rx5asOV3/JuZGTE+tPT0yNvb29GzsHBgZYsWcLy265dO5o0aRIRvbxJd+3atRrTEhwcTF999ZXa5/LbtOW6CIVC4vP59L///Y8lN3r0aBIIBGRkZERisZgAEJ/Ppz179mjUgYODg43wzZpKHBwc/yZEBB6Px/z++++/ERYWhpSUFBQWFqKyshJlZWUoKSmBoaGh2nCuXr2KhQsX4vr168jLy2MW7j58+BAtWrRQkr9x4wakUimaNm3Kci8vL0eDBg1q1HnWrFlKozY//PADzpw5AwAoLCxEZmYmOnTowJLp0KEDrl+/znJr27Yt67dUKsXSpUsRHR2NJ0+eQCKRoLy8vMa0yzl79ixMTExQXl6O+Ph4TJkyBZaWlpg4cSIj061bN2zcuBHFxcVYs2YNhEIhBg4cqDFsDg4ONpyxwsHxHnH79m24uroCqFrH0bdvX0ycOBFLliyBpaUlzp07h3HjxkEikajtsIuLixEYGIjAwEBs374d1tbWePjwIQIDAyGRSFT6KSoqgkAgwNWrVyEQCFjPjI2Na9TZysoKbm5uLDdLS0ttk8zCyMiI9fv777/HunXrsHbtWmbtzvTp09WmQxFXV1dmp1TLli1x6dIlLFmyhGWsGBkZMbpHRETA29sb4eHhGDduXK305+B4X+GMFQ6O94QTJ07gxo0b+PLLLwFUjY7IZDKsWrUKfH7V8rXo6GiWH5FIBKlUynJLSUnBs2fPsGzZMjg5OQEArly5UmPcrVu3hlQqRW5uLjp16lRXSQIAmJqawsHBAefPn0eXLl0Y9/Pnz8PX17dGv+fPn0dISAhGjBgBoGqh7p07d1SODmlCIBCgtLRU7XM+n4+vv/4aM2bMwLBhw2BgYKBzHBwc7yvcAlsOjneQ8vJyZGdn48mTJ7h27RqWLl2KkJAQ9O3bF6NGjQIAuLm5oaKiAuvXr8e9e/ewbds2bNq0iRWOi4sLioqKcPz4cTx9+hQlJSVo1KgRRCIR4y82NhaLFy+uUZ+mTZti+PDhGDVqFGJiYpCRkYH4+HiEhYXh4MGDr5zeWbNmYfny5di1axdSU1Mxd+5cJCYmYtq0aTX6c3d3x7Fjx3DhwgXcvn0bEyZMQE5OjlZx5ubmIjs7Gw8ePMDu3buxbds2hISE1Ohn0KBBEAgE2LBhg9Zp4+DgALfAloPjXWP06NEEgACQUCgka2trCggIoIiICJJKpSzZ1atXk729PRkYGFBgYCD99ttvBIDy8vIYmc8//5waNGhAAGjBggVERLRjxw5ycXEhsVhM/v7+FBsbSwAoISFBrV4SiYS+/fZbcnFxIT09PbK3t6fQ0FBKSkpS68fZ2ZnWrFmj5L5gwQLWAlupVEoLFy4kR0dHZvHt4cOHmefyBbbV9Xv27BmFhISQsbEx2djY0Pz582nUqFFqFygTvVxgq5jHrq6uNHPmTCoqKmLk1C10DgsLI2tra5YsBwdHzfCIiN6YpcTBwcHBwcHBoQFuGoiDg4ODg4OjXsMZKxwcHBwcHBz1Gs5Y4eDg4ODg4KjXcMYKBwcHBwcHR72GM1Y4ODg4ODg46jWcscLBwcHBwcFRr+GMFQ4ODg4ODo56DWescHBwcHBwcNRrOGOFg4ODg4ODo17DGSscHBwcHBwc9RrOWOHg4ODg4OCo1/wfSplwKRrp2cEAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -3967,6 +3967,1822 @@ "plt.suptitle('Séries Temporais das Variáveis')\n", "plt.show()" ] + }, + { + "cell_type": "code", + "execution_count": 152, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Data e HoraPRECIPITAÇÃO TOTAL, HORÁRIO (mm)
02020-01-01 00:00:000.0
12020-01-01 01:00:000.0
22020-01-01 02:00:000.0
32020-01-01 03:00:000.0
42020-01-01 04:00:000.0
.........
87792020-12-31 19:00:000.0
87802020-12-31 20:00:000.0
87812020-12-31 21:00:000.0
87822020-12-31 22:00:000.0
87832020-12-31 23:00:000.0
\n", + "

8784 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " Data e Hora PRECIPITAÇÃO TOTAL, HORÁRIO (mm)\n", + "0 2020-01-01 00:00:00 0.0\n", + "1 2020-01-01 01:00:00 0.0\n", + "2 2020-01-01 02:00:00 0.0\n", + "3 2020-01-01 03:00:00 0.0\n", + "4 2020-01-01 04:00:00 0.0\n", + "... ... ...\n", + "8779 2020-12-31 19:00:00 0.0\n", + "8780 2020-12-31 20:00:00 0.0\n", + "8781 2020-12-31 21:00:00 0.0\n", + "8782 2020-12-31 22:00:00 0.0\n", + "8783 2020-12-31 23:00:00 0.0\n", + "\n", + "[8784 rows x 2 columns]" + ] + }, + "execution_count": 152, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.groupby('Data e Hora')['PRECIPITAÇÃO TOTAL, HORÁRIO (mm)'].sum().reset_index()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Agrupei os valores de precipitação por data " + ] + }, + { + "cell_type": "code", + "execution_count": 153, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Data e Hora BRDataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)Data e Hora
031/12/2019 21:0001/01/202000:000.00.00.00.970.011.00.02020-01-01 00:00:00
131/12/2019 22:0001/01/202001:000.00.00.00.880.010.00.02020-01-01 01:00:00
231/12/2019 23:0001/01/202002:000.024.00.00.880.0345.00.02020-01-01 02:00:00
301/01/2020 00:0001/01/202003:000.00.00.00.830.0332.00.02020-01-01 03:00:00
401/01/2020 01:0001/01/202004:000.00.00.00.890.0316.00.02020-01-01 04:00:00
\n", + "
" + ], + "text/plain": [ + " Data e Hora BR Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "0 31/12/2019 21:00 01/01/2020 00:00 0.0 \n", + "1 31/12/2019 22:00 01/01/2020 01:00 0.0 \n", + "2 31/12/2019 23:00 01/01/2020 02:00 0.0 \n", + "3 01/01/2020 00:00 01/01/2020 03:00 0.0 \n", + "4 01/01/2020 01:00 01/01/2020 04:00 0.0 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "0 0.0 \n", + "1 0.0 \n", + "2 24.0 \n", + "3 0.0 \n", + "4 0.0 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) UMIDADE RELATIVA DO AR, HORARIA (%) \\\n", + "0 0.0 0.97 \n", + "1 0.0 0.88 \n", + "2 0.0 0.88 \n", + "3 0.0 0.83 \n", + "4 0.0 0.89 \n", + "\n", + " RADIACAO GLOBAL (Kj/m²) VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n", + "0 0.0 11.0 \n", + "1 0.0 10.0 \n", + "2 0.0 345.0 \n", + "3 0.0 332.0 \n", + "4 0.0 316.0 \n", + "\n", + " VENTO, VELOCIDADE HORARIA (m/s) Data e Hora \n", + "0 0.0 2020-01-01 00:00:00 \n", + "1 0.0 2020-01-01 01:00:00 \n", + "2 0.0 2020-01-01 02:00:00 \n", + "3 0.0 2020-01-01 03:00:00 \n", + "4 0.0 2020-01-01 04:00:00 " + ] + }, + "execution_count": 153, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head().reset_index()" + ] + }, + { + "cell_type": "code", + "execution_count": 154, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dtype('\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Data e Hora BRDataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)Data e HoraMês
031/12/2019 21:0001/01/202000:000.00.00.00.970.011.00.02020-01-01 00:00:00January
131/12/2019 22:0001/01/202001:000.00.00.00.880.010.00.02020-01-01 01:00:00January
231/12/2019 23:0001/01/202002:000.024.00.00.880.0345.00.02020-01-01 02:00:00January
301/01/2020 00:0001/01/202003:000.00.00.00.830.0332.00.02020-01-01 03:00:00January
401/01/2020 01:0001/01/202004:000.00.00.00.890.0316.00.02020-01-01 04:00:00January
\n", + "" + ], + "text/plain": [ + " Data e Hora BR Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "0 31/12/2019 21:00 01/01/2020 00:00 0.0 \n", + "1 31/12/2019 22:00 01/01/2020 01:00 0.0 \n", + "2 31/12/2019 23:00 01/01/2020 02:00 0.0 \n", + "3 01/01/2020 00:00 01/01/2020 03:00 0.0 \n", + "4 01/01/2020 01:00 01/01/2020 04:00 0.0 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "0 0.0 \n", + "1 0.0 \n", + "2 24.0 \n", + "3 0.0 \n", + "4 0.0 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) UMIDADE RELATIVA DO AR, HORARIA (%) \\\n", + "0 0.0 0.97 \n", + "1 0.0 0.88 \n", + "2 0.0 0.88 \n", + "3 0.0 0.83 \n", + "4 0.0 0.89 \n", + "\n", + " RADIACAO GLOBAL (Kj/m²) VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n", + "0 0.0 11.0 \n", + "1 0.0 10.0 \n", + "2 0.0 345.0 \n", + "3 0.0 332.0 \n", + "4 0.0 316.0 \n", + "\n", + " VENTO, VELOCIDADE HORARIA (m/s) Data e Hora Mês \n", + "0 0.0 2020-01-01 00:00:00 January \n", + "1 0.0 2020-01-01 01:00:00 January \n", + "2 0.0 2020-01-01 02:00:00 January \n", + "3 0.0 2020-01-01 03:00:00 January \n", + "4 0.0 2020-01-01 04:00:00 January " + ] + }, + "execution_count": 158, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head().reset_index()" + ] + }, + { + "cell_type": "code", + "execution_count": 159, + "metadata": {}, + "outputs": [], + "source": [ + "precipitacao_mensal = df.groupby('Data e Hora')['PRECIPITAÇÃO TOTAL, HORÁRIO (mm)'].sum().reset_index()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 160, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Data e HoraTEMPERATURA DO AR - BULBO SECO, HORARIA (°C)
02020-01-01 00:00:000.0
12020-01-01 01:00:000.0
22020-01-01 02:00:0024.0
32020-01-01 03:00:000.0
42020-01-01 04:00:000.0
.........
87792020-12-31 19:00:000.0
87802020-12-31 20:00:000.0
87812020-12-31 21:00:000.0
87822020-12-31 22:00:000.0
87832020-12-31 23:00:000.0
\n", + "

8784 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " Data e Hora TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)\n", + "0 2020-01-01 00:00:00 0.0\n", + "1 2020-01-01 01:00:00 0.0\n", + "2 2020-01-01 02:00:00 24.0\n", + "3 2020-01-01 03:00:00 0.0\n", + "4 2020-01-01 04:00:00 0.0\n", + "... ... ...\n", + "8779 2020-12-31 19:00:00 0.0\n", + "8780 2020-12-31 20:00:00 0.0\n", + "8781 2020-12-31 21:00:00 0.0\n", + "8782 2020-12-31 22:00:00 0.0\n", + "8783 2020-12-31 23:00:00 0.0\n", + "\n", + "[8784 rows x 2 columns]" + ] + }, + "execution_count": 160, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.groupby('Data e Hora')['TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)'].sum().reset_index()" + ] + }, + { + "cell_type": "code", + "execution_count": 161, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)Data e HoraMês
Data e Hora BR
31/12/2019 21:0001/01/202000:000.00.00.00.970.011.00.02020-01-01 00:00:00January
31/12/2019 22:0001/01/202001:000.00.00.00.880.010.00.02020-01-01 01:00:00January
31/12/2019 23:0001/01/202002:000.024.00.00.880.0345.00.02020-01-01 02:00:00January
01/01/2020 00:0001/01/202003:000.00.00.00.830.0332.00.02020-01-01 03:00:00January
01/01/2020 01:0001/01/202004:000.00.00.00.890.0316.00.02020-01-01 04:00:00January
\n", + "
" + ], + "text/plain": [ + " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 01/01/2020 00:00 0.0 \n", + "31/12/2019 22:00 01/01/2020 01:00 0.0 \n", + "31/12/2019 23:00 01/01/2020 02:00 0.0 \n", + "01/01/2020 00:00 01/01/2020 03:00 0.0 \n", + "01/01/2020 01:00 01/01/2020 04:00 0.0 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 \n", + "31/12/2019 22:00 0.0 \n", + "31/12/2019 23:00 24.0 \n", + "01/01/2020 00:00 0.0 \n", + "01/01/2020 01:00 0.0 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 \n", + "31/12/2019 22:00 0.0 \n", + "31/12/2019 23:00 0.0 \n", + "01/01/2020 00:00 0.0 \n", + "01/01/2020 01:00 0.0 \n", + "\n", + " UMIDADE RELATIVA DO AR, HORARIA (%) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.97 \n", + "31/12/2019 22:00 0.88 \n", + "31/12/2019 23:00 0.88 \n", + "01/01/2020 00:00 0.83 \n", + "01/01/2020 01:00 0.89 \n", + "\n", + " RADIACAO GLOBAL (Kj/m²) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 \n", + "31/12/2019 22:00 0.0 \n", + "31/12/2019 23:00 0.0 \n", + "01/01/2020 00:00 0.0 \n", + "01/01/2020 01:00 0.0 \n", + "\n", + " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 11.0 \n", + "31/12/2019 22:00 10.0 \n", + "31/12/2019 23:00 345.0 \n", + "01/01/2020 00:00 332.0 \n", + "01/01/2020 01:00 316.0 \n", + "\n", + " VENTO, VELOCIDADE HORARIA (m/s) Data e Hora Mês \n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 2020-01-01 00:00:00 January \n", + "31/12/2019 22:00 0.0 2020-01-01 01:00:00 January \n", + "31/12/2019 23:00 0.0 2020-01-01 02:00:00 January \n", + "01/01/2020 00:00 0.0 2020-01-01 03:00:00 January \n", + "01/01/2020 01:00 0.0 2020-01-01 04:00:00 January " + ] + }, + "execution_count": 161, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 162, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 162, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head().reset_index" + ] + }, + { + "cell_type": "code", + "execution_count": 163, + "metadata": {}, + "outputs": [], + "source": [ + "df['Mês'] = df['Data e Hora'].dt.strftime('%B')" + ] + }, + { + "cell_type": "code", + "execution_count": 164, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)Data e HoraMês
Data e Hora BR
31/12/2019 21:0001/01/202000:000.00.00.00.970.011.00.02020-01-01 00:00:00January
31/12/2019 22:0001/01/202001:000.00.00.00.880.010.00.02020-01-01 01:00:00January
31/12/2019 23:0001/01/202002:000.024.00.00.880.0345.00.02020-01-01 02:00:00January
01/01/2020 00:0001/01/202003:000.00.00.00.830.0332.00.02020-01-01 03:00:00January
01/01/2020 01:0001/01/202004:000.00.00.00.890.0316.00.02020-01-01 04:00:00January
\n", + "
" + ], + "text/plain": [ + " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 01/01/2020 00:00 0.0 \n", + "31/12/2019 22:00 01/01/2020 01:00 0.0 \n", + "31/12/2019 23:00 01/01/2020 02:00 0.0 \n", + "01/01/2020 00:00 01/01/2020 03:00 0.0 \n", + "01/01/2020 01:00 01/01/2020 04:00 0.0 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 \n", + "31/12/2019 22:00 0.0 \n", + "31/12/2019 23:00 24.0 \n", + "01/01/2020 00:00 0.0 \n", + "01/01/2020 01:00 0.0 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 \n", + "31/12/2019 22:00 0.0 \n", + "31/12/2019 23:00 0.0 \n", + "01/01/2020 00:00 0.0 \n", + "01/01/2020 01:00 0.0 \n", + "\n", + " UMIDADE RELATIVA DO AR, HORARIA (%) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.97 \n", + "31/12/2019 22:00 0.88 \n", + "31/12/2019 23:00 0.88 \n", + "01/01/2020 00:00 0.83 \n", + "01/01/2020 01:00 0.89 \n", + "\n", + " RADIACAO GLOBAL (Kj/m²) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 \n", + "31/12/2019 22:00 0.0 \n", + "31/12/2019 23:00 0.0 \n", + "01/01/2020 00:00 0.0 \n", + "01/01/2020 01:00 0.0 \n", + "\n", + " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 11.0 \n", + "31/12/2019 22:00 10.0 \n", + "31/12/2019 23:00 345.0 \n", + "01/01/2020 00:00 332.0 \n", + "01/01/2020 01:00 316.0 \n", + "\n", + " VENTO, VELOCIDADE HORARIA (m/s) Data e Hora Mês \n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 2020-01-01 00:00:00 January \n", + "31/12/2019 22:00 0.0 2020-01-01 01:00:00 January \n", + "31/12/2019 23:00 0.0 2020-01-01 02:00:00 January \n", + "01/01/2020 00:00 0.0 2020-01-01 03:00:00 January \n", + "01/01/2020 01:00 0.0 2020-01-01 04:00:00 January " + ] + }, + "execution_count": 164, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 165, + "metadata": {}, + "outputs": [], + "source": [ + "df['Ano'] = df['Data e Hora'].dt.year" + ] + }, + { + "cell_type": "code", + "execution_count": 166, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)Data e HoraMêsAno
Data e Hora BR
31/12/2019 21:0001/01/202000:000.00.00.00.970.011.00.02020-01-01 00:00:00January2020
31/12/2019 22:0001/01/202001:000.00.00.00.880.010.00.02020-01-01 01:00:00January2020
31/12/2019 23:0001/01/202002:000.024.00.00.880.0345.00.02020-01-01 02:00:00January2020
01/01/2020 00:0001/01/202003:000.00.00.00.830.0332.00.02020-01-01 03:00:00January2020
01/01/2020 01:0001/01/202004:000.00.00.00.890.0316.00.02020-01-01 04:00:00January2020
\n", + "
" + ], + "text/plain": [ + " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 01/01/2020 00:00 0.0 \n", + "31/12/2019 22:00 01/01/2020 01:00 0.0 \n", + "31/12/2019 23:00 01/01/2020 02:00 0.0 \n", + "01/01/2020 00:00 01/01/2020 03:00 0.0 \n", + "01/01/2020 01:00 01/01/2020 04:00 0.0 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 \n", + "31/12/2019 22:00 0.0 \n", + "31/12/2019 23:00 24.0 \n", + "01/01/2020 00:00 0.0 \n", + "01/01/2020 01:00 0.0 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 \n", + "31/12/2019 22:00 0.0 \n", + "31/12/2019 23:00 0.0 \n", + "01/01/2020 00:00 0.0 \n", + "01/01/2020 01:00 0.0 \n", + "\n", + " UMIDADE RELATIVA DO AR, HORARIA (%) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.97 \n", + "31/12/2019 22:00 0.88 \n", + "31/12/2019 23:00 0.88 \n", + "01/01/2020 00:00 0.83 \n", + "01/01/2020 01:00 0.89 \n", + "\n", + " RADIACAO GLOBAL (Kj/m²) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 \n", + "31/12/2019 22:00 0.0 \n", + "31/12/2019 23:00 0.0 \n", + "01/01/2020 00:00 0.0 \n", + "01/01/2020 01:00 0.0 \n", + "\n", + " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 11.0 \n", + "31/12/2019 22:00 10.0 \n", + "31/12/2019 23:00 345.0 \n", + "01/01/2020 00:00 332.0 \n", + "01/01/2020 01:00 316.0 \n", + "\n", + " VENTO, VELOCIDADE HORARIA (m/s) Data e Hora \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 2020-01-01 00:00:00 \n", + "31/12/2019 22:00 0.0 2020-01-01 01:00:00 \n", + "31/12/2019 23:00 0.0 2020-01-01 02:00:00 \n", + "01/01/2020 00:00 0.0 2020-01-01 03:00:00 \n", + "01/01/2020 01:00 0.0 2020-01-01 04:00:00 \n", + "\n", + " Mês Ano \n", + "Data e Hora BR \n", + "31/12/2019 21:00 January 2020 \n", + "31/12/2019 22:00 January 2020 \n", + "31/12/2019 23:00 January 2020 \n", + "01/01/2020 00:00 January 2020 \n", + "01/01/2020 01:00 January 2020 " + ] + }, + "execution_count": 166, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 167, + "metadata": {}, + "outputs": [], + "source": [ + "precip_mensal = df.groupby(['Ano', 'Mês'])['PRECIPITAÇÃO TOTAL, HORÁRIO (mm)'].sum().reset_index()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": {}, + "outputs": [], + "source": [ + "df['TEMPERATURA DO AR - BULBO SECO, HORARIA (°C'] = pd.to_numeric(df['TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)'], errors='coerce')" + ] + }, + { + "cell_type": "code", + "execution_count": 193, + "metadata": {}, + "outputs": [], + "source": [ + "Temperatura_média = df.groupby(['Mês'])['TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)'].mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 194, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Mês\n", + "April 2.504167\n", + "August 2.432796\n", + "December 2.604839\n", + "February 3.231322\n", + "January 2.706989\n", + "July 1.571237\n", + "June 1.938889\n", + "March 2.399194\n", + "May 2.077957\n", + "November 2.684722\n", + "October 2.376344\n", + "September 2.462500\n", + "Name: TEMPERATURA DO AR - BULBO SECO, HORARIA (°C), dtype: float64" + ] + }, + "execution_count": 194, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Temperatura_média\n" + ] + }, + { + "cell_type": "code", + "execution_count": 195, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
MêsTEMPERATURA DO AR - BULBO SECO, HORARIA (°C)
0April2.504167
1August2.432796
2December2.604839
3February3.231322
4January2.706989
5July1.571237
6June1.938889
7March2.399194
8May2.077957
9November2.684722
10October2.376344
11September2.462500
\n", + "
" + ], + "text/plain": [ + " Mês TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)\n", + "0 April 2.504167\n", + "1 August 2.432796\n", + "2 December 2.604839\n", + "3 February 3.231322\n", + "4 January 2.706989\n", + "5 July 1.571237\n", + "6 June 1.938889\n", + "7 March 2.399194\n", + "8 May 2.077957\n", + "9 November 2.684722\n", + "10 October 2.376344\n", + "11 September 2.462500" + ] + }, + "execution_count": 195, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Temperatura_média.reset_index()" + ] + }, + { + "cell_type": "code", + "execution_count": 171, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DataHora UTCPRECIPITAÇÃO TOTAL, HORÁRIO (mm)TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)TEMPERATURA DO PONTO DE ORVALHO (°C)UMIDADE RELATIVA DO AR, HORARIA (%)RADIACAO GLOBAL (Kj/m²)VENTO, DIREÇÃO HORARIA (gr) (° (gr))VENTO, VELOCIDADE HORARIA (m/s)Data e HoraMêsAnoTEMPERATURA DO AR - BULBO SECO, HORARIA (°C
Data e Hora BR
31/12/2019 21:0001/01/202000:000.00.00.00.970.011.00.02020-01-01 00:00:00January20200.0
31/12/2019 22:0001/01/202001:000.00.00.00.880.010.00.02020-01-01 01:00:00January20200.0
31/12/2019 23:0001/01/202002:000.024.00.00.880.0345.00.02020-01-01 02:00:00January202024.0
01/01/2020 00:0001/01/202003:000.00.00.00.830.0332.00.02020-01-01 03:00:00January20200.0
01/01/2020 01:0001/01/202004:000.00.00.00.890.0316.00.02020-01-01 04:00:00January20200.0
\n", + "
" + ], + "text/plain": [ + " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 01/01/2020 00:00 0.0 \n", + "31/12/2019 22:00 01/01/2020 01:00 0.0 \n", + "31/12/2019 23:00 01/01/2020 02:00 0.0 \n", + "01/01/2020 00:00 01/01/2020 03:00 0.0 \n", + "01/01/2020 01:00 01/01/2020 04:00 0.0 \n", + "\n", + " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 \n", + "31/12/2019 22:00 0.0 \n", + "31/12/2019 23:00 24.0 \n", + "01/01/2020 00:00 0.0 \n", + "01/01/2020 01:00 0.0 \n", + "\n", + " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 \n", + "31/12/2019 22:00 0.0 \n", + "31/12/2019 23:00 0.0 \n", + "01/01/2020 00:00 0.0 \n", + "01/01/2020 01:00 0.0 \n", + "\n", + " UMIDADE RELATIVA DO AR, HORARIA (%) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.97 \n", + "31/12/2019 22:00 0.88 \n", + "31/12/2019 23:00 0.88 \n", + "01/01/2020 00:00 0.83 \n", + "01/01/2020 01:00 0.89 \n", + "\n", + " RADIACAO GLOBAL (Kj/m²) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 \n", + "31/12/2019 22:00 0.0 \n", + "31/12/2019 23:00 0.0 \n", + "01/01/2020 00:00 0.0 \n", + "01/01/2020 01:00 0.0 \n", + "\n", + " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 11.0 \n", + "31/12/2019 22:00 10.0 \n", + "31/12/2019 23:00 345.0 \n", + "01/01/2020 00:00 332.0 \n", + "01/01/2020 01:00 316.0 \n", + "\n", + " VENTO, VELOCIDADE HORARIA (m/s) Data e Hora \\\n", + "Data e Hora BR \n", + "31/12/2019 21:00 0.0 2020-01-01 00:00:00 \n", + "31/12/2019 22:00 0.0 2020-01-01 01:00:00 \n", + "31/12/2019 23:00 0.0 2020-01-01 02:00:00 \n", + "01/01/2020 00:00 0.0 2020-01-01 03:00:00 \n", + "01/01/2020 01:00 0.0 2020-01-01 04:00:00 \n", + "\n", + " Mês Ano TEMPERATURA DO AR - BULBO SECO, HORARIA (°C \n", + "Data e Hora BR \n", + "31/12/2019 21:00 January 2020 0.0 \n", + "31/12/2019 22:00 January 2020 0.0 \n", + "31/12/2019 23:00 January 2020 24.0 \n", + "01/01/2020 00:00 January 2020 0.0 \n", + "01/01/2020 01:00 January 2020 0.0 " + ] + }, + "execution_count": 171, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 172, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dtype('O')" + ] + }, + "execution_count": 172, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "(precip_mensal['Mês'].dtype)" + ] + }, + { + "cell_type": "code", + "execution_count": 174, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACel0lEQVR4nOzdeZyN9f//8ecZxjCYGTvD2GUnIUkoZAuJUiRLkiKRVGixpLR8kiRLG5GRhNJmrUipZAmVNbKTbcY6xszr94ffnK/pjMzhXOeMM4/77eZW57quc53XPOfMOdd5nff1vlxmZgIAAAAAAAD8KCTQBQAAAAAAACDzoSkFAAAAAAAAv6MpBQAAAAAAAL+jKQUAAAAAAAC/oykFAAAAAAAAv6MpBQAAAAAAAL+jKQUAAAAAAAC/oykFAAAAAAAAv6MpBQAAcJWaOnWqxo0bF+gyAAAALgtNKQAAgKvQvHnz9NBDD+m6665L1/Y7duyQy+XSlClT3MuGDRsml8vlUIXBw9ucEhMTlZyc7GBFAAAEB5pSAABcJVwuV7r+fffdd4EuNWDGjx+fqukSrHbs2KEePXpo+vTpuvHGGwNdjltK8yYkJES7du3yWB8fH68cOXLI5XLpkUceCUCFzjIz9e/fX7lz51aePHk0duzYNLc7cOCABg4cqAoVKig8PFw5c+ZUzZo1NXLkSB07dsy/RQMAEEBZA10AAABIn2nTpqW6PXXqVC1atMhjecWKFf1ZVoYyfvx45c+fX926dQt0KY5au3atJk2apDvuuOOK9vPMM89o0KBBPqrq/4SFhWnGjBl68sknUy2fM2eOzx8rI4mNjdWcOXP07rvv6tSpUxo0aJDq1KmjOnXquLdZuXKlWrZsqRMnTqhz586qWbOmJOnXX3/VSy+9pGXLlmnhwoWB+hEAAPArmlIAAFwlOnfunOr2Tz/9pEWLFnksDxZmpjNnzihHjhzU8S9t27b1yX6yZs2qrFl9fzjYsmXLNJtSsbGxuu222zR79myfP2ZGsGLFCj3++OPuv8k///xTy5cvdzeljh07pjvuuENZsmTRmjVrVKFChVT3f+GFF/TOO+/4vW4AAAKF0/cAAAgiycnJGjNmjCpXrqzs2bOrUKFC6tWrl44ePZpqu5IlS6pVq1b67rvvVKtWLeXIkUNVq1Z1n/o3Z84cVa1aVdmzZ1fNmjW1Zs2aVPfv1q2bcuXKpb/++kvNmjVTzpw5FR0drREjRsjMrqimBQsWuGuaNGmSJGny5Mlq1KiRChYsqLCwMFWqVEkTJkzwuP/vv/+upUuXuk9lvPnmmyVdfE6gKVOmyOVyaceOHT6r42JSMtu5c6datWqlXLlyqWjRonrrrbckSevXr1ejRo2UM2dOlShRQrGxsR77OHbsmPr376+YmBiFhYWpbNmyevnllz3mLzp27Ji6deumyMhIRUVFqWvXrmmeFpZWLlfyM6bo1KmT1q5dq40bN7qX7d+/X9988406deqU5n0SEhI0dOhQlS1bVmFhYYqJidGTTz6phISEVNulnPr36aefqkqVKgoLC1PlypU1f/78VNsdP35c/fv3V8mSJRUWFqaCBQvq1ltv1erVq93bfP/997rrrrtUvHhx92M+9thjOn36tFc/b4rSpUtr+vTp+u233/TTTz9p3rx5KleunHv9pEmTtGfPHo0ePdqjISVJhQoV0jPPPHNZjw0AwNWIkVIAAASRXr16acqUKerevbseffRRbd++XePGjdOaNWv0ww8/KDQ01L3t1q1b1alTJ/Xq1UudO3fW//73P7Vu3VoTJ07UkCFD1Lt3b0nSqFGj1KFDB23atEkhIf/3fVZSUpKaN2+uG264Qa+88ormz5+voUOH6ty5cxoxYsRl1bRp0yZ17NhRvXr1Us+ePVW+fHlJ0oQJE1S5cmW1adNGWbNm1eeff67evXsrOTlZffr0kSSNGTNGffv2Va5cufT0009LOv8h/3JcSR3/JSkpSS1atFCDBg30yiuvaPr06XrkkUeUM2dOPf3007r33nvVrl07TZw4UV26dFHdunVVqlQpSdKpU6fUsGFD7dmzR7169VLx4sX1448/avDgwdq3b5/GjBkj6fzIrttvv13Lly/XQw89pIoVK2ru3Lnq2rVrun72K/0ZJalBgwYqVqyYYmNj3c+FmTNnKleuXLrttts8tk9OTlabNm20fPlyPfjgg6pYsaLWr1+v119/XZs3b9ann36aavvly5drzpw56t27t3Lnzq2xY8eqffv22rlzp/LlyydJeuihh/TJJ5/okUceUaVKlXT48GEtX75cf/75p3ty+FmzZunUqVN6+OGHlS9fPv3yyy968803tXv3bs2aNStdP+uFUh7z2muvlXS+Ode6dWv3+nnz5ilHjhy68847vd43AABByQAAwFWpT58+duFb+ffff2+SbPr06am2mz9/vsfyEiVKmCT78ccf3csWLFhgkixHjhz2999/u5dPmjTJJNm3337rXta1a1eTZH379nUvS05Otttuu82yZctm//zzz2XXNH/+fI+f9dSpUx7LmjVrZqVLl061rHLlytawYUOPbYcOHWppHfZMnjzZJNn27dt9WkdaUjJ78cUX3cuOHj1qOXLkMJfLZR999JF7+caNG02SDR061L3s+eeft5w5c9rmzZtT7XfQoEGWJUsW27lzp5mZffrppybJXnnlFfc2586ds/r165skmzx5snt5Wrlcyc+Ysr9//vnHBg4caGXLlnWvq127tnXv3t3MzCRZnz593OumTZtmISEh9v3336fa38SJE02S/fDDD+5lkixbtmy2detW97LffvvNJNmbb77pXhYZGZnqMdKS1s86atQoc7lcqf4GLvb8SUtSUpKtXbvWNm7c6LEuT548Vr169XTtBwCAzIDT9wAACBKzZs1SZGSkbr31Vh06dMj9r2bNmsqVK5e+/fbbVNtXqlRJdevWdd9OmfemUaNGKl68uMfyv/76y+MxL7yCWsppVWfPntXixYsvq6ZSpUqpWbNmHo9z4XxOcXFxOnTokBo2bKi//vpLcXFx6c4ovZys44EHHnD/f1RUlMqXL6+cOXOqQ4cO7uXly5dXVFRUqsxnzZql+vXrK0+ePKmybNKkiZKSkrRs2TJJ0ldffaWsWbPq4Ycfdt83S5Ys6tu3b7rq81XWnTp10tatW7Vy5Ur3fy926t6sWbNUsWJFVahQIdXP1qhRI0nyeJ40adJEZcqUcd+uVq2aIiIiUuUVFRWln3/+WXv37k3Xz3ry5EkdOnRIN954o8zM45TV9AoJCVH16tXdo+suFB8fr9y5c1/WfgEACEacvgcAQJDYsmWL4uLiVLBgwTTXHzx4MNXtCxtPkhQZGSlJiomJSXP5v+eACgkJUenSpVMtu+aaayTJPUeTtzWlnKr2bz/88IOGDh2qFStW6NSpU6nWxcXFuWv0FafqyJ49uwoUKJBqWWRkpIoVK+Yxt1NkZGSqzLds2aJ169Z53D9FSpZ///23ihQpoly5cqVan1aTJC2+yrpGjRqqUKGCYmNjFRUVpcKFC7ubTP+2ZcsW/fnnn5f82VL8+7krSXny5EmV1yuvvKKuXbsqJiZGNWvWVMuWLdWlS5dUz9mdO3fqueee07x58zye3040OyMiInT8+HGf7xcAgKsVTSkAAIJEcnKyChYsqOnTp6e5/t8f+LNkyZLmdhdbbv+awNyJmtK6wt22bdvUuHFjVahQQaNHj1ZMTIyyZcumr776Sq+//rrHJN9pSWuSc+n8HE9pcaqOK8k8OTlZt956q8cV7VKkNASvhC9+xgt16tRJEyZMUO7cuXX33XenmpPsQsnJyapatapGjx6d5vp/N0rTk1eHDh1Uv359zZ07VwsXLtSrr76ql19+WXPmzFGLFi2UlJSkW2+9VUeOHNFTTz2lChUqKGfOnNqzZ4+6devm9c+aHhUqVNDatWt19uxZZcuWzef7BwDgakNTCgCAIFGmTBktXrxY9erVS7Op4mvJycn666+/UjVDNm/eLOn8Fex8VdPnn3+uhIQEzZs3L9UImX+f0iVdvPmUJ08eSeevShcVFeVe/vfffztShxPKlCmjEydOqEmTJv+5XYkSJbRkyRKdOHEi1WipTZs2XfIxfP0zdurUSc8995z27dunadOmXXS7MmXK6LffflPjxo0v+ju8HEWKFFHv3r3Vu3dvHTx4UNddd51eeOEFtWjRQuvXr9fmzZv1wQcfqEuXLu77LFq0yGeP/2+tW7fWihUrNHv2bHXs2NGxxwEA4GrBnFIAAASJDh06KCkpSc8//7zHunPnzunYsWM+f8xx48a5/9/MNG7cOIWGhqpx48Y+qyllVMyFo2Di4uI0efJkj21z5syZ5j5T5h9KmXdJOj+H0AcffHDJx7+cOpzQoUMHrVixQgsWLPBYd+zYMZ07d06S1LJlS507d04TJkxwr09KStKbb755ycfw9c9YpkwZjRkzRqNGjdL1119/0e06dOigPXv26J133vFYd/r0aZ08edKrx01KSvI4/a5gwYKKjo5WQkKCpLR/VjPTG2+84dVjeeOhhx5SkSJF9Pjjj7sbuBc6ePCgRo4c6djjAwCQ0TBSCgCAINGwYUP16tVLo0aN0tq1a9W0aVOFhoZqy5YtmjVrlt544w2fXoo+e/bsmj9/vrp27ao6dero66+/1pdffqkhQ4a4T8vzRU1NmzZVtmzZ1Lp1a/Xq1UsnTpzQO++8o4IFC2rfvn2ptq1Zs6YmTJigkSNHqmzZsipYsKAaNWqkpk2bqnjx4urRo4eeeOIJZcmSRe+//74KFCignTt3puvn9aYOJzzxxBOaN2+eWrVqpW7duqlmzZo6efKk1q9fr08++UQ7duxQ/vz51bp1a9WrV0+DBg3Sjh07VKlSJc2ZMyddcyQ58TP269fvktvcd999+vjjj/XQQw/p22+/Vb169ZSUlKSNGzfq448/1oIFC1SrVq10P+bx48dVrFgx3Xnnnapevbpy5cqlxYsXa+XKlXrttdcknT+VrkyZMho4cKD27NmjiIgIzZ4922NuKV/KkyeP5s6dq5YtW+raa69V586dVbNmTUnS6tWrNWPGjFQXHwAAINjRlAIAIIhMnDhRNWvW1KRJkzRkyBBlzZpVJUuWVOfOnVWvXj2fPlaWLFk0f/58Pfzww3riiSeUO3duDR06VM8995xPaypfvrw++eQTPfPMMxo4cKAKFy6shx9+WAUKFND999+fatvnnntOf//9t1555RUdP35cDRs2VKNGjRQaGqq5c+eqd+/eevbZZ1W4cGH1799fefLkUffu3dP183pThxPCw8O1dOlSvfjii5o1a5amTp2qiIgIXXPNNRo+fLh7AvKQkBDNmzdP/fv314cffiiXy6U2bdrotddeU40aNTLkzxgSEqJPP/1Ur7/+uqZOnaq5c+cqPDxcpUuXVr9+/byeLys8PFy9e/fWwoULNWfOHCUnJ6ts2bIaP368+6qEoaGh+vzzz/Xoo49q1KhRyp49u+644w498sgjql69uhM/pqTzV7PcsGGDXn31VX355ZeaNm2aQkJCVLFiRQ0aNCjVFS0BAAh2LrucWUsBAECm1q1bN33yySc6ceJEoEsBAADAVYo5pQAAAAAAAOB3NKUAAAAAAADgdzSlAAAAAAAA4HfMKQUAAAAAAAC/Y6QUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8LmugC3BacnKy9u7dq9y5c8vlcgW6HAAAAAAAgKBmZjp+/Liio6MVEnLx8VBB35Tau3evYmJiAl0GAAAAAABAprJr1y4VK1bsouuDvimVO3duSeeDiIiICHA1AAAAAAAAwS0+Pl4xMTHunszFBH1TKuWUvYiICJpSAAAAAAAAfnKpaZSY6BwAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfpehmlIvvfSSXC6X+vfv71525swZ9enTR/ny5VOuXLnUvn17HThwIHBFAgAAAAAA4IplmKbUypUrNWnSJFWrVi3V8scee0yff/65Zs2apaVLl2rv3r1q165dgKoEAAAAAACAL2SIptSJEyd077336p133lGePHncy+Pi4vTee+9p9OjRatSokWrWrKnJkyfrxx9/1E8//RTAigEAAAAAAHAlsga6AEnq06ePbrvtNjVp0kQjR450L1+1apUSExPVpEkT97IKFSqoePHiWrFihW644QaPfSUkJCghIcF9Oz4+XpKUmJioxMREB38KAAAAAAAApLf/EvCm1EcffaTVq1dr5cqVHuv279+vbNmyKSoqKtXyQoUKaf/+/Wnub9SoURo+fLjH8oULFyo8PNwnNQMAAAAAACBtp06dStd2AW1K7dq1S/369dOiRYuUPXt2n+xz8ODBGjBggPt2fHy8YmJi1LRpU0VERPjkMQAAAAAg4ykb6AIyoK2BLgDIlFLOWruUgDalVq1apYMHD+q6665zL0tKStKyZcs0btw4LViwQGfPntWxY8dSjZY6cOCAChcunOY+w8LCFBYW5rE8NDRUoaGhPv8ZAAAAACBjOBPoAjIgPgMCgZDe/ktAm1KNGzfW+vXrUy3r3r27KlSooKeeekoxMTEKDQ3VkiVL1L59e0nSpk2btHPnTtWtWzcQJQMAAAAAAMAHAtqUyp07t6pUqZJqWc6cOZUvXz738h49emjAgAHKmzevIiIi1LdvX9WtWzfNSc4BAAAAAABwdQj4ROeX8vrrryskJETt27dXQkKCmjVrpvHjxwe6LAAAAAAAAFwBl5lZoItwUnx8vCIjIxUXF8dE5wAAAACCWKFAF5ABHQh0AUCmlN5eTIgfawIAAAAAAAAk0ZQCAAAAAABAANCUAgAAAAAAgN/RlAIAAAAAAIDf0ZQCAAAAAACA39GUAgAAAAAAgN/RlAIAAAAAAIDf0ZQCAAAAAACA39GUAgAAAAAAgN/RlAIAAAAAAIDf0ZQCAAAAAACA39GUAgAAAAAAgN/RlAIAAAAAAIDf0ZQCAAAAAACA39GUAgAAAAAAgN/RlAIAAAAAAIDf0ZQCAAAAAACA39GUAgAAAAAAgN/RlAIAAAAAAIDf0ZQCAAAAAACA39GUAgAAAAAAgN/RlAIAAAAAAIDf0ZQCAAAAAACA39GUAgAAAAAAgN/RlAIAAAAAAIDf0ZQCAAAAAACA32UNdAEAAAAAMpOwQBeQQSUEugAA8DtGSgEAAAAAAMDvaEoBAAAAAADA72hKAQAAAAAAwO9oSgEAAAAAAMDvaEoBAAAAAADA72hKAQAAAAAAwO9oSgEAAAAAAMDvaEoBAAAAAADA72hKAQAAAAAAwO9oSgEAAAAAAMDvsga6AAAAAACZydlAFxDE/gl0AUGqdaALyIA+D3QBCBKMlAIAAAAAAIDf0ZQCAAAAAACA39GUAgAAAAAAgN/RlAIAAAAAAIDf0ZQCAAAAAACA3wW0KTVhwgRVq1ZNERERioiIUN26dfX111+71998881yuVyp/j300EMBrBgAAAAAAAC+kDWQD16sWDG99NJLKleunMxMH3zwgW6//XatWbNGlStXliT17NlTI0aMcN8nPDw8UOUCAAAAAADARwLalGrdunWq2y+88IImTJign376yd2UCg8PV+HChQNRHgAAAAAAABwS0KbUhZKSkjRr1iydPHlSdevWdS+fPn26PvzwQxUuXFitW7fWs88++5+jpRISEpSQkOC+HR8fL0lKTExUYmKicz8AAAAAgHTIEegCMihffFYhW0++yDXUB/sINny2xn9Lb/8l4E2p9evXq27dujpz5oxy5cqluXPnqlKlSpKkTp06qUSJEoqOjta6dev01FNPadOmTZozZ85F9zdq1CgNHz7cY/nChQs59Q8AAAAIuBmBLiCD+soH+4j1wT6CjS9y7eqDfQQbX+SKYHbq1Kl0becyM3O4lv909uxZ7dy5U3Fxcfrkk0/07rvvaunSpe7G1IW++eYbNW7cWFu3blWZMmXS3F9aI6ViYmJ06NAhRUREOPZz+M/dgS4gg5oZ6AJwUWUDXUAGtdUH++D1wBOvBQCQ8UUGuoAMKs4H+yBbT77IlWMuTxxz4b/Fx8crf/78iouL+89eTMBHSmXLlk1ly57/0FqzZk2tXLlSb7zxhiZNmuSxbZ06dSTpP5tSYWFhCgsL81geGhqq0NBgGHbJMMm0BcPvNlidCXQBGZQvnrO8HnjitQAAMr7TgS4gg/LFexjZeuKYyxkcc+G/pbf/EuJwHV5LTk5ONdLpQmvXrpUkFSlSxI8VAQAAAAAAwNcCOlJq8ODBatGihYoXL67jx48rNjZW3333nRYsWKBt27YpNjZWLVu2VL58+bRu3To99thjatCggapVqxbIsgEAAAAAAHCFAtqUOnjwoLp06aJ9+/YpMjJS1apV04IFC3Trrbdq165dWrx4scaMGaOTJ08qJiZG7du31zPPPBPIkgEAAAAAAOADAW1KvffeexddFxMTo6VLl/qxGgAAAAAAAPhLhptTCgAAAAAAAMGPphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPwuoBOd43J8GegCgljrQBeQAX0e6AIAAAggjg08cWyAzOiXQBcABC1GSgEAAAAAAMDvaEoBAAAAAADA72hKAQAAAAAAwO9oSgEAAAAAAMDvaEoBAAAAAADA72hKAQAAAAAAwO9oSgEAAAAAAMDvaEoBAAAAAADA72hKAQAAAAAAwO9oSgEAAAAAAMDvsga6ACDj+CXQBQSpY4EuAAAAALgCxwJdQBALC3QBGVBCoAvwK0ZKAQAAAAAAwO9oSgEAAAAAAMDvaEoBAAAAAADA72hKAQAAAAAAwO9oSgEAAAAAAMDvaEoBAAAAAADA72hKAQAAAAAAwO9oSgEAAAAAAMDvaEoBAAAAAADA72hKAQAAAAAAwO+yBroAeMsCXUAQOxjoAoLU2UAXEMQWBroAAAhyvM4CkDiedRLZZnaMlAIAAAAAAIDf0ZQCAAAAAACA39GUAgAAAAAAgN951ZSKj49XcnKyx/KkpCTFx8f7rCgAAAAAAAAEt3Q3pebOnatatWrpzJkzHuvOnDmj2rVr6/PPP/dpcQAAAAAAAAhO6W5KTZgwQU8++aTCw8M91uXMmVNPPfWUxo0b59PiAAAAAAAAEJzS3ZTasGGDbr755ouub9CggdavX++LmgAAAAAAABDk0t2UOnr0qM6dO3fR9YmJiTp69KhPigIAAAAAAEBwS3dTqmTJkvr1118vuv7XX39ViRIlfFIUAAAAAAAAglu6m1Lt2rXT008/rQMHDnis279/v5555hm1b9/ep8UBAAAAAAAgOLnMzNKz4fHjx1W3bl3t3LlTnTt3Vvny5SVJGzdu1PTp0xUTE6OffvpJuXPndrRgb8XHxysyMlJxcXGKiIgIdDk+4Ap0ARlUup7Gl0C2nsjVOWTrDF/k2toH+whGXGEXmVFYoAvIgBJ8sA/ev9LGsYEzyNUZvshVItu0+CrbwEpvLyZreneYO3du/fDDDxo8eLBmzpzpnj8qKipKnTt31gsvvJDhGlIAAAAAAADImNI9UupCZqZDhw7JzFSgQAG5XBm3u8lIqcyCb0CcQa7OIVtnMFLKOYyUQmbESClPjJRyDscGziBXZzBSyjmMlLokl8ulAgUKXHZxAAAAAAAAyNzSPdH5oUOH1KtXL91zzz3asGGDkzUBAAAAAAAgyKW7KdWtWzcVKlRId9xxh1q2bKnLOOsPAAAAAAAAkORFU2r16tW6++671aFDB+3fv1///PPPFT/4hAkTVK1aNUVERCgiIkJ169bV119/7V5/5swZ9enTR/ny5VOuXLnUvn17HThw4IofFwAAAAAAAIGV7qZU27ZtNXjwYPXr10/VqlVTwYIFr/jBixUrppdeekmrVq3Sr7/+qkaNGun222/X77//Lkl67LHH9Pnnn2vWrFlaunSp9u7dq3bt2l3x4wIAAAAAACCw0n31veTkZH300Uc6evSoOnfurMjISEcKyps3r1599VXdeeedKlCggGJjY3XnnXdKkjZu3KiKFStqxYoVuuGGG9K1P66+l1lwVQ1nkKtzyNYZXH3POVx9D5kRV9/zxNX3nMOxgTPI1Rlcfc85wTFVks+vvhcSEqJOnTr5pLi0JCUladasWTp58qTq1q2rVatWKTExUU2aNHFvU6FCBRUvXvw/m1IJCQlKSPi/N8v4+HhJUmJiohITEx2r339yBLqADMoXv1uy9USuziFbZ/gi11Af7CMYBcN7KOAtXmc98f7lHLJ1Brk6w1fHBWTrKTiOudLbf0n3SCmnrF+/XnXr1tWZM2eUK1cuxcbGqmXLloqNjVX37t1TNZgk6frrr9ctt9yil19+Oc39DRs2TMOHD/dYHhsbq/DwcEd+BgAAAAAAAJx36tQpderUyXcjpZxSvnx5rV27VnFxcfrkk0/UtWtXLV269LL3N3jwYA0YMMB9Oz4+XjExMWratGmQnL7nzGmTV784H+yDbD2Rq3PI1hm+yLWsD/YRjLYGugBc1N2BLiCDmumDfUT5YB/B5pgP9sH7V9o4NnAGuTrDF7lKZJsWX2UbWClnrV1KwJtS2bJlU9my5z8A1KxZUytXrtQbb7yhu+++W2fPntWxY8cUFRXl3v7AgQMqXLjwRfcXFhamsDDP8/9DQ0MVGhoMp2ScDnQBGZQvfrdk64lcnUO2zvBFrmd8sI9gFAzvocEqOIb5+x6vs84gV+eQrTPI1Rm+Oi4gW0/BccyV3v5Luq++5y/JyclKSEhQzZo1FRoaqiVLlrjXbdq0STt37lTdunUDWCEAAAAAAACuVEBHSg0ePFgtWrRQ8eLFdfz4ccXGxuq7777TggULFBkZqR49emjAgAHKmzevIiIi1LdvX9WtWzfdV94DAAAAAABAxpSuptTYsWPTvcNHH3003dsePHhQXbp00b59+xQZGalq1appwYIFuvXWWyVJr7/+ukJCQtS+fXslJCSoWbNmGj9+fLr3DwAAAAAAgIwpXVffK1WqVPp25nLpr7/+uuKifCk+Pl6RkZGXnPH96uEKdAEZlC8uIkm2nsjVOWTrDF/kWsgH+whGBwJdAC6qdaALyKA+98E+MtxMFxlAsg/2wftX2jg2cAa5OsMXuUpkmxZfZRtY6e3FpGuk1Pbt231WGAAAAAAAAMDXPwAAAAAAAPC7y5rofPfu3Zo3b5527typs2fPplo3evRonxQGAAAAAACA4OV1U2rJkiVq06aNSpcurY0bN6pKlSrasWOHzEzXXXedEzUCAAAAAAAgyHjdlBo8eLAGDhyo4cOHK3fu3Jo9e7YKFiyoe++9V82bN3eiRgAA/OifQBcQxJhE3hMTyGdswTHZLAAAGZXXc0r9+eef6tKliyQpa9asOn36tHLlyqURI0bo5Zdf9nmBAAAAAAAACD5eN6Vy5szpnkeqSJEi2rZtm3vdoUOHfFcZAAAAAAAAgpbXp+/dcMMNWr58uSpWrKiWLVvq8ccf1/r16zVnzhzdcMMNTtQIAAAAAACAION1U2r06NE6ceKEJGn48OE6ceKEZs6cqXLlynHlPQAAAAAAAKSL102p0qVLu/8/Z86cmjhxok8LAgAAAAAAQPDzek6pXbt2affu3e7bv/zyi/r376+3337bp4UBAAAAAAAgeHndlOrUqZO+/fZbSdL+/fvVpEkT/fLLL3r66ac1YsQInxcIAAAAAACA4ON1U2rDhg26/vrrJUkff/yxqlatqh9//FHTp0/XlClTfF0fAAAAAAAAgpDXTanExESFhYVJkhYvXqw2bdpIkipUqKB9+/b5tjoAAAAAAAAEJa+bUpUrV9bEiRP1/fffa9GiRWrevLkkae/evcqXL5/PCwQAAAAAAEDw8frqey+//LLuuOMOvfrqq+ratauqV68uSZo3b577tD4AAK5eFugCgtixQBcQpBYGugAAAIDL4nVT6uabb9ahQ4cUHx+vPHnyuJc/+OCDCg8P92lxAAAAAAAACE5eN6UkKUuWLKkaUpJUsmRJX9QDAAAAAACATMDrOaUOHDig++67T9HR0cqaNauyZMmS6h8AAAAAAABwKV6PlOrWrZt27typZ599VkWKFJHL5XKiLgAAAAAAAAQxr5tSy5cv1/fff69rr73WgXIAAAAAAACQGXh9+l5MTIzMuDIRAAAAAAAALp/XTakxY8Zo0KBB2rFjhwPlAAAAAAAAIDPw+vS9u+++W6dOnVKZMmUUHh6u0NDQVOuPHDnis+IAAAAAAAAQnLxuSo0ZM8aBMgAAAAAAAJCZeN2U6tq1qxN1AAAAAAAAIBPxuiklSdu2bdPkyZO1bds2vfHGGypYsKC+/vprFS9eXJUrV/Z1jQAAICicDXQBQYpcAQDA1cnric6XLl2qqlWr6ueff9acOXN04sQJSdJvv/2moUOH+rxAAAAAAAAABB+vm1KDBg3SyJEjtWjRImXLls29vFGjRvrpp598WhwAAAAAAACCk9dNqfXr1+uOO+7wWF6wYEEdOnTIJ0UBAAAAAAAguHndlIqKitK+ffs8lq9Zs0ZFixb1SVEAAAAAAAAIbl43pe655x499dRT2r9/v1wul5KTk/XDDz9o4MCB6tKlixM1AgAAAAAAIMh43ZR68cUXVaFCBcXExOjEiROqVKmSGjRooBtvvFHPPPOMEzUCAAAAAAAgyLjMzC7njjt37tSGDRt04sQJ1ahRQ+XKlfN1bT4RHx+vyMhIxcXFKSIiItDl+IAr0AVkUJf1NP4XsvVErs4hW2eQq3PI1hnk6hyydQa5OodsnUGuzvBFrhLZpsVX2QZWensxWS/3AYoXL67ixYtf7t0BAAAAAACQiaW7KTVixIh0bffcc89ddjEAAAAAAADIHNJ9+l5ISIiio6NVsGBBXewuLpdLq1ev9mmBV4rT9zILhuU6g1ydQ7bOIFfnkK0zyNU5ZOsMcnUO2TqDXJ3B6XvO4fS9NLVo0ULffPONatWqpfvvv1+tWrVSSIjX86QDAAAAAAAA6b/63pdffqlt27apTp06euKJJ1S0aFE99dRT2rRpk5P1AQAAAAAAIAh5NdQpOjpagwcP1qZNmzRz5kwdPHhQtWvXVr169XT69GmnagQAAAAAAECQueyr79WuXVs7duzQH3/8oTVr1igxMVE5cuTwZW0AAAAAAAAIUl5PCrVixQr17NlThQsX1ptvvqmuXbtq7969QTKJOAAAAAAAAPwh3SOlXnnlFU2ZMkWHDh3Svffeq++//17VqlVzsjYAAAAAAAAEKZeZpet6gyEhISpevLhatWqlbNmyXXS70aNHp/vBR40apTlz5mjjxo3KkSOHbrzxRr388ssqX768e5ubb75ZS5cuTXW/Xr16aeLEiel6jPRehvDqwSUz08alXp1Brs4hW2eQq3PI1hnk6hyydQa5OodsnUGuzvBFrhLZpsVX2QZWensx6R4p1aBBA7lcLv3+++8X3cbl8u4JtXTpUvXp00e1a9fWuXPnNGTIEDVt2lR//PGHcubM6d6uZ8+eGjFihPt2eHi4V48DAAAAAACAjCXdTanvvvvO5w8+f/78VLenTJmiggULatWqVWrQoIF7eXh4uAoXLuzzxwcAAAAAAEBgXPbV95wQFxcnScqbN2+q5dOnT9eHH36owoULq3Xr1nr22WcvOloqISFBCQkJ7tvx8fGSpMTERCUmJjpUuT9xhcO0+eJ3S7aeyNU5ZOsMcnUO2TqDXJ1Dts4gV+eQrTPI1Rm++mxNtp6CoW+hdPdf0j2nlNOSk5PVpk0bHTt2TMuXL3cvf/vtt1WiRAlFR0dr3bp1euqpp3T99ddrzpw5ae5n2LBhGj58uMfy2NhYTvsDAAAAAABw2KlTp9SpU6dLzimVYZpSDz/8sL7++mstX75cxYoVu+h233zzjRo3bqytW7eqTJkyHuvTGikVExOjQ4cOBclE55GBLiCDivPBPsjWE7k6h2ydQa7OIVtnkKtzyNYZ5OocsnUGuTrDF7lKZJsWX2UbWPHx8cqfP7/vJjp30iOPPKIvvvhCy5Yt+8+GlCTVqVNHki7alAoLC1NYWJjH8tDQUIWGhvqm4IA6HegCMihf/G7J1hO5OodsnUGuziFbZ5Crc8jWGeTqHLJ1Brk6w1efrcnWUzD0LZTu/ktAm1Jmpr59+2ru3Ln67rvvVKpUqUveZ+3atZKkIkWKOFwdAAAAAAAAnHLZTalTp05p586dOnv2bKrl1apVS/c++vTpo9jYWH322WfKnTu39u/fL0mKjIxUjhw5tG3bNsXGxqply5bKly+f1q1bp8cee0wNGjTw6nEAAAAAAACQsXg9p9Q///yj7t276+uvv05zfVJSUvof3OVKc/nkyZPVrVs37dq1S507d9aGDRt08uRJxcTE6I477tAzzzyT7vmh4uPjFRkZecnzGK8eaWcGX0yNRraeyNU5ZOsMcnUO2TqDXJ1Dts4gV+eQrTPI1Rm+mpqabD1liGm/r1h6ezFej5Tq37+/jh07pp9//lk333yz5s6dqwMHDmjkyJF67bXXvNrXpfphMTExWrp0qbclAgAAAAAAIIPzuin1zTff6LPPPlOtWrUUEhKiEiVK6NZbb1VERIRGjRql2267zYk6AQAAAAAAEERCvL3DyZMnVbBgQUlSnjx59M8//0iSqlatqtWrV/u2OgAAAAAAAAQlr5tS5cuX16ZNmyRJ1atX16RJk7Rnzx5NnDiRK+IBAAAAAAAgXbw+fa9fv37at2+fJGno0KFq3ry5pk+frmzZsmnKlCm+rg8AAAAAAABByOur7/3bqVOntHHjRhUvXlz58+f3VV0+w9X3MguuquEMcnUO2TqDXJ1Dts4gV+eQrTPI1Tlk6wxydQZX33NO5rr6nlen7yUmJqpMmTL6888/3cvCw8N13XXXZciGFAAAAAAAADImr5pSoaGhOnPmjFO1AAAAAAAAIJPweqLzPn366OWXX9a5c+ecqAcAAAAAAACZgNcTna9cuVJLlizRwoULVbVqVeXMmTPV+jlz5visOAAAAAAAAAQnr5tSUVFRat++vRO1AAAAAAAAIJPwuik1efJkJ+oAAAAAAABAJuL1nFIAAAAAAADAlfJ6pFSpUqXkcrkuuv6vv/66ooIAAAAAAAAQ/LxuSvXv3z/V7cTERK1Zs0bz58/XE0884au6AAAAAAAAEMS8bkr169cvzeVvvfWWfv311ysuCAAAAAAAAMHPZ3NKtWjRQrNnz/bV7gAAAAAAABDEfNaU+uSTT5Q3b15f7Q4AAAAAAABBzOvT92rUqJFqonMz0/79+/XPP/9o/PjxPi0OAAAAAAAAwcnrptTtt9+eqikVEhKiAgUK6Oabb1aFChV8WhwAAAAAAACCk8vMLNBFOCk+Pl6RkZGKi4tTREREoMvxAdelN8mUfPE0JltP5OocsnUGuTqHbJ1Brs4hW2eQq3PI1hnk6gxftRHI1lNwtGjS24vxek6pLFmy6ODBgx7LDx8+rCxZsni7OwAAAAAAAGRCXjelLjawKiEhQdmyZbviggAAAAAAABD80j2n1NixYyVJLpdL7777rnLlyuVel5SUpGXLljGnFAAAAAAAANIl3U2p119/XdL5kVITJ05MdapetmzZVLJkSU2cONH3FQIAAAAAACDopLsptX37dknSLbfcojlz5ihPnjyOFQUAAAAAAIDglu6mVIpvv/3WiToAAAAAAACQiXjdlJKk3bt3a968edq5c6fOnj2bat3o0aN9UhgAAAAAAACCl9dNqSVLlqhNmzYqXbq0Nm7cqCpVqmjHjh0yM1133XVO1AgAAAAAAIAgE+LtHQYPHqyBAwdq/fr1yp49u2bPnq1du3apYcOGuuuuu5yoEQAAAAAAAEHG66bUn3/+qS5dukiSsmbNqtOnTytXrlwaMWKEXn75ZZ8XCAAAAAAAgODjdVMqZ86c7nmkihQpom3btrnXHTp0yHeVAQAAAAAAIGh5PafUDTfcoOXLl6tixYpq2bKlHn/8ca1fv15z5szRDTfc4ESNAAAAAAAACDJeN6VGjx6tEydOSJKGDx+uEydOaObMmSpXrhxX3gMAAAAAAEC6eNWUSkpK0u7du1WtWjVJ50/lmzhxoiOFAQAAAAAAIHh5NadUlixZ1LRpUx09etSpegAAAAAAAJAJeD3ReZUqVfTXX385UQsAAAAAAAAyCa+bUiNHjtTAgQP1xRdfaN++fYqPj0/1DwAAAAAAALgUl5mZN3cICfm/PpbL5XL/v5nJ5XIpKSnJd9X5QHx8vCIjIxUXF6eIiIhAl+MDrktvkil59TS+CLL1RK7OIVtnkKtzyNYZ5OocsnUGuTqHbJ1Brs7wRa4S2abFV9kGVnp7MV5ffe/bb7+9osIAAAAAAAAAr5tSDRs2dKIOAAAAAAAAZCJezyklSd9//706d+6sG2+8UXv27JEkTZs2TcuXL/dpcQAAAAAAAAhOXjelZs+erWbNmilHjhxavXq1EhISJElxcXF68cUXfV4gAAAAAAAAgs9lXX1v4sSJeueddxQaGupeXq9ePa1evdqnxQEAAAAAACA4ed2U2rRpkxo0aOCxPDIyUseOHfNqX6NGjVLt2rWVO3duFSxYUG3bttWmTZtSbXPmzBn16dNH+fLlU65cudS+fXsdOHDA27IBAAAAAACQgXjdlCpcuLC2bt3qsXz58uUqXbq0V/taunSp+vTpo59++kmLFi1SYmKimjZtqpMnT7q3eeyxx/T5559r1qxZWrp0qfbu3at27dp5WzYAAAAAAAAyEK+vvtezZ0/169dP77//vlwul/bu3asVK1Zo4MCBevbZZ73a1/z581PdnjJligoWLKhVq1apQYMGiouL03vvvafY2Fg1atRIkjR58mRVrFhRP/30k2644QZvywcAAAAAAEAG4HVTatCgQUpOTlbjxo116tQpNWjQQGFhYRo4cKD69u17RcXExcVJkvLmzStJWrVqlRITE9WkSRP3NhUqVFDx4sW1YsWKNJtSCQkJ7snXJSk+Pl6SlJiYqMTExCuqL2PIEegCMihf/G7J1hO5OodsnUGuziFbZ5Crc8jWGeTqHLJ1Brk6w1efrcnWUzD0LZTu/ovLzOxyHuDs2bPaunWrTpw4oUqVKilXrlyXsxu35ORktWnTRseOHdPy5cslSbGxserevXuqJpMkXX/99brlllv08ssve+xn2LBhGj58uMfy2NhYhYeHX1GNAAAAAAAA+G+nTp1Sp06dFBcXp4iIiItu5/VIqRTZsmVT7ty5lTt37ituSElSnz59tGHDBndD6nINHjxYAwYMcN+Oj49XTEyMmjZt+p9BXD0iA11ABhXng32QrSdydQ7ZOoNcnUO2ziBX55CtM8jVOWTrDHJ1hi9ylcg2Lb7KNrBSzlq7FK+bUufOndPw4cM1duxYnThxQpKUK1cu9e3bV0OHDlVoaKi3u9QjjzyiL774QsuWLVOxYsXcywsXLqyzZ8/q2LFjioqKci8/cOCAChcunOa+wsLCFBYW5rE8NDT0smrLeE4HuoAMyhe/W7L1RK7OIVtnkKtzyNYZ5OocsnUGuTqHbJ1Brs7w1WdrsvUUDH0Lpbv/4vXV9/r27au3335br7zyitasWaM1a9bolVde0XvvvadHH33Uq32ZmR555BHNnTtX33zzjUqVKpVqfc2aNRUaGqolS5a4l23atEk7d+5U3bp1vS0dAAAAAAAAGYTXc0pFRkbqo48+UosWLVIt/+qrr9SxY0f3ZOXp0bt3b8XGxuqzzz5T+fLlUz1GjhznJzx7+OGH9dVXX2nKlCmKiIhwT6b+448/pusx4uPjFRkZecnzGK8erkAXkEFd1tRo/0K2nsjVOWTrDHJ1Dtk6g1ydQ7bOIFfnkK0zyNUZvshVItu0+CrbwEpvL8br0/fCwsJUsmRJj+WlSpVStmzZvNrXhAkTJEk333xzquWTJ09Wt27dJEmvv/66QkJC1L59eyUkJKhZs2YaP368t2UDAAAAAAAgA/F6pNSIESO0ceNGTZ482T13U0JCgnr06KFy5cpp6NChjhR6uRgplVnwDYgzyNU5ZOsMcnUO2TqDXJ1Dts4gV+eQrTPI1RmMlHIOI6X+05o1a7RkyRIVK1ZM1atXlyT99ttvOnv2rBo3bqx27dq5t50zZ85llA4AAAAAAIBg53VTKioqSu3bt0+1LCYmxmcFAQAAAAAAIPh53ZSaPHmyE3UAAAAAAAAgEwkJdAEAAAAAAADIfLweKXX48GE999xz+vbbb3Xw4EElJyenWn/kyBGfFQcAAAAAAIDg5HVT6r777tPWrVvVo0cPFSpUSC4Xs+UDAAAAAADAO143pb7//nstX77cfeU9AAAAAAAAwFtezylVoUIFnT592olaAAAAAAAAkEl43ZQaP368nn76aS1dulSHDx9WfHx8qn8AAAAAAADApXh9+l5UVJTi4+PVqFGjVMvNTC6XS0lJST4rDgAAAAAAAMHJ66bUvffeq9DQUMXGxjLROQAAAAAAAC6L102pDRs2aM2aNSpfvrwT9QAAAAAAACAT8HpOqVq1amnXrl1O1AIAAAAAAIBMwuuRUn379lW/fv30xBNPqGrVqgoNDU21vlq1aj4rDgAAAAAAAMHJZWbmzR1CQjwHV7lcrgw70Xl8fLwiIyMVFxeniIiIQJfjA8zhlTavnsYXQbaeyNU5ZOsMcnUO2TqDXJ1Dts4gV+eQrTPI1Rm+yFUi27T4KtvASm8vxuuRUtu3b7+iwgAAAAAAAACvm1IlSpRwog4AAAAAAABkIl5PdC5J06ZNU7169RQdHa2///5bkjRmzBh99tlnPi0OAAAAAAAAwcnrptSECRM0YMAAtWzZUseOHXPPIRUVFaUxY8b4uj4AAAAAAAAEIa+bUm+++abeeecdPf3008qSJYt7ea1atbR+/XqfFgcAAAAAAIDg5HVTavv27apRo4bH8rCwMJ08edInRQEAAAAAACC4ed2UKlWqlNauXeuxfP78+apYsaIvagIAAAAAAECQS/fV90aMGKGBAwdqwIAB6tOnj86cOSMz0y+//KIZM2Zo1KhRevfdd52sFQAAAAAAAEHCZWaWng2zZMmiffv2qWDBgpo+fbqGDRumbdu2SZKio6M1fPhw9ejRw9FiL0d8fLwiIyMVFxeniIiIQJfjA65AF5BBpetpfAlk64lcnUO2ziBX55CtM8jVOWTrDHJ1Dtk6g1yd4YtcJbJNi6+yDaz09mLS3ZQKCQnR/v37VbBgQfeyU6dO6cSJE6mWZTQ0pTIL3mycQa7OIVtnkKtzyNYZ5OocsnUGuTqHbJ1Brs6gKeWczNWUSvfpe5LkcqV+woSHhys8PPzyKgQAAAAAAECm5VVT6pprrvFoTP3bkSNHrqggAAAAAAAABD+vmlLDhw9XZGSkU7UAAAAAAAAgk/CqKXXPPfdk6PmjAAAAAAAAcHUISe+GlzptDwAAAAAAAEivdDel0nmRPgAAAAAAAOCS0n36XnJyspN1AAAAAAAAIBNJ90gpAAAAAAAAwFdoSgEAAAAAAMDvaEoBAAAAAADA72hKAQAAAAAAwO8uqyk1bdo01atXT9HR0fr7778lSWPGjNFnn33m0+IAAAAAAAAQnLxuSk2YMEEDBgxQy5YtdezYMSUlJUmSoqKiNGbMGF/XBwAAAAAAgCDkdVPqzTff1DvvvKOnn35aWbJkcS+vVauW1q9f79PiAAAAAAAAEJy8bkpt375dNWrU8FgeFhamkydP+qQoAAAAAAAABDevm1KlSpXS2rVrPZbPnz9fFStW9EVNAAAAAAAACHJZvb3DgAED1KdPH505c0Zmpl9++UUzZszQqFGj9O677zpRIwAAAAAAAIKM102pBx54QDly5NAzzzyjU6dOqVOnToqOjtYbb7yhe+65x4kaAQAAAAAAEGS8Pn1Pku69915t2bJFJ06c0P79+7V792716NHjsgpYtmyZWrdurejoaLlcLn366aep1nfr1k0ulyvVv+bNm1/WYwEAAAAAACBjuKymVIrw8HAVLFjwigo4efKkqlevrrfeeuui2zRv3lz79u1z/5sxY8YVPSYAAAAAAAACK12n79WoUUMulytdO1y9erVXBbRo0UItWrT4z23CwsJUuHBhr/YLAAAAAACAjCtdTam2bdu6///MmTMaP368KlWqpLp160qSfvrpJ/3+++/q3bu3I0V+9913KliwoPLkyaNGjRpp5MiRypcvnyOPBQAAAAAAAOelqyk1dOhQ9/8/8MADevTRR/X88897bLNr1y7fVqfzp+61a9dOpUqV0rZt2zRkyBC1aNFCK1asUJYsWTy2T0hIUEJCgvt2fHy8JCkxMVGJiYk+r8//cgS6gAzKF79bsvVErs4hW2eQq3PI1hnk6hyydQa5OodsnUGuzvDVZ2uy9RQMfQulu//iMjPzZseRkZH69ddfVa5cuVTLt2zZolq1aikuLs6b3aUuxuXS3LlzU43M+re//vpLZcqU0eLFi9W4cWOP9cOGDdPw4cM9lsfGxio8PPyyawMAAAAAAMClnTp1Sp06dVJcXJwiIiIuul26RkpdKEeOHPrhhx88mlI//PCDsmfP7n2lXipdurTy58+vrVu3ptmUGjx4sAYMGOC+HR8fr5iYGDVt2vQ/g7h6RAa6gAzq8puh/4dsPZGrc8jWGeTqHLJ1Brk6h2ydQa7OIVtnkKszfJGrRLZp8VW2gZVy1tqleN2U6t+/vx5++GGtXr1a119/vSTp559/1vvvv69nn33W2915bffu3Tp8+LCKFCmS5vqwsDCFhYV5LA8NDVVoaKjT5fnB6UAXkEH54ndLtp7I1Tlk6wxydQ7ZOoNcnUO2ziBX55CtM8jVGb76bE22noKhb6F091+8bkoNGjRIpUuX1htvvKEPP/xQklSxYkVNnjxZHTp08HZ3OnHihLZu3eq+vX37dq1du1Z58+ZV3rx5NXz4cLVv316FCxfWtm3b9OSTT6ps2bJq1qyZ148FAAAAAACAjMHrOaV87bvvvtMtt9zisbxr166aMGGC2rZtqzVr1ujYsWOKjo5W06ZN9fzzz6tQoULp2n98fLwiIyMveR7j1cMV6AIyKF88jcnWE7k6h2ydQa7OIVtnkKtzyNYZ5OocsnUGuTrDV20EsvUU0BaNz6S3FxPwppTTaEplFrzZOINcnUO2ziBX55CtM8jVOWTrDHJ1Dtk6g1ydQVPKOcHRoklvLybEjzUBAAAAAAAAkmhKAQAAAAAAIABoSgEAAAAAAMDvaEoBAAAAAADA77Jezp12796tefPmaefOnTp79myqdaNHj/ZJYQAAAAAAAAheXjellixZojZt2qh06dLauHGjqlSpoh07dsjMdN111zlRIwAAAAAAAIKM16fvDR48WAMHDtT69euVPXt2zZ49W7t27VLDhg111113OVEjAAAAAAAAgozXTak///xTXbp0kSRlzZpVp0+fVq5cuTRixAi9/PLLPi8QAAAAAAAAwcfrplTOnDnd80gVKVJE27Ztc687dOiQ7yoDAAAAAABA0PJ6TqkbbrhBy5cvV8WKFdWyZUs9/vjjWr9+vebMmaMbbrjBiRoBAAAAAAAQZLxuSo0ePVonTpyQJA0fPlwnTpzQzJkzVa5cOa68BwAAAAAAgHRxmZkFuggnxcfHKzIyUnFxcYqIiAh0OT7gCnQBGZQvnsZk64lcnUO2ziBX55CtM8jVOWTrDHJ1Dtk6g1yd4as2Atl6Co4WTXp7MV7PKQUAAAAAAABcqXSdvpc3b15t3rxZ+fPnV548eeRyXbybeeTIEZ8VBwAAAAAAgOCUrqbU66+/rty5c0uSxowZ42Q9AAAAAAAAyASYU+qqwzm3aeNccWeQq3PI1hnk6hyydQa5OodsnUGuziFbZ5CrM5hTyjnB0aJJby8mXSOl4uPj0/3AwdH4AQAAAAAAgJPS1ZSKior6z3mkLpSUlHRFBQEAAAAAACD4pasp9e2337r/f8eOHRo0aJC6deumunXrSpJWrFihDz74QKNGjXKmSgAAAAAAAAQVr+eUaty4sR544AF17Ngx1fLY2Fi9/fbb+u6773xZ3xVjTqnMgnPFnUGuziFbZ5Crc8jWGeTqHLJ1Brk6h2ydQa7OYE4p52SuOaVCvN3xihUrVKtWLY/ltWrV0i+//OLt7gAAAAAAAJAJed2UiomJ0TvvvOOx/N1331VMTIxPigIAAAAAAEBwS9ecUhd6/fXX1b59e3399deqU6eOJOmXX37Rli1bNHv2bJ8XCAAAAAAAgODj9Uipli1bavPmzWrdurWOHDmiI0eOqHXr1tq8ebNatmzpRI0AAAAAAAAIMl5PdH61YaLzzIIJDJ1Brs4hW2eQq3PI1hnk6hyydQa5OodsnUGuzmCic+cER4vGsYnOJen7779X586ddeONN2rPnj2SpGnTpmn58uWXVy0AAAAAAAAylUs2pX7++WclJia6b8+ePVvNmjVTjhw5tHr1aiUkJEiS4uLi9OKLLzpXKQAAAAAAAIJGuppSTZs21fHjxyVJI0eO1MSJE/XOO+8oNDTUvV29evW0evVq5yoFAAAAAABA0Ljk1fceffRRJSYmqmHDhlq9erU2bdqkBg0aeGwXGRmpY8eOOVEjAAAAAAAAgswlm1KS9Pjjj6tu3bqSpMKFC2vr1q0qWbJkqm2WL1+u0qVL+7xAAAAAAAAABJ90T3R+4403SpJ69uypfv366eeff5bL5dLevXs1ffp0DRw4UA8//LBjhQIAAAAAACB4pGuk1IUGDRqk5ORkNW7cWKdOnVKDBg0UFhamgQMHqm/fvk7UCAAAAAAAgCDjMjO7nDuePXtWW7du1YkTJ1SpUiXlypXL17X5RHx8vCIjIxUXF6eIiIhAl+MDrkAXkEFd1tP4X8jWE7k6h2ydQa7OIVtnkKtzyNYZ5OocsnUGuTrDF7lKZJsWX2UbWOntxXg9UipFtmzZVKlSpcu9OwAAAAAAADKxdDel7r///nRt9/777192MQAAAAAAAMgc0t2UmjJlikqUKKEaNWroMs/4AwAAAAAAACR50ZR6+OGHNWPGDG3fvl3du3dX586dlTdvXidrAwAAAAAAQJAKSe+Gb731lvbt26cnn3xSn3/+uWJiYtShQwctWLCAkVMAAAAAAADwSrqbUpIUFhamjh07atGiRfrjjz9UuXJl9e7dWyVLltSJEyecqhEAAAAAAABBxqumVKo7hoTI5XLJzJSUlOTLmgAAAAAAABDkvGpKJSQkaMaMGbr11lt1zTXXaP369Ro3bpx27typXLlyOVUjAAAAAAAAgky6Jzrv3bu3PvroI8XExOj+++/XjBkzlD9/fidrAwAAAAAAQJByWTpnKQ8JCVHx4sVVo0YNuVyui243Z84cnxXnC/Hx8YqMjFRcXJwiIiICXY4PXDz7zM0Xk+2TrSdydQ7ZOoNcnUO2ziBX55CtM8jVOWTrDHJ1hq8udka2noLjQnLp7cWk+/S9Ll266JZbblFUVJQiIyMv+s9by5YtU+vWrRUdHS2Xy6VPP/001Xoz03PPPaciRYooR44catKkibZs2eL14wAAAAAAACDjSPfpe1OmTHGkgJMnT6p69eq6//771a5dO4/1r7zyisaOHasPPvhApUqV0rPPPqtmzZrpjz/+UPbs2R2pCQAAAAAAAM5Kd1PKKS1atFCLFi3SXGdmGjNmjJ555hndfvvtkqSpU6eqUKFC+vTTT3XPPff4s1QAAAAAAAD4iFdX3/O37du3a//+/WrSpIl7WWRkpOrUqaMVK1YEsDIAAAAAAABciYCPlPov+/fvlyQVKlQo1fJChQq51/1bQkKCEhIS3Lfj4+MlSYmJiUpMTHSoUn/KEegCMihf/G7J1hO5OodsnUGuziFbZ5Crc8jWGeTqHLJ1Brk6w1efrcnWUzD0LZTu/ku6r77nDy6XS3PnzlXbtm0lST/++KPq1aunvXv3qkiRIu7tOnToIJfLpZkzZ3rsY9iwYRo+fLjH8tjYWIWHhztWOwAAAAAAAKRTp06pU6dOl7z6XoYeKVW4cGFJ0oEDB1I1pQ4cOKBrr702zfsMHjxYAwYMcN+Oj49XTEyMmjZt+p9BXD28v8Jh5hDng32QrSdydQ7ZOoNcnUO2ziBX55CtM8jVOWTrDHJ1hi9ylcg2Lb7KNrBSzlq7lAzdlCpVqpQKFy6sJUuWuJtQ8fHx+vnnn/Xwww+neZ+wsDCFhYV5LA8NDVVoaKiT5frJ6UAXkEH54ndLtp7I1Tlk6wxydQ7ZOoNcnUO2ziBX55CtM8jVGb76bE22noKhb6F0918C3pQ6ceKEtm7d6r69fft2rV27Vnnz5lXx4sXVv39/jRw5UuXKlVOpUqX07LPPKjo62n2KHwAAAAAAAK4+AW9K/frrr7rlllvct1NOvevataumTJmiJ598UidPntSDDz6oY8eO6aabbtL8+fOVPXv2QJUMAAAAAACAK5ShJjp3Qnx8vCIjIy85udbVwxXoAjIoXzyNydYTuTqHbJ1Brs4hW2eQq3PI1hnk6hyydQa5OsNXbQSy9RQcLZr09mJC/FgTAAAAAAAAIImmFAAAAAAAAAKAphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/I6mFAAAAAAAAPyOphQAAAAAAAD8jqYUAAAAAAAA/C7DN6WGDRsml8uV6l+FChUCXRYAAAAAAACuQNZAF5AelStX1uLFi923s2a9KsoGAAAAAADARVwV3Z2sWbOqcOHCgS4DAAAAAAAAPpLhT9+TpC1btig6OlqlS5fWvffeq507dwa6JAAAAAAAAFyBDD9Sqk6dOpoyZYrKly+vffv2afjw4apfv742bNig3Llze2yfkJCghIQE9+34+HhJUmJiohITE/1Wt3NyBLqADMoXv1uy9USuziFbZ5Crc8jWGeTqHLJ1Brk6h2ydQa7O8NVna7L1FAx9C6W7/+IyM3O4Fp86duyYSpQoodGjR6tHjx4e64cNG6bhw4d7LI+NjVV4eLg/SgQAAAAAAMi0Tp06pU6dOikuLk4REREX3e6qa0pJUu3atdWkSRONGjXKY11aI6ViYmJ06NCh/wzi6hEZ6AIyqDgf7INsPZGrc8jWGeTqHLJ1Brk6h2ydQa7OIVtnkKszfJGrRLZp8VW2gRUfH6/8+fNfsimV4U/f+7cTJ05o27Ztuu+++9JcHxYWprCwMI/loaGhCg0Ndbo8Pzgd6AIyKF/8bsnWE7k6h2ydQa7OIVtnkKtzyNYZ5OocsnUGuTrDV5+tydZTMPQtlO7+S4af6HzgwIFaunSpduzYoR9//FF33HGHsmTJoo4dOwa6NAAAAAAAAFymDD9Savfu3erYsaMOHz6sAgUK6KabbtJPP/2kAgUKBLo0AAAAAAAAXKYM35T66KOPAl0CAAAAAAAAfCzDn74HAAAAAACA4ENTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfkdTCgAAAAAAAH5HUwoAAAAAAAB+R1MKAAAAAAAAfnfVNKXeeustlSxZUtmzZ1edOnX0yy+/BLokAAAAAAAAXKaroik1c+ZMDRgwQEOHDtXq1atVvXp1NWvWTAcPHgx0aQAAAAAAALgMV0VTavTo0erZs6e6d++uSpUqaeLEiQoPD9f7778f6NIAAAAAAABwGTJ8U+rs2bNatWqVmjRp4l4WEhKiJk2aaMWKFQGsDAAAAAAAAJcra6ALuJRDhw4pKSlJhQoVSrW8UKFC2rhxo8f2CQkJSkhIcN+Oi4uTJB05ckSJiYnOFusX2QNdQAZ12Af7IFtP5OocsnUGuTqHbJ1Brs4hW2eQq3PI1hnk6gxf5CqRbVp8lW1gHT9+XJJkZv+5XYZvSnlr1KhRGj58uMfyUqVKBaAa+E/+QBcQpMjVOWTrDHJ1Dtk6g1ydQ7bOIFfnkK0zyNUZ5Oqc4Mr2+PHjioyMvOj6DN+Uyp8/v7JkyaIDBw6kWn7gwAEVLlzYY/vBgwdrwIAB7tvJyck6cuSI8uXLJ5fL5Xi9mUV8fLxiYmK0a9cuRUREBLqcoEK2ziBXZ5Crc8jWGeTqHLJ1Brk6h2ydQa7OIVtnkKszzEzHjx9XdHT0f26X4ZtS2bJlU82aNbVkyRK1bdtW0vlG05IlS/TII494bB8WFqawsLBUy6KiovxQaeYUERHBH65DyNYZ5OoMcnUO2TqDXJ1Dts4gV+eQrTPI1Tlk6wxy9b3/GiGVIsM3pSRpwIAB6tq1q2rVqqXrr79eY8aM0cmTJ9W9e/dAlwYAAAAAAIDLcFU0pe6++279888/eu6557R//35de+21mj9/vsfk5wAAAAAAALg6XBVNKUl65JFH0jxdD4ERFhamoUOHepwqiStHts4gV2eQq3PI1hnk6hyydQa5OodsnUGuziFbZ5BrYLnsUtfnAwAAAAAAAHwsJNAFAAAAAAAAIPOhKQUAAAAAAAC/oykFAAAAAAAAv6MpBb9JTk4OdAkA/IgpCwEAAAD8F5pS8JuQkPNPt02bNkmiSQUEqy+//FIJCQlyuVw0ppDhXfgcTfl/nrdXhvd3ZHYX/g2cOXMmgJVcfVJef+Pi4gJcCQB/oSkFv1q0aJEqVqyoHTt2uJtU8C0+DCCQ3nzzTT366KOaNGmSzp49S2PKx8jSt5KTk+VyuSRJ586dU0JCgiS5l+HypLy/z5gxQwcOHJDEc9cffvvtNx08eFCSNHz4cK1evTrAFWVeKX8DTz31lB599FGdO3cuwBVdPVwul+bOnauHHnrI/XyGs1Jen48fPx7gSoIL73vpR1cAflWjRg3Vr19f8+bNk0QDxQkpB0I7d+6UxAvilSA773Xr1k0333yzPvroI02YMIHGlI+lNEtOnDgR4EqufsnJye7XyzFjxqh9+/Zq1KiR+vbt626k4PKYmY4dO6Z7771XH3zwgSQafU7bsGGDOnXqpLfeeksPP/ywhg8fruzZswe6rEznwve6xYsX66uvvlKPHj2UNWvWAFZ1dUjJbvPmzRoyZIiaNm2q/PnzB7iqzMHlcumjjz5Snz599M8//wS6nKDhcrk0ZcoUjRw5MtClZHg0peCYtBpO+fPn1zXXXKMPP/xQkhgt5ZBPP/1U11xzjY4cOcIHgXRKSkqSJO3bt0/btm2TxIcobzzxxBNat26dcufOrTfffFPly5fXjBkzaEw54JVXXtHgwYMDXcZVL+X9Z8iQIXr55Zd10003aciQIXrrrbfUt29fHT16NMAVXt2ioqI0bNgwffPNNzT5/KBKlSq69957NXHiRH3wwQdavHixKlWq5H5vg3+kHDd89tlnmjFjhm699VbVqVOHkVLp4HK5tHLlSs2dO1c33nijOnfuzHGDw1LyPXz4sJ599lnVrl1bBQoUCHBVV7+UXHfs2KGBAwfSlE4HOgJwTMoB/19//eU+JUKSRo0apT179mjcuHGBKi3o1apVS9WrV9fcuXMlMSLtYt555x39+OOPSkpKUpYsWfTJJ5+oXr16uuWWW1SnTh398MMPSkxMDHSZGd7SpUsVHx+vSpUqSZLCw8P15ptvqkKFCjSmHJA/f3599NFH+vPPPwNdylVv/fr1+vTTTxUbG6snnnhCuXPnVvbs2dW0aVPlyZPHvR3P2//278ZHygfzm266SatXr9bvv/8uiRydkJyc7H6Pr1KlirJkyaLixYtr2bJl2rt3r7JkyULufnbs2DG9+uqrmjFjhvtLrqxZs3Islg4jR47U4MGDtXLlSp09e5bnr8NcLpcWLFigcePGqXHjxrr//vsDXVJQcLlc+umnnzRt2jR17txZgwYNCnRJGR5NKfjchW+648ePV9u2bXXnnXdq9erVOnr0qPLnz682bdpo5cqVSk5O5s3mCqWVX+HChVWyZEnNnDlTEiPS0mJmGj58uHr06KHffvtN69at08CBA9WrVy+9/fbbCg0NVffu3TV//nydPXs20OVmaA0bNtSECROUNWtWzZw5U8uXL1euXLk0btw4GlNX6N9ZmZnq16+va665RitWrJDk2RBA+sXFxSlr1qy65ZZb9Omnn6pVq1Z6/fXX9cADDyguLk6fffaZJEZNXsy6det07tw5ZcmSRZK0cOFCLV++3L2+UaNGatmypYYOHar4+Hhy9LGUU1BDQkK0c+dONWvWTBs2bFCXLl00b948vfnmm9q3bx+5O+zfzaaoqChNnTpVzZs312+//abJkydLOn8sxvvff/vss8/UtWtX7dmzR1OnTtXJkyc5bnBQcnKyfv75Zw0fPlxLliyhceojx44d0xtvvKGXX35Z27dvdy/nefwfDHDIq6++as8//7y99dZbds8991i+fPmsQ4cONnfuXFu8eLFlzZrVvv/++0CXGTR27txpycnJ7ttbt261fPny2dSpUwNYVcaUktPZs2ft2muvtZo1a9rUqVPtqaeeSrVd8+bNrVy5cjZv3jxLSEgIRKkZ3tmzZ93/v2XLFqtZs6Y1b97cfv75ZzMzO378uHXt2tXq1Kljb7zxhjvHC5+ruLQTJ06kuv3II49YqVKl7PTp0wGq6OqT1nNu+/btVq1aNRs2bJhFRETYxIkT3et+/PFHq1+/vv3222/+LPOqMXz4cHO5XLZ48WI7e/asbdiwwSpXrmx58+a13r172/z5883M7Pvvv7fatWu7XxOSkpICWXbQuDDH4cOHW61atey7775zLxs2bJjVqFHDnnnmGdu3b5+ZmXXr1s3WrVvn91qD2YW/h82bN9vWrVtt9+7dZmb2999/W6tWreyWW26x2NjYNO+TmaW8Ju/du9f2799vGzdudK+78847rXLlyvbhhx+63+c4bnBGXFycvfrqqxYSEmJjx44NdDlBY8mSJXbnnXdaWFiYLVmyxMx4Dv8XmlLwmQvfZGfNmmX58+e3P/74w73ss88+s0GDBlnOnDntrrvusqxZs9p9991np06d4o/0MlyY99ixY61WrVrWqVMn27Ztm8XHx5uZ2X333We9e/f22B7/10w5e/asVapUyVwul7Vp08bjudi8eXOrVKmSzZo1K1UDBqkNHTrU1q5dax9//LE1b97cWrVqZT/99JOZnW9MdevWzW688UYbOXIkOXpp0qRJduedd7o//JuZHT582GrWrGnjx483Mw50LuXC178LG8zHjh2ze++918LDw+2xxx5zLz9z5oy1atXK2rVrx2vnf2jWrJkVK1bMFi9ebGZmu3fvtgULFtj1119vderUsYYNG9qyZcssOjraHn744QBXG5yefPJJK1SokM2bN8+2b9+eat3w4cOtRo0a1rRpU2vYsKEVLFjQEhMTA1NoELrwdXfo0KFWpUoVq1ChghUqVMjeeustMzP766+/rGXLltaoUSObMWNGoErNcFKy+/TTT61OnTpWsWJFu+aaa2zIkCHubdq1a2dVqlSx2NhYO3XqVKBKDSopue/fv982bdpkhw8fdh9XPPvss+Zyuey9994LZIlXpZRcT548aUePHnUv/+2336xNmzZWpUoV95cGHK+ljaYUfG7WrFk2cuRIe+WVV8zMPD6Abt++3Z599lmrV6+e5cmTx/bv329m/JFerjfeeMOGDRtm//vf/6xp06ZWpEgR69q1qy1btszmzJlj2bNnt/Xr1we6zAwl5bl25MgRMzv/HK1bt64VKlTIli9f7vEhtG7dularVi07fvy432vNqC7MaM6cOeZyuWzlypVmZjZ79mxr0qSJR2OqTZs21rNnT/7WvfTqq6/avffea9myZbNOnTrZ2LFjLSkpye6++27r2LFjoMvL8C58vr366qvWsWNHa9Omja1Zs8bMzH766Se74YYbrF69ejZy5Eh74403rHHjxlalShX3+xeNqdQufF9v0qSJFSpUyKNpunr1amvTpo01adLE8ubNaxEREe7XCPjGjz/+aGXLlrUff/zRzM43U/fv329z5851jy555513rF+/ftajRw93Q+rcuXMBqzkYjRw50goUKGCLFi2yU6dO2V133WURERG2YcMGMzPbtm2btW7d2qpVq2aLFi0KcLUZx/z58y1Hjhw2fvx4+/PPP+311183l8tlX375pXubO++804oWLWoff/xxACsNDinvhXPmzLFrr73WihcvbvXq1bP777/f/vnnH0tOTnaPgJ08eXJgi72KpOT6+eefW+PGja1ixYrWrFkz++ijjywxMdF++eUX69Chg1WrVs2WLl0a4GozLppS8Jnk5GQ7efKk5cyZ01wulz300EPudSkH9CkHQklJSZaQkGDXX3+99erVKyD1Xq0u/HA0ffp0y5s3r23atMm9bNq0afbwww9bWFiYde3a1UJCQqx3796WkJBAM8D+781jwYIF1rVrV/fBfGJiolWtWtWqVKliv/zyi0dWf//9t99rvRrExsbauHHj7O233061fM6cOXbrrbemakydPn3a/fzluZi2/2p+LF261B577DErWrSotWrVynr06GEul8s+//xzP1Z4dbkwz1GjRllkZKQ9+uijVr16dcuXL599+OGHZnb+w/1jjz1mMTEx1rx581Qf4BlZklpaz9HGjRtbkSJFbNGiRR6nOv/44482YcIECw8Pt1GjRpkZf/+X69+5ff7551aoUCE7d+6crVu3zp566ikrV66chYaG2vXXX5/mFyk8n33r1KlT1qJFC5s2bZqZmc2dO9fy5MnjHsWa8vfwxx9/2MCBA2kIXqB3797ukVE7duywMmXKuD8TXPg607lzZ9u2bVtAagw2ixcvtvDwcHvjjTfs6NGj9vzzz5vL5XJP9XHy5EkbMWKEuVwu93Mal/bll19aeHi4jRgxwlatWmVNmza16Oho++GHH8zMbPny5XbPPfdYTEyMLV++PMDVZkw0peAzKW8ghw8ftkqVKlnZsmXT/HBv9n8HVsOGDbM777zTr3UGiy+++MKef/55e+ONN8zMc0Ta6tWr7bHHHrOqVatasWLF3AenfBg43zBJefNYsWJFqjmmqlSpYlWqVLGVK1eS1SVs2bLFihcvbi6Xy1577TUzO/9NfYo5c+ZYs2bNrG7duu5vjM0YdXIxF+Yyb948++CDD2zSpElmlnoetMOHD1u/fv2sXbt25nK50jyIR2o7duywBx980JYtW+Ze1q1bNytUqJBNnTrVnW/Kqc8p+AB/cV988YW7qW92vjEVHR1tixYtSjO3iRMnWrFixWzPnj3+LDMopUyN8M8//1j58uWtbNmylj9/fuvZs6fFxsba/v37LUuWLDZz5swAVxrckpOT7cCBA1a4cGH7448/7LvvvrNcuXLZhAkTzOx8w2rIkCEeDRUaU+ffy6677jqbOHGixcXFWdGiRe3BBx90vxaPHz/eFixYEOAqg0dycrKdO3fO+vTpYwMGDDAzswMHDlhMTIz16dPHvd3Zs2ft3Llz9tJLL6WaggVpS05OthMnTthtt91mw4cPN7PzxxHFixdPlauZ2bJly6xbt240WC+CphQu2399ADp48KAVK1bM6tWrl+rD6L89+OCDVr16dTt58qQTJQal5ORkO3TokLlcLnO5XPbEE0+416X8Ti4cmXb06FErX768xyTemdW2bdusbNmy7mZeipRvM1MmPy9atKitXr06ECVmWP9u0p0+fdo+/fRTq1atmtWsWdO9/MKREtOnT7d+/frRMLmEC/N56qmnLDo62m688UYrUKCANWvWzFavXu2R4alTp+yNN96w7Nmz259//unvkq8a06ZNM5fLZRUqVPA4fax79+5WpEgRmzZtmh07dizVOprSF7dx40YrVKiQde3aNVWmKY2pxYsXpxoZbWa2Zs0aq169uv31118BqTlYfPzxx1arVi336UybNm2ykSNH2hdffGFxcXFmdn60Q926dflQ72MXe03o0qWLNW3a1MLDw+399993L9+7d6/Vr1/fPvjgg/+8f2Y1YsQI69SpkxUpUsQeeugh92vF6dOnrVu3bvb888/b2bNnyc2HOnfubG+99Zbt2bPHoxH42Wef2Zw5cwJc4dUnKSnJGjRoYKtXr7Z9+/ZZkSJF7MEHH3Sv/+yzz9zve8yNdnE0pXBZLvxwNGnSJHvsscfsrrvusl9++cU9T8+BAwesaNGiVr9+/TQbU3///bfdcccd9uuvv/qt7mCQ8uaxdetWK1q0qNWoUeOic0al/J4GDhxoXbp08VuNGcm/D2Z+/vlnK1WqlG3ZssVjm5QPUQkJCVa3bl2+zbjAvxsiFzbxvvrqKytRooQ1btzYY/1/7QOeXnvtNYuOjna/Ls6YMcNcLpfVr1/fVq9e7X6uXvi8rl+/vr388ssBqTcjSut5dvvtt7tPUfj3qNKU0yC//vprf5V41UnrQ+HHH39sVapUsfvvvz9VY6pJkyYWExNjX3zxRarfxauvvmpZsmRxXwkOl+fnn3+2Fi1a2K233urxAfLMmTO2b98+a9WqldWuXZsROT504XP58OHD7vlQzcymTJlixYsXt1atWrmXxcXFWYsWLezmm2/O1L+Hc+fOpRqJeuEppZ999pkVK1bMateu7f7QfvbsWRsyZIiVKFHCtm7dGpCag1FSUpIlJydbz549rWHDhlaqVKlU06ecOHHC7rvvPnv++ecZIeyFlOf2DTfcYD179rSyZctar1693McZhw4dsttvv505utKBphSuyFNPPWWFChWynj17WqtWraxo0aL25ptv2t69e83sfGOqRIkSVr58+TS/Hf33Zc7h6b8+yG/cuNGioqKsVatW//nmfd9991ndunXtzJkzme4bp5Sfd+nSpfbzzz/b0qVLrWjRoqk+RKVss2jRIvf530jbyy+/bHfccYfdcMMNNn78eNuxY4eZmX311Vd2zTXXWNOmTd3bcpW9S1uwYIH7ikzHjh2zhx56yD3P0ezZsy0qKspee+01K1OmjNWvX99+/fVXj7/h2rVr29ChQ/1deob379PLmjVrZoULF7ZFixZ5fEh84YUXMvUHx/RKGYmT4pNPPrGKFSva/fffb6tWrXIvv/baa61Nmzbu2wkJCfbBBx+4J5dH+lzs/X/16tXWqlUra9y4sXvEVFJSkn3wwQdWv359u+GGG9yvvzyvr8z06dNTvZc9/fTTdu2111revHmtY8eONm/ePDP7v6vvVatWzdq1a2d16tSxa6+9NtP+Hv7dMP3000+tVq1aVqlSJWvcuLF7MvN3333XSpYsaQ0bNrQOHTrYHXfcYfny5WOk+hU4d+6c+7XjwIEDdvLkSTt8+LCZme3Zs8fKli1rxYoVc5+lkpSUZEOGDLHixYvb5s2bA1Z3RpeUlOTO9dSpU+5Gn9n598ICBQqkOmvA7PzrRfny5T2ujApPNKVw2d577z0rUaJEqisYuVwui4mJsddee839LdK+ffusbdu2me4N2RcuPCB9//337emnn7aePXvan3/+6f626Y8//rDIyEhr3bp1miN7tm7darfeemumG5F24Qf3xYsXu0dCbN261QoWLGh9+vTxaIr27dvXHnnkkUzZvLuYC5+DQ4cOtbx587qv5JQ3b17r1KmT+7n15ZdfWqVKlaxGjRqBKveqsnz5cnO5XFarVi2bPn26mZktWbLE9u/fb2vWrLEyZcq4TzOdOnWquVwuq1SpUqoLG/z8888WFhZmv/32W0B+hozKm9PLLsT7VGo//vij+/n2+uuv2yOPPOJxcP3xxx9bgQIF7L777kvVmPp3Q4XX1Ms3e/Zsj6u2rVq1ylq3bm3169d3X+zghx9+sHHjxjFJv48sW7bMXC6XPf3002ZmNnbsWCtYsKBNnDjRPvjgA2vYsKHVrVvX3n33XTMzW7hwoT355JPWr18/GzNmTKb9PWzfvt1cLpe1a9fOzMxWrlxpYWFhNmjQIHv77bft1ltvtYoVK9qYMWPM7PwXCMOGDbO2bdva888/bxs3bgxk+VetTz75JFXjf/bs2Va9enW75ppr7MYbb3SP1lm4cKFFRUVZrVq1rFmzZtauXTsagf9h5cqVdvDgQfftefPmWfv27e3GG2+0oUOHur/8evrppy1fvnx233332dNPP21du3a1yMhIck0nmlK4LKdPn7aJEyfauHHjzOz8NyKRkZH2wQcf2KOPPmo5c+a0119/3Xbu3JnqfhzwX56nnnrKChYsaJ07d7Ybb7zRypYta++//74dOnTIzM43pvLmzWs33nijxySy586d85i8NzPZvXu3TZo0yV588UX3sjlz5liWLFmsV69e9s0339iaNWtswIABFhUVxcSOF/H333/boEGDbMmSJe5lCxYssJo1a1q3bt3s5MmTdvr0aZs1a5Z17NiRU/XS4dNPPzWXy2UNGjSw1q1b20cffeReN3bsWGvUqJH7QGjatGnWp08fu+eee1K9jh49epTTocw3p5chte3bt1udOnWsdevWtm/fPnv//fctX758NnjwYPcIyRTDhg2zqKgou+uuu+z33393L+c9//KkPJ+TkpJs27ZtVqFCBWvbtq3H5cTXrl1rhQoVshtvvDHV64cZ2ftKbGysZcuWzYYPH24vvviieySr2fk5o3r16mXXX3/9RT94ZsbfQ3Jysi1YsMAKFSpkHTt2tM8//9xjNG/fvn2tQoUKqY4pcPl+//13q1GjhrVu3dq2bNlif/31l+XKlcteeuklGzNmjA0YMMBcLpf7WHjnzp02YMAAe/jhh+2ll15ihNRFLFq0yCIiImz06NGWkJBgP/74o2XLls369+9v9913nzVp0sRKlizp/tJg5syZVq9ePWvatKn17NmTzxReoCmFy/b777/b3r17bfv27VatWjUbPXq0mZ3/8Jo7d26LjIx0n5bCN6SXb9KkSVa8eHH3tx/ff/+9uVwuK1eunE2aNMk9h9e6deusadOmfMi6wN9//20ul8siIiLspZdeSrVuwYIFVrZsWStatKiVLVvWqlSpwqklF/HZZ5+Zy+WyggULehxAfv3115YtWzb79ttvzSz1N8I8Fy/tvvvus4YNG1q7du3s5ptvdl+WefDgwXbNNdfYvn37LC4uzlq1auX+EsAsc37QSY/LPb0MaXv77bftlltusbvvvtuOHz9uM2fOtMKFC9tTTz2VasTU66+/bg0bNrSuXbvyd+9DKVl++eWXdtNNN1n79u3tu+++S7VN8+bNrWTJkvb4448HosRM4cMPP7TQ0FBzuVzu0T0px7WHDh2yEiVK2LBhwwJZYoaTnJxsCxcutIIFC1pISIh7/qILjxEaNmxot912W6BKDDoffvihNW7c2O666y577rnnrH///qnWv/fee+ZyuVI1VnFpjz76qJUpU8beeustGzhwoL3wwgvudevXr7fevXtb6dKl7Zdffkl1P47TvENTCl4ZO3asexhziqVLl1rlypXdp4+sWrXK+vTpY6+99hp/kFfo1KlTNnr0aHvrrbfM7PxQ3MjISHvvvfesU6dOli9fPnv77bftwIEDqe7Hh4L/M3HiRMuWLZt1797dff58ysHkgQMH7M8//7S1a9faP//8E8gyM5R/X8Vxz5491qdPH3O5XDZlyhQzS31gWblyZXv11Vf9X+hV7MyZM2Z2/iCyZ8+e9tNPP1m7du3cp+IcOHDAihQpYkWKFLHSpUtb1apVmaMrDb48vQz/58IvkiZPnmz16tWzu+++2+Lj423GjBlWpEgRe/LJJ+3nn3+2s2fPWrt27WzWrFmpRvjAexfmNmPGDGvRooX77/7rr7+2unXr2p133uluTJ08edJ69OhhH3/8MZn7UFpfpM6ZM8eyZ89u99xzj8XFxaXaplOnTnbffff5s8Srwrlz52zRokVWrlw5q1u3rvvKYymfDV566SWrW7cu721X6MK//enTp1vz5s2tePHi1qNHDzM7/3xOyfzhhx+2pk2bWnx8vHsZAwfSduFn2H79+lm5cuWsXLlyHlfvXrdunTVs2NB9HEyul4emFNLt+PHj7onNLxx1Mnv2bCtQoIDNnDnT1q1bZ61bt7Zu3bq519OYSr+0XsDWrl1r+/bts61bt1rlypXt9ddfN7Pzc6bkyJHDChUqZJ9++ulF7w+zCRMmmMvlspdffpmMLmHGjBnWvXt327RpU6o5t/bt22ddunSxHDlypBotFRcXZ6VLl7aJEycGotyryjfffOOeeyTF3r17rWjRovb+++/bvn37rF27dnbTTTfZF198YUeOHLGxY8fa+PHjM+3cJP+F08uc9V+NqVmzZlnVqlWtcOHCds0111jlypXdz01eYy/PhR8slyxZYj179rQsWbLYAw88kKox1bBhQ6tTp4516dLFbrnlFqtVq5bHFwm4fBdm+O/Lt8fGxlrWrFnt8ccfd38ZePr0aatevbo99thjfq0zI0rrbz9lxFS+fPmsXbt2duLECfd29913nzVu3Nj9JQ0u34XvZbGxsXbttddadHS0rV271sz+73czYsQIu+666ziWSKcLG6ZDhgwxl8tld911V6o5pszM2rZtay1atPB3eUElq4CLSE5OVkhIiPt2rly59OijjypXrlwaN26ckpOTNXjwYLVr106xsbF66KGHlCtXLhUqVEizZ8923y9LliyBKP+q5HK5JElvvvmmkpOT1a9fP1WvXl2SNH/+fGXJkkUtWrSQJP3zzz/q1q2bChcurFatWqW6f2ZkZnK5XNqwYYMOHjyo+Ph4tW3bVpL00EMP6dy5c3r00Uflcrk0cODATJ3VxcTHx+uZZ55RfHy8fv31V11//fW66aab3M+zCRMmKDExUbfddpt69eql6Ohoff/99woPD1ePHj0CXX6G9u2336px48aSpFmzZqlt27a66aabVKVKFf3vf/9TbGys7rrrLo0YMUJDhw7Vq6++qgcffFB9+/Z17yMpKUlZs/K2naJkyZLq0aOHZsyYof79++vdd99Vzpw51a9fPyUnJ+uhhx5SyZIlJUmRkZGqXr26wsPDVaFCBfc+eH+6OJfL5X5d7datmyTp3XffVc+ePTVhwgRVr15dv/76q+Lj49WjRw9lzZpVSUlJZHqZUo63Hn/8cS1dulS1atVSzZo19cUXX+jEiROaOnWqmjdvrqioKH355Zf65ZdfVLJkSU2aNEkhISEex2y4PCkZ/u9//9Ovv/6q0NBQPfXUUypXrpw6duyo5ORkdevWTcuWLVP58uUVHx+v5ORkvfLKKwGuPLBSXiu+++47LV26VNu2bdPdd9+tKlWq6NZbb1VsbKw6deqkhg0bqnz58ipQoIDmzp2r5cuXKywsLNDlX7VSck9OTna/9nbs2FFZsmTR2LFj9fTTT+vFF19UtWrVJEn79+9Xzpw5debMGeXKlSuQpWdoKbmGhoa6l73wwgtKTEzU9OnT9cEHH6hbt27Knz+/JCksLEx58uRRYmJiqvvACwFtieGqsG7dulS39+zZYyNGjLBixYrZyJEj3cu/+eYb+/77793derrwl+fYsWP28MMPW8GCBe2dd95xL586daoVKVLEvvzyS9uyZYu1bt3aHnnkEff6zPyNf8o3QHPmzLFixYpZ1apVLSoqypo2bWrr1q1zf/P55ptvWlhYmA0fPjyQ5WZY586ds8GDB9vEiRNt1apV9uqrr1pUVJR17NjRRo0aZWfPnrV//vnHHnvsMXO5XHbnnXfazJkz3d9y8jd/cVu2bLEGDRpYo0aN7Oabb7a+fftavnz5bMyYMTZ69Ghr1KiRff/992Z2fr6+m2++2fr06RPgqjMuTi/znwuzfv/99+2mm26yu+++2/76669U6zPze5CvLFy40PLnz+++mlNSUpKNHj3arr32WuvUqZP7W/t/v9by2utbo0ePtjx58tiAAQOsdOnSVrFiRYuNjXVPATBz5kzLlSuXlStXzhYvXsxI1v9v9uzZliNHDmvbtq3VrVvXoqOj7Z577nFfaGLhwoVWuXJlc7lctnTp0jSvGI30S3nt/eqrr6xNmzbWs2dPmzRpknv91KlTrW7dulagQAHr0KGD9erVy/LmzcvV4C4hJddvv/3WHn/8cRs3blyq+aIeffRRK1y4sLVu3dpeeOEF69+/v+XOndvj8zK8Q1MK/2n+/PlWoEABe++991It3717t/Xv398iIyM9zq014+DUG2l9ONq2bZs9+eSTFh0dneoN5uabb7Z8+fJZsWLF7Lrrrsu05+GnldmiRYssT5487tOjVq9ebS6Xyxo1amSrVq1yv8m88sorljdvXjt8+LBfa75afPXVV5Y7d273HHGnT5+2Z5991lwul9WsWdNefvll++qrr+yxxx6zXLly2Q8//GBmxvD7dNi0aZO1a9fOWrdubYsWLbL58+dbu3btrEWLFuZyuaxt27bu187t27fTOLkETi/zn383pho0aGCdO3e2Xbt2BbCq4PPhhx9adHS0+8q6Zmbx8fH23HPPWXh4uPXo0cP9vp/y+sDz+cr9+7V2yJAh9tlnn7lv33HHHValShX78MMP3af0vf/++1a/fn2asv/fjh07rEKFCqlO5f/444+tWbNm1qlTJ9uzZ4+dO3fOvvzySytbtqzt3bs3gNUGj2XLllmuXLmsW7du1rRpUytZsmSqU0lnzpxp119/vRUuXNj+97//2e7duwNY7dVj/vz5FhYWZk2bNrWCBQtas2bN7IMPPnCvf/LJJ83lclmlSpXsueeec89tictHUwr/6bfffrOHHnrIKleubJMnT061bunSpZYzZ05zuVwe6+C9f7+g/fXXXzZw4ECLjo62CRMmuJd/+eWXtnDhwkw7Ii3l4HH79u3ug8aEhATr37+/+5LDf/31l5UuXdq6detmpUuXthtuuMF+/fVX931TrliItPXu3dt69+7tvl2pUiVr27atPf7449a8eXNzuVz20ksvWefOnS0qKsp95T1c2saNG6158+bWtGlT+/PPP+3cuXP2+++/W48ePTzmfjBjRM+lXKwxdeTIEdu8ebPFxsbaxIkT3a+Tmf2D45W4MOv33nvP6tSp4/7CisaI99LKbNmyZVahQgVbuHBhquU7d+60okWL2jXXXGM9evTgeexDF/4eFi5caHPnzrXu3bu7v3BJ0a5dO6tatapNnz7dPd9iZh55+e/n7+bNm61o0aK2aNGiVMtTrti5dOlSMzufVcqIM1y5WbNm2WuvvWZmZvv377fx48dbvnz5rF+/fu5t3nnnHbvrrrtoBHrhueees/Hjx5uZ2a+//modO3a0evXqpfq827t3b7v++us9rvqLy0NTCm4Xe1P9/fffrU+fPla+fPlUI6bWr19v9913n82cOZMDpMtwYd5fffWVFSlSxObOnZtqm61bt1qPHj0sX758Nm3aNI99ZNbc9+zZY/nz57eKFSva9OnTzez8weTvv/9uR48etdq1a9sDDzxgZudPK00Z5ZPyoR//7d1337V69erZkSNHrEaNGlavXj33m+6uXbts5syZlpiYaCdOnLDbb7/dihYt6jEhLC5u8+bN1rRpU2vatKktW7Ys1brM+OHmSnF6mf9cmPVtt91mt99+e+CKCRIvvfSS+wP7/v377brrrrNWrVrZ+vXr3dts27bN7rzzTnv++eetRo0atnz58kCVG1QufD4PGDDAoqKirFChQuZyuezRRx/1aJ7cddddVqBAAVuwYIG/S80QUt6fLnwt/e233+zIkSO2detWK1GihPs4NiEhwb1N1apVbcCAAX6tNVilPGdXr15t3377rd177702atQo9/qjR4+6G1MXZn7s2DG/13o1Scl1y5YttmvXLuvdu7fNmzfPvX7t2rXuxtSFI6b27dvn91qDFU0pmFnqN+axY8faI488Yg888ID76gKbNm2yPn36WKlSpWzEiBH2yy+/WMuWLa179+4c8F+GC/NesGCBzZw507p27WpVq1ZNNWTczOyLL76w0NBQc7lcNmfOHH+XmiF9++23FhISYrVr17Y2bdrYjBkz3OvmzJljtWrVsi1btpjZ/51rX6NGDeYv8ELt2rXN5XJZw4YNL3qqY2Jioh06dMj27Nnj5+qufps3b7bmzZtb8+bN3XNJ4fJxepn/pGTdu3dvu+eee1J9+IR34uPjrU2bNhYSEuJuNP3+++8WHR1tTZs2tddee80WL15sTZo0sY4dO9qRI0csd+7cNnr06ABXfvW78DVj1apVduutt9oPP/xgu3btsh49eth1111n//vf/zwaU0OGDMnUx7vbt2+3hg0bmpnZ3LlzLTo62j1HUceOHa1o0aKprn569uxZa9iwoY0dOzYQ5QalOXPmWPbs2a1UqVKWN29e69ChQ6r1x44ds0mTJpnL5bJBgwYFqMqrz8cff2wFCxa0AgUKWO7cue2FF15Itf63336z++67zypXruz+Qhy+Q1MKqb6Zf+655ywqKsruvvtuK126tMXExLgPlLZt22YjR460HDlyWPny5a1OnTruuQ0Yup9+F+b9zDPPWLFixWzXrl22cuVK69q1q1WqVMk+/fRT9zYrV660zp072wcffJCpD4T+7f7777drr73W2rdvb7fccotNnTrVzMwmTJhgRYsWdZ83P2TIEHvuuefILp1S/panTZtmVapUsV9//TXVcvjO5s2b7bbbbrNatWq55/DC5eP0Mv/5559/rF69eqlG8+DS0poHaufOndalSxfLli2be8TUn3/+aXfeeadVqFDBypQpYw0bNnSPRq1bt6599NFH/i8+SH300UfWrFkzu/fee92/l4SEBOvVq5fVrl07zcaUWeb9Ivb333+3smXL2jXXXGMulyvVh/Njx45Zo0aNrHDhwjZ16lSbPXu2DRo0yPLkyWObN28OYNVXv5Tn5tGjR61hw4Y2depUW79+vb333nuWI0cOjwujHDlyxN577z3mOrqElFwPHz5slSpVskmTJtns2bOtS5cuFhMTk2r6FLPzI9R69uxp27dvD0C1wY2mFNwOHDhgXbt2dV9hIDEx0Vq2bGmFCxdOdYrJrl27bO3ate6Dq8w2p5Gv7N6923r37m1fffWVe9mqVausW7duVqZMGZs4caJt2LDBWrVqZQ899FCmHZH279OZUibU/vLLL61bt262YMECa9eunTVo0MDmzp1rR48etaJFi1qZMmWsXr16FhkZaWvWrAlA5Ve33bt3W5EiRVINC4fv/fHHHzZgwABO2/MRTi/zn9OnTwe6hKtWyujTlOfrrl27rHPnzpYtWzb38dbx48ft8OHD9vfff7vvN3jwYIuOjuYDkY8kJibaY489ZiVKlLCqVaumWnf27Fnr1auX3XDDDTZ06FAu5nGBN99801wul5UsWdK9LOXY9Pjx49a9e3erUKGClS5d2mrXrs3V3nxk4cKFdvfdd1uHDh3c80MlJibaxx9/nGZjii9j0mfx4sXWr18/69Onj3vk79atW61///5Wvnx5j8YUo4OdQVMKZnZ+DpmIiAirVauWbdy4MdW6li1bWpEiRez777/3aIjwQeryzJw50/2GnnLp5xTr1q2zJ554wlwul11zzTVWs2bNTDsiLeX5tXPnTo9TFw8ePGgVKlSwcePG2cGDB61du3ZWr149+/zzz+3AgQM2cOBAGzx4sP3xxx+BKD0ojB071vLly2e///57oEvJFHg99Q1OL0NGNnPmTAsPD7c///zTzP7v+fr333/b7bffbuHh4bZq1apU91mzZo21bt061alS8F5ar7EnTpywF154wUqUKGH9+vVLNT/i2bNn7e6777YHHngg0x1//VvKz3/27Flbvny5vfbaa1ajRg2rXr26e87JC7+kPnDggO3evZsLy/jQkiVLLCwszHLmzJnq2DalMRUZGWldunQJYIVXn4SEBBs+fLiFhoZa9erVU63bvHmz9e/f3ypXrmyvv/56QOrLTGhKwczOv3k0btzYsmbN6j5d78I379atW5vL5WKiaB85deqUde7c2Vwul8XGxpqZZ8Np48aN9vPPP2f6EWk7d+60fPnymcvlspYtW9rMmTPdw5HnzZtn9evXt4MHD9off/xh7dq1s5tvvtlmzZoV4KqDw9atW61Lly40S3DV4fQyZBQpr58p//3pp5+sWbNmVqpUKfeXgCnrPv74Y3O5XOZyuWzdunWp9vPWW295fGmI9LvwfWzFihX23XffuUelpXwwrVOnjj3++OOpRkUlJiamedplZpLycy9atMiefvpp9+jzdevWWbVq1axatWruKxKanW+eXGwuSlyZZcuWWe7cua1z586pMk9MTLRp06ZZdHQ0k297aefOnfbCCy+Yy+VyX8kwxZYtW+yBBx6w2rVr29GjRwNTYCbhMjMTMpXk5GSFhIR4LP/nn3/UqlUrHT9+XPPmzVPZsmVlZnK5XJKkJ554Qi+99JKyZMni75KvaufOnVPWrFk9lp89e1YdOnTQjz/+qM8//1x16tRxr7swd+niv7PM4O+//9add96p0NBQJSQk6LrrrtOiRYs0ZMgQRUVFadq0aerdu7datGihP/74Q/369VP27Nk1ffp0RUREBLr8q17KczEpKYm/fVxVzpw5o+zZswe6DGRiH330kRYuXKhBgwYpOjpauXLlkiStXbtWQ4YM0YYNG7Rw4UJVqFBBkrR8+XJNmzZNFSpUUN++fdM8doD3LjymGjx4sGbOnKnIyEht27ZNbdq00fDhw1W0aFGNGjVKCxcuVP369TVixIhUrx+Z+ThMkubMmaN7771XzzzzjFq1aqXq1atLkjZs2KB7771XkvT+++9r1qxZmjlzppYvX66iRYsGsuSrWspzdsuWLdq1a5dy5MihmJgYFStWTIsWLdIdd9yhDh066M0331TOnDklSUlJSTp16pRy584d4OozrpRcDxw4oJMnT6pAgQLKnTu3EhIS9OKLL2r06NEaOXKk+vXr577PX3/99f/au/e4nO//f+CPdyflkJSmnEWOH7VKByotlil91JbRPokcFskaM1OmZms0CnNYRa0a60MbjTlbbA6JvtvIKRWmRQ5dpJbO1/X6/eHT9anh92GsK/W4/8X7/b6u2/P99nZd79fjeh3Qpk0bdOrUSYWVN38MpVqY+l+qZ8+eRW1tLV566SXlF4dMJsPo0aNRWVmJ7du3PxRMAWDj9AmVlZUpH0AB4Ntvv0V+fj46deoEc3NzmJmZAQDc3d3x888/Y8eOHQ2CKfqvvLw8BAcHQ6FQYNKkSZAkCatXr4aenh527NgBGxsbHDlyBFpaWsjJyUGbNm3QtWtXVZdNREQtVGlpKSwtLVFaWgojIyPY2NjA3t4eU6ZMAQDk5uYiKCgIWVlZ+Prrr2FsbIxFixbByMgI0dHRAB7/oxb9NWvWrMGSJUuwc+dO2NjYYMmSJVi8eDEOHToER0dHVFRUYPny5di4cSPmzp2L2bNnq7rkJiE7Oxtubm4ICQmBv7//Q/tzc3MxadIkFBYWQlNTE9988w2srKxUUGnzUNfuSk1Nxfvvv4/WrVujbdu2qKysRGxsLOzs7PDjjz9i7Nix8Pb2xqpVqxq0N+jR6q7r9u3bERYWhvLycrRu3RouLi6YO3cudHV18fnnnyMqKgpLlizBO++8o+qSWxaV9M8ilajfdTk0NFSYmJgIExMT0bZtW5GYmKgc9y2TycSQIUOEmZmZcs4Dejqvv/66CAwMVF7T4OBg0aZNG2Fvby/09fWFra2tiIqKUh5fN1dE/QnlqaGLFy8KV1dXMWrUKJGTkyPKyspERkaGcHd3F5s2bRJCtNyu9URE1LTU1taKkJAQERsbK3755RcRGRkp9PT0hLe3t1i+fLmoqakR58+fF/7+/kKSJNG7d29hbm7eYueQbAx+fn5i6dKlQogHQyX19PREdHS0EEIoV9grKysTcXFxLW5RmT9TKBTKe3Dv3r2ib9++DSbYf9T9mZGRIW7evNlYJTZr6enpQldXV3l/pqamCkmSxKeffqo85tChQ0KSJBEYGMjPiyeUlpYm2rRpI1atWiX++OMPsXDhQqGtrS02b94shBDi5s2bIjw8XEiS9NAE5/T3YijVAn388cfC2NhYHDhwQAghxMSJE4Wurq5Yvny5crysTCYT3bt3FxMnTlRhpS+umJgYIUmSCAkJERkZGcLW1lY5ofnly5fF3LlzhYWFhfjiiy+EEA/mM3BwcBDu7u6qLLvJy83NFaNGjRKjRo1Szn1GRETUFO3Zs0e0a9dOZGVlCSEerFgYGhoqJEkS1tbWYtmyZeLixYsiKytLZGRkKIOQljqH5N+lqqpK1NTUiCFDhohvv/1WZGZmirZt2yobndXV1eKTTz5psBqyEC1rteO6H67Ly8tFZWWlyM/PV076vnXrVtGpUydx7949IUTD+/P48ePi5MmTjV9wM1UXLq1cuVL4+voKIR6sztm9e/cGq+sVFRUJIYQ4fPgwOxA8AYVCIeRyuZgxY4YICgoSQjwIoHr27ClmzZqlPK62tlbIZDLlZzM1npY7OLoFycjIQG5uLoAHY7+PHj2KDRs2wMXFBTt27MDu3bvh7OyMBQsWIC4uDnfu3IGBgQHOnDmDpKQk1Rb/gpo5cya++uorfPbZZ4iOjkbnzp1hYWEBADAxMUFQUBDMzMywe/duVFRUQEtLC4cOHcKOHTtUXHnTZmpqinXr1kFNTQ3h4eE4duyYqksiIiJ6JFdXV/j6+mL9+vUAAG1tbWzbtg0eHh4YPnw40tLSMGDAAJw+fRp2dnZQV1eHXC7nkL1ndOLECVy/fh0AsHjxYqSlpUFDQwOenp6YP38+HBwcEB0djZkzZwIA7t+/j59++gnnzp1r8D4tZaqKuqk9srOzMXHiRAwZMgS9e/fGsGHD8Mknn8DR0RFyuRyLFy8GgAb35zfffINDhw6hpqZGRdU3D+I/s+nUTZdSWloKbW1t5OfnY+jQoRg9ejTWrl0LANi3bx8SExNx//59DB8+XDknHT2eJElQU1NDWVkZbG1tIZPJYGlpiVGjRmHdunUAgO3btyMtLQ0GBgaYN28e+vXrp+KqWxhVp2L09/rtt9+Era2tGDt2rLh8+bKorKwU8fHxoqqqShw5ckR07txZrF27VgghxPjx44Wenp4ICwsTpaWlyvdoSb8UPQ/1u9Bu2rRJSJIk9PX1GyzfKsSDVUwetaIhVzr733Jzc4W7u7uws7MTGRkZqi6HiIjokeLj44W9vb24e/eusLCwEPb29qKkpEQIIcS1a9fE5s2b2TPqOcrLyxPW1tbC19dXOTSybiXDEydOCBcXF2Fubi4uXbokhBDixo0bwtXVVdjZ2bXI5926Z9YzZ86I9u3bi8DAQBEfHy9SU1OFh4eHUFdXF15eXiI5OVkYGBiIwMBAUVBQIM6fPy9CQkKEnp4ee+o8JydOnBApKSlCCCHWr18vBg4cKDp37iz8/f2Vx9TW1ooZM2aIgIAAZU82erS6e1smkym3TZkyRVhZWYmePXuKwMBA5WdveXm5eOutt0R4eDg/j1WEoVQLsGHDBjFixAgxfvx4UVBQoNz+9ttviylTpijnL5g9e7bygYljk5/e48KkzZs3C0mSRFBQkCgsLFRuP3v2rOjXr99DoRQ9mezsbDFu3DiRn5+v6lKIiIgey9raWkiSJJycnMSdO3ceeQwbQs9PQkKCMDY2Ftra2mL//v0N9m3evFmMHDlS6OrqCnNzc/Hyyy8La2tr5bNwSwymbt++LSwsLERwcPBD29etWyfatWsn3N3dxffffy+MjIxE586dRe/evUW/fv3Er7/+qqKqmw+FQiFqa2vFyJEjhZubm3K7q6ur0NDQEBkZGaKsrEyUlpaKkJAQ0alTJwaB/0NdO3bXrl3CwcFB7Nq1SwjxYCikhYWF6NKlS4NjFy5cKHr06CHy8vJUUi8Jwf7BzZj4zyoDb7/9NjQ1NZGQkIB58+YhPDwcffv2RU5ODgYPHgxNTU0AwPXr15GYmAgzMzNIkvTQqnv0ePVXNTxy5Aju3r0LSZLw2muvwdvbGxUVFZg2bRpKSkrg5eUFY2NjfPTRR2jdujUGDx6s4upfTP3790dycjK0tLRUXQoREdFD6p6jgoKCsGzZMqxYsQL6+vqPfL7ikL1nV/cs1qNHD7Rt2xYvvfQStmzZgn79+qFHjx4AAG9vb9ja2iIzMxM3b95E165d4enpCXV19Ra72uG1a9dQU1MDHx8f5QrbCoUChoaG8PHxwb1797Bs2TLMnj0bZ8+exenTp9GmTRv06tULRkZGqi6/WVBXV8fSpUvh5uaGlJQUTJgwASkpKXBxccGECROgoaGBXr16ITs7G3v37uWQvf9BkiTs2LEDb731Fj766CPo6+sDAIyMjLBo0SIEBgbCzMxMucr80aNH8cMPP6BPnz4qrrzlkoT4zyBWapbqP/gkJSUhKSkJnTp1QnR0NLZs2YKgoCBMmDABFy9eRFVVFbKysqChocFA6inUv1YLFizAjh07oKamho4dO+L69es4ceIEDA0NkZycDF9fXwDApEmTUF1dja+++gqampoNQi0iIiJqPq5fvw5ra2sEBQUhODhY1eU0O39+hiouLgYAbNu2DUlJSejVqxeWLFmC7t27P/Y96sKYligpKQkBAQGoqKgAgIfaAFeuXIGlpSWCg4N5/z4nf77GCoUCZWVlCAgIQPv27bFmzRplQJqSkoIbN26ga9eusLGx+f/ex/RAUVERXF1d8eabb2LBggUN9tXW1uL69etYuXIlqqqq0K1bN4wfPx6mpqYqqpYAgK3gZq6uxxMA+Pn5wc/PD4WFhQgMDISXlxdiYmIgl8thY2OD06dPQ0NDA3K5nIHUE7p165byWkVHRyMhIQGbNm3ChQsXMG7cOPz222/IyMgAAPj4+GDr1q0AAGdnZyQnJ0NTUxO1tbUMpIiIiJqpLl26ICQkBFFRUbhw4YKqy2lW6gdSR48exfHjx5Gbm4sOHTpg+vTp8PX1xZUrVxAWFoaCggIAD56HDx482OB9WmogBUDZO2Tbtm0A8FAbwMTEBCYmJrh16xaA/07KTX+dJEnIzMxEamoqAEBNTQ26urp47bXXkJSUhOzsbOWxEyZMwJw5czBu3DgGUk+opKQEN2/ehL29PYAH92zdfauhoYEePXpg9erViI2NxYcffshAqglgS7gF+HMwNXXqVFy/fh1z5syBh4cHUlJSEB0drQxIWvIX89NYvXo1rK2tcefOHQDAhQsXEBwcDGtra2zfvh2LFi3C+vXrMXbsWJSWlqK6uhpvvPEGdu7cCR8fH+W/S0vsKk5ERNSSuLm5YcyYMRx28xwJIZSB1HvvvYc33ngD48aNg6urKyZPnozi4mLMmDEDkyZNwpUrV+Du7g4nJyfs378fTk5OKq6+6ejZsyd0dXWxceNG5OfnK7crFAoAD3qe6ejowMrKCsDDoRU9HSEE7t69iy+++ALjxo3DpEmT8PXXXwN4MJLC3d0dS5Yswf3791Vc6YtLS0sLmpqauHLlCoCGbeH9+/fj+++/Vx7LkLVpYCjVQtT/zzhlyhRMnToVhYWFmD9/Pq5duwY1NTUGJE9h/fr1WLBgAaKiomBgYADgwZj8qqoq7NmzB76+vli2bBnefvttKBQKbNy4ERs2bIBCocCYMWOgoaGB2tpafrETERG1AL1790ZSUhLU1NQgl8tVXc4Lr/7wp59//hk7d+7Ezp07sW/fPqSkpGD37t3KOZJmzJiBefPmwcPDA+bm5igoKFCODCCga9euiImJwb59+xAaGorz588DgDLwW7lyJQoLC+Ho6KjKMpsNSZKgr6+PmJgYnDhxAnfu3MGKFStgZWWFtLQ09O/fH6Wlpbhx44aqS30h1A+V6oJUAwMD9OzZE0lJSQ/dz/v27UNsbCzKy8sBMGRtKjinVAtT/0s8ISEBGzZsgL+/P6ZOncp5pJ5QXFwcZs+ejZSUFHh6eiq3L1q0CBkZGfi///s/fPbZZ5g1axYAQCaTYfLkyXBycsIHH3ygoqqJiIiImpeEhAQcPHgQurq6iImJUW7Pzc2FlZUVAgICsHz58ode15LnkHoUuVyO+Ph4zJ49G71794a9vT2MjY3x22+/Ye/evTh48CAsLCxUXeYLq66NlZOTg/z8fOjr68PY2BhdunRBcXExCgsLERoailu3bkEulyMzMxMhISFYsmSJqktv0uqua1paGnbv3o3z58/Dy8sLnp6eqK6uhq2tLQYPHoyxY8eiR48e2Lt3L5KTk3Hs2DH84x//UHX5VA9DqRaofvjk7u4ODQ0NbN++XbVFvSB++uknjBgxAosXL0ZYWJhy++zZs1FbW4v09HRUVlZi06ZNGDx4MGQyGQICAnDnzh2kp6ezJxoRERHRc3Dr1i3MnTsX+/btwyuvvKKcn6eqqgqtWrVCVFQUkpOTkZaWhg4dOnD+zidw8uRJLF++HDk5OdDT04O5uTneeecdDjt9BnXtrm3btuHdd9+FpqYmhBDQ1tZGfHw8HBwclMceOHAAp06dwqpVq3DgwAGYmZmpsPIXw3fffYfJkyfDx8cHhoaGSEhIwKBBg7Bz5078/vvveP/993Hx4kXU1tbC2NgY69atg7m5uarLpj9hKNVC1X1ABgYG4u7du/jqq6+gpaWl6rKavLy8PEybNg0dOnRAaGgohgwZAi8vL5w5cwbnzp3D7du38eqrr6JVq1a4efMm+vTpA4VCgaNHj0JTU5O/zBERERH9BY9aqfiXX37BunXrkJycjMTERPj4+Cj3xcTEIDY2Funp6Wjbtm1jl/vCksvlUFNTgyRJXB36L6h/zWpra6GhoYHMzEy8+uqriIyMhLu7Oy5duoT4+Hhs3boVhw4dwtChQxu8R0VFBXR0dFRR/guloKAA7u7uCAgIwMyZMyGEQPv27REQEIClS5dCXV0dNTU1qKysRGlpKXR1ddGuXTtVl02PwFCqBZPJZPD09ERsbCy7MD6FvLw8BAUFQV1dHSUlJSgvL8e2bdvQs2dPAA+WIT179iwuXboEU1NTDB8+HOrq6sovJiIiIiJ6cvUb+gUFBSgtLcWAAQOgpqaGq1ev4qOPPsKRI0fw8ccfY9y4cfjjjz8wceJEaGpqYvfu3Zye4inUH1HBqT3+mvz8fHTv3h2SJEEulyMpKUnZa6/uPr558ybmzZuH7OxsHDhwAB07dlS+nte9ocddj4KCAnh4eODo0aMoLCyEs7Mz3NzcsGHDBgDAiRMnMHDgQOjq6jZ2yfSUGH23YB07dkRaWhoDqadkamqKNWvWoKqqCmfPnkVwcLAykKqtrYWhoSFGjBgBf39/ODs7Q11dHXK5nIEUERER0VOqv8peWFgY3N3d4eLiAmtra6xYsQIvvfQSgoODMXz4cPj5+WHAgAEIDg5GdXU1UlNTlT1+6MnUb/wzGHl6VVVV8Pb2homJCYQQUFdXR2lpKU6fPo3S0lIAD+5pIyMj/Otf/4JMJoNMJmvwHrzu/6VQKCBJEsrLyyGTyfDjjz/i+vXrKCkpgZqaGm7fvo3MzEy4urrCzc0NsbGxAIAzZ85g9erVuHz5sorPgJ4EQ6kWTltbW9UlvJBMTU0RGxsLOzs7JCYm4tixYwAADQ2NRy4tyiF7RERERE+vroEeERGBDRs2ICIiAgUFBejQoQPWrl2LS5cuYcCAAViwYAGmTJkCLS0tmJmZ4fDhw9DW1kZVVRWHoFGj0dLSQmRkJNq2bQtLS0sIIeDh4QFjY2MkJibi3r17ynva1NQUmpqayrCKGqrrIZmbm4uAgAA4OjrCzc0NgwYNwqxZs1BcXAwfHx+MHDkSFhYW2LBhg/L/+pYtW3D58mUYGRmp+CzoSfATmugv6t27N9auXQshBJYsWYL09HQA/HWDiIiI6FlVVVUp/1xSUoIDBw4gMjISbm5uOHToEDIzM7Fw4UKYmZlBLpdj4MCBePfdd+Hs7Iy4uDjlIj6tWrVS0RlQS/DnXniSJGHYsGGIi4tDRUUFbG1tYWJigtdffx2JiYmIi4vDrVu3UFZWhoSEBKipqSlHXNB/1QVSZ86cwSuvvILWrVsjODgYp06dwsyZM3Hy5Em8+eabMDQ0hK+vL06fPo20tDRs27YN7733HtatW4e4uDgYGxur+lToCXBOKaJnlJeXh7lz5+LWrVv48ssvuVIGERER0TM4cOAAsrKy4OTkBBsbG5SUlMDZ2Rn79+/H6dOn8cYbbyAyMhIzZ85ERUUFNm7cCGdnZ/Tt2xdZWVmIjo7Gjh07sH79enh4eKj6dKiZqgtObt68iatXr8LOzk65r6amBqdOnYK3tze6deuGw4cPIywsDN999x0uXbqEl19+GZcvX8b+/fthYWGhwrNoeuoHUkOHDsW7776LTz75pMFUKFu2bMGqVasgSRKmT5+O48ePIzU1Fd27d0enTp2wYsUKtsleIJzkhugZmZqaIjIyEvHx8Zyfi4iIiOgZJCYmIjQ0FGPHjoWzszMAoH379tDR0YGXlxeysrLw+eefY9q0aQAeLDCzefNm6OnpoW/fvjA3N4e/vz9atWrF5zL6W6mpqaGgoAAWFha4e/cunJycMHToULz66qsYMmQIbGxskJKSgmnTpsHBwQHHjh3DrFmzsGfPHnTo0AGWlpbo0aOHqk+jyam7riNHjsSYMWOwdOlSAA/m4qqbp9fb2xslJSX48MMPIYRAQkICFi5cCGNjYygUCq6y94JhTymi54zL5xIRERE9vS1btmDatGlITEzE6NGjoaurq1x5a8+ePZg3bx4MDQ1x5MgRAMD9+/cxfvx4lJeXIy0trcEcnlVVVRy6R3+7/Px8eHp6oqKiAu3atcOgQYOQkpKC/v37Y/DgwXB3d4ckSQgJCYGJiQn279/PqT6ewNWrVzF+/HgYGxtj/vz5cHBwUO6rvxqfo6MjDA0NkZqaCrlcznl8X1AMpYiIiIiISKWKioowfvx4jBs3DoGBgcrtZWVlyMvLw40bN3DmzBls2rQJrVu3Rrdu3VBUVITS0lL8/PPP0NTUZKOUVOLSpUv44IMPoFAoEBISAmNjYxw/fhzr1q1DTU0Nzp07h969e+PcuXPw8PDAd9991yBYoUfLy8tDUFAQhBBYtGiRMpiqf+2cnZ3RpUsXfP3116oslZ4Ru3MQEREREZHK3b59G126dFH+PSYmBlOmTIGVlRXmzJmDzZs348svv8TQoUPRvXt3eHp64pdffoGmpiZqa2sZSJFK9OnTBxEREaisrERoaChu3boFb29vHDt2DPv370dsbCz++c9/4uWXX0ZYWBgALoz0JExNTbFmzRpIkoRPP/20waJSCoUC165dg46ODlxcXADgkSug04uBPaWIiIiIiEilioqKYGlpidGjR+Ott95CdHQ0cnNz4eDgAE9PT5SUlGDhwoUIDAzEnDlzGryWPaSoKcjLy8M777wDAAgJCYGTk1OD/bW1tQ0m66Yn87geU8HBwdi3bx927dqFrl27qrhKehYMpYiIiIiISOUOHjwILy8vGBgYoF27dli5ciXMzc1hYGCA4uJijBgxAu7u7ggPD1d1qUSPVD9ACQsLw7Bhw1RdUrNQ/7pGRETghx9+QHh4OI4dOwZzc3NVl0fPiKEUERERERE1CUVFRSgrK0OvXr0abC8uLoanpyd8fHzg7++vouqI/re8vDy89957kMlkWLVqFezs7FRdUrNQd10zMzNRXFyMjIwMWFlZqboseg44pxQRERERETUJhoaGDwVSRUVF8PX1RVVVFaZNm6aiyoiejKmpKSIjI9G1a1d07txZ1eU0G6ampoiKioKdnR1OnTrFQKoZYU8pIiIiIiJqcmQyGeLj43Hs2DHcvn0b6enpXGWPXhjV1dXQ0tJSdRnNTk1NDTQ1NVVdBj1H7ClFRERERERNzrVr15Ceno4+ffrg+PHjXGWPXigMpP4eDKSaH/aUIiIiIiKiJunevXto3749JEliDykiomaIoRQRERERETVpQghIkqTqMoiI6Dnj8D0iIiIiImrSGEgRETVPDKWIiIiIiIiIiKjRMZQiIiIiIiIiIqJGx1CKiIiIiIiIiIgaHUMpIiIiIiIiIiJqdAyliIiIiIiIiIio0TGUIiIiImrCcnJy8Omnn6KyslLVpRARERE9V5IQQqi6CCIiIiJ6mFwuh729PfT19TF48GAsW7ZM1SURERERPTfsKUVERETUSPz8/CBJEmbOnPnQvsDAQEiSBD8/P+W2qKgovPLKK/j+++9x8uRJZGZmNmK1RERERH8v9pQiIiIiaiR+fn44dOgQSktLcePGDejo6AAAKisrYWxsDF1dXTg7OyMpKUm1hRIRERE1AvaUIiIiImpElpaW6NatG1JTU5XbUlNT0b17d1hYWCi3KRQKREREoFevXtDR0YG5uTm2bt2q3F9cXAwfHx8YGhpCR0cHpqamSExMbNRzISIiInoWDKWIiIiIGtnUqVMbBEgJCQmYMmVKg2MiIiKwceNGxMbG4vz585g7dy4mTpyIw4cPAwBCQ0Nx4cIF7N27F9nZ2YiJiUHHjh0b9TyIiIiIngWH7xERERE1Ej8/P9y7dw9xcXHo1q0bcnJyAAD9+/dHQUEBpk+fDj09Paxfvx76+vpIS0vD0KFDla+fPn06ysvL8e9//xtjx45Fx44dkZCQoKrTISIiInomGqougIiIiKilMTQ0xJgxY5CUlAQhBMaMGdOgl9OlS5dQXl4OFxeXBq+rrq5WDvELCAiAl5cXfv31V4waNQqenp4YNmxYo54HERER0bNgKEVERESkAlOnTsXs2bMBAF988UWDfWVlZQCA3bt3o0uXLg32tWrVCgDg6uqK/Px87NmzBz/88ANGjhyJwMBAREVFNUL1RERERM+OoRQRERGRCowePRrV1dWQJAmvvfZag30DBw5Eq1at8Pvvv8PJyemx72FoaIjJkydj8uTJcHR0xPz58xlKERER0QuDoRQRERGRCqirqyM7O1v55/ratWuH999/H3PnzoVCoYCDgwNKSkqQnp4OXV1dTJ48GWFhYbCyssKgQYNQVVWFXbt2YcCAAao4FSIiIqK/hKEUERERkYro6uo+dl94eDgMDQ0RERGBK1euQE9PD5aWlli4cCEAQEtLCyEhIbh69Sp0dHTg6OiILVu2NFbpRERERM+Mq+8REREREREREVGjU1N1AURERERERERE1PIwlCIiIiIiIiIiokbHUIqIiIiIiIiIiBodQykiIiIiIiIiImp0DKWIiIiIiIiIiKjRMZQiIiIiIiIiIqJGx1CKiIiIiIiIiIgaHUMpIiIiIiIiIiJqdAyliIiIiIiIiIio0TGUIiIiIiIiIiKiRsdQioiIiIiIiIiIGh1DKSIiIiIiIiIianT/D1WI2lo0/q2ZAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12, 6))\n", + "plt.bar(df['Mês'], df['TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)'], color='#FFFF00', alpha=0.7)\n", + "plt.xlabel('Mês')\n", + "plt.ylabel('Média de Temperatura Mensal °C')\n", + "plt.title('Temperatura média Mensal °C')\n", + "plt.grid(axis='y')\n", + "plt.xticks(rotation=45)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACPB0lEQVR4nOzdd3gU1fv+8XsDIZQ0CBAIvQiIFJHQBEQpoQiIgPQqKgrS9SNgoSpiAUSqighIl26hK0WKCgKKdBGQ3kMNIXl+f/DLflkTNIFkNyTv13V5SWZmZx9OhpnZe8854zAzEwAAAAAAAOBGXp4uAAAAAAAAAKkPoRQAAAAAAADcjlAKAAAAAAAAbkcoBQAAAAAAALcjlAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HaEUgAAAAAAAHA7QikAAAAAAAC4HaEUAABIFTp06KD8+fPf1WsHDhwoh8ORuAXF0969e1WgQAEVKFBA3377rWbMmKFGjRp5pJb7zb38zgEAQNIjlAIAAEniiy++kMPhcP6XPn16FSlSRC+//LJOnjzp6fLu2TvvvKOFCxcm+ft89tlnKlmypJo0aaKmTZuqffv26tChQ6K+R4cOHeRwOOTv769r167FWr9v3z7n7/GDDz5I1PcGAACpV1pPFwAAAFK2wYMHq0CBArp+/brWr1+v8ePH69tvv9Xvv/+ujBkzuq2OTz/9VNHR0Xf12jfeeEN9+/Z1WfbOO++oadOmSd5r6ZVXXlGGDBnk5+engQMHKjIyUpkzZ07090mbNq2uXr2qJUuWqFmzZi7rpk+frvTp0+v69euJ/r4AACD1oqcUAABIUnXr1lWbNm303HPP6YsvvlDPnj118OBBLVq06I6vuXLlSqLX4e3tLR8fn7t6bdq0aZU+ffpErih+smfPLj8/P0mSr69vkgRSkuTj46MaNWpo5syZsdbNmDFDTz75ZJK8LwAASL0IpQAAgFtVr15dknTw4EFJt4aO+fr66sCBA6pXr578/PzUunVrSVJ0dLRGjRqlhx56SOnTp1dwcLA6d+6s8+fPx9rvd999p2rVqsnPz0/+/v4qV66cZsyY4Vz/z/mF/vrrL+dwtJEjRypfvnzKkCGDqlWrpt9//91l3/+cU8rhcOjKlSuaMmWKc1hbzJC6Q4cOqUuXLipatKgyZMigoKAgPfPMM/rrr79i1XzhwgX16tVL+fPnl4+Pj3Lnzq127drpzJkzkqTr16/rzTff1COPPKKAgABlypRJVatW1ffffx9rX1euXFGfPn2UJ08e+fj4qGjRovrggw9kZvH4rdzSqlUrfffdd7pw4YJz2c8//6x9+/apVatWcb7mwoUL6tmzp/N9CxcurOHDh7v0Sru9rT/55BMVKlRIPj4+KleunH7++WeX/Z04cUIdO3ZU7ty55ePjo5w5c+qpp55yab9FixbpySefVEhIiHx8fFSoUCENGTJEUVFR8f67AgAAz2P4HgAAcKsDBw5IkoKCgpzLbt68qdq1a6tKlSr64IMPnMP6OnfurC+++EIdO3ZU9+7ddfDgQY0ZM0a//vqrfvzxR3l7e0u6NX/Vs88+q4ceekj9+vVTYGCgfv31Vy1duvSOYUqMqVOn6tKlS+ratauuX7+ujz76SNWrV9dvv/2m4ODgOF8zbdo0PffccypfvrxeeOEFSVKhQoUk3QpxNmzYoBYtWih37tz666+/NH78eD3++OP6448/nH+3y5cvq2rVqtq1a5eeffZZPfLIIzpz5owWL16sv//+W1mzZtWFCxc0adIktWzZUi+88ILCw8P1+eefq3bt2vrpp5/08MMPS5LMTA0bNtT333+vTp066eGHH9ayZcv06quv6ujRoxo5cmS8fjeNGzfWiy++qPnz5+vZZ5+VdKuXVLFixfTII4/E2v7q1auqVq2ajh49qs6dOytv3rzasGGD+vXrp+PHj2vUqFEu28+YMUOXLl1S586d5XA49N5776lx48b6888/nb/LJk2aaOfOnerWrZvy58+vU6dOacWKFTp8+LAzVPziiy/k6+ur3r17y9fXV6tXr9Zbb72l8PBwvf/++/H6uwIAgGTAAAAAksDkyZNNkq1cudJOnz5tR44csVmzZllQUJBlyJDB/v77bzMza9++vUmyvn37urx+3bp1JsmmT5/usnzp0qUuyy9cuGB+fn5WoUIFu3btmsu20dHRzj+3b9/e8uXL5/z54MGDJsmlFjOzzZs3myTr1auXc9mAAQPsn7dNmTJlsvbt28f6e1+9ejXWso0bN5okmzp1qnPZW2+9ZZJs/vz5sbaPqTsyMtIiIiJc1p0/f96Cg4Pt2WefdS5buHChSbKhQ4e6bNu0aVNzOBy2f//+WO9xu/bt21umTJmcr6lRo4aZmUVFRVmOHDls0KBBzvZ6//33na8bMmSIZcqUyfbu3euyv759+1qaNGns8OHDZvZ/bR0UFGTnzp1zbrdo0SKTZEuWLHH+3f75HnGJq407d+5sGTNmtOvXr7v8vW7/nQMAgOSF4XsAACBJ1axZU9myZVOePHnUokUL+fr6asGCBcqVK5fLdi+99JLLz3PnzlVAQIBq1aqlM2fOOP8rW7asfH19nUPYVqxYoUuXLqlv376x5n26fcjdnTRq1MillvLly6tChQr69ttv7+rvmyFDBuefIyMjdfbsWRUuXFiBgYHaunWrc928efNUunRpPf3007H2EVN32rRplS5dOkm3hjKeO3dON2/eVGhoqMu+vv32W6VJk0bdu3d32U+fPn1kZvruu+/iXX+rVq30ww8/6MSJE1q9erVOnDhxx95mc+fOVdWqVZU5c2aX31HNmjUVFRWltWvXumzfvHlzlzmxqlatKkn6888/Jd1qu3Tp0umHH36Ic4hmjNvb+NKlSzpz5oyqVq2qq1evavfu3fH+uwIAAM9i+B4AAEhSY8eOVZEiRZQ2bVoFBweraNGi8vJy/V4sbdq0yp07t8uyffv26eLFi8qePXuc+z116pSk/xsOWKJEibuq74EHHoi1rEiRIpozZ85d7e/atWsaNmyYJk+erKNHj7rM6XTx4kXnnw8cOKAmTZr85/6mTJmiDz/8ULt371ZkZKRzeYECBZx/PnTokEJCQpwTosd48MEHnevjK2Zer9mzZ2vbtm0qV66cChcuHOecWPv27dOOHTuULVu2OPcV8zuKkTdvXpefYwKqmADKx8dHw4cPV58+fRQcHKyKFSuqfv36ateunXLkyOF83c6dO/XGG29o9erVCg8Pd9nn7W0MAACSN0IpAACQpMqXL6/Q0NB/3cbHxydWUBUdHa3s2bNr+vTpcb7mTkGIp3Xr1k2TJ09Wz549ValSJQUEBMjhcKhFixYuk3/Hx5dffqkOHTqoUaNGevXVV5U9e3alSZNGw4YNc4Zxic3Hx0eNGzfWlClT9Oeff2rgwIF33DY6Olq1atXS//73vzjXFylSxOXnNGnSxLnd7cFdz5491aBBAy1cuFDLli3Tm2++qWHDhmn16tUqU6aMLly4oGrVqsnf31+DBw9WoUKFlD59em3dulWvvfZagtsYAAB4DqEUAABIlgoVKqSVK1eqcuXKLsO14tpOkn7//XcVLlw4we+zb9++WMv27t3r8qS+uNxpaOBXX32l9u3b68MPP3Quu379ussT7aRbdf/zKX9x7atgwYKaP3++y/sNGDDAZbt8+fJp5cqVunTpkktvqZihbPny5fvX9/mnVq1a6fPPP5eXl5datGhxx+0KFSqky5cvq2bNmgna/38pVKiQ+vTpoz59+mjfvn16+OGH9eGHH+rLL7/UDz/8oLNnz2r+/Pl67LHHnK+JeZojAAC4fzCnFAAASJaaNWumqKgoDRkyJNa6mzdvOkOesLAw+fn5adiwYbp+/brLdrf3wLmThQsX6ujRo86ff/rpJ23evFl169b919dlypQpVtAk3eoN9M/3/fjjjxUVFeWyrEmTJtq+fbsWLFgQax8xr4/pWXT7/jZv3qyNGze6bF+vXj1FRUVpzJgxLstHjhwph8Pxn3+Xf3riiSc0ZMgQjRkzxmXY3D81a9ZMGzdu1LJly2Ktu3Dhgm7evJmg97169Wqs32GhQoXk5+eniIgISXG3yY0bNzRu3LgEvRcAAPA8ekoBAIBkqVq1aurcubOGDRumbdu2KSwsTN7e3tq3b5/mzp2rjz76SE2bNpW/v79Gjhyp5557TuXKlVOrVq2UOXNmbd++XVevXtWUKVP+9X0KFy6sKlWq6KWXXlJERIRGjRqloKCgOw5Ji1G2bFmtXLlSI0aMUEhIiAoUKKAKFSqofv36mjZtmgICAlS8eHFt3LhRK1euVFBQkMvrX331VX311Vd65pln9Oyzz6ps2bI6d+6cFi9erAkTJqh06dKqX7++5s+fr6efflpPPvmkDh48qAkTJqh48eK6fPmyc18NGjTQE088oddff11//fWXSpcureXLl2vRokXq2bOnszdZfHl5eemNN974z+1effVVLV68WPXr11eHDh1UtmxZXblyRb/99pu++uor/fXXX8qaNWu833fv3r2qUaOGmjVrpuLFiytt2rRasGCBTp486eyx9eijjypz5sxq3769unfvLofDoWnTpsUrgAQAAMkLoRQAAEi2JkyYoLJly2rixInq37+/0qZNq/z586tNmzaqXLmyc7tOnTope/bsevfddzVkyBB5e3urWLFi6tWr13++R7t27eTl5aVRo0bp1KlTKl++vMaMGaOcOXP+6+tGjBihF154QW+88YauXbum9u3bq0KFCvroo4+UJk0aTZ8+XdevX1flypW1cuVK1a5d2+X1vr6+WrdunQYMGKAFCxbo008/VWBgoJ566innpO8dOnTQiRMnNHHiRC1btkzFixfXl19+qblz5+qHH35w7svLy0uLFy/WW2+9pdmzZ2vy5MnKnz+/3n//ffXp0ycBLZ4wGTNm1Jo1a/TOO+9o7ty5mjp1qvz9/VWkSBENGjRIAQEBCdpfnjx51LJlS61atUrTpk1T2rRpVaxYMc2ZM8c5KXxQUJC+/vpr9enTR2+88YYyZ86sNm3aqEaNGrHaGAAAJG8O42slAACQCv31118qUKCA3n//fb3yyiueLkdDhw7V1atX9c4773i6FAAAALdgTikAAIBkoEGDBvryyy89XQYAAIDbMHwPAADAg3788Uft2LFDv/zyi8s8UQAAACkdoRQAAIAHXbhwQX379pWXl5fefvttT5cDAADgNswpBQAAAAAAALdjTikAAAAAAAC4HaEUAAAAAAAA3C7FzykVHR2tY8eOyc/PTw6Hw9PlAAAAAAAApGhmpkuXLikkJEReXnfuD5XiQ6ljx44pT548ni4DAAAAAAAgVTly5Ihy5859x/UpPpTy8/OTdKsh/P39PVwNAAAAAABAyhYeHq48efI4M5k7SfGhVMyQPX9/f0IpAAAAAAAAN/mvaZSY6BwAAAAAAABuRygFAAAAAAAAtyOUAgAAAAAAgNsRSgEAAAAAAMDtCKUAAAAAAADgdoRSAAAAAAAAcDtCKQAAAAAAALgdoRQAAAAAAADcjlAKAAAAAAAAbkcoBQAAAAAAALcjlAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HaEUgAAAAAAAHA7QikAAAAAAAC4HaEUAAAAAAAA3I5QCgAAAAAAAG5HKAUAAAAAAAC3I5QCAAAAAACA26X1dAEAgLvUoIGnK0h+lizxdAUAAAAA4omeUgAAAAAAAHA7QikAAAAAAAC4HaEUAAAAAAAA3I5QCgAAAAAAAG5HKAUAAAAAAAC3I5QCAAAAAACA2xFKAQAAAAAAwO0IpQAAAAAAAOB2hFIAAAAAAABwO0IpAAAAAAAAuB2hFAAAAAAAANyOUAoAAAAAAABuRygFAAAAAAAAtyOUAgAAAAAAgNsRSgEAAAAAAMDtCKUAAAAAAADgdoRSAAAAAAAAcDtCKQAAAAAAALgdoRQAAAAAAADcjlAKAAAAAAAAbkcoBQAAAAAAALcjlAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HaEUgAAAAAAAHA7QikAAAAAAAC4HaEUAAAAAAAA3I5QCgAAAAAAAG5HKAUAAAAAAAC3I5QCAAAAAACA2xFKAQAAAAAAwO0IpQAAAAAAAOB2hFIAAAAAAABwO0IpAAAAAAAAuB2hFAAAAAAAANyOUAoAAAAAAABuRygFAAAAAAAAtyOUAgAAAAAAgNsRSgEAAAAAAMDtCKUAAAAAAADgdoRSAAAAAAAAcDtCKQAAAAAAALgdoRQAAAAAAADcjlAKAAAAAAAAbkcoBQAAAAAAALcjlAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HYeDaUGDhwoh8Ph8l+xYsWc669fv66uXbsqKChIvr6+atKkiU6ePOnBigEAAAAAAJAYPN5T6qGHHtLx48ed/61fv965rlevXlqyZInmzp2rNWvW6NixY2rcuLEHqwUAAAAAAEBiSOvxAtKmVY4cOWItv3jxoiZNmqQZM2aoevXqkqTJkyfrwQcf1KZNm1SxYkV3lwoAAAAAAIBE4vFQat++fQoJCVH69OlVqVIlDRs2THnz5tWWLVsUGRmpmjVrOrctVqyY8ubNq40bN94xlIqIiFBERITz5/DwcElSZGSkIiMjk/YvAwDu5O3t6QqSH87zAAAAgMfFN3/xaChVoUIFffHFFypatKiOHz+uQYMGqWrVqvr999914sQJpUuXToGBgS6vCQ4O1okTJ+64z2HDhmnQoEGxli9fvlwZM2ZM7L8CAHhO+/aeriD5+fZbT1cAAAAApHpXr16N13YOM7MkriXeLly4oHz58mnEiBHKkCGDOnbs6NLrSZLKly+vJ554QsOHD49zH3H1lMqTJ4/OnDkjf3//JK0fANyqeXNPV5D8zJ7t6QoAAACAVC88PFxZs2bVxYsX/zWL8fjwvdsFBgaqSJEi2r9/v2rVqqUbN27owoULLr2lTp48GeccVDF8fHzk4+MTa7m3t7e8GeoCICVhqFpsnOcBAAAAj4tv/uLxp+/d7vLlyzpw4IBy5sypsmXLytvbW6tWrXKu37Nnjw4fPqxKlSp5sEoAAAAAAADcK4/2lHrllVfUoEED5cuXT8eOHdOAAQOUJk0atWzZUgEBAerUqZN69+6tLFmyyN/fX926dVOlSpV48h4AAAAAAMB9zqOh1N9//62WLVvq7NmzypYtm6pUqaJNmzYpW7ZskqSRI0fKy8tLTZo0UUREhGrXrq1x48Z5smQAAAAAAAAkgmQ10XlSCA8PV0BAwH9OrgUA950GDTxdQfKzZImnKwAAAABSvfhmMclqTikAAAAAAACkDoRSAAAAAAAAcDtCKQAAAAAAALgdoRQAAAAAAADcjlAKAAAAAAAAbkcoBQAAAAAAALcjlAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HaEUgAAAAAAAHA7QikAAAAAAAC4HaEUAAAAAAAA3I5QCgAAAAAAAG5HKAUAAAAAAAC3I5QCAAAAAACA2xFKAQAAAAAAwO0IpQAAAAAAAOB2hFIAAAAAAABwO0IpAAAAAAAAuB2hFAAAAAAAANyOUAoAAAAAAABuRygFAAAAAAAAtyOUAgAAAAAAgNsRSgEAAAAAAMDtCKUAAAAAAADgdoRSAAAAAAAAcDtCKQAAAAAAALgdoRQAAAAAAADcjlAKAAAAAAAAbkcoBQAAAAAAALcjlAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HaEUgAAAAAAAHA7QikAAAAAAAC4HaEUAAAAAAAA3I5QCgAAAAAAAG5HKAUAAAAAAAC3I5QCAAAAAACA2xFKAQAAAAAAwO0IpQAAAAAAAOB2hFIAAAAAAABwO0IpAAAAAAAAuB2hFAAAAAAAANyOUAoAAAAAAABuRygFAAAAAAAAtyOUAgAAAAAAgNsRSgEAAAAAAMDtCKUAAAAAAADgdoRSAAAAAAAAcDtCKQAAAAAAALgdoRQAAAAAAADcjlAKAAAAAAAAbkcoBQAAAAAAALcjlAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HZpE/qCgwcPat26dTp06JCuXr2qbNmyqUyZMqpUqZLSp0+fFDUCAAAAAAAghYl3KDV9+nR99NFH+uWXXxQcHKyQkBBlyJBB586d04EDB5Q+fXq1bt1ar732mvLly5eUNQMAAAAAAOA+F69QqkyZMkqXLp06dOigefPmKU+ePC7rIyIitHHjRs2aNUuhoaEaN26cnnnmmSQpGAAAAAAAAPc/h5nZf220bNky1a5dO147PHv2rP766y+VLVv2notLDOHh4QoICNDFixfl7+/v6XIAIPE0aODpCpKfJUs8XQEAAACQ6sU3i4lXT6n4BlKSFBQUpKCgoHhvDwAAAAAAgNQnwROdxzh16pROnTql6Ohol+WlSpW656IAAAAAAACQsiU4lNqyZYvat2+vXbt2KWbkn8PhkJnJ4XAoKioq0YsEAAAAAABAyuKV0Bc8++yzKlKkiDZs2KA///xTBw8edPn/3Xr33XflcDjUs2dP57Lr16+ra9euCgoKkq+vr5o0aaKTJ0/e9XsAAAAAAAAgeUhwT6k///xT8+bNU+HChROtiJ9//lkTJ06MNfSvV69e+uabbzR37lwFBATo5ZdfVuPGjfXjjz8m2nsDAAAAAADA/RLcU6pGjRravn17ohVw+fJltW7dWp9++qkyZ87sXH7x4kVNmjRJI0aMUPXq1VW2bFlNnjxZGzZs0KZNmxLt/QEAAAAAAOB+Ce4p9dlnn6l9+/b6/fffVaJECXl7e7usb9iwYYL217VrVz355JOqWbOmhg4d6ly+ZcsWRUZGqmbNms5lxYoVU968ebVx40ZVrFgxoaUDAAAAAAAgmUhwKLVx40b9+OOP+u6772KtS+hE57NmzdLWrVv1888/x1p34sQJpUuXToGBgS7Lg4ODdeLEiTvuMyIiQhEREc6fw8PDJUmRkZGKjIyMd20AkOz940sBSOI8DwAAAHhcfPOXBIdS3bp1U5s2bfTmm28qODg4wYXFOHLkiHr06KEVK1Yoffr0d72ffxo2bJgGDRoUa/ny5cuVMWPGRHsfAPC49u09XUHy8+23nq4AAAAASPWuXr0ar+0cZmYJ2bGfn5+2bdumQoUK3VVhMRYuXKinn35aadKkcS6LioqSw+GQl5eXli1bppo1a+r8+fMuvaXy5cunnj17qlevXnHuN66eUnny5NGZM2fk7+9/TzUDQLLSvLmnK0h+Zs/2dAUAAABAqhceHq6sWbPq4sWL/5rFJLinVOPGjfX999/fcyhVo0YN/fbbby7LOnbsqGLFium1115Tnjx55O3trVWrVqlJkyaSpD179ujw4cOqVKnSHffr4+MjHx+fWMu9vb1jzX8FAPc1hqrFxnkeAAAA8Lj45i8JDqWKFCmifv36af369SpZsmSsN+revXu89uPn56cSJUq4LMuUKZOCgoKcyzt16qTevXsrS5Ys8vf3V7du3VSpUiUmOQcAAAAAALjP3dXT93x9fbVmzRqtWbPGZZ3D4Yh3KBUfI0eOlJeXl5o0aaKIiAjVrl1b48aNS7T9AwAAAAAAwDMSPKfU/SY8PFwBAQH/OY4RAO47DRp4uoLkZ8kST1cAAAAApHrxzWK83FgTAAAAAAAAIOkuhu+Zmb766it9//33OnXqlKKjo13Wz58/P9GKAwAAAAAAQMqU4FCqZ8+emjhxop544gkFBwfL4XAkRV0AAAAAAABIwRIcSk2bNk3z589XvXr1kqIeAAAAAAAApAIJnlMqICBABQsWTIpaAAAAAAAAkEokOJQaOHCgBg0apGvXriVFPQAAAAAAAEgFEjx8r1mzZpo5c6ayZ8+u/Pnzy9vb22X91q1bE604AAAAAAAApEwJDqXat2+vLVu2qE2bNkx0DgAAAAAAgLuS4FDqm2++0bJly1SlSpWkqAcAAAAAAACpQILnlMqTJ4/8/f2TohYAAAAAAACkEgkOpT788EP973//019//ZUE5QAAAAAAACA1SPDwvTZt2ujq1asqVKiQMmbMGGui83PnziVacQAAAAAAAEiZEhxKjRo1KgnKAAAAAAAAQGpyV0/fAwAAAAAAAO5FvOaUunLlSoJ2mtDtAQAAAAAAkLrEK5QqXLiw3n33XR0/fvyO25iZVqxYobp162r06NGJViAAAAAAAABSnngN3/vhhx/Uv39/DRw4UKVLl1ZoaKhCQkKUPn16nT9/Xn/88Yc2btyotGnTql+/furcuXNS1w0AAAAAAID7WLxCqaJFi2revHk6fPiw5s6dq3Xr1mnDhg26du2asmbNqjJlyujTTz9V3bp1lSZNmqSuGQAAAAAAAPc5h5mZp4tISuHh4QoICNDFixfl7+/v6XIAIPE0aODpCpKfJUs8XQEAAACQ6sU3i4nXnFIAAAAAAABAYiKUAgAAAAAAgNsRSgEAAAAAAMDtCKUAAAAAAADgdoRSAAAAAAAAcLu08dlox44d8d5hqVKl7roYwGN4ilnceJIZACR/XMNi4/oFAMB9IV6h1MMPPyyHwyEzi3N9zDqHw6GoqKhELRAAAAAAAAApT7xCqYMHDyZ1HQAAAAAAAEhF4hVK5cuXL6nrAAAAAAAAQCoSr1AqLn/88YcOHz6sGzduuCxv2LDhPRcFAAAAAACAlC3BodSff/6pp59+Wr/99pvLPFMOh0OSmFMKAAAAAAAA/8kroS/o0aOHChQooFOnTiljxozauXOn1q5dq9DQUP3www9JUCIAAAAAAABSmgT3lNq4caNWr16trFmzysvLS15eXqpSpYqGDRum7t2769dff02KOgEAAAAAAJCCJDiUioqKkp+fnyQpa9asOnbsmIoWLap8+fJpz549iV4gAABu1aCBpytIfpYs8XQFAAAASIESHEqVKFFC27dvV4ECBVShQgW99957SpcunT755BMVLFgwKWoEAAAAAABACpPgUOqNN97QlStXJEmDBw9W/fr1VbVqVQUFBWn27NmJXiAAAAAAAABSngSHUrVr13b+uXDhwtq9e7fOnTunzJkzO5/ABwAAAAAAAPybBD9975/Cw8O1du1a5pMCAAAAAABAvCU4lGrWrJnGjBkjSbp27ZpCQ0PVrFkzlSxZUvPmzUv0AgEAAAAAAJDyJDiUWrt2rapWrSpJWrBggcxMFy5c0OjRozV06NBELxAAAAAAAAApT4JDqYsXLypLliySpKVLl6pJkybKmDGjnnzySe3bty/RCwQAAAAAAEDKk+CJzvPkyaONGzcqS5YsWrp0qWbNmiVJOn/+vNKnT5/oBQK4zzVo4OkKkp8lSzxdAQAAAAB4XIJDqZ49e6p169by9fVVvnz59Pjjj0u6NayvZMmSiV0fAAAAAAAAUqAEh1JdunRR+fLldeTIEdWqVUteXrdGABYsWJA5pQAAAAAAABAvCQ6lJCk0NFShoaEuy5588slEKQgAAAAAAAApX4JDqaioKH3xxRdatWqVTp06pejoaJf1q1evTrTiAAAAAAAAkDIlOJTq0aOHvvjiCz355JMqUaKEHA5HUtQFAAAAAACAFCzBodSsWbM0Z84c1atXLynqAQAAAAAAQCrgldAXpEuXToULF06KWgAAAAAAAJBKJDiU6tOnjz766COZWVLUAwAAAAAAgFQgwcP31q9fr++//17fffedHnroIXl7e7usnz9/fqIVBwAAAAAAgJQpwaFUYGCgnn766aSoBQAAAAAAAKlEgkOpyZMnJ0UdAAAAAAAASEUSPKeUJN28eVMrV67UxIkTdenSJUnSsWPHdPny5UQtDgAAAAAAAClTgntKHTp0SHXq1NHhw4cVERGhWrVqyc/PT8OHD1dERIQmTJiQFHUCAAAAAAAgBUlwT6kePXooNDRU58+fV4YMGZzLn376aa1atSpRiwMAAAAAAEDKlOCeUuvWrdOGDRuULl06l+X58+fX0aNHE60wAAAAAAAApFwJ7ikVHR2tqKioWMv//vtv+fn5JUpRAAAAAAAASNkSHEqFhYVp1KhRzp8dDocuX76sAQMGqF69eolZGwAAAAAAAFKoBA/f+/DDD1W7dm0VL15c169fV6tWrbRv3z5lzZpVM2fOTIoaAQAAAAAAkMIkOJTKnTu3tm/frlmzZmnHjh26fPmyOnXqpNatW7tMfA4AAAAAAADcSYJDKUlKmzat2rRpk9i1AAAAAAAAIJWIdyi1du3aeG332GOP3XUxAAAAAAAASB3iHUo9/vjjcjgckiQzi3Mbh8MR55P5kIgaNPB0BcnPkiWergAAAAAAACRQvEOpzJkzy8/PTx06dFDbtm2VNWvWpKwLAAAAAAAAKZhXfDc8fvy4hg8fro0bN6pkyZLq1KmTNmzYIH9/fwUEBDj/AwAAAAAAAP5LvEOpdOnSqXnz5lq2bJl2796tUqVK6eWXX1aePHn0+uuv6+bNmwl+8/Hjx6tUqVLy9/eXv7+/KlWqpO+++865/vr16+ratauCgoLk6+urJk2a6OTJkwl+HwAAAAAAACQv8Q6lbpc3b1699dZbWrlypYoUKaJ3331X4eHhCd5P7ty59e6772rLli365ZdfVL16dT311FPauXOnJKlXr15asmSJ5s6dqzVr1ujYsWNq3Ljx3ZQMAAAAAACAZCTBoVRERIRmzJihmjVrqkSJEsqaNau++eYbZcmSJcFv3qBBA9WrV08PPPCAihQporffflu+vr7atGmTLl68qEmTJmnEiBGqXr26ypYtq8mTJ2vDhg3atGlTgt8LAAAAAAAAyUe8Jzr/6aefNHnyZM2aNUv58+dXx44dNWfOnLsKo+ISFRWluXPn6sqVK6pUqZK2bNmiyMhI1axZ07lNsWLFlDdvXm3cuFEVK1ZMlPcFAAAAAACA+8U7lKpYsaLy5s2r7t27q2zZspKk9evXx9quYcOGCSrgt99+U6VKlXT9+nX5+vpqwYIFKl68uLZt26Z06dIpMDDQZfvg4GCdOHHijvuLiIhQRESE8+eYYYWRkZGKjIxMUG3Jkre3pytIfhLj90q7xo22TRqJdS6ibWPjmE0aKeH6mZJxzMbGMQsAgEfFN39xmJnFZ0Mvr/8e6edwOBQVFRWvN45x48YNHT58WBcvXtRXX32lzz77TGvWrNG2bdvUsWNHl4BJksqXL68nnnhCw4cPj3N/AwcO1KBBg2ItnzFjhjJmzJig2gAAAAAAAJAwV69eVatWrXTx4kX5+/vfcbt4h1LuUrNmTRUqVEjNmzdXjRo1dP78eZfeUvny5VPPnj3Vq1evOF8fV0+pPHny6MyZM//aEPeN5s09XUHyM3v2ve+Ddo0bbZs0EqNdJdo2LhyzSSOxjlkkDY7Z2DhmAQDwqPDwcGXNmvU/Q6l4D99zl+joaEVERKhs2bLy9vbWqlWr1KRJE0nSnj17dPjwYVWqVOmOr/fx8ZGPj0+s5d7e3vJOCd3b6Y4eW2L8XmnXuNG2SSOxzkW0bWwcs0kjJVw/UzKO2dg4ZgEA8Kj45i8eDaX69eununXrKm/evLp06ZJmzJihH374QcuWLVNAQIA6deqk3r17K0uWLPL391e3bt1UqVIlJjkHAAAAAAC4z3k0lDp16pTatWun48ePKyAgQKVKldKyZctUq1YtSdLIkSPl5eWlJk2aKCIiQrVr19a4ceM8WTIAAAAAAAASgUdDqUmTJv3r+vTp02vs2LEaO3asmyoCAAAAAACAO/z3I/UAAAAAAACARHbXPaW2bNmiXbt2SZKKFy+uRx55JNGKAgAAAAAAQMqW4FDq1KlTatGihX744QcFBgZKki5cuKAnnnhCs2bNUrZs2RK7RgAAAAAAAKQwCR6+161bN126dEk7d+7UuXPndO7cOf3+++8KDw9X9+7dk6JGAAAAAAAApDAJ7im1dOlSrVy5Ug8++KBzWfHixTV27FiFhYUlanEAAAAAAABImRLcUyo6Olre3t6xlnt7eys6OjpRigIAAAAAAEDKluBQqnr16urRo4eOHTvmXHb06FH16tVLNWrUSNTiAAAAAAAAkDIlOJQaM2aMwsPDlT9/fhUqVEiFChVSgQIFFB4ero8//jgpagQAAAAAAEAKk+A5pfLkyaOtW7dq5cqV2r17tyTpwQcfVM2aNRO9OAAAAAAAAKRMCQ6lJMnhcKhWrVqqVatWYtcDAAAAAACAVOCuQqkrV65ozZo1Onz4sG7cuOGyrnv37olSGAAAAAAAAFKueIVS8+bNU1hYmPz8/PTrr7+qXr16unr1qq5cuaIsWbLozJkzypgxo7Jnz04oBQAAAAAAgP8Ur4nOt23bprCwMElSr1691KBBA50/f14ZMmTQpk2bdOjQIZUtW1YffPBBkhYLAAAAAACAlCFeoVRoaKgyZMgg6VZA1adPH3l5eSlNmjSKiIhQnjx59N5776l///5JWiwAAAAAAABShngN3+vcubO+/vprSZK3t7e8vG5lWdmzZ9fhw4f14IMPKiAgQEeOHEm6SgEAAAAAAJBixCuUatOmjV544QVt3bpVZcqU0c8//6wHHnhA1apV01tvvaUzZ85o2rRpKlGiRFLXCwAAAAAAgBQgXsP3PvjgA23dulWS9M477yhnzpySpLfffluZM2fWSy+9pNOnT2vixIlJVykAAAAAAABSjHj1lLpdaGio88/Zs2fX0qVLE7UgAAAAAAAApHzx6il1u4MHD2rfvn2xlu/bt09//fVXYtQEAAAAAACAFC7BoVSHDh20YcOGWMs3b96sDh06KCoqStu3b9e1a9cSpUAAAAAAAACkPAkevvfrr7+qcuXKsZZXrFhR7dq106OPPqpTp04pJCREP/74Y6IUCQAAAAAAgJQlwaGUw+HQpUuXYi2/ePGiHA6Hvv/+ex07down8QEAAAAAAOCOEjx877HHHtOwYcMUFRXlXBYVFaVhw4YpLCxMGTNmlLe3t/r165eohQIAAAAAACDlSHBPqeHDh+uxxx5T0aJFVbVqVUnSunXrFB4ertWrV0uS8uXLpwEDBiRupQAAAAAAAEgxEtxTqnjx4tqxY4eaNWumU6dO6dKlS2rXrp12797NkD0AAAAAAADES4J7SklSSEiI3nnnncSuBQAAAAAAAKnEXYVSknT16lUdPnxYN27ccFleqlSpey4KAAAAAAAAKVuCQ6nTp0+rY8eO+u677+Jcf/sE6AAAAAAAAEBcEjynVM+ePXXhwgVt3rxZGTJk0NKlSzVlyhQ98MADWrx4cVLUCAAAAAAAgBQmwT2lVq9erUWLFik0NFReXl7Kly+fatWqJX9/fw0bNkxPPvlkUtQJAAAAAACAFCTBPaWuXLmi7NmzS5IyZ86s06dPS5JKliyprVu3Jm51AAAAAAAASJESHEoVLVpUe/bskSSVLl1aEydO1NGjRzVhwgTlzJkz0QsEAAAAAABAypPg4Xs9evTQ8ePHJUkDBgxQnTp1NH36dKVLl05ffPFFYtcHAAAAAACAFCjBoVSbNm2cfy5btqwOHTqk3bt3K2/evMqaNWuiFgcAAAAAAICUKcHD9wYPHqyrV686f86YMaMeeeQRZcqUSYMHD07U4gAAAAAAAJAyJTiUGjRokC5fvhxr+dWrVzVo0KBEKQoAAAAAAAApW4JDKTOTw+GItXz79u3KkiVLohQFAAAAAACAlC3ec0plzpxZDodDDodDRYoUcQmmoqKidPnyZb344otJUiQAAAAAAABSlniHUqNGjZKZ6dlnn9WgQYMUEBDgXJcuXTrlz59flSpVSpIiAQAAAAAAkLLEO5Rq3769JKlAgQJ69NFH5e3tnWRFAQAAAAAAIGWLVygVHh4uf39/SVKZMmV07do1Xbt2Lc5tY7YDAAAAAAAA7iReoVTmzJl1/PhxZc+eXYGBgXFOdB4zAXpUVFSiFwkAAAAAAICUJV6h1OrVq51P1vv++++TtCAAAAAAAACkfPEKpapVqxbnnwEAAAAAAIC7Ee+Jzm93/vx5TZo0Sbt27ZIkFS9eXB07dnT2pgIAAAAAAAD+jVdCX7B27Vrlz59fo0eP1vnz53X+/HmNHj1aBQoU0Nq1a5OiRgAAAAAAAKQwCe4p1bVrVzVv3lzjx49XmjRpJElRUVHq0qWLunbtqt9++y3RiwQAAAAAAEDKkuCeUvv371efPn2cgZQkpUmTRr1799b+/fsTtTgAAAAAAACkTAkOpR555BHnXFK327Vrl0qXLp0oRQEAAAAAACBlS/Dwve7du6tHjx7av3+/KlasKEnatGmTxo4dq3fffVc7duxwbluqVKnEqxQAAAAAAAApRoJDqZYtW0qS/ve//8W5zuFwyMzkcDgUFRV17xUCAAAAAAAgxUlwKHXw4MGkqAMAAAAAAACpSIJDqXz58iVFHQAAAAAAAEhF4hVKLV68WHXr1pW3t7cWL178r9s2bNgwUQoDAAAAAABAyhWvUKpRo0Y6ceKEsmfPrkaNGt1xO+aRAgAAAAAAQHzEK5SKjo6O888AAAAAAADA3fDydAEAAAAAAABIfRIcSnXv3l2jR4+OtXzMmDHq2bNnYtQEAAAAAACAFC7BodS8efNUuXLlWMsfffRRffXVV4lSFAAAAAAAAFK2BIdSZ8+eVUBAQKzl/v7+OnPmTKIUBQAAAAAAgJQtwaFU4cKFtXTp0ljLv/vuOxUsWDBRigIAAAAAAEDKFq+n792ud+/eevnll3X69GlVr15dkrRq1Sp9+OGHGjVqVGLXBwAAAAAAgBQowaHUs88+q4iICL399tsaMmSIJCl//vwaP3682rVrl+gFAgAAAAAAIOVJcCglSS+99JJeeuklnT59WhkyZJCvr29i1wUAAAAAAIAULMFzSknSzZs3tXLlSs2fP19mJkk6duyYLl++nKjFAQAAAAAAIGVKcCh16NAhlSxZUk899ZS6du2q06dPS5KGDx+uV155JUH7GjZsmMqVKyc/Pz9lz55djRo10p49e1y2uX79urp27aqgoCD5+vqqSZMmOnnyZELLBgAAAAAAQDKS4FCqR48eCg0N1fnz55UhQwbn8qefflqrVq1K0L7WrFmjrl27atOmTVqxYoUiIyMVFhamK1euOLfp1auXlixZorlz52rNmjU6duyYGjdunNCyAQAAAAAAkIwkeE6pdevWacOGDUqXLp3L8vz58+vo0aMJ2tfSpUtdfv7iiy+UPXt2bdmyRY899pguXryoSZMmacaMGc4n/U2ePFkPPvigNm3apIoVKya0fAAAAAAAACQDCe4pFR0draioqFjL//77b/n5+d1TMRcvXpQkZcmSRZK0ZcsWRUZGqmbNms5tihUrprx582rjxo339F4AAAAAAADwnAT3lAoLC9OoUaP0ySefSJIcDocuX76sAQMGqF69enddSHR0tHr27KnKlSurRIkSkqQTJ04oXbp0CgwMdNk2ODhYJ06ciHM/ERERioiIcP4cHh4uSYqMjFRkZORd15dseHt7uoLkJzF+r7Rr3GjbpJFY5yLaNjaO2aSREq6fKRnHbGwcswAAeFR88xeHxTw+L56OHDmiOnXqyMy0b98+hYaGat++fcqaNavWrl2r7Nmz31XBL730kr777jutX79euXPnliTNmDFDHTt2dAmZJKl8+fJ64oknNHz48Fj7GThwoAYNGhRr+YwZM5QxY8a7qg0AAAAAAADxc/XqVbVq1UoXL16Uv7//HbdLcCglSTdv3tTs2bO1fft2Xb58WY888ohat27tMvF5Qrz88statGiR1q5dqwIFCjiXr169WjVq1ND58+ddekvly5dPPXv2VK9evWLtK66eUnny5NGZM2f+tSHuG82be7qC5Gf27HvfB+0aN9o2aSRGu0q0bVw4ZpNGYh2zSBocs7FxzAIA4FHh4eHKmjXrf4ZSCRq+FxkZqWLFiunrr79W69at1bp163sq0szUrVs3LViwQD/88INLICVJZcuWlbe3t1atWqUmTZpIkvbs2aPDhw+rUqVKce7Tx8dHPj4+sZZ7e3vLOyV0b6c7emyJ8XulXeNG2yaNxDoX0baxccwmjZRw/UzJOGZj45gFAMCj4pu/JCiU8vb21vXr1++qoLh07dpVM2bM0KJFi+Tn5+ecJyogIEAZMmRQQECAOnXqpN69eytLlizy9/dXt27dVKlSJZ68BwAAAAAAcB9L8NP3unbtquHDh+vmzZv3/Objx4/XxYsX9fjjjytnzpzO/2bf1uV65MiRql+/vpo0aaLHHntMOXLk0Pz58+/5vQEAAAAAAOA5CX763s8//6xVq1Zp+fLlKlmypDJlyuSyPiGBUXyms0qfPr3Gjh2rsWPHJrRUAAAAAAAAJFMJDqUCAwOd8zsBAAAAAAAAdyPBodTkyZOTog4AAAAAAACkIvGeUyo6OlrDhw9X5cqVVa5cOfXt21fXrl1LytoAAAAAAACQQsU7lHr77bfVv39/+fr6KleuXProo4/UtWvXpKwNAAAAAAAAKVS8Q6mpU6dq3LhxWrZsmRYuXKglS5Zo+vTpio6OTsr6AAAAAAAAkALFO5Q6fPiw6tWr5/y5Zs2acjgcOnbsWJIUBgAAAAAAgJQr3qHUzZs3lT59epdl3t7eioyMTPSiAAAAAAAAkLLF++l7ZqYOHTrIx8fHuez69et68cUXlSlTJuey+fPnJ26FAAAAAAAASHHiHUq1b98+1rI2bdokajEAAAAAAABIHeIdSk2ePDkp6wAAAAAAAEAqEu85pQAAAAAAAIDEQigFAAAAAAAAtyOUAgAAAAAAgNsRSgEAAAAAAMDtCKUAAAAAAADgdoRSAAAAAAAAcDtCKQAAAAAAALgdoRQAAAAAAADcjlAKAAAAAAAAbkcoBQAAAAAAALcjlAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HaEUgAAAAAAAHA7QikAAAAAAAC4HaEUAAAAAAAA3I5QCgAAAAAAAG5HKAUAAAAAAAC3I5QCAAAAAACA2xFKAQAAAAAAwO0IpQAAAAAAAOB2hFIAAAAAAABwO0IpAAAAAAAAuB2hFAAAAAAAANyOUAoAAAAAAABuRygFAAAAAAAAtyOUAgAAAAAAgNsRSgEAAAAAAMDtCKUAAAAAAADgdoRSAAAAAAAAcDtCKQAAAAAAALgdoRQAAAAAAADcjlAKAAAAAAAAbkcoBQAAAAAAALcjlAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HZpPV0AAAAAACARNGjg6QqSnyVL7n0ftGtsidGugOgpBQAAAAAAAA8glAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HaEUgAAAAAAAHA7QikAAAAAAAC4HaEUAAAAAAAA3I5QCgAAAAAAAG5HKAUAAAAAAAC3I5QCAAAAAACA2xFKAQAAAAAAwO0IpQAAAAAAAOB2hFIAAAAAAABwO0IpAAAAAAAAuB2hFAAAAAAAANyOUAoAAAAAAABuRygFAAAAAAAAt/NoKLV27Vo1aNBAISEhcjgcWrhwoct6M9Nbb72lnDlzKkOGDKpZs6b27dvnmWIBAAAAAACQaDwaSl25ckWlS5fW2LFj41z/3nvvafTo0ZowYYI2b96sTJkyqXbt2rp+/bqbKwUAAAAAAEBiSuvJN69bt67q1q0b5zoz06hRo/TGG2/oqaeekiRNnTpVwcHBWrhwoVq0aOHOUgEAAAAAAJCIku2cUgcPHtSJEydUs2ZN57KAgABVqFBBGzdu9GBlAAAAAAAAuFce7Sn1b06cOCFJCg4OdlkeHBzsXBeXiIgIRUREOH8ODw+XJEVGRioyMjIJKnUzb29PV5D8JMbvlXaNG22bNBLrXETbxsYxmzRSwvUzJeOYjY1jFqkV54PYuDdIGpxn8R/im784zMySuJZ4cTgcWrBggRo1aiRJ2rBhgypXrqxjx44pZ86czu2aNWsmh8Oh2bNnx7mfgQMHatCgQbGWz5gxQxkzZkyS2gEAAAAAAHDL1atX1apVK128eFH+/v533C7Z9pTKkSOHJOnkyZMuodTJkyf18MMP3/F1/fr1U+/evZ0/h4eHK0+ePAoLC/vXhrhvNG/u6QqSnzsElAlCu8aNtk0aidGuEm0bF47ZpJFYxyySBsdsbByzSK04H8TGvUHS4DyL/xAzau2/JNtQqkCBAsqRI4dWrVrlDKHCw8O1efNmvfTSS3d8nY+Pj3x8fGIt9/b2lndK6HZJN8nYEuP3SrvGjbZNGol1LqJtY+OYTRop4fqZknHMxsYxi9SK80Fs3BskDc6z+A/xzV88GkpdvnxZ+/fvd/588OBBbdu2TVmyZFHevHnVs2dPDR06VA888IAKFCigN998UyEhIc4hfgAAAAAAALg/eTSU+uWXX/TEE084f44Zdte+fXt98cUX+t///qcrV67ohRde0IULF1SlShUtXbpU6dOn91TJAAAAAAAASAQeDaUef/xx/ds86w6HQ4MHD9bgwYPdWBUAAAAAAACSmpenCwAAAAAAAEDqk2wnOgcAAACQAjVo4OkKkp8lSzxdAQB4BD2lAAAAAAAA4HaEUgAAAAAAAHA7QikAAAAAAAC4HaEUAAAAAAAA3I5QCgAAAAAAAG5HKAUAAAAAAAC3I5QCAAAAAACA2xFKAQAAAAAAwO0IpQAAAAAAAOB2hFIAAAAAAABwO0IpAAAAAAAAuB2hFAAAAAAAANyOUAoAAAAAAABuRygFAAAAAAAAtyOUAgAAAAAAgNsRSgEAAAAAAMDtCKUAAAAAAADgdoRSAAAAAAAAcDtCKQAAAAAAALgdoRQAAAAAAADcjlAKAAAAAAAAbkcoBQAAAAAAALcjlAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HaEUgAAAAAAAHA7QikAAAAAAAC4HaEUAAAAAAAA3I5QCgAAAAAAAG5HKAUAAAAAAAC3I5QCAAAAAACA2xFKAQAAAAAAwO0IpQAAAAAAAOB2hFIAAAAAAABwO0IpAAAAAAAAuB2hFAAAAAAAANyOUAoAAAAAAABuRygFAAAAAAAAtyOUAgAAAAAAgNsRSgEAAAAAAMDtCKUAAAAAAADgdoRSAAAAAAAAcDtCKQAAAAAAALgdoRQAAAAAAADcjlAKAAAAAAAAbkcoBQAAAAAAALcjlAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HaEUgAAAAAAAHA7QikAAAAAAAC4HaEUAAAAAAAA3I5QCgAAAAAAAG5HKAUAAAAAAAC3I5QCAAAAAACA2xFKAQAAAAAAwO0IpQAAAAAAAOB2hFIAAAAAAABwO0IpAAAAAAAAuB2hFAAAAAAAANwuracLAAAAqUSDBp6uIPlZssTTFeDfcMzGxjELAEhE9JQCAAAAAACA2xFKAQAAAAAAwO3ui1Bq7Nixyp8/v9KnT68KFSrop59+8nRJAAAAAAAAuAfJPpSaPXu2evfurQEDBmjr1q0qXbq0ateurVOnTnm6NAAAAAAAANylZB9KjRgxQs8//7w6duyo4sWLa8KECcqYMaM+//xzT5cGAAAAAACAu5SsQ6kbN25oy5YtqlmzpnOZl5eXatasqY0bN3qwMgAAAAAAANyLtJ4u4N+cOXNGUVFRCg4OdlkeHBys3bt3x/maiIgIRUREOH++ePGiJOncuXOKjIxMumLhOWfPerqClIu2TRq0a9KhbZMG7Zp0aNukQbsmHdo2adCuSYe2TRq0K/7DpUuXJElm9q/bJetQ6m4MGzZMgwYNirW8QIECHqgGbpE1q6crSLlo26RBuyYd2jZp0K5Jh7ZNGrRr0qFtkwbtmnRo26RBuyKeLl26pICAgDuuT9ahVNasWZUmTRqdPHnSZfnJkyeVI0eOOF/Tr18/9e7d2/lzdHS0zp07p6CgIDkcjiStNzUJDw9Xnjx5dOTIEfn7+3u6nBSDdk06tG3SoF2TDm2bNGjXpEPbJg3aNenQtkmDdk06tG3SoF2Thpnp0qVLCgkJ+dftknUolS5dOpUtW1arVq1So0aNJN0KmVatWqWXX345ztf4+PjIx8fHZVlgYGASV5p6+fv78w83CdCuSYe2TRq0a9KhbZMG7Zp0aNukQbsmHdo2adCuSYe2TRq0a+L7tx5SMZJ1KCVJvXv3Vvv27RUaGqry5ctr1KhRunLlijp27Ojp0gAAAAAAAHCXkn0o1bx5c50+fVpvvfWWTpw4oYcfflhLly6NNfk5AAAAAAAA7h/JPpSSpJdffvmOw/XgGT4+PhowYECsoZK4N7Rr0qFtkwbtmnRo26RBuyYd2jZp0K5Jh7ZNGrRr0qFtkwbt6lkO+6/n8wEAAAAAAACJzMvTBQAAAAAAACD1IZQCAAAAAACA2xFKAQAAAAAAwO0IpZComKIMADwjOjra0yUAAAAACUIohUTxzTffKCIiQg6Hg2AKADzAy+vWJX3Pnj2SCKnigzZKOrffC8T8mfsDAPCcmHPwxYsXPVxJ6nH7fcb169c9WEnyRiiFe/bxxx+re/fumjhxom7cuEEw5Qbbt2/XqVOnJEmDBg3S1q1bPVxR6sMxnngIBhLPihUr9OCDD+qvv/5yhlS4s5g2mjlzpk6ePCmJf9uJITo6Wg6HQ5J08+ZNRURESJJzGZCccQ5InmJ+L5cuXfJwJfcvh8OhBQsW6MUXX3R+jkDSirnPeO2119S9e3fdvHnTwxUlT9yx4p516NBBjz/+uGbNmqXx48cTTCWx33//Xa1atdLYsWP10ksvadCgQUqfPr2ny0p1HA6HvvjiCw0dOtTTpdz3Yi7Yhw8flsQHgntRpkwZVa1aVYsXL5ZE4PdfzEwXLlxQ69atNWXKFEkEJ/cqOjra+W961KhRatKkiapXr65u3bo5gz8kPc6jdy/mHHD58mUPV4LbORwOzZo1S127dtXp06c9Xc59JeZ8sHfvXvXv319hYWHKmjWrh6tK2W4/B69cuVLffvutOnXqpLRp03qwquSLUAp37dVXX9WOHTvk5+enjz/+WEWLFtXMmTMJppJYiRIl1Lp1a02YMEFTpkzRypUrVbx4cUVFRXm6tFQh5pj+66+/9Morr3BxSSQLFy5UkSJFdO7cOUKBeIorcMqaNauKFCmiL7/8UpLoLRUPgYGBGjhwoFavXk1okghijrn+/ftr+PDhqlKlivr376+xY8eqW7duOn/+vIcrTHlirv/Hjx/XgQMHJBGu3qv33ntP/fr183QZ0P/dd509e1ZvvvmmypUrp2zZsnm4qvuLw+HQzz//rAULFujRRx9VmzZt+IyWxGLOwYsWLdLMmTNVq1YtVahQgZ5Sd8DdKu7KmjVrFB4eruLFi0uSMmbMqI8//ljFihUjmEoi0dHRzg+hJUqUUJo0aZQ3b16tXbtWx44dU5o0aWhrN3A4HNq0aZOmTZumNm3aqG/fvp4uKUUIDQ1V6dKltWDBAkn08ImPmA//f/75p3N4lCQNGzZMR48e1ZgxYzxVWrL1z/A+5qaxSpUq2rp1q3bu3CmJXib36rffftPChQs1Y8YMvfrqq/Lz81P69OkVFhamzJkzO7ejne/ep59+qg0bNigqKkpp0qTRV199pcqVK+uJJ55QhQoV9OOPPyoyMtLTZd63smbNqlmzZmnXrl2eLiXVczgcWrZsmcaMGaMaNWro2Wef9XRJ96WhQ4eqX79++vnnn3Xjxg0+N7jBhQsX9P7772vmzJnOLwzSpk3LPW4cCKVwV6pVq6bx48crbdq0mj17ttavXy9fX1+NGTOGYCoJxAyH8PLy0uHDh1W7dm39/vvvateunRYvXqyPP/5Yx48f55tRN7hw4YI++ugjDR8+XAcPHnQu5xiPv7jaKkeOHMqfP79mz54tiR4+/+b2m5lx48apUaNGatq0qbZu3arz588ra9asatiwoX7++WdFR0dzbErasWOHbt68qTRp0kiSli9frvXr1zvXV69eXfXq1dOAAQMUHh7OufQeXbx4UWnTptUTTzyhhQsXqn79+ho5cqSee+45Xbx4UYsWLZJEb567ZWYaNGiQOnXqpO3bt2vHjh165ZVX1LlzZ33yySfy9vZWx44dtXTpUt24ccPT5SZ7/zxHmpmqVq2qIkWKaOPGjZJiB9pwn+joaG3evFmDBg3SqlWr+EB/lxYtWqT27dvr6NGjmjp1qq5cucJntET2z2MzMDBQU6dOVZ06dbR9+3ZNnjxZ0q17XNr9HwxIoBs3bjj/vG/fPitbtqzVqVPHNm/ebGZmly5dsvbt21uFChXso48+soiICDMzi46O9ki997uoqCjnnwcNGmShoaH2ww8/OJcNHDjQypQpY2+88YYdP37czMw6dOhgO3bscHutqcWqVausadOm5uPjY6tWrTIzju+7cfjwYZd2279/vwUFBdnUqVM9WNX94/3337chQ4bY2LFjrUWLFhYUFGTNmjWzBQsW2MqVKy1t2rS2bt06T5fpcYMGDTKHw2ErV660Gzdu2O+//24PPfSQZcmSxbp06WJLly41M7N169ZZuXLlnNey28+9uLO4zn0HDx60UqVK2cCBA83f398mTJjgXLdhwwarWrWqbd++3Z1lphgx7X3jxg17+OGHrWzZsjZ16lR77bXXXLarU6eOPfDAA7Z48WLnfRj+3eXLl11+fvnll61AgQJ27do1D1WEGBcvXrT333/fvLy8bPTo0Z4uJ9mLOU8cO3bMTpw4Ybt373aua9q0qT300EP25ZdfOo9t7mHv3e33DHv37rX9+/fb33//bWZmhw4dsvr169sTTzxhM2bMiPM1qR2hFO7agAEDbNu2bTZnzhyrU6eO1a9f3zZt2mRmt4KpDh062KOPPmpDhw51CbJwd/73v/9ZcHCwLV682A4ePOiybtCgQVamTBkLCwuzatWqWfbs2S0yMtIzhaYwMRfqK1eu2Pnz553Lt2/fbg0bNrQSJUo4Q0Iu6v/u9ovv6NGjLTQ01Fq1amUHDhyw8PBwMzNr27atdenSJdb2cG2PuXPnWtasWe2PP/5wLlu0aJH17dvXMmXKZM8884ylTZvW2rZta1evXk31x2bt2rUtd+7ctnLlSjMz+/vvv23ZsmVWvnx5q1ChglWrVs3Wrl1rISEh9tJLL3m42vvH7cfk7cHHhQsXrHXr1pYxY0br1auXc/n169etfv361rhxY/5934OYe6obN25Y8eLFzeFwWMOGDWP9O69Tp44VL17c5s6dy33Yf5g4caI1bdrUGV6bmZ09e9bKli1r48aNMzOu8e4S084nTpywPXv22NmzZ52/kzfffNMcDodNmjTJkyUmazHtt3DhQqtQoYI9+OCDVqRIEevfv79zm8aNG1uJEiVsxowZdvXqVU+VmmLcfm4YMGCAlShRwooVK2bBwcE2duxYMzP7888/rV69ela9enWbOXOmp0pNtgilEG+330DOnz/fHA6H/fzzz2ZmNm/ePKtZs2asYKphw4b2/PPPcyG/Rxs2bLDChQvbhg0bzOzWjf2JEydswYIFzm85Pv30U+vRo4d16tTJGUjdvHnTYzWnBDHH7ZIlS6xGjRr24IMPWu3atW3WrFkWGRlpP/30kzVr1sxKlSpla9as8XC194+PPvrIBg4caB988IGFhYVZzpw5rX379rZ27VqbP3++pU+f3n777TdPl5lszZ0714YOHWrvvfeemVmsD5sHDx60N9980ypXrmyZM2e2EydOmFnq/EB1e9vUrFnTgoODY33o3Lp1qzVs2NBq1qxpWbJkMX9/f+e1DXd2+/H0/vvvW8uWLa1hw4b266+/mpnZpk2brGLFila5cmUbOnSoffTRR1ajRg0rUaKEs/0JphIupt3PnTtnZreO8UqVKllwcLCtX78+VptWqlTJQkND7dKlS26v9X7y/vvvW+vWrS1dunTWqlUrGz16tEVFRVnz5s2tZcuWni4v1Yg5vufPn28PP/yw5c2b1ypXrmzPPvusnT592qKjo529XydPnuzZYpOxpUuXWoYMGWzcuHG2a9cuGzlypDkcDvvmm2+c2zRt2tRy5cplc+bM8WClKcvQoUMtW7ZstmLFCrt69ao988wz5u/vb7///ruZmR04cMAaNGhgpUqVshUrVni42uSFUAoJNmPGDBszZox98sknLsvnz59vtWrVcgmmrl275rxBSo0fiO7WP9tqyZIlFhwcbDdv3rQdO3bYa6+9Zg888IB5e3tb+fLl47zZpKdU4vjmm28sY8aMNnjwYNuyZYuFhYVZSEiI/fjjj2Zmtn79emvRooXlyZPH1q9f7+Fqk6fbPyRNnz7dsmTJYnv27HEumzZtmr300kvm4+Nj7du3Ny8vL+vSpYtFRERw3rhNdHS0XblyxTJlymQOh8NefPFF57qYNo4JoqOioiwiIsLKly9vnTt39ki9nhZX4FGjRg3LmTOnrVixItaQpg0bNtj48eMtY8aMNmzYMDPjunUnt7ftsGHDLCAgwLp3726lS5e2oKAg+/LLL83sVpv26tXL8uTJY3Xq1HH50oRrVMLFHI/Lli2z9u3bO7+oioyMtJIlS1qJEiXsp59+inXcHjp0yO21Jmf/FoauWbPGevXqZbly5bL69etbp06dzOFw2JIlS9xYYeq2cuVKy5gxo3300Ud2/vx5GzJkiDkcDufQ/itXrtjgwYPN4XDYtGnTPFxt8tSlSxdnz6i//vrLChUq5LwXuP34b9OmjR04cMAjNaY0V69etbp16zqPyQULFljmzJmdPS1j7jn++OMPe+WVV+g48A+EUkiQffv2Wd68ec3hcNiHH35oZrd67cSYP3++1a5d2ypVquRMhc34NvRuxQzNOX36tBUtWtQKFy5sWbNmteeff95mzJhhJ06csDRp0tjs2bM9XGnKEx0dbZcvX7Ynn3zSBg0aZGZm4eHhljdvXuvatavLtmvXrrUOHTpwYf8PX3/9tQ0ZMsQ++ugjM4vdw2fr1q3Wq1cvK1mypOXOndsZthIM3BJzHj179qwVL17cChcuHOcHULP/a7OBAwda06ZN3VpncvP11187P7yb3QqmQkJCbMWKFXEGIxMmTLDcuXPb0aNH3Vnmfemvv/6yF154wdauXetc1qFDBwsODrapU6c6j8OY4bkxCKTu3vz5851flGzcuNFljqkSJUpYiRIl7Oeff+a8eQe3348uXrzYpkyZYhMnTjQz1/m6zp49az169LDGjRubw+GI8wM9Eld0dLTdvHnTunbtar179zYzs5MnT1qePHlc7rtu3LhhN2/etHfffddlCDtuuXHjhj3yyCM2YcIEu3jxouXKlcteeOEF5/E9btw4W7ZsmYerTFmio6Pt5MmTliNHDvvjjz/shx9+MF9fXxs/fryZ3Qqs+vfvH+tzAsHU/yGUwr/6503NtWvXbOHChVaqVCkrW7asc/nt3zhPnz7devTowYX7Hs2ZM8dCQ0Od3Wr37NljQ4cOta+//touXrxoZre+LapUqRIXlyQSFRVljz32mG3dutWOHz9uOXPmtBdeeMG5ftGiRfbnn3+amTEm/19ER0fbmTNnzOFwmMPhsFdffdW5LuY8cXtPn/Pnz1vRokVjTdyb2vzbOfTUqVOWO3duq1y5sssXAP/0wgsvWOnSpe3KlStJUWKyt3v3bgsODrb27du7DMmLCaZWrlzp0rvMzOzXX3+10qVLO/9tI27Tpk0zh8NhxYoVizXcsWPHjpYzZ06bNm2aXbhwwWUdYcndO3DggBUuXNgZ7MeIuQeLmfw8V65ctnXrVk+UmKzdfk597bXXLCQkxB599FHLli2b1a5d27Zu3RrrvHv16lX76KOPLH369LZr1y53l5wqtWnTxsaOHWtHjx6NFagsWrTI5s+f7+EKk7/Bgwdbq1atLGfOnPbiiy86j+tr165Zhw4dbMiQIXbjxg3Ox3fpTu3Wrl07CwsLs4wZM9rnn3/uXH7s2DGrWrWqTZky5V9fn5oRSuGO/nlhvv2m59tvv7V8+fJZjRo1Yq3/t30g/jZv3mx169a1WrVqxboAX79+3Y4fP27169e3cuXKkbQngZgLRsWKFe3555+3woULW+fOnZ29e86cOWNPPfUUcxrEQ0xb7t+/33LlymVlypS545xRMeeMV155xdq1a+e2GpOb28+dEydOtF69etkzzzxjP/30k3MumZMnT1quXLmsatWqcQZThw4dsqefftp++eUXt9XtaXHd6M2ZM8dKlChhzz77rEt4UrNmTcuTJ499/fXXLu39/vvvW5o0aZxPM8UtcV3Pn3rqKeewmn/2fIwZ9vTdd9+5q8QU55/H8+bNm61AgQK2b9++WNvE3AdERERYpUqV6Ln7Lz788EMLCQlxnhtnzpxpDofDqlatalu3bnW26e3tX7VqVRs+fLhH6k0toqKiLDo62p5//nmrVq2aFShQwGX4+eXLl61t27Y2ZMgQelvarX/zt/dGvX0qj0WLFlnu3LmtXLlyzi9Ybty4Yf3797d8+fLZ/v37PVJzSnD7tfDs2bPOeTvNzL744gvLmzev1a9f37ns4sWLVrduXXv88cf5vPYvCKXwn4YPH25PP/20VaxY0caNG2d//fWXmZl9++23VqRIEQsLC3Nuy9Nd7s6dwrutW7da/fr1rUaNGs4eU1FRUTZlyhSrWrWqVaxY0dnmnOjuXlRUlPN3cPXqVeeNkZnZV199ZdmyZXPpGWhm9vrrr1vRokVjPQkR/x5G79692wIDA61+/fr/elPUtm1bq1Spkl2/fj1Vf6P02muvWXBwsD3//PNWv359y5Url3388cd27NgxM7sVTOXLl8+KFi0aZ8+efz7iPLWI6U0a46uvvrIHH3zQnn32WduyZYtz+cMPP2wNGzZ0/hwREWFTpkxxTtaN2P45HLJ27dqWI0cOW7FiRazr0Ntvv8216R7EnPvWrFljmzdvtjVr1liuXLlcwtWYbVasWOGc6xCuli1b5nza1YULF+zFF190zns2b948CwwMtA8//NAKFSpkVatWtV9++SXWdadcuXI2YMAAd5eeYt28edN5r3Dy5Em7cuWKnT171szMjh49aoULF7bcuXM7e/lGRUVZ//79LW/evLZ3716P1Z0c/POL6oULF1poaKgVL17catSo4ZzM/LPPPrP8+fNbtWrVrFmzZvb0009bUFAQvSjv0vTp010+577++uv28MMPW5YsWaxly5a2ePFiM/u/p++VKlXKGjdubBUqVLCHH36Yz2v/gVAKsdz+gXLAgAGWJUsW51PdsmTJYq1atXJ+u/TNN99Y8eLFrUyZMp4qN0WZN29erKcxbNmyxRo0aGBVq1Z1TrT5448/2pgxY5gw9h79/PPPdurUKefPixcvtiZNmtijjz5qAwYMcH7wev311y0oKMjatm1rr7/+urVv394CAgK4sMfh9vPH559/bq+//ro9//zztmvXLue3eH/88YcFBARYgwYN4vw2f//+/VarVq1U1cMnLpMmTbJ8+fK5PM3M4XBYnjx57MMPP3R+O3f8+HFr1KhRqr7R2bBhg3Py/JEjR9rLL78cKzCeM2eOZcuWzdq2besSTP0zRE3NIeh/SchwyNul5mPzbtx+DK5cudLZ42z//v2WPXt269q1a6zAuVu3bvbyyy+n+iD/n9avX28Oh8NCQ0Nt+vTpZma2atUqO3HihP36669WqFAh53DIqVOnmsPhsOLFi7s8jGPz5s3m4+Nj27dv98jfISX56quvXEL/efPmWenSpa1IkSL26KOPOnufL1++3AIDAy00NNRq165tjRs3JlCxW0/XdTgc1rhxYzO7dR/r4+Njffv2tU8++cRq1aplDz74oI0aNcrMbn2JMHDgQGvUqJENGTLEdu/e7cny71tr1641h8Nhr7/+upmZjR492rJnz24TJkywKVOmWLVq1axSpUr22Wefmdmt4/d///uf9ejRw0aNGsXntXgglMIdHTp0yPr27WurVq1yLlu2bJmVLVvWOnToYFeuXLFr167Z3LlzrWXLlgzVuwsxN45RUVF24MABK1asmDVq1MjWrFnjst22bdssODjYHn30UZs1a5bLOm72786KFSvM39/fRowYYREREbZhwwZLly6d9ezZ09q2bWs1a9a0/PnzO0PC2bNnW+XKlS0sLMyef/55Jtf8D6+99pplz57d2rRpY48++qgVLlzYPv/8cztz5oyZ3QqmsmTJYo8++misCaVv3rwZa2Lk1ObatWs2YcIEGzNmjJnd+mY0ICDApkyZYt27d7dMmTLZyJEj7fDhwy6vS43ng4MHD1qFChWsQYMGdvz4cfv8888tKCjI+vXr5+zZG2PgwIEWGBhozzzzjO3cudO5PDW2W3wkxnBI3L2///7bJk6caO+8845z2fz58y1NmjTWuXNnW716tf3666/Wu3dvCwwM5LoUh4ULF5rD4bDHHnvMGjRo4HIPNXr0aKtevbrzy6lp06ZZ165drUWLFi7nhPPnzzOcNxHs3LnTypQpYw0aNLB9+/bZn3/+ab6+vvbuu+/aqFGjrHfv3uZwOJzH++HDh61379720ksv2bvvvpvqe0iZ3TonL1u2zIKDg61ly5a2ZMmSWD34unXrZsWKFXP5/IZ7N2PGDEuXLp0NGjTI3nnnHWdvS7Nbc0Z17tzZypcvf8fglPuMf0cohTgtWrTIHA6HZc+ePdZJ7bvvvrN06dLZ999/b2auqS83oncnpt2++eYbq1KlijVp0sR++OEHl23q1Klj+fPntz59+niixBSpe/fuVqhQIRs7dqy98sor9vbbbzvX/fbbb9alSxcrWLCg/fTTTy6v48Ly7yZOnGh58+Z1fhu6bt06czgc9sADD9jEiROdcyLt2LHDwsLCOG/cwc6dO+3YsWN28OBBK1WqlI0YMcLMbn1h4OfnZwEBAc4hKam9Z8Qnn3xiTzzxhDVv3twuXbpks2fPthw5cthrr73m0mNq5MiRVq1aNWvfvj3HXQLc7XBI3L1Dhw6Zw+Ewf39/e/fdd13WLVu2zAoXLmy5cuWywoULW4kSJRhy+i/atm1r1apVs8aNG9vjjz9uU6dONTOzfv36WZEiRez48eN28eJFq1+/vvOLADOu9Unhyy+/tBo1atgzzzxjb731lvXs2dNl/aRJk8zhcLh84Ier6OhoW758uWXPnt28vLyc827d/nmsWrVq9uSTT3qqxBTryy+/NG9vb3M4HM7eaDH3X2fOnLF8+fLZwIEDPVnifYtQCmYW+wlYR48eta5du5rD4bAvvvjCzFxPdg899JC9//777i80hbj9w9DMmTOtbt26zrHG3333nVWqVMmaNm3qDKauXLlinTp1sjlz5vBBKhHcfqPZo0cPe+CBB+yBBx6I9USjHTt2WLVq1ZzHeszrUnsA8G+uXr1qI0aMsLFjx5rZra75AQEBNmnSJGvVqpUFBQXZJ598YidPnnR5Hcf1LaNHj3Z2D4+xZs0ae+ihh5xDR7Zs2WJdu3a1Dz/8MNV/aLr93+LkyZOtcuXK1rx5cwsPD7eZM2dazpw57X//+59t3rzZbty4YY0bN7a5c+e69FJFbIk5HBJ3b8KECZYuXTrr2LGjc26dmGP35MmTtmvXLtu2bZudPn3ak2UmW9evXzezWx8kn3/+edu0aZM1btzYOR3CyZMnLWfOnJYzZ04rWLCglSxZkrlRk8jt54Xp06dbnTp1LG/evNapUyczu3Vcx1zPXnrpJQsLC7Pw8HDuu+7g5s2btmLFCnvggQesUqVKzidAx7TXu+++a5UqVeJ4vkdxHXfz58+39OnTW4sWLezixYsu27Rq1cratm3rzhJTDEIp2MyZM61jx462Z88elzkKjh8/bu3atbMMGTK49Ja6ePGiFSxY0CZMmOCJcu97t1+YV61aZc8//7ylSZPGnnvuOZdgqlq1alahQgVr166dPfHEExYaGhorPMTdu/1C3b9/f3M4HPbMM8+4zDFlZtaoUSOrW7euu8u7b8R1wd62bZsdP37c9u/fbw899JCNHDnSzG7NR5MhQwYLDg62hQsX3vH1qdWlS5ecE5vf3jNi3rx5li1bNps9e7bt2LHDGjRoYB06dHCuJ5i6czA1d+5cK1mypOXIkcOKFCliDz30kPMLFo69uDEcMnkZP368ORwOGz58OMdsPKxevdo5r0uMY8eOWa5cuezzzz+348ePW+PGja1KlSr29ddf27lz52z06NE2btw45n1JYrefF2bMmGEPP/ywhYSE2LZt28zs/87JgwcPtkceeYTfw23i+rcf02MqKCjIGjdubJcvX3Zu17ZtW6tRo4YzmEXC3f5ZKyb0izFjxgxLmzat9enTx/kl67Vr16x06dLWq1cvt9aZUqQVUrXw8HC98cYbCg8P1y+//KLy5curSpUq6tChg3LkyKHx48crMjJSTz75pDp37qyQkBCtW7dOGTNmVKdOnTxd/n3Jy8tLktSnTx+tWbNGoaGhKlu2rL7++mtdvnxZU6dOVZ06dRQYGKhvvvlGP/30k/Lnz6+JEyfKy8tL0dHRzn0g4cxMDodD3t7ezmVvv/22IiMjNX36dE2ZMkUdOnRQ1qxZJUk+Pj7KnDmzIiMjXV6DWxwOhyTp448/VnR0tHr06KHSpUtLkpYuXao0adKobt26kqTTp087zy3169d3eX1q9M9/y76+vurevbt8fX01ZswYRUdHq1+/fmrcuLFmzJihF198Ub6+vgoODta8efOcr0uTJo0nyk82HA6H8991hw4dJEmfffaZnn/+eY0fP16lS5fWL7/8ovDwcHXq1Elp06ZVVFRUqm+3O8mfP786deqkmTNnqmfPnvrss8+UKVMm9ejRQ9HR0XrxxReVP39+SVJAQIBKly6tjBkzqlixYs590LYJE3P8/v777zp16pTCw8PVqFEjSdKLL76omzdvqnv37nI4HHrllVdS9Xnz33z//feqUaOGJGnu3Llq1KiRqlSpohIlSuiDDz7QjBkz9Mwzz2jw4MEaMGCA3n//fb3wwgvq1q2bcx9RUVFKm5aPR4kp5viOjo52nhtatmypNGnSaPTo0Xr99df1zjvvqFSpUpKkEydOKFOmTLp+/bp8fX09WXqyENN+P/zwg9asWaMDBw6oefPmKlGihGrVqqUZM2aoVatWqlatmooWLaps2bJpwYIFWr9+vXx8fDxd/n0r5v7sgw8+0C+//CJvb2+99tpreuCBB9SyZUtFR0erQ4cOWrt2rYoWLarw8HBFR0frvffe83Dl9ymPRmLwuJs3b1q/fv1swoQJtmXLFnv//fctMDDQWrZsacOGDbMbN27Y6dOnrVevXuZwOKxp06Y2e/ZsZ/LOtxh3Z/ny5ZY1a1bn092ioqJsxIgR9vDDD1urVq2cvXj+2b60972J+Qbp+++/tz59+tiYMWNc5ovq3r275ciRwxo0aGBvv/229ezZ0/z8/GzHjh2eKvm+cOHCBXvppZcse/bs9umnnzqXT5061XLmzGnffPON7du3zxo0aGAvv/yycz29KW755/F19OhRGzx4sOXOnduGDh3qXL569Wpbt26ds904H7i6/Zvkzz//3KpUqWLNmze3P//802U9x92dMRzS/WLabv78+ZY7d24rWbKkBQYGWlhYmO3YscPZph9//LH5+PjYoEGDPFlusrZv3z577LHHrHr16vb4449bt27dLCgoyEaNGmUjRoyw6tWr27p168zs1px9jz/+uHXt2tXDVadsMcf3t99+aw0bNrTnn3/eJk6c6Fw/depUq1SpkmXLls2aNWtmnTt3tixZsqT6p+z907x58yxDhgzWqFEjq1SpkoWEhFiLFi2cD5tYvny5PfTQQ+ZwOGzNmjVxPtkYCTdixAjLnDmz9e7d2woWLGgPPvigzZgxwzmcevbs2ebr62sPPPCArVy5kt6W94BQCvbtt9+an5+fc76Sa9eu2ZtvvmkOh8PKli1rw4cPt2+//dZ69eplvr6+9uOPP5qZ0SX0Hnz55ZcWEhLifBKZmVl4eLi99dZbljFjRuvUqZMzmIq5IaXbfuJYunSp+fj4WFhYmGXPnt1q165tU6ZMca7/3//+53wk9FtvveXyWGjcEtcHzwMHDtj//vc/CwkJcbnhfPzxxy0oKMhy585tjzzyCPMb/MPSpUstW7ZsNmnSJJflf//9t/Xs2dMCAgJizXVmRrByJ/8Mph577DFr06aNHTlyxINV3V8YDpm04jp/rlixwjJnzuwcdrZ161ZzOBxWvXp127Jli7Nt33vvPcuSJYudPXvWrTXfT/bs2WONGze2Bg0a2IoVK2zp0qXWuHFjq1u3rjkcDmvUqJHz/Hnw4EGCVDdYu3at+fr6WocOHSwsLMzy58/vMsRp9uzZVr58ecuRI4d98MEH9vfff3uw2uTnr7/+smLFirlMmzJnzhyrXbu2tWrVyo4ePWo3b960b775xgoXLmzHjh3zYLX3t3+eD/r372+LFi1y/vz0009biRIl7Msvv3QO6fv888+tatWqfPF1jwilYGZmXbp0sS5dujh/Ll68uDVq1Mj69OljderUMYfDYe+++661adPGAgMDnU/ew3+L60Z97dq1VqxYMVu+fLnL8sOHD1uuXLmsSJEi1qlTJ05sSeCtt96ycePGmZnZL7/8Yi1btrTKlSvb5MmTndt06dLFypcvH+uJU3D1z8Duzz//tFdeecVCQkJs/PjxzuXffPONLV++nB4+cdi+fbu9+OKL9tBDD7kcg2a3JjjPlCmTORyOWOtwZ7efcydNmmQVKlRwhn4EJ/Fzp2Dq3LlztnfvXpsxY4ZNmDDB+W+Za1X8xHzgOXjwoPODTkREhPXs2dP5WPc///zTChYsaB06dLCCBQtaxYoV7ZdffnG+Nubppbiz3bt3W506dSwsLMx27dplN2/etJ07d1qnTp1izV9kRg+/pDZ37lz78MMPzczsxIkTNm7cOAsKCrIePXo4t/n000/tmWeeIVCx2NepvXv3Wq5cuWzFihUuy2OeMrtmzRozu3Ucx/TgQcLd3u7Lly+3BQsWWMeOHZ2dMWI0btzYSpYsadOnT3fOxUxv4XtHKAUzM/vss8+scuXKdu7cOStTpoxVrlzZ+YH8yJEjNnv2bIuMjLTLly/bU089Zbly5Yo16Rv+3bvvvuu8cJw4ccIeeeQRq1+/vv3222/ObQ4cOGBNmza1IUOGWJkyZWz9+vWeKjfFiLlQ7Nu3z44cOWJdunSxxYsXO9dv27bNGUzd3mPq+PHjbq81ubv9Yvvtt99azpw5bcGCBS7b7N+/3zp16mRBQUE2bdq0WPtIzR9e73SzsnPnTuvatasVLVrUpcfUb7/9Zm3btrXZs2en6na7G7ffXD755JP21FNPea6Y+xTDIZPG0aNHLWvWrPbggw/a9OnTzezWB6CdO3fa+fPnrVy5cvbcc8+Z2a0huzG91mPCFMTP3r17LSwszMLCwmzt2rUu6/jgmLRizg1bt26177//3lq3bm3Dhg1zrj9//rwzmOrdu7dz+YULF9xea3IRc0zefj7dvn27nTt3zvbv32/58uVz3m9FREQ4tylZsqRLG+Lu3H696927twUGBlpwcLA5HA7r3r17rLDvmWeesWzZstmyZcvcXWqKRSgFp3LlypnD4bBq1ardsWt4ZGSknTlzxo4ePerm6u5v4eHh1rBhQ/Py8nIGTTt37rSQkBALCwuzDz/80FauXGk1a9a0li1b2rlz58zPz89GjBjh4cpThjlz5lj27NktW7Zs5ufnZ2+//bbL+u3bt1vbtm3toYcecn5IgKvbL9jLli2z2bNnW/v27a1kyZIuXZvNzL7++mvz9vY2h8Nh8+fPd3epydLt7Td69Gh7+eWX7bnnnnM+7XHPnj3WtWtXK1CggA0ePNh++uknq1evnnXs2JEP/3cppt26dOliLVq0cLmRR/wwHDLxff/99+bl5WXlypWzhg0b2syZM53r5s+fb6GhobZv3z4z+795eMqUKcMcMXdh7969VqdOHatTp45zLim4x/z58y19+vRWoEABy5IlizVr1sxl/YULF2zixInmcDisb9++HqoyeTl48KBVq1bNzMwWLFhgISEhzrm1WrZsably5XJ5AuqNGzesWrVqNnr0aE+Um2Lcfp3bsmWL1apVy3788Uc7cuSIderUyR555BH74IMPYgVT/fv3574sERFKwfmPcdq0aVaiRAn75ZdfXJYj4eKaB+rw4cPWrl07S5cunbPH1K5du6xp06ZWrFgxK1SokFWrVs3ZA61SpUo2a9Ys9xefQsS0/dmzZ6148eI2ceJEmzdvnrVr187y5MnjMrzM7NY3es8//7wdPHjQA9Umb7d/q/zGG29Y7ty57ciRI/bzzz9b+/btrXjx4rZw4ULnNj///LO1adPGpkyZwgXbXNvvrbfessDAQGvevLkVLFjQ8uTJ4wyqDxw4YEOHDrUMGTJY0aJFrUKFCs45uDgf353Tp09b5cqVXXqkImEYDpn4nn32WXv44YetSZMm9sQTT9jUqVPNzGz8+PGWK1cu55w6/fv3t7feeovz6D3Yu3evPfnkkxYaGuqcOxVJI+Z8cP78eatWrZpNnTrVfvvtN5s0aZJlyJAh1qTy586ds0mTJjF35/+3c+dOK1y4sBUpUsQcDofLl6QXLlyw6tWrW44cOWzq1Kk2b94869u3r2XOnNn27t3rwapTjlmzZlnt2rWtdevWzmM5IiLCOnfubOXKlYszmDLjC8PEQigFp7///tty5szp0sUW9yamx1nMye3IkSPWpk0bS5cunbM7+aVLl+zs2bN26NAh5+v69etnISEhBCT3aOXKldajRw/r2rWrs5fE/v37rWfPnla0aNFYwRQ9Kf7d33//bV26dLFvv/3WuWzLli3WoUMHK1SokE2YMMF+//13q1+/vr344ov08PmHkydPWvv27Z1PfIyMjLR69epZjhw5XIaXHDlyxLZt2+YMs5iD695cu3bN0yXc9xgOeXf+OUws5gEx33zzjXXo0MGWLVtmjRs3tscee8wWLFhg58+ft1y5clmhQoWscuXKFhAQYL/++qsHKk9Z/vjjD+vduzfD9txg+fLl1rx5c2vWrJlzfqjIyEibM2dOnMEUwbarjz/+2BwOh+XPn9+5LOYe6tKlS9axY0crVqyYFSxY0MqVK8dTChNJZGSk9erVy/Lly2clS5Z0WXfjxg3r3LmzVaxY0QYMGMCDvpIIoRRcjB492oKCgmznzp2eLuW+N3v2bMuYMaPt2rXLzP7vwnvo0CF76qmnLGPGjLZlyxaX1/z666/WoEEDly67uDsRERE2aNAg8/b2ttKlS7us27t3r/Xs2dMeeughGzlypEfqu9/Mnj3beaO0YcMGl3U7duywV1991RwOhxUpUsTKli1LD59/+Oyzz8zf399CQ0Nt9+7dLuvq1atnOXPmtHXr1sUK8PgQheSC4ZAJE/Nv9/Dhw7GGMZ86dcqKFStmY8aMsVOnTlnjxo2tcuXKtmTJEjt58qS98sor1q9fP/vjjz88UXqKxjk1aa1atcp8fHwsU6ZMLsdvTDAVEBBg7dq182CFyU/MufXGjRu2fv16+/DDD61MmTJWunRp5/y+t385dfLkSfv777956ME9iOs8cPnyZXv77bctX7581qNHD5e5k2/cuGHNmze35557jvvaJEIoBRf79++3du3acdG+CzFtFvP/TZs2We3ata1AgQLOD6Ex6+bMmWMOh8McDoft2LHDZT9jx46N9aEVd+fw4cP29ttvm8PhcD75Jca+ffvsueees3Llytn58+c9U+B95OrVq9amTRtzOBw2Y8YMM4sdOO3evds2b95MD584nDx50mrUqGFp06Z1Dte7/TzboEEDczgcTGaMZI3hkAlz+PBhCwoKMofDYfXq1bPZs2c7hyotXrzYqlataqdOnbI//vjDGjdubI8//rjNnTvXw1UD92bt2rXm5+dnbdq0cT6dzOzWPcG0adMsJCSEh8n8fzH3UStWrLDXX3/d2TNyx44dVqpUKStVqpRLG65ateqO8/4ifm6/99q4caP98MMPzt7qMV9oV6hQwfr06ePSKyoyMjLO6VmQOBxmZgJuY2ZyOByKiopSmjRpPF3OfWHWrFlavny5+vbtq5CQEPn6+kqStm3bpv79++v333/X8uXLVaxYMUnS+vXrNW3aNBUrVkzdunVT2rRpPVl+ihBz3J48eVJXrlxRtmzZ5Ofnp4iICL3zzjsaMWKEhg4dqh49ejhf8+effypTpkwKDg72YOXJz82bN+M8Jm/cuKFmzZppw4YNWrJkiSpUqOBcF9P+MaKjo+Xl5eWWepObO/3dT58+rfr16+vSpUtavHixChcu7NJur776qt59913Ou0jWrl+/rvTp03u6jPvCoUOH1LRpU3l7eysiIkKPPPKIVqxYof79+yswMFDTpk1Tly5dVLduXf3xxx/q0aOH0qdPr+nTp8vf39/T5QP/Kub6tW/fPh05ckQZMmRQnjx5lDt3bq1YsUJPP/20mjVrpo8//liZMmWSJEVFRenq1avy8/PzcPXJx/z589W6dWu98cYbql+/vkqXLi1J+v3339W6dWtJ0ueff665c+dq9uzZWr9+vXLlyuXJku9bt99z9evXT7Nnz1ZAQIAOHDighg0batCgQcqVK5eGDRum5cuXq2rVqho8eLDLNS81398mJUIp4B6Fh4frkUceUXh4uHLkyKHy5curcuXK6tixoyRp79696t69u7Zv364vv/xSOXPm1BtvvKEcOXJo3Lhxku4cAiB+Yi4yCxcu1FtvvaWrV68qY8aMqlWrlnr16iV/f3+NGjVKH3zwgd5++21169bN0yUnS5cvX3YGqpI0d+5cHTp0SMHBwSpdurRKlSolSapfv75++eUXLVq0yCWYguvNym+//aabN28qe/bszhvIM2fOqE6dOrp+/boWLlwYK5iSxBcCQAqyb98+9e3bV9HR0WrXrp0cDoc++ugjBQYGatGiRSpfvrzWrl2rdOnSac+ePcqUKZNy587t6bKBfxVz3Zo/f75eeeUVZcyYUb6+vrp+/bomTJigihUr6vvvv1fDhg3VokULjRw50uX+Arfs2rVL9erVU79+/fTCCy/EWr937161a9dOx44dk7e3t+bMmaOyZct6oNKUZfTo0Xr77be1ZMkSlS9fXm+//bYGDhyo1atXq2rVqrp27Zree+89TZ06Vb169dLLL7/s6ZJTPo/0zwJSkJs3b1q/fv1swoQJtmXLFnv//fctMDDQWrRoYe+9955FRkbazp077YUXXjCHw2GFChWy0qVLM+dOIlu5cqVlypTJRo4caZcuXbL+/ftb+vTpnY/bPnHihA0ZMsQcDkesCc5h9vTTT1vXrl2dcxT07dvXMmXKZJUrV7YsWbJYhQoV7IMPPnBuHzP32e0TdKd2t3cJf/PNN61gwYJWsGBB8/X1tcmTJzvb9syZMxYaGmqlSpVyzjkHIOXavXu31a1b18LCwmzPnj12+fJl27hxo9WvX9+mTZtmZtwL4P7z448/mr+/v40bN87MzObPn28Oh8OGDh3q3Gb16tXmcDisa9euHOP/X3R0tLMtvvvuOytSpIjLg43iaqeNGzfaiRMn3FViitehQwd75513zOzWlCqBgYHO4zjmCXuXL1+2Tz/9lIf1uAmhFJAIvv32W/Pz83M+bvjatWv25ptvmsPhsHLlytnw4cNt9+7dtn37dtu4caPzBMecO/cuOjraoqKirHPnzta9e3czuxVA5c+f37p06eLc7ubNm3bmzBnn7wKuxo8fbw6Hw/r162cbN260ChUqOCc0P3DggPXq1cvKlCljY8eONbNb4+6rVKli9evX92TZydKgQYMsZ86ctnz5cjMza9Omjfn7+9t7773nnL/szJkzljdvXmvTpo0HKwXgLnv37rWwsDALCwtzzisH3I9iQpMRI0ZY27ZtzezWU2Pz5s3r8nS906dPm5nZmjVrUvUXMDFfWF29etWuX79uhw4dck6i/dVXX1lwcLBduHDBzFw/F2zYsME2b97s/oJTsIiICIuMjLTQ0FCbO3eu/fTTT+br6+v8svrGjRs2ePBgl6dMm/EUaXdgQCSQCOrWrau2bdtq4sSJkqT06dNr3rx5euqpp/TYY49p5cqVevDBB7Vt2zZVrFhRadKkUVRUFEP2EoHD4ZCXl5cuX76sChUq6MyZM3rkkUcUFhamMWPGSJIWLlyolStXKigoSH369FHRokU9XHXy8+KLL2rKlCl69913NW7cOIWEhKhMmTKSpIIFC6p79+4qVaqUvvnmG127dk3p0qXT6tWrtWjRIg9X7nkbN27U3r17Jd2aA2LdunX65JNPVKtWLS1atEjffPONnnjiCb322mv69NNPdfbsWQUFBWnHjh364osvPFs8ALd44IEHNGbMGHl5eWnIkCFav369p0sCEsT+/4wvMcPNw8PDlT59eh06dEiVKlVSnTp19PHHH0uSli5dqsmTJ+vKlSt67LHHnHOqpjYxQ/p37dqlNm3aKDQ0VIUKFdKjjz6qwYMHq2rVqoqKitLAgQMlyeVzwZw5c7R69WpFRkZ6qPr736ZNm3T06FFJ0sCBA7Vy5UqlTZtWjRo10quvvqoqVapo3LhxevHFFyVJV65c0Q8//KDff//dZT9MqeAGnk7FgJTis88+s8qVK9u5c+esTJkyVrlyZeejXP/++2+bOXMmPaMSScy3dGfOnHEu69ixo5UtW9by589vXbt2dbb11atXrWXLljZkyBDa/w5u7yo+bdo0czgcliVLlliPI1+xYkWcT4hLzU/rPHjwoFWoUMEaNmxoBw4csOvXr9tnn31mERERtnbtWgsJCbGPP/7YzMyaNWtmgYGB9tZbb1l4eLhzH3wDB6Qee/futfr161vFihVt48aNni4HSJBNmzbZ7Nmzzcxs4sSJVrx4cQsJCbEXXnjBuc3Nmzetc+fO9tJLLzl7BKVGMfdWO3bssICAAOvatat99tlnNn/+fHvqqacsTZo01qRJE5s+fboFBQVZ165d7ciRI7Zz507r16+fBQYGpuoeZvdq3759Vq5cOWvbtq1zCpWYJ55v2rTJatWqZaVLl7b9+/ebmdnx48etbt26VrFiRe7LPIBQCkhE5cqVM4fDYdWqVbvjI1sJRu5NzEX+66+/tipVqtjXX39tZre6jpcpU8Zy5crlsm3//v0tX758tm/fPo/Um5zdKUyaOXOmORwO6969ux07dsy5/LfffrOiRYvGCqVSu08++cSqV69uzZo1syNHjjiXP//889axY0fn/HEvv/yyM7Bmbg0g9dq1a5c1bdrUDh065OlSgHiJjo62mzdvWo0aNaxevXrO5XXr1rW0adPaxo0b7fLlyxYeHm79+vWz4OBgAhUzO3XqlJUpU8b69u0ba/mYMWPMz8/P6tevb4sXL7YcOXJYSEiIFSpUyIoWLWpbt271UNUpx+eff245c+a09OnT27Jly1zWzZw502rUqGH+/v5WunRpe/jhh61cuXLOezaCKfdi7BCQCOz/P4Wke/fuGj58uD788ENlyZIl1lO1JDFk7x45HA4tWrRILVu21IABA5QlSxZJUo4cOfTGG2+oa9euKlWqlPOpZuvWrdOKFStUuHBhD1eevNz+lLi1a9fq3Llzcjgcql27tlq0aKFr166pU6dOunjxopo0aaKcOXNqwIABypgxo0qWLOnh6pOHmH/fzz//vLy9vfX555+rT58+GjJkiIoUKaI9e/aoZMmS8vb2liQdPXpUkydPVqlSpeRwOOI8PwBI+YoVK6bp06crXbp0ni4FiLc0adLonXfeUb169TR79mw1b95cs2fPVq1atdS8eXOlTZtWBQoU0K5du/Tdd9+l2iF7t/v7778VGRmp1q1bO5+sGx0drWzZsql169a6cOGChg8frpdfflm//fabtm3bpkyZMqlAgQLKkSOHp8u/b8Xc4+bLl0++vr7Knj27Zs2apaJFiypfvnySpBYtWqhChQr66aefdOLECeXOnVuNGjVSmjRpeCq6BzjM/v8AYQD37OjRoypXrpy6d++uvn37/r/27jyq6jr/4/jzsoh0Etc7xbgvdFxGSUhzDXGZXBhhhMwZUnAZEzHXTDBhFjOmQB3NBMWANCc5R7EyFwydMcGFqXHJJQVNww1BEcZQkHvv7w9/3B/kNPMr7d6LvR5/wfd77z3vzxfO+X6+r/tZ7F3OQ6moqIhhw4bx3HPPMW/evFrnqqqquHjxIkuWLKGiooKWLVsyevRovLy87FStY6oZhsybN48PP/wQJycnmjVrxsWLFzlw4ABGo5H169czduxYAMaNG0dlZSXvvvsurq6utUKtn7Ka1zItLY20tDQee+wxVq5cyYYNG5g+fTrPP/88X375JRUVFRw5cgQXFxcFUiIi4tC+fZ8ym83cvHmTiIgIGjZsyPLly60P7unp6Vy+fJkWLVrQs2dPWrVqZa+yHUpaWhoRERHcunULuPeanj17Fh8fH6KiovTc8AB8u29aUlICwKZNm0hLS6Nt27YsWrToP/5/VoeHYlt6ohB5gJo3b050dDQJCQmcOHHC3uU8lEpLS7ly5Qp9+/YF7t7gq7N1FxcXWrduzbJly0hKSuLVV19VIPUthYWF1g7RypUrSUlJYd26dZw4cYKQkBC++uor9u/fD0BoaCgbN24EwN/fn/Xr1+Pq6kpVVZUCqf9VPeIJIDw8nPDwcC5dukRkZCTBwcEkJiZiMpno2bMnhw8fxsXFBZPJpEBKREQcmsFgIDc3l4yMDACcnJzw8PDg2WefJS0tjZMnT1pf+/zzzzNz5kxCQkIUSNVQPUp/06ZNAPfc+9u1a0e7du0oLCwE/m8xefn+agZSe/fuZd++fZw+fZrGjRszadIkxo4dy9mzZ4mNjaWgoAC422/btWtXrc9RIGUfeqoQecCGDx/OiBEjNGz5R1KvXj1cXV05e/YsUDsUyMzM5KOPPrK+Vjf32pYtW0aPHj24du0aACdOnCAqKooePXrwwQcfsGDBAlatWsXIkSMpKyujsrKSUaNGsWXLFkJDQ63XWkOaa/t2MDVhwgQuXrzIzJkzCQwMJD09nZUrV1oDPXV4RETEkVksFq5fv87bb79NSEgI48aN47333gPujpwOCAhg0aJFfPPNN3au1LG1adMGDw8P1q5dy/nz563HzWYzcHckj7u7O76+vsC9oZX8/1gsFmsgNXv2bEaNGkVISAjDhg0jLCyMkpISXnzxRcaNG8fZs2cJCAjAz8+PzMxM/Pz87Fy9gEIpkQeuffv2pKWl4eTkhMlksnc5dVrNUKn6Bt60aVPatGlDWloax48fB7DeiHbs2EFSUhLl5eWAbu41rVq1innz5pGQkEDTpk2Bu2sdVFRUsG3bNsaOHcsbb7zB7373O8xmM2vXrmX16tWYzWZGjBiBi4sLVVVVuqbfoWYwNX78eCZMmMClS5eYO3cuFy5cwMnJSYGeiIjUCQaDgSZNmpCYmMiBAwe4du0aixcvxtfXl6ysLDp27EhZWRmXL1+2d6kOrUWLFiQmJrJjxw5iYmLu6bcuWbKES5cu0b9/f3uWWafVnBL52WefsWXLFrZs2cKOHTtIT09n69at1jW9XnzxRebMmUNgYCDe3t4UFBRYR7CLfWlNKRFxSNU3maysLLZu3crx48cJDg4mKCiIyspKnn76abp27crIkSNp3bo127dvZ/369WRnZ/OLX/zC3uU7lOTkZKZNm0Z6ejpBQUHW4wsWLGD//v384x//4M9//jNTp04FoLi4mLCwMPz8/HjllVfsVHXdVLNzlJKSwurVq5k8eTITJkzQOlIiIuKwqu9Rp06d4vz58zRp0gRPT0+aN29OSUkJly5dIiYmhsLCQkwmE7m5uURHR7No0SJ7l+7QTCYTa9asYdq0abRv356+ffvi6enJV199xfbt29m1axfdu3e3d5l1XkpKCrt27cLDw4PExETr8dOnT+Pr60tERARvvvnmPe/TGlKOQaGUiDiszZs3ExYWRmhoKEajkZSUFLp06cKWLVv4+uuvefnll/nyyy+pqqrC09OTFStW4O3tbe+yHcrf//53Bg4cyB/+8AdiY2Otx6dNm0ZVVRU5OTncvn2bdevW0bVrV4qLi4mIiODatWvk5ORoZM8PUDN8CggIwMXFhQ8++MC+RYmIiHyH6vvWpk2bmDFjBq6urlgsFurXr8+aNWvo16+f9bU7d+7k0KFDLF26lJ07d9KtWzc7Vl53HDx4kDfffJNTp07RqFEjvL29eemll7TcxwNQWFjIrFmz2LFjBwMGDLCug1ZRUYGbmxsJCQmsX7+erKwsGjdurHVRHZBCKRFxSAUFBQQEBBAREcGUKVOwWCw0bNiQiIgIXn/9dZydnblz5w63b9+mrKwMDw8PGjRoYO+yHU5eXh4TJ06kcePGxMTE8NRTTxEcHMzRo0c5duwYV69eZfDgwbi5uXHlyhU6dOiA2Wxm7969uLq66hukH6i6gx8ZGcn169d59913tf27iIg4hJqLQldVVeHi4kJubi6DBw8mPj6egIAA8vPzWbNmDRs3bmT37t307t271mfcunULd3d3e5RfZ5lMJpycnDAYDNrF+D78u2v3+eefs2LFCtavX09qaiqhoaHWc4mJiSQlJZGTk8Ojjz5q63Ll/0GhlIjY1XdNaSooKCAwMJC9e/dy6dIl/P39GT58OKtXrwbgwIEDdO7cGQ8PD1uXXOfk5eUxffp0nJ2dKS0tpby8nE2bNtGmTRsAioqK+OKLL8jPz8fLy4tnnnkGZ2dna0dVfpji4mKCgoJISkrSlFIREXEo58+fp1WrVhgMBkwmE2lpadbRJNUP/FeuXGHOnDmcPHmSnTt30qxZM+v7NSX9+6t5zXT9fpiagVRBQQFlZWV06tQJJycnzp07x+9//3s+/fRT/vjHPxISEsK//vUvXnjhBVxdXdm6dauuuYNSPCsidmM2mzEYDJSXl1NcXMzf/vY3Ll68SGlpKU5OTly9epXc3FyGDRvG8OHDSUpKAuDo0aMsW7aMM2fO2LkFdYOXlxfLly+noqKCL774gqioKGsgVVVVhdFoZODAgUyePBl/f3+cnZ0xmUwKpO5Ts2bNyMrKUiAlIiIOpaKigjFjxtCuXTssFgvOzs6UlZVx+PBhysrKgLuhyeOPP85vf/tbiouLKS4urvUZerj//mpeM12/76/mLnuxsbEEBAQwZMgQevToweLFi/nZz35GVFQUzzzzDOHh4XTq1ImoqCgqKyvJyMiwjlATx6NQSkTsovqbjtOnTxMREUH//v0ZPnw4Xbp0YerUqZSUlBAaGsqgQYPo3r07q1evtt6INmzYwJkzZ3j88cft3Iq6w8vLi6SkJHr16kVqairZ2dkAuLi48O8GzGrK3oNRv359e5cgIiJSS7169YiPj+fRRx/Fx8cHi8VCYGAgnp6epKamcuPGDWto4uXlhaurqzWsErGX6v/JuLg4Vq9eTVxcHAUFBTRu3Ji33nqL/Px8OnXqxLx58xg/fjz16tWjW7du7Nmzh/r161NRUaEpkw5KfxURsbnqQOro0aMMGDCARx55hKioKA4dOsSUKVM4ePAgzz33HEajkbFjx3L48GGysrLYtGkTs2fPZsWKFSQnJ+Pp6WnvptQp7du356233sJisbBo0SJycnIAfVsnIiLyMPv26BCDwUCfPn1ITk7m1q1bPP3007Rr145f//rXpKamkpycTGFhITdv3iQlJQUnJyfrCGsRW6uoqLD+XFpays6dO4mPj2f48OHs3r2b3Nxc5s+fT7du3TCZTHTu3JkZM2bg7+9PcnKydbMZNzc3O7VA/hutKSUiNlUzkOrduzczZszgT3/6U62pYhs2bGDp0qUYDAYmTZrEvn37yMjIoFWrVjz22GMsXrxYu73ch7y8PGbNmkVhYSHvvPOOrqWIiMhDqrrfdeXKFc6dO0evXr2s5+7cucOhQ4cYM2YMLVu2ZM+ePcTGxrJ582by8/N58sknOXPmDJmZmXTv3t2OrZCfqp07d3LkyBH8/Pzo2bMnpaWl+Pv7k5mZyeHDhxk1ahTx8fFMmTKFW7dusXbtWvz9/XniiSc4cuQIK1eu5MMPP2TVqlUEBgbauznyHbRgiIjYlJOTEwUFBQwaNIgRI0bw+uuvA3fniVevYzRmzBhKS0t59dVXsVgspKSkMH/+fDw9PTGbzdpl7z55eXkRHx/PmjVrtN6RiIjIQ6y639W9e3euX7+On58fvXv3ZvDgwTz11FP07NmT9PR0Jk6cSL9+/cjOzmbq1Kls27aNxo0b4+PjQ+vWre3dDPkJSk1NJSYmhpEjR+Lv7w9Aw4YNcXd3Jzg4mCNHjvCXv/yFiRMnAnc37nn//fdp1KgRTzzxBN7e3kyePBk3Nzf1dx2cRkqJiM2dO3eO0aNH4+npydy5c+nXr5/1XM3dSPr374/RaCQjIwOTyaR1jn4k2pZYRETk4XX+/HmCgoK4desWDRo0oEuXLqSnp9OxY0e6du1KQEAABoOB6Oho2rVrR2Zmpqb2i11t2LCBiRMnkpqaytChQ/Hw8LA+I2zbto05c+ZgNBr59NNPAfjmm28YPXo05eXlZGVl1XpmqKio0NQ9B6dQSkTsIi8vj+nTp2OxWFiwYIE1mKoZSvn7+9O8eXPee+89e5YqIiIiUqfl5+fzyiuvYDabiY6OxtPTk3379rFixQru3LnDsWPHaN++PceOHSMwMJDNmzfX6pOJ2EpRURGjR48mJCSEyMhI6/GbN2+Sl5fH5cuXOXr0KOvWreORRx6hZcuWFBUVUVZWxmeffYarq6u+zK5j9NW4iNiFl5cXy5cvx2Aw8Nprr9VadNtsNnPhwgXc3d0ZMmQIwL/dIU5ERERE/rsOHToQFxfH7du3iYmJobCwkDFjxpCdnU1mZiZJSUn86le/4sknnyQ2NhbQRihiP1evXqV58+bW3xMTExk/fjy+vr7MnDmT999/n3feeYfevXvTqlUrgoKC+Pzzz3F1daWqqkqBVB2jkVIiYlffNWIqKiqKHTt28PHHH9OiRQs7VykiIiJS9+Xl5fHSSy8BEB0djZ+fX63zVVVVtTafEbG1oqIifHx8GDp0KL/5zW9YuXIlp0+fpl+/fgQFBVFaWsr8+fOJjIxk5syZtd6rEVJ1k0IpEbG7msFUXFwcn3zyCQsXLiQ7Oxtvb297lyciIiLy0KjZ74qNjaVPnz72Lkmkll27dhEcHEzTpk1p0KABS5Yswdvbm6ZNm1JSUsLAgQMJCAhg4cKF9i5VHgCFUiLiEPLy8pg9eza5ubmUlJSwf/9+fH197V2WiIiIyEOnut9VXFzM0qVL6dWrl71LEqmlqKiImzdv0rZt21rHS0pKCAoKIjQ0lMmTJ9upOnmQtKaUiDgELy8vEhIS6NWrF4cOHVIgJSIiIvIj8fLyIj4+nhYtWvDzn//c3uWI3MNoNN4TSBUVFTF27FgqKiqYOHGinSqTB00jpUTEody5cwdXV1d7lyEiIiLy0KusrKRevXr2LkPkPyouLmbNmjVkZ2dz9epVcnJytMveQ0QjpUTEoSiQEhEREbENBVJSF1y4cIGcnBw6dOjAvn37tMveQ0YjpURERERERETEYd24cYOGDRtiMBg0Quoho1BKRERERERERByexWLBYDDYuwx5gDR9T0REREREREQcngKph49CKRERERERERERsTmFUiIiIiIiIiIiYnMKpURERERERERExOYUSomIiIiIiIiIiM0plBIREREREREREZtTKCUiIiLiwE6dOsVrr73G7du37V2KiIiIyANlsFgsFnsXISIiIiL3MplM9O3blyZNmtC1a1feeOMNe5ckIiIi8sBopJSIiIiIjYSHh2MwGJgyZco95yIjIzEYDISHh1uPJSQkMGDAAD766CMOHjxIbm6uDasVERER+XFppJSIiIiIjYSHh7N7927Kysq4fPky7u7uANy+fRtPT088PDzw9/cnLS3NvoWKiIiI2IBGSomIiIjYkI+PDy1btiQjI8N6LCMjg1atWtG9e3frMbPZTFxcHG3btsXd3R1vb282btxoPV9SUkJoaChGoxF3d3e8vLxITU21aVtERERE7odCKREREREbmzBhQq0AKSUlhfHjx9d6TVxcHGvXriUpKYnjx48za9YsXnjhBfbs2QNATEwMJ06cYPv27Zw8eZLExESaNWtm03aIiIiI3A9N3xMRERGxkfDwcG7cuEFycjItW7bk1KlTAHTs2JGCggImTZpEo0aNWLVqFU2aNCErK4vevXtb3z9p0iTKy8v561//ysiRI2nWrBkpKSn2ao6IiIjIfXGxdwEiIiIiPzVGo5ERI0aQlpaGxWJhxIgRtUY55efnU15ezpAhQ2q9r7Ky0jrFLyIiguDgYP75z3/yy1/+kqCgIPr06WPTdoiIiIjcD4VSIiIiInYwYcIEpk2bBsDbb79d69zNmzcB2Lp1K82bN691zs3NDYBhw4Zx/vx5tm3bxieffMKgQYOIjIwkISHBBtWLiIiI3D+FUiIiIiJ2MHToUCorKzEYDDz77LO1znXu3Bk3Nze+/vpr/Pz8vvMzjEYjYWFhhIWF0b9/f+bOnatQSkREROoMhVIiIiIiduDs7MzJkyetP9fUoEEDXn75ZWbNmoXZbKZfv36UlpaSk5ODh4cHYWFhxMbG4uvrS5cuXaioqODjjz+mU6dO9miKiIiIyA+iUEpERETETjw8PL7z3MKFCzEajcTFxXH27FkaNWqEj48P8+fPB6BevXpER0dz7tw53N3d6d+/Pxs2bLBV6SIiIiL3TbvviYiIiIiIiIiIzTnZuwAREREREREREfnpUSglIiIiIiIiIiI2p1BKRERERERERERsTqGUiIiIiIiIiIjYnEIpERERERERERGxOYVSIiIiIiIiIiJicwqlRERERERERETE5hRKiYiIiIiIiIiIzSmUEhERERERERERm1MoJSIiIiIiIiIiNqdQSkREREREREREbE6hlIiIiIiIiIiI2Nz/AC/CanuW+SEDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12, 6))\n", + "plt.bar(precip_mensal['Mês'], precip_mensal['Precipitacao_Mensal_mm'], color='#FF0000', alpha=0.7)\n", + "plt.xlabel('Mês')\n", + "plt.ylabel('Precipitação Mensal (mm)')\n", + "plt.title('Precipitação Mensal')\n", + "plt.grid(axis='y')\n", + "plt.xticks(rotation=45)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -3985,7 +5801,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.12.3" } }, "nbformat": 4,