diff --git a/exercicios/projeto-guiado/projeto_guiado_Rafaella_Roden.ipynb b/exercicios/projeto-guiado/projeto_guiado_Rafaella_Roden.ipynb
new file mode 100644
index 0000000..f029040
--- /dev/null
+++ b/exercicios/projeto-guiado/projeto_guiado_Rafaella_Roden.ipynb
@@ -0,0 +1,12380 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "QQcqnbPeTUZx",
+ "outputId": "da26006e-0b72-47f1-d5ea-2f610465bb4b"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n"
+ ]
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "from google.colab import drive\n",
+ "drive.mount('/content/drive')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "jiCTK4nhTUZ0"
+ },
+ "source": [
+ "Extração\n",
+ "1. **Extração de Dados:**\n",
+ " - Inicie o projeto extraindo dados de um arquivo CSV.\n",
+ "\n",
+ "2. **Inspeção Inicial:**\n",
+ " - Revise o conteúdo dos dados extraídos, observando as primeiras e últimas linhas, a forma e a descrição geral dos dados, e os tipos de dados.\n",
+ "\n",
+ "3. **Identificação e Tratamento de Valores Faltantes:**\n",
+ " - Identifique a presença de valores nulos e trate-os adequadamente, seja removendo, preenchendo ou substituindo esses valores."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 397
+ },
+ "id": "tlD8Qk7MTUZ2",
+ "outputId": "85590cf3-79e0-474a-9216-0b31d658a789"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n",
+ "0 2020/01/01 0000 UTC ,6 \n",
+ "1 2020/01/01 0100 UTC 0 \n",
+ "2 2020/01/01 0200 UTC 0 \n",
+ "3 2020/01/01 0300 UTC 0 \n",
+ "4 2020/01/01 0400 UTC 0 \n",
+ "\n",
+ " PRESSAO ATMOSFERICA AO NIVEL DA ESTACAO, HORARIA (mB) \\\n",
+ "0 970 \n",
+ "1 970,2 \n",
+ "2 969,8 \n",
+ "3 970,1 \n",
+ "4 970,2 \n",
+ "\n",
+ " PRESSÃO ATMOSFERICA MAX.NA HORA ANT. (AUT) (mB) \\\n",
+ "0 970 \n",
+ "1 970,2 \n",
+ "2 970,2 \n",
+ "3 970,1 \n",
+ "4 970,5 \n",
+ "\n",
+ " PRESSÃO ATMOSFERICA MIN. NA HORA ANT. (AUT) (mB) RADIACAO GLOBAL (Kj/m²) \\\n",
+ "0 969,5 NaN \n",
+ "1 970 2,9 \n",
+ "2 969,8 1,6 \n",
+ "3 969,8 ,6 \n",
+ "4 970,1 NaN \n",
+ "\n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n",
+ "0 23,1 \n",
+ "1 23,7 \n",
+ "2 24 \n",
+ "3 24,3 \n",
+ "4 23,8 \n",
+ "\n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n",
+ "0 22,6 \n",
+ "1 21,7 \n",
+ "2 21,8 \n",
+ "3 21,4 \n",
+ "4 21,7 \n",
+ "\n",
+ " TEMPERATURA MÁXIMA NA HORA ANT. (AUT) (°C) \\\n",
+ "0 23,1 \n",
+ "1 23,7 \n",
+ "2 24,4 \n",
+ "3 25,1 \n",
+ "4 24,3 \n",
+ "\n",
+ " TEMPERATURA MÍNIMA NA HORA ANT. (AUT) (°C) \\\n",
+ "0 22,6 \n",
+ "1 23 \n",
+ "2 23,7 \n",
+ "3 24 \n",
+ "4 23,7 \n",
+ "\n",
+ " TEMPERATURA ORVALHO MAX. NA HORA ANT. (AUT) (°C) \\\n",
+ "0 22,8 \n",
+ "1 22,5 \n",
+ "2 21,9 \n",
+ "3 22 \n",
+ "4 21,8 \n",
+ "\n",
+ " TEMPERATURA ORVALHO MIN. NA HORA ANT. (AUT) (°C) \\\n",
+ "0 21,6 \n",
+ "1 21,6 \n",
+ "2 21,2 \n",
+ "3 21,2 \n",
+ "4 21,4 \n",
+ "\n",
+ " UMIDADE REL. MAX. NA HORA ANT. (AUT) (%) \\\n",
+ "0 98.0 \n",
+ "1 97.0 \n",
+ "2 88.0 \n",
+ "3 88.0 \n",
+ "4 89.0 \n",
+ "\n",
+ " UMIDADE REL. MIN. NA HORA ANT. (AUT) (%) \\\n",
+ "0 94.0 \n",
+ "1 88.0 \n",
+ "2 83.0 \n",
+ "3 80.0 \n",
+ "4 83.0 \n",
+ "\n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n",
+ "0 97.0 11.0 \n",
+ "1 88.0 10.0 \n",
+ "2 88.0 345.0 \n",
+ "3 83.0 332.0 \n",
+ "4 89.0 316.0 \n",
+ "\n",
+ " VENTO, RAJADA MAXIMA (m/s) VENTO, VELOCIDADE HORARIA (m/s) Unnamed: 19 \n",
+ "0 3,2 1,9 NaN \n",
+ "1 4,6 1,3 NaN \n",
+ "2 3,2 ,6 NaN \n",
+ "3 4,8 1,5 NaN \n",
+ "4 3,3 ,2 NaN "
+ ],
+ "text/html": [
+ "\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " Hora UTC \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " PRESSAO ATMOSFERICA AO NIVEL DA ESTACAO, HORARIA (mB) \n",
+ " PRESSÃO ATMOSFERICA MAX.NA HORA ANT. (AUT) (mB) \n",
+ " PRESSÃO ATMOSFERICA MIN. NA HORA ANT. (AUT) (mB) \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " TEMPERATURA MÁXIMA NA HORA ANT. (AUT) (°C) \n",
+ " TEMPERATURA MÍNIMA NA HORA ANT. (AUT) (°C) \n",
+ " TEMPERATURA ORVALHO MAX. NA HORA ANT. (AUT) (°C) \n",
+ " TEMPERATURA ORVALHO MIN. NA HORA ANT. (AUT) (°C) \n",
+ " UMIDADE REL. MAX. NA HORA ANT. (AUT) (%) \n",
+ " UMIDADE REL. MIN. NA HORA ANT. (AUT) (%) \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " VENTO, RAJADA MAXIMA (m/s) \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " Unnamed: 19 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 2020/01/01 \n",
+ " 0000 UTC \n",
+ " ,6 \n",
+ " 970 \n",
+ " 970 \n",
+ " 969,5 \n",
+ " NaN \n",
+ " 23,1 \n",
+ " 22,6 \n",
+ " 23,1 \n",
+ " 22,6 \n",
+ " 22,8 \n",
+ " 21,6 \n",
+ " 98.0 \n",
+ " 94.0 \n",
+ " 97.0 \n",
+ " 11.0 \n",
+ " 3,2 \n",
+ " 1,9 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 2020/01/01 \n",
+ " 0100 UTC \n",
+ " 0 \n",
+ " 970,2 \n",
+ " 970,2 \n",
+ " 970 \n",
+ " 2,9 \n",
+ " 23,7 \n",
+ " 21,7 \n",
+ " 23,7 \n",
+ " 23 \n",
+ " 22,5 \n",
+ " 21,6 \n",
+ " 97.0 \n",
+ " 88.0 \n",
+ " 88.0 \n",
+ " 10.0 \n",
+ " 4,6 \n",
+ " 1,3 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 2020/01/01 \n",
+ " 0200 UTC \n",
+ " 0 \n",
+ " 969,8 \n",
+ " 970,2 \n",
+ " 969,8 \n",
+ " 1,6 \n",
+ " 24 \n",
+ " 21,8 \n",
+ " 24,4 \n",
+ " 23,7 \n",
+ " 21,9 \n",
+ " 21,2 \n",
+ " 88.0 \n",
+ " 83.0 \n",
+ " 88.0 \n",
+ " 345.0 \n",
+ " 3,2 \n",
+ " ,6 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 2020/01/01 \n",
+ " 0300 UTC \n",
+ " 0 \n",
+ " 970,1 \n",
+ " 970,1 \n",
+ " 969,8 \n",
+ " ,6 \n",
+ " 24,3 \n",
+ " 21,4 \n",
+ " 25,1 \n",
+ " 24 \n",
+ " 22 \n",
+ " 21,2 \n",
+ " 88.0 \n",
+ " 80.0 \n",
+ " 83.0 \n",
+ " 332.0 \n",
+ " 4,8 \n",
+ " 1,5 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 2020/01/01 \n",
+ " 0400 UTC \n",
+ " 0 \n",
+ " 970,2 \n",
+ " 970,5 \n",
+ " 970,1 \n",
+ " NaN \n",
+ " 23,8 \n",
+ " 21,7 \n",
+ " 24,3 \n",
+ " 23,7 \n",
+ " 21,8 \n",
+ " 21,4 \n",
+ " 89.0 \n",
+ " 83.0 \n",
+ " 89.0 \n",
+ " 316.0 \n",
+ " 3,3 \n",
+ " ,2 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 8784,\n \"fields\": [\n {\n \"column\": \"Data\",\n \"properties\": {\n \"dtype\": \"object\",\n \"num_unique_values\": 366,\n \"samples\": [\n \"2020/07/12\",\n \"2020/02/03\",\n \"2020/01/16\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Hora UTC\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 24,\n \"samples\": [\n \"0800 UTC\",\n \"1600 UTC\",\n \"0000 UTC\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PRECIPITA\\u00c7\\u00c3O TOTAL, HOR\\u00c1RIO (mm)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 73,\n \"samples\": [\n \",4\",\n \"30,8\",\n \"5,8\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PRESSAO ATMOSFERICA AO NIVEL DA ESTACAO, HORARIA (mB)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 229,\n \"samples\": [\n \"986,9\",\n \"972,4\",\n \"969,5\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PRESS\\u00c3O ATMOSFERICA MAX.NA HORA ANT. (AUT) (mB)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 227,\n \"samples\": [\n \"969,5\",\n \"978\",\n \"967,4\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PRESS\\u00c3O ATMOSFERICA MIN. NA HORA ANT. (AUT) (mB)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 224,\n \"samples\": [\n \"968,7\",\n \"973,9\",\n \"975,4\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RADIACAO GLOBAL (Kj/m\\u00b2)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 4259,\n \"samples\": [\n \"1895,3\",\n \"1625,8\",\n \"479,1\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO AR - BULBO SECO, HORARIA (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 335,\n \"samples\": [\n \"25,3\",\n \"28,4\",\n \"27\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO PONTO DE ORVALHO (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 237,\n \"samples\": [\n \"11,8\",\n \"23,7\",\n \"4,3\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA M\\u00c1XIMA NA HORA ANT. (AUT) (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 339,\n \"samples\": [\n \"7,2\",\n \"29,4\",\n \"26\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA M\\u00cdNIMA NA HORA ANT. (AUT) (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 299,\n \"samples\": [\n \"10,3\",\n \"9,7\",\n \"17,7\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA ORVALHO MAX. NA HORA ANT. (AUT) (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 233,\n \"samples\": [\n \"17,1\",\n \"3,8\",\n \"3,9\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA ORVALHO MIN. NA HORA ANT. (AUT) (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 237,\n \"samples\": [\n \"10,1\",\n \"22\",\n \"2,4\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"UMIDADE REL. MAX. NA HORA ANT. (AUT) (%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 18.862048885773895,\n \"min\": 17.0,\n \"max\": 100.0,\n \"num_unique_values\": 84,\n \"samples\": [\n 25.0,\n 98.0,\n 38.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"UMIDADE REL. MIN. NA HORA ANT. (AUT) (%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 19.71893519670864,\n \"min\": 13.0,\n \"max\": 100.0,\n \"num_unique_values\": 88,\n \"samples\": [\n 21.0,\n 94.0,\n 62.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"UMIDADE RELATIVA DO AR, HORARIA (%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 19.4565897403443,\n \"min\": 14.0,\n \"max\": 100.0,\n \"num_unique_values\": 87,\n \"samples\": [\n 27.0,\n 97.0,\n 79.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, DIRE\\u00c7\\u00c3O HORARIA (gr) (\\u00b0 (gr))\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 81.66962907050141,\n \"min\": 1.0,\n \"max\": 360.0,\n \"num_unique_values\": 360,\n \"samples\": [\n 110.0,\n 308.0,\n 21.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, RAJADA MAXIMA (m/s)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 164,\n \"samples\": [\n \"17\",\n \"18,6\",\n \"9,6\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, VELOCIDADE HORARIA (m/s)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 86,\n \"samples\": [\n \"6,2\",\n \"1,9\",\n \"6,7\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Unnamed: 19\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": null,\n \"max\": null,\n \"num_unique_values\": 0,\n \"samples\": [],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 64
+ }
+ ],
+ "source": [
+ "file_path = '/content/drive/My Drive/INMET_MS_ITAQUIRAI_2020.CSV'\n",
+ "df = pd.read_csv(file_path, encoding='latin1',skiprows=8, delimiter=';')\n",
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.tail()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 397
+ },
+ "id": "uL0nbfR41Cvw",
+ "outputId": "3ba7d5a9-85da-49a3-b8fe-06c9f605ab61"
+ },
+ "execution_count": 65,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n",
+ "8779 2020/12/31 1900 UTC ,4 \n",
+ "8780 2020/12/31 2000 UTC 0 \n",
+ "8781 2020/12/31 2100 UTC 0 \n",
+ "8782 2020/12/31 2200 UTC 0 \n",
+ "8783 2020/12/31 2300 UTC 0 \n",
+ "\n",
+ " PRESSAO ATMOSFERICA AO NIVEL DA ESTACAO, HORARIA (mB) \\\n",
+ "8779 972,6 \n",
+ "8780 970,4 \n",
+ "8781 970,7 \n",
+ "8782 972,4 \n",
+ "8783 974,1 \n",
+ "\n",
+ " PRESSÃO ATMOSFERICA MAX.NA HORA ANT. (AUT) (mB) \\\n",
+ "8779 973,3 \n",
+ "8780 972,6 \n",
+ "8781 970,7 \n",
+ "8782 972,4 \n",
+ "8783 974,1 \n",
+ "\n",
+ " PRESSÃO ATMOSFERICA MIN. NA HORA ANT. (AUT) (mB) RADIACAO GLOBAL (Kj/m²) \\\n",
+ "8779 972,6 775,9 \n",
+ "8780 970,4 837,8 \n",
+ "8781 970,1 524,7 \n",
+ "8782 970,7 256,5 \n",
+ "8783 972,4 9,6 \n",
+ "\n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n",
+ "8779 23,1 \n",
+ "8780 24,2 \n",
+ "8781 24,9 \n",
+ "8782 24,2 \n",
+ "8783 23,5 \n",
+ "\n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n",
+ "8779 22,7 \n",
+ "8780 22,7 \n",
+ "8781 23 \n",
+ "8782 22,1 \n",
+ "8783 22,5 \n",
+ "\n",
+ " TEMPERATURA MÁXIMA NA HORA ANT. (AUT) (°C) \\\n",
+ "8779 23,3 \n",
+ "8780 24,4 \n",
+ "8781 24,9 \n",
+ "8782 25,1 \n",
+ "8783 24,2 \n",
+ "\n",
+ " TEMPERATURA MÍNIMA NA HORA ANT. (AUT) (°C) \\\n",
+ "8779 21,7 \n",
+ "8780 23,1 \n",
+ "8781 24,1 \n",
+ "8782 24,2 \n",
+ "8783 23,4 \n",
+ "\n",
+ " TEMPERATURA ORVALHO MAX. NA HORA ANT. (AUT) (°C) \\\n",
+ "8779 NaN \n",
+ "8780 22,8 \n",
+ "8781 23,3 \n",
+ "8782 23,1 \n",
+ "8783 22,5 \n",
+ "\n",
+ " TEMPERATURA ORVALHO MIN. NA HORA ANT. (AUT) (°C) \\\n",
+ "8779 NaN \n",
+ "8780 22,1 \n",
+ "8781 22,5 \n",
+ "8782 22,1 \n",
+ "8783 22 \n",
+ "\n",
+ " UMIDADE REL. MAX. NA HORA ANT. (AUT) (%) \\\n",
+ "8779 NaN \n",
+ "8780 97.0 \n",
+ "8781 93.0 \n",
+ "8782 89.0 \n",
+ "8783 94.0 \n",
+ "\n",
+ " UMIDADE REL. MIN. NA HORA ANT. (AUT) (%) \\\n",
+ "8779 NaN \n",
+ "8780 89.0 \n",
+ "8781 89.0 \n",
+ "8782 87.0 \n",
+ "8783 88.0 \n",
+ "\n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \\\n",
+ "8779 97.0 \n",
+ "8780 91.0 \n",
+ "8781 89.0 \n",
+ "8782 88.0 \n",
+ "8783 94.0 \n",
+ "\n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) VENTO, RAJADA MAXIMA (m/s) \\\n",
+ "8779 32.0 6,6 \n",
+ "8780 355.0 2,8 \n",
+ "8781 315.0 4,2 \n",
+ "8782 291.0 4,8 \n",
+ "8783 132.0 3,9 \n",
+ "\n",
+ " VENTO, VELOCIDADE HORARIA (m/s) Unnamed: 19 \n",
+ "8779 1,2 NaN \n",
+ "8780 ,8 NaN \n",
+ "8781 1,2 NaN \n",
+ "8782 ,9 NaN \n",
+ "8783 ,9 NaN "
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " Hora UTC \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " PRESSAO ATMOSFERICA AO NIVEL DA ESTACAO, HORARIA (mB) \n",
+ " PRESSÃO ATMOSFERICA MAX.NA HORA ANT. (AUT) (mB) \n",
+ " PRESSÃO ATMOSFERICA MIN. NA HORA ANT. (AUT) (mB) \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " TEMPERATURA MÁXIMA NA HORA ANT. (AUT) (°C) \n",
+ " TEMPERATURA MÍNIMA NA HORA ANT. (AUT) (°C) \n",
+ " TEMPERATURA ORVALHO MAX. NA HORA ANT. (AUT) (°C) \n",
+ " TEMPERATURA ORVALHO MIN. NA HORA ANT. (AUT) (°C) \n",
+ " UMIDADE REL. MAX. NA HORA ANT. (AUT) (%) \n",
+ " UMIDADE REL. MIN. NA HORA ANT. (AUT) (%) \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " VENTO, RAJADA MAXIMA (m/s) \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " Unnamed: 19 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 8779 \n",
+ " 2020/12/31 \n",
+ " 1900 UTC \n",
+ " ,4 \n",
+ " 972,6 \n",
+ " 973,3 \n",
+ " 972,6 \n",
+ " 775,9 \n",
+ " 23,1 \n",
+ " 22,7 \n",
+ " 23,3 \n",
+ " 21,7 \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " 97.0 \n",
+ " 32.0 \n",
+ " 6,6 \n",
+ " 1,2 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 8780 \n",
+ " 2020/12/31 \n",
+ " 2000 UTC \n",
+ " 0 \n",
+ " 970,4 \n",
+ " 972,6 \n",
+ " 970,4 \n",
+ " 837,8 \n",
+ " 24,2 \n",
+ " 22,7 \n",
+ " 24,4 \n",
+ " 23,1 \n",
+ " 22,8 \n",
+ " 22,1 \n",
+ " 97.0 \n",
+ " 89.0 \n",
+ " 91.0 \n",
+ " 355.0 \n",
+ " 2,8 \n",
+ " ,8 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 8781 \n",
+ " 2020/12/31 \n",
+ " 2100 UTC \n",
+ " 0 \n",
+ " 970,7 \n",
+ " 970,7 \n",
+ " 970,1 \n",
+ " 524,7 \n",
+ " 24,9 \n",
+ " 23 \n",
+ " 24,9 \n",
+ " 24,1 \n",
+ " 23,3 \n",
+ " 22,5 \n",
+ " 93.0 \n",
+ " 89.0 \n",
+ " 89.0 \n",
+ " 315.0 \n",
+ " 4,2 \n",
+ " 1,2 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 8782 \n",
+ " 2020/12/31 \n",
+ " 2200 UTC \n",
+ " 0 \n",
+ " 972,4 \n",
+ " 972,4 \n",
+ " 970,7 \n",
+ " 256,5 \n",
+ " 24,2 \n",
+ " 22,1 \n",
+ " 25,1 \n",
+ " 24,2 \n",
+ " 23,1 \n",
+ " 22,1 \n",
+ " 89.0 \n",
+ " 87.0 \n",
+ " 88.0 \n",
+ " 291.0 \n",
+ " 4,8 \n",
+ " ,9 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 8783 \n",
+ " 2020/12/31 \n",
+ " 2300 UTC \n",
+ " 0 \n",
+ " 974,1 \n",
+ " 974,1 \n",
+ " 972,4 \n",
+ " 9,6 \n",
+ " 23,5 \n",
+ " 22,5 \n",
+ " 24,2 \n",
+ " 23,4 \n",
+ " 22,5 \n",
+ " 22 \n",
+ " 94.0 \n",
+ " 88.0 \n",
+ " 94.0 \n",
+ " 132.0 \n",
+ " 3,9 \n",
+ " ,9 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "repr_error": "0"
+ }
+ },
+ "metadata": {},
+ "execution_count": 65
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [],
+ "metadata": {
+ "id": "VmdQHTY6TZ76"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 66,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 711
+ },
+ "id": "lvCiU7YpTUZ2",
+ "outputId": "7ee7d172-ca87-4bba-dceb-c425b04eaa06"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "Data object\n",
+ "Hora UTC object\n",
+ "PRECIPITAÇÃO TOTAL, HORÁRIO (mm) object\n",
+ "PRESSAO ATMOSFERICA AO NIVEL DA ESTACAO, HORARIA (mB) object\n",
+ "PRESSÃO ATMOSFERICA MAX.NA HORA ANT. (AUT) (mB) object\n",
+ "PRESSÃO ATMOSFERICA MIN. NA HORA ANT. (AUT) (mB) object\n",
+ "RADIACAO GLOBAL (Kj/m²) object\n",
+ "TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) object\n",
+ "TEMPERATURA DO PONTO DE ORVALHO (°C) object\n",
+ "TEMPERATURA MÁXIMA NA HORA ANT. (AUT) (°C) object\n",
+ "TEMPERATURA MÍNIMA NA HORA ANT. (AUT) (°C) object\n",
+ "TEMPERATURA ORVALHO MAX. NA HORA ANT. (AUT) (°C) object\n",
+ "TEMPERATURA ORVALHO MIN. NA HORA ANT. (AUT) (°C) object\n",
+ "UMIDADE REL. MAX. NA HORA ANT. (AUT) (%) float64\n",
+ "UMIDADE REL. MIN. NA HORA ANT. (AUT) (%) float64\n",
+ "UMIDADE RELATIVA DO AR, HORARIA (%) float64\n",
+ "VENTO, DIREÇÃO HORARIA (gr) (° (gr)) float64\n",
+ "VENTO, RAJADA MAXIMA (m/s) object\n",
+ "VENTO, VELOCIDADE HORARIA (m/s) object\n",
+ "Unnamed: 19 float64\n",
+ "dtype: object"
+ ],
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " object \n",
+ " \n",
+ " \n",
+ " Hora UTC \n",
+ " object \n",
+ " \n",
+ " \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " object \n",
+ " \n",
+ " \n",
+ " PRESSAO ATMOSFERICA AO NIVEL DA ESTACAO, HORARIA (mB) \n",
+ " object \n",
+ " \n",
+ " \n",
+ " PRESSÃO ATMOSFERICA MAX.NA HORA ANT. (AUT) (mB) \n",
+ " object \n",
+ " \n",
+ " \n",
+ " PRESSÃO ATMOSFERICA MIN. NA HORA ANT. (AUT) (mB) \n",
+ " object \n",
+ " \n",
+ " \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " object \n",
+ " \n",
+ " \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " object \n",
+ " \n",
+ " \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " object \n",
+ " \n",
+ " \n",
+ " TEMPERATURA MÁXIMA NA HORA ANT. (AUT) (°C) \n",
+ " object \n",
+ " \n",
+ " \n",
+ " TEMPERATURA MÍNIMA NA HORA ANT. (AUT) (°C) \n",
+ " object \n",
+ " \n",
+ " \n",
+ " TEMPERATURA ORVALHO MAX. NA HORA ANT. (AUT) (°C) \n",
+ " object \n",
+ " \n",
+ " \n",
+ " TEMPERATURA ORVALHO MIN. NA HORA ANT. (AUT) (°C) \n",
+ " object \n",
+ " \n",
+ " \n",
+ " UMIDADE REL. MAX. NA HORA ANT. (AUT) (%) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ " UMIDADE REL. MIN. NA HORA ANT. (AUT) (%) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ " VENTO, RAJADA MAXIMA (m/s) \n",
+ " object \n",
+ " \n",
+ " \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " object \n",
+ " \n",
+ " \n",
+ " Unnamed: 19 \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
dtype: object "
+ ]
+ },
+ "metadata": {},
+ "execution_count": 66
+ }
+ ],
+ "source": [
+ "df.dtypes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 67,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 397
+ },
+ "id": "QD0k8QsgTUZ3",
+ "outputId": "b06155a9-d105-4e56-f444-af14906c2d32"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n",
+ "0 2020/01/01 0000 UTC ,6 \n",
+ "1 2020/01/01 0100 UTC 0 \n",
+ "2 2020/01/01 0200 UTC 0 \n",
+ "3 2020/01/01 0300 UTC 0 \n",
+ "4 2020/01/01 0400 UTC 0 \n",
+ "\n",
+ " PRESSAO ATMOSFERICA AO NIVEL DA ESTACAO, HORARIA (mB) \\\n",
+ "0 970 \n",
+ "1 970,2 \n",
+ "2 969,8 \n",
+ "3 970,1 \n",
+ "4 970,2 \n",
+ "\n",
+ " PRESSÃO ATMOSFERICA MAX.NA HORA ANT. (AUT) (mB) \\\n",
+ "0 970 \n",
+ "1 970,2 \n",
+ "2 970,2 \n",
+ "3 970,1 \n",
+ "4 970,5 \n",
+ "\n",
+ " PRESSÃO ATMOSFERICA MIN. NA HORA ANT. (AUT) (mB) RADIACAO GLOBAL (Kj/m²) \\\n",
+ "0 969,5 NaN \n",
+ "1 970 2,9 \n",
+ "2 969,8 1,6 \n",
+ "3 969,8 ,6 \n",
+ "4 970,1 NaN \n",
+ "\n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n",
+ "0 23,1 \n",
+ "1 23,7 \n",
+ "2 24 \n",
+ "3 24,3 \n",
+ "4 23,8 \n",
+ "\n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n",
+ "0 22,6 \n",
+ "1 21,7 \n",
+ "2 21,8 \n",
+ "3 21,4 \n",
+ "4 21,7 \n",
+ "\n",
+ " TEMPERATURA MÁXIMA NA HORA ANT. (AUT) (°C) \\\n",
+ "0 23,1 \n",
+ "1 23,7 \n",
+ "2 24,4 \n",
+ "3 25,1 \n",
+ "4 24,3 \n",
+ "\n",
+ " TEMPERATURA MÍNIMA NA HORA ANT. (AUT) (°C) \\\n",
+ "0 22,6 \n",
+ "1 23 \n",
+ "2 23,7 \n",
+ "3 24 \n",
+ "4 23,7 \n",
+ "\n",
+ " TEMPERATURA ORVALHO MAX. NA HORA ANT. (AUT) (°C) \\\n",
+ "0 22,8 \n",
+ "1 22,5 \n",
+ "2 21,9 \n",
+ "3 22 \n",
+ "4 21,8 \n",
+ "\n",
+ " TEMPERATURA ORVALHO MIN. NA HORA ANT. (AUT) (°C) \\\n",
+ "0 21,6 \n",
+ "1 21,6 \n",
+ "2 21,2 \n",
+ "3 21,2 \n",
+ "4 21,4 \n",
+ "\n",
+ " UMIDADE REL. MAX. NA HORA ANT. (AUT) (%) \\\n",
+ "0 98.0 \n",
+ "1 97.0 \n",
+ "2 88.0 \n",
+ "3 88.0 \n",
+ "4 89.0 \n",
+ "\n",
+ " UMIDADE REL. MIN. NA HORA ANT. (AUT) (%) \\\n",
+ "0 94.0 \n",
+ "1 88.0 \n",
+ "2 83.0 \n",
+ "3 80.0 \n",
+ "4 83.0 \n",
+ "\n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n",
+ "0 97.0 11.0 \n",
+ "1 88.0 10.0 \n",
+ "2 88.0 345.0 \n",
+ "3 83.0 332.0 \n",
+ "4 89.0 316.0 \n",
+ "\n",
+ " VENTO, RAJADA MAXIMA (m/s) VENTO, VELOCIDADE HORARIA (m/s) Unnamed: 19 \n",
+ "0 3,2 1,9 NaN \n",
+ "1 4,6 1,3 NaN \n",
+ "2 3,2 ,6 NaN \n",
+ "3 4,8 1,5 NaN \n",
+ "4 3,3 ,2 NaN "
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " Hora UTC \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " PRESSAO ATMOSFERICA AO NIVEL DA ESTACAO, HORARIA (mB) \n",
+ " PRESSÃO ATMOSFERICA MAX.NA HORA ANT. (AUT) (mB) \n",
+ " PRESSÃO ATMOSFERICA MIN. NA HORA ANT. (AUT) (mB) \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " TEMPERATURA MÁXIMA NA HORA ANT. (AUT) (°C) \n",
+ " TEMPERATURA MÍNIMA NA HORA ANT. (AUT) (°C) \n",
+ " TEMPERATURA ORVALHO MAX. NA HORA ANT. (AUT) (°C) \n",
+ " TEMPERATURA ORVALHO MIN. NA HORA ANT. (AUT) (°C) \n",
+ " UMIDADE REL. MAX. NA HORA ANT. (AUT) (%) \n",
+ " UMIDADE REL. MIN. NA HORA ANT. (AUT) (%) \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " VENTO, RAJADA MAXIMA (m/s) \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " Unnamed: 19 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 2020/01/01 \n",
+ " 0000 UTC \n",
+ " ,6 \n",
+ " 970 \n",
+ " 970 \n",
+ " 969,5 \n",
+ " NaN \n",
+ " 23,1 \n",
+ " 22,6 \n",
+ " 23,1 \n",
+ " 22,6 \n",
+ " 22,8 \n",
+ " 21,6 \n",
+ " 98.0 \n",
+ " 94.0 \n",
+ " 97.0 \n",
+ " 11.0 \n",
+ " 3,2 \n",
+ " 1,9 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 2020/01/01 \n",
+ " 0100 UTC \n",
+ " 0 \n",
+ " 970,2 \n",
+ " 970,2 \n",
+ " 970 \n",
+ " 2,9 \n",
+ " 23,7 \n",
+ " 21,7 \n",
+ " 23,7 \n",
+ " 23 \n",
+ " 22,5 \n",
+ " 21,6 \n",
+ " 97.0 \n",
+ " 88.0 \n",
+ " 88.0 \n",
+ " 10.0 \n",
+ " 4,6 \n",
+ " 1,3 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 2020/01/01 \n",
+ " 0200 UTC \n",
+ " 0 \n",
+ " 969,8 \n",
+ " 970,2 \n",
+ " 969,8 \n",
+ " 1,6 \n",
+ " 24 \n",
+ " 21,8 \n",
+ " 24,4 \n",
+ " 23,7 \n",
+ " 21,9 \n",
+ " 21,2 \n",
+ " 88.0 \n",
+ " 83.0 \n",
+ " 88.0 \n",
+ " 345.0 \n",
+ " 3,2 \n",
+ " ,6 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 2020/01/01 \n",
+ " 0300 UTC \n",
+ " 0 \n",
+ " 970,1 \n",
+ " 970,1 \n",
+ " 969,8 \n",
+ " ,6 \n",
+ " 24,3 \n",
+ " 21,4 \n",
+ " 25,1 \n",
+ " 24 \n",
+ " 22 \n",
+ " 21,2 \n",
+ " 88.0 \n",
+ " 80.0 \n",
+ " 83.0 \n",
+ " 332.0 \n",
+ " 4,8 \n",
+ " 1,5 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 2020/01/01 \n",
+ " 0400 UTC \n",
+ " 0 \n",
+ " 970,2 \n",
+ " 970,5 \n",
+ " 970,1 \n",
+ " NaN \n",
+ " 23,8 \n",
+ " 21,7 \n",
+ " 24,3 \n",
+ " 23,7 \n",
+ " 21,8 \n",
+ " 21,4 \n",
+ " 89.0 \n",
+ " 83.0 \n",
+ " 89.0 \n",
+ " 316.0 \n",
+ " 3,3 \n",
+ " ,2 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 8784,\n \"fields\": [\n {\n \"column\": \"Data\",\n \"properties\": {\n \"dtype\": \"object\",\n \"num_unique_values\": 366,\n \"samples\": [\n \"2020/07/12\",\n \"2020/02/03\",\n \"2020/01/16\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Hora UTC\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 24,\n \"samples\": [\n \"0800 UTC\",\n \"1600 UTC\",\n \"0000 UTC\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PRECIPITA\\u00c7\\u00c3O TOTAL, HOR\\u00c1RIO (mm)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 73,\n \"samples\": [\n \",4\",\n \"30,8\",\n \"5,8\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PRESSAO ATMOSFERICA AO NIVEL DA ESTACAO, HORARIA (mB)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 229,\n \"samples\": [\n \"986,9\",\n \"972,4\",\n \"969,5\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PRESS\\u00c3O ATMOSFERICA MAX.NA HORA ANT. (AUT) (mB)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 227,\n \"samples\": [\n \"969,5\",\n \"978\",\n \"967,4\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PRESS\\u00c3O ATMOSFERICA MIN. NA HORA ANT. (AUT) (mB)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 224,\n \"samples\": [\n \"968,7\",\n \"973,9\",\n \"975,4\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RADIACAO GLOBAL (Kj/m\\u00b2)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 4259,\n \"samples\": [\n \"1895,3\",\n \"1625,8\",\n \"479,1\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO AR - BULBO SECO, HORARIA (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 335,\n \"samples\": [\n \"25,3\",\n \"28,4\",\n \"27\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO PONTO DE ORVALHO (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 237,\n \"samples\": [\n \"11,8\",\n \"23,7\",\n \"4,3\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA M\\u00c1XIMA NA HORA ANT. (AUT) (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 339,\n \"samples\": [\n \"7,2\",\n \"29,4\",\n \"26\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA M\\u00cdNIMA NA HORA ANT. (AUT) (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 299,\n \"samples\": [\n \"10,3\",\n \"9,7\",\n \"17,7\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA ORVALHO MAX. NA HORA ANT. (AUT) (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 233,\n \"samples\": [\n \"17,1\",\n \"3,8\",\n \"3,9\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA ORVALHO MIN. NA HORA ANT. (AUT) (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 237,\n \"samples\": [\n \"10,1\",\n \"22\",\n \"2,4\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"UMIDADE REL. MAX. NA HORA ANT. (AUT) (%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 18.862048885773895,\n \"min\": 17.0,\n \"max\": 100.0,\n \"num_unique_values\": 84,\n \"samples\": [\n 25.0,\n 98.0,\n 38.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"UMIDADE REL. MIN. NA HORA ANT. (AUT) (%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 19.71893519670864,\n \"min\": 13.0,\n \"max\": 100.0,\n \"num_unique_values\": 88,\n \"samples\": [\n 21.0,\n 94.0,\n 62.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"UMIDADE RELATIVA DO AR, HORARIA (%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 19.4565897403443,\n \"min\": 14.0,\n \"max\": 100.0,\n \"num_unique_values\": 87,\n \"samples\": [\n 27.0,\n 97.0,\n 79.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, DIRE\\u00c7\\u00c3O HORARIA (gr) (\\u00b0 (gr))\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 81.66962907050141,\n \"min\": 1.0,\n \"max\": 360.0,\n \"num_unique_values\": 360,\n \"samples\": [\n 110.0,\n 308.0,\n 21.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, RAJADA MAXIMA (m/s)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 164,\n \"samples\": [\n \"17\",\n \"18,6\",\n \"9,6\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, VELOCIDADE HORARIA (m/s)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 86,\n \"samples\": [\n \"6,2\",\n \"1,9\",\n \"6,7\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Unnamed: 19\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": null,\n \"max\": null,\n \"num_unique_values\": 0,\n \"samples\": [],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 67
+ }
+ ],
+ "source": [
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 68,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 397
+ },
+ "id": "pY5Av9D0TUZ3",
+ "outputId": "5d5e7633-950a-4ce2-916b-02b5a8ed2110"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n",
+ "8779 2020/12/31 1900 UTC ,4 \n",
+ "8780 2020/12/31 2000 UTC 0 \n",
+ "8781 2020/12/31 2100 UTC 0 \n",
+ "8782 2020/12/31 2200 UTC 0 \n",
+ "8783 2020/12/31 2300 UTC 0 \n",
+ "\n",
+ " PRESSAO ATMOSFERICA AO NIVEL DA ESTACAO, HORARIA (mB) \\\n",
+ "8779 972,6 \n",
+ "8780 970,4 \n",
+ "8781 970,7 \n",
+ "8782 972,4 \n",
+ "8783 974,1 \n",
+ "\n",
+ " PRESSÃO ATMOSFERICA MAX.NA HORA ANT. (AUT) (mB) \\\n",
+ "8779 973,3 \n",
+ "8780 972,6 \n",
+ "8781 970,7 \n",
+ "8782 972,4 \n",
+ "8783 974,1 \n",
+ "\n",
+ " PRESSÃO ATMOSFERICA MIN. NA HORA ANT. (AUT) (mB) RADIACAO GLOBAL (Kj/m²) \\\n",
+ "8779 972,6 775,9 \n",
+ "8780 970,4 837,8 \n",
+ "8781 970,1 524,7 \n",
+ "8782 970,7 256,5 \n",
+ "8783 972,4 9,6 \n",
+ "\n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n",
+ "8779 23,1 \n",
+ "8780 24,2 \n",
+ "8781 24,9 \n",
+ "8782 24,2 \n",
+ "8783 23,5 \n",
+ "\n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n",
+ "8779 22,7 \n",
+ "8780 22,7 \n",
+ "8781 23 \n",
+ "8782 22,1 \n",
+ "8783 22,5 \n",
+ "\n",
+ " TEMPERATURA MÁXIMA NA HORA ANT. (AUT) (°C) \\\n",
+ "8779 23,3 \n",
+ "8780 24,4 \n",
+ "8781 24,9 \n",
+ "8782 25,1 \n",
+ "8783 24,2 \n",
+ "\n",
+ " TEMPERATURA MÍNIMA NA HORA ANT. (AUT) (°C) \\\n",
+ "8779 21,7 \n",
+ "8780 23,1 \n",
+ "8781 24,1 \n",
+ "8782 24,2 \n",
+ "8783 23,4 \n",
+ "\n",
+ " TEMPERATURA ORVALHO MAX. NA HORA ANT. (AUT) (°C) \\\n",
+ "8779 NaN \n",
+ "8780 22,8 \n",
+ "8781 23,3 \n",
+ "8782 23,1 \n",
+ "8783 22,5 \n",
+ "\n",
+ " TEMPERATURA ORVALHO MIN. NA HORA ANT. (AUT) (°C) \\\n",
+ "8779 NaN \n",
+ "8780 22,1 \n",
+ "8781 22,5 \n",
+ "8782 22,1 \n",
+ "8783 22 \n",
+ "\n",
+ " UMIDADE REL. MAX. NA HORA ANT. (AUT) (%) \\\n",
+ "8779 NaN \n",
+ "8780 97.0 \n",
+ "8781 93.0 \n",
+ "8782 89.0 \n",
+ "8783 94.0 \n",
+ "\n",
+ " UMIDADE REL. MIN. NA HORA ANT. (AUT) (%) \\\n",
+ "8779 NaN \n",
+ "8780 89.0 \n",
+ "8781 89.0 \n",
+ "8782 87.0 \n",
+ "8783 88.0 \n",
+ "\n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \\\n",
+ "8779 97.0 \n",
+ "8780 91.0 \n",
+ "8781 89.0 \n",
+ "8782 88.0 \n",
+ "8783 94.0 \n",
+ "\n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) VENTO, RAJADA MAXIMA (m/s) \\\n",
+ "8779 32.0 6,6 \n",
+ "8780 355.0 2,8 \n",
+ "8781 315.0 4,2 \n",
+ "8782 291.0 4,8 \n",
+ "8783 132.0 3,9 \n",
+ "\n",
+ " VENTO, VELOCIDADE HORARIA (m/s) Unnamed: 19 \n",
+ "8779 1,2 NaN \n",
+ "8780 ,8 NaN \n",
+ "8781 1,2 NaN \n",
+ "8782 ,9 NaN \n",
+ "8783 ,9 NaN "
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " Hora UTC \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " PRESSAO ATMOSFERICA AO NIVEL DA ESTACAO, HORARIA (mB) \n",
+ " PRESSÃO ATMOSFERICA MAX.NA HORA ANT. (AUT) (mB) \n",
+ " PRESSÃO ATMOSFERICA MIN. NA HORA ANT. (AUT) (mB) \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " TEMPERATURA MÁXIMA NA HORA ANT. (AUT) (°C) \n",
+ " TEMPERATURA MÍNIMA NA HORA ANT. (AUT) (°C) \n",
+ " TEMPERATURA ORVALHO MAX. NA HORA ANT. (AUT) (°C) \n",
+ " TEMPERATURA ORVALHO MIN. NA HORA ANT. (AUT) (°C) \n",
+ " UMIDADE REL. MAX. NA HORA ANT. (AUT) (%) \n",
+ " UMIDADE REL. MIN. NA HORA ANT. (AUT) (%) \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " VENTO, RAJADA MAXIMA (m/s) \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " Unnamed: 19 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 8779 \n",
+ " 2020/12/31 \n",
+ " 1900 UTC \n",
+ " ,4 \n",
+ " 972,6 \n",
+ " 973,3 \n",
+ " 972,6 \n",
+ " 775,9 \n",
+ " 23,1 \n",
+ " 22,7 \n",
+ " 23,3 \n",
+ " 21,7 \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " 97.0 \n",
+ " 32.0 \n",
+ " 6,6 \n",
+ " 1,2 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 8780 \n",
+ " 2020/12/31 \n",
+ " 2000 UTC \n",
+ " 0 \n",
+ " 970,4 \n",
+ " 972,6 \n",
+ " 970,4 \n",
+ " 837,8 \n",
+ " 24,2 \n",
+ " 22,7 \n",
+ " 24,4 \n",
+ " 23,1 \n",
+ " 22,8 \n",
+ " 22,1 \n",
+ " 97.0 \n",
+ " 89.0 \n",
+ " 91.0 \n",
+ " 355.0 \n",
+ " 2,8 \n",
+ " ,8 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 8781 \n",
+ " 2020/12/31 \n",
+ " 2100 UTC \n",
+ " 0 \n",
+ " 970,7 \n",
+ " 970,7 \n",
+ " 970,1 \n",
+ " 524,7 \n",
+ " 24,9 \n",
+ " 23 \n",
+ " 24,9 \n",
+ " 24,1 \n",
+ " 23,3 \n",
+ " 22,5 \n",
+ " 93.0 \n",
+ " 89.0 \n",
+ " 89.0 \n",
+ " 315.0 \n",
+ " 4,2 \n",
+ " 1,2 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 8782 \n",
+ " 2020/12/31 \n",
+ " 2200 UTC \n",
+ " 0 \n",
+ " 972,4 \n",
+ " 972,4 \n",
+ " 970,7 \n",
+ " 256,5 \n",
+ " 24,2 \n",
+ " 22,1 \n",
+ " 25,1 \n",
+ " 24,2 \n",
+ " 23,1 \n",
+ " 22,1 \n",
+ " 89.0 \n",
+ " 87.0 \n",
+ " 88.0 \n",
+ " 291.0 \n",
+ " 4,8 \n",
+ " ,9 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 8783 \n",
+ " 2020/12/31 \n",
+ " 2300 UTC \n",
+ " 0 \n",
+ " 974,1 \n",
+ " 974,1 \n",
+ " 972,4 \n",
+ " 9,6 \n",
+ " 23,5 \n",
+ " 22,5 \n",
+ " 24,2 \n",
+ " 23,4 \n",
+ " 22,5 \n",
+ " 22 \n",
+ " 94.0 \n",
+ " 88.0 \n",
+ " 94.0 \n",
+ " 132.0 \n",
+ " 3,9 \n",
+ " ,9 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "repr_error": "0"
+ }
+ },
+ "metadata": {},
+ "execution_count": 68
+ }
+ ],
+ "source": [
+ "df.tail()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df = df.replace(',','.',regex=True)"
+ ],
+ "metadata": {
+ "id": "8y8Z1ZdjXDHC"
+ },
+ "execution_count": 69,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 70,
+ "metadata": {
+ "id": "3zUdm-7rTUZ3"
+ },
+ "outputs": [],
+ "source": [
+ "df = df[['Data','Hora UTC','PRECIPITAÇÃO TOTAL, HORÁRIO (mm)', 'TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)','TEMPERATURA DO PONTO DE ORVALHO (°C)','UMIDADE RELATIVA DO AR, HORARIA (%)', 'RADIACAO GLOBAL (Kj/m²)', 'VENTO, DIREÇÃO HORARIA (gr) (° (gr))' ,'VENTO, VELOCIDADE HORARIA (m/s)']]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 71,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 310
+ },
+ "id": "4n15y0B8TUZ4",
+ "outputId": "dbe69679-1baa-45df-afa5-17802e8023e9"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n",
+ "0 2020/01/01 0000 UTC .6 \n",
+ "1 2020/01/01 0100 UTC 0 \n",
+ "2 2020/01/01 0200 UTC 0 \n",
+ "3 2020/01/01 0300 UTC 0 \n",
+ "4 2020/01/01 0400 UTC 0 \n",
+ "\n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n",
+ "0 23.1 \n",
+ "1 23.7 \n",
+ "2 24 \n",
+ "3 24.3 \n",
+ "4 23.8 \n",
+ "\n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) UMIDADE RELATIVA DO AR, HORARIA (%) \\\n",
+ "0 22.6 97.0 \n",
+ "1 21.7 88.0 \n",
+ "2 21.8 88.0 \n",
+ "3 21.4 83.0 \n",
+ "4 21.7 89.0 \n",
+ "\n",
+ " RADIACAO GLOBAL (Kj/m²) VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n",
+ "0 NaN 11.0 \n",
+ "1 2.9 10.0 \n",
+ "2 1.6 345.0 \n",
+ "3 .6 332.0 \n",
+ "4 NaN 316.0 \n",
+ "\n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ "0 1.9 \n",
+ "1 1.3 \n",
+ "2 .6 \n",
+ "3 1.5 \n",
+ "4 .2 "
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " Hora UTC \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 2020/01/01 \n",
+ " 0000 UTC \n",
+ " .6 \n",
+ " 23.1 \n",
+ " 22.6 \n",
+ " 97.0 \n",
+ " NaN \n",
+ " 11.0 \n",
+ " 1.9 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 2020/01/01 \n",
+ " 0100 UTC \n",
+ " 0 \n",
+ " 23.7 \n",
+ " 21.7 \n",
+ " 88.0 \n",
+ " 2.9 \n",
+ " 10.0 \n",
+ " 1.3 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 2020/01/01 \n",
+ " 0200 UTC \n",
+ " 0 \n",
+ " 24 \n",
+ " 21.8 \n",
+ " 88.0 \n",
+ " 1.6 \n",
+ " 345.0 \n",
+ " .6 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 2020/01/01 \n",
+ " 0300 UTC \n",
+ " 0 \n",
+ " 24.3 \n",
+ " 21.4 \n",
+ " 83.0 \n",
+ " .6 \n",
+ " 332.0 \n",
+ " 1.5 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 2020/01/01 \n",
+ " 0400 UTC \n",
+ " 0 \n",
+ " 23.8 \n",
+ " 21.7 \n",
+ " 89.0 \n",
+ " NaN \n",
+ " 316.0 \n",
+ " .2 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 8784,\n \"fields\": [\n {\n \"column\": \"Data\",\n \"properties\": {\n \"dtype\": \"object\",\n \"num_unique_values\": 366,\n \"samples\": [\n \"2020/07/12\",\n \"2020/02/03\",\n \"2020/01/16\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Hora UTC\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 24,\n \"samples\": [\n \"0800 UTC\",\n \"1600 UTC\",\n \"0000 UTC\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PRECIPITA\\u00c7\\u00c3O TOTAL, HOR\\u00c1RIO (mm)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 73,\n \"samples\": [\n \".4\",\n \"30.8\",\n \"5.8\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO AR - BULBO SECO, HORARIA (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 335,\n \"samples\": [\n \"25.3\",\n \"28.4\",\n \"27\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO PONTO DE ORVALHO (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 237,\n \"samples\": [\n \"11.8\",\n \"23.7\",\n \"4.3\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"UMIDADE RELATIVA DO AR, HORARIA (%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 19.4565897403443,\n \"min\": 14.0,\n \"max\": 100.0,\n \"num_unique_values\": 87,\n \"samples\": [\n 27.0,\n 97.0,\n 79.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RADIACAO GLOBAL (Kj/m\\u00b2)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 4259,\n \"samples\": [\n \"1895.3\",\n \"1625.8\",\n \"479.1\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, DIRE\\u00c7\\u00c3O HORARIA (gr) (\\u00b0 (gr))\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 81.66962907050141,\n \"min\": 1.0,\n \"max\": 360.0,\n \"num_unique_values\": 360,\n \"samples\": [\n 110.0,\n 308.0,\n 21.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, VELOCIDADE HORARIA (m/s)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 86,\n \"samples\": [\n \"6.2\",\n \"1.9\",\n \"6.7\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 71
+ }
+ ],
+ "source": [
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "RxgQ3J-UTUZ4"
+ },
+ "source": [
+ "Limpeza dos dados: Retirar nulos, normalizar percentual e alterar as virgulas para pontos e ajustar a data e hora\n",
+ "\n",
+ "#### **Tratamento de Dados**\n",
+ "\n",
+ "1. **Ajustes e Limpeza:**\n",
+ " - Organize e limpe os dados, removendo duplicatas e normalizando quando necessário.\n",
+ "\n",
+ "2. **Renomeação e Ajuste de Colunas:**\n",
+ " - Renomeie colunas e ajuste os tipos de dados conforme necessário para garantir a consistência e clareza.\n",
+ "\n",
+ "3. **Transformações e Criação de Novas Colunas:**\n",
+ " - Realize transformações relevantes nos dados, como criar novas colunas derivadas de outras existentes."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df_5 = df.isnull().sum()\n",
+ "df_5"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 366
+ },
+ "id": "pBw7aXq9XVrA",
+ "outputId": "9d977c76-50d1-4a3a-ce65-b76d63875ca4"
+ },
+ "execution_count": 72,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "Data 0\n",
+ "Hora UTC 0\n",
+ "PRECIPITAÇÃO TOTAL, HORÁRIO (mm) 6\n",
+ "TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) 6\n",
+ "TEMPERATURA DO PONTO DE ORVALHO (°C) 466\n",
+ "UMIDADE RELATIVA DO AR, HORARIA (%) 466\n",
+ "RADIACAO GLOBAL (Kj/m²) 4049\n",
+ "VENTO, DIREÇÃO HORARIA (gr) (° (gr)) 6\n",
+ "VENTO, VELOCIDADE HORARIA (m/s) 6\n",
+ "dtype: int64"
+ ],
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " Hora UTC \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " 6 \n",
+ " \n",
+ " \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " 6 \n",
+ " \n",
+ " \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " 466 \n",
+ " \n",
+ " \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " 466 \n",
+ " \n",
+ " \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " 4049 \n",
+ " \n",
+ " \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " 6 \n",
+ " \n",
+ " \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " 6 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
dtype: int64 "
+ ]
+ },
+ "metadata": {},
+ "execution_count": 72
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.shape"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "7R2XG1sO1f2J",
+ "outputId": "5d21fa6e-ac11-4495-910d-62bf129f42d7"
+ },
+ "execution_count": 73,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "(8784, 9)"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 73
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.head(10)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 554
+ },
+ "id": "QoT8QZnIXo0H",
+ "outputId": "d9d4fc0f-a62d-4678-8f1c-d53c4686faee"
+ },
+ "execution_count": 74,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n",
+ "0 2020/01/01 0000 UTC .6 \n",
+ "1 2020/01/01 0100 UTC 0 \n",
+ "2 2020/01/01 0200 UTC 0 \n",
+ "3 2020/01/01 0300 UTC 0 \n",
+ "4 2020/01/01 0400 UTC 0 \n",
+ "5 2020/01/01 0500 UTC 0 \n",
+ "6 2020/01/01 0600 UTC 0 \n",
+ "7 2020/01/01 0700 UTC 0 \n",
+ "8 2020/01/01 0800 UTC 0 \n",
+ "9 2020/01/01 0900 UTC 0 \n",
+ "\n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n",
+ "0 23.1 \n",
+ "1 23.7 \n",
+ "2 24 \n",
+ "3 24.3 \n",
+ "4 23.8 \n",
+ "5 23.5 \n",
+ "6 22.7 \n",
+ "7 22.9 \n",
+ "8 22.9 \n",
+ "9 22.9 \n",
+ "\n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) UMIDADE RELATIVA DO AR, HORARIA (%) \\\n",
+ "0 22.6 97.0 \n",
+ "1 21.7 88.0 \n",
+ "2 21.8 88.0 \n",
+ "3 21.4 83.0 \n",
+ "4 21.7 89.0 \n",
+ "5 22.3 93.0 \n",
+ "6 22.4 98.0 \n",
+ "7 NaN NaN \n",
+ "8 NaN NaN \n",
+ "9 22.5 97.0 \n",
+ "\n",
+ " RADIACAO GLOBAL (Kj/m²) VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n",
+ "0 NaN 11.0 \n",
+ "1 2.9 10.0 \n",
+ "2 1.6 345.0 \n",
+ "3 .6 332.0 \n",
+ "4 NaN 316.0 \n",
+ "5 NaN 141.0 \n",
+ "6 NaN 40.0 \n",
+ "7 NaN 36.0 \n",
+ "8 NaN 68.0 \n",
+ "9 2.3 358.0 \n",
+ "\n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ "0 1.9 \n",
+ "1 1.3 \n",
+ "2 .6 \n",
+ "3 1.5 \n",
+ "4 .2 \n",
+ "5 0 \n",
+ "6 0 \n",
+ "7 .9 \n",
+ "8 0 \n",
+ "9 0 "
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " Hora UTC \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 2020/01/01 \n",
+ " 0000 UTC \n",
+ " .6 \n",
+ " 23.1 \n",
+ " 22.6 \n",
+ " 97.0 \n",
+ " NaN \n",
+ " 11.0 \n",
+ " 1.9 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 2020/01/01 \n",
+ " 0100 UTC \n",
+ " 0 \n",
+ " 23.7 \n",
+ " 21.7 \n",
+ " 88.0 \n",
+ " 2.9 \n",
+ " 10.0 \n",
+ " 1.3 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 2020/01/01 \n",
+ " 0200 UTC \n",
+ " 0 \n",
+ " 24 \n",
+ " 21.8 \n",
+ " 88.0 \n",
+ " 1.6 \n",
+ " 345.0 \n",
+ " .6 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 2020/01/01 \n",
+ " 0300 UTC \n",
+ " 0 \n",
+ " 24.3 \n",
+ " 21.4 \n",
+ " 83.0 \n",
+ " .6 \n",
+ " 332.0 \n",
+ " 1.5 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 2020/01/01 \n",
+ " 0400 UTC \n",
+ " 0 \n",
+ " 23.8 \n",
+ " 21.7 \n",
+ " 89.0 \n",
+ " NaN \n",
+ " 316.0 \n",
+ " .2 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 2020/01/01 \n",
+ " 0500 UTC \n",
+ " 0 \n",
+ " 23.5 \n",
+ " 22.3 \n",
+ " 93.0 \n",
+ " NaN \n",
+ " 141.0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 2020/01/01 \n",
+ " 0600 UTC \n",
+ " 0 \n",
+ " 22.7 \n",
+ " 22.4 \n",
+ " 98.0 \n",
+ " NaN \n",
+ " 40.0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 2020/01/01 \n",
+ " 0700 UTC \n",
+ " 0 \n",
+ " 22.9 \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " 36.0 \n",
+ " .9 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 2020/01/01 \n",
+ " 0800 UTC \n",
+ " 0 \n",
+ " 22.9 \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " 68.0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 2020/01/01 \n",
+ " 0900 UTC \n",
+ " 0 \n",
+ " 22.9 \n",
+ " 22.5 \n",
+ " 97.0 \n",
+ " 2.3 \n",
+ " 358.0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 8784,\n \"fields\": [\n {\n \"column\": \"Data\",\n \"properties\": {\n \"dtype\": \"object\",\n \"num_unique_values\": 366,\n \"samples\": [\n \"2020/07/12\",\n \"2020/02/03\",\n \"2020/01/16\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Hora UTC\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 24,\n \"samples\": [\n \"0800 UTC\",\n \"1600 UTC\",\n \"0000 UTC\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PRECIPITA\\u00c7\\u00c3O TOTAL, HOR\\u00c1RIO (mm)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 73,\n \"samples\": [\n \".4\",\n \"30.8\",\n \"5.8\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO AR - BULBO SECO, HORARIA (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 335,\n \"samples\": [\n \"25.3\",\n \"28.4\",\n \"27\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO PONTO DE ORVALHO (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 237,\n \"samples\": [\n \"11.8\",\n \"23.7\",\n \"4.3\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"UMIDADE RELATIVA DO AR, HORARIA (%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 19.4565897403443,\n \"min\": 14.0,\n \"max\": 100.0,\n \"num_unique_values\": 87,\n \"samples\": [\n 27.0,\n 97.0,\n 79.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RADIACAO GLOBAL (Kj/m\\u00b2)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 4259,\n \"samples\": [\n \"1895.3\",\n \"1625.8\",\n \"479.1\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, DIRE\\u00c7\\u00c3O HORARIA (gr) (\\u00b0 (gr))\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 81.66962907050141,\n \"min\": 1.0,\n \"max\": 360.0,\n \"num_unique_values\": 360,\n \"samples\": [\n 110.0,\n 308.0,\n 21.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, VELOCIDADE HORARIA (m/s)\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 86,\n \"samples\": [\n \"6.2\",\n \"1.9\",\n \"6.7\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 74
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df['PRECIPITAÇÃO TOTAL, HORÁRIO (mm)'] = pd.to_numeric(df['PRECIPITAÇÃO TOTAL, HORÁRIO (mm)'], errors='coerce')\n",
+ "df['TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)'] = pd.to_numeric(df['TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)'], errors='coerce')\n",
+ "df['TEMPERATURA DO PONTO DE ORVALHO (°C)'] = pd.to_numeric(df['TEMPERATURA DO PONTO DE ORVALHO (°C)'], errors='coerce')\n",
+ "df['RADIACAO GLOBAL (Kj/m²)'] = pd.to_numeric(df['RADIACAO GLOBAL (Kj/m²)'], errors='coerce')\n",
+ "df['VENTO, VELOCIDADE HORARIA (m/s)'] = pd.to_numeric(df['VENTO, VELOCIDADE HORARIA (m/s)'], errors='coerce')\n",
+ "\n",
+ "#outra opção\n",
+ "# coluna_objeto = df.select_dtypes(include=['object']).columns\n",
+ "# coluna_objeto = coluna_objeto.drop(['Data', 'Hora UTC'])\n",
+ "# for coluna in coluna_objeto:\n",
+ "# df[coluna] = pd.to_numeric(df[coluna], errors='coerce')\n",
+ "# print(df.dtypes)"
+ ],
+ "metadata": {
+ "id": "lDH2aBxO1sjo"
+ },
+ "execution_count": 75,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.dtypes"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 366
+ },
+ "id": "j7tjgnlH1ui6",
+ "outputId": "13025d70-0751-4063-e4db-d68728a2bf8e"
+ },
+ "execution_count": 76,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "Data object\n",
+ "Hora UTC object\n",
+ "PRECIPITAÇÃO TOTAL, HORÁRIO (mm) float64\n",
+ "TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) float64\n",
+ "TEMPERATURA DO PONTO DE ORVALHO (°C) float64\n",
+ "UMIDADE RELATIVA DO AR, HORARIA (%) float64\n",
+ "RADIACAO GLOBAL (Kj/m²) float64\n",
+ "VENTO, DIREÇÃO HORARIA (gr) (° (gr)) float64\n",
+ "VENTO, VELOCIDADE HORARIA (m/s) float64\n",
+ "dtype: object"
+ ],
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " object \n",
+ " \n",
+ " \n",
+ " Hora UTC \n",
+ " object \n",
+ " \n",
+ " \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
dtype: object "
+ ]
+ },
+ "metadata": {},
+ "execution_count": 76
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# df = df.dropna() # remover linhas com valores nulos ou faltantes\n",
+ "\n",
+ "df['PRECIPITAÇÃO TOTAL, HORÁRIO (mm)'] = df['PRECIPITAÇÃO TOTAL, HORÁRIO (mm)'].fillna(0)\n",
+ "df['TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)'] = df['TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)'].fillna(0)"
+ ],
+ "metadata": {
+ "id": "rh6g5VIo12m3"
+ },
+ "execution_count": 77,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 78,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 366
+ },
+ "id": "IkCowlM9TUZ4",
+ "outputId": "0e0275d5-a8c7-49c7-b57c-7e3930fdc9c9"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "Data 0\n",
+ "Hora UTC 0\n",
+ "PRECIPITAÇÃO TOTAL, HORÁRIO (mm) 0\n",
+ "TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) 0\n",
+ "TEMPERATURA DO PONTO DE ORVALHO (°C) 466\n",
+ "UMIDADE RELATIVA DO AR, HORARIA (%) 466\n",
+ "RADIACAO GLOBAL (Kj/m²) 4049\n",
+ "VENTO, DIREÇÃO HORARIA (gr) (° (gr)) 6\n",
+ "VENTO, VELOCIDADE HORARIA (m/s) 6\n",
+ "dtype: int64"
+ ],
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " Hora UTC \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " 466 \n",
+ " \n",
+ " \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " 466 \n",
+ " \n",
+ " \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " 4049 \n",
+ " \n",
+ " \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " 6 \n",
+ " \n",
+ " \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " 6 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
dtype: int64 "
+ ]
+ },
+ "metadata": {},
+ "execution_count": 78
+ }
+ ],
+ "source": [
+ "df.isnull().sum()\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df = df.fillna(0)\n",
+ "df"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 615
+ },
+ "id": "cDovhr092CF3",
+ "outputId": "9528b406-df3b-486f-996b-0768656980d5"
+ },
+ "execution_count": 79,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n",
+ "0 2020/01/01 0000 UTC 0.6 \n",
+ "1 2020/01/01 0100 UTC 0.0 \n",
+ "2 2020/01/01 0200 UTC 0.0 \n",
+ "3 2020/01/01 0300 UTC 0.0 \n",
+ "4 2020/01/01 0400 UTC 0.0 \n",
+ "... ... ... ... \n",
+ "8779 2020/12/31 1900 UTC 0.4 \n",
+ "8780 2020/12/31 2000 UTC 0.0 \n",
+ "8781 2020/12/31 2100 UTC 0.0 \n",
+ "8782 2020/12/31 2200 UTC 0.0 \n",
+ "8783 2020/12/31 2300 UTC 0.0 \n",
+ "\n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n",
+ "0 23.1 \n",
+ "1 23.7 \n",
+ "2 24.0 \n",
+ "3 24.3 \n",
+ "4 23.8 \n",
+ "... ... \n",
+ "8779 23.1 \n",
+ "8780 24.2 \n",
+ "8781 24.9 \n",
+ "8782 24.2 \n",
+ "8783 23.5 \n",
+ "\n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n",
+ "0 22.6 \n",
+ "1 21.7 \n",
+ "2 21.8 \n",
+ "3 21.4 \n",
+ "4 21.7 \n",
+ "... ... \n",
+ "8779 22.7 \n",
+ "8780 22.7 \n",
+ "8781 23.0 \n",
+ "8782 22.1 \n",
+ "8783 22.5 \n",
+ "\n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) RADIACAO GLOBAL (Kj/m²) \\\n",
+ "0 97.0 0.0 \n",
+ "1 88.0 2.9 \n",
+ "2 88.0 1.6 \n",
+ "3 83.0 0.6 \n",
+ "4 89.0 0.0 \n",
+ "... ... ... \n",
+ "8779 97.0 775.9 \n",
+ "8780 91.0 837.8 \n",
+ "8781 89.0 524.7 \n",
+ "8782 88.0 256.5 \n",
+ "8783 94.0 9.6 \n",
+ "\n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) VENTO, VELOCIDADE HORARIA (m/s) \n",
+ "0 11.0 1.9 \n",
+ "1 10.0 1.3 \n",
+ "2 345.0 0.6 \n",
+ "3 332.0 1.5 \n",
+ "4 316.0 0.2 \n",
+ "... ... ... \n",
+ "8779 32.0 1.2 \n",
+ "8780 355.0 0.8 \n",
+ "8781 315.0 1.2 \n",
+ "8782 291.0 0.9 \n",
+ "8783 132.0 0.9 \n",
+ "\n",
+ "[8784 rows x 9 columns]"
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " Hora UTC \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 2020/01/01 \n",
+ " 0000 UTC \n",
+ " 0.6 \n",
+ " 23.1 \n",
+ " 22.6 \n",
+ " 97.0 \n",
+ " 0.0 \n",
+ " 11.0 \n",
+ " 1.9 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 2020/01/01 \n",
+ " 0100 UTC \n",
+ " 0.0 \n",
+ " 23.7 \n",
+ " 21.7 \n",
+ " 88.0 \n",
+ " 2.9 \n",
+ " 10.0 \n",
+ " 1.3 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 2020/01/01 \n",
+ " 0200 UTC \n",
+ " 0.0 \n",
+ " 24.0 \n",
+ " 21.8 \n",
+ " 88.0 \n",
+ " 1.6 \n",
+ " 345.0 \n",
+ " 0.6 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 2020/01/01 \n",
+ " 0300 UTC \n",
+ " 0.0 \n",
+ " 24.3 \n",
+ " 21.4 \n",
+ " 83.0 \n",
+ " 0.6 \n",
+ " 332.0 \n",
+ " 1.5 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 2020/01/01 \n",
+ " 0400 UTC \n",
+ " 0.0 \n",
+ " 23.8 \n",
+ " 21.7 \n",
+ " 89.0 \n",
+ " 0.0 \n",
+ " 316.0 \n",
+ " 0.2 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 8779 \n",
+ " 2020/12/31 \n",
+ " 1900 UTC \n",
+ " 0.4 \n",
+ " 23.1 \n",
+ " 22.7 \n",
+ " 97.0 \n",
+ " 775.9 \n",
+ " 32.0 \n",
+ " 1.2 \n",
+ " \n",
+ " \n",
+ " 8780 \n",
+ " 2020/12/31 \n",
+ " 2000 UTC \n",
+ " 0.0 \n",
+ " 24.2 \n",
+ " 22.7 \n",
+ " 91.0 \n",
+ " 837.8 \n",
+ " 355.0 \n",
+ " 0.8 \n",
+ " \n",
+ " \n",
+ " 8781 \n",
+ " 2020/12/31 \n",
+ " 2100 UTC \n",
+ " 0.0 \n",
+ " 24.9 \n",
+ " 23.0 \n",
+ " 89.0 \n",
+ " 524.7 \n",
+ " 315.0 \n",
+ " 1.2 \n",
+ " \n",
+ " \n",
+ " 8782 \n",
+ " 2020/12/31 \n",
+ " 2200 UTC \n",
+ " 0.0 \n",
+ " 24.2 \n",
+ " 22.1 \n",
+ " 88.0 \n",
+ " 256.5 \n",
+ " 291.0 \n",
+ " 0.9 \n",
+ " \n",
+ " \n",
+ " 8783 \n",
+ " 2020/12/31 \n",
+ " 2300 UTC \n",
+ " 0.0 \n",
+ " 23.5 \n",
+ " 22.5 \n",
+ " 94.0 \n",
+ " 9.6 \n",
+ " 132.0 \n",
+ " 0.9 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
8784 rows × 9 columns
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 8784,\n \"fields\": [\n {\n \"column\": \"Data\",\n \"properties\": {\n \"dtype\": \"object\",\n \"num_unique_values\": 366,\n \"samples\": [\n \"2020/07/12\",\n \"2020/02/03\",\n \"2020/01/16\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Hora UTC\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 24,\n \"samples\": [\n \"0800 UTC\",\n \"1600 UTC\",\n \"0000 UTC\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PRECIPITA\\u00c7\\u00c3O TOTAL, HOR\\u00c1RIO (mm)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3756788874165256,\n \"min\": 0.0,\n \"max\": 44.8,\n \"num_unique_values\": 73,\n \"samples\": [\n 0.4,\n 30.8,\n 5.8\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO AR - BULBO SECO, HORARIA (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.725963118812376,\n \"min\": 0.0,\n \"max\": 40.6,\n \"num_unique_values\": 336,\n \"samples\": [\n 34.2,\n 33.1,\n 8.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO PONTO DE ORVALHO (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.592550592979101,\n \"min\": 0.0,\n \"max\": 25.8,\n \"num_unique_values\": 237,\n \"samples\": [\n 10.6,\n 23.4,\n 3.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"UMIDADE RELATIVA DO AR, HORARIA (%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 24.140895246074376,\n \"min\": 0.0,\n \"max\": 100.0,\n \"num_unique_values\": 88,\n \"samples\": [\n 23.0,\n 97.0,\n 76.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RADIACAO GLOBAL (Kj/m\\u00b2)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1077.0341286354853,\n \"min\": 0.0,\n \"max\": 4085.4,\n \"num_unique_values\": 4259,\n \"samples\": [\n 1895.3,\n 1625.8,\n 479.1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, DIRE\\u00c7\\u00c3O HORARIA (gr) (\\u00b0 (gr))\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 81.78471896065389,\n \"min\": 0.0,\n \"max\": 360.0,\n \"num_unique_values\": 361,\n \"samples\": [\n 145.0,\n 357.0,\n 338.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, VELOCIDADE HORARIA (m/s)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.4052333713147864,\n \"min\": 0.0,\n \"max\": 11.9,\n \"num_unique_values\": 86,\n \"samples\": [\n 6.2,\n 1.9,\n 6.7\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 79
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df['UMIDADE RELATIVA DO AR, HORARIA (%)'] = (df['UMIDADE RELATIVA DO AR, HORARIA (%)'] - df['UMIDADE RELATIVA DO AR, HORARIA (%)'].min()) / (df['UMIDADE RELATIVA DO AR, HORARIA (%)'].max() - df['UMIDADE RELATIVA DO AR, HORARIA (%)'].min())\n",
+ "df"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 615
+ },
+ "id": "Tm5xUbMp2POf",
+ "outputId": "fc985fb2-1070-4f37-e63f-73c08706b8f7"
+ },
+ "execution_count": 80,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n",
+ "0 2020/01/01 0000 UTC 0.6 \n",
+ "1 2020/01/01 0100 UTC 0.0 \n",
+ "2 2020/01/01 0200 UTC 0.0 \n",
+ "3 2020/01/01 0300 UTC 0.0 \n",
+ "4 2020/01/01 0400 UTC 0.0 \n",
+ "... ... ... ... \n",
+ "8779 2020/12/31 1900 UTC 0.4 \n",
+ "8780 2020/12/31 2000 UTC 0.0 \n",
+ "8781 2020/12/31 2100 UTC 0.0 \n",
+ "8782 2020/12/31 2200 UTC 0.0 \n",
+ "8783 2020/12/31 2300 UTC 0.0 \n",
+ "\n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n",
+ "0 23.1 \n",
+ "1 23.7 \n",
+ "2 24.0 \n",
+ "3 24.3 \n",
+ "4 23.8 \n",
+ "... ... \n",
+ "8779 23.1 \n",
+ "8780 24.2 \n",
+ "8781 24.9 \n",
+ "8782 24.2 \n",
+ "8783 23.5 \n",
+ "\n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n",
+ "0 22.6 \n",
+ "1 21.7 \n",
+ "2 21.8 \n",
+ "3 21.4 \n",
+ "4 21.7 \n",
+ "... ... \n",
+ "8779 22.7 \n",
+ "8780 22.7 \n",
+ "8781 23.0 \n",
+ "8782 22.1 \n",
+ "8783 22.5 \n",
+ "\n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) RADIACAO GLOBAL (Kj/m²) \\\n",
+ "0 0.97 0.0 \n",
+ "1 0.88 2.9 \n",
+ "2 0.88 1.6 \n",
+ "3 0.83 0.6 \n",
+ "4 0.89 0.0 \n",
+ "... ... ... \n",
+ "8779 0.97 775.9 \n",
+ "8780 0.91 837.8 \n",
+ "8781 0.89 524.7 \n",
+ "8782 0.88 256.5 \n",
+ "8783 0.94 9.6 \n",
+ "\n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) VENTO, VELOCIDADE HORARIA (m/s) \n",
+ "0 11.0 1.9 \n",
+ "1 10.0 1.3 \n",
+ "2 345.0 0.6 \n",
+ "3 332.0 1.5 \n",
+ "4 316.0 0.2 \n",
+ "... ... ... \n",
+ "8779 32.0 1.2 \n",
+ "8780 355.0 0.8 \n",
+ "8781 315.0 1.2 \n",
+ "8782 291.0 0.9 \n",
+ "8783 132.0 0.9 \n",
+ "\n",
+ "[8784 rows x 9 columns]"
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " Hora UTC \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 2020/01/01 \n",
+ " 0000 UTC \n",
+ " 0.6 \n",
+ " 23.1 \n",
+ " 22.6 \n",
+ " 0.97 \n",
+ " 0.0 \n",
+ " 11.0 \n",
+ " 1.9 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 2020/01/01 \n",
+ " 0100 UTC \n",
+ " 0.0 \n",
+ " 23.7 \n",
+ " 21.7 \n",
+ " 0.88 \n",
+ " 2.9 \n",
+ " 10.0 \n",
+ " 1.3 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 2020/01/01 \n",
+ " 0200 UTC \n",
+ " 0.0 \n",
+ " 24.0 \n",
+ " 21.8 \n",
+ " 0.88 \n",
+ " 1.6 \n",
+ " 345.0 \n",
+ " 0.6 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 2020/01/01 \n",
+ " 0300 UTC \n",
+ " 0.0 \n",
+ " 24.3 \n",
+ " 21.4 \n",
+ " 0.83 \n",
+ " 0.6 \n",
+ " 332.0 \n",
+ " 1.5 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 2020/01/01 \n",
+ " 0400 UTC \n",
+ " 0.0 \n",
+ " 23.8 \n",
+ " 21.7 \n",
+ " 0.89 \n",
+ " 0.0 \n",
+ " 316.0 \n",
+ " 0.2 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 8779 \n",
+ " 2020/12/31 \n",
+ " 1900 UTC \n",
+ " 0.4 \n",
+ " 23.1 \n",
+ " 22.7 \n",
+ " 0.97 \n",
+ " 775.9 \n",
+ " 32.0 \n",
+ " 1.2 \n",
+ " \n",
+ " \n",
+ " 8780 \n",
+ " 2020/12/31 \n",
+ " 2000 UTC \n",
+ " 0.0 \n",
+ " 24.2 \n",
+ " 22.7 \n",
+ " 0.91 \n",
+ " 837.8 \n",
+ " 355.0 \n",
+ " 0.8 \n",
+ " \n",
+ " \n",
+ " 8781 \n",
+ " 2020/12/31 \n",
+ " 2100 UTC \n",
+ " 0.0 \n",
+ " 24.9 \n",
+ " 23.0 \n",
+ " 0.89 \n",
+ " 524.7 \n",
+ " 315.0 \n",
+ " 1.2 \n",
+ " \n",
+ " \n",
+ " 8782 \n",
+ " 2020/12/31 \n",
+ " 2200 UTC \n",
+ " 0.0 \n",
+ " 24.2 \n",
+ " 22.1 \n",
+ " 0.88 \n",
+ " 256.5 \n",
+ " 291.0 \n",
+ " 0.9 \n",
+ " \n",
+ " \n",
+ " 8783 \n",
+ " 2020/12/31 \n",
+ " 2300 UTC \n",
+ " 0.0 \n",
+ " 23.5 \n",
+ " 22.5 \n",
+ " 0.94 \n",
+ " 9.6 \n",
+ " 132.0 \n",
+ " 0.9 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
8784 rows × 9 columns
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 8784,\n \"fields\": [\n {\n \"column\": \"Data\",\n \"properties\": {\n \"dtype\": \"object\",\n \"num_unique_values\": 366,\n \"samples\": [\n \"2020/07/12\",\n \"2020/02/03\",\n \"2020/01/16\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Hora UTC\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 24,\n \"samples\": [\n \"0800 UTC\",\n \"1600 UTC\",\n \"0000 UTC\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PRECIPITA\\u00c7\\u00c3O TOTAL, HOR\\u00c1RIO (mm)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3756788874165256,\n \"min\": 0.0,\n \"max\": 44.8,\n \"num_unique_values\": 73,\n \"samples\": [\n 0.4,\n 30.8,\n 5.8\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO AR - BULBO SECO, HORARIA (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.725963118812376,\n \"min\": 0.0,\n \"max\": 40.6,\n \"num_unique_values\": 336,\n \"samples\": [\n 34.2,\n 33.1,\n 8.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO PONTO DE ORVALHO (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.592550592979101,\n \"min\": 0.0,\n \"max\": 25.8,\n \"num_unique_values\": 237,\n \"samples\": [\n 10.6,\n 23.4,\n 3.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"UMIDADE RELATIVA DO AR, HORARIA (%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2414089524607437,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 88,\n \"samples\": [\n 0.23,\n 0.97,\n 0.76\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RADIACAO GLOBAL (Kj/m\\u00b2)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1077.0341286354853,\n \"min\": 0.0,\n \"max\": 4085.4,\n \"num_unique_values\": 4259,\n \"samples\": [\n 1895.3,\n 1625.8,\n 479.1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, DIRE\\u00c7\\u00c3O HORARIA (gr) (\\u00b0 (gr))\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 81.78471896065389,\n \"min\": 0.0,\n \"max\": 360.0,\n \"num_unique_values\": 361,\n \"samples\": [\n 145.0,\n 357.0,\n 338.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, VELOCIDADE HORARIA (m/s)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.4052333713147864,\n \"min\": 0.0,\n \"max\": 11.9,\n \"num_unique_values\": 86,\n \"samples\": [\n 6.2,\n 1.9,\n 6.7\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 80
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df['Data'] = pd.to_datetime(df['Data'], format='%Y/%m/%d')\n",
+ "df['Data'] = df['Data'].dt.strftime('%d/%m/%Y')\n",
+ "df"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 615
+ },
+ "id": "qoADTdft2rH2",
+ "outputId": "4eb84488-00f7-4f83-8cef-025b666ebf09"
+ },
+ "execution_count": 81,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n",
+ "0 01/01/2020 0000 UTC 0.6 \n",
+ "1 01/01/2020 0100 UTC 0.0 \n",
+ "2 01/01/2020 0200 UTC 0.0 \n",
+ "3 01/01/2020 0300 UTC 0.0 \n",
+ "4 01/01/2020 0400 UTC 0.0 \n",
+ "... ... ... ... \n",
+ "8779 31/12/2020 1900 UTC 0.4 \n",
+ "8780 31/12/2020 2000 UTC 0.0 \n",
+ "8781 31/12/2020 2100 UTC 0.0 \n",
+ "8782 31/12/2020 2200 UTC 0.0 \n",
+ "8783 31/12/2020 2300 UTC 0.0 \n",
+ "\n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n",
+ "0 23.1 \n",
+ "1 23.7 \n",
+ "2 24.0 \n",
+ "3 24.3 \n",
+ "4 23.8 \n",
+ "... ... \n",
+ "8779 23.1 \n",
+ "8780 24.2 \n",
+ "8781 24.9 \n",
+ "8782 24.2 \n",
+ "8783 23.5 \n",
+ "\n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n",
+ "0 22.6 \n",
+ "1 21.7 \n",
+ "2 21.8 \n",
+ "3 21.4 \n",
+ "4 21.7 \n",
+ "... ... \n",
+ "8779 22.7 \n",
+ "8780 22.7 \n",
+ "8781 23.0 \n",
+ "8782 22.1 \n",
+ "8783 22.5 \n",
+ "\n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) RADIACAO GLOBAL (Kj/m²) \\\n",
+ "0 0.97 0.0 \n",
+ "1 0.88 2.9 \n",
+ "2 0.88 1.6 \n",
+ "3 0.83 0.6 \n",
+ "4 0.89 0.0 \n",
+ "... ... ... \n",
+ "8779 0.97 775.9 \n",
+ "8780 0.91 837.8 \n",
+ "8781 0.89 524.7 \n",
+ "8782 0.88 256.5 \n",
+ "8783 0.94 9.6 \n",
+ "\n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) VENTO, VELOCIDADE HORARIA (m/s) \n",
+ "0 11.0 1.9 \n",
+ "1 10.0 1.3 \n",
+ "2 345.0 0.6 \n",
+ "3 332.0 1.5 \n",
+ "4 316.0 0.2 \n",
+ "... ... ... \n",
+ "8779 32.0 1.2 \n",
+ "8780 355.0 0.8 \n",
+ "8781 315.0 1.2 \n",
+ "8782 291.0 0.9 \n",
+ "8783 132.0 0.9 \n",
+ "\n",
+ "[8784 rows x 9 columns]"
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " Hora UTC \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 01/01/2020 \n",
+ " 0000 UTC \n",
+ " 0.6 \n",
+ " 23.1 \n",
+ " 22.6 \n",
+ " 0.97 \n",
+ " 0.0 \n",
+ " 11.0 \n",
+ " 1.9 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 01/01/2020 \n",
+ " 0100 UTC \n",
+ " 0.0 \n",
+ " 23.7 \n",
+ " 21.7 \n",
+ " 0.88 \n",
+ " 2.9 \n",
+ " 10.0 \n",
+ " 1.3 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 01/01/2020 \n",
+ " 0200 UTC \n",
+ " 0.0 \n",
+ " 24.0 \n",
+ " 21.8 \n",
+ " 0.88 \n",
+ " 1.6 \n",
+ " 345.0 \n",
+ " 0.6 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 01/01/2020 \n",
+ " 0300 UTC \n",
+ " 0.0 \n",
+ " 24.3 \n",
+ " 21.4 \n",
+ " 0.83 \n",
+ " 0.6 \n",
+ " 332.0 \n",
+ " 1.5 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 01/01/2020 \n",
+ " 0400 UTC \n",
+ " 0.0 \n",
+ " 23.8 \n",
+ " 21.7 \n",
+ " 0.89 \n",
+ " 0.0 \n",
+ " 316.0 \n",
+ " 0.2 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 8779 \n",
+ " 31/12/2020 \n",
+ " 1900 UTC \n",
+ " 0.4 \n",
+ " 23.1 \n",
+ " 22.7 \n",
+ " 0.97 \n",
+ " 775.9 \n",
+ " 32.0 \n",
+ " 1.2 \n",
+ " \n",
+ " \n",
+ " 8780 \n",
+ " 31/12/2020 \n",
+ " 2000 UTC \n",
+ " 0.0 \n",
+ " 24.2 \n",
+ " 22.7 \n",
+ " 0.91 \n",
+ " 837.8 \n",
+ " 355.0 \n",
+ " 0.8 \n",
+ " \n",
+ " \n",
+ " 8781 \n",
+ " 31/12/2020 \n",
+ " 2100 UTC \n",
+ " 0.0 \n",
+ " 24.9 \n",
+ " 23.0 \n",
+ " 0.89 \n",
+ " 524.7 \n",
+ " 315.0 \n",
+ " 1.2 \n",
+ " \n",
+ " \n",
+ " 8782 \n",
+ " 31/12/2020 \n",
+ " 2200 UTC \n",
+ " 0.0 \n",
+ " 24.2 \n",
+ " 22.1 \n",
+ " 0.88 \n",
+ " 256.5 \n",
+ " 291.0 \n",
+ " 0.9 \n",
+ " \n",
+ " \n",
+ " 8783 \n",
+ " 31/12/2020 \n",
+ " 2300 UTC \n",
+ " 0.0 \n",
+ " 23.5 \n",
+ " 22.5 \n",
+ " 0.94 \n",
+ " 9.6 \n",
+ " 132.0 \n",
+ " 0.9 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
8784 rows × 9 columns
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 8784,\n \"fields\": [\n {\n \"column\": \"Data\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 366,\n \"samples\": [\n \"12/07/2020\",\n \"03/02/2020\",\n \"16/01/2020\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Hora UTC\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 24,\n \"samples\": [\n \"0800 UTC\",\n \"1600 UTC\",\n \"0000 UTC\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PRECIPITA\\u00c7\\u00c3O TOTAL, HOR\\u00c1RIO (mm)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3756788874165256,\n \"min\": 0.0,\n \"max\": 44.8,\n \"num_unique_values\": 73,\n \"samples\": [\n 0.4,\n 30.8,\n 5.8\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO AR - BULBO SECO, HORARIA (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.725963118812376,\n \"min\": 0.0,\n \"max\": 40.6,\n \"num_unique_values\": 336,\n \"samples\": [\n 34.2,\n 33.1,\n 8.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO PONTO DE ORVALHO (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.592550592979101,\n \"min\": 0.0,\n \"max\": 25.8,\n \"num_unique_values\": 237,\n \"samples\": [\n 10.6,\n 23.4,\n 3.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"UMIDADE RELATIVA DO AR, HORARIA (%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2414089524607437,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 88,\n \"samples\": [\n 0.23,\n 0.97,\n 0.76\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RADIACAO GLOBAL (Kj/m\\u00b2)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1077.0341286354853,\n \"min\": 0.0,\n \"max\": 4085.4,\n \"num_unique_values\": 4259,\n \"samples\": [\n 1895.3,\n 1625.8,\n 479.1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, DIRE\\u00c7\\u00c3O HORARIA (gr) (\\u00b0 (gr))\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 81.78471896065389,\n \"min\": 0.0,\n \"max\": 360.0,\n \"num_unique_values\": 361,\n \"samples\": [\n 145.0,\n 357.0,\n 338.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, VELOCIDADE HORARIA (m/s)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.4052333713147864,\n \"min\": 0.0,\n \"max\": 11.9,\n \"num_unique_values\": 86,\n \"samples\": [\n 6.2,\n 1.9,\n 6.7\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 81
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 82,
+ "metadata": {
+ "id": "dt79oDDdTUZ5"
+ },
+ "outputs": [],
+ "source": [
+ "#Substituir numeros nulos por zero.\n",
+ "\n",
+ "df = df.dropna()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 83,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 310
+ },
+ "id": "aRX43UdWTUZ5",
+ "outputId": "d63cf0f3-e0e3-461e-fdc5-f0693ac33863"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n",
+ "0 01/01/2020 0000 UTC 0.6 \n",
+ "1 01/01/2020 0100 UTC 0.0 \n",
+ "2 01/01/2020 0200 UTC 0.0 \n",
+ "3 01/01/2020 0300 UTC 0.0 \n",
+ "4 01/01/2020 0400 UTC 0.0 \n",
+ "\n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n",
+ "0 23.1 \n",
+ "1 23.7 \n",
+ "2 24.0 \n",
+ "3 24.3 \n",
+ "4 23.8 \n",
+ "\n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) UMIDADE RELATIVA DO AR, HORARIA (%) \\\n",
+ "0 22.6 0.97 \n",
+ "1 21.7 0.88 \n",
+ "2 21.8 0.88 \n",
+ "3 21.4 0.83 \n",
+ "4 21.7 0.89 \n",
+ "\n",
+ " RADIACAO GLOBAL (Kj/m²) VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n",
+ "0 0.0 11.0 \n",
+ "1 2.9 10.0 \n",
+ "2 1.6 345.0 \n",
+ "3 0.6 332.0 \n",
+ "4 0.0 316.0 \n",
+ "\n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ "0 1.9 \n",
+ "1 1.3 \n",
+ "2 0.6 \n",
+ "3 1.5 \n",
+ "4 0.2 "
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " Hora UTC \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 01/01/2020 \n",
+ " 0000 UTC \n",
+ " 0.6 \n",
+ " 23.1 \n",
+ " 22.6 \n",
+ " 0.97 \n",
+ " 0.0 \n",
+ " 11.0 \n",
+ " 1.9 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 01/01/2020 \n",
+ " 0100 UTC \n",
+ " 0.0 \n",
+ " 23.7 \n",
+ " 21.7 \n",
+ " 0.88 \n",
+ " 2.9 \n",
+ " 10.0 \n",
+ " 1.3 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 01/01/2020 \n",
+ " 0200 UTC \n",
+ " 0.0 \n",
+ " 24.0 \n",
+ " 21.8 \n",
+ " 0.88 \n",
+ " 1.6 \n",
+ " 345.0 \n",
+ " 0.6 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 01/01/2020 \n",
+ " 0300 UTC \n",
+ " 0.0 \n",
+ " 24.3 \n",
+ " 21.4 \n",
+ " 0.83 \n",
+ " 0.6 \n",
+ " 332.0 \n",
+ " 1.5 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 01/01/2020 \n",
+ " 0400 UTC \n",
+ " 0.0 \n",
+ " 23.8 \n",
+ " 21.7 \n",
+ " 0.89 \n",
+ " 0.0 \n",
+ " 316.0 \n",
+ " 0.2 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 8784,\n \"fields\": [\n {\n \"column\": \"Data\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 366,\n \"samples\": [\n \"12/07/2020\",\n \"03/02/2020\",\n \"16/01/2020\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Hora UTC\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 24,\n \"samples\": [\n \"0800 UTC\",\n \"1600 UTC\",\n \"0000 UTC\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PRECIPITA\\u00c7\\u00c3O TOTAL, HOR\\u00c1RIO (mm)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3756788874165256,\n \"min\": 0.0,\n \"max\": 44.8,\n \"num_unique_values\": 73,\n \"samples\": [\n 0.4,\n 30.8,\n 5.8\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO AR - BULBO SECO, HORARIA (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.725963118812376,\n \"min\": 0.0,\n \"max\": 40.6,\n \"num_unique_values\": 336,\n \"samples\": [\n 34.2,\n 33.1,\n 8.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO PONTO DE ORVALHO (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.592550592979101,\n \"min\": 0.0,\n \"max\": 25.8,\n \"num_unique_values\": 237,\n \"samples\": [\n 10.6,\n 23.4,\n 3.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"UMIDADE RELATIVA DO AR, HORARIA (%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2414089524607437,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 88,\n \"samples\": [\n 0.23,\n 0.97,\n 0.76\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RADIACAO GLOBAL (Kj/m\\u00b2)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1077.0341286354853,\n \"min\": 0.0,\n \"max\": 4085.4,\n \"num_unique_values\": 4259,\n \"samples\": [\n 1895.3,\n 1625.8,\n 479.1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, DIRE\\u00c7\\u00c3O HORARIA (gr) (\\u00b0 (gr))\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 81.78471896065389,\n \"min\": 0.0,\n \"max\": 360.0,\n \"num_unique_values\": 361,\n \"samples\": [\n 145.0,\n 357.0,\n 338.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, VELOCIDADE HORARIA (m/s)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.4052333713147864,\n \"min\": 0.0,\n \"max\": 11.9,\n \"num_unique_values\": 86,\n \"samples\": [\n 6.2,\n 1.9,\n 6.7\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 83
+ }
+ ],
+ "source": [
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 83,
+ "metadata": {
+ "id": "qxBjBfiLTUZ5"
+ },
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 84,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 366
+ },
+ "id": "a7lsQsgSTUZ5",
+ "outputId": "6830ec03-a315-4032-b988-de2e388bee15"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "Data object\n",
+ "Hora UTC object\n",
+ "PRECIPITAÇÃO TOTAL, HORÁRIO (mm) float64\n",
+ "TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) float64\n",
+ "TEMPERATURA DO PONTO DE ORVALHO (°C) float64\n",
+ "UMIDADE RELATIVA DO AR, HORARIA (%) float64\n",
+ "RADIACAO GLOBAL (Kj/m²) float64\n",
+ "VENTO, DIREÇÃO HORARIA (gr) (° (gr)) float64\n",
+ "VENTO, VELOCIDADE HORARIA (m/s) float64\n",
+ "dtype: object"
+ ],
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " object \n",
+ " \n",
+ " \n",
+ " Hora UTC \n",
+ " object \n",
+ " \n",
+ " \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
dtype: object "
+ ]
+ },
+ "metadata": {},
+ "execution_count": 84
+ }
+ ],
+ "source": [
+ "df.dtypes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 85,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 310
+ },
+ "id": "T1PQSOE5TUZ5",
+ "outputId": "cd2ae1be-1e26-45ce-fe9e-fcc4435a42dd"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n",
+ "0 01/01/2020 0000 UTC 0.6 \n",
+ "1 01/01/2020 0100 UTC 0.0 \n",
+ "2 01/01/2020 0200 UTC 0.0 \n",
+ "3 01/01/2020 0300 UTC 0.0 \n",
+ "4 01/01/2020 0400 UTC 0.0 \n",
+ "\n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n",
+ "0 23.1 \n",
+ "1 23.7 \n",
+ "2 24.0 \n",
+ "3 24.3 \n",
+ "4 23.8 \n",
+ "\n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) UMIDADE RELATIVA DO AR, HORARIA (%) \\\n",
+ "0 22.6 0.97 \n",
+ "1 21.7 0.88 \n",
+ "2 21.8 0.88 \n",
+ "3 21.4 0.83 \n",
+ "4 21.7 0.89 \n",
+ "\n",
+ " RADIACAO GLOBAL (Kj/m²) VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n",
+ "0 0.0 11.0 \n",
+ "1 2.9 10.0 \n",
+ "2 1.6 345.0 \n",
+ "3 0.6 332.0 \n",
+ "4 0.0 316.0 \n",
+ "\n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ "0 1.9 \n",
+ "1 1.3 \n",
+ "2 0.6 \n",
+ "3 1.5 \n",
+ "4 0.2 "
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " Hora UTC \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 01/01/2020 \n",
+ " 0000 UTC \n",
+ " 0.6 \n",
+ " 23.1 \n",
+ " 22.6 \n",
+ " 0.97 \n",
+ " 0.0 \n",
+ " 11.0 \n",
+ " 1.9 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 01/01/2020 \n",
+ " 0100 UTC \n",
+ " 0.0 \n",
+ " 23.7 \n",
+ " 21.7 \n",
+ " 0.88 \n",
+ " 2.9 \n",
+ " 10.0 \n",
+ " 1.3 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 01/01/2020 \n",
+ " 0200 UTC \n",
+ " 0.0 \n",
+ " 24.0 \n",
+ " 21.8 \n",
+ " 0.88 \n",
+ " 1.6 \n",
+ " 345.0 \n",
+ " 0.6 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 01/01/2020 \n",
+ " 0300 UTC \n",
+ " 0.0 \n",
+ " 24.3 \n",
+ " 21.4 \n",
+ " 0.83 \n",
+ " 0.6 \n",
+ " 332.0 \n",
+ " 1.5 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 01/01/2020 \n",
+ " 0400 UTC \n",
+ " 0.0 \n",
+ " 23.8 \n",
+ " 21.7 \n",
+ " 0.89 \n",
+ " 0.0 \n",
+ " 316.0 \n",
+ " 0.2 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 8784,\n \"fields\": [\n {\n \"column\": \"Data\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 366,\n \"samples\": [\n \"12/07/2020\",\n \"03/02/2020\",\n \"16/01/2020\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Hora UTC\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 24,\n \"samples\": [\n \"0800 UTC\",\n \"1600 UTC\",\n \"0000 UTC\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PRECIPITA\\u00c7\\u00c3O TOTAL, HOR\\u00c1RIO (mm)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3756788874165256,\n \"min\": 0.0,\n \"max\": 44.8,\n \"num_unique_values\": 73,\n \"samples\": [\n 0.4,\n 30.8,\n 5.8\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO AR - BULBO SECO, HORARIA (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.725963118812376,\n \"min\": 0.0,\n \"max\": 40.6,\n \"num_unique_values\": 336,\n \"samples\": [\n 34.2,\n 33.1,\n 8.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO PONTO DE ORVALHO (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.592550592979101,\n \"min\": 0.0,\n \"max\": 25.8,\n \"num_unique_values\": 237,\n \"samples\": [\n 10.6,\n 23.4,\n 3.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"UMIDADE RELATIVA DO AR, HORARIA (%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2414089524607437,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 88,\n \"samples\": [\n 0.23,\n 0.97,\n 0.76\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RADIACAO GLOBAL (Kj/m\\u00b2)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1077.0341286354853,\n \"min\": 0.0,\n \"max\": 4085.4,\n \"num_unique_values\": 4259,\n \"samples\": [\n 1895.3,\n 1625.8,\n 479.1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, DIRE\\u00c7\\u00c3O HORARIA (gr) (\\u00b0 (gr))\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 81.78471896065389,\n \"min\": 0.0,\n \"max\": 360.0,\n \"num_unique_values\": 361,\n \"samples\": [\n 145.0,\n 357.0,\n 338.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, VELOCIDADE HORARIA (m/s)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.4052333713147864,\n \"min\": 0.0,\n \"max\": 11.9,\n \"num_unique_values\": 86,\n \"samples\": [\n 6.2,\n 1.9,\n 6.7\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 85
+ }
+ ],
+ "source": [
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 86,
+ "metadata": {
+ "id": "NfOuQ28gTUZ6"
+ },
+ "outputs": [],
+ "source": [
+ "# df = df.dropna() # remover linhas com valores nulos ou faltantes\n",
+ "\n",
+ "df['PRECIPITAÇÃO TOTAL, HORÁRIO (mm)'] = df['PRECIPITAÇÃO TOTAL, HORÁRIO (mm)'].fillna(0)\n",
+ "df['TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)'] = df['TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)'].fillna(0)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.isnull().sum()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 366
+ },
+ "id": "9LM0CGtjYNzo",
+ "outputId": "c953ac49-8d90-4048-dfc6-be20c1babdfb"
+ },
+ "execution_count": 87,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "Data 0\n",
+ "Hora UTC 0\n",
+ "PRECIPITAÇÃO TOTAL, HORÁRIO (mm) 0\n",
+ "TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) 0\n",
+ "TEMPERATURA DO PONTO DE ORVALHO (°C) 0\n",
+ "UMIDADE RELATIVA DO AR, HORARIA (%) 0\n",
+ "RADIACAO GLOBAL (Kj/m²) 0\n",
+ "VENTO, DIREÇÃO HORARIA (gr) (° (gr)) 0\n",
+ "VENTO, VELOCIDADE HORARIA (m/s) 0\n",
+ "dtype: int64"
+ ],
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " Hora UTC \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
dtype: int64 "
+ ]
+ },
+ "metadata": {},
+ "execution_count": 87
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df = df.fillna(0)\n",
+ "df"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 615
+ },
+ "id": "9Dzsvz7tYRL3",
+ "outputId": "a34650bb-de56-4e87-df32-c91e7dff1415"
+ },
+ "execution_count": 88,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n",
+ "0 01/01/2020 0000 UTC 0.6 \n",
+ "1 01/01/2020 0100 UTC 0.0 \n",
+ "2 01/01/2020 0200 UTC 0.0 \n",
+ "3 01/01/2020 0300 UTC 0.0 \n",
+ "4 01/01/2020 0400 UTC 0.0 \n",
+ "... ... ... ... \n",
+ "8779 31/12/2020 1900 UTC 0.4 \n",
+ "8780 31/12/2020 2000 UTC 0.0 \n",
+ "8781 31/12/2020 2100 UTC 0.0 \n",
+ "8782 31/12/2020 2200 UTC 0.0 \n",
+ "8783 31/12/2020 2300 UTC 0.0 \n",
+ "\n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n",
+ "0 23.1 \n",
+ "1 23.7 \n",
+ "2 24.0 \n",
+ "3 24.3 \n",
+ "4 23.8 \n",
+ "... ... \n",
+ "8779 23.1 \n",
+ "8780 24.2 \n",
+ "8781 24.9 \n",
+ "8782 24.2 \n",
+ "8783 23.5 \n",
+ "\n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n",
+ "0 22.6 \n",
+ "1 21.7 \n",
+ "2 21.8 \n",
+ "3 21.4 \n",
+ "4 21.7 \n",
+ "... ... \n",
+ "8779 22.7 \n",
+ "8780 22.7 \n",
+ "8781 23.0 \n",
+ "8782 22.1 \n",
+ "8783 22.5 \n",
+ "\n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) RADIACAO GLOBAL (Kj/m²) \\\n",
+ "0 0.97 0.0 \n",
+ "1 0.88 2.9 \n",
+ "2 0.88 1.6 \n",
+ "3 0.83 0.6 \n",
+ "4 0.89 0.0 \n",
+ "... ... ... \n",
+ "8779 0.97 775.9 \n",
+ "8780 0.91 837.8 \n",
+ "8781 0.89 524.7 \n",
+ "8782 0.88 256.5 \n",
+ "8783 0.94 9.6 \n",
+ "\n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) VENTO, VELOCIDADE HORARIA (m/s) \n",
+ "0 11.0 1.9 \n",
+ "1 10.0 1.3 \n",
+ "2 345.0 0.6 \n",
+ "3 332.0 1.5 \n",
+ "4 316.0 0.2 \n",
+ "... ... ... \n",
+ "8779 32.0 1.2 \n",
+ "8780 355.0 0.8 \n",
+ "8781 315.0 1.2 \n",
+ "8782 291.0 0.9 \n",
+ "8783 132.0 0.9 \n",
+ "\n",
+ "[8784 rows x 9 columns]"
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " Hora UTC \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 01/01/2020 \n",
+ " 0000 UTC \n",
+ " 0.6 \n",
+ " 23.1 \n",
+ " 22.6 \n",
+ " 0.97 \n",
+ " 0.0 \n",
+ " 11.0 \n",
+ " 1.9 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 01/01/2020 \n",
+ " 0100 UTC \n",
+ " 0.0 \n",
+ " 23.7 \n",
+ " 21.7 \n",
+ " 0.88 \n",
+ " 2.9 \n",
+ " 10.0 \n",
+ " 1.3 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 01/01/2020 \n",
+ " 0200 UTC \n",
+ " 0.0 \n",
+ " 24.0 \n",
+ " 21.8 \n",
+ " 0.88 \n",
+ " 1.6 \n",
+ " 345.0 \n",
+ " 0.6 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 01/01/2020 \n",
+ " 0300 UTC \n",
+ " 0.0 \n",
+ " 24.3 \n",
+ " 21.4 \n",
+ " 0.83 \n",
+ " 0.6 \n",
+ " 332.0 \n",
+ " 1.5 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 01/01/2020 \n",
+ " 0400 UTC \n",
+ " 0.0 \n",
+ " 23.8 \n",
+ " 21.7 \n",
+ " 0.89 \n",
+ " 0.0 \n",
+ " 316.0 \n",
+ " 0.2 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 8779 \n",
+ " 31/12/2020 \n",
+ " 1900 UTC \n",
+ " 0.4 \n",
+ " 23.1 \n",
+ " 22.7 \n",
+ " 0.97 \n",
+ " 775.9 \n",
+ " 32.0 \n",
+ " 1.2 \n",
+ " \n",
+ " \n",
+ " 8780 \n",
+ " 31/12/2020 \n",
+ " 2000 UTC \n",
+ " 0.0 \n",
+ " 24.2 \n",
+ " 22.7 \n",
+ " 0.91 \n",
+ " 837.8 \n",
+ " 355.0 \n",
+ " 0.8 \n",
+ " \n",
+ " \n",
+ " 8781 \n",
+ " 31/12/2020 \n",
+ " 2100 UTC \n",
+ " 0.0 \n",
+ " 24.9 \n",
+ " 23.0 \n",
+ " 0.89 \n",
+ " 524.7 \n",
+ " 315.0 \n",
+ " 1.2 \n",
+ " \n",
+ " \n",
+ " 8782 \n",
+ " 31/12/2020 \n",
+ " 2200 UTC \n",
+ " 0.0 \n",
+ " 24.2 \n",
+ " 22.1 \n",
+ " 0.88 \n",
+ " 256.5 \n",
+ " 291.0 \n",
+ " 0.9 \n",
+ " \n",
+ " \n",
+ " 8783 \n",
+ " 31/12/2020 \n",
+ " 2300 UTC \n",
+ " 0.0 \n",
+ " 23.5 \n",
+ " 22.5 \n",
+ " 0.94 \n",
+ " 9.6 \n",
+ " 132.0 \n",
+ " 0.9 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
8784 rows × 9 columns
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 8784,\n \"fields\": [\n {\n \"column\": \"Data\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 366,\n \"samples\": [\n \"12/07/2020\",\n \"03/02/2020\",\n \"16/01/2020\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Hora UTC\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 24,\n \"samples\": [\n \"0800 UTC\",\n \"1600 UTC\",\n \"0000 UTC\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PRECIPITA\\u00c7\\u00c3O TOTAL, HOR\\u00c1RIO (mm)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3756788874165256,\n \"min\": 0.0,\n \"max\": 44.8,\n \"num_unique_values\": 73,\n \"samples\": [\n 0.4,\n 30.8,\n 5.8\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO AR - BULBO SECO, HORARIA (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.725963118812376,\n \"min\": 0.0,\n \"max\": 40.6,\n \"num_unique_values\": 336,\n \"samples\": [\n 34.2,\n 33.1,\n 8.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO PONTO DE ORVALHO (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.592550592979101,\n \"min\": 0.0,\n \"max\": 25.8,\n \"num_unique_values\": 237,\n \"samples\": [\n 10.6,\n 23.4,\n 3.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"UMIDADE RELATIVA DO AR, HORARIA (%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2414089524607437,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 88,\n \"samples\": [\n 0.23,\n 0.97,\n 0.76\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RADIACAO GLOBAL (Kj/m\\u00b2)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1077.0341286354853,\n \"min\": 0.0,\n \"max\": 4085.4,\n \"num_unique_values\": 4259,\n \"samples\": [\n 1895.3,\n 1625.8,\n 479.1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, DIRE\\u00c7\\u00c3O HORARIA (gr) (\\u00b0 (gr))\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 81.78471896065389,\n \"min\": 0.0,\n \"max\": 360.0,\n \"num_unique_values\": 361,\n \"samples\": [\n 145.0,\n 357.0,\n 338.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, VELOCIDADE HORARIA (m/s)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.4052333713147864,\n \"min\": 0.0,\n \"max\": 11.9,\n \"num_unique_values\": 86,\n \"samples\": [\n 6.2,\n 1.9,\n 6.7\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 88
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df['UMIDADE RELATIVA DO AR, HORARIA (%)'] = (df['UMIDADE RELATIVA DO AR, HORARIA (%)'] - df['UMIDADE RELATIVA DO AR, HORARIA (%)'].min()) / (df['UMIDADE RELATIVA DO AR, HORARIA (%)'].max() - df['UMIDADE RELATIVA DO AR, HORARIA (%)'].min())\n",
+ "df"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 615
+ },
+ "id": "AghnCFCiYW_w",
+ "outputId": "48224ae6-7798-4318-c408-3199f257e10b"
+ },
+ "execution_count": 89,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n",
+ "0 01/01/2020 0000 UTC 0.6 \n",
+ "1 01/01/2020 0100 UTC 0.0 \n",
+ "2 01/01/2020 0200 UTC 0.0 \n",
+ "3 01/01/2020 0300 UTC 0.0 \n",
+ "4 01/01/2020 0400 UTC 0.0 \n",
+ "... ... ... ... \n",
+ "8779 31/12/2020 1900 UTC 0.4 \n",
+ "8780 31/12/2020 2000 UTC 0.0 \n",
+ "8781 31/12/2020 2100 UTC 0.0 \n",
+ "8782 31/12/2020 2200 UTC 0.0 \n",
+ "8783 31/12/2020 2300 UTC 0.0 \n",
+ "\n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n",
+ "0 23.1 \n",
+ "1 23.7 \n",
+ "2 24.0 \n",
+ "3 24.3 \n",
+ "4 23.8 \n",
+ "... ... \n",
+ "8779 23.1 \n",
+ "8780 24.2 \n",
+ "8781 24.9 \n",
+ "8782 24.2 \n",
+ "8783 23.5 \n",
+ "\n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n",
+ "0 22.6 \n",
+ "1 21.7 \n",
+ "2 21.8 \n",
+ "3 21.4 \n",
+ "4 21.7 \n",
+ "... ... \n",
+ "8779 22.7 \n",
+ "8780 22.7 \n",
+ "8781 23.0 \n",
+ "8782 22.1 \n",
+ "8783 22.5 \n",
+ "\n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) RADIACAO GLOBAL (Kj/m²) \\\n",
+ "0 0.97 0.0 \n",
+ "1 0.88 2.9 \n",
+ "2 0.88 1.6 \n",
+ "3 0.83 0.6 \n",
+ "4 0.89 0.0 \n",
+ "... ... ... \n",
+ "8779 0.97 775.9 \n",
+ "8780 0.91 837.8 \n",
+ "8781 0.89 524.7 \n",
+ "8782 0.88 256.5 \n",
+ "8783 0.94 9.6 \n",
+ "\n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) VENTO, VELOCIDADE HORARIA (m/s) \n",
+ "0 11.0 1.9 \n",
+ "1 10.0 1.3 \n",
+ "2 345.0 0.6 \n",
+ "3 332.0 1.5 \n",
+ "4 316.0 0.2 \n",
+ "... ... ... \n",
+ "8779 32.0 1.2 \n",
+ "8780 355.0 0.8 \n",
+ "8781 315.0 1.2 \n",
+ "8782 291.0 0.9 \n",
+ "8783 132.0 0.9 \n",
+ "\n",
+ "[8784 rows x 9 columns]"
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " Hora UTC \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 01/01/2020 \n",
+ " 0000 UTC \n",
+ " 0.6 \n",
+ " 23.1 \n",
+ " 22.6 \n",
+ " 0.97 \n",
+ " 0.0 \n",
+ " 11.0 \n",
+ " 1.9 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 01/01/2020 \n",
+ " 0100 UTC \n",
+ " 0.0 \n",
+ " 23.7 \n",
+ " 21.7 \n",
+ " 0.88 \n",
+ " 2.9 \n",
+ " 10.0 \n",
+ " 1.3 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 01/01/2020 \n",
+ " 0200 UTC \n",
+ " 0.0 \n",
+ " 24.0 \n",
+ " 21.8 \n",
+ " 0.88 \n",
+ " 1.6 \n",
+ " 345.0 \n",
+ " 0.6 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 01/01/2020 \n",
+ " 0300 UTC \n",
+ " 0.0 \n",
+ " 24.3 \n",
+ " 21.4 \n",
+ " 0.83 \n",
+ " 0.6 \n",
+ " 332.0 \n",
+ " 1.5 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 01/01/2020 \n",
+ " 0400 UTC \n",
+ " 0.0 \n",
+ " 23.8 \n",
+ " 21.7 \n",
+ " 0.89 \n",
+ " 0.0 \n",
+ " 316.0 \n",
+ " 0.2 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 8779 \n",
+ " 31/12/2020 \n",
+ " 1900 UTC \n",
+ " 0.4 \n",
+ " 23.1 \n",
+ " 22.7 \n",
+ " 0.97 \n",
+ " 775.9 \n",
+ " 32.0 \n",
+ " 1.2 \n",
+ " \n",
+ " \n",
+ " 8780 \n",
+ " 31/12/2020 \n",
+ " 2000 UTC \n",
+ " 0.0 \n",
+ " 24.2 \n",
+ " 22.7 \n",
+ " 0.91 \n",
+ " 837.8 \n",
+ " 355.0 \n",
+ " 0.8 \n",
+ " \n",
+ " \n",
+ " 8781 \n",
+ " 31/12/2020 \n",
+ " 2100 UTC \n",
+ " 0.0 \n",
+ " 24.9 \n",
+ " 23.0 \n",
+ " 0.89 \n",
+ " 524.7 \n",
+ " 315.0 \n",
+ " 1.2 \n",
+ " \n",
+ " \n",
+ " 8782 \n",
+ " 31/12/2020 \n",
+ " 2200 UTC \n",
+ " 0.0 \n",
+ " 24.2 \n",
+ " 22.1 \n",
+ " 0.88 \n",
+ " 256.5 \n",
+ " 291.0 \n",
+ " 0.9 \n",
+ " \n",
+ " \n",
+ " 8783 \n",
+ " 31/12/2020 \n",
+ " 2300 UTC \n",
+ " 0.0 \n",
+ " 23.5 \n",
+ " 22.5 \n",
+ " 0.94 \n",
+ " 9.6 \n",
+ " 132.0 \n",
+ " 0.9 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
8784 rows × 9 columns
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 8784,\n \"fields\": [\n {\n \"column\": \"Data\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 366,\n \"samples\": [\n \"12/07/2020\",\n \"03/02/2020\",\n \"16/01/2020\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Hora UTC\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 24,\n \"samples\": [\n \"0800 UTC\",\n \"1600 UTC\",\n \"0000 UTC\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PRECIPITA\\u00c7\\u00c3O TOTAL, HOR\\u00c1RIO (mm)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3756788874165256,\n \"min\": 0.0,\n \"max\": 44.8,\n \"num_unique_values\": 73,\n \"samples\": [\n 0.4,\n 30.8,\n 5.8\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO AR - BULBO SECO, HORARIA (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.725963118812376,\n \"min\": 0.0,\n \"max\": 40.6,\n \"num_unique_values\": 336,\n \"samples\": [\n 34.2,\n 33.1,\n 8.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO PONTO DE ORVALHO (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.592550592979101,\n \"min\": 0.0,\n \"max\": 25.8,\n \"num_unique_values\": 237,\n \"samples\": [\n 10.6,\n 23.4,\n 3.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"UMIDADE RELATIVA DO AR, HORARIA (%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2414089524607437,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 88,\n \"samples\": [\n 0.23,\n 0.97,\n 0.76\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RADIACAO GLOBAL (Kj/m\\u00b2)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1077.0341286354853,\n \"min\": 0.0,\n \"max\": 4085.4,\n \"num_unique_values\": 4259,\n \"samples\": [\n 1895.3,\n 1625.8,\n 479.1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, DIRE\\u00c7\\u00c3O HORARIA (gr) (\\u00b0 (gr))\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 81.78471896065389,\n \"min\": 0.0,\n \"max\": 360.0,\n \"num_unique_values\": 361,\n \"samples\": [\n 145.0,\n 357.0,\n 338.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, VELOCIDADE HORARIA (m/s)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.4052333713147864,\n \"min\": 0.0,\n \"max\": 11.9,\n \"num_unique_values\": 86,\n \"samples\": [\n 6.2,\n 1.9,\n 6.7\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 89
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 615
+ },
+ "id": "8FYFh0wO25F_",
+ "outputId": "ead719bb-ed10-487c-eba6-50a178e87e31"
+ },
+ "execution_count": 90,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n",
+ "0 01/01/2020 0000 UTC 0.6 \n",
+ "1 01/01/2020 0100 UTC 0.0 \n",
+ "2 01/01/2020 0200 UTC 0.0 \n",
+ "3 01/01/2020 0300 UTC 0.0 \n",
+ "4 01/01/2020 0400 UTC 0.0 \n",
+ "... ... ... ... \n",
+ "8779 31/12/2020 1900 UTC 0.4 \n",
+ "8780 31/12/2020 2000 UTC 0.0 \n",
+ "8781 31/12/2020 2100 UTC 0.0 \n",
+ "8782 31/12/2020 2200 UTC 0.0 \n",
+ "8783 31/12/2020 2300 UTC 0.0 \n",
+ "\n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n",
+ "0 23.1 \n",
+ "1 23.7 \n",
+ "2 24.0 \n",
+ "3 24.3 \n",
+ "4 23.8 \n",
+ "... ... \n",
+ "8779 23.1 \n",
+ "8780 24.2 \n",
+ "8781 24.9 \n",
+ "8782 24.2 \n",
+ "8783 23.5 \n",
+ "\n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n",
+ "0 22.6 \n",
+ "1 21.7 \n",
+ "2 21.8 \n",
+ "3 21.4 \n",
+ "4 21.7 \n",
+ "... ... \n",
+ "8779 22.7 \n",
+ "8780 22.7 \n",
+ "8781 23.0 \n",
+ "8782 22.1 \n",
+ "8783 22.5 \n",
+ "\n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) RADIACAO GLOBAL (Kj/m²) \\\n",
+ "0 0.97 0.0 \n",
+ "1 0.88 2.9 \n",
+ "2 0.88 1.6 \n",
+ "3 0.83 0.6 \n",
+ "4 0.89 0.0 \n",
+ "... ... ... \n",
+ "8779 0.97 775.9 \n",
+ "8780 0.91 837.8 \n",
+ "8781 0.89 524.7 \n",
+ "8782 0.88 256.5 \n",
+ "8783 0.94 9.6 \n",
+ "\n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) VENTO, VELOCIDADE HORARIA (m/s) \n",
+ "0 11.0 1.9 \n",
+ "1 10.0 1.3 \n",
+ "2 345.0 0.6 \n",
+ "3 332.0 1.5 \n",
+ "4 316.0 0.2 \n",
+ "... ... ... \n",
+ "8779 32.0 1.2 \n",
+ "8780 355.0 0.8 \n",
+ "8781 315.0 1.2 \n",
+ "8782 291.0 0.9 \n",
+ "8783 132.0 0.9 \n",
+ "\n",
+ "[8784 rows x 9 columns]"
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " Hora UTC \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 01/01/2020 \n",
+ " 0000 UTC \n",
+ " 0.6 \n",
+ " 23.1 \n",
+ " 22.6 \n",
+ " 0.97 \n",
+ " 0.0 \n",
+ " 11.0 \n",
+ " 1.9 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 01/01/2020 \n",
+ " 0100 UTC \n",
+ " 0.0 \n",
+ " 23.7 \n",
+ " 21.7 \n",
+ " 0.88 \n",
+ " 2.9 \n",
+ " 10.0 \n",
+ " 1.3 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 01/01/2020 \n",
+ " 0200 UTC \n",
+ " 0.0 \n",
+ " 24.0 \n",
+ " 21.8 \n",
+ " 0.88 \n",
+ " 1.6 \n",
+ " 345.0 \n",
+ " 0.6 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 01/01/2020 \n",
+ " 0300 UTC \n",
+ " 0.0 \n",
+ " 24.3 \n",
+ " 21.4 \n",
+ " 0.83 \n",
+ " 0.6 \n",
+ " 332.0 \n",
+ " 1.5 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 01/01/2020 \n",
+ " 0400 UTC \n",
+ " 0.0 \n",
+ " 23.8 \n",
+ " 21.7 \n",
+ " 0.89 \n",
+ " 0.0 \n",
+ " 316.0 \n",
+ " 0.2 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 8779 \n",
+ " 31/12/2020 \n",
+ " 1900 UTC \n",
+ " 0.4 \n",
+ " 23.1 \n",
+ " 22.7 \n",
+ " 0.97 \n",
+ " 775.9 \n",
+ " 32.0 \n",
+ " 1.2 \n",
+ " \n",
+ " \n",
+ " 8780 \n",
+ " 31/12/2020 \n",
+ " 2000 UTC \n",
+ " 0.0 \n",
+ " 24.2 \n",
+ " 22.7 \n",
+ " 0.91 \n",
+ " 837.8 \n",
+ " 355.0 \n",
+ " 0.8 \n",
+ " \n",
+ " \n",
+ " 8781 \n",
+ " 31/12/2020 \n",
+ " 2100 UTC \n",
+ " 0.0 \n",
+ " 24.9 \n",
+ " 23.0 \n",
+ " 0.89 \n",
+ " 524.7 \n",
+ " 315.0 \n",
+ " 1.2 \n",
+ " \n",
+ " \n",
+ " 8782 \n",
+ " 31/12/2020 \n",
+ " 2200 UTC \n",
+ " 0.0 \n",
+ " 24.2 \n",
+ " 22.1 \n",
+ " 0.88 \n",
+ " 256.5 \n",
+ " 291.0 \n",
+ " 0.9 \n",
+ " \n",
+ " \n",
+ " 8783 \n",
+ " 31/12/2020 \n",
+ " 2300 UTC \n",
+ " 0.0 \n",
+ " 23.5 \n",
+ " 22.5 \n",
+ " 0.94 \n",
+ " 9.6 \n",
+ " 132.0 \n",
+ " 0.9 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
8784 rows × 9 columns
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 8784,\n \"fields\": [\n {\n \"column\": \"Data\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 366,\n \"samples\": [\n \"12/07/2020\",\n \"03/02/2020\",\n \"16/01/2020\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Hora UTC\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 24,\n \"samples\": [\n \"0800 UTC\",\n \"1600 UTC\",\n \"0000 UTC\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PRECIPITA\\u00c7\\u00c3O TOTAL, HOR\\u00c1RIO (mm)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3756788874165256,\n \"min\": 0.0,\n \"max\": 44.8,\n \"num_unique_values\": 73,\n \"samples\": [\n 0.4,\n 30.8,\n 5.8\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO AR - BULBO SECO, HORARIA (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.725963118812376,\n \"min\": 0.0,\n \"max\": 40.6,\n \"num_unique_values\": 336,\n \"samples\": [\n 34.2,\n 33.1,\n 8.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO PONTO DE ORVALHO (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.592550592979101,\n \"min\": 0.0,\n \"max\": 25.8,\n \"num_unique_values\": 237,\n \"samples\": [\n 10.6,\n 23.4,\n 3.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"UMIDADE RELATIVA DO AR, HORARIA (%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2414089524607437,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 88,\n \"samples\": [\n 0.23,\n 0.97,\n 0.76\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RADIACAO GLOBAL (Kj/m\\u00b2)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1077.0341286354853,\n \"min\": 0.0,\n \"max\": 4085.4,\n \"num_unique_values\": 4259,\n \"samples\": [\n 1895.3,\n 1625.8,\n 479.1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, DIRE\\u00c7\\u00c3O HORARIA (gr) (\\u00b0 (gr))\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 81.78471896065389,\n \"min\": 0.0,\n \"max\": 360.0,\n \"num_unique_values\": 361,\n \"samples\": [\n 145.0,\n 357.0,\n 338.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, VELOCIDADE HORARIA (m/s)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.4052333713147864,\n \"min\": 0.0,\n \"max\": 11.9,\n \"num_unique_values\": 86,\n \"samples\": [\n 6.2,\n 1.9,\n 6.7\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 90
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.dtypes"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 366
+ },
+ "id": "bQRMw6Ge3Gd1",
+ "outputId": "18f5047b-0cbc-489a-89c6-6d413b86c65f"
+ },
+ "execution_count": 91,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "Data object\n",
+ "Hora UTC object\n",
+ "PRECIPITAÇÃO TOTAL, HORÁRIO (mm) float64\n",
+ "TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) float64\n",
+ "TEMPERATURA DO PONTO DE ORVALHO (°C) float64\n",
+ "UMIDADE RELATIVA DO AR, HORARIA (%) float64\n",
+ "RADIACAO GLOBAL (Kj/m²) float64\n",
+ "VENTO, DIREÇÃO HORARIA (gr) (° (gr)) float64\n",
+ "VENTO, VELOCIDADE HORARIA (m/s) float64\n",
+ "dtype: object"
+ ],
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " object \n",
+ " \n",
+ " \n",
+ " Hora UTC \n",
+ " object \n",
+ " \n",
+ " \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " float64 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
dtype: object "
+ ]
+ },
+ "metadata": {},
+ "execution_count": 91
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df['Hora UTC'] = pd.to_datetime(df['Hora UTC'], format='%H%M UTC', errors='coerce').dt.strftime('%H:%M')"
+ ],
+ "metadata": {
+ "id": "jTNn8vMx3K-9"
+ },
+ "execution_count": 92,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 441
+ },
+ "id": "RjTi2h6e3L8e",
+ "outputId": "529a0c25-334a-49aa-d2ab-b7bb2d63bb45"
+ },
+ "execution_count": 93,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n",
+ "0 01/01/2020 00:00 0.6 \n",
+ "1 01/01/2020 01:00 0.0 \n",
+ "2 01/01/2020 02:00 0.0 \n",
+ "3 01/01/2020 03:00 0.0 \n",
+ "4 01/01/2020 04:00 0.0 \n",
+ "... ... ... ... \n",
+ "8779 31/12/2020 19:00 0.4 \n",
+ "8780 31/12/2020 20:00 0.0 \n",
+ "8781 31/12/2020 21:00 0.0 \n",
+ "8782 31/12/2020 22:00 0.0 \n",
+ "8783 31/12/2020 23:00 0.0 \n",
+ "\n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n",
+ "0 23.1 \n",
+ "1 23.7 \n",
+ "2 24.0 \n",
+ "3 24.3 \n",
+ "4 23.8 \n",
+ "... ... \n",
+ "8779 23.1 \n",
+ "8780 24.2 \n",
+ "8781 24.9 \n",
+ "8782 24.2 \n",
+ "8783 23.5 \n",
+ "\n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n",
+ "0 22.6 \n",
+ "1 21.7 \n",
+ "2 21.8 \n",
+ "3 21.4 \n",
+ "4 21.7 \n",
+ "... ... \n",
+ "8779 22.7 \n",
+ "8780 22.7 \n",
+ "8781 23.0 \n",
+ "8782 22.1 \n",
+ "8783 22.5 \n",
+ "\n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) RADIACAO GLOBAL (Kj/m²) \\\n",
+ "0 0.97 0.0 \n",
+ "1 0.88 2.9 \n",
+ "2 0.88 1.6 \n",
+ "3 0.83 0.6 \n",
+ "4 0.89 0.0 \n",
+ "... ... ... \n",
+ "8779 0.97 775.9 \n",
+ "8780 0.91 837.8 \n",
+ "8781 0.89 524.7 \n",
+ "8782 0.88 256.5 \n",
+ "8783 0.94 9.6 \n",
+ "\n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) VENTO, VELOCIDADE HORARIA (m/s) \n",
+ "0 11.0 1.9 \n",
+ "1 10.0 1.3 \n",
+ "2 345.0 0.6 \n",
+ "3 332.0 1.5 \n",
+ "4 316.0 0.2 \n",
+ "... ... ... \n",
+ "8779 32.0 1.2 \n",
+ "8780 355.0 0.8 \n",
+ "8781 315.0 1.2 \n",
+ "8782 291.0 0.9 \n",
+ "8783 132.0 0.9 \n",
+ "\n",
+ "[8784 rows x 9 columns]"
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " Hora UTC \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 01/01/2020 \n",
+ " 00:00 \n",
+ " 0.6 \n",
+ " 23.1 \n",
+ " 22.6 \n",
+ " 0.97 \n",
+ " 0.0 \n",
+ " 11.0 \n",
+ " 1.9 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 01/01/2020 \n",
+ " 01:00 \n",
+ " 0.0 \n",
+ " 23.7 \n",
+ " 21.7 \n",
+ " 0.88 \n",
+ " 2.9 \n",
+ " 10.0 \n",
+ " 1.3 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 01/01/2020 \n",
+ " 02:00 \n",
+ " 0.0 \n",
+ " 24.0 \n",
+ " 21.8 \n",
+ " 0.88 \n",
+ " 1.6 \n",
+ " 345.0 \n",
+ " 0.6 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 01/01/2020 \n",
+ " 03:00 \n",
+ " 0.0 \n",
+ " 24.3 \n",
+ " 21.4 \n",
+ " 0.83 \n",
+ " 0.6 \n",
+ " 332.0 \n",
+ " 1.5 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 01/01/2020 \n",
+ " 04:00 \n",
+ " 0.0 \n",
+ " 23.8 \n",
+ " 21.7 \n",
+ " 0.89 \n",
+ " 0.0 \n",
+ " 316.0 \n",
+ " 0.2 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 8779 \n",
+ " 31/12/2020 \n",
+ " 19:00 \n",
+ " 0.4 \n",
+ " 23.1 \n",
+ " 22.7 \n",
+ " 0.97 \n",
+ " 775.9 \n",
+ " 32.0 \n",
+ " 1.2 \n",
+ " \n",
+ " \n",
+ " 8780 \n",
+ " 31/12/2020 \n",
+ " 20:00 \n",
+ " 0.0 \n",
+ " 24.2 \n",
+ " 22.7 \n",
+ " 0.91 \n",
+ " 837.8 \n",
+ " 355.0 \n",
+ " 0.8 \n",
+ " \n",
+ " \n",
+ " 8781 \n",
+ " 31/12/2020 \n",
+ " 21:00 \n",
+ " 0.0 \n",
+ " 24.9 \n",
+ " 23.0 \n",
+ " 0.89 \n",
+ " 524.7 \n",
+ " 315.0 \n",
+ " 1.2 \n",
+ " \n",
+ " \n",
+ " 8782 \n",
+ " 31/12/2020 \n",
+ " 22:00 \n",
+ " 0.0 \n",
+ " 24.2 \n",
+ " 22.1 \n",
+ " 0.88 \n",
+ " 256.5 \n",
+ " 291.0 \n",
+ " 0.9 \n",
+ " \n",
+ " \n",
+ " 8783 \n",
+ " 31/12/2020 \n",
+ " 23:00 \n",
+ " 0.0 \n",
+ " 23.5 \n",
+ " 22.5 \n",
+ " 0.94 \n",
+ " 9.6 \n",
+ " 132.0 \n",
+ " 0.9 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
8784 rows × 9 columns
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 8784,\n \"fields\": [\n {\n \"column\": \"Data\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 366,\n \"samples\": [\n \"12/07/2020\",\n \"03/02/2020\",\n \"16/01/2020\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Hora UTC\",\n \"properties\": {\n \"dtype\": \"object\",\n \"num_unique_values\": 24,\n \"samples\": [\n \"08:00\",\n \"16:00\",\n \"00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PRECIPITA\\u00c7\\u00c3O TOTAL, HOR\\u00c1RIO (mm)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3756788874165256,\n \"min\": 0.0,\n \"max\": 44.8,\n \"num_unique_values\": 73,\n \"samples\": [\n 0.4,\n 30.8,\n 5.8\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO AR - BULBO SECO, HORARIA (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.725963118812376,\n \"min\": 0.0,\n \"max\": 40.6,\n \"num_unique_values\": 336,\n \"samples\": [\n 34.2,\n 33.1,\n 8.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO PONTO DE ORVALHO (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.592550592979101,\n \"min\": 0.0,\n \"max\": 25.8,\n \"num_unique_values\": 237,\n \"samples\": [\n 10.6,\n 23.4,\n 3.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"UMIDADE RELATIVA DO AR, HORARIA (%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2414089524607437,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 88,\n \"samples\": [\n 0.23,\n 0.97,\n 0.76\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RADIACAO GLOBAL (Kj/m\\u00b2)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1077.0341286354853,\n \"min\": 0.0,\n \"max\": 4085.4,\n \"num_unique_values\": 4259,\n \"samples\": [\n 1895.3,\n 1625.8,\n 479.1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, DIRE\\u00c7\\u00c3O HORARIA (gr) (\\u00b0 (gr))\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 81.78471896065389,\n \"min\": 0.0,\n \"max\": 360.0,\n \"num_unique_values\": 361,\n \"samples\": [\n 145.0,\n 357.0,\n 338.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, VELOCIDADE HORARIA (m/s)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.4052333713147864,\n \"min\": 0.0,\n \"max\": 11.9,\n \"num_unique_values\": 86,\n \"samples\": [\n 6.2,\n 1.9,\n 6.7\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 93
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df['Data e Hora'] = df['Data'] + ' ' + df['Hora UTC']"
+ ],
+ "metadata": {
+ "id": "FMXqgeD-3OH2"
+ },
+ "execution_count": 94,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 615
+ },
+ "id": "0w8Se6V03O7-",
+ "outputId": "7a5e6be7-56ee-4a70-bbad-da9c0d90ea97"
+ },
+ "execution_count": 95,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n",
+ "0 01/01/2020 00:00 0.6 \n",
+ "1 01/01/2020 01:00 0.0 \n",
+ "2 01/01/2020 02:00 0.0 \n",
+ "3 01/01/2020 03:00 0.0 \n",
+ "4 01/01/2020 04:00 0.0 \n",
+ "... ... ... ... \n",
+ "8779 31/12/2020 19:00 0.4 \n",
+ "8780 31/12/2020 20:00 0.0 \n",
+ "8781 31/12/2020 21:00 0.0 \n",
+ "8782 31/12/2020 22:00 0.0 \n",
+ "8783 31/12/2020 23:00 0.0 \n",
+ "\n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n",
+ "0 23.1 \n",
+ "1 23.7 \n",
+ "2 24.0 \n",
+ "3 24.3 \n",
+ "4 23.8 \n",
+ "... ... \n",
+ "8779 23.1 \n",
+ "8780 24.2 \n",
+ "8781 24.9 \n",
+ "8782 24.2 \n",
+ "8783 23.5 \n",
+ "\n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n",
+ "0 22.6 \n",
+ "1 21.7 \n",
+ "2 21.8 \n",
+ "3 21.4 \n",
+ "4 21.7 \n",
+ "... ... \n",
+ "8779 22.7 \n",
+ "8780 22.7 \n",
+ "8781 23.0 \n",
+ "8782 22.1 \n",
+ "8783 22.5 \n",
+ "\n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) RADIACAO GLOBAL (Kj/m²) \\\n",
+ "0 0.97 0.0 \n",
+ "1 0.88 2.9 \n",
+ "2 0.88 1.6 \n",
+ "3 0.83 0.6 \n",
+ "4 0.89 0.0 \n",
+ "... ... ... \n",
+ "8779 0.97 775.9 \n",
+ "8780 0.91 837.8 \n",
+ "8781 0.89 524.7 \n",
+ "8782 0.88 256.5 \n",
+ "8783 0.94 9.6 \n",
+ "\n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) VENTO, VELOCIDADE HORARIA (m/s) \\\n",
+ "0 11.0 1.9 \n",
+ "1 10.0 1.3 \n",
+ "2 345.0 0.6 \n",
+ "3 332.0 1.5 \n",
+ "4 316.0 0.2 \n",
+ "... ... ... \n",
+ "8779 32.0 1.2 \n",
+ "8780 355.0 0.8 \n",
+ "8781 315.0 1.2 \n",
+ "8782 291.0 0.9 \n",
+ "8783 132.0 0.9 \n",
+ "\n",
+ " Data e Hora \n",
+ "0 01/01/2020 00:00 \n",
+ "1 01/01/2020 01:00 \n",
+ "2 01/01/2020 02:00 \n",
+ "3 01/01/2020 03:00 \n",
+ "4 01/01/2020 04:00 \n",
+ "... ... \n",
+ "8779 31/12/2020 19:00 \n",
+ "8780 31/12/2020 20:00 \n",
+ "8781 31/12/2020 21:00 \n",
+ "8782 31/12/2020 22:00 \n",
+ "8783 31/12/2020 23:00 \n",
+ "\n",
+ "[8784 rows x 10 columns]"
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " Hora UTC \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " Data e Hora \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 01/01/2020 \n",
+ " 00:00 \n",
+ " 0.6 \n",
+ " 23.1 \n",
+ " 22.6 \n",
+ " 0.97 \n",
+ " 0.0 \n",
+ " 11.0 \n",
+ " 1.9 \n",
+ " 01/01/2020 00:00 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 01/01/2020 \n",
+ " 01:00 \n",
+ " 0.0 \n",
+ " 23.7 \n",
+ " 21.7 \n",
+ " 0.88 \n",
+ " 2.9 \n",
+ " 10.0 \n",
+ " 1.3 \n",
+ " 01/01/2020 01:00 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 01/01/2020 \n",
+ " 02:00 \n",
+ " 0.0 \n",
+ " 24.0 \n",
+ " 21.8 \n",
+ " 0.88 \n",
+ " 1.6 \n",
+ " 345.0 \n",
+ " 0.6 \n",
+ " 01/01/2020 02:00 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 01/01/2020 \n",
+ " 03:00 \n",
+ " 0.0 \n",
+ " 24.3 \n",
+ " 21.4 \n",
+ " 0.83 \n",
+ " 0.6 \n",
+ " 332.0 \n",
+ " 1.5 \n",
+ " 01/01/2020 03:00 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 01/01/2020 \n",
+ " 04:00 \n",
+ " 0.0 \n",
+ " 23.8 \n",
+ " 21.7 \n",
+ " 0.89 \n",
+ " 0.0 \n",
+ " 316.0 \n",
+ " 0.2 \n",
+ " 01/01/2020 04:00 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 8779 \n",
+ " 31/12/2020 \n",
+ " 19:00 \n",
+ " 0.4 \n",
+ " 23.1 \n",
+ " 22.7 \n",
+ " 0.97 \n",
+ " 775.9 \n",
+ " 32.0 \n",
+ " 1.2 \n",
+ " 31/12/2020 19:00 \n",
+ " \n",
+ " \n",
+ " 8780 \n",
+ " 31/12/2020 \n",
+ " 20:00 \n",
+ " 0.0 \n",
+ " 24.2 \n",
+ " 22.7 \n",
+ " 0.91 \n",
+ " 837.8 \n",
+ " 355.0 \n",
+ " 0.8 \n",
+ " 31/12/2020 20:00 \n",
+ " \n",
+ " \n",
+ " 8781 \n",
+ " 31/12/2020 \n",
+ " 21:00 \n",
+ " 0.0 \n",
+ " 24.9 \n",
+ " 23.0 \n",
+ " 0.89 \n",
+ " 524.7 \n",
+ " 315.0 \n",
+ " 1.2 \n",
+ " 31/12/2020 21:00 \n",
+ " \n",
+ " \n",
+ " 8782 \n",
+ " 31/12/2020 \n",
+ " 22:00 \n",
+ " 0.0 \n",
+ " 24.2 \n",
+ " 22.1 \n",
+ " 0.88 \n",
+ " 256.5 \n",
+ " 291.0 \n",
+ " 0.9 \n",
+ " 31/12/2020 22:00 \n",
+ " \n",
+ " \n",
+ " 8783 \n",
+ " 31/12/2020 \n",
+ " 23:00 \n",
+ " 0.0 \n",
+ " 23.5 \n",
+ " 22.5 \n",
+ " 0.94 \n",
+ " 9.6 \n",
+ " 132.0 \n",
+ " 0.9 \n",
+ " 31/12/2020 23:00 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
8784 rows × 10 columns
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 8784,\n \"fields\": [\n {\n \"column\": \"Data\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 366,\n \"samples\": [\n \"12/07/2020\",\n \"03/02/2020\",\n \"16/01/2020\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Hora UTC\",\n \"properties\": {\n \"dtype\": \"object\",\n \"num_unique_values\": 24,\n \"samples\": [\n \"08:00\",\n \"16:00\",\n \"00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PRECIPITA\\u00c7\\u00c3O TOTAL, HOR\\u00c1RIO (mm)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3756788874165256,\n \"min\": 0.0,\n \"max\": 44.8,\n \"num_unique_values\": 73,\n \"samples\": [\n 0.4,\n 30.8,\n 5.8\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO AR - BULBO SECO, HORARIA (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.725963118812376,\n \"min\": 0.0,\n \"max\": 40.6,\n \"num_unique_values\": 336,\n \"samples\": [\n 34.2,\n 33.1,\n 8.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO PONTO DE ORVALHO (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.592550592979101,\n \"min\": 0.0,\n \"max\": 25.8,\n \"num_unique_values\": 237,\n \"samples\": [\n 10.6,\n 23.4,\n 3.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"UMIDADE RELATIVA DO AR, HORARIA (%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2414089524607437,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 88,\n \"samples\": [\n 0.23,\n 0.97,\n 0.76\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RADIACAO GLOBAL (Kj/m\\u00b2)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1077.0341286354853,\n \"min\": 0.0,\n \"max\": 4085.4,\n \"num_unique_values\": 4259,\n \"samples\": [\n 1895.3,\n 1625.8,\n 479.1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, DIRE\\u00c7\\u00c3O HORARIA (gr) (\\u00b0 (gr))\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 81.78471896065389,\n \"min\": 0.0,\n \"max\": 360.0,\n \"num_unique_values\": 361,\n \"samples\": [\n 145.0,\n 357.0,\n 338.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, VELOCIDADE HORARIA (m/s)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.4052333713147864,\n \"min\": 0.0,\n \"max\": 11.9,\n \"num_unique_values\": 86,\n \"samples\": [\n 6.2,\n 1.9,\n 6.7\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Data e Hora\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 8784,\n \"samples\": [\n \"23/09/2020 01:00\",\n \"03/03/2020 00:00\",\n \"29/09/2020 11:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 95
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df['Data e Hora'] = pd.to_datetime(df['Data e Hora'], format='%d/%m/%Y %H:%M', errors='coerce')\n"
+ ],
+ "metadata": {
+ "id": "o0x5zSet3RAE"
+ },
+ "execution_count": 96,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.head(10)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 554
+ },
+ "id": "2m6KMIXN3SwV",
+ "outputId": "14f4a53a-12a4-4d2d-c587-b09388c68ca6"
+ },
+ "execution_count": 97,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n",
+ "0 01/01/2020 00:00 0.6 \n",
+ "1 01/01/2020 01:00 0.0 \n",
+ "2 01/01/2020 02:00 0.0 \n",
+ "3 01/01/2020 03:00 0.0 \n",
+ "4 01/01/2020 04:00 0.0 \n",
+ "5 01/01/2020 05:00 0.0 \n",
+ "6 01/01/2020 06:00 0.0 \n",
+ "7 01/01/2020 07:00 0.0 \n",
+ "8 01/01/2020 08:00 0.0 \n",
+ "9 01/01/2020 09:00 0.0 \n",
+ "\n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n",
+ "0 23.1 \n",
+ "1 23.7 \n",
+ "2 24.0 \n",
+ "3 24.3 \n",
+ "4 23.8 \n",
+ "5 23.5 \n",
+ "6 22.7 \n",
+ "7 22.9 \n",
+ "8 22.9 \n",
+ "9 22.9 \n",
+ "\n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) UMIDADE RELATIVA DO AR, HORARIA (%) \\\n",
+ "0 22.6 0.97 \n",
+ "1 21.7 0.88 \n",
+ "2 21.8 0.88 \n",
+ "3 21.4 0.83 \n",
+ "4 21.7 0.89 \n",
+ "5 22.3 0.93 \n",
+ "6 22.4 0.98 \n",
+ "7 0.0 0.00 \n",
+ "8 0.0 0.00 \n",
+ "9 22.5 0.97 \n",
+ "\n",
+ " RADIACAO GLOBAL (Kj/m²) VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n",
+ "0 0.0 11.0 \n",
+ "1 2.9 10.0 \n",
+ "2 1.6 345.0 \n",
+ "3 0.6 332.0 \n",
+ "4 0.0 316.0 \n",
+ "5 0.0 141.0 \n",
+ "6 0.0 40.0 \n",
+ "7 0.0 36.0 \n",
+ "8 0.0 68.0 \n",
+ "9 2.3 358.0 \n",
+ "\n",
+ " VENTO, VELOCIDADE HORARIA (m/s) Data e Hora \n",
+ "0 1.9 2020-01-01 00:00:00 \n",
+ "1 1.3 2020-01-01 01:00:00 \n",
+ "2 0.6 2020-01-01 02:00:00 \n",
+ "3 1.5 2020-01-01 03:00:00 \n",
+ "4 0.2 2020-01-01 04:00:00 \n",
+ "5 0.0 2020-01-01 05:00:00 \n",
+ "6 0.0 2020-01-01 06:00:00 \n",
+ "7 0.9 2020-01-01 07:00:00 \n",
+ "8 0.0 2020-01-01 08:00:00 \n",
+ "9 0.0 2020-01-01 09:00:00 "
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " Hora UTC \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " Data e Hora \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 01/01/2020 \n",
+ " 00:00 \n",
+ " 0.6 \n",
+ " 23.1 \n",
+ " 22.6 \n",
+ " 0.97 \n",
+ " 0.0 \n",
+ " 11.0 \n",
+ " 1.9 \n",
+ " 2020-01-01 00:00:00 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 01/01/2020 \n",
+ " 01:00 \n",
+ " 0.0 \n",
+ " 23.7 \n",
+ " 21.7 \n",
+ " 0.88 \n",
+ " 2.9 \n",
+ " 10.0 \n",
+ " 1.3 \n",
+ " 2020-01-01 01:00:00 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 01/01/2020 \n",
+ " 02:00 \n",
+ " 0.0 \n",
+ " 24.0 \n",
+ " 21.8 \n",
+ " 0.88 \n",
+ " 1.6 \n",
+ " 345.0 \n",
+ " 0.6 \n",
+ " 2020-01-01 02:00:00 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 01/01/2020 \n",
+ " 03:00 \n",
+ " 0.0 \n",
+ " 24.3 \n",
+ " 21.4 \n",
+ " 0.83 \n",
+ " 0.6 \n",
+ " 332.0 \n",
+ " 1.5 \n",
+ " 2020-01-01 03:00:00 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 01/01/2020 \n",
+ " 04:00 \n",
+ " 0.0 \n",
+ " 23.8 \n",
+ " 21.7 \n",
+ " 0.89 \n",
+ " 0.0 \n",
+ " 316.0 \n",
+ " 0.2 \n",
+ " 2020-01-01 04:00:00 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 01/01/2020 \n",
+ " 05:00 \n",
+ " 0.0 \n",
+ " 23.5 \n",
+ " 22.3 \n",
+ " 0.93 \n",
+ " 0.0 \n",
+ " 141.0 \n",
+ " 0.0 \n",
+ " 2020-01-01 05:00:00 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 01/01/2020 \n",
+ " 06:00 \n",
+ " 0.0 \n",
+ " 22.7 \n",
+ " 22.4 \n",
+ " 0.98 \n",
+ " 0.0 \n",
+ " 40.0 \n",
+ " 0.0 \n",
+ " 2020-01-01 06:00:00 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 01/01/2020 \n",
+ " 07:00 \n",
+ " 0.0 \n",
+ " 22.9 \n",
+ " 0.0 \n",
+ " 0.00 \n",
+ " 0.0 \n",
+ " 36.0 \n",
+ " 0.9 \n",
+ " 2020-01-01 07:00:00 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 01/01/2020 \n",
+ " 08:00 \n",
+ " 0.0 \n",
+ " 22.9 \n",
+ " 0.0 \n",
+ " 0.00 \n",
+ " 0.0 \n",
+ " 68.0 \n",
+ " 0.0 \n",
+ " 2020-01-01 08:00:00 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 01/01/2020 \n",
+ " 09:00 \n",
+ " 0.0 \n",
+ " 22.9 \n",
+ " 22.5 \n",
+ " 0.97 \n",
+ " 2.3 \n",
+ " 358.0 \n",
+ " 0.0 \n",
+ " 2020-01-01 09:00:00 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 8784,\n \"fields\": [\n {\n \"column\": \"Data\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 366,\n \"samples\": [\n \"12/07/2020\",\n \"03/02/2020\",\n \"16/01/2020\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Hora UTC\",\n \"properties\": {\n \"dtype\": \"object\",\n \"num_unique_values\": 24,\n \"samples\": [\n \"08:00\",\n \"16:00\",\n \"00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PRECIPITA\\u00c7\\u00c3O TOTAL, HOR\\u00c1RIO (mm)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3756788874165256,\n \"min\": 0.0,\n \"max\": 44.8,\n \"num_unique_values\": 73,\n \"samples\": [\n 0.4,\n 30.8,\n 5.8\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO AR - BULBO SECO, HORARIA (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.725963118812376,\n \"min\": 0.0,\n \"max\": 40.6,\n \"num_unique_values\": 336,\n \"samples\": [\n 34.2,\n 33.1,\n 8.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO PONTO DE ORVALHO (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.592550592979101,\n \"min\": 0.0,\n \"max\": 25.8,\n \"num_unique_values\": 237,\n \"samples\": [\n 10.6,\n 23.4,\n 3.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"UMIDADE RELATIVA DO AR, HORARIA (%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2414089524607437,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 88,\n \"samples\": [\n 0.23,\n 0.97,\n 0.76\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RADIACAO GLOBAL (Kj/m\\u00b2)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1077.0341286354853,\n \"min\": 0.0,\n \"max\": 4085.4,\n \"num_unique_values\": 4259,\n \"samples\": [\n 1895.3,\n 1625.8,\n 479.1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, DIRE\\u00c7\\u00c3O HORARIA (gr) (\\u00b0 (gr))\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 81.78471896065389,\n \"min\": 0.0,\n \"max\": 360.0,\n \"num_unique_values\": 361,\n \"samples\": [\n 145.0,\n 357.0,\n 338.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, VELOCIDADE HORARIA (m/s)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.4052333713147864,\n \"min\": 0.0,\n \"max\": 11.9,\n \"num_unique_values\": 86,\n \"samples\": [\n 6.2,\n 1.9,\n 6.7\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Data e Hora\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"2020-01-01 00:00:00\",\n \"max\": \"2020-12-31 23:00:00\",\n \"num_unique_values\": 8784,\n \"samples\": [\n \"2020-09-23 01:00:00\",\n \"2020-03-03 00:00:00\",\n \"2020-09-29 11:00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 97
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df['Data e Hora BR'] = df['Data e Hora'].dt.tz_localize('UTC').dt.tz_convert('America/Sao_Paulo')\n"
+ ],
+ "metadata": {
+ "id": "r2zJhGAs3V3j"
+ },
+ "execution_count": 98,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.head(10)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 554
+ },
+ "id": "zkgLT0tf3W0G",
+ "outputId": "bab3cd84-da30-4098-c0e8-8772f4df0fd5"
+ },
+ "execution_count": 99,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n",
+ "0 01/01/2020 00:00 0.6 \n",
+ "1 01/01/2020 01:00 0.0 \n",
+ "2 01/01/2020 02:00 0.0 \n",
+ "3 01/01/2020 03:00 0.0 \n",
+ "4 01/01/2020 04:00 0.0 \n",
+ "5 01/01/2020 05:00 0.0 \n",
+ "6 01/01/2020 06:00 0.0 \n",
+ "7 01/01/2020 07:00 0.0 \n",
+ "8 01/01/2020 08:00 0.0 \n",
+ "9 01/01/2020 09:00 0.0 \n",
+ "\n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n",
+ "0 23.1 \n",
+ "1 23.7 \n",
+ "2 24.0 \n",
+ "3 24.3 \n",
+ "4 23.8 \n",
+ "5 23.5 \n",
+ "6 22.7 \n",
+ "7 22.9 \n",
+ "8 22.9 \n",
+ "9 22.9 \n",
+ "\n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) UMIDADE RELATIVA DO AR, HORARIA (%) \\\n",
+ "0 22.6 0.97 \n",
+ "1 21.7 0.88 \n",
+ "2 21.8 0.88 \n",
+ "3 21.4 0.83 \n",
+ "4 21.7 0.89 \n",
+ "5 22.3 0.93 \n",
+ "6 22.4 0.98 \n",
+ "7 0.0 0.00 \n",
+ "8 0.0 0.00 \n",
+ "9 22.5 0.97 \n",
+ "\n",
+ " RADIACAO GLOBAL (Kj/m²) VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n",
+ "0 0.0 11.0 \n",
+ "1 2.9 10.0 \n",
+ "2 1.6 345.0 \n",
+ "3 0.6 332.0 \n",
+ "4 0.0 316.0 \n",
+ "5 0.0 141.0 \n",
+ "6 0.0 40.0 \n",
+ "7 0.0 36.0 \n",
+ "8 0.0 68.0 \n",
+ "9 2.3 358.0 \n",
+ "\n",
+ " VENTO, VELOCIDADE HORARIA (m/s) Data e Hora \\\n",
+ "0 1.9 2020-01-01 00:00:00 \n",
+ "1 1.3 2020-01-01 01:00:00 \n",
+ "2 0.6 2020-01-01 02:00:00 \n",
+ "3 1.5 2020-01-01 03:00:00 \n",
+ "4 0.2 2020-01-01 04:00:00 \n",
+ "5 0.0 2020-01-01 05:00:00 \n",
+ "6 0.0 2020-01-01 06:00:00 \n",
+ "7 0.9 2020-01-01 07:00:00 \n",
+ "8 0.0 2020-01-01 08:00:00 \n",
+ "9 0.0 2020-01-01 09:00:00 \n",
+ "\n",
+ " Data e Hora BR \n",
+ "0 2019-12-31 21:00:00-03:00 \n",
+ "1 2019-12-31 22:00:00-03:00 \n",
+ "2 2019-12-31 23:00:00-03:00 \n",
+ "3 2020-01-01 00:00:00-03:00 \n",
+ "4 2020-01-01 01:00:00-03:00 \n",
+ "5 2020-01-01 02:00:00-03:00 \n",
+ "6 2020-01-01 03:00:00-03:00 \n",
+ "7 2020-01-01 04:00:00-03:00 \n",
+ "8 2020-01-01 05:00:00-03:00 \n",
+ "9 2020-01-01 06:00:00-03:00 "
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " Hora UTC \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " Data e Hora \n",
+ " Data e Hora BR \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 01/01/2020 \n",
+ " 00:00 \n",
+ " 0.6 \n",
+ " 23.1 \n",
+ " 22.6 \n",
+ " 0.97 \n",
+ " 0.0 \n",
+ " 11.0 \n",
+ " 1.9 \n",
+ " 2020-01-01 00:00:00 \n",
+ " 2019-12-31 21:00:00-03:00 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 01/01/2020 \n",
+ " 01:00 \n",
+ " 0.0 \n",
+ " 23.7 \n",
+ " 21.7 \n",
+ " 0.88 \n",
+ " 2.9 \n",
+ " 10.0 \n",
+ " 1.3 \n",
+ " 2020-01-01 01:00:00 \n",
+ " 2019-12-31 22:00:00-03:00 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 01/01/2020 \n",
+ " 02:00 \n",
+ " 0.0 \n",
+ " 24.0 \n",
+ " 21.8 \n",
+ " 0.88 \n",
+ " 1.6 \n",
+ " 345.0 \n",
+ " 0.6 \n",
+ " 2020-01-01 02:00:00 \n",
+ " 2019-12-31 23:00:00-03:00 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 01/01/2020 \n",
+ " 03:00 \n",
+ " 0.0 \n",
+ " 24.3 \n",
+ " 21.4 \n",
+ " 0.83 \n",
+ " 0.6 \n",
+ " 332.0 \n",
+ " 1.5 \n",
+ " 2020-01-01 03:00:00 \n",
+ " 2020-01-01 00:00:00-03:00 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 01/01/2020 \n",
+ " 04:00 \n",
+ " 0.0 \n",
+ " 23.8 \n",
+ " 21.7 \n",
+ " 0.89 \n",
+ " 0.0 \n",
+ " 316.0 \n",
+ " 0.2 \n",
+ " 2020-01-01 04:00:00 \n",
+ " 2020-01-01 01:00:00-03:00 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 01/01/2020 \n",
+ " 05:00 \n",
+ " 0.0 \n",
+ " 23.5 \n",
+ " 22.3 \n",
+ " 0.93 \n",
+ " 0.0 \n",
+ " 141.0 \n",
+ " 0.0 \n",
+ " 2020-01-01 05:00:00 \n",
+ " 2020-01-01 02:00:00-03:00 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 01/01/2020 \n",
+ " 06:00 \n",
+ " 0.0 \n",
+ " 22.7 \n",
+ " 22.4 \n",
+ " 0.98 \n",
+ " 0.0 \n",
+ " 40.0 \n",
+ " 0.0 \n",
+ " 2020-01-01 06:00:00 \n",
+ " 2020-01-01 03:00:00-03:00 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 01/01/2020 \n",
+ " 07:00 \n",
+ " 0.0 \n",
+ " 22.9 \n",
+ " 0.0 \n",
+ " 0.00 \n",
+ " 0.0 \n",
+ " 36.0 \n",
+ " 0.9 \n",
+ " 2020-01-01 07:00:00 \n",
+ " 2020-01-01 04:00:00-03:00 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 01/01/2020 \n",
+ " 08:00 \n",
+ " 0.0 \n",
+ " 22.9 \n",
+ " 0.0 \n",
+ " 0.00 \n",
+ " 0.0 \n",
+ " 68.0 \n",
+ " 0.0 \n",
+ " 2020-01-01 08:00:00 \n",
+ " 2020-01-01 05:00:00-03:00 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 01/01/2020 \n",
+ " 09:00 \n",
+ " 0.0 \n",
+ " 22.9 \n",
+ " 22.5 \n",
+ " 0.97 \n",
+ " 2.3 \n",
+ " 358.0 \n",
+ " 0.0 \n",
+ " 2020-01-01 09:00:00 \n",
+ " 2020-01-01 06:00:00-03:00 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 8784,\n \"fields\": [\n {\n \"column\": \"Data\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 366,\n \"samples\": [\n \"12/07/2020\",\n \"03/02/2020\",\n \"16/01/2020\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Hora UTC\",\n \"properties\": {\n \"dtype\": \"object\",\n \"num_unique_values\": 24,\n \"samples\": [\n \"08:00\",\n \"16:00\",\n \"00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PRECIPITA\\u00c7\\u00c3O TOTAL, HOR\\u00c1RIO (mm)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3756788874165256,\n \"min\": 0.0,\n \"max\": 44.8,\n \"num_unique_values\": 73,\n \"samples\": [\n 0.4,\n 30.8,\n 5.8\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO AR - BULBO SECO, HORARIA (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.725963118812376,\n \"min\": 0.0,\n \"max\": 40.6,\n \"num_unique_values\": 336,\n \"samples\": [\n 34.2,\n 33.1,\n 8.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO PONTO DE ORVALHO (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.592550592979101,\n \"min\": 0.0,\n \"max\": 25.8,\n \"num_unique_values\": 237,\n \"samples\": [\n 10.6,\n 23.4,\n 3.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"UMIDADE RELATIVA DO AR, HORARIA (%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2414089524607437,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 88,\n \"samples\": [\n 0.23,\n 0.97,\n 0.76\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RADIACAO GLOBAL (Kj/m\\u00b2)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1077.0341286354853,\n \"min\": 0.0,\n \"max\": 4085.4,\n \"num_unique_values\": 4259,\n \"samples\": [\n 1895.3,\n 1625.8,\n 479.1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, DIRE\\u00c7\\u00c3O HORARIA (gr) (\\u00b0 (gr))\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 81.78471896065389,\n \"min\": 0.0,\n \"max\": 360.0,\n \"num_unique_values\": 361,\n \"samples\": [\n 145.0,\n 357.0,\n 338.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, VELOCIDADE HORARIA (m/s)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.4052333713147864,\n \"min\": 0.0,\n \"max\": 11.9,\n \"num_unique_values\": 86,\n \"samples\": [\n 6.2,\n 1.9,\n 6.7\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Data e Hora\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"2020-01-01 00:00:00\",\n \"max\": \"2020-12-31 23:00:00\",\n \"num_unique_values\": 8784,\n \"samples\": [\n \"2020-09-23 01:00:00\",\n \"2020-03-03 00:00:00\",\n \"2020-09-29 11:00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Data e Hora BR\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"2019-12-31 21:00:00-03:00\",\n \"max\": \"2020-12-31 20:00:00-03:00\",\n \"num_unique_values\": 8784,\n \"samples\": [\n \"2020-09-22 22:00:00-03:00\",\n \"2020-03-02 21:00:00-03:00\",\n \"2020-09-29 08:00:00-03:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 99
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df['Data e Hora BR'] = df['Data e Hora BR'].dt.strftime('%d/%m/%Y %H:%M')\n"
+ ],
+ "metadata": {
+ "id": "nutcCGt13Zqk"
+ },
+ "execution_count": 100,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.head()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 310
+ },
+ "id": "1v02C1yA3aX1",
+ "outputId": "a4974389-a632-4096-f18f-2a6fc0c2943d"
+ },
+ "execution_count": 101,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n",
+ "0 01/01/2020 00:00 0.6 \n",
+ "1 01/01/2020 01:00 0.0 \n",
+ "2 01/01/2020 02:00 0.0 \n",
+ "3 01/01/2020 03:00 0.0 \n",
+ "4 01/01/2020 04:00 0.0 \n",
+ "\n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n",
+ "0 23.1 \n",
+ "1 23.7 \n",
+ "2 24.0 \n",
+ "3 24.3 \n",
+ "4 23.8 \n",
+ "\n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) UMIDADE RELATIVA DO AR, HORARIA (%) \\\n",
+ "0 22.6 0.97 \n",
+ "1 21.7 0.88 \n",
+ "2 21.8 0.88 \n",
+ "3 21.4 0.83 \n",
+ "4 21.7 0.89 \n",
+ "\n",
+ " RADIACAO GLOBAL (Kj/m²) VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \\\n",
+ "0 0.0 11.0 \n",
+ "1 2.9 10.0 \n",
+ "2 1.6 345.0 \n",
+ "3 0.6 332.0 \n",
+ "4 0.0 316.0 \n",
+ "\n",
+ " VENTO, VELOCIDADE HORARIA (m/s) Data e Hora Data e Hora BR \n",
+ "0 1.9 2020-01-01 00:00:00 31/12/2019 21:00 \n",
+ "1 1.3 2020-01-01 01:00:00 31/12/2019 22:00 \n",
+ "2 0.6 2020-01-01 02:00:00 31/12/2019 23:00 \n",
+ "3 1.5 2020-01-01 03:00:00 01/01/2020 00:00 \n",
+ "4 0.2 2020-01-01 04:00:00 01/01/2020 01:00 "
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Data \n",
+ " Hora UTC \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " Data e Hora \n",
+ " Data e Hora BR \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 01/01/2020 \n",
+ " 00:00 \n",
+ " 0.6 \n",
+ " 23.1 \n",
+ " 22.6 \n",
+ " 0.97 \n",
+ " 0.0 \n",
+ " 11.0 \n",
+ " 1.9 \n",
+ " 2020-01-01 00:00:00 \n",
+ " 31/12/2019 21:00 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 01/01/2020 \n",
+ " 01:00 \n",
+ " 0.0 \n",
+ " 23.7 \n",
+ " 21.7 \n",
+ " 0.88 \n",
+ " 2.9 \n",
+ " 10.0 \n",
+ " 1.3 \n",
+ " 2020-01-01 01:00:00 \n",
+ " 31/12/2019 22:00 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 01/01/2020 \n",
+ " 02:00 \n",
+ " 0.0 \n",
+ " 24.0 \n",
+ " 21.8 \n",
+ " 0.88 \n",
+ " 1.6 \n",
+ " 345.0 \n",
+ " 0.6 \n",
+ " 2020-01-01 02:00:00 \n",
+ " 31/12/2019 23:00 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 01/01/2020 \n",
+ " 03:00 \n",
+ " 0.0 \n",
+ " 24.3 \n",
+ " 21.4 \n",
+ " 0.83 \n",
+ " 0.6 \n",
+ " 332.0 \n",
+ " 1.5 \n",
+ " 2020-01-01 03:00:00 \n",
+ " 01/01/2020 00:00 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 01/01/2020 \n",
+ " 04:00 \n",
+ " 0.0 \n",
+ " 23.8 \n",
+ " 21.7 \n",
+ " 0.89 \n",
+ " 0.0 \n",
+ " 316.0 \n",
+ " 0.2 \n",
+ " 2020-01-01 04:00:00 \n",
+ " 01/01/2020 01:00 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 8784,\n \"fields\": [\n {\n \"column\": \"Data\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 366,\n \"samples\": [\n \"12/07/2020\",\n \"03/02/2020\",\n \"16/01/2020\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Hora UTC\",\n \"properties\": {\n \"dtype\": \"object\",\n \"num_unique_values\": 24,\n \"samples\": [\n \"08:00\",\n \"16:00\",\n \"00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PRECIPITA\\u00c7\\u00c3O TOTAL, HOR\\u00c1RIO (mm)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3756788874165256,\n \"min\": 0.0,\n \"max\": 44.8,\n \"num_unique_values\": 73,\n \"samples\": [\n 0.4,\n 30.8,\n 5.8\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO AR - BULBO SECO, HORARIA (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.725963118812376,\n \"min\": 0.0,\n \"max\": 40.6,\n \"num_unique_values\": 336,\n \"samples\": [\n 34.2,\n 33.1,\n 8.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO PONTO DE ORVALHO (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.592550592979101,\n \"min\": 0.0,\n \"max\": 25.8,\n \"num_unique_values\": 237,\n \"samples\": [\n 10.6,\n 23.4,\n 3.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"UMIDADE RELATIVA DO AR, HORARIA (%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2414089524607437,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 88,\n \"samples\": [\n 0.23,\n 0.97,\n 0.76\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RADIACAO GLOBAL (Kj/m\\u00b2)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1077.0341286354853,\n \"min\": 0.0,\n \"max\": 4085.4,\n \"num_unique_values\": 4259,\n \"samples\": [\n 1895.3,\n 1625.8,\n 479.1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, DIRE\\u00c7\\u00c3O HORARIA (gr) (\\u00b0 (gr))\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 81.78471896065389,\n \"min\": 0.0,\n \"max\": 360.0,\n \"num_unique_values\": 361,\n \"samples\": [\n 145.0,\n 357.0,\n 338.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, VELOCIDADE HORARIA (m/s)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.4052333713147864,\n \"min\": 0.0,\n \"max\": 11.9,\n \"num_unique_values\": 86,\n \"samples\": [\n 6.2,\n 1.9,\n 6.7\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Data e Hora\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"2020-01-01 00:00:00\",\n \"max\": \"2020-12-31 23:00:00\",\n \"num_unique_values\": 8784,\n \"samples\": [\n \"2020-09-23 01:00:00\",\n \"2020-03-03 00:00:00\",\n \"2020-09-29 11:00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Data e Hora BR\",\n \"properties\": {\n \"dtype\": \"object\",\n \"num_unique_values\": 8784,\n \"samples\": [\n \"22/09/2020 22:00\",\n \"02/03/2020 21:00\",\n \"29/09/2020 08:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 101
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Analise de Dados"
+ ],
+ "metadata": {
+ "id": "yRC623px3drv"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.describe()\n"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 422
+ },
+ "id": "rPo8lO833em2",
+ "outputId": "1ab9995a-bf8f-4db9-a817-a214a7b9c3e1"
+ },
+ "execution_count": 102,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n",
+ "count 8784.000000 \n",
+ "mean 0.151480 \n",
+ "min 0.000000 \n",
+ "25% 0.000000 \n",
+ "50% 0.000000 \n",
+ "75% 0.000000 \n",
+ "max 44.800000 \n",
+ "std 1.375679 \n",
+ "\n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n",
+ "count 8784.000000 \n",
+ "mean 23.172837 \n",
+ "min 0.000000 \n",
+ "25% 19.500000 \n",
+ "50% 23.100000 \n",
+ "75% 27.100000 \n",
+ "max 40.600000 \n",
+ "std 5.725963 \n",
+ "\n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n",
+ "count 8784.000000 \n",
+ "mean 15.201423 \n",
+ "min 0.000000 \n",
+ "25% 12.400000 \n",
+ "50% 16.000000 \n",
+ "75% 19.300000 \n",
+ "max 25.800000 \n",
+ "std 5.592551 \n",
+ "\n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) RADIACAO GLOBAL (Kj/m²) \\\n",
+ "count 8784.000000 8784.000000 \n",
+ "mean 0.632725 759.334028 \n",
+ "min 0.000000 0.000000 \n",
+ "25% 0.490000 0.000000 \n",
+ "50% 0.670000 23.100000 \n",
+ "75% 0.820000 1434.250000 \n",
+ "max 1.000000 4085.400000 \n",
+ "std 0.241409 1077.034129 \n",
+ "\n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) VENTO, VELOCIDADE HORARIA (m/s) \\\n",
+ "count 8784.000000 8784.000000 \n",
+ "mean 184.889458 1.939447 \n",
+ "min 0.000000 0.000000 \n",
+ "25% 133.000000 0.900000 \n",
+ "50% 171.000000 1.800000 \n",
+ "75% 254.000000 2.800000 \n",
+ "max 360.000000 11.900000 \n",
+ "std 81.784719 1.405233 \n",
+ "\n",
+ " Data e Hora \n",
+ "count 8784 \n",
+ "mean 2020-07-01 23:30:00 \n",
+ "min 2020-01-01 00:00:00 \n",
+ "25% 2020-04-01 11:45:00 \n",
+ "50% 2020-07-01 23:30:00 \n",
+ "75% 2020-10-01 11:15:00 \n",
+ "max 2020-12-31 23:00:00 \n",
+ "std NaN "
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " Data e Hora \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " count \n",
+ " 8784.000000 \n",
+ " 8784.000000 \n",
+ " 8784.000000 \n",
+ " 8784.000000 \n",
+ " 8784.000000 \n",
+ " 8784.000000 \n",
+ " 8784.000000 \n",
+ " 8784 \n",
+ " \n",
+ " \n",
+ " mean \n",
+ " 0.151480 \n",
+ " 23.172837 \n",
+ " 15.201423 \n",
+ " 0.632725 \n",
+ " 759.334028 \n",
+ " 184.889458 \n",
+ " 1.939447 \n",
+ " 2020-07-01 23:30:00 \n",
+ " \n",
+ " \n",
+ " min \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 2020-01-01 00:00:00 \n",
+ " \n",
+ " \n",
+ " 25% \n",
+ " 0.000000 \n",
+ " 19.500000 \n",
+ " 12.400000 \n",
+ " 0.490000 \n",
+ " 0.000000 \n",
+ " 133.000000 \n",
+ " 0.900000 \n",
+ " 2020-04-01 11:45:00 \n",
+ " \n",
+ " \n",
+ " 50% \n",
+ " 0.000000 \n",
+ " 23.100000 \n",
+ " 16.000000 \n",
+ " 0.670000 \n",
+ " 23.100000 \n",
+ " 171.000000 \n",
+ " 1.800000 \n",
+ " 2020-07-01 23:30:00 \n",
+ " \n",
+ " \n",
+ " 75% \n",
+ " 0.000000 \n",
+ " 27.100000 \n",
+ " 19.300000 \n",
+ " 0.820000 \n",
+ " 1434.250000 \n",
+ " 254.000000 \n",
+ " 2.800000 \n",
+ " 2020-10-01 11:15:00 \n",
+ " \n",
+ " \n",
+ " max \n",
+ " 44.800000 \n",
+ " 40.600000 \n",
+ " 25.800000 \n",
+ " 1.000000 \n",
+ " 4085.400000 \n",
+ " 360.000000 \n",
+ " 11.900000 \n",
+ " 2020-12-31 23:00:00 \n",
+ " \n",
+ " \n",
+ " std \n",
+ " 1.375679 \n",
+ " 5.725963 \n",
+ " 5.592551 \n",
+ " 0.241409 \n",
+ " 1077.034129 \n",
+ " 81.784719 \n",
+ " 1.405233 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"PRECIPITA\\u00c7\\u00c3O TOTAL, HOR\\u00c1RIO (mm)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3103.312291243846,\n \"min\": 0.0,\n \"max\": 8784.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.1514799635701275,\n 1.3756788874165256,\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO AR - BULBO SECO, HORARIA (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3098.607701020729,\n \"min\": 0.0,\n \"max\": 8784.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 23.172836976320585,\n 27.1,\n 8784.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO PONTO DE ORVALHO (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3100.8605548552273,\n \"min\": 0.0,\n \"max\": 8784.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 15.201423041894355,\n 19.3,\n 8784.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"UMIDADE RELATIVA DO AR, HORARIA (%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3105.418335843847,\n \"min\": 0.0,\n \"max\": 8784.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 0.6327254098360656,\n 0.82,\n 8784.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RADIACAO GLOBAL (Kj/m\\u00b2)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3046.955106453814,\n \"min\": 0.0,\n \"max\": 8784.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 8784.0,\n 759.3340277777777,\n 4085.4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, DIRE\\u00c7\\u00c3O HORARIA (gr) (\\u00b0 (gr))\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3047.686868662164,\n \"min\": 0.0,\n \"max\": 8784.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 184.88945810564664,\n 254.0,\n 8784.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, VELOCIDADE HORARIA (m/s)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3104.5674675947093,\n \"min\": 0.0,\n \"max\": 8784.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 1.9394467213114757,\n 2.8,\n 8784.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Data e Hora\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"1970-01-01 00:00:00.000008784\",\n \"max\": \"2020-12-31 23:00:00\",\n \"num_unique_values\": 6,\n \"samples\": [\n \"8784\",\n \"2020-07-01 23:30:00\",\n \"2020-12-31 23:00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 102
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.set_index('Data e Hora BR', inplace=True)\n",
+ "\n",
+ "df[['PRECIPITAÇÃO TOTAL, HORÁRIO (mm)', 'TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)',\n",
+ " 'UMIDADE RELATIVA DO AR, HORARIA (%)']].plot(subplots=True)\n",
+ "\n",
+ "plt.suptitle('Séries Temporais das Variáveis')\n",
+ "plt.show()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 497
+ },
+ "id": "4qdA8rPu3jFp",
+ "outputId": "1c3a3e79-b8e1-44d1-f0d6-cd6cc38cf158"
+ },
+ "execution_count": 103,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAHgCAYAAABkaS3CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hURReHf5veEwgkoYQiLXSQXqR3kCLSBKVZ0IAFFAVRiiAqIiiCIELQjxY6iPTee++dBNII6W2z2Z3vj8tu7t29u3u3b8J5n2efZOfOnZm9ZebMmXPOyBhjDARBEARBEE6Ki6MbQBAEQRAEYQgSVgiCIAiCcGpIWCEIgiAIwqkhYYUgCIIgCKeGhBWCIAiCIJwaElYIgiAIgnBqSFghCIIgCMKpIWGFIAiCIAinhoQVoshz5coVTJs2DbGxsY5uCkE4Lffu3cO0adNw584dRzeFIEyGhBWiSJOeno5+/fohNTUV4eHhks9r164d2rVrZ7uGESaxYsUKyGQyPHr0yGZ1VKpUCSNGjLBZ+Y5GJpNh2rRposfkcjkGDBiA+/fvo3r16jZtx6NHjyCTybBixQqb1kO8XJCwQjgNV69exZtvvomKFSvCy8sL5cqVQ+fOnbFgwQK954wcORINGzbEvHnz7NhS05g2bRpkMpnRDwlPxYdffvkFMpkM+/bt05tn6dKlkMlk2LZtm83bM378eJQoUQLLli2zeV0EYQtktDcQ4QycOHEC7du3R4UKFTB8+HCEhYUhNjYWp06dwv3793Hv3j2dcx49eoTVq1dj/Pjx8PLyMqm+/Px8AICHh4dV2m+IK1eu4MqVK5rvWVlZ+PDDD9GvXz+88cYbmvTQ0FB07tzZ5u1xRpRKJRQKBTw9PSGTyWxSR6VKldCuXTu7zPjj4uIQHh6O4cOHY/ny5aJ52rdvj6tXryI+Ph7u7u4W15mXlwc3Nze4ubkJ0lNSUrBw4UJ8/PHHCAwMtLgeYzDGIJfL4e7uDldXV5vXR7wckLBCOAU9e/bE2bNncefOHQQFBQmOJSUlISQkxCr15OTkwMfHxyplmUtycjJKly6NqVOn6lXbF3Wys7Ph6+vr6GYIsKewAgCdOnXCuXPnkJiYCE9PT8Gxp0+fokKFCnj//ffxxx9/mF2HSqVCfn6+ycI6QRQ1aBmIcAru37+P2rVr6wgqAEQFlZUrV6JRo0bw9vZGyZIlMXjwYB0D23bt2qFOnTo4f/482rRpAx8fH0yePFlzTHvZRS6XY+rUqahatSo8PT0RHh6OiRMnQi6XC/Lt3bsXrVu3RlBQEPz8/FCjRg1NuZZw69YtvPnmmyhZsiS8vLzQuHFjnSUCtW3HsWPH8PHHH6N06dIICgrCBx98gPz8fKSlpeGdd95BiRIlUKJECUycOBH8+YjanuDnn3/GvHnzULFiRXh7e6Nt27a4du2aTpsOHDiA1157Db6+vggKCkKfPn1w8+ZNQR71MteNGzfw1ltvoUSJEmjdujUATqs0YsQIvPLKK/Dy8kJYWBhGjRqF58+fi/4uvs3KuXPn0LVrV5QqVQre3t6oXLkyRo0aZfQ6MsYwc+ZMlC9fHj4+Pmjfvj2uX7+uky8lJQWff/456tatCz8/PwQEBKB79+64fPmyTt4FCxagdu3a8PHxQYkSJdC4cWOsXr3aYDuGDRuG9PR0/PfffzrH1q5dC5VKhaFDhwIAfv75Z7Rs2RLBwcHw9vZGo0aNsGHDBp3zZDIZxo4di1WrVqF27drw9PTErl27NMf4wu/jx4/x0UcfoUaNGvD29kZwcDAGDBigc41lMhn+/vtvnbp2794NmUyG7du3a9KePn2KUaNGITQ0FJ6enqhdu7aO5kjMZiUhIQEjR45E+fLl4enpiTJlyqBPnz42tVEiihduxrMQhO2pWLEiTp48iWvXrqFOnToG886aNQvffPMNBg4ciHfffRfPnj3DggUL0KZNG1y8eFEg8Dx//hzdu3fH4MGDMWzYMISGhoqWqVKp0Lt3bxw7dgzvv/8+atasiatXr2LevHm4c+cOtmzZAgC4fv06evXqhXr16mHGjBnw9PTEvXv3cPz4cYt+//Xr19GqVSuUK1cOX331FXx9fbFu3Tr07dsXGzduRL9+/QT5x40bh7CwMEyfPh2nTp3Cn3/+iaCgIJw4cQIVKlTA999/jx07dmDOnDmoU6cO3nnnHcH5//zzDzIzMxEZGYm8vDz8+uuv6NChA65evaq5Rvv27UP37t3xyiuvYNq0acjNzcWCBQvQqlUrXLhwAZUqVRKUOWDAAFSrVg3ff/+9RkDau3cvHjx4gJEjRyIsLAzXr1/Hn3/+ievXr+PUqVN6l3ySkpLQpUsXlC5dGl999RWCgoLw6NEjbNq0yei1/PbbbzFz5kz06NEDPXr0wIULF9ClSxfN0p+aBw8eYMuWLRgwYAAqV66MxMRELFmyBG3btsWNGzdQtmxZAJxtyccff4w333wTn3zyCfLy8nDlyhWcPn0ab731lt52vPHGG/jwww+xevVqwXIfAKxevRoVK1ZEq1atAAC//vorevfujaFDhyI/Px9r167FgAEDsH37dvTs2VNw7oEDB7Bu3TqMHTsWpUqV0rkPas6ePYvjx49j8ODBKF++PB4+fIhFixahXbt2uHHjBnx8fNC4cWO88sorWLduHYYPHy44Pzo6GiVKlEDXrl0BAImJiWjevLlGYCpdujR27tyJ0aNHIyMjA59++qnea9G/f39cv34d48aNQ6VKlZCUlIS9e/ciJiZGb/sJQgAjCCdgz549zNXVlbm6urIWLVqwiRMnst27d7P8/HxBvkePHjFXV1c2a9YsQfrVq1eZm5ubIL1t27YMAFu8eLFOfW3btmVt27bVfP/f//7HXFxc2NGjRwX5Fi9ezACw48ePM8YYmzdvHgPAnj17ZvZvffbsGQPApk6dqknr2LEjq1u3LsvLy9OkqVQq1rJlS1atWjVNWlRUFAPAunbtylQqlSa9RYsWTCaTsTFjxmjSCgoKWPny5QW/8+HDhwwA8/b2Zk+ePNGknz59mgFgn332mSatQYMGLCQkhD1//lyTdvnyZebi4sLeeecdTdrUqVMZADZkyBCd35qTk6OTtmbNGgaAHTlyROd3PXz4kDHG2ObNmxkAdvbsWZ3zDZGUlMQ8PDxYz549Bddn8uTJDAAbPny4Ji0vL48plUrB+Q8fPmSenp5sxowZmrQ+ffqw2rVrm9QONQMGDGBeXl4sPT1dk3br1i0GgE2aNEmTpn2d8vPzWZ06dViHDh0E6QCYi4sLu379uk5d2s9Udna2Tp5jx44xAOyff/7RpE2aNIm5u7uzlJQUTZpcLmdBQUFs1KhRmrTRo0ezMmXKsOTkZEGZgwcPZoGBgZrfoH7GoqKiGGOMpaamMgBszpw5Ou0hCKnQMhDhFHTu3BknT55E7969cfnyZfz000/o2rUrypUrJ1gK2bRpE1QqFQYOHIjk5GTNJywsDNWqVcPBgwcF5Xp6emLkyJFG61+/fj1q1qyJiIgIQbkdOnQAAE25aq3N1q1boVKprPLbU1JScODAAQwcOBCZmZmaup8/f46uXbvi7t27ePr0qeCc0aNHC7QSzZo1A2MMo0eP1qS5urqicePGePDggU6dffv2Rbly5TTfmzZtimbNmmHHjh0AgPj4eFy6dAkjRoxAyZIlNfnq1auHzp07a/LxGTNmjE6at7e35v+8vDwkJyejefPmAIALFy7ovSbq67x9+3YoFAq9+bTZt28f8vPzMW7cOMH1EZv1e3p6wsWF6wKVSiWeP3+uWdbjty0oKAhPnjzB2bNnJbdDzbBhw5CXlyfQCKmXj9RLQIDwOqWmpiI9PR2vvfaa6DVq27YtatWqZbRubdssuVyORo0aoUSJEoJyBw0aBIVCIWjjnj17kJaWhkGDBgHgltY2btyI119/HYwxwTvStWtXpKen672f3t7e8PDwwKFDh5Cammq03QQhBgkrhNPQpEkTbNq0CampqThz5gwmTZqEzMxMvPnmm7hx4wYA4O7du2CMoVq1aihdurTgc/PmTSQlJQnKLFeunCSPn7t37+L69es6ZapjUqjLHTRoEFq1aoV3330XoaGhGDx4MNatW2eR4HLv3j0wxvDNN9/o1D916lRB/WoqVKgg+K728tCONRMYGCg6QFSrVk0nrXr16hobgsePHwMAatSooZOvZs2aSE5ORnZ2tiC9cuXKOnlTUlLwySefIDQ0FN7e3ihdurQmX3p6uk5+NW3btkX//v0xffp0lCpVCn369EFUVJSO/ZA26nZr/77SpUujRIkSgjSVSoV58+ahWrVq8PT0RKlSpVC6dGlcuXJF0LYvv/wSfn5+aNq0KapVq4bIyEjJy37du3dHyZIlBfYta9asQf369VG7dm1N2vbt29G8eXN4eXmhZMmSKF26NP744w/RayR2ncWQy+WYPXs2IiIi4O3tDS8vL3h7e2uEITX169dHREQEoqOjNWnR0dEoVaqURlh/9uwZ0tLS8Oeff+o8o+rJgPYzqsbT0xM//vgjdu7cidDQULRp0wY//fQTEhISJP0OggDIZoVwQjw8PNCkSRM0adIE1atXx8iRI7F+/XpMnToVKpUKMpkMO3fuFHWL9PPzE3znz1gNoVKpULduXfzyyy+ix9VCgLe3N44cOYKDBw/iv//+w65duxAdHY0OHTpgz549ZrlqqgWdzz//XGMfoE3VqlUF3/XVI5bO7OTwJ3atBw4ciBMnTuCLL75AgwYN4OfnB5VKhW7duhkU8GQyGTZs2IBTp07h33//xe7duzFq1CjMnTsXp06d0rnP5vD999/jm2++wahRo/Ddd9+hZMmScHFxwaeffipoW82aNXH79m1s374du3btwsaNG7Fo0SJ8++23mD59usE63N3dMXDgQCxduhSJiYmIiYnB3bt38dNPP2nyHD16FL1790abNm2waNEilClTBu7u7oiKihI14pX6TH/yySdYtmwZvvzyS7Ru3RqBgYGQyWR4/fXXda79oEGDMGvWLCQnJ8Pf3x/btm3DkCFDNG7Q6vzDhg3TsW1RU69ePb1t+fTTT/H6669jy5Yt2L17N7755hvMnj0bBw4cQMOGDSX9HuLlhoQVwqlp3LgxAG5ZAgCqVKkCxhgqV65s1UicVapUweXLl9GxY0ejcT5cXFzQsWNHdOzYEb/88gu+//57fP311zh48CA6depkct2vvPIKAG5gM+d8c7h7965O2p07dzTGjhUrVgQA3L59WyffrVu3UKpUKaOuyampqdi/fz+mT5+Ob7/91mDd+mjevDmaN2+OWbNmYfXq1Rg6dCjWrl2Ld999VzS/ut13797VXFeA0wxoa5g2bNiA9u3b6wRKS0tLQ6lSpQRpvr6+GDRoEAYNGoT8/Hy88cYbmDVrFiZNmmTUbXjo0KFYvHgxoqOj8fDhQ8hkMgwZMkRzfOPGjfDy8sLu3bsFLs5RUVEGyzVGdHQ0RowYgZkzZ2rScnNzkZKSopN30KBBmD59OjZu3IjQ0FBkZGRg8ODBmuOlS5eGv78/lEql2c9olSpVMGHCBEyYMAF3795FgwYNMHfuXKxcudKs8oiXC1oGIpyCgwcPimoA1LYR6uWIN954A66urpg+fbpOfsaYjkusVAYOHIinT59i6dKlOsdyc3M1Sx5iHX2DBg0AwOgShT5CQkLQrl07LFmyRCOU8Xn27JlZ5Rpiy5YtAjuYM2fO4PTp0+jevTsAoEyZMmjQoAH+/vtvpKWlafJdu3YNe/bsQY8ePYzWodbyaN+n+fPnGz03NTVV5zwp17lTp05wd3fHggULBOeL1enq6qpTx/r163Xsg7SfKQ8PD9SqVQuMMUn2NK1atUKlSpWwcuVKREdHo23btihfvrygHTKZDEqlUpP26NEjjQeauchkMp32zZ8/X1SjVbNmTdStWxfR0dGIjo5GmTJl0KZNG0Eb+/fvj40bN4q6uBt6RnNycpCXlydIq1KlCvz9/c1+Z4iXD9KsEE7BuHHjkJOTg379+iEiIgL5+fk4ceIEoqOjUalSJc26eJUqVTBz5kxMmjQJjx49Qt++feHv74+HDx9i8+bNeP/99/H555+bXP/bb7+NdevWYcyYMTh48CBatWoFpVKJW7duYd26ddi9ezcaN26MGTNm4MiRI+jZsycqVqyIpKQkLFq0COXLl9fEFjGHhQsXonXr1qhbty7ee+89vPLKK0hMTMTJkyfx5MkT0dgfllC1alW0bt0aH374IeRyOebPn4/g4GBMnDhRk2fOnDno3r07WrRogdGjR2tclwMDAyUFswsICNDYJygUCpQrVw579uzBw4cPjZ77999/Y9GiRejXrx+qVKmCzMxMLF26FAEBAQYFpdKlS+Pzzz/H7Nmz0atXL/To0QMXL17Ezp07dbQlvXr1wowZMzBy5Ei0bNkSV69exapVqwQaGQDo0qULwsLC0KpVK4SGhuLmzZv4/fff0bNnT/j7+xv9LTKZDG+99Ra+//57AMCMGTMEx3v27IlffvkF3bp1w1tvvYWkpCQsXLgQVatWFUQ+NpWePXti5cqVCAoKQs2aNXHixAkcPHhQ5zqoGTRoEL799lt4eXlh9OjRGuNjNT/88AMOHjyIZs2a4b333kOtWrWQkpKCCxcuYN++faKCPMBp7Dp27IiBAweiVq1acHNzw+bNm5GYmCjQ3hCEQRzggUQQOuzcuZONGjWKRUREMD8/P+bh4cGqVq3Kxo0bxxITE3Xyb9y4kbVu3Zr5+voyX19fFhERwSIjI9nt27c1edq2bavX5VTbdZkxzl30xx9/ZLVr12aenp6sRIkSrFGjRmz69Oka19P9+/ezPn36sLJlyzIPDw9WtmxZNmTIEHbnzh3Jv1XMdZkxxu7fv8/eeecdFhYWxtzd3Vm5cuVYr1692IYNGzR51C6+2i69avdhbZfq4cOHM19fX813tVvpnDlz2Ny5c1l4eDjz9PRkr732Grt8+bJOW/ft28datWrFvL29WUBAAHv99dfZjRs3JNXNGGNPnjxh/fr1Y0FBQSwwMJANGDCAxcXF6fx+bdflCxcusCFDhrAKFSowT09PFhISwnr16sXOnTtn8NoyxphSqWTTp09nZcqUYd7e3qxdu3bs2rVrrGLFijquyxMmTNDka9WqFTt58qTOs7FkyRLWpk0bFhwczDw9PVmVKlXYF198IXBHNsb169cZAObp6clSU1N1ji9btoxVq1aNeXp6soiICBYVFaW5rnwAsMjISNE6tK9pSkoKGz58OCtVqhTz8/NjPXr0YHfu3NG5Dmru3r3LADAA7NixY6J1JCYmssjISBYeHs7c3d1ZWFgY69ixI/vzzz81ebRdl5OTk1lkZCSLiIhgvr6+LDAwkDVr1oytW7fO8EUjCB4Ubp8gXiIePXqEypUrY86cOWZpoAiCIBwB2awQBEEQBOHUkLBCEARBEIRTQ8IKQRAEQRBODdmsEARBEATh1JBmhSAIgiAIp4aEFYIgCIIgnBoSVgiCIAiCcGpIWCEIgiAIwqkhYYUgCIIgCKeGhBWCIAiCIJwaElYIgiAIgnBqSFghCIIgCMKpIWGFIAiCIAinhoQVgiAIgiCcGhJWCIIgCIJwakhYIQiCIAjCqSFhhSAIgiAIp4aEFYIgCIIgnBoSVgiCIAiCcGpIWCEIgiAIwqkhYYUgCIIgCKeGhBWCIAiCIJwaElYIgiAIgnBqSFghCIIgCMKpIWGFIAiCIAinhoQVgiAIgiCcGhJWCIIgCIJwakhYIQiCIAjCqSFhhSAIgiAIp4aEFYIgCIIgnBoSVgiCIAiCcGrcHN0AS1GpVIiLi4O/vz9kMpmjm0MQBEEQhAQYY8jMzETZsmXh4mJYd1LkhZW4uDiEh4c7uhkEQRAEQZhBbGwsypcvbzBPkRdW/P39AXA/NiAgwMGtIQiCIAhCChkZGQgPD9eM44Yo8sKKeuknICCAhBWCIAiCKGJIMeEgA1uCIAiCIJwaElYIgiCIYodKxfDW0lOIXHXB0U0hrECRXwYiCIIgCG0eJGfhxP3nAIAFKgYXF/IWLcqQsEIQToJSqYRCoXB0MwiiWKDIz0c5f1cAgFyeR6EtHISHh4dRt2QpkLBCEA6GMYaEhASkpaU5uikEUWxQKFWY1j4EAPDo0SPHNuYlxsXFBZUrV4aHh4dF5ZCwQhAORi2ohISEwMfHh2aABGEF5Aol2PNsAEClUAoa6gjUQVvj4+NRoUIFi+4BCSsE4UCUSqVGUAkODnZ0cwii+OCqhMyNW1b18vIiYcVBlC5dGnFxcSgoKIC7u7vZ5ZA3EEE4ELWNio+Pj4NbQhAEYX3Uyz9KpdKickhYIQgngGZ9BEEUR6zVt9lVWPnhhx8gk8nw6aefatLy8vIQGRmJ4OBg+Pn5oX///khMTLRnswiCIAiCcGLsJqycPXsWS5YsQb169QTpn332Gf7991+sX78ehw8fRlxcHN544w17NYsgii15CiVUjDm6GYQekpKS0LVrV0RERKBevXro06cPMjIyHN0swghz5sxBr169IJfLHd2Ulwq7GNhmZWVh6NChWLp0KWbOnKlJT09Px7Jly7B69Wp06NABABAVFYWaNWvi1KlTaN68uT2aV+x5niXH9bgMtK5aigIjvSSk5eQjJiUHvp5uqFLaz9HNIUQICQnB7t27Hd0MwgRSU1Ph4uKCTZs2WeyKS5iGXTQrkZGR6NmzJzp16iRIP3/+PBQKhSA9IiICFSpUwMmTJ0XLksvlyMjIEHwIw3SZdwTvLD+DjReeOLophJ14np0PAMiWFzi4JQRRfChRogQmTJjgdIJKmzZtsHr1arvXm5+fj0qVKuHcuXM2r8vmwsratWtx4cIFzJ49W+dYQkICPDw8EBQUJEgPDQ1FQkKCaHmzZ89GYGCg5hMeHm6LZhcr1APX3htkC0RYjxEjRkAmk0Emk8HDwwNVq1bFjBkzUFDACUiHDh3SHJfJZChdujR69OiBq1ev6i2H/+nWrZsg38WLFzFgwACEhobCy8sL1apVw3vvvYc7d+4A4AJ/yWQyXLp0SfBd/QkODkaXLl1w8eJFTZnt2rXDp59+qpNX7LNixQoAQG5uLkqWLIlSpUrpXQrYuHEj2rVrh8DAQPj5+aFevXqYMWMGUlJSBPmys7MRFBSEkJAQvdGL//77bzRp0gQ+Pj7w9/dH27ZtsX37dr33Rfu6i30OHTqk+S1Tp05F9erV4enpiVKlSmHAgAG4fv26prxKlSoZLGvEiBGavF27doWrqyvOnj2r064RI0agb9++etttDO37y0d9H/ncuH4dX3w4Eu3qV4WXlxeqV6+Ob7/9Fjk5OYJ8/N/n4+ODunXr4q+//hJtw5o1a+Dq6orIyEidY6Y879rXITY2FqNGjULZsmXh4eGBihUr4pNPPsHz58+NXpdt27YhMTERgwcPNprX2nh4eODzzz/Hl19+afO6bCqsxMbG4pNPPsGqVavg5eVllTInTZqE9PR0zSc2NtYq5RIEYTrdunVDfHw87t69iwkTJmDatGmYM2eOIM/t27cRHx+P3bt3Qy6Xo2fPnsjPzxcth/9Zs2aN5vj27dvRvHlzyOVyrFq1Cjdv3sTKlSsRGBiIb775xmAb9+3bp6k/KysL3bt314kWHB4eLqh7woQJqF27tiBt0KBBADhBpHbt2oiIiMCWLVt06vv6668xaNAgNGnSBDt37sS1a9cwd+5cXL58Gf/73/8EedevX48mTZqgQoUK2LZtm05Zn3/+OT744AMMGjQIV65cwZkzZ9C6dWv06dMHv//+u+jvbdmypaDdAwcO1Lm+LVu2hFwuR6dOnbB8+XLMnDkTd+7cwY4dO1BQUIBmzZrh1KlTADh7Q/V5GzduFNzT+Ph4/PrrrwCAmJgYnDhxAmPHjsXy5csN3hNbc+rUKbRp3RKK/HwsWBGN27dvY9asWVixYgU6d+6s8/zNmDED8fHxuHbtGoYNG4b33nsPO3fu1Cl32bJlmDhxItasWYO8vDzRuqU873wePHiAxo0b4+7du1izZg3u3buHxYsXY//+/WjRooWOgKvNb7/9hpEjR1olpL05DB06FMeOHRMIuDaB2ZDNmzczAMzV1VXzAcBkMhlzdXVl+/btYwBYamqq4LwKFSqwX375RVId6enpDABLT0+3wS8oHlT8cjur+OV29t7fZx3dFEKL3NxcduPGDZabm2vVcu8lZbLLsanscmyqVcvlM3z4cNanTx9BWufOnVnz5s0ZY4wdPHhQ5/3etm0bA8AuX75ssBw+2dnZrFSpUqxv376ix9XlP3z4kAFgFy9eFP3OGGPHjx9nANiuXbsYY4y1bduWffLJJzplTp06ldWvX1+0vnbt2rHFixezP/74g3Xu3Flw7PTp0wwAmz9/vsG2qnnttddYVFQUmzdvHuvRo4fg2MmTJxkA9ttvv+mUM378eObu7s5iYmJE6+Gj7/r+8MMPTCaTsUuXLgnSlUola9y4MatVqxZTqVSCY2L3VM20adPY4MGD2c2bN1lgYCDLycmR1A6piN1PNfz7qFKpWK1atdirjRqzi4+fs8uxqZrfcenSJSaTydgPP/ygObdixYps3rx5gvJKlizJPvvsM0HagwcPmLe3N0tLS2PNmjVjq1atEhw393nv1q0bK1++vM71io+PZz4+PmzMmDF6r0lSUhKTyWTs2rVrgnQAbPHixaxnz57M29ubRUREsBMnTrC7d++ytm3bMh8fH9aiRQt27949zTnqZ37ZsmUsPDyc+fr6sg8//JAVFBSwH3/8kYWGhrLSpUuzmTNn6rSjffv2bMqUKaJtNNTHmTJ+21QU69ixI65evYpLly5pPo0bN8bQoUM1/7u7u2P//v2ac27fvo2YmBi0aNHClk0jCKeFMYac/AKLPrkKJfJefEw5j1noPeTt7a13Fpmeno61a9cCgElr/rt370ZycjImTpwoelx7GdlY+wAYnOka4v79+zh58iQGDhyIgQMH4ujRo3j8+LHm+KpVq+Dn54ePPvrIaFvv3r2Lc+fO4Y033sCQIUOwb98+PH36VHN8zZo18PPzwwcffKBTzoQJE6BQKDSaDnNYvXo1OnfujPr16wvSXVxc8Nlnn+HGjRu4fPmypLIYY4iKisKwYcMQERGBqlWrYsOGDWa3zRIuXbqEGzdu4ONPPtXRNtSvXx+dOnUSaO34qFQqbNy4EampqTrPaFRUFHr27InAwEAMGzYMy5YtM9gOKc97SkoKdu/ejY8++kjzbKoJCwvD0KFDER0drfe9PHbsGHx8fFCzZk2dY9999x3eeecdXLp0CREREXjrrbfwwQcfYNKkSTh37hwYYxg7dqzgnPv372Pnzp3YtWsX1qxZg2XLlqFnz5548uQJDh8+jB9//BFTpkzB6dOnBec1bdoUR48eNXg9LMWm3kD+/v6oU6eOIM3X1xfBwcGa9NGjR2P8+PEoWbIkAgICMG7cOLRo0YI8gWwAObEWDXIVStT61jFeIjdmdIWPh+ndAmMM+/fvx+7duzFu3DjBsfLlywPg7DMAoHfv3oiIiBDk2b59O/z8hF5LkydPxuTJk3H37l0A0DnHVNLS0vDdd9/Bz88PTZs2NauM5cuXo3v37ihRogQAzkYjKioK06ZNA8AJIK+88oqksOLLly/H66+/joCAAAQEBKB9+/b4+++/MXnyZADAnTt3UKVKFdGBrmzZsggICNDY65jDnTt30L59e9Fj6sHvzp07aNCggdGy9u3bh5ycHHTt2hUANIP522+/bXb79NGyZUsdISQ3N1fTTvU10fe81KxZE8eOHROkffnll5gyZQrkcjkKCgpQsmRJvPvuu5rjKpUKK1aswIIFCwAAgwcPxoQJE/Dw4UNUrlxZUJaU513N3bt3wRgTFTbUbU1NTcWzZ88QEhKic/zx48cIDQ0VXQIaOXIkBg4cqPl9LVq0wDfffKO5R5988glGjhwpOEelUmH58uXw9/dHrVq10L59e9y+fRs7duyAi4sLatSogR9//BEHDx5Es2bNNOeVLVtWILTbAodHsJ03bx569eqF/v37o02bNggLC8OmTZsc3SyCICSgFjK8vLzQvXt3DBo0SDNwqzl69CjOnz+PFStWoHr16li8eLFOOe3btxdoYC9duoQxY8YAgMXanpYtW8LPzw8lSpTA5cuXER0djdDQUJPLUSqV+PvvvzFs2DBN2rBhw7BixQqoVCqT2qpUKvHPP/9g6NChgrKioqIE+Sz97cawVvnLly/HoEGD4ObGCbpDhgzB8ePHcf/+fauUzyc6OlrnWWncuLFOPlN+2xdffIFLly7hwIEDaNasGebNm4eqVatqju/duxfZ2dno0aMHAKBUqVLo3LmzqG2OlOfdkrbyyc3N1WsPyo9ppn7e69atK0jLy8sTeNRWqlQJ/v7+gjy1atUSCEOhoaFISkoS1OXt7a1juGxt7L6RodoKXY2XlxcWLlyIhQsX2rspLx0UYaVo4O3uihszulpUxoPkbOS8cFuuUy7QpLpNoX379vjjjz/g4eGBsmXLagYrPpUrV0ZQUBBq1KiBpKQkDBo0CEeOHBHk8fX1FQwOfKpXrw4AuHXrllnLw9HR0ahVqxaCg4NNWjLSZvfu3Xj69KnG0FaNUqnE/v370blzZ1SvXh3Hjh2DQqEwqF3ZuXOnaABMpVKJw4cPo23btpqy8vPzdbQrcXFxyMjI0Fwbc6hevTpu3rwpekydLqX8lJQUbN68GQqFAn/88YfgtyxfvhyzZs0yu41ihIeH6zwr/CUU/vPyalndZ+rmzZs6v6tUqVKoWrUqqlativXr16Nu3bpo3LgxatWqBYAzrE1JSRHUo1KpcOXKFUyfPl0wmEt53tVUrVoVMpkMN2/eRL9+/UTbWqJECZQuXVr0/FKlSiE1NVX0GP/5U4e8F0tTC9rax9V5xNL45wDcM6CvjdbC4ZoVgiCEyGQy+Hi4WfTxdneF14uPKeeZuo+HWsioUKGCqKCiTWRkJK5du4bNmzdLrqNLly4oVaoUfvrpJ9Hj2p492oSHh6NKlSoWCSoAN2ANHjxYZ1Y/ePBgjf3CW2+9haysLCxatMhgW5cvXy5aVr9+/TSz9cGDByMrKwtLlizRKefnn3+Gu7s7+vfvb/bvGTx4MPbt26djl6JSqTBv3jzUqlVLx55FjFWrVqF8+fK4fPmy4LfMnTsXK1assHgDO1Np0KABIiIisOC3X3UG1cuXL2Pfvn0YMmSI3vPDw8MxaNAgTJo0CQDw/PlzbN26FWvXrhX8vosXLyI1NRV79uzRW5ax5z04OBidO3fGokWLkJubKziWkJCAVatWYdCgQXrfy4YNGyIhIUGvwGIvrl27hoYNG9q0DrtrVgiCeHnx8fHBe++9h6lTp6Jv376aTlgul+vEVnJzc0OpUqXg6+uLv/76CwMGDEDv3r3x8ccfo2rVqkhOTsa6desQExOjMWS0Fc+ePcO///6Lbdu26djhvfPOO+jXrx9SUlLQrFkzTJw4ERMmTMDTp0/Rr18/lC1bVuOO2rp1awwZMgTbt28XLevtt9/GsGHDsGDBArRo0QKffPIJvvjiC+Tn56Nv375QKBRYuXIlfv31V8yfP9+iOFOfffYZtm7ditdffx1z585Fs2bNkJiYiO+//x43b97Evn37JAmvy5Ytw5tvvqnzW8LDwzFp0iTs2rULPXv2BMAZnWrHSQkODrZqvCyZTIZly5ahc+fOGP/+Oxgd+RkClVVx5swZTJgwAS1atNCJyaLNJ598gjp16uDcuXM4duwYgoODMXDgQJ3r0aNHDyxbtkwnJpAafc87n99//x0tW7ZE165dMXPmTFSuXBnXr1/HF198gXLlyhnUTDVs2BClSpXC8ePH0atXL+MXx0YcPXoU3333nU3rIM0KQRB2ZezYsbh58ybWr1+vSdu1axfKlCkj+LRu3VpzvE+fPjhx4gTc3d3x1ltvISIiAkOGDEF6erpgCw9b8c8//8DX1xcdO3bUOdaxY0d4e3tj5cqVAIAff/wRq1evxunTp/Haa6+hUqVKGD9+POrWrYu3334b//vf//SW1a1bN8hkMo3wNX/+fCxatAhr1qxBnTp10LhxYxw5cgRbtmzRMWQ2FS8vLxw4cADvvPMOJk+ejKpVq6Jbt25wdXWVvN3J+fPncfnyZVENT2BgIDp27Cjwmjl06BAaNmwo+EyfPh0AFyytXbt2Fv0mNS1btsTho8e5AG7vDEC1atUwadIkDB8+HHv37oWnp6fB82vVqoUuXbrg22+/xfLly9GvXz9RQaN///7Ytm0bkpOT9ZYl9rzzqVatGs6dO4dXXnkFAwcORJUqVfD++++jffv2OHnyJEqWLKm3bFdXV4wcORKrVq0y+HtsycmTJ5Geno4333zTpvXImK0tuGxMRkYGAgMDkZ6ejoCAAEc3xymp9NV/AIDOtUKx9B1dQzTCceTl5Wk8CqwVOBEA7j/L0oTar1c+yGrlEqaRkZGBbt264ciRI5KWyV5m2rZti/bt2+sYaJtLnkKJO4mZAIC65QJNXuIsKiQkJKB27dq4cOECKlasaPf6Bw0ahPr162u82LQx1MeZMn6TZoUgCMIGxMTEICkpCXFxcToh1wkh6enpuH//Pj7//HNHN6XIERYWhmXLliEmJsbudefn56Nu3br47LPPbF4XCSs2ZOmRB/jziPVd9wiCcH6io6NRu3ZthISEoFq1ao5ujlMTGBiIJ0+e6MTaIaTRt29fvPbaa3av18PDA1OmTNEJaGcLSFixEVnyAszacRPf77iF9BzxDcrsTfFUghKEc/LFF19ALpfjzJkzNAgThIWQsGIjFAWFLnP5SpWBnARBEIQtKdKGmQQAElbsAnOSV8U5WkGIUcTt3AmCIESxVt9GwgpBOBB1dEhbh6omCIJwBOpNQ11dTYuOrQ350hGEA3F1dUVQUJBmrw0fHx+ruFgqFXKwAi5yaF5ensXlEURRQ65QghVwA2VeXh5ciqnrsjOjUqnw7Nkz+Pj4WOy6T8KKPSANP2GAsLAwANDZHMwSnmXKIX9hN+WRa3tLfYJwNhRKFZIy5AAA9xyvIhdnhTFW5NoshouLCypUqGDxbyFh5SWi6D/2xROZTIYyZcogJCQECoV1PMcWRF/E5SfpAID9E9pZpUyCKEo8Ss7GtK1nAQC7Pm0Dd9eiY/WQk1+AgYtPolqoH+YNsu2eO7bGw8NDsNGjuZCwYiOcUSAmBY9z4+rqavG6rpoUOfA0k1sGsmZkXIIoKri6KwTvQFESVg7dS8C9lHzcS0nBH/T+AiADW4IgCKKYQ852RR8SVooIdxMzsfTIA8gL7LvdOkEQBEE4GloGshEyK1uIdJ53BACQq1Di444UupsgCIJ4eSDNShHjcmyao5tAEARBEHaFhJUiBi29EgRBGMcZnRwI8yFhxQ6QgEEQBGFfyKi2eEHCCkHoYcfVeEzbdh1KFfV6BFGUcZb92QjzIQNbgtDDR6suAAAaVghCnwblHNwagiCIlxfSrNgKWi8tNjzLlDu6CQRBvESQvY0uJKwUMSzZbpvWcAmCIJwf6qt1IWHFDtCDR9gba8f5IezDg2dZSM3Od3QzigWknShekM3KSwS9vC8PZFBY9IhNyUGHuYcBAI9+6Ong1hCEc0GaFVtBY0WxgTRjhD24EJPq6CYUW+gdLvqQsEIQRiAtBUEUPYqygEJacF1IWLER/AHOmoOdJSUV5ZeXIIo7MhqhiBdQX60LCSsEQRAEQTg1JKwUMWjuRUiBvIGIlx1SVBUvSFixEbZS41lSLL285kEqWYIg7An11bqQsEIQxRAyCi560PhEEPqxqbAye/ZsNGnSBP7+/ggJCUHfvn1x+/ZtQZ68vDxERkYiODgYfn5+6N+/PxITE23ZrCINzfIJgiCKN9TP62JTYeXw4cOIjIzEqVOnsHfvXigUCnTp0gXZ2dmaPJ999hn+/fdfrF+/HocPH0ZcXBzeeOMNWzbLLvCfNWd58JylHUUNumwEUfSg/q54YdMItrt27RJ8X7FiBUJCQnD+/Hm0adMG6enpWLZsGVavXo0OHToAAKKiolCzZk2cOnUKzZs3t2XziiS0lkkQBEG8bNjVZiU9PR0AULJkSQDA+fPnoVAo0KlTJ02eiIgIVKhQASdPnhQtQy6XIyMjQ/B5maDZAiEF8gYqetBExLoU5etZlNtuK+wmrKhUKnz66ado1aoV6tSpAwBISEiAh4cHgoKCBHlDQ0ORkJAgWs7s2bMRGBio+YSHh9u66WZhye7I5nLifjIO3kqye70EQRAEYUvsJqxERkbi2rVrWLt2rUXlTJo0Cenp6ZpPbGyslVpYtFGpGN5aehojV5zF8yy5aB6S1s2DtFkEQdgT6nN0scuuy2PHjsX27dtx5MgRlC9fXpMeFhaG/Px8pKWlCbQriYmJCAsLEy3L09MTnp6etm6yVbHHc8evIzVHgWA/3WtEL8DLA7kuE0Qh1PcVfWyqWWGMYezYsdi8eTMOHDiAypUrC443atQI7u7u2L9/vybt9u3biImJQYsWLWzZNJtD7wZBEKZAdkaEGtKC62JTzUpkZCRWr16NrVu3wt/fX2OHEhgYCG9vbwQGBmL06NEYP348SpYsiYCAAIwbNw4tWrQoVp5A1rRf0VeSI2xkCIIgCMIe2FRY+eOPPwAA7dq1E6RHRUVhxIgRAIB58+bBxcUF/fv3h1wuR9euXbFo0SJbNuslgAQXa0JLKgRBEI7FpsKKlNm+l5cXFi5ciIULF9qyKXaH/9PtofSg4dR2FEWlFS0pEETRxRp9Tmp2Pp6m5aJOuUDLC3MCaG+gYoK9hSOCIKwL2SkQ1qTZ7P3oteAYzj9OdXRTrAIJKzaClg4IR0LPH0EUXawhuOYXqAAAh+88s7wwJ4CElSKGvqU1GpwIgiDEof6x6EPCigVcjk1DQnqe0Xy0LENYg2tP0zF6xVncScx0dFMIgiDsil2CwhVHbsZnoM/C4wCARz/01M1gZwGFBKLiT9+Fx1GgYrjyNB1nv+5k/ASCeKkhI6DiBGlWzORCjHSjJVJBEtagQMU9R88yxbdT4EPeQARB/W5xgoSVIoYUDQq9osbJlhfg8fNsSXkp4B5hD0i8JAj9kLBiJsbGL/5ha451+rQ0NJ6aRpufDqLtnEO4GZ/h6KYQBAByXSYIQ5CwYgesKUfoE0r4QgwJLsZ5np0PADhwK8lo3qJ4PWnpseghI2nFZhTFd9haWOOpUqocfwFJWClivMwvHUEUZ1xIWCFsgKVDxqkHz1Fl8g6sPPXYKu0xFxJWbIQwoqw1NzK0ZBmIJB2CcFZcqTe2MiT8WYPBf54CAEzZcs2h7aDXw0wcNexLM7AloUQqxdV4tqh5AyWk5+HArcRiez+kwNesqJxA7U4QzgQJK3bAqjYrdqiDEELX1vY0n70fo1acw85rCY5uisPgP2fKl1hoI4Cc/ALN/+qw+S87JKzYCJtpN/QZ2DIpBrZFa7ZNvHwcv5fs6CY4BKWKYWTUWcF3wlKK7jVMz1Fo/s9XkrACkLBiF+zhukyYB01gnQvVS3pDnmcJA/29rNehqJOcJUfk6gs4dtd6QreULV3U3E7IRFKG9PxFCRJWzMVBnYl+12Xi4O0k9Pn9mNX3zimK40ZRFWr33kh0dBOcAtKsWBd7Xc0Z/97Af1fiMWzZaaN5kzLy8Mai49h4/onBfCfvSxN8Yp7noOv8I2j6/X5J+YsaJKzYCOEAZ9mrEvM8x2hJQu8jfXmKdwc4MuosLj9Jx4crzzu6KYSZJGflO7oJToGKNP9WwP7L3k/TciXn/XHXbVyIScOE9ZetUvflJ2lWKcdZIWHFXOwYE6H7r0c0/1sicFgiqjDG8Cg5u0gIPGm89V5jOP+vsR/qe0yeKI6HDGydB5XKNn1ftrxA7zF+gECpteobkoqLpSIJK2biakRYsWa4/ex8pWi5eivUgyXr4HP33EG7nw9h7p47ZpdhL6ibN891+a+jD9Hu50OYuu26DVpEmAItAzkPX226gnY/H7J6UDRXV/3vKH94uRSTZtV6iyokrJiJo4JNSgq3b4P9g34/eE/w92WiKNp/SN2kkc+c3bcBAP9zcKRKggxsnYl15zibkvn77ooeN1fjYmzCq2bTxae49jQd7/59Fl9vvmpWXcUBElaMkKdQQl6g1El3MUFYYeAe6PRc6csTesuyoBMz1gEqlCqDqsniSHEdE+JM8CAgnA/SrFgD21/Dx8+z0XjmPvx+QFyQMYQpE95Vpx9j380krDodo7+8YrPgIw4JKwaQFyhRe+puNJ21X0dIMLaPh3bck6+3XEP96XtsFkdCUmRbI3m6zjuC2lN3W0WociSmCHRStCbFVaBxFoqCHZSt0b4CphhqEvrgRQS2wjMmVsIPO2/heXY+fjZjedyUvaAsEV7vPcsy+1xngoQVA8Sm5ECp4jQi2g+LqaGxV7+QiH/Za5nNh0VGskbOfpDMLR2ce5RiQS2Ox5RrROOk47nwkq7JywuUeP+fc/jfqcc6z2HkqguOaVQxwpWn/mZW8K6ytlBtimbFkk0u/7sSj62XnkrKmy0vwKgVZ7H+XKzZ9dkKElYMwpfMhUdceFfOmOW+NW0eLImzItUd0tg76ewqalP6FLWARjjONic9V9xd+dDtpGId0Xb9uSfYcyMR32y5pjPzT8qU6zmLkArfJqTACr7gUt4OU0QKQ8s22kdkEoQVQ1mkGgcvO/YQB24l4YsNVyTltyckrBiAf/O1OxO+pCs2eNtqxq5PnSkl3L5UVaixfDW/3YV/Tj6SVJaz8+/lOKN5nEE021WM98xJydZddkzPUWBE1FkM/et0sd0bJTOv0D6MDGqtD7//VjKGmOc5+GnXLTwzUxCUtomsdAzZPWqXw8+rT8NjDYsVU8I+2BsSVgzAv/nanYnMiLDCx5r90PW4DMSm5BjPKNYOifmMKU7yC1T4dqvzurcWRxuIMXYIdOcIA70LMan4XCQoVkZeYadpjVmxM5LMC7FfDB9Zp0KpYhiw5AQWHbqPT9ZetFq5lniFmnKuYElLz7PCLy+rGDpKkLBiAEMCiYuW1G5PPhJZz5bSAumDuHP0nAVKFd775xwWmugu7RytLx6cuJ+MgYtPWn0LAzXLjz20SblFgWW83z5wyUkHtqT4o1QxJGZwwuHph+bZ5Fl7EmTIDsXb3VVvXilaOFP7zKIACSsGEGpWhMdMMbC1tixzL0nXultKuH2ppibOYpKy72YS9t5IxJzdt03rKJyk/UUNMZuVt5aexplHKXjvn3M2qtMyEtLzsPzYQ2TmOa/6Wgrx5GpuU/jKOXOFDrGzLNFGGrJDqRHmr5XXcDu0MWXzw6ICCSsGENisaI3g/MeswFlG9xfoM5SUui7uLCrpXEWhKvP4veeSzzNl/b9DRIjxTM5yQczEGjPCZBsZfEppm6EBYdCfJzFj+w18vfmazrHtV+Kw+PB9i9pHFF34jxZ/KdHst0HCiSYZ2JrpDaT/lSnM46igpbaEhBWJGBoAjWpWbDTVV6oYzj9OQZ5CKYxga7FmxfkG5/smxAowRXb0cDX+Cjjf1TANqdfDETYr2o9aq6rBunkM3IHHLzb5PHgrSefY2NUX8cPOW7j2NN2yRjoIZ3QfLarw+zSrdm+8V0ZeoMS5x6nmnGoUvtmBvv6ZL6Doe5cZY5i69ZpgCbKoQMKKAfjPhLZdCv+bmM2KPcb7JUfuo/8fJ/H+/4TGl/qqljrDFnsZrCGpmzrD579wpkQMNkXYkmK86eyu2sZwRuFTzfW4DMH38kE+AKQta/Ix9Bv5hqxFCfX2B86GowzYLalXaY04K0aOrzEQXVYMbZsVQx6dLi6m2azo6y8vxabh75OP8d32G9Ib6iSQsGIA/iOhPaYJVIxK+9qsMDBsvfQUP+3iOrMjd54JGmuLzsSSoEQA8P4/59B30QmTBn7BjNqE+k0ZnPON3DvA+Zb5TEXqNdfWYBTwengpcR7MIUbLs01MiyLJeNxK7XEmnDHWSnx6Llr9cMCs8PKWsPLUYzT9fj9uJWQYzyyCNTzK1P3Kk9Qc/HHoPtJzFYJYLs+zxeMF6YMvUBQoVeiz8Dg+WsVNPLVDKsSnFdqgKPT0Wfw3VF9/nS3X3TqmqEDCigH4g572AKjv2OPn2Ziy5SpiU81zL5ZCnkKFT9ZeEqQxPf/zkTrciA32pmg2dMpTMey5kYjLsWm4GW9eZ2OaZkV6XoWEGB4Ka0zLHIhU2U27E3ztp4M2aI1hxNoqJnwzxvCQF9DPkIBqK0HrZeTXfXcRl55nVnh5S5iy5RqeZcoxRcQ2SQraskqBGe+0elLa/48T+HHXLUzZcg0ebuYPofzn8srTdFx5ko4dVxOQlJGHv7SWabbxhBd9/RG/PBc9zSrKr4LTCCsLFy5EpUqV4OXlhWbNmuHMmTOObpKgk9SenQqWgXjH2s45hJWnYjD0r9OatKu8NXN7PCuWKlbEzrdEs5JvhcHeVvtoSJlxGdOcOTtSXOu1vWkUSpXTeKiItX7Rofto//OhwjwGfqIzxd3JzFPgg/+dw39X4h3dFLNYe9axdjRyMwMEar8D5mit8pUqbL30VOMCffTuM7hLsHnTh8DDh9e8VCOB2fQKKwa+FQecQliJjo7G+PHjMXXqVFy4cAH169dH165dkZSkazRnL1Kz8wVGSNr9Hb8DVCgZNl98gpjn4tqUSZsKt/XWZ4D1xfrLePfvc5L2GRJD2D7TymCMCX7P+HWXkZQhHKgsEVbkCvM6GL6QYKtXT9oykO01K0mZeVh/LhZ5Cl01bW6+6apbQ9GXxfjjkNBrxhSDZmsi9vhr7+vCGNOx57CHOGINoWfhwfvYfT0Rkatp7x81M7ffwFtLT+kdhM257trnKLXeYXPvJF+jzRjgaYlmxcxeTVEgwcBWq2j15TDk4arNlSdpOOFE2124OboBAPDLL7/gvffew8iRIwEAixcvxn///Yfly5fjq6++ckibsvMLsOZM4Szi4fNsgYbgPi/WyZzdt7DvpnTB6lZCBtx4erpjd59h/fknAIChf53Gd31rw9Th+dHzQpX4ihOP4erigjWnY9Ce55qblqvQidFy/nEKvtx4Fe+2rixI/3rLNXzZLULzPVdkEBWL9yJGCm8t9/HzHHhpBTzSx2Oe8Hf8/nM0rlRS0nmmtC1D5Jpok5Qhl1yeuXT65TAAIOr4I/w2pKHg2HMRA1Fj7eH31TfjMnDmYQoYgB51y4jm1zZ07Tb/qOB7lrwA3++4iYGNww3WaykbLzxBiyrBCPbz0KQ9SM7C7YRM3IjPwNvNK2LPjUSd8/ILVHqvSWxqrsX3b9q26zh2Lxnrx7RACR8P4yfowVRXanPbfT0uHacePMfbzStZtFRhCGu9E+olD/Vmr7EpORjcNByADPtuJuKHnbc0edNy843We/TuM0z/9wZer19Wk3bhcZogz+PkbLMmAXzScxVIyyns2xYcEAZiM9bO59mF7zU/KvndJMMBGO8/yxLVVvN36l6tZex77nEq7iVlYUTUWU3atbh0+HgIRYBE3iS19+/HDbbD3siYg3Wk+fn58PHxwYYNG9C3b19N+vDhw5GWloatW7cK8svlcsjlhTc5IyMD4eHhSE9PR0BAgNXapVCqUO3rnVYrjyAIgiCKMo9+6GnV8jIyMhAYGChp/Ha4ZiU5ORlKpRKhoaGC9NDQUNy6dUsn/+zZszF9+nSbt8vd1QXDmlfAylOchBro7a6TJz3XvKiZMhkQ4FVYnnY5/l5ugmUXKfUEersbzefuKtORpPWd4+3uKpiRieUTuyb6UJ9vyjmMMWTwNnszdi6/jVLzBni56TXAVOfRvh+2wFjbta+/sd/Hv3b8Z0PfeQqlCjkSZpp+nm6CfUosRd/zp91m9f8eri5wd5UhW6St2r9Nyj02tZ1e7i7wdJOmGTRUjlRMeV/01WNuGfYql3+f1M+sr4cr3FxddK6Xdr9krI36MKfv0leOoWfYECoVQ+aLPXz4v93fy02wyaUp5RpqK78OfeXk5iv12hha8703B4cLK6YyadIkjB8/XvNdrVmxBTP71sXMvnVtUjZBEARBENJwuLBSqlQpuLq6IjFRuA6dmJiIsLAwnfyenp7w9PS0V/MIgiAIgnAwDvcG8vDwQKNGjbB//35Nmkqlwv79+9GiRQsHtowgCIIgCGfA4ZoVABg/fjyGDx+Oxo0bo2nTppg/fz6ys7M13kGGUNsHZ2SYF2yMIAiCIAj7ox63pfj5OIWwMmjQIDx79gzffvstEhIS0KBBA+zatUvH6FaMzEzOzctWdisEQRAEQdiOzMxMBAYGGszjcNdlS1GpVIiLi4O/v7/Vw2qrjXdjY2Ot6hZNWA7dG+eE7ovzQvfGeXlZ7w1jDJmZmShbtixc9O0R8AKn0KxYgouLC8qXL2/TOgICAl6qB6goQffGOaH74rzQvXFeXsZ7Y0yjosbhBrYEQRAEQRCGIGGFIAiCIAinhoQVA3h6emLq1KkU18UJoXvjnNB9cV7o3jgvdG+MU+QNbAmCIAiCKN6QZoUgCIIgCKeGhBWCIAiCIJwaElYIgiAIgnBqSFghCIIgCMKpIWGFIAiCIAinhoQVgiAIgiCcGhJWCIIgCIJwakhYIQiCIAjCqSFhhSAIgiAIp4aEFYIgCIIgnBoSVgiCIAiCcGpIWCEIgiAIwqkhYYUgCIIgCKeGhBWCIAiCIJwaN0c3wFJUKhXi4uLg7+8PmUzm6OYQBEEQBCEBxhgyMzNRtmxZuLgY1p0UeWElLi4O4eHhjm4GQRAEQRBmEBsbi/LlyxvMU+SFFX9/fwDcjw0ICHBwawiCIAiCkEJGRgbCw8M147gh7Cqs/PDDD5g0aRI++eQTzJ8/HwCQl5eHCRMmYO3atZDL5ejatSsWLVqE0NBQSWWql34CAgJIWCEIgiCIIoYUEw67GdiePXsWS5YsQb169QTpn332Gf7991+sX78ehw8fRlxcHN544w17NYsgCIKwFfJM4MFh4MQC4PBPwLM7jm4RUUSxi2YlKysLQ4cOxdKlSzFz5kxNenp6OpYtW4bVq1ejQ4cOAICoqCjUrFkTp06dQvPmze3RPIIgCMIWrB4EPD5e+P3gLKD+W0C/P7jvygJg60dAuUZAsw8c00aiSGAXzUpkZCR69uyJTp06CdLPnz8PhUIhSI+IiECFChVw8uRJ0bLkcjkyMjIEH4IgCMIJ4Qsqai6vLvz/9n/AlWhg50T7tYkokthcs7J27VpcuHABZ8+e1TmWkJAADw8PBAUFCdJDQ0ORkJAgWt7s2bMxffp0WzSVIAiCsAeMATIZt0xEEBKwqWYlNjYWn3zyCVatWgUvLy+rlDlp0iSkp6drPrGxsVYplyAIgrATyvwX/1BsLEIaNhVWzp8/j6SkJLz66qtwc3ODm5sbDh8+jN9++w1ubm4IDQ1Ffn4+0tLSBOclJiYiLCxMtExPT0+N5w95ABEEQRRBCvK4vxTIk5CITYWVjh074urVq7h06ZLm07hxYwwdOlTzv7u7O/bv36855/bt24iJiUGLFi1s2TSCIAjCmjw+Aez4ApBnGc+rLOD+MmbbNhHFBpvarPj7+6NOnTqCNF9fXwQHB2vSR48ejfHjx6NkyZIICAjAuHHj0KJFC/IEIgiCKEpEdef+Zj8D3owyrDVhSpE0RpoWQi8Oj2A7b948uLi4oH///oKgcARBEIQdSHkI+IUCHj7WKe/6ZiCwPNBlpv48TAUkXOPclvlpMlfrtKGocXktEHsG6DEHcHlJr4ER7C6sHDp0SPDdy8sLCxcuxMKFC+3dFMLZyIjnZlb+4vZKBEFYkeR7wJpBwPN7QKnqwAdHgNTHQEiE5WWfWAA0+1D/cZUS2PO1btrLMFDnZQBJN4D4K0C9AYB3CWDzixgzldsAtfs6tHnOisM1KwQBAFDkAb+86CS7zAKajQFc6fEkCJsRPYwTVAAg+Q4w68UkYegGoFpny8ufV0v/MabkhBNBmsryOosCCxoB2Unc/w8PA4NXFR7LSXZMm4oAdgu3TxQBlArHGbzxX9I9XwPnoxzTDoJ4WUh9KJ5+4R/b181UgExr+BGzY1FTkK//mC15ch44/hugsqIgpRZUAODWf8ClNYXfyeBYLySsENyL+OAQ8EtNYGl7+78wuanA6sHCtIQr9m0DQRRXHh4BfqkFzKkG3N1bmO4VJJ5fW+NhC1RKXWPaC/8Tz3vid2BmaeGgbi/+6gDs/Qa4aCsBjgFbxtio7OIFCSsE9yL+04ez4o+7CORn26fe61uAaYHAj5WAxKvCY/f2Aze2coIMQRCGURYA+Tnix/5+Hch4ys3oV71ZmO7qLp5fpeD+Jt0C4i9bt51q7uziJkh8dn3JaTK0Udu2mDqo//c5sPE960y+4u00eSJvKL2QsGIuBXLTQkWfXgIs6wLkptmsSWZzZb1Wgp00K+uH6z+W8RRY9w7wPyvswH3oR+CP1pxdDEEURxY1B74vIy3GiTFUBZy2dVEzYEkbaX3Wf5+bVsfuyeLp6TGmlaPm2R3gEW8fIqUCOLsUuLoOeHbLvDL5iAkRKiVweyeQ9Ux6Ocb6IFcP09r1EkHCirnMrwfMLi+9c9g5EYg9DZw00espN806HZCh8h8fE6bZw9At7pLEfBcsr+vQ95zmZv8My8siCGfk+V3u71MRzYQYjAFZSfqPq7UrAJAtwejz7FJp9RrD09+88xY2AVb0AJ7f577HXSw8VmCFSYq2fQ3A2fasGQwsbi29nF+s4Gn1kkLCirlkvdhoMYG3fJGdDOSl6+ZNvlf4v0KPqlabgnxOhfljReDPdmY30yBKBbeFuzamzBTM5c+2tq9DG2sIPgThTCgLgJ1fFn43ZKTKZ8tHgFKu56DMtAmLNW1cTFmyeXaH86zh27Ik3eT+evjxMtpoaeXuHu5vlvimuzowJmFZ24K23t0L/NYQeHxS95iyANgxEbj5r/Fy0mKta1BsJUhYMUZarO5aMP+FUr0IG63IA36tD8ypCmQmAOeWc/70APB7o8L8YhK6GGoVJsDNmha/Zv1ljP/1A2JP6ab/3oiLeWILnt8HUh/ZpmxjVOngmHoJwlbc+hc4vbjwu1qzYIzLq/Ufk8lME0AK9Ak9ZqBdryGj2n8/5lyv+bYsZ/8CFLmAO2/jXHM1xXz7Ge0ynt0Bbu8wrTylwngeqTYrKQ+ATe8Dt3cVjgur3uTS/+mtm//6JuDMEs5dXT0uiXF5LTC/DrBtHPc99RFwcWXh9ggOhIQVQzy7zd243xsL08XUopnxQH4Wt5vo1khg+2fA4R/Nq1epAA7MEqYlXAHu7xfPby6Pjuo/9vi4/mPmcm0TsOBVTqizB4yJa45u7wTuH7RPGwjClmgv5ez4nPP+sRSpGhrAgIbGCvUaMqoVsxl8cBDYN00o9CjNdHv+ize50Rai/u4lvZzs58CZpUKXZWMk3zMsVKwaCFyJ5oL6LW0vXPbS/r2PTwKb3iv8Pqdq4f/amqxDs7m/l1Zyf3+tz41nZ5ZIb7uNIGHFELf+4/5mPBWmi1nI8yXie/u4v2dE1nG1Jee0GM5t9xHPbmTT+4BCxCPHxY5B0uIv6UrTGXHAmreAO3tMK+vJeeBclOn2OpZSIOe8DtQwFbfEtWYw8L++TjFbIAirI9bvmISWZsXYbN+aSwZr3yp8L7UnbNro05icXyGcYJqzTKU9iGsLUVmJuucUyDmbIe1zo4dxQuS82tLqfXqB027/r694HnlmoY0SwEXDNWQqoD1hUwuXabHAz9U5j8xDRibWDw1MbO0ECSuG0De70E5nDDi1WDyvNvxloKsbgPl1gTs7gX/6FqZf3yR+rpuXeLox9k0H/upk2nrwiQVcRMvYM4Vph38Cbv8HrB5o/HzGgNiznCHtXx2A7Z8CT8+Z2nJdpKhS1fWfWqiblslb3vqjpX1iShAEIP3ZNQWViMBtqYG8SmFaGaZoYaTw9By3lHPkJ8P59O0jpG1Qy5RceWuH6o/loo12+Aa+QHZxpfg5/40HlnbQFRZjTkirE+Cu+81t3P/6jKWXd5NeHgAU5IqnH/mpUNtz6HsjgfccH6yOhBVD6JsxeAbwvjDOsOn0HyIZRW4w/4HYOJpXl4SOTIpm5cZWLmZKZiI3OG+NBI79Ajw5y63nmoJKASzjhd2+phaiJDy4l1YDyzpZz5A2/Snwd2/gu1JckCg+BXLONfnInMK02DMi3j9MqCJNvm07+xmVCjg2X9zYjXj5iD3DeQ8e/816Zd4/KO4CrNAzOEnlwSHgsglRVaU6DUjlSrS4EKaN1O04VErg1CLg1nZg21j9+eRZ3BJa1jPuXvHhC2RbI3XPPfRDoRBz6Htp7RKFGb/eideMF1OQXzh+idlJZsTrRiqWZzjOnlACJKwYQt/switQmCdFj1Gb2EN3aiFweI55M3opa9Hr3uE6m31TufVs/iyAv67J91CSilzE00kfFyXOYKSy9i1uHw2gMEjUrf+An6oAM0M41+QDvF1e+b9VDWO6sy59gbEsIesZp8bdNxWIMnEWRBRPdk7knr293xSmWRqSYKuegff+fsuXgvZMKfzfkOYkN9X6NmhX1kk0RpW46SFTck4Pxlj7FhdAb+Ub0JmQGeuv1bYegHQnCjGYyjqhI+bXKbS5EbtOqwfophkyGLbkN1kJx7fAmRF7aORZwhdZWaD/pWEqcSOwgzOBGSXFz3l0TDwdAA7/IAx8pM3RXwr/v7wGmFtdeJyvmeF7KEkh+7n0vI+OAzFW1ijEXxJ+f3aH61z0bfwlZvMDZp8YMpve46zyxchNNT2ipkpFkXyLOtr2UUd+BmaXA25sM79MQ9qHHQaCtKXFmliP8kW/943u0sQtEz1ipODmaV3PGZVKmqZGPRkS2+rDpKUuC9yPGYNVllyyErkJm0olvpN1wlXdNLUHkBrBc+L4yLokrBiCP7CpB4sTC4ReOSoFkBmn53ylrjrRGCt6Gj6uT5iJPQPsn274XFd3rtP8W8S1zRj85SA1jHFbyl/fLIxyqd7u3JYsbGL4ePoT3TTGoPvS2eAl1Odl9eAwt7XA9CD9s2Ixto3lzhPTFjmCJ+c4+6XdX3Nq4+tbDAcYe9m5sVV3O4kD33F/tQcIezC/jmn5mZLzbDzxG2eTwcfD13rtUhPRS9qyuFTEdng2uQwTJjmWaCEyE7gxxloo5eaH8Oc/J06wDQAJK4bgP6Dz63FaEu0H6fIa4Ng8+7VJ34sgRc3p6skZe6lnEKYgttS14wvg13rA+hGc8ZqadBNnbtaEMW5rg3PLRY4pgWsbhWm2eAnFbIvy0oXxDy7+T1rcnAv/AJdebCEv9Tm7t5+z8N9nRHg1B3km8FdH4OAs4OTv3BLA+uHSAhdmJgKLWljPbiMvg7ONMuTiaSr3D3KBtR6Y8Y6IcWk1tzSrD7FZrxSubTQejKwg3zpGvUzFeZyIYYv3J6CstOBlUlFZQVgx5XxLhBVjRsWmUiCHVSZk5j6nVoSEFUPwVX/yDCDxhu7ywo2t9m2Ti9Yte34f2PQBZyxqjNDa0oNGSYEfYvvxMWD/d9Yrm48p5aqUnH2AGFfWA+ejhGnW2OQs5aFQzS+2LLhJRNtkLAw4Y8KZt9QOc+WL/ZSO/WI4nznoG8S13fvFOB/FDXp8uw1L2PstsOVDTljmk3AVmFeXE9g28IzY5VmcsPTfhMI0lQq4HM3dn5lhnLtoygNg47vWaeOWDw0fl2p3oc2GUcbz/BLBuelbikrJPeNi2GKH9odHgV1fGc6jLNDfJm2YUtoykCFMElZ4wsHtnZbVaynmxpjRwfGaFTsG7iiCaKv+lndxTDv48KX25Hum2Z5s/cj67eFz9GfAO8g25UrFkMdThtjSkIh698FhbrDqMQeo3ddwfbd3cgNCqerA6D2AdwnxWcgdkU7LWAeq3UE6g5t1cFX9x+IuAWUb6KY/PskJtu4+hWkHZgEhNblBaeA/QIXmprdFLXhqB0vc9H7hhnjXNgD9/+IGkFv/ccJS0g2gx89c2o0twOb3dcs2JYCXPqQM5LacseY8L4z5ZAkHZ+l3IrAF2nuVifFzVel2XCql5YO2SbZuvIHdGsKiJVgrujAZ2Do5tpg1WIwMOP83F2jNVCNZc+EbFKtZp2fHZLG89mTXl8bzCBC5x9s/4war9cOBuwY6e6WC278JAJLvAL824NzY5VrLEvqWPdQqen0u8jrxfCQKK74h0vLxSXlg3O5EqRBGwtRGn5t6VDdu2YLvIXbkJ2DDSM4Q0Bo7a6t5eFR3yUI90PAHrMWvcbNza+8XpSzgbIsK5FwdxjBXs2JPtAUeQb/ogD4y/oppBucPD+uPXaXGWGA79bsnJQCeemC/s9t4XlORGs9LjTIfVrlHTiCskGbFEPbwHDGVh0esH3bfGGIGXze22LcNtkL7HifeEM4iV/UHpulx2d41CcjneXvlpXH7c2ijb9lDpeA63hW9gHZfAS20NF/abZOqWTFV5Z31jLPTAPT/VoATOMQ8JSxF1HPLTMTCoCsVnAaD3+EmXgUWNrXcdZ0xTpsXVpfTDu2cCJxbJv18JxgETGZFT2DEf9zzyQ8aaQ+UBcASCUIgn/MrDB9nDPi+jOE8BXIuX1R34/XJZFw7pQTPNBVTJ2PWWgZygufU8S1wZuwtrDyVMMuzt6BS3FHPEtVBlEyJi3LWwlgWOSlcxytPB3ZP0j2uLZxI0aycWQrkppjWjmc3eXUYmIWZY8ia+tj0c6yN+rppd7gp94Fnt4yfn5fBaWzErs2dXZyb8PKu3HdTBBXAKQwXTebxcW4ftDNLuWBr9mRpO+uVlf2c28z14v+M2489PMx5GIpt/KqDzLr7JakxR9NPy0AvCfYWVpa2N56nRCWbN+OlgjHOk+qnV7hZU54Jge8sxVh0X23hxJhmRaUyHF9D73m8cg1pZUz1/GCM8xYzB5WSi0BsKO6QKe0AzPdc2TCS09hoz9DjLwttEqYFwmTMEVacIcqoUgEcn2//esXig5jDwyPAnFeA+weku4+flrgEI5MBsafNb5s+zDESPvOndfo0ElacHGcwaNQmMNzRLShePDoCzK3BLedImjW94MEh67dF21NLW1jWJzyrlNxmZTNKmFcvvxO01GuCj6FdvY1xejFwdK543KHku6YtP6ivmzkdrkpZaLPBt7m5vgVY0sb08nQwUYCSZ9pv13JDqJSAh5+jW2EeKhUXqdbk8yS+GxlPOY2NtTFHS6IOe2ApFGfFyXFGmxV77rz8MnDEBE+jjDhugDr/N7f/krVZ8Krwu7Yxn77O8uER4e7SplAgFxpFW0NYUSq4LSXMGRDUaO9bwuf3xuJBCvWi1qyY0d3x7Q74avj1egzMbUluqulBJm0FUzrFbNss+PsemYLUmDXWFPgF9VvLDdkMSFhxcqy9m6g1cEYBqigjJT6ImqNzOdX/vx/brj18pGpWtHeI5WMszsPRX4R2G9boaI/P57aUsIS6IobK5mKJZoXvCWOTd88EOwRDW23YG1WBUwxgZmFuCAdbCSHGyE7mAnBKsWm0FRdXOnz5kYQVQzijYOCMS1PFHbWGw572LIA0m5X0p0D0UN10NcbiPGgbmFr6fO34Ajj2q2VlAMKYLJZybRMXgTr+smXl2GJwNuV6u3tZv35zURXAGQKF2RVH9b1zqnC2J6v6O6Z+Nf+ZYQ9nRWhNwRDOGGfFUdL9y4yqAHDxsP/zoL0Zopim74CFGgxtbYOlz9eZPy073xb8N5776wiDUDEu8GxfTIqM6kSeQ7FnhV5kLwPW3K9IKtbcSsJStONH2RnSrBjCGbUYphiBEtZBPYDbQ+2tFohSHurGdBALSMWP82IO2sKKNfaSMYeMeGn5pATlshlWuv/beJtYmiIcOpOmd5OVtiMoSjji3Vg9yP516sPBk3cSVgzhTJ0D4Tg0Myo7CCvqDvHuXt1j2poVZYFlHahSxO7AUZo7bWNcfR2jI+3IbLIMJPH+Jd8r3POJcAyOeDdiTti/Tn04WLNCy0CGcITaj3A+lHbUrKgUADx0N6wEOE1f7FkguApwaLZlSy67JgNnlhjffygthjPgDalpfl1SeH5XWr64SzZthmFe3H9ralylCpv7plqvTsI8XvYleCkBFG0ICSuGuL7Z0S0gnAFlPufie/+gHep6MXiJ2Sck3waWdQL8woCsBMvqObVQPF27Q55fl/v7+T3L6rMGyXe5368PQ+7O1kAtrFrikq2N1AHQGe3nXjYcIayUjnC4kOAs0DIQQRhDmc/t+WKNnXiNIaVDtFRQMad+u7st8gZn9UD99LzhU6RGIjWbF8LKYyu6EEvVrDhYBW8SzmQIbE0cYbOSacN3vYhBwoo+ChwYgIdwLvLSjW+GZi1UBdzmhts/tU99YvVr/uctd7i4Os6GS90ORwchc5TNyvHfLIsGbG/4dkUhtR3XDmvjCM1KXpr963RSSFjRR36WafnbTQLGG1DXVTWgvnY06v2GOryIZNpirN6sLyWm7vJqCUoFsNZA3BRrsHmM/mN8AYU/k4y7yGmX7AZPMNC3EaGt0V56USmBqB5WrkOCAKhv1+6igGsxsjQoSgJjMYSEFX2Yqnat0x8IKAPUf0v8+IAV1p1l1LOSS9tHp4BRe4DBq4HWE4Bp6UDXWdYpmzAdlcL0XZNNKl9pONw4f/bID++tjlViN/jLQOoItHYOQqZtSPv0nHWXgF4GXNwd3QKimEDCij4CygOvSNgFWY3ri5fy9fnc/j2hdQqPfXYd8PQHPjhsvfaVqCRNA2KsswipCfiHAhE9xT1QCPuiLCh8lqwJY8Cz28bX3W21qaEpKPK4/Zc07XCQZsVev1+pKL4GtLZ4losDo/dxxrNqAuyw51NoXaBKB9vXYyOKkY7Oyri6AW9vBtIeAxdXAdU6G948TS0UuHkCk+MLO1amAtw8XpSp58VtMAy4tNK09slcAc8AA+1x40KWR54GfrGx26kluHo4doMuZ0OlsM1s9NgvwP4ZQBMjwbwEmhUHue6fWy50ZXbUMpC9hJU1QzjbBE9/YOjG4jVpcMTGq6+0s82u6NYkvAkQXLXQ0ycr0fZ1jtoJRL9t+3psRDF6K2yATMZpMDp8LdSUiMFfe3bz4IQdV7dCQcUQffW4karxCgRKviJMK8g13Hl/kwx8cR8IKAu0/dJ4G7QZc0w83doD6ZQkoOv3IunPgFafcP8X1a3ozUGpsM1yx/4Z3N+zfxnOxzf4LMi1fjukoL2DtCUbEVqCvYSVe3uBJ2eB+weAmaWB7Of2qdce8CdoXzwAInrZvs53ttq+DmvA16b1XmD7+lw9gdjT0vLWHaCb5mC7S5u+/bNnz0aTJk3g7++PkJAQ9O3bF7dv3xbkycvLQ2RkJIKDg+Hn54f+/fsjMdEOUqapuHtzEntYXW6AraO1K6xPsLRyKrfl/vZZCNR+Q9pDyhjw4QmgyXuFaeeWG56ByWSFglL7ycA3JnaAYXXF0908TSvHGDIZ0CIS+CpWqBZ18wDaTwFG7y00/H0ZSLphm1mW1IFeveSSlw78Wt/67ZCCi5brqybEvoNtVuxSZwFwdqn961XTwcrGvK6ewKBV3Mc3GOg8A/Auad06+HSdbbuyrQ5PWKk/GKhpxfg9Yri6A5VEnAW0J+LfPAfe0HoGO00Hes2zXdskYFNh5fDhw4iMjMSpU6ewd+9eKBQKdOnSBdnZhVvaf/bZZ/j333+xfv16HD58GHFxcXjjDScMKy2TAW9vAd4/wg3YFVsUHvvsBuAhcZfYoes5waPBUGBAFPDqO8bPKVWdE5Z6/lyY1mgkdDrvKh2A2v2AwSIGlNawyn9nG/BWtOXliOEVwF0bAPDw5/66eQDhTU0TkMq+CnxwlDNoLops+dA25UpVx6fFcH+vbbJNO8zBUctACRbu0mwuCgdptPouBlpaOVYNUwI1e3EfgIu+/MV9YGpaYZ7XPgd8SwP1jOwQboxPLgMtPuL+V2tlnZlGI7i/4c248aUfLyK1m9YO21UNmCCoGWPA+PvtzVwdzUU8Aeu8AVRsVfjd1Y3LO4BnN9b6UyCogvE22BCbLiju2iVU565YsQIhISE4f/482rRpg/T0dCxbtgyrV69Ghw6c4U9UVBRq1qyJU6dOoXnz5rZsnunIZIUq+nqDgacXOMPUwHLSy3DzBEJN9Ap6c3nh/30WAk/OcTOgpVoGwL3mAyUqGi+vzyLgwUGhpkYKr7zQClkjgqoYQRWAT68B3kHCdFPWvd9/EWW2TD3uBV/cGkh9aLUmFlmkGnC6SxS6234FHP7B/PaYgqPiu/yvn1aCDILZsK0okNu+Dm38woAGQ6yvTRIrT1sjXDoC+Pwut8v4lbXm1VOicmEIBgDoOI2buP3Zzrzy7EH1rsC4C0BgOPfdw4fTIjMGVGgujJQ8bAOnYZxbHch+JiwnuCrw/iHO5klNYAUgPabwu9qwtkoHbpnsnz6Fx5QKYNhGYGlHbnKopnZfIOwCEGDC+GZD7DpVSU9PBwCULMmpAc+fPw+FQoFOnQrXwiIiIlChQgWcPHlStAy5XI6MjAzBxyF4+gF9F3HCijXoNZ/7y1/TDarILY/wBZCGwziPI1c3oCCvMH3sOeOCSuQZ4M0ooMFbQP+/gArNzGurq5YdTriZ5YgRFC586QDpdjLaruGefsAHRwDfEOu0rUgjcZBV26wY0mK0Hg80NVHQNQWx+CaAYzcx5Bpgn2r477W9UE+gtJfgTEV7dp+TbPwcpuImgZbYpg2IEn53cTFuZygVQzZ/dfpbVnZwFaFdY5svgLYTxScNLi7iy/OvDtftM181YEhbuS1QrWvh99pvcJr7j05wY4t2+9y1tDwOwm7CikqlwqeffopWrVqhTh3uIUpISICHhweCgoIEeUNDQ5GQID5znz17NgIDAzWf8PBwWzfdPjQeyc0uGo0sTIs8zS2P6KMNL0hXcFXjdZSuwan8LDXg1PZqGr3HsPajRGXur1+YefVJ1qyIDCZeAcDYs+bVWxxQ2wdI1azkcRMKg8+IixvgWwoYvt2ytolxczun9ePDVNzSyBUbLUE6G/b2jvMuAfT9wzplhdUptMsDgHgDS2mvTQDKNQZq9ea+e/iaXl+LscC3qUDZhrrHrOGJ1O0HzuZPjF7zpfW75lCuEffbyjfltM1qxCYRfM1jp2mcQNPkXaDfEqB6d2DSU2F+mQwYuo5zwvj8LlC6uk1+grWxm19ZZGQkrl27hmPH9HiZSGTSpEkYP74wQFVGRkbxEVj8QoTrgsb22KjWifMUKlXDvgGzxGZfLm76vSf6LQFCa3F55tYoHBDNrU/mKj7L1rdcoK0JepkwVa2/91tOVWxonx31IFDZipF91YJstEj0XqbkQs7f/Nd69Tkz/D2Qkuywid2gVVysJUsZupH7+85WYHoQ97+fgXI7fgt05H2XugSp5oOj3HKvPiztE0tVB5q/sCEbuQuI6lZ4zC+Mm2Dm5wCHfzSt3AYSIlTLZCYE5+RNRFp/xn0Azmi3vgE7IFd3bswpIthFszJ27Fhs374dBw8eRPnyhcFvwsLCkJ+fj7S0NEH+xMREhIWJz8I9PT0REBAg+BQrvAIL/zemkvUuAYy/CYz4z7Zt0qaCmC2Rno6hwVBuucnTn1M19l8uns8Q2p0Y/7p8dMp4G8SElZBaL8e2AioFcHaZaUsoajdnfVi6VCCGofaplMDl1YbPz3RCD0Jz4e+yu8hKS6x8Tzs+7SYDFVtap45qL5bz+UKCKdoNU+PLGBJU1IzeZ1qZfPiCVsUWXHTvb1OBoRuAMS9C73v4AO2/5v6v3t1weaP2AEOigZ5zzW+TGMU1oKAWNhVWGGMYO3YsNm/ejAMHDqBy5cqC440aNYK7uzv279+vSbt9+zZiYmLQokUL7eJeDvxDgd6/A/2XSRsUPHylxXKxJl1m6m4r0CJSPG8ZLfdXTzPWpbXP4WucQmoCFV48K41HiZ8vdh2VCqCGlfd54dN+SqFXk7X4RsL6vzaqAtND5WcbqccWgb4MxTRhzHid82pZtz3FjQ/FbQDx2njraGU9A8XTTbW/Gfg/4fcSlYB3D3BLIZFmLOeWa2T6OWrEhAAXFy5AKF8j0XYiMDkOeMuIcbCrO1CjGzdpMxfRbVZIWLGYyMhIrFy5EqtXr4a/vz8SEhKQkJCA3FzONS8wMBCjR4/G+PHjcfDgQZw/fx4jR45EixYtnM8TyJ68+jZQ903j+RyFVyDQ7w8ucJvaBbHdJC6cs5r3DgAdpwKNR1teH994rHo3IFArNPXQDZyaVl90VrHOWJlvfADsYyRYnyFafcx9rImru/HZmzbmRKHNMRKTxybCigHNihStkJiwo28AdXZsEcHYxUWotVVjzB1c3wRAG30ejqbuXq+2XwE4Z4Ph/wLlG3GG96WrA81MdO13cQE+vmTaOWpM0UZKsbexhqdV3QHAqN3AVzHG8xYzbCqs/PHHH0hPT0e7du1QpkwZzSc6utBQbt68eejVqxf69++PNm3aICwsDJs2OVGMB0I/bh6FgoCrG+dlpKZcI27WphPfhSc4NBwmrR6+l8DrvxXGUlAP3J5+nJrWFDWyUmE89oxfqPmeTjJXzoDQVPdwY/Qz1RDSjFmXMbUy3zZo4P+Aal1Mr0MbeQYQd0n82O0dwPN7ppX38SXOTqqoULlN4f8qBS8QnhV5a51umiFhxSuIMzC1BKUZbtjD/+W0y4NX6cb2aP0p994PMcHFuSRPo9/yY+n78JjjMm+ovwiuYnp52shk3DI8X/CkZSDLYYyJfkaMGKHJ4+XlhYULFyIlJQXZ2dnYtGmTXnsVws6UfdW0/E1GA3UHCoMbGULtrm0MvtpU5sJ5TH1wFBj4t/5ztBm6QfhdmW98BiuTmT/LdXHlPl1mcrOhzkbsQKTiXULc80Eb39Lm12EszHza48L/a/XmgvlZY0fxP9uKa0P2TRPPP+GO/rI8/MQ1Cc5Gzd6chrLnPGEgMEs8gvQtfVRornufDC0BhdXl4kJJiSAd/Ip4ujm/o3Ib/a63/mHccksNEzWMLccB/mW5v4NXSTvHHGHlTT02eZ9cBnxsFLnXWi7aTg7tDUTop8/vpuV38wT6LwXqi62riiB1R1aBgSzjOtgy9UyLbKtt9a5SGK/fkoip6kHA3YuLaWMsombHqdKiVALSlmHGnpNWlmj5L2x8GujRfGnHdAB07abUkZlLmegWKTfBU8wvBHqNqr0CgeYfmVa3I+i/jLt2paoCX/KEQFM0EuUaC4Xhd/frz2tKZFd1cLo2XxjO5+EPdP5OermOoMtMYPwN7pkpVU3aOeYs22gvUavhB6yzFmOOc1GHq3c1nrcYQMIKoZ/Q2rbfr0IKfKHC3J2AdTyCJGhNrB3e3dAGa8p86cKXMZd2wDIjPnW49+AqQLBWx+7hL4zvo8aV1/bO33Fas3EXuECE09K5D5/q3WAxMpn4Nev4LScAvNLW+stw1oZv/M1/Rk2x9Xj1beFSqUwm1K5Enin8v95ATpB9az3nnWIIvqD58UX9GtN+i22nNbAm6gmEhy+3qeKXjwy/S5a8Q2pq9eGunS0Iq8NFHbZn2AoHQsIKYZgec7k9LD44YqUCzVhf9fAv7FTMXd7QNoDrOde4t5W1hZVX2uk/ViCXHg9GipeYJbFl5JkvynDXvQavzxffB4svNLT6mGtjcBXxjtQzkLM9sgS1cOQqIqy05Bk282fRb63nnmV1HApngH99+TZXpnjRhNXTvc4D/+F+60enuGCQmvpk3DWp3kV/BOtRe7ilVn6cj5Kv6NeYOmo7BEvwDeaWVMcc5TalfXW48HipGsDrv5pXdodvuGBxH1/i7kNJPUtkhEmQsEIYxj+Ue2m1XZDtiYsLMOkJ9zHXTZs/8+zwjTRvK5mL/WYtQRUMa1ZG8vbZMiZEfXD0xT5WZsZDUS9BuIgIK/rqlqIVGr2P8+b47JrlQcj6LX5Rr8jzwP/d/PaGN+Ge5TAJ8TnUlKkP9PjZeD6pqKM5q9H3fP3eRFp5wzYC5V7VvS+B5bnfGlLT9DZWaMYJpdp7dAGATyndNDGvGfVu8s6+C3JobeDNZUDv34RxVcaekb5cpE2bz4Fx54WGvYTFkLBC2BkzB38PH3FbCcnn84QVzxeBBH2CDZ8jczHd0t67pH4jO4ALRgcIl6AajwYavm1YG8Lf5duYzYo6WJape+m4aam9XVx1B0F9Wh0pmpzwJkD3Hwq3kHhjqXmDWY0e3LYRgPhSHl8A4Ldf/X+VDhA8h3UH6rflcHEvfF4s5Yv7nP2SFApygWQjHlClagBV1YHYbBCoTwwx+wgx245X3+GWWVoUAbshNZVaO7oFhAFIWCFeDvgzcEUO99eY8GNMg+Hmpbs3yJcPDW9uNnQ959I8lOdG2mkq50Yt1WZFagRZsSUSfXT9Xtc+SWwZSJ+djznLTvUGmjeY8e0jMuN0jwsiqPK1LC/+9w4Cvo4HPjoNvH+YMwrXJ5C4uBl3cZdCvz+5/ZTKNwYGGPBia/tV4f839dg4BYYDXycCH54oTLP2kqU+vEvopukT6MXyOjUvh+1HUYWEFeLlQ21AamyJx9gy0KSn3IDXewGX9631xusOLM8ZgKq3hVfXA0gf8KXOok2JFqwq0DUodHHXtfXR50HFd7u1NaYEpdO3JOTuDYREAGUbcN/1Dawubub9tt5annR8ew99oe8BoP2kwv/1bXvwVjTnZcYXomr24rR6/F3bbUGbLzhtDt/Y1uG7YRMvA3bbyJAgOJwggJFaswIANXoCt/XtrSQzPDCqB4tX3wHqD5Huig0U7oYM8IxFrWhgC3CChrFotGpEhRU3XYFHX90NhnD795SqIX7cVIIqcvEjxO6NKUseLnqEFW0aDgMeHuZ2DOZvT+Dqpquhqj+EK6tUdWDfVN2yxp7nXJFr9gK2RAK1+wmPh0Rwuxzr2+Sv0mvAo6Pix3r/Lh4t1iuQ20HXFvs28fEO4uxkAGDz+9zf8Ka2rdNuOEHfROiFhBXi5YPvvTB4FfDkLLBMJMaJSiF9acYUQQXgvBHejOLsN9RLVPrqqqZlJyB1QDIloJ1KqbsU4uqmu1Smr8zKbbhliaCK0us0xNANwAk93himDMh8wcbQeW6enOcGY0JhxUVkeY4xoN8i7n8PX+Dg95wdzaWVXFqpF0uD3iWAIXo2YORHe9bGXIHDGstVpjDxIZCTQt4uhF0gYYV4uZHJuJnh1DTgfBSwnefWasidmB8e3VzURqJqxOoq00Ak4qaBpSm+vYwpApRSoeu9oFIKDZMBw5omffvDmIOhAdsWmhVNHq1r6+IuIqzwlj2avsftSSXPBGJOWidAlyEh05nimfiUdK72WAzZrDgzJKwQdsYJOoSKrXTTZDIutkTKA+DEC7fLArn+Ad+QkaS5iGlW4i/ptuHmNv1lvLG08H9TbDvkGbrRN5UKEc2KnboMV3f9hpumaB5MFVbEzte+L9reLzIZpyEbd946ru76rnG1LqZvZEkQxQQysCVeHsZd4IQMffuKyGRcWG41qgJxbUed/raZUVoSyA3g7C34g7MpgoVSUehWrUZVoGtcaq+lBhcDwoopQgc/Aq85goTMRddmRZ9BqbVi8ugTxrr/aNpmnYSJkM2KM0NPPvHyEFwFqN1X+qCiKhDXrLSItGqzNEi1j2kuUr/MVXdjR1OWgVQFnGstPwCamLBiT82KvsEj6ab0csLqcOH/zY1GylS6Rsbm7BljCvrum72uPUE4IS/N069UKqFQmLmvDGE9Chjg98JtN8+EkOL2RN0+7zDAPbjwO8AZYQbXsk3bXfyEdanRrqtqd+Ca1lJQq88Ambcwr3cZ8fLEKF2PO7fe28CRFwO7exDgoRSWoXS1/m/vGwXs+1aYplABrgHi7WcehW2Qcr0avS+erg9+mW5BALx002z57HqWEv9dCua870xxwD3IpL7J3d0drq52CsZHQMaYqSE6nYuMjAwEBgYiPT0dAQG6gZ0YY0hISEBaWpr9G0foUiAHshK5/4MqOLYt+lDkcp5AngFAbmrhXjkAEFDWdjPc/BwgJ1k3Xew6ybOA3JTC795But48WUnS9pjx8OM8V9Qap7wM7jzfUkB+NncN1ASWt00AMqbilqLUz0Zgea7e/GzdvG6ehW6/8kxh+wDLn6u0GN26+Gnu3ubvUSWFrMTCHY/5BJSzvWvyy0zO88LnTeIzFBQUhLCwMMheks0ErY2x8ZtPsdesqAWVkJAQ+Pj40EPlaPKzgbQXrsMhRWDvjNwgIDO+8HvJiubvT2SMvAwgQ+T5FLtOijwg9UHhd98QTrjgk+oCKEQGe21KVtX/m3JSgawX3USJV7hgZLYiP6fw2ShdGUj3AvLTdfO5eQs9l5JuCI9b+lyluQH56s0cvYDgykBSbuFxd1+ghJVctMXg18UnuKLpLvKEdNI8Cp83I88QYww5OTlISkoCAJQpU8bWrXvpKdbCilKp1AgqwcFG9oEh7IOsAHB7MSB72THqqbl4hnHtVQssnh62G7BZXuG14SN2nTzcgEyZ8Lt2Pm9vgOXAKF4e+qO0qjyBvBf1+AcZL8sSXFS8Z8MbkJUCUjJ087nJhL/V3U1o9GrpcxVSBUi4zP3v+qI8D3fOhgcA3F1t++yKPQMAd03sHUvlZcLDFVBJ75u8vbkgiklJSQgJCaElIRtTrA1s1TYqPj4iW9oThBRkMmGkUVt6Y4hp/QLK6ctsvDz/slxkU2MbNhqK62GvPWcAoYGxTMYta4kZHWvfA2u3kV++OoCgYPdiG6+c61tmJKWw06EeW8ge0va8FGI6Lf0QFiGTcRsWqpSWuxcbrkg3SXtpRy8iA6irGxddNC9Df9j90NqG7SA0ewPZ4R1ycQVCahcKbTIZ5zasbb/Bj0AM2FagUl8be3riePrr2uEQTgmNLfajWGtWCMJqePpzRqz2pGQV/QOxdiepUonnE8vLx5jw5erOCTRhdQ3nsxZuHkK7DLnIMpC24FSikvXbUaIyp3EKFPNGsrFmJaC8eLo9tVwE4WTQ008QzoKOUGFgUJS5CAOeae+OLMwsnqwdSl8frh7O5YWi7anh4aN/12Rz8Q7iYrSI7lxtQDC0BmJ2KWF1SVghXmro6ScIp0FLqNBe7tDG04+LOluiMmebordYPcJKcFXTmucMlKyiuzs0YN+B3JS9iawFBYQzyLJly9ClSxerltm8eXNs3LjRqmUS5kPCihMik8kMfqZNm4ZHjx7pPX7q1CkAwIoVKyCTyVCzZk2dOtavXw+ZTIZKlSpp0tT5ZTIZXFxcUL58eYwcOVLjnmeobWvXrgUAHDp0SJBeunRp9OjRA1evXhX9rV27doWrqyvOnj0LAAZ/l/qzYsUKrFixAkFBQXqv35YtW0TLK1myJNq2bYujR4+KnvvBBx/A1dUV69evN3iPxMr29/dH7dq1ERkZibt37+rkz83NxdSpU1G9enV4enqiVKlSGDBgAK5fv85l0BmQdIUM7esFN09OCyCTYcSIEZq2uLu7o3Llypg4cSLy8kRidnAXyuhvVMN/NmQyGfz8/NCoUSNs2rRJkK9SpUqYP3++zvnTpk1DgwYNNN9HjBiBvn376q2vUqVKXF3lXoVreGOUfbULRk+YjtRUoS1HSkoKPv30U1Ss2xIelZqi7KtdMGrUKMTExOgpuZClS5eifv368PPzQ1BQEBo2bIjZs2cL2ix49sq9Clm5VxHRqpegnHv37mHkyJEoX748PD09UblyZQwZMgTnzp0T5Nu+fTvatm0Lf39/+Pj4oEmTJlixYoXRdmoj9dk3pV5rvif86+bq6orw8HC8//77SElJEeTT96zMnj0brq6umDNnjt5rwCcvLw/ffPMNpk6dqklTKpX46KOPUKZMGfTo0UPQhwFcfI+vv/4aERER8PLyQlhYGDr1G4ZNO/ZDHXpsypQp+Oqrr6AytMRK2A0SVpyQ+Ph4zWf+/PkICAgQpH3++eeavPv27RMci4+PR6NGjTTHfX19kZSUhJMnTwrqWLZsGSpU0A18pK7ryZMnWLp0KXbu3Im3335bkCcqKkqnTu2B5/bt24iPj8fu3bshl8vRs2dP5OfnC/LExMTgxIkTGDt2LJYvXw4ACA8PF5Q7YcIE1K5dW5A2aNAgk6+p+jodOXIEZcuWRa9evZCYmCjIk5OTg7Vr12LixIma9phS9uXLl/H999/j5s2bqF+/Pvbv36/JI5fL0alTJyxfvhwzZ87EnTt3sGPHDhQUFKBZs2acgOnupWWvIFwGErte2nTr1g3x8fF48OAB5s2bhyVLlmDqd98XZlDbqJgxU+c/hxcvXkTXrl0xcOBA3L592+SypDBjxgzE37+BmDM7sGrBLBw5dQEfT/hSczwlJQXNmzfHvn37sHj+T7h3fCvWLpqNe/fuoUmTJnjw4IHespcvX45PP/0UH3/8MS5duoTjx49j4sSJyMrKEuTTfvbi4+Nx7PhxzfFz586hUaNGuHPnDpYsWYIbN25g8+bNiIiIwIQJEzT5FixYgD59+qBVq1Y4ffo0rly5gsGDB2PMmDGC99namFqvtd4T9XWLiYlBVFQUdu3ahQ8//FBSm5cvX27SO7hhwwYEBASgVavCDUrXrl2LmJgY7N69G6+++iqmTJmiOZaWloaWLVvin3/+waRJk3DhwgUcOXIEg/r1xMRZvyI9g3sGunfvjszMTOzcuVNSOwgbw4o46enpDABLT0/XOZabm8tu3LjBcnNzCxNVKsbkWY75qFQm/76oqCgWGBiok/7w4UMGgF28eNHouWPHjmXvvvuuJj02NpZ5enqyr776ilWsWNFgXbNmzWIuLi4sJyeHMcYYALZ582a9dR48eJABYKmpqZq0bdu2MQDs8uXLjOVlMvb0AmNPL7Bp06axwYMHs5s3b7LAwEBNHXymTp3K6tevr/e3icFvo9h1unLlCgPAtm7dKjhvxYoVrHnz5iwtLY35+PiwmJgYvb9TX9mMMaZUKlm7du1YxYoVWUFBAWOMsR9++IHJZDJ26dIlnbyNGzdmtWrVYir18/Hi+rCcFEFeY9dr+PDhrE+fPoK0N954gzVs2LCwzNw0xtLjGFPkGfxt2ohdb6VSydzd3dm6des0aRUrVmTz5s3TOV/7Poq1lY+mnJwUTdu/++IjVqtmhCbPmDFjmK+vL4uPj2dMWcBY8l3GspJYTk4OK1euHOvWrZve8vv06cNGjBhh8Dfre/bUqFQqVrt2bdaoUSOmVCp1jqvfgZiYGObu7s7Gjx+vk+e3335jANipU6eEB9T3S/3hIfXZN6Vea74nYtdt/PjxrESJEoI0sWfl0KFDrFy5ciw/P5+VLVuWHT9+XPR38unZsyf7/PPPBWkLFixgkZGRTKlUsrVr17IBAwZojn344YfM19eXPX36VFjQ84cs884xpnh8RpM0cuRINmzYML11i44xhGQMjd/avHwLoYoc4Puyjql7cpwRQ0jbMGrUKLRr1w6//vorfHx8sGLFCnTr1g2hoaFGz/X29oZKpUJBQYFZdaenp2uWiDw8Cj1PGGOIiorCwoULERERgapVq2LDhg06Whxrk5ubi3/++UenPQCnbRo2bBgCAwPRvXt3rFixAt98843Jdbi4uOCTTz5Bv379cP78eTRt2hSrV69G586dUb9+fZ28n332GYYOHYrLly8Llkr4mHO9rl27hhMnTqBiRX60VRkQYHm0TaVSqbmOr776qsXl6YdT/j6NT8K/+46gWZPGAACVSoW1a9di6NChCAsL47K+sMHxBvDRRx9hypQpSElJQcmSujtkh4WF4fDhw3j8+LHW9ZHOpUuXcP36daxevRouIvF31Es1GzZsgEKhENVkfPDBB5g8eTLWrFmDZs2amdUOfVhSrzXfk0ePHmH37t065YixbNkyDBkyBO7u7hgyZAiWLVuGli1bGjzn2LFjOu/BsGHD0LFjR3h6eiI0NBQ7duwAIHxuypbVHQf8fIUxuZo2bYoffvjBaLsJ20PLQEWcli1bws/PT/DRpmHDhnjllVewYcMGMMawYsUKjBo1ymjZd+/exeLFi9G4cWP4+/tr0ocMGaJTp7aNQPny5TW2AKtXr0bv3r0RERGhOb7v6Gnk5OSga9euALjOZdmyZeZeBqOor5Ovry9+/vlnNGrUCB07dhT81lOnTmmWmIYNG4aoqCjN+rWpqH/ro0ePAAB37twRtR0CoEm/c+eO8ACv7n379km6Xtu3b4efnx+8vLxQt25dJCUl4YsvvijMIGacKpH09HTN/fbw8MCHH36IP//8E1WqVDG7TEN8+eWX8CtdDt5VWqB8426QAfjlJ86m5NmzZ0hLSzN4TRljuHfvnujxqVOnIigoCJUqVUKNGjUwYsQIrFu3Tsc+4erVqzrP+pgxYwBAY5fEf67FuHPnDgIDA0VDsnt4eOCVV17RvfdG4N8Lfe++OfVa6z1RXzdvb29UrlwZ169fx5dffglDZGRkYMOGDRg2bJim7HXr1ukszfFJS0tDenq6juARFBSE8+fPIzY2Fo8fP0a9evUAAMnJyUhNTTV6z9SULVsWsbGxZLfiBLx8mhV3H07D4ai6rUx0dLTeDpvPqFGjEBUVhQoVKiA7Oxs9evTA77//rpNP3QmqVCrk5eWhdevW+OuvvwR55s2bh06dOgnStDuLo0ePwsfHB6dOncL333+PxYsXC44vX7sVgwYNgpsb9wgOGTIEX3zxBe7fv2+TwS86OhoRERG4du0aJk6ciBUrVsDdvTCex/Lly9G1a1eUKsUFYevRowdGjx6NAwcOCDprqag7b37QKMmCj8yVCx/Pc5tdvny5pOvVvn17/PHHH8jOzsa8efPg5uaG/v37A8oCrkytvWVWrVqFDz74QPN9586deO2110Sb5e/vjwsXLgDg7Bb27duHMWPGIDg4GK+//rq032YCX3zxBUa89SZYymPExiVg8g+/o2e/AThy9Jgmj7nCZJkyZXDy5Elcu3YNR44cwYkTJzB8+HD89ddf2LVrl0ZTUqNGDWzbJtzhWr3hmrl1WwP+veBTrVo1kdzSsdZ7or5ueXl5WLlyJS5duoRx48YZrHvNmjWoUqWKRvvYoEEDVKxYEdHR0Rg9erToObm53D5KXnrC42u0bi8w9Z6pNctyuVwTXp9wDC+fsCKTOWQpxlaEh4ejalXjLqhDhw7FxIkTMW3aNLz99tuaQU8bdSfo4uKCMmXKiL6gYWFhRuusXLkygoKCUKNGDSQlJWHQoEE4cuQIACAlNR2bdx2EQrEXf/zxh+YcpVKJ5cuXY9asWUZ/T0BAALKzs6FSqQQqePXu2oGBQlfe8PBwVKtWDdWqVUNBQQH69euHa9euwdPTE0qlEn///TcSEhIE10XdHnOElZs3b2quAwBUr15dk6Yvb/Xq1bmE0FpckLcXxrApKSnYvHkzFAqF0evl6+uruTfLly9H/fr1sWzZshedve497927t2AZoFw5feH9uSUr/n2vV68e9uzZgx9//FEjrAQEBCA9XXfzwbS0NJ17YoxSpUqhatVqQDJDtVcqYP70z9Gi9wgcPHgQHTp0QFBQkMFrKpPJjD6nderUQZ06dfDRRx9hzJgxeO2113D48GG0b98eAKeB0FeG+n7dunULDRs21FtH9erVkZ6ejri4OB2hPj8/H/fv39fUJ4pfmE6S9r2wVr3Wek/41+2HH35Az549MX36dHz33Xd627ts2TJcv35dULZKpcLy5cv1CivBwcGQyWQ6XmL6KF26NIKCgnDr1i1J+VNSUuDr60uCihNAy0AvCSVLlkTv3r1x+PBhg0tA6k7wlVdesdoLGhkZiWvXrmHz5s0AgFWbd6J8mRBcvnwZly5d0nzmzp2LFStWQKlUGimRm7kVFBTg0qVLgnT1bFMz8Ivw5ptvws3NDYsWLQIA7NixA5mZmbh48aKgPWvWrMGmTZs0ApBUVCoVfvvtN1SuXFkziA0ePBj79u3D5cuXdfLOmzcPtWrVKrRncXET7IK8atUqlC9f3uTr5eLigsmTJ2PKlCmaGag2/v7+qFq1quZj6j13dXUVlF2jRg2cP39eJ9+FCxcM3hOpdQHcbNrFxQUDBw7E6tWrkZCQIMiXm5uLRYsWoWvXrqL2KvqoVasWACA7W8JO1eBm/rVq1cLcuXNFlwnUz03//v3h7u6OuXPn6uRZvHgxsrOzMWTIEP0VmWljZGm91nxPpkyZgp9//hlxceJa7atXr+LcuXM4dOiQoOxDhw7h5MmTeoULDw8P1KpVCzdu3BA9ro2LiwsGDx6MVatWibYlKztHYJ937do1g4IoYUdsZeVrL0z2BipiGPMG2rdvH4uPjxd81L9X+9ycnByWnJys+T5v3jyj3kDaAGBRUVE6dWZlZTHGxL2BGGNs4sSJrG7dukyVm8Hq16rOvozU9cRIS0tjHh4ebPv27Zo0Qx4ZXbp0YfXr12f79u1jDx48YDt37mQ1atRggwYN0rlO2h47ixYtYiEhISw7O5v16dNHcI4apVLJwsLC2O+//y5av/Y9uH//Ptu6dStr37498/b2ZgcOHNDkzc3NZc2aNWPh4eFs3bp17PHjx+zMmTOsb9++zNfXl508eVK0DsYYq1+/Pvvyyy+NXi8xDxuFQsHKlSvH5syZo7d8KURFRbGAgADN/X7w4AFbsmQJc3V1ZdOnT9fkO378OHNxcWEzZ85kN27cYFevXmWTJ09mbm5u7OrVq5p8w4cPZ+3atWMXL14UfNSeJRUrVmQzZsxg8Y/vs7gLu9np7f+wti0asdKlS2me4eTkZFalShVWp04dtmPHDhYTE8MOHz7MXnvtNRYSEsLu37+v9/eMGTOGzZgxgx07dow9evSInTx5kvXs2ZOVLl1aU/7UqVNZ7dq1dZ71hIQETTmnT59m/v7+rGXLluy///5j9+/fZ5cvX2YzZ85kbdq00eSbN28ec3FxYZMnT2Y3b95k9+7dY3PnzmWenp5swoQJug3U4wmkvhdSvIFMqdea74m+d7Zp06YsMjJS853vDfTJJ5+wZs2aif6mpk2b6nj78Bk/fjzr37+/3uPaPH/+nEVERLDy5cuzv//+m12/fp3duXOHLfvtR1a1UjhLvXFYk7dt27ZsxowZessqDmOMIzHFG4iEFSfHmLAi9lmzZo3Bc9WYK6yIfWbPns0Y0y+sxMTEMDc3N/bDzOkMADvz3/9Ey+/evTvr16+f5rshYSU1NZV9/PHHrEqVKszb25tVq1aNTZw4kWVmZmry6OuEs7OzWYkSJdgPP/zA3NzcBO63fD788EPO9VcE7Xvg4+PDatasyT766CN29+5dnfzZ2dns66+/ZlWrVmXu7u6sZMmSrH///oJBXJtz585x1+vMGdHj/Oulzx149uzZrHTp0hqB0hyioqIEv9XT05NVr16dzZo1S+OerWb37t2sVatWrESJEiw4OJi1a9eOHT58WJBn+PDhos/R6NGjGWPcQMZPLx1cgvXo0JpdPHNCUM6zZ8/YuHHjWHh4OHN3d2ehoaFsxIgR7PHjxwZ/z4YNG1iPHj1YmTJlmIeHBytbtizr378/u3LliibP1KlTRdvo6ekpKOv27dvsnXfeYWXLlmUeHh6sYsWKbMiQIezCBaGgsXXrVvbaa68xX19f5uXlxRo1asSWL1+u07aKFSuyqePft4qwIrVea74n+t7ZNWvWME9PT4FAOm/ePCaXy1lwcDD76aefRMv+8ccfWUhICMvPzxc9fv36debt7c3S0tJEj4uRlpbGvvrqK1atWjXm4eHBQkNDWae2rdjmZXOZ6sl5xhhjT548Ye7u7iw2NlZvOcVhjHEkpggrMsYcaCVmBTIyMhAYGIj09HSN4ZuavLw8PHz4EJUrV9ZrgEXYGXkW8PxFdNeypF4ljJCfDSTzPFZKVS9WNmfa5OTkIDg4GDv/9xvateTctOk9Mc6AAQPw6quvYtKkSeYXkvIIyHth+1K2Ib788kukpqbizz//1HsKjTGWYWj81oZsVgiCIJwEtfGwRlAhJDFnzhzRsA2WEBISYtAgmLAvJKwQBEE4CT179sR///3n6GYUOSpVqmTUNdpUJkyYIClwJmEfSFghCIIgCMKpIWGFIAiCIAin5qUQVihUMkEQBGFtaGyxH04TwXbhwoWYM2cOEhISUL9+fSxYsABNmza1qEwPDw+4uLggLi4OpUuXhoeHhyD8OeEA8uVAwQsHtLw8x7aFcH74zwsA5MkBlavj2mMvBL+Z3hO7kK+U3DcxxpCfn49nz57BxcVF0iaNhGU4hbASHR2N8ePHY/HixWjWrBnmz5+Prl274vbt2wgJCTG7XBcXF1SuXBnx8fF6IycSdqZADmQ94/7PfujYthDOD/95AYB0V0F032JLGu8303tiH3Kec67ygORr7uPjgwoVKojuuk1YF6eIs9KsWTM0adJEs7GeSqVCeHg4xo0bh6+++kqQVy6XQy6Xa75nZGQgPDzcoJ82YwwFBQWSwrgTNibuErDpXe7/secc2hSiCBB/BdjI2x5i4D9ASC3Htcde/M5zXab3xD7sngzc3cP9L+Gau7q6ws3NjbT1FmBKnBWHa1by8/Nx/vx5QTAfFxcXdOrUCSdPntTJP3v2bEyfPt2kOmQyGdzd3QW7hxIOonRlICuW+5+CKBHGKF2p8HkBgOAKL8dzU7MrcPYvoObrL8fvdQZeaQlcXAb4BNM1d0IcLqwkJydDqVTq+LOHhoaKbl41adIkjB8/XvNdrVkhigj+ocAHRwAP6wZwIoopfiHc85KVBPiFAr6lHN0i+9B1NlCjB1ChhaNb8vJQpz/3vIXUdnRLCBEcLqyYiqenJzw9PR3dDMISytR3dAuIosTL+Ly4eQBVOzq6FS8XMhlQuY2jW0HoweFWQaVKlYKrqysSExMF6YmJiQgLC3NQqwiCIAiCcBYcrlnx8PBAo0aNsH//fvTt2xcAZ2C7f/9+jB071uj5avvgjIwMWzaTIAiCIAgroh63pfj5OFxYAYDx48dj+PDhaNy4MZo2bYr58+cjOzsbI0eONHpuZmYmAJDdCkEQBEEUQTIzMxEYGGgwj1MIK4MGDcKzZ8/w7bffIiEhAQ0aNMCuXbskbSJVtmxZxMbGwt/f3+ouZGrj3djYWKNuVYR9oXvjnNB9cV7o3jgvL+u9YYwhMzMTZcuWNZrXKeKsOCum+IAT9oXujXNC98V5oXvjvNC9MY7DDWwJgiAIgiAMQcIKQRAEQRBODQkrBvD09MTUqVMprosTQvfGOaH74rzQvXFe6N4Yh2xWCIIgCIJwakizQhAEQRCEU0PCCkEQBEEQTg0JKwRBEARBODUkrBAEQRAE4dSQsEIQBEEQhFNDwgpBEARBEE4NCSsEQRAEQTg1JKwQBEEQBOHUkLBCEARBEIRTQ8IKQRAEQRBODQkrBEEQBEE4NSSsEARBEATh1JCwQhAEQRCEU0PCCkEQBEEQTo2boxtgKSqVCnFxcfD394dMJnN0cwiCIAiCkABjDJmZmShbtixcXAzrToq8sBIXF4fw8HBHN4MgCIIgCDOIjY1F+fLlDeaxqrBy5MgRzJkzB+fPn0d8fDw2b96Mvn37Gjzn0KFDGD9+PK5fv47w8HBMmTIFI0aMkFynv78/AO7HBgQEWNB6giAIgiDsRUZGBsLDwzXjuCGsKqxkZ2ejfv36GDVqFN544w2j+R8+fIiePXtizJgxWLVqFfbv3493330XZcqUQdeuXSXVqV76CQgIIGGFIAiCIIoYUkw4rCqsdO/eHd27d5ecf/HixahcuTLmzp0LAKhZsyaOHTuGefPmSRZWbA1jDNmKbPh5+AnSFSqF5n83mRtkMhkUKgXcXdw1f9XkFuTC281bUl0KlQIerh6S2pZXkAdXmStkMhkYmCadX7epKFQKuMpcoWIquLnoPh6MMRSwAovqMAXGGPKUefBy9ZL0QOcW5MLL1cuubTQF7WfDFHILcuHm4iZ6vli5/HtVoCrQPCuG2pajyIGvuy/cXNyQr8wHwHUkbjI3m11ThUoBxhj33EGlU4dCpRCtX6lSgoGJPqdq8pX5kt8nR6BUKZGnzIOnqyeUTAkZZFAxFVxdXB36/FrynFqzDHuUKYUCVQEYY3B3Fa9b3cermErzPHu5eVlcr0KlgELJjQmuMlej76D6nQegeWcA4Zgg9Rqq8ylVSiiZ0uHvkUNtVk6ePIlOnToJ0rp27YpPP/1U7zlyuRxyuVzzPSMjw1bNAwDU+6ceAKBSQCX82+9fAMCRJ0cQuT9Sk6fnKz3xasir+O7Ud5jSbApmnp6JQTUGYUrzKei9pTcepj/EyNojMb7xeL31qJgKXx35CoefHMb619ejQkAFg+1af2c9ZpycIXrso/of4cMGH5r6U/Ew/SF6b+kNAAjxDsGu/rt0Xs4vj36JXQ934cDAAyjlXcrkOkzl7Z1v4/Kzy+hcsTN+afeLwbyrbq7CD2d+AAAEeQZhd//d8HH30ZtfymBnTf688icWXFyAlT1Won7p+iadu/DSQiy+vBgAsPfNvQjzDdMc++/Bf/jq6FeY23YuulTqokkfd2AcLiRdwLa+29B/W39UC6qGv7r+BYVSoXNfb6fcxpv/vqn5vqzLMozeM1rz3dvNG4wx7H5zN0p6lTSp7YZIzUtFm+g2mu9uMjf0q9YP3zT/BjKZDKl5qei8oTPkSjn83P2wq/8uBHoGQsVUGLh9IApUBdjYeyPcXNx0ftetlFt4e8fb6FetHyY3m2y1NluKup0FqgI0/F9Dvfk29t6I6iWq27FlHH9f/xtzz83F8q7L0TisMYAXg6CqQO9grc2Kayvwy/lfENUtCo1CG1mlXVNPTMWOBzuwvd92hPqGSjpHu93mvPMKpQKvrnwVAPfuBXsFw83FTSP4/3HpDyy6vAhlfMsgPjtec95v7X9D+wrtJdejzYY7GzD95HRBmruLO/7s/Kfmvmjz4f4PcfzpcQBAOb9yeJr1FADwVdOvMLTmUKTmpaLHph5oVa4Vfm77s966LyVdwvBdw/F+vfc1/c73rb/H61VeN/v3WIpDXZcTEhIQGip86EJDQ5GRkYHc3FzRc2bPno3AwEDNx5bGtYwVaiseZTzS/P/pwU8F+f578B++O/UdAGDm6ZkAgOjb0ZAr5XiY/hAAEHU9ymBdo3ePxs5HO5FTkIMNdzeI5lGqlFCoFPj3/r96BRUAWHR5kcG69PHT2Z80/yflJuFu2l2dPDsf7gQDw+zTs82qw1QuP7sMANj7eK/RvGpBBQDS5Gk4HX8acqVcNC9jDD029UCPTT1QoCoQHFMxlUarYE0WXFwAAGZdO3WHAQAf7f9IcOyro18BACYcniBIP/zkMDLzM/HzuZ+RkpeC0wmncT7xPF5d+SqWXlkqyPvzOWHHxRdUAG7mmKfMw7/3/zW57YbYdn+b4HsBK8D6O+sx9cRUAMDWe1s19zBLkaV5DjLzM3En9Q4epD9AYk4ijj09hldXvoqVN1Zqyvr7+t/IU+Zhza01Vm2zJex6tAuvrnwVW+5tQUxGjMG8c8/NtVOrhPx87mcwMHx74ltN2vST09FiTQskZCcA4DQNfO2yNnPPzwUD0xlsLWHT3U3IU+Zh7e21ks/5+ODHaL66OVLzUsEYwxvb3sDrm1+HUqWUXMb6O+s1/885OwdNVjURvGvq/pYvqKjrtgSxa6dQKQT3RRu1oAJAI6gAhX3j1ntbkaXIwu5Hu/Veg/V31uPtnW9DxVSCfmfyMccK/EUuzsqkSZOQnp6u+cTGxtqkngJVAd7Z+Y7oMRVTSSqj+ermgu+5BeICGACcSzyn+T9dnq4zgDLG0G9bP7SNbmvWQ5NXkCcQvsQ49vSYTp362PN4j8ltsDe7Hu1C45WN8c/1f3SOfXP8G8RlxyE+Ox6JOYmCY6N2j0LLNS2RmZ9psHyFSqHpsA3dW234S3bmcDeVEyKVKqUkoYqfRy3k/nbxN0EeY7/VVsggviy1+d5mAEBcdpwg3VXmCkC4DNttYzeMOzAOAPDj2R816abcE3vxxeEvAHDP37PcZwbzZiuybdYOhVKh08doo77WALDx7kbIlXKsvrUajDH02twLXTd0NVqGLbSWSiZd0DgUewj5qnzsfrQb2YpsPEh/gCdZT4xeez6/X/pd8/+ex3ugZEqN0Hwv9Z7kcqyFr7uv2eceiD2g+T8lL0U0j6GJsCNxqLASFhaGxEThQJGYmIiAgAB4e4vbeHh6emqMaW1pVJucm4xLzy6JHpMqrGi/yE1XNcXMUzONnrfp7ib02txLICyotTTmDCrPcp6hyaom+HC/aUtDUn+nrdCedZvKjoc7AABzzs3RObb1/lbN/9pC2fnE85Ar5Tj65CjyCvJEyy5QFaDT+k7ovrE7ll5ZiqarmmL3o92S2vUo/ZHB4yqmMjrQnoo/hTf/fRNto9sarY8vrPAFJf7vvv78utFy1G2zJsbskLTrUw9+2kKa2KBpbCB1NMaeb1sJW+nydLRd1xb9tvYzmM9FJjI8MCCnIAdPs57iWe4zPMsxPOi7ySwXVgpUBfjxTKEQeif1jqTzchQ5mv8ZGE7EnTCrfkP2HX9e/dOsMi3Bx03/0rYxLiZd1Pzv6uJqIKfz4VBhpUWLFti/f78gbe/evWjRooWDWlSI2IuqVCnBGLNoZhx9O1pSvqdZT5GRX2iPcybhjEn1qA2DAW6ZChCqCKWgAjdQ5ChyHCK4fH3sa6uVZaj9+jRIXx79Ek1WNUG6PF3nWFJOElLyUpCYk6jRUnx15CtJbckpyDF4/N0976LpqqZ4nvtcb57vT3+Pe2n3kKXIMlqfQFjh/daJRyZKaK0QQ9cxKz8L2Ypsoxo8PqIDooH61PmlaJSsKayomEow+FkDY8KKPkFZHzmKHKPLGxeTLqL12tbIzM8ULG2LITaYuchccCvllua7sb7QGpqVPlv6YOXNwuU9Dxfjhp77Hu9Ds9XNNN9zC3I1S4uAfo2eGHwNkzaOMPY113BXPQ6oMeUaOANWFVaysrJw6dIlXLp0CQDnmnzp0iXExHBrs5MmTcI77xQurYwZMwYPHjzAxIkTcevWLSxatAjr1q3DZ599Zs1mmYVYJ9p/W3+8t/c9u7Wh9drWGqFlzlld7YAhPj7ArdXGZsaaLUEzxhCfFY9mq5vh/T3vi+bJV+YLZoBZ+VkO18iIoa/9QKFQpo+TcSd10tLkaboZTXj3M/Mzda6TWjg9m3AWALA/Zr/OeWq8XKV3WCfjddsPcMtkpsLAkJGfgaz8LMHAeDbhLFqsaYHmq5ubJGQa6zD1PUun4k8ZLduawsq4A+PQbHUzxGXFGc9sJUzRrKTmpaLZ6mZ4a8dbBvP9dOYnwXdDgqV6kOYvF7jIXPDX1b80342969YQVmIyhbY97cONG61+c/wbwfd55+dJEuzF0LdkpFAqjArbpqJUKY0u/+mzwzOG2rZNjbMu9+jDqlf63LlzaNiwIRo25Czcx48fj4YNG+LbbzmDoPj4eI3gAgCVK1fGf//9h71796J+/fqYO3cu/vrrL6dwWxZ7CO+n38fp+NNWqyMjP8PoTGj6ielotaaV0VmQNoeeHAIARF2LMvslVTEVtj/YDgA4nXBaVMPQaX0nNFvVDHKlHLGZsWixpgU+3Ge6JxIfhVJh9fX60wn675sxTYBMJkO+Ml8zs973eB8GbR+km88EaaXlmpb4/PDnmu/b7m9DqzWtsPzacknnq10STUW741cjte17Hu1BqzWt0GJNC4zaPQqMMaTL0zFq9yhNnn8fSDfCNTaY6RM4Zp2eZbRsQwagpnLkyREA3BKtvTBFs3L4yWEAwI3nNwzm09bqGbL/cJG54HbKbcFSo6uLq8C2zdi7Y0grYS7aLrRi/ZKxPs8Uuxd9DN0x1OraiWE7hqH56uYGl9eqBlU1SXupj30x+ywuw55Y1fqpXbt2Bi/iihUrRM+5ePGibmYHY4uXjE9cVhy6buyKeqXrYWX3lXrz6ZsVS4VvyW4qKqYS2BS0XttacJwxhlR5KgAgJiMGOx/uBADB2nBKXorJrq7dN3XXMXq1JcY0KzLI0GF9B6TL03F26Fl8dkhc82fqLIvv4aTWRsw7P0+TZig2j6lLBGr0zYRdZC6SOvCbKTc1/19IuoAJhycY9dRKl6drYreI1auPswlnddqkZErcT7tvtJ3qvNbGmgKQMXKVnGYltyAXjDGDbvhS0V62MaQZcZW5YsX1FYI07ftl62UgsfGE3zfPPz8fy64tw5w2c9CtcjfJ5a6+uRqfN/nceEYD3Ey5iRolaxjNJ1fKoVAqdGJ1iXHt+TUAMOjxFH07GgqVAtNbCr2FHGUkby+KnDeQvbC2ek8b9cB+5dkVSbNEa2GKRG6sI+J3dAxMMNuXK+WYe24u2ka3xaqbq3TOTc5N1tsWWwkqBaoCpOal6h4wcklkMplm9qZ2RRfNZ8EsS+x5M7Qebu3lCHOX7owJKk+znqL12tYY8t8QpOWl6Rw3NClYcmWJjuYxW5GNDXfEXfu1EfOoS85NlnSuPkxxebWUAlUBClQFaL66OVqtaWVwWUvqe619vY1pVrSfaW2DWWPPjdQl6Oe5z0XLEvNY4b8ry64tAyAMWyCFv2/8bRUbJCnvTcf1HdFiTQuTtMU7HuwweFxbw5eZn4mWa1pKLr8oQsKKHmytWeFrLKQa3VoDseUDhVIh2onnKHIMDsD8OADq4EtqGq9srJmVaXck626vQ/t17bHw0kKT2p6Vb95ylpr3976PNtFtdGbmfKFMTKXMHwhW31qtt3xLdv0Wu86GyrO21sBSd2pt1J34nkeci/utlFt4Lfo1xGYIQw0Ymnl7uHjoPK/Pc59LDkymHffip7M/of269kYHAsYYknKSRI+Zu/xmLil5KVAxFQpYgcHBTur90+7XjNmsaJdrqmZFilH/qfhTaLeuHb468hXylfmCCYWYY4FY32zO5LLVmlZWWU4xRGpeqqZPMebFxBeEn2Q9Mameq8lXTW8cuPfUmEeXs0DCih5sqVk5EXdCE1zJ3iTnJAs64pS8FIzZNwbt1+karY09MNbgdVDHwgA4I7S1t4wHa2KMaQLoLbmyxJSmo8WaFoJAR6aiNlzVnpWoB9a0vDSdpS5AuEy05d4WveWLCRwJ2QmSOkQx4cMe1voKpcImnVVCdgLis+J1nh/t+DyGnq+YzBhkyIURqpdcWYL9j/UbHqv5+/rfOrNytUfJL+cNR0L+5vg36Li+I3678BuSc5OhUBYu/TzJ5AaR1LxUu8Rx4S87WaNP0tZaGhI2xLQifE8gAAY91qTy1xXOYHfno53osakH2kS30fRRYr9ZLM2cd6WAFegVSqVibDmWH53ZWD9gSuwXQDjJNHdy/dXRr9BhfQccjuVsnpzROUINCSt6sKVm5YO9HzgsqmaXjV3QcX1HbH+wHcm5yWgb3dagW7TUh/di0kVJ6/nqKK5q5Eq5QKtj7IXutrEbriVfk9QmfWh30OoOWB0tVye/xNlXToHQxXvtrbXovKGzTnRYqaTJ0xCXFWfTDmTE7hHosL6D1cvturErumzsovPbtTUphpYJHmc8FjWM1mckzMfQNfd09dR7TMVUmhg8S68uRft17TH4v8Ga44efHMZfV/9Cm+g26Li+o9F2WMrTzELh3Bz3e4BbIkiXp+Pv63/reLEZOs9F5qIzmGt7kI3cPRKJ2ZYt2/L7DbUwpfb2EovTkpiTqLMcZ65Ws9OGTgaXdo0Rm2mdoKRZ+VnovKGzSecM3D4Q7de1x4P0B2ZPftXmCOqo7Pa0yTIVElb0YGubFUcz6egkUW2KNlJnj03CmkjKt/SqMMx7j0090H5de82M9XbqbaNlbL672WgeQ2jPwiYfm4yLSRf1DgbaywmGULsHKlVKjS3SPzd0I+iqyVfm69UWfXfqO3Td2BXv7ZHuLm+qTcWVZ1dMym8p2pMAawQNM5Vnuc/0Xiex+C3a6vtfL/wKwD4GjfxtDwwKKzwBXK3Vis2IhVKlRMs1LdF6bWtRAc6QZuVcwjlJ8Z208/A1UVIQGyDV72gZvzI6x2adnoXxh4T7rFnSX0vZykMfpiwLGrrWYlubGONeGhc9d/bp2ZhyfIrJ5/NR/w572mSZSvEekS2guAsrUpFqGzHrlGEjYX2xAdQzt+NPjyMhOwED/h1gtC5L7SvEVMYLLi7AwwzxGZZYnBV9qGcqk45OEqTrM+brvaU3um007MVgSkDAr49bL5CeLdB+r+wVmIpvi5RbkCtwG+fjzGpwQ+8i/53ovKEzumzsgh6bexjV6hl6l8TqExMutQ3B1Zv+SUXM3kKtKdHXPn7YeMCy/tpF5oJH6Y/Msl+xdHCPzYyFQqWw6LmTEnNIKva2yTIFGpH1YImxZHFCatRbY3FgGq9sbFRVac0YNoYQ69jOJpwVuA0by2+MnY92Cr6/v1c8KJ0lNjhiqKNU2nJfGUvQVptb27AXgKjHl7YtkliMiSeZT4xGF3YkhgZTfcf4kV9NLVMqtoji6vJiaJI6UXia9VSjoTE1aNofl/7A61tex/wL8006D7DM0P3ok6PosakH3t39rs0NfY1RNagqAIh67DkLJKwQBuHH1bAUQ2uy+2L2SZ5dWDzAmSiHWrJxmBp99jC2wtT1b3ux8uZKgYGsLYQVvlGjVO6m3kX3Td3RY1MPq7fHWtgibow1sMVmheoJglQ3daBwk8jGKxubVFe+ilv6kxqQkc/jjMcmn6Nm3Z11ALh4RbZ4D0wh2CsYANBzc0+HtsMQJKwQTsGp+FMGtz7nc/WZeW56akxdegjxCTEpvyUdmDV4nvvcqQNE8V31nWXZ5VDsIQCmbx5ozxmxuQa2hrBG+20hrKhfUVM0j4a2p5CKLTULhq61o9+De2n3nNpeBSBhhSiC3E69bfKmjHxMXdYRC2pniF6be5mU39q0W9fOofUb40bKDY0RpqPV32rMndnac0asNqi0ZjseZ5omWIvZNJgirDDGcCvlFh6kPzAYoM8FLpJ3Arcmr0W/Zre6UnILXev3PXZs6Pvnec8x+8xsh7bBGCSsEEUSU/af0cbY/imEbUmXp2Pu+bkA7DvYG8Lcma09Z8SR+yP1BhYz9zoO2zFMoL0wR3i8/vy65PO23d+GAf8OQJ8tfQx6I7rIXHAw5qDJbSlK8GPW8GNWOQp7Bic1BxJWiCLJ1WdXzd4fh793EeEY1NoqR6q/BfF9zNWs2Fkz9PvF362urucvq5qzU/W88/Ow46HhqMBqpA6IUhwcnNkYVAr832juTsovEySsEEWSmP+3d97xNV//H3/dnb33kIQMIhEEEXuEiCBSqzZVbZWiarZq1JeUKlqlVBNROzRGbbVHaiYiVu2ZUWSI7HvP74/87sf95O6be+WG83w88uCezxnvMz7nvD9nvM+rRxh/dHxNi0GpBs+Ln9fozErHpI4oKi9CWk6azkpT+vN0pOakQiwR4+bLmwrvstEnxx4fwy9pv8i5V0dpkt24q6tRME0vTNV0CZYDjlqFpX1Se5XPjR1qHkM73r5FJgpFT6RkpuDJqyfwsPSoaVEoOtAxqSMWtFlQozKMOjgKGS8y4GLuolP4EQdGAACivKOY4+o7Y3aink09fYkoR/zVeExoOoHlVh2lT3Y2RVdl5VGBeqvCgLycypZkuRyu2lmetzErV93N/LJUzfvbsjH0rkBVO0qtJio5qqZFoFSD1JzUGk0/40Xl1Q3VvatL1q5O7129FV6IqS9UXRdQXXRZBgIqrQIru2j08avHuJ37/xZaq+hUA/YMUBiGAw7ir8brJIu+uJB1AYP2DTJY/HRmRTtoaVFqPcZyooSiPZouH9Q2DHmTbYm4RO5oenXeAdkvfl2VFQAYfmC4Qvfuyd3xwe4PkFeSp/EMEIfDqfHN16eenjJo/IXl1btF/n2DKiuUWk9Nd2oUSlUMOfsBACMPjGT9rs47IKvoVMfcurKTSlIevnqo0LS+InSddXhcoJ+LBQG6TGNsUGWFohJD3j6tL4zVsifl/UXRbdL6PMVT9cLP6sysXMq+xPy/OjMr6lhwTvP9SVxwEeocqnUa3XfozwKxIZdp6Gyw9lBlhaKS2qAI0BefYmwomunYdHPTW01PU3bd3cXY/DCksqKNfSMulwsTvonBZKlpdN3I/D5DlRVKrWff/X04+uioeo8UyltCIpE/qSK9ZNIQVFdhz3heudG4ps2+S+Fz+DVm/v1C1gUA+v8Iko2vRKybjaj3GXp0mVLr+fbMtzUtAoXCQoI3g376f+ngcXl6n6X8N/df+Nv6A6j+vi2pUTJjUVaAmpvV/ejgR9gZs5NVh/rg6OOjCHUOBY/Lq3Hz+rUROrNCoVAoekZ6MeLr8tcYvG8wPtzzIcu8uj7os7sPcktycfDBwWpbQF2euhyA8Sgrr8peMTMcNcHt3Ntyx6yry8YbG5F8JxkAcPjhYf1G/h5AZ1YoFApFzyy+uBiB9oHwtPQ0aDofHfxI5QWHmvK6/DUA6H02QVfGH6t569SGOGV48slJ2InsqHl9HaDKCoVCoRiAc5nn4GXlZdA09KGoyFLdfRrGMjNTXbbe2qr2KLYuHH98nJl1o2gHVVYoFArFAGy6YbjTP4aiusrGu6KsXMy+WNMiUKpA96xQKBSKAXhV/gqr01fXtBhaQZUVirFClRUKhUKhAKj+Pg2qrFAMBVVWjIiVnVfWtAgUCuU9prrKRk1fTEl5d6HKihGhi3lpCuVdxNAbUymKqa6y8snhT/QkCYXChiorWuBh4WHQ+DkcenEWhUKpOegyDsVYocqKFvC5hj08RW/5pFAoNQlVVijGClVWtMDQyoohb/mkUGoT9HLKt8+zwme03ClGCx0dtYDHkb/2XZ/QZSAKpRJDWA+lqGbg3oFGY8GWQqkKVVa0gMc1rLLCpdVBoVBqiJclL+kyEMVooaOjFvA5dBmIQqG8u9BlIIqUMJewmhaBBR0dtaCNRxuDxk+XgSgUSk3yPsysTG0+taZFqBX42frVtAgsqLKiBR8HfVzTIlAo7wWG+MK3Fllr5X9VxCq9y2DsvA97VgxtgoJiGKiyogUCnqCmRdCK3r69a1oEyntEcq/kmhZBKR09O+KTYO0MlrV2b20gaYyX92EZqLC8sKZFoOgAVVZqgLbubQ2exvDA4ZjeYrrB06FQpPjZ+hnd1LGUGN8YCHnCmhbD6BETcU2LYHDo3kDNMLZtCQaptRUrVsDb2xsmJiYICwvD+fPnlfpNTEwEh8Nh/ZmYmBhCLKOhR90eBk+juUtzmAvMkRCZYPC0KO8X67qtU/psTZc1eklD30eXueBSo4sa8D7MrPja+Na0CBQd0LuysnXrVkyaNAmzZ8/G5cuXERISgsjISOTk5CgNY2VlhczMTObv4cOH+hZLbzR3aV7tON6GZt/Oox2ASnll7cP08etj8LQp7zZNnZsqfWZvao8g+6C3KI1mcDlcvXwp7v9gvx6kMV7ehw22dazq1LQIFB3Q+6i5ZMkSjB49GiNHjkRgYCBWrVoFMzMzJCQo/8LncDhwcXFh/pydnZX6LS0tRUFBAevvbdLNu1v1I3kLH3jKOuYuXl10jtNSYKlzWMq7gZ2JnVo/+rBHpO9BUx+Kip+tH9wt3PUgjfHyPmywNYRxz9+7/q73OGsaY5uJ1KuyUlZWhkuXLiEiIuJNAlwuIiIikJKSojRcYWEhvLy84OnpiZiYGFy7dk2p37i4OFhbWzN/np6e+syCWoIcjO+rURt0bYD9/Pup/KKmvB8sbr9YrR8Bt/ob0Vu6ttTKf1Mn1W1T13Z/uO9h5v+EEKNbx9c3O2/vrGkRDI4hZrZbuLTQe5wUNnqttefPn0MsFsvNjDg7OyMrK0thmICAACQkJGDXrl3YsGEDJBIJWrVqhSdPnij0P2PGDOTn5zN/jx8/1mcW1BJoH2gQLbqRYyO9xylFtqNOf56uUxztPdqjo2dHfYlEqaVYCCwAAAf6HFDqRzr7WJ1ZiK7eXbGi8wosbLtQI/+B9oEqn+u6DORi7iLntjNmp9bx1BbOZZ2raREMjiFmVt51JdYYqPFt0eHh4Rg2bBgaN26M9u3bIzk5GY6Ojli9erVC/yKRCFZWVqy/t02Ya/Us+yn6yntbNh3ySvN0CsfhcBDrF6tfYYyE/v79a1qEWocqRaRfQD+s7LwSm6M341CfQzrFzwUX7TzawdHMUVcRWXA4nGpfZyHdfFrPpp4+RKLUEFSxUE8jB8N9POuKXpUVBwcH8Hg8ZGdns9yzs7Ph4iL/haIIgUCAJk2a4M6dO/oUzahxMnWCpdCA+0E4sv/V7UXlcXjv7JG/Nu6GtUysCf62/gaLe3WEYsXfUHA5XLT1aAtbE1u4Wri+1bSVIeAK6CBFMXpM+aY1LQIAYFUX4zOIqNfRRygUIjQ0FEeOHGHcJBIJjhw5gvDwcI3iEIvFuHr1KlxdjaOTMxSyX5yym9oMqrRUg3dVUQGM40trbbe1Wvk3F5hr7Fdby62aMqj+IIPEawh8rH2MbsOgpoQ4hgAA6lnTGZ13nS+afIFQ59CaFgOWQkuje1/0PgJNmjQJa9aswbp163Djxg2MGTMGr1+/xsiRIwEAw4YNw4wZMxj/3333HQ4dOoR79+7h8uXLGDJkCB4+fIiPP363TdvLfnHKnnzYG7vXoOk2dmos58bnqr+g0RDrvMZCTb+UQq4QVkIrrRTCfR/sU/psWYdl6FWv1xsHA2VvQtMJRqNcK1M4932wD9t7boeDqYPOcTd2bAwANbYM+l3r77Cm6xpMbj5ZL/HJbhqmGBcCrgCt3d4/y8maoHdlZcCAAVi8eDFmzZqFxo0bIy0tDQcOHGA23T569AiZmZmM/9zcXIwePRoNGjRA9+7dUVBQgLNnzyIwUPWGuXcJWUNMtia2Bk3Lz+aNhdFDfQ5hY/eNmNVyltpwdGbF8Okf639M4zCqjhALeIJq76vSBDOBGcJdNZsxrSk8LT0RYBdQrThWd1mNtZFrMaTBED1JpR1mfDO0dG2pl1NWALRW3Ay5RElhw+VwEe5mmHdqTvgcrfzXdL9YFYOMQOPGjcPDhw9RWlqKc+fOISzsTcd5/PhxJCYmMr+XLl3K+M3KysLevXvRpEkTQ4hltBjatoHszEG5pJz5v7O5Mxo5NkJv395Y2mGpyjj0YTvDWKnpmRWpIqiJDRNN8LbyZuWppvOnbw73PYwdvXao9Vf1+LOuna+ZwAzNXJrV2DsgrT99WfXV9sNjXut5sBHZ6CVtY2F44PCaFkEpQQ5BWNJhid7jrWdTr1bbCXp3P5drEW/TxLXs8pO00+JwOAqXh2RR1sF19+kOoHIPxZF+RxT6MXZ0mTXSZrlOnV99zlqtj1ovZ6FTn8qKLgN+lE+UDgkpf+Ri7gJfW9Um09u4t8HPnX6uEuW7pbTpirbtTcQTqe0fahsTQyeigV2DmhZDKeqO4uuT2mKVmSorNYC005Rakx3RcMRbSQ8ArIRW2Bu7F3/3/Zvlx1qoehOmsj0rU5pPwZboLTjW/xiczJyqL6we0dRGhy6DmDYmu5X5lRqS+qSRdrcBq6KhfUO9xaWIqoq1Jl/7c8LnYEP3Dejg0cEgMtmK2Eunm7pvwi+dfjGakxX6oqaULQ440PNVTTUOn8tnNi4bEzVxN5OHpcdbT1MXqLJSgyxsuxBbemzBqOBRbzXdOlZ14GzONtwn4AkwuMFgpWEUfY3tjd0LB1MHNHRoyAwMxvS1oula+9tYm/0w4EM5t7i2cdgSvUWvyqqivBgyf2KJ+lt6zQRmCHEMQUMH7RUpTQboKc2nsPwFOwYrXLIxtjV4TdF15q2RQyO9vI8cDkfvF0tSFCMtZzoLKA9VVnQkrm1cteMQ8ARoaN/QaDavupgpt4WjaGZF0YzBH1F/GI3paU33GOg6iA0LHKb0WZgLe4PrtBbT5PyIeCI0dNBv/csu7WnC0MChmNp8qs7pSU/IaHJ5oaE64Np6Um1bz20a+ZPWpbb3JcVHxmNdlPIbsjWFA+XKyujg0dWOv6YwRuW1OkrhD+1/0IsM0vfU2BQm4xglayGG3HA2suFIg8WtClUviqYDqgnfBGu6rsH2ntuxNlI72yH6RpMj2QB0tmz6VbOvFLonRCbIXRipSBZDdJaKOhhVnY6ESLT6+q7aRjp4dsDOmJ1IjErUOA5t0OcXvT6n2NXdRaQJ9e3qa+RPukQrJupnsWQx4ZvoZSmMw+EoLTt/O/2dFNJUeQMAXxvVe5Zq68WCurbRI/2OINBO930usifEFH1YGQNUWdERQ64tTgydiGbOzQwWvy5o8/XK5XARYBdQ42bJNZVZV6VBkQJ3qM8hNHdprlm6BvhykeZF07grJBXVTrOeTT2IeCK1/mTLWdfBXtlRaU3yq8+bnNd0XaO3uNQh4FUeWS4Xl6vxaRhUzazoc1bLzcJN431vST2TlLY5B1OHGul7Pgr6qNpx6LoMpOt+wQEBAwBULunvid2D7T23Y2D9gfh/IYwKqqwYIVwOV6+2DTQdjFW9ILosVVgILbQOw4QV6B5WCgccnBpwSqewuh7x08a8vD4Hz6qoqkvZMqmQVMDP1k+pX0Mh++XL5yifAauaj+rsRdHnLI2QJ4S9ib3e4tOEYMdgjf0yA44eUKWsVPe+JTk0rCIBV8CyGSWLhEg0UqL0/bEwoekEg1mL1gRt87Or9y7MaFFpoNVMYAYvKy8E2AW86euNbJsSVVZ0xNDrnbLKwekPTxs0LWV81+o75v+6fEEJuAKdlYX+Af31cqTOxsRGrR997BmJ9Y1FysAU5ndr90orlKoGNDOBWbXTlXKs/zGcGXhG4bOqbdXGxIa55bu3b29Yi6wNfiINYHemAp6AMbKmyDKrso5X0aCp6SxnuGs4+Bw+6lhqfpLLmHAwdZA7xaeIJk5NML3FdP0lzFFexvrsBzngaGVzistV/N5KiESjd1rffTiXw4WPlU+14pCWs6HGF9n3qq513VplP4sqKzWAJg0xxjcGQOV5++pq67p+QbBssijpGNShibKgiO4+3fV2pK69R3uVzxWVj7bLfA6mDqyZJA9LDxzpdwQH+hyQ89vUqSlOf3haoUXSvv59mf938OygVfpWwjc3kKtrY4ndEnGozyHGfkZ1zNHrypTmU7Dvg31a3TFUna9hVwtXHOhzANt6bjPKW2U1oeopPkV4WnrqddO2vmdcVaHNbKOyd1RCJHJLRLXFqJ0us62MTRZ96zd0GejdwNA7pevb1ceRfkewofsGg6YjS9UBTnY2RdVUvTrczN0AVBrz0oQ1XddoZCL9QJ8D8LT0ZH4LuUKF/tRZ51XU4epjycDJzAkmfBM5dyuRlVIF9NuW3+Jgn4M42Ocgfu74s0I/VVGWbymK2qqAK9DpRuTqlEvV9sXlcOFp6alSsdL3F6azuTPMBGZI7JaIv/v+rVaRVYUxniYxBKo22Oq6d291xGpmdk/X+JTZJ5IQidx7NzRwKACgk2cnxs3YTrsAur1fG6Le3hhRk1BlxYhxMnPSy30g+uhUNT1Zo4jdsbtxYsAJOJo6stz3fbBP4X4JZzP1X49A5RLL41ePmd/K8indoCiL7AZmH2v5qduqncbkZvq5RE4dXA4XbhZucLNwA4fDYZQaRbcsjwqqtM/zddjXcs+07YiNsePWBm3buIAngLO5M4IdNN8HUpWaMOBVE3DAwYigEQqfabOPRhYXcxe4mrOVZW2XgTp4dkBCZIKcu/TUlGx/E+YahiP9jhjEjL0+0WWmStq/qXuHtX1HjK1PoMoKhaFq5yv74lRHWRHxRLAzsZOL38nMCeObjJfzr+olkT0SzOfydZ6Glh38zfhmODvwrEr/wxsOZ32VvS3+7vs3Tn94mrXEI2VC0wk42u8o+vj3qXY6Gn/RVWN81uXkkSYKQXVme6TXRbxL6HuQ4YCDVm6tcKjPIbn7q6yF1tgVs0v7OJXM1mi7DKLow0Ya787eO1nuTmZOb3WPRpR3FE4OOKlVmOr0s5pQm2cDqbJCUQprGUgPL9HnjT9n/eaCiw6eHTC28ViW+/38+wrDH+t/DB8Hf8ySb26ruQrjBrR7MS2FlqzfijpSaRpv8wp3E76J0iUjDocDRzNHhc9kxyvZwauqsbq3SbRPNAD92Cipiq4DtKeVJ3bG7NQp7MuSlzqFMwZk90apQ/oeuVq4Yt8H+/BDOxnjYxzA3lT7U1FcDlexklnFqZ616iPIsu94H79KpX1my5kA1C+PSv0rWo7Shqo2laTwuXzYmtgqfKaM6hhk06S/q82zgVRZoTCo2rOij410bT3aYnmn5TIJVv5TdXNnA3vFRsocTB1Q17ougMr7YDgcDnr79sbJAScxJmSMVi+4Or+KOtIAuwCc/vA0Vkas1DidmoJ167JMvSqzBfE2pnw9rTxx+sPTCqfulaFJB6zqaK0mKFpi04QVnVcAAHrV66Vz2oZAk7KY1XKWwtk6Kau7rFbobi4wlzvFpstStULjhRz2MlAjx0bY1mub0lNuQKXVbT6HD3OBOWaFz8LJASeZwwnq8LX1xekPT2N91Hqt5ZcyJmQMFrdfrPCZph9L/wz6500YI1t6MSYMO+dkJBBCUFFRAbFYOwuQrkL2mmpJSQnzf24FV+65pnAruKy4dJFFHbLxOwudUcotlXOvilAiZKXjIHCAt5k3RFwRSDlBSUUJ67m2eQAAa641E0dJSQnEXLFcunwxn4lbUXonPzgJHpfH/DaFKUpKSuAsdEaZuIzxX15ajhKefDxycpRWytHOqR1u590GANjx7cATvlHWpGmJIEJZ6Zs0pHGYElO15SH1a8211rrsHAWOgMyHorrwPDGPSU9SJmH+z6ngKAxbtQ6UISmX6FTvUkQQobysHOVgGzirmjYjZzn7mRXXSq5t8MQ8mMGM1a60wZxjDh8zH/A4PETXjUbSrSR8Gfql2niaOzTH0dij4IKLC48vaJWmVE5NyryqHOrCWHAsWGGU9WN+Fn54VvhMLny4WzjqW7+xrqvua1yXWVcOhyO3aZ/H4bGWgf7o9gd4XB4EQuXKkIAnwNlBZ8HlcMHlcFkzGbLKgrI8SGct27q3xamn2plZOP3haa1PavpY+8jNHJsLzNHUqSku51xGZ6/OAHRbrtFE0anNy0AcUpvnhQAUFBTA2toa+fn5sLKS/1IoKytDZmYmioqKtI676ovsZuHG/L+0ohQvSl5oLzAAOxM7hadEtJFFHbKyZr7OZF5WWfeqFJYXoqC0gPntYu7yZlry/xu5rByq4lJGmbgMz4ufAwBczV3B4XBQVF6EvNI8VrrSmRxt0pPNJ1C5ni1do65afiZ8E5RUlLDkIIQg83UmgMqOU9a8ubK0pfFaCC1UfqnK+jXhm8it/asjuyibdWmgurIorihGbkkugMq1+pyiHACVm5JFfHnLn1XrXhmOpo4KNyxXl6r1Y29qDxFPxGovACDiixjbNdIwtia2KBeXo7C8EIBu7VLWvoWmdjqkSIgEWa+zAFS2g8KyQo3CuVm4afReV83Pf0X/oVyi3Jqto5kja7ZDWT+WU5SjcB+RKd8U1ibW+ObqN7hbfBcH+xxkyXDyyUmMPVK5dHt56GXwODyE/KHdDcb7P9iP/LJ8fLjnzQWfl4dcRqvNrVAirnwvrw6/yjwLXsfeyCv7TBml4lI021C5kX591HrmmL4iJEQil4f6dvVx8+VNpWEUyTB031Ck/ZcGAOhZtycWtF3Akj1taBpmnZ2F3Xd3AwAWtFmAnvV6QiwRo0Rcwszy5RTloPO2zmrzKCvHs8JniPwzUqm/Dd03YMapGcyhBHVluOzSMsRnxCtMS1+oG79leadnViQSCe7fvw8ejwc3NzcIhUKtNMuKXPaL7GP75tTI67LX4L3WbbOWq7mr1tZdq8qiDllZJbkSZnpV1r0quSW5rIHBy9pL7qtJVg5VcSmjuLwY3MLKgcDHxgccDgcVkgrma4PP4cPb2pupJ23Sk80nAHhZeTEDa9XyMxeY43X5awCAt403MziJc8WMHBVEfdrSeG1FtnAwU22rROrXXGCu/YCaB43kkfKq7BUEryvz7mXpBbyqdHczd4O5UH7Zo2rdK8PTwhMmAu0UbU2oWj9SOYvKi5j2AlQa0pNaF5aGcTZ3RmlFKaPw6tIuqwMhBNz8Shm9rb3x7PUzFJWr/zjysfXR6L2umh9v4o07eXcU+lVUv8r6MU4+R6HSYym0BOc1ByM9RmLe3Xlym16rfsHrskTM5XDR0L4hlnVchonHJjJu+rTqrM2SStU88Ll8bInegsbrG1dbju/bfo/pp6ZjRosZ4HF5+F/r/zEn+KTKCY/Lgzn3Tb3ptGflHV9CeqeVlbKyMkgkEnh6esLMTHtroVwBuwGbmLzppCu4FeCW6baPQygSwkSkXYdfVRZ1yMrKFXKZjWuy7lUREAG4FW/SMTExkVNWZOVQFZcyJDwJuKVcJrxUKWlo2vBNGjIdhzbpyeZT6l+qrFQtP76Qz5gKNzExYdJ0sXZBTlEOPKw88Kjgkdq0pfEKRAL18v2/X76Qr3XZ8YQ8SCRvOnJ14cs4ZUz7FJmIwC15838ToXxYIRGy6l4ZIhORQZSVqvUjlVPMEzPtBWCXnTSMUCSsbFeSN/X5tgkwqbQLxOVwwS/na2SG3sTERKP3WlF+uK8VhzM1NZWrH2X9GL+Yr3BpXCAUwNrEGubZ5rDh22i0BybIPggZLzIAAA3tG+LWy1ss5boq0v1wsvuFuByuVkeXDUnq0NRqxyHt26LrRqOjZ0dmrw+Hw9F5n1RV4trGaS5PLVdm3osNtrpaX6W8PaRrzvq2iKktjmaOaGDfQO50kFpqdz9AqSaybbeq/RBDIJ3FsxKpnjpXhcpb1rlccMABF1y5/R6KZqdljVdqssQtXZ6VjVuV8TldkB2cdd2AfWXYFfT3769TWNm86PNqDQC4MPgCLgy+gB51ezBu+t6PYmz7W+goTnkvkLV0qw6dFKZasvOrupZ59XkZ4LuKkCc0+OWQzmbOaGDfAGZ89YOgMkvFyuqyqrsmdS5nv0TNOKfsHTO29sXlcLX6cNHXAK8uHhO+idb7Hms7VFmhvBdYiazgZ+snd2KAQjEEAq6A2cjM5XBRx6qOQS7OqxqnosHezsQOQp68zRFNZzFU7SPRdWlBagOlqrx6vYlcS9GivKMUR6NFvVWdKaLoD6qsUN4bhDwhAuwC5Da31va1XG14n/Jak3A4HNSzrodA+0AE2AXAUmiJ+nb1q60ol5WVwdfXF2fPVlpc1rQ+ZZWCsrIyeHt7I+ffHIV+S8Wl4IADIU8Id0t3rW+p1kQJku7ZCHUOhZu521s1tKgMpTNNtfvALIva/P5TZcVI6dChAyZOnCjnvnPzToTXC2d+r1i0AkGOQfi0/6dyfn/44QdwOBwM7zWccZszZw4aN27M+s3hcMDhcOBi6YI2AW0wvOdwrF+1HqWlpQplm/vVXDRyboRt27bJPZONj8/nw8HBAe3atcOyZcvk4uvYsSPjV/bvs88+U1ouI0aMYPwJBAL4+Phg6tSpcrYoghyDIOQL5eJO2poEAEg5lYIgxyAU5Ks/rvtJv0/A4/Fw4UKlLY0HDx4w8QU5BiHIMQguFi6sdBITE3H8+HFwOBzk5eXhzz//RCPnRsjOzFaYhp+fHyZNmsT8TklJAY/HQ3R0tFr5gMr2Ik1bJBKhft36GDt4LA7vOcz6wpR2yHv27EH79u1haWkJMzMzRLSJwM7NOzVKCwA2b94MHo+HsWPHyj2T5lv65+joiO7du+PqVe2PPQb6BWL9KnmjXXPmzEGfDm+uGeCAg/zcfHz/zffw8vKCUCiEm5sbPvroIzx69IgVVtM2BABPnjyBUChEUFCQQvlk82llZYXmzZtj165drGd/rPsDNjY2cksfxcXFaOXXCm0C2rBs96hi1apV8PHxQatWrQAAIiLC159/jTCfMESHRePYkWMs/z/88AO++OIL1oArFAoxefJkzPlmDgLtA+WMMJZUlIDD4cDB1AG/dPpF7ybqu3h1YWYdRDwR9n2wD79G/KrXNICaH5jftpJT0/k1NFRZeQdwdHbE+TPnkfUsi+WekJCAOnXUfxU1bNgQmZmZSLuVhoQdCejaqyvW/LwGbdu0xatXr1h+i4uKsX/HfowcNxIJCYotkUrje/ToEY4dO4Z+/fohLi4OrVq1kotv9OjRyMzMZP0tWrRIpbzdunVDZmYm7t27h6VLl2L16tWYPXu2nL/f43+Xi7t3795qy0OWzCeZSLuQhnHjxjH59fT0ZOI7nnEcwz8fjoAGAax0BgwYwIqnV69esLGzwa4t8veonDx5Enfu3MGoUaMYt/j4eHzxxRc4efIknj3TzMaOtCzv3r2L9ZvXo15APUz5ZAo+/4x9FcHy5csRExOD1q1b49y5c0hPT0dsv1h8N+U7/DD7ByWxs4mPj8fUqVOxefNmpcbTbt26hczMTBw8eBClpaWIjo5GWZlmg7K25L7MxaBug/DPyX+watUq3LlzB1u2bMGdO3fQvHlz3Lt3j+Vf0zaUmJiI/v37o6CgAOfOnVOY9tq1a5GZmYmLFy+idevW6Nu3r0aK2Z9//gnfAF/4+PrgyL4jav0TQvDLL7+w28nv8bidcRsb929E32F9MXLYSGaQvH//PtasWYP58+fDw8IDXA6XOfY9ePBgnD59GtevX1c5yClSVKozKH7e+HP82P5HuTSkykt1bndXRXUUh5pYzjGE4lHbLzd975QVQgiKyos0+iupKGH9yT4rriiWe67uz1Catp2DHVp1aMUaCM+ePYvnz59r9GXO5/Ph4uICFzcX+Af6Y/DowUjclYhrGdewcOFClt9Duw+hXkA9fDzhY5w8eRKPHz9WGp+bmxuCg4PxxRdf4MSJE8jIyMCSH9i3npqZmVWmLfOnzjiQSCSCi4sLPD090bt3b0RERODw4cNy/qxtrOXi1vZY647NO9C+a3uMGTMGmzdvRnFxMXg8HhOfg7MDzMzN3pTh//+Zmpqy4hEIBOjZr6dCZSUhIQFhYWFo2LDy+HZhYSG2bt2KMWPGIDo6GomJiRrJKi1LDw8PNA9rjkmzJmH24tlI+D0BKSdSAABPHj/BV199hYkTJ2LBggUIDAyEr68vxk4Yi69mf4V1K9ch/VK6ynTu37+Ps2fPYvr06fD390dycrJCf05OTnBxcUHTpk0xceJEPH78GDdvKjeyVR3i5sYhJysHv2//HVFRUahTpw7atWuHgwcPQiAQyM0AadKGCCFYu3Ythg4dikGDBiE+nm0gS4qNjQ1cXFzg7++PefPmoaKiAseOHVPoV5b4+Hj06NcDPfr1QPImxWUoy6VLl3D37l3WO33jxg306tULvvV9MfCjgXj+33M8f15pL2fMmDFYuHAhrKysYC40R327+rAxsQEA2NraonXr1tiyZYtcOor2t+iLMSFj3trgr6/BVtd++20rOe/6Hpl32s6KIoorihG2qWYuc0uMTDTYDu7YQbFYMncJPp1UuRyUkJCAwYMH6xxfXb+66NatG5KTk/G///2PcU/emIwefXvA0soSUVFRSExMxLfffqs2vvr16yMqKgq7d+7GsK+G6SxXVTIyMnD27Fl4eXnpLU4phBDs3LwT33z/DerXrw9fX19s374dQ4cO1Sm+DwZ/gHW/rsO5M+dQJ6pyxquwsBDbt2/H0qVLGX9JSUmoX78+AgICMGTIEEycOBF9PtXtZuWYD2OwZM4S/L33b4S3D8fO5J0oLy/H5MmT5fz2H94fP83/CfuS96FRqPLL3dauXYvo6GhYW1tjyJAhiI+Px6BBg5T6z8/PZwZFoVD/A6FEIsGuP3ehR98ecHBmG+YzNTXF559/jpkzZ+Lly5ews5O3HKysDR07dgxFRUWIiIiAu7s7WrVqhaVLl8LcXLGNjIqKCkahUZfPR/cfISUlBfPXzAcIsOjbRXj2+BncPJUbCzx16hT8/f1hafnmdEpISAjWr1+PUZNG4eTJk3B1dYWDgwM2btwIExMTxMbGMn6rDmYtWrTAqVOn5Nw9LT0BFbbq1CkBfC5fZ0XBUKeBjO2UUU1RmxWa925m5V2lfdf2KCwsxMWzF1H0ughJSUn46CPFl9ZpSkD9ADx48ID5ffv2bVy5dAXdencDAAwZMgRr167V+Mujfv36ePjwIctt5cqVsLCwYP1t3LhRZTx79uyBhYUFTExMEBwcjJycHEyZMkXO39DBQ+Xirrp/QRUpJ1JQUlyC1p0qN/9JB2ZdqRdQDyHNQpC0IYlxS0pKAiEEH374xux4fHw8hgwZAqByuSI/Px/nz5zXKU0ulws/Pz88e1S5lHT39l1YW1vD1VX+OKtAKICHtwce3n0o90yKRCJBYmIiI9+HH36I06dP4/59+ZuyPTw8YGFhARsbG2zatAm9evVC/fr15fypY8m8JWju1RzNvZoj0C0QFhYWWLBgAfP8ec5z5Oflo65fXYXhGzRoAEII7tx5Y/VVkzYUHx+PDz/8EDweD0FBQahbt67CfVoDBw6EhYUFRCIRvvzyS3h7e6N/f9W2OXZs2oGoqChY21jD2tYarTu2xo7NO1SGefjwIdzc2MrMRx99hJCQEHQN64qEZQlISkpCbm4uZs2aheXLl2PmzJnw9fVFZGQknj59ygrr5ubGvI+WQkuI+CI0sG+g9oNK3cCvyXFqZZjyTdV70pCaHpjf9tKTsS3b6Jv3bmbFlG+Kc4MUrz1X5caLG6zfshvRXpe/Zlk41QQRT/5OFn0hEAjQs29P7Ny8E08ePoG/vz8aNare1eeEENZLk5CQgNYdW8PWvvJEQ/fu3TFq1CgcPXoUnTurv8eianxA5dr5N998w3JzdnZWGU/Hjh3x66+/4vXr11i6dCn4fD769OkjV1+Lf1yMyK7suzKqdvaq2LFpB7rFdAOfX/maDBw4EFOmTMHdu3dRr57qq+uVETsoFou+XYRXr17B0tISCQkJ6NevH/O1fOvWLZw/fx47dlQOXHw+HwMGDMD2DdvRtFVTndIkhOjNaN2Rv4/g9evX6N69OwDAwcEBXbp0QUJCAubNm8fye+rUKZiZmeGff/7BggULsGrVKp3SHDl2JHp/2BvA/5vbt3THzz//jENHD7H8afP1rKwNScnLy0NycjJOnz7NuEmV1REjRrDiWrp0KSIiInDv3j18+eWX+PnnnxXO4EgRi8XYvXU3Vixfwbj16NsDi+csxpjJY5QasSwuLpZbxhQIBFixYgXLbeTIkRg/fjxSU1Oxc+dOXLlyBYsWLcL48ePx559/Mv5MTU2ZO9PqWNVR+H6qQ3aAnNJsCv64/gemtpiKmJ3yNx9rYr/ol86/YMqJKZgRNkMrOSjvPu+dssLhcDS2Jlj1C0M2nIRIDGqUx8rKCvn5+XLur/JfwcJK8b1CsYNiMTByIG7fvI3PR3+u0I823LxxEz4+lfeIiMVirFu3DllZWQhxeXPhl1gsRkJCgkbKyo0bN+DlzZ5qt7a2hq+vr1ZymZubM2ESEhIQEhKC+Ph4tOrdiuXP2cVZ67ilvHz5Ekf2HUFFeQW2Jm5l3KX5nT9/vk7xRsVGYdG3i5CUlIR27drhzJkziIt7YzI7Pj4eFRUVLKWKEAKhSIgZ38+ApZVmBqqkg45YLMadO3fQLbZyNqyeXz3k5+fj2bNncopbeVk5Ht9/jBatWyiN94+1f+Dly5esPTkSiQTp6emYO3cua6D18fGBjY0NAgICkJOTgwEDBuDkyZOayS8zCNra2aJO3cplMwuhBbysvFjKgIOTA6xtrHHv33ty8QCV7Y7D4bDagrI2JN28umnTJpSUlCAs7M2SMSEEEokE//77L/z9/Rl3FxcX+Pr6wtfXF2vXrkX37t1x/fp1ODk5KZTnzNEzyM7MltuELRaL8c/Jf9CqQyuF4RwcHNRu3D127BiuXbuG33//HVOmTEH37t1hbm6O/v3745dffmH5ffnyJRwdHZnfmioqyr7ghzUchmEN5Zd4l3dajv/98z+NTMOHOofiaP+jGsmhjpqeaajOzE5Ny26M0GUgIyUgIACXL1+Wc79+9Tq86inen+Fb3xe+9X1x5+YdlXsINOHe7Xs4ePAg87W5b98+vHr1CtuObsP2Y9ux/dh2pKWlYfPmzUhOTkZeXp7K+G7evIkDBw6gd2zvaslVFS6Xi6+//hozZ85ESbHiUym6sHHjRji7OuPP438yeU1LS8OPP/6IxMREhXeqaIK5hTmie0cjISEBa9euhb+/P9q2bQugcs/DH3/8gR9//JFJLy0tDVeuXIGTixP2Je/TOr1dW3YhNzcXXXp2AQDExMZAIBDgxx9/lPO7NXEriouK0f2D7grjynuZhz1/7cGWLVtY8qWmpiI3NxeHDh1SGA4Axo4di4yMDGbGSJ9wuVz0iu2FvX/uxfNs9mWMxcXFWLlyJSIjI5XOdsi2oeLiYgCVSuNXX30lVw9t27ZVegoOqNwHEhoaqlKZTd6YjKjYKKSlpTHv0vZj2xEVG4Xkjco32jZp0gQ3b95UurxQUlKCsWPHYvXq1eDxeBCLxSgvr7yosLy8XK7NZmRkoEmTJkrT0xcdPDvg735/o7lLc4OnpYzqLMnQ/S7GAVVWjJQxY8bg33//xfjx45Geno77d+5j3a/rsD95P0aMGaE0XHxyPI5lHIONjY3GaVVUVCArKwtZz7Lw7/V/sXHNRoyIGYGQxiHMOn58fDyio6NRP6g+/Br4wa+BH4KCgtC/f3/Y2Niw9plI43v27BmuXr2K5cuXo3379mjcuDEmfjWRlXZRUVFl2jJ/ubm52hQV+vXrBx6Ph03xm1ju+Xn5cnG/fl1507L0y+X29dtyA5I0v117dmXlNSgoCKNGjcLz589x4MABrWSUZcDQATh79ixWrVrF2le0Z88e5ObmYtSoUUx60r+uPbqqHMiAN2X55MkTnD93Hku+W4LvpnyHTz77BC3aVM6WeNbxxKJFi7Bs2TJ88803uHnzJu7evYuVP6/Eku+WYPjnw5Vurv0r6S/Y2duhf//+LNlCQkLQvXt3lft5zMzMMHr0aMyePVv/p+IIMGPODDg4OWB0v9HYv38/Hj9+jJMnTyIyMhLl5eVySyVVkbahFStWIC0tDZcvX8bHH38sVw8DBw7EunXrUFGhfAfqxIkTsXr1ark9IgDw4r8XOH7oOGIGxCAoKIhpX34N/NCrfy8c3X8U+bnyM6pA5dJVYWEhrl27pvD5vHnz0L17d0YBad26NZKTk5Geno5ffvkFrVuzDa+dOnUKXbt2VVkuCtHgo98YZgZqes9KdTDI0WVtl/iMrPyosmKk1K1bFydPnsTNmzcRERGBQZGDcHDXQfwY/yPadG6jNJyZuRmsrLW73OzatWtwdXVF44DGGNl7JA7uOojR40fj+InjsLCwQHZ2Nvbu3cta05fC5XIRGxvLGqik8dWpUwcdOnRAUlISZsyYgVOnTsHCgr2EtWbNGri6urL+Bg4cqJX8fD6/0g7KLwkoel3EuH886mO5uJcvX84KO7zXcDRt2hRNmjRBkyZNEBoaikuXLuHKlSuI6Bkhl5a1tTU6d+5crY22zcObIyAgAAUFBRg27M20eXx8PCIiImBtbS0XJrJnJK6lXcOta7eUxisty3r16mHIgCG4e+suFq9ZjOW/sPM8ceJE7NixA6dOnUKzZs0QFBSEP7f+iW8XfYspc+U3KktJ3pyMXjG9FHZiffr0we7du5ljs4oYN24cbty4wWxSTUxM1FuHaGdvh00HNqF56+b49NNPUa9ePfTv3x/16tXDhQsXULeu4s23UqRtaNGiRVixYgUCAwMVbgaOjY1FTk4O9u1TPsvVrVs3+Pj4KJxd2bZ5G8zMzBDWTv5EYst2LWFiYoK/tv2lMF57e3vExsYq3ICekZGBpKQkzJ07l3Hr27cvoqOj0bZtW6Snp+Onn35inqWkpCA/Px99+/ZVmo93CU1mR4xBwaIoh0NquS3hgoICWFtbIz8/X84+R0lJCe7fvw8fHx+dro2/9pz9BdPQoSHz/9dlr/Gg4IFOMntaemp9W2pVWdQhK+vNFzchJmI596q8KH6BrNdvDMsF2AWAz2Vva5KVQ1VcyigqL8L9/Psah9cmPdl8AoC/rT8EPIFCv48LHqOgrNJ6baB9oMJBU5O0pX4czBzgbKZ6Y7DUr6XQEnWstDNh/u/Lf1EuKVcrj5RXZa+YDeB+tn64nXsbQOVGSkUXs1Wte2X4WPvo7QbZ2bNn48SJEzh+/Lhc+/a28oa50JzVXoA3e1aAN+XpbuGOUnEpnhdXKkq6tMu3RWZhJl6WvARQKacm77VsftLT09GlSxfcvXtXTvHXhgEDBiAkJARff/21wueq+s6zz87i08OVJhLShqYpNBzXbEMzlIorLVZfHa695eKqBK8LZv3WNE5puITIBLXLUFNOTMGBBwfk4l96aSkSMuSX/hTJMHTfUKT9lwYA6FWvF+a30W1vW15JHtpubav0uaK0nxc/R8ekjkrDbI7ejBmnZjDjlroy/CX1F6xOX6023eqgavyuCp1Zobyf0I+oGmf//v1qrRVT2DRq1AgLFy5UeFRcU8rKyhAcHIwvv/xSp/B0BsLwGNsSjDHw3p0GolAMQq2en6wZzp/XzXbM+07Vo9PaIhQKMXPmTP0I8w5BlTDjhs6sUCgU44OOG7WCd2kGgJ76MW6osvI+8O70J8YLLWMK5Z3kXVFiavvM0XuhrBhkD3Htrvd3E1onOlPbOzKKflHVZ2oym2Js7UmTMUDfMtfysytGN2tmEGVlxYoV8Pb2homJCcLCwtSuTW/btg3169dn7ulQdSxQGwSCypMgUpPSFO14V74oKBSKdpSVlQEAeDz5kz7vKsbU3xmbomAM6H2D7datWzFp0iSsWrUKYWFhWLZsGSIjI3Hr1i2F5qfPnj2LgQMHIi4uDj169MCmTZvQu3dvXL58GUFBQdWShcfjwcbGBjk5OQAqDVNp0wgk5RLW75KSNxZSS8tL5Z5rSllpGUqIdtZWtU1LVlZJmQQSIpFzVySXbDolJSUQc9lWL6s+1xbZctMkvDbpyeZT6l/MU2xptqKsgiWHonahSdpSP+Wl5SjhqpHv//1WoELrshOXieXypoqysjJW/qT/LyspQ4lEPmzVuldGaUkpuGL9f+NUTbu0pBQ8MU/uPZMtOyZPpWUoF5dr1a5qivLScoX1ooq3nR+JRIL//vsPZmZmzL1YtZ2aUESowqFf9N4SlyxZgtGjR2PkyJEAgFWrVmHv3r1ISEjA9OnT5fz/9NNP6NatG2Mpdd68eTh8+DB++eUXnS8+k8XFxQUAGIVFG3IK2WH4eW+Kq1RcihfFL3SSqcKkQut7harKog5ZWbNfZzMDnax7VQrLC1FQWsD85uRywOOwv6xk5VAVlzLKxGWMPQxNwmuTnmw+AYBjxlFoAwIAcktyUVxRaVqdl8dTOAWsSdpSP0XCIrwSvlIpn9SvCd8EpSalKv1WJbsoG2LJG8VLXVmUVpTiRUll++SYcZBTVJm2srb3uvw18ksVW06VRWIqgZAn1EZ0jajavsWmYoh4IlZ7AQARX4QykzJWmDJRGSpIBQrLCgHo1i7fFvml+XhdXmlFmZ/H1+i9ron8cLlc1KlTR+GAq8lySW0cqI1p6UoXWfQtvzGVB6BnZaWsrAyXLl3CjBlvbszkcrmIiIhASkqKwjApKSmYNGkSyy0yMhI7d+5U6L+0tBSlpW86+oKCAoX+pHA4HLi6usLJyYm5J0NTJuyYwPq9O3Y38/8bL25g4dWFWsUnZWbLmWjg2kC9RxWyqENW1mXHluF+3n0596r8/fBv/HztZ+b3+u7rYS1iW1OVlUNVXMq4k3sHC48v1Di8Nun9duo3lpGtdVHrYGtiq9Dvjos7cPzxcQDAzt47Fd4IO2vfLGYAV5a2VL6RQSMR6xOrUj6p3y7eXfBFgy9U+q3KyhMrcevlG+u16soiLScNCzMqyzk+Mh6TDla+Y3Nbz0UDJ/m2d+zxMSy9tlStHIs7LIaPrY82omtE1fa9oM0C1Hesj3t597Dw2Jv3rLNXZ0xoMIEVZkaLGcgpzkH8nUqrwrq0y7fF5pubsfnOZgCVcmryXtdEfoRCodLbnzW5PT7IIQgXsi7AzkT57dO6okucmsisrK+wFspblFaGg6nDm3AizcNVRZMbqqtS9cOyKhwOBy7mLhobMzUXmGstgyHRq7Ly/PlziMViODuzLXk6Ozvj5s2bCsNkZWUp9J+VpdiaZlxcHMuktKbweDyt119ntp2JsUfGAqjsPGUtOQa7BiPINQiHHx5GlE8UhgUOw/LU5ejr3xeTjrOVL1O+KTZ134RV6atQWF6IJu5NYCLUbmZlfsf5iL8ajwb2DXDlvyv4oskX+DXtV6RkViqBf/b6EyP2j8Cr8ldo59GOJeuoxqPw0+WfMKD+AJWWfCP9InE08yhOPz2Nvv594Wwtb5G1i28X/HH9DyR2S9TJKnBDl4YI9wqHi7mLRuEHNxqMxRcXY3H7xWr9f9PmG8aCYx+/PnCxdlH6hRcdEI1r+dfQwrUFzEwVW2Qd1XQUEq4moH9Af6Vpj2k2BsceH0Nsg1i1s2VTW01F8u1kfNzkY63LblqraYhKjgIArI9arzZ8iFsI/J38YWtiCw9bD8Q0iMHdvLto7tFczioxAHSp1wU/p/+MJ4VP5J45mTkhpygHUT5RCHIJ0qkjVcfwxsPx5+0/cTv3Njp4dkCwWzBEPBEaODdAuFc4km9X3os0ocUEppyHhgxF+n/paOfTDkUVRTiRdQJt3Nvo1C7fFr0CeuGf//5BB88OMDExgbe9N/MOyyLkCtHAvgGmNp9qdPkJdghGN+9u8LD0UNoWvm7xNRZeWIhPGn2ilzQTIhMw+tBo2JrYYl7reRqHGxMyBo9ePUIjR8X3XcnyeePP8aTwCXrW68lyH9RgEJanLoeYiGErsoWYiDG9hfwqAQB8HfY1/n70Nzjg4LOQzzSWsyrmAnN08OzAfFDJsj5qvcIwNiY2sDexx4uSFwiwDUCEVwT23d+H+/n30cWrC/xt/bGs4zK03NQSda1VXz8BAD3r9cTZZ2dx9tlZAJV1UJPo1dz+s2fP4O7ujrNnzyI8PJxxnzp1Kk6cOIFz587JhREKhVi3bh3rPpiVK1di7ty5yM7OlvOvaGbF09NTI3O9FAqFQqFQjANtzO3rdWbFwcEBPB5PTsnIzs5m9o5UxcXFRSv/IpEIIpH6KT0KhUKhUCjvBnqdzxUKhQgNDcWRI0cYN4lEgiNHjrBmWmQJDw9n+QeAw4cPK/VPoVAoFArl/ULv28wnTZqE4cOHo1mzZmjRogWWLVuG169fM6eDhg0bBnd3d8TFxQEAJkyYgPbt2+PHH39EdHQ0tmzZgosXL+K3337TKD3pKpa6jbYUCoVCoVCMB+m4rdFuFGIAli9fTurUqUOEQiFp0aIF+eeff5hn7du3J8OHD2f5T0pKIv7+/kQoFJKGDRuSvXv3apzW48ePCSqvkaN/9I/+0T/6R//oXy37e/z4sdqxXq8bbGsCiUSCZ8+ewdLSUu9n+6Wbdx8/fkw37xoZtG6ME1ovxgutG+Plfa0bQghevXoFNzc3pUflpRiv9SQN4XK58PDwMGgaVlZW71UDqk3QujFOaL0YL7RujJf3sW6sra018vdeXGRIoVAoFAql9kKVFQqFQqFQKEYNVVZUIBKJMHv2bGrXxQihdWOc0HoxXmjdGC+0btRT6zfYUigUCoVCebehMysUCoVCoVCMGqqsUCgUCoVCMWqoskKhUCgUCsWoocoKhUKhUCgUo4YqKxQKhUKhUIwarZSVX3/9FY0aNWKs7IWHh2P//v0sP7/99hs6dOgAKysrcDgc5OXlKYyruLgY5ubmuHPnDjIzMzFo0CD4+/uDy+Vi4sSJcv7XrFmDtm3bwtbWFra2toiIiMD58+cVxt2xY0f8/vvvuHLlCgYOHAhPT0+YmpqiQYMG+Omnn+T8Hz9+HE2bNoVIJIKvry8SExNZz0+ePImePXvCzc0NHA4HO3fulIsjOzsbI0aMgJubG8zMzNCtWzfcvn1boXza5Ck5ORldu3aFvb09OBwO0tLSFMYVFxeH5s2bw9LSEk5OTujUqRNCQ0NhYmICT09PLFq0iPFLCEFUVBQ4HA7c3d1hYmKC4OBg7Nu3DwDw8OFDmJqaorCwEACwbds21K9fX86flDlz5qB+/fowNzdn8nHu3Dk5GWXrPDk5GV26dIGjoyPTlg4ePCgXZsWKFfD29oaJiQnCwsJY5fPy5Ut88cUXCAgIgKmpKerUqYPx48cjPz+fFcejR48QHR0NMzMzODk5YcqUKaioqFBRM5VxDx48GFZWVrCxscGoUaOY8gCABw8egMPhyP39888/rHiqtp2kpCSMHTsW9vb2sLCwQJ8+fTBgwAC5eBwdHeXklS0/QH27BYCnT59iyJAhsLe3h6mpKYKDg3Hx4kU5f/p+Z6q2x969e+PWrVssPyUlJXJlkZ2drbJeNHkfPv30U9SrVw+mpqZwdHRETEwMbt68qTA+2fbl5+cHLy8vuXaekpKCTp06wdzcHCKRCEKhECYmJoiIiGDecW3r5tWrV5g4cSK8vLxgamqKVq1a4cKFCwplrA11U15ejmnTpiE4OBjm5uZwc3PDsGHD8OzZM5a/+fPno1WrVjAzM4ONjY3S+KrK2Lx5c9StW5dVN3fv3kVsbCzThwQGBsLJyQmmpqZK60aTsebatWvo06cPvL29weFwsGzZMqVyjhw5EjNnzsSDBw8watQo+Pj4wNTUFPXq1cPs2bNRVlbG8p+eno62bdsq7JcBzcYEQghmzZoFV1dXubyqQlVfCgAdOnSQ64c+++wztfGqGx90lVcOjW8MJITs3r2b7N27l/z777/k1q1b5OuvvyYCgYBkZGQwfpYuXUri4uJIXFwcAUByc3MVxrVr1y7SoEEDQggh9+/fJ+PHjyfr1q0jjRs3JhMmTJDzP2jQILJixQqSmppKbty4QUaMGEGsra3JkydPWP5evHhBBAIBycrKIvHx8WT8+PHk+PHj5O7du2T9+vXE1NSULF++nPF/7949YmZmRiZNmkSuX79Oli9fTng8Hjlw4ADjZ9++feSbb74hycnJBADZsWMHK02JREJatmxJ2rZtS86fP09u3rxJPvnkE1KnTh1SWFiotDw1ydMff/xB5s6dS9asWUMAkNTUVIVxRUZGkrVr15KMjAxy+vRpIhQKiZmZGTl//jzZvHkzMTU1JatXryaEELJkyRLSsmVLAoAMGzaMXL9+ncycOZMIBAJy9epV8tNPP5GoqChCCCFnzpwhPB6PLFq0SM6flI0bN5LDhw+Tu3fvkoyMDDJq1ChiZWVFcnJyWDLK1vmECRPIwoULyfnz58m///5LZsyYQQQCAbl8+TLjf8uWLUQoFJKEhARy7do1Mnr0aGJjY0Oys7MJIYRcvXqVfPDBB2T37t3kzp075MiRI8TPz4/06dOHiaOiooIEBQWRiIgIkpqaSvbt20ccHBzIjBkzlNYLIYR069aNhISEkH/++YecOnWK+Pr6koEDBzLP79+/TwCQv//+m2RmZjJ/ZWVlrHiqtp3IyEji6elJjhw5Qi5evEhatmxJHB0dSbdu3UhmZiZ58uQJCQgIIO3bt5eTV7b8NGm3L1++JF5eXmTEiBHk3Llz5N69e+TgwYPkzp07LBkN8c7Itse0tDTSvXt3uffhs88+kyuLVq1aqawXTd6H1atXkxMnTpD79++TS5cukZ49exJPT09SUVHB8ifbvjZs2EA4HA4xNTUlp06dYtr5+vXriZWVFYmLiyNffvklsbCwIJMnTyYXLlwgvXr1Ij4+PqS4uFjruunfvz8JDAwkJ06cILdv3yazZ88mVlZWb6U/M0Td5OXlkYiICLJ161Zy8+ZNkpKSQlq0aEFCQ0NZ/mbNmkWWLFlCJk2aRKytrZXGJytjYmIiAUBsbGzIxYsXycyZMwmfzyceHh4kNjaWpKenk4kTJxI+n0/8/PxIamqq0rrRZKw5f/48mTx5Mtm8eTNxcXEhS5cuVShjRUUFcXBwIOfOnSP79+8nI0aMIAcPHiR3794lu3btIk5OTuSrr75i/Ofn5xNnZ2cyePBgkpGRIdcvE6LZmPD9998Ta2trsnPnTnLlyhVWXpWhri8lpPKS4dGjR7P6s/z8fKVxEqLZ+KCLvIqo9q3Ltra25Pfff5dzP3bsmEpl5aOPPiLTpk2Tc2/fvr3CBlSViooKYmlpSdatW8dy/+OPP0hYWJjScJ9//jnp2LEj83vq1KmkYcOGLD8DBgwgkZGRCsMrUlZu3bpFALCUNrFYTBwdHcmaNWvU5kWKsjwR8mZwVKasyLJy5UpibW1NAJATJ04QQgiZNm0aCQgIIKmpqcTd3Z307NlTLi9hYWHk008/JZ06dSK//vorIaSyU42OjmbFL/WnjPz8fGYgl0VZnUsJDAwkc+fOZX63aNGCjB07lvktFouJm5sbiYuLUxpHUlISEQqFpLy8nBBSqSxwuVySlZXF+Pn111+JlZUVKS0tVRjH9evXCQBy4cIFxm3//v2Ew+GQp0+fEkK0qw8pAAiPxyPbtm1j3G7cuEEAkHbt2qmVd8SIEUz5adJup02bRtq0aaNWLkO/M4QQkpOTw2qPeXl5RCAQKCyLlJQUtTJrU/5XrlwhAOSUNNn21b9/f9K9e3dW+woLCyNOTk5k5syZRCKREBcXF/LDDz8w4fPy8ohIJCKbN29mtW115VNUVER4PB7Zs2cPy0/Tpk3JN998w3KrjXUj5fz58wQAefjwodyztWvXqlRWZOnfvz+JiIhgyRgQEEA4HA7Jz89n6ua7774jHA6HHD58WGndyKLJWOPl5aVUWTl58iRxdXUlEolE4fNFixYRHx8f5vfKlSuJra0tq9+R9svKqDomqGuHytCkL9V07JVF3figq7yK0HnPilgsxpYtW/D69WuEh4drFVYikWDPnj2IiYnRNXkUFRWhvLwcdnZ2LPfdu3erjDc/P58VJiUlBRERESw/kZGRSElJ0ViW0tJSAICJiQnjxuVyIRKJcPr0aY3jUZYndYwYMQIdOnRgfqekpKBZs2YAwMQVGRmJW7duYcCAAVixYoXC6fPIyEicPn0ap0+fRq9evZi4tCmfsrIy/Pbbb7C2tkZISAjjrq7OJRIJXr16xchbVlaGS5cusdLmcrmIiIhQWTf5+fmwsrICn89n5A8ODoazszNL/oKCAly7dk1hHCkpKbCxsWHKEAAiIiLA5XLllrd69eoFJycntGnTBrt372Y9O378ODgcDh48eMC4icViVp6ky2fnz5+Hk5MThgwZAltbW0Z+WXll27Ym9bJ79240a9YM/fr1g5OTE5o0aYI1a9bI5fdtvDPSpTlpPJcuXUJ5eblcWdSpU0erd08dr1+/xtq1a+Hj4wNPT0/G3cvLCxcuXGDST0lJQZcuXVjtq02bNsjJyYGTkxNCQ0ORlZWFzZs3M++0tbU1wsLCcPbsWVbbVlc+FRUVEIvFrP4CAExNTeX6i9pcN/n5+eBwOCqXexTh7e2NOXPmML9TUlLQokULloyNGzcGIQQikQj3799HVlYWIiMjweVycfr0aaV1o092796Nnj17gsPhKHyuqG7atWsHoVDIuEn75dzcXIVxVB0TpHmVrRtpXlX1yZr2pRs3boSDgwOCgoIwY8YMFBUVsZ4rqhtV7U0XeZWhtbJy9epVWFhYQCQS4bPPPsOOHTsQGBioVRzSdf2wsDBtk2eYNm0a3NzcWIVQWlqKAwcOMANtVc6ePYutW7fik08+YdyysrJYAxkAODs7o6CgAMXFxRrJIn2RZ8yYgdzcXJSVlWHhwoV48uQJMjMzq5UnTXB1dUWdOnWY35mZmbh9+zZat26NoKAgJk8AEBwcjJiYGGRlZcnF4+zsjMePH6NRo0Zwc3MDoLx8qobfs2cPLCwsYGJigqVLl+Lw4cNwcHBgnqur88WLF6OwsBD9+/cHADx//hxisVijtKU8f/4c8+bN06h+pc8UkZWVBScnJ5Ybn8+HnZ0dE8bCwgI//vgjtm3bhr1796JNmzbo3bs3S2ExMzNDQEAABAIBK56qnbezszOioqJw5MgRhIaGoqSkBFFRURCLxSx5JRIJU36atNt79+7h119/hZ+fHw4ePIgxY8Zg/PjxWLduHRPmbbwzEokEEydOZLXHrKwsCIVChWWhrF60YeXKlbCwsICFhQX279+Pw4cPswYJT09PEEJYbcHZ2ZmVvnQQmjNnDqKiogAAoaGh6Ny5M7Pm7uzszCi9mtaNpaUlwsPDMW/ePDx79gxisRgbNmxASkoKq7+ozXVTUlKCadOmYeDAgVrfIlyvXj1W35GZmYn9+/ezZGzSpAk4HA6mTZvGfAysWrUKYrGYKUNFdaNPdu3apbRu7ty5g+XLl+PTTz9l3HTpi6qOCVJ/2vaLmvSlgwYNwoYNG3Ds2DHMmDED69evx5AhQ1hhqtaNuvFBF3mVwVfvhU1AQADS0tKQn5+P7du3Y/jw4Thx4oRWCsuuXbvQo0cPcLm6Tex8//332LJlC44fP876Ojl69CicnJzQsGFDuTAZGRmIiYnB7Nmz0bVrV53SVYZAIEBycjJGjRoFOzs78Hg8REREICoqCkTD2wyU5UkT4uLiWL9v3ryJvLw8nDlzhnE7evQoAGD69Okq4yotLVX6AqqiY8eOSEtLw/Pnz7FmzRr0798f586dYwZ9VXW+adMmzJ07F7t27ZJTEjSloKAA0dHRCAwMZGn+hsLBwQGTJk1ifjdv3hzPnj3DDz/8wJRfixYtlG7slMXe3h5+fn4IDg6Gt7c3iouLcfr0aRw/fhydO3dm/LVo0UKrd0YikaBZs2ZYsGABgMoOPiMjA6tWrcLw4cMBvJ13ZuzYscjIyNBqlrG6DB48GF26dEFmZiYWL16M/v3748yZM8y7lZSUBHd3d5VxSN/dTz/9FNHR0ViwYAHmzp2Lf/75BwkJCcx79/TpU637s/Xr1+Ojjz6Cu7s7eDwemjZtioEDB+LSpUuMn9paN+Xl5ejfvz8IIfj111+1Dn/kyBHWb4lEgsePHyM1NZVxs7S0hJWVFf766y/8/PPPACr7gKZNm7LqQZe60YQbN27g2bNnrPdTNs1u3bqhX79+GD16tM5pVGdM0AVZpTc4OBiurq7o3Lkz7t69i3r16gGQr5u3idY1KBQK4evri9DQUMTFxSEkJEThjnRV7N69W6cBEaj8Av/+++9x6NAhNGrUSKN4r1+/js6dO+OTTz7BzJkzWc9cXFzkdrlnZ2fDysoKpqamGssVGhqKtLQ05OXlITMzEwcOHMCLFy9Qt27dauVJW8aNG4eXL1+iZcuW8PDwYNyPHTsGAGjZsiX4fD7Ky8sBAH369GGWkJ49e4by8nJWGSorHxcXF5abubk5fH190bJlS8THx4PP5yM+Pp55rqxutmzZgo8//hhJSUmsGSUHBwfweDyN0n716hW6desGS0tL7NixgzWToUx+6TNFuLi4ICcnh+VWUVGBly9fKg0DVH69SU+DKKOiokLuhJxsnlxcXPDq1Ss4ODgwcUnl7datm9p8ybZbV1dXuY+IBg0a4NGjR8xvQ78z48aNw549e3Ds2DFWe3RxcUFZWZnKsqgO1tbW8PPzQ7t27bB9+3bcvHkTO3bsYJ5XbV/SPMmmLz3JERgYyLhlZ2ezyjA7Oxs5OTkavTOy5VOvXj2cOHEChYWFePz4Mc6fP4/y8nJWf1Eb60aqqDx8+BCHDx/WelalKuPGjWNOpcjKmJ2dDS8vL9y9e5c51TJz5kw8ffqUKUNFdaMvdu/ejS5dusgpEc+ePUPHjh3RqlUr/Pbbb6xn2vRFysYE2XZYNR5ldaNNXyqLdDZKVZ+mbnzQRV5lVFvdlEgkzJ4NTbh9+zYePnyILl26aJ3WokWLMG/ePBw4cIC1nwCo/Ar666+/5NYmr127ho4dO2L48OGYP3++XJzh4eFy2uLhw4e13ocjxdraGo6Ojrh9+zYuXryodq1UVZ60gRCCcePGYceOHZg6dSqz7izF3d0d3t7eSEtLQ1paGiIjIwEAS5cuxdq1awFUHgs1MzNj7TXRtXxk24WyOt+8eTNGjhyJzZs3Izo6mvVMKBQiNDSUlbZEIsGRI0dYaRcUFKBr164QCoXYvXu3XOcRHh6Oq1evspQPaSeqbDYwPDwceXl5cl+5ssswikhLS4Orq6vS5wDA4/FYebp16xYePXrE5Ck8PBzp6el48eIFE9eGDRsAVO5NkpVRXb20bt1a7kjqv//+Cy8vLwCGfWdk2+PRo0fh4+PD8h8aGgqBQKCyLPQFqTxIwOqnqrav8PBw/P3336z2deHCBZiZmeHWrVvw8fGBi4sLjhw5wpRhQUEBUlJS8Pr1a1bb1uadMTc3h6urK3Jzc3Hw4EGmLmpj3UgVldu3b+Pvv/+Gvb29Ur/qkJWxa9eucnvsZPMUGhoKFxcXrFq1ilFOlNWNvti1a5dc3Tx9+hQdOnRAaGgo1q5dKzebEx4ejpMnT7L65cOHDyMgIAC2traMm6oxQbYdSikoKMC5c+eU1o2mfWlVpGWuqk9T1950kVcp2uzGnT59OnMkMD09nUyfPp1wOBxy6NAhxk9mZiZJTU1ljhaePHmSpKamkhcvXhBCCPnhhx9Iz5495eJOTU0lqampJDQ0lAwaNIikpqaSa9euMc+///57IhQKyfbt21lHq169ekUIIeTChQvE1taWOQVCSOXRVkdHRzJkyBBWGNkjtdKjflOmTCE3btwgK1askDvq9+rVK0Y+AGTJkiUkNTWVtcs9KSmJHDt2jNy9e5fs3LmTeHl5kQ8++EBlearLEyGVRxdTU1PJ3r17CQCyZcsWkpqaSjIzM1n14u/vT6ytrcnx48fJrVu3iIODA+nbty+5ePEi2bJlCzEzM2MdkTtz5gwBQEaMGEFu3LhBZs+eTbhcLhk0aBBLxjNnzhA+n08WL17M+JM9mlZYWEhmzJhBUlJSyIMHD8jFixfJyJEjiUgkYk5HKarzjRs3Ej6fT1asWMHKe15eHuNny5YtRCQSkcTERHL9+nXyySefEBsbG+akTH5+PgkLCyPBwcHkzp07rHikx1SlR5e7du1K0tLSyIEDB4ijo6NGR5ebNGlCzp07R06fPk38/PxYR5cTExPJpk2byI0bN8iNGzfI/PnzCZfLJQkJCYyfc+fOET8/P3Lw4EGm7YSHhxMXFxeyefNmcvHiRdKiRQvi6upKUlJSyP3798nBgweJiYkJc+z8wIEDxNzcnPj6+rLk06Tdnj9/nvD5fDJ//nxy+/ZtsnHjRmJmZkY2bNhACDHsOzNmzBimPcrGU1RUxPj57LPPSJ06dcjRo0fJxYsXSXh4OAkPD1dZL+reh7t375IFCxaQixcvkocPH5IzZ86Qnj17Ejs7O9YxzU6dOpERI0Yw7Wvjxo2so8vSdj516lRiZWVFtm3bRiZPnkxEIhERCoVk7969JCYmhtjZ2cmdhtCkfA4cOED2799P7t27Rw4dOkRCQkJIWFgYc/S9ttVNWVkZ6dWrF/Hw8CBpaWmseGVPvzx8+JCkpqaSuXPnEgsLC6Zfle3zOnXqRNq0acPIuHv3bsLj8cisWbNIamoqUzffffcdSUlJIXfu3CEDBgwgHA6HxMTEkPT0dKV1Q4j6saa0tJTx4+rqSiZPnkxSU1PJ7du3CSGEZGdnE4FAQP777z8mzJMnT4ivry/p3LkzefLkCSv/UvLy8oizszMZOnQoycjIUNgvazImfP/998TGxobs2rWLyasmR5dV9aV37twh3333Hbl48SK5f/8+2bVrF6lbty5zSlG2bmSPyqsbH3SVVxFaKSsfffQR8fLyIkKhkDg6OpLOnTuzFBVCCJk9ezYBIPe3du1aQgghbdq0UXicV1EYLy8v5rmXl5dCP7NnzyaEEDJz5kwyePBgjWSRjZeQymPWjRs3JkKhkNStW5eRVfa5oniGDx/O+Pnpp5+Ih4cHEQgEpE6dOmTmzJlKj8ZqmidCKo/4qfMzfPhwhX4AED6fT9zd3cn333+vsMzd3NyIUCgkDRs2JI6OjuTw4cNy/pKSkoi/vz/jb+/evcyz4uJiEhsby8Tj6upKevXqRc6fP8/4UVTn7du3V1umhBCyfPlyUqdOHSIUCkmLFi3IP//8o7ZeAJD79+8z/h48eECioqKIqakpcXBwIF999RVrEFDEixcvyMCBA4mFhQWxsrIiI0eOZHUYiYmJpEGDBsTMzIxYWVmRFi1asI56qpNPagenV69epH379sTR0ZEIBALi5eVFBg4cSDp16sTI6+7uTlatWiUno7p2Swghf/31FwkKCiIikYjUr1+f/Pbbb8wzQ74zyvIt66+4uJh8/vnnxNbWlpiZmZHY2FhW564Ide/D06dPSVRUFHFyciICgYB4eHiQQYMGkZs3b7Li8fLyIrNnz2a1L19fX+Lp6SnXzuPi4oiHhwcxMzMjHh4exNbWlohEItK5c2cSGhqqsD9TVz5bt24ldevWJUKhkLi4uJCxY8eyFPXaVjfSo+SK/o4dO8b4U9ZXyfpR1i8ClUf/pXUzbdo04uzsTAQCAfHz8yNdunQhTk5OautGXRkqy0v79u0JIYT8/vvvpHXr1qw4lbXLqvMBV65cIW3atCEikUhhv6zJmCCRSMi3335LnJ2dmbzeunVLad1IUdWXPnr0iLRr147Y2dkRkUhEfH19yZQpU+TsrEjfG1lUjQ/Vkbcq1bazog3//fcf4fP5LBsS+iI4OJhs3bpV7/G+L1y6dIlYW1vLGTWrLoas8/cB+s4YL7RujBdD1k3Pnj3JwoUL9R4vRTVv9W6gly9fYsmSJXLHmKpLWVkZ+vTpwxwvpGhPRUUFli9fztqcqg8MVefvC/SdMV5o3Rgvhux32rRpg4EDB+o9XopqOIRoeLaWQqFQKBQKpQagty5TKBQKhUIxaqiyQqFQKBQKxaihygqFQqFQKBSjhiorFAqFQqFQjBqqrFAoFAqFQjFqqLJCoVAoFArFqKHKCoXyjjFixAhwOBxwOBwIBAI4OzujS5cuSEhIgEQi0SquxMRE2NjYGEZQDfD29sayZcvk3OfMmYPGjRu/dXkA4Pjx40z5cjgcmJqaomHDhnIX11WtBx8fH0ydOhUlJSU1IjeFUpuhygqF8g7SrVs3ZGZm4sGDB9i/fz86duyICRMmoEePHqioqKhp8YwC2QvldOHWrVvIzMzE9evX8emnn2LMmDFyl7pJ6+HevXtYunQpVq9ejdmzZ1crXQrlfYQqKxTKO4hIJIKLiwvc3d3RtGlTfP3119i1axf279+PxMRExt+SJUsQHBwMc3NzeHp64vPPP0dhYSGAyhmEkSNHIj8/n5khmDNnDgBg/fr1aNasGSwtLeHi4oJBgwaxbrZWRGlpKSZPngx3d3eYm5sjLCwMx48f10t+JRIJvvvuO3h4eEAkEqFx48Y4cOAA8/zBgwfgcDjYunUr2rdvDxMTE2zcuBEvXrzAwIED4e7uDjMzMwQHB2Pz5s0apenk5AQXFxf4+Phg/Pjx8PHxweXLl1l+pPXg6emJ3r17IyIiAocPH9ZLnimU9wmqrFAo7wmdOnVCSEgIkpOTGTcul4uff/4Z165dw7p163D06FFMnToVANCqVSssW7YMVlZWyMzMRGZmJiZPngygclZi3rx5uHLlCnbu3IkHDx5gxIgRKtMfN24cUlJSsGXLFqSnp6Nfv37o1q0bbt++Xe28/fTTT/jxxx+xePFipKenIzIyEr169ZKLe/r06ZgwYQJu3LiByMhIlJSUIDQ0FHv37kVGRgY++eQTDB06FOfPn9c4bUIIDhw4gEePHiEsLEypv4yMDJw9exZCoVDnfFIo7y01fDcRhULRM8OHDycxMTEKnw0YMIA0aNBAadht27YRe3t75vfatWuJtbW12jQvXLhAALBuppbl4cOHhMfjkadPn7LcO3fuTGbMmKE0Xukt7+bm5qw/gUBAQkJCGH9ubm5k/vz5rLDNmzcnn3/+OSHkzU26y5YtU5uX6Oho8tVXXyl9Lr1NWyoLn88nXC6X/O9//2P5Gz58OOHxeMTc3JyIRCICgHC5XLJ9+3a1MlAoFDb8mlWVKBTK24QQAg6Hw/z++++/ERcXh5s3b6KgoAAVFRUoKSlBUVERzMzMlMZz6dIlzJkzB1euXEFubi6zcffRo0cIDAyU83/16lWIxWL4+/uz3EtLS2Fvb69S5ilTpsjN2vz88884efIkAKCgoADPnj1D69atWX5at26NK1eusNyaNWvG+i0Wi7FgwQIkJSXh6dOnKCsrQ2lpqcq8Szl16hQsLS1RWlqK8+fPY9y4cbCzs8OYMWMYPx07dsSvv/6K169fY+nSpeDz+ejTp4/auCkUChuqrFAo7xE3btyAj48PgMp9HD169MCYMWMwf/582NnZ4fTp0xg1ahTKysqUDtivX79GZGQkIiMjsXHjRjg6OuLRo0eIjIxEWVmZwjCFhYXg8Xi4dOkSeDwe65mFhYVKmR0cHODr68tys7Oz0zTLLMzNzVm/f/jhB/z0009YtmwZs3dn4sSJSvMhi4+PD3NSqmHDhjh37hzmz5/PUlbMzc0Z2RMSEhASEoL4+HiMGjVKJ/kplPcVqqxQKO8JR48exdWrV/Hll18CqJwdkUgk+PHHH8HlVm5fS0pKYoURCoUQi8Ust5s3b+LFixf4/vvv4enpCQC4ePGiyrSbNGkCsViMnJwctG3bVl9ZAgBYWVnBzc0NZ86cQfv27Rn3M2fOoEWLFirDnjlzBjExMRgyZAiAyo26//77r8LZIXXweDwUFxcrfc7lcvH1119j0qRJGDRoEExNTbVOg0J5X6EbbCmUd5DS0lJkZWXh6dOnuHz5MhYsWICYmBj06NEDw4YNAwD4+vqivLwcy5cvx71797B+/XqsWrWKFY+3tzcKCwtx5MgRPH/+HEVFRahTpw6EQiETbvfu3Zg3b55Kefz9/TF48GAMGzYMycnJuH//Ps6fP4+4uDjs3bu32vmdMmUKFi5ciK1bt+LWrVuYPn060tLSMGHCBJXh/Pz8cPjwYZw9exY3btzAp59+iuzsbI3SzMnJQVZWFh4+fIht27Zh/fr1iImJURmmX79+4PF4WLFihcZ5o1AooBtsKZR3jeHDhxMABADh8/nE0dGRREREkISEBCIWi1l+lyxZQlxdXYmpqSmJjIwkf/zxBwFAcnNzGT+fffYZsbe3JwDI7NmzCSGEbNq0iXh7exORSETCw8PJ7t27CQCSmpqqVK6ysjIya9Ys4u3tTQQCAXF1dSWxsbEkPT1daRgvLy+ydOlSOffZs2ezNtiKxWIyZ84c4u7uzmy+3b9/P/NcusG2qnwvXrwgMTExxMLCgjg5OZGZM2eSYcOGKd2gTMibDbayZezj40MmT55MCgsLGX/KNjrHxcURR0dHll8KhaIaDiGE1JimRKFQKBQKhaIGugxEoVAoFArFqKHKCoVCoVAoFKOGKisUCoVCoVCMGqqsUCgUCoVCMWqoskKhUCgUCsWoocoKhUKhUCgUo4YqKxQKhUKhUIwaqqxQKBQKhUIxaqiyQqFQKBQKxaihygqFQqFQKBSjhiorFAqFQqFQO1V6DAAAAAhJREFUjJr/A1zGM2ZGQ87JAAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {}
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "plt.scatter(df['Data e Hora'] ,df['TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)'],\n",
+ " c=df['UMIDADE RELATIVA DO AR, HORARIA (%)'],\n",
+ " cmap='viridis',\n",
+ " alpha=0.7,\n",
+ " edgecolors='w')\n",
+ "plt.colorbar(label='Umidade Relativa do Ar (%)')\n",
+ "\n",
+ "plt.title('Temperatura do Ar x Umidade Relativa do Ar')\n",
+ "plt.xlabel('Hora e Data')\n",
+ "plt.ylabel('TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)')\n",
+ "plt.show()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 472
+ },
+ "id": "qdmyxddz4epE",
+ "outputId": "6d4f0fb2-f2a3-4bd6-ae12-9162880a87e5"
+ },
+ "execution_count": 104,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAHHCAYAAACY6dMIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5wV1dn4vzO397u9911gd+m9g6AiIvbYoqIxxrxqir6/RI2JmhhLEqMmGk18Y4s9Rk1iLCgIoggIwtLr9t53b7932u+PCxtXFlyaiMzXz03Yc8+c88zcKc885ymCpmkaOjo6Ojo6OjonAOLxFkBHR0dHR0dHZ7DoiouOjo6Ojo7OCYOuuOjo6Ojo6OicMOiKi46Ojo6Ojs4Jg6646Ojo6Ojo6Jww6IqLjo6Ojo6OzgmDrrjo6Ojo6OjonDDoiouOjo6Ojo7OCYOuuOjo6Ojo6OicMOiKi85JxVVXXUV+fv7xFuMbyV133YUgCIPqKwgCd91111Gb+5lnnkEQBGpqao7amEebmpoaBEHgmWeeOarj5ufnc9VVVx3VMQ+XY7WPOjqfR1dcDoAgCIP6LF++/HiLetx47LHH9BvU57jooosQBIFbbrnleIvS9wB54IEHBvz+gQce+No/6I8ny5cv73edGwwGUlNTufDCC9m+fftXLs8nn3zCXXfdRU9Pz1c+99eF7du3IwgCVqv1pD4OOmA83gJ8XXnuuef6/f23v/2N999/f7/20tLSr1KsrxWPPfYYycnJX5u3veOJz+fjzTffJD8/n5deeon7779/0NaHbwo///nPufXWW4+3GEeVH/7wh0yYMAFJkti0aRN//vOfWb58OVu2bCE9Pf0rk+OTTz7hl7/8JVdddRVer7ffdzt37kQUv/nvoM8//zzp6el0d3fzj3/8g+9+97vHWySd44SuuByAyy+/vN/fq1ev5v3339+v/ZuCpmlEIhFsNpsux2Hw2muvoSgKTz31FHPmzGHFihXMmjXrS7cLBoM4HI6vQMJjj9FoxGj8Zt1SZsyYwYUXXtj399ChQ/mf//kf/va3v/HTn/70OEr2XywWy/EW4ZijaRovvvgil112GdXV1bzwwguDUlxO1PuJzsH55qvpxxBVVXn44YcpLy/HarWSlpbGddddR3d3d79++fn5nHXWWSxfvpzx48djs9kYMWJE3zLT66+/zogRI7BarYwbN44NGzb02/6qq67C6XRSVVXFvHnzcDgcZGZm8qtf/YovFvc+VJkWL17cJ9Nf/vIXAJ5++mnmzJlDamoqFouFsrIyHn/88f2237p1Kx9++GGfOX327NnAgX0dBvJDOFI5DsY///lPhg8fjtVqZfjw4bzxxhsD9gsGg/zv//4vOTk5WCwWhg4dygMPPLDfsT0YL7zwAqeddhqnnHIKpaWlvPDCCwfc/w8//JDrr7+e1NRUsrOzDzjmokWLsFqt+y1NzJs3j4SEBJqamgYt32A40vN0oN89Go1y0003kZKSgsvl4uyzz6ahoWG/uWtra7n++usZOnQoNpuNpKQkvvWtbw24lLV161bmzJmDzWYjOzubX//616iqOuA+vfPOO8yYMQOHw4HL5WLBggVs3br18A4QcUUGoLKysl97Y2Mj3/nOd0hLS8NisVBeXs5TTz31peNt2rSJq666isLCQqxWK+np6XznO9+hs7Ozr89dd93FT37yEwAKCgr6rrd9x+bzPi7r1q1DEASeffbZ/eZavHgxgiDwn//8Bzi0Yz4QPT09XHXVVXg8HrxeL4sWLTrgEs4HH3zQ9zt4vV7OOeecQ1pyW7lyJTU1NVxyySVccsklrFixYsDz6GD3E51vDt+s16OvmOuuu45nnnmGq6++mh/+8IdUV1fz6KOPsmHDBlauXInJZOrru2fPHi677DKuu+46Lr/8ch544AEWLlzIn//8Z372s59x/fXXA3Dfffdx0UUX7Wf+VRSFM844g8mTJ/Pb3/6Wd999lzvvvBNZlvnVr351WDLt3LmTSy+9lOuuu45rr72WoUOHAvD4449TXl7O2WefjdFo5M033+T6669HVVVuuOEGAB5++GF+8IMf4HQ6uf322wFIS0s7rON4JHIciPfee48LLriAsrIy7rvvPjo7O7n66qv3UxQ0TePss89m2bJlXHPNNYwePZrFixfzk5/8hMbGRh566KEvlb+pqYlly5b1PSwuvfRSHnroIR599FHMZvN+/a+//npSUlK44447CAaDBxz3D3/4Ax988AGLFi1i1apVGAwG/vKXv/Dee+/x3HPPkZmZ+aWyHSpHep5+ke9+97s8//zzXHbZZUydOpUPPviABQsW7Ndv7dq1fPLJJ1xyySVkZ2dTU1PD448/zuzZs9m2bRt2ux2AlpYWTjnlFGRZ5tZbb8XhcPDEE08M+Eb93HPPsWjRIubNm8dvfvMbQqEQjz/+ONOnT2fDhg2H5aS976GekJDQ19ba2srkyZMRBIEbb7yRlJQU3nnnHa655hp8Ph8//vGPDzje+++/T1VVFVdffTXp6els3bqVJ554gq1bt7J69WoEQeD8889n165dvPTSSzz00EMkJycDkJKSst9448ePp7CwkL///e8sWrSo33evvPIKCQkJzJs3Dxj8MR8ITdM455xz+Pjjj/n+979PaWkpb7zxxn5zAixZsoT58+dTWFjIXXfdRTgc5pFHHmHatGmsX79+UL/DCy+8QFFRERMmTGD48OHY7XZeeumlPoXu8xzofqLzDULTGRQ33HCD9vnD9dFHH2mA9sILL/Tr9+677+7XnpeXpwHaJ5980te2ePFiDdBsNptWW1vb1/6Xv/xFA7Rly5b1tS1atEgDtB/84Ad9baqqagsWLNDMZrPW3t5+2DK9++67++1rKBTar23evHlaYWFhv7by8nJt1qxZ+/W98847tYFOraeffloDtOrq6qMqx0CMHj1ay8jI0Hp6evra3nvvPQ3Q8vLy+tr++c9/aoD261//ut/2F154oSYIgrZnz54vneuBBx7QbDab5vP5NE3TtF27dmmA9sYbb/Trt2//p0+frsmy/KXjatp/z5Nf//rXWlVVleZ0OrVzzz33S7errq7WAO13v/vdgN//7ne/O+Bvcbjn6Rd/94qKCg3Qrr/++n5zX3bZZRqg3XnnnX1tA/3Wq1at0gDtb3/7W1/bj3/8Yw3Q1qxZ09fW1tameTyefvvj9/s1r9erXXvttf3GbGlp0Twez37tX2TZsmUaoD311FNae3u71tTUpL377rtacXGxJgiC9umnn/b1veaaa7SMjAyto6Oj3xiXXHKJ5vF4+vZt32/y9NNPH3S/X3rpJQ3QVqxY0dc20O+1j7y8PG3RokV9f992222ayWTSurq6+tqi0ajm9Xq173znOwede6BjPhD7rpvf/va3fW2yLGszZszYbx9Hjx6tpaamap2dnX1tGzdu1ERR1K688sqDzqNpmhaLxbSkpCTt9ttv72u77LLLtFGjRu3X92D3E51vDvpS0WHy6quv4vF4OO200+jo6Oj7jBs3DqfTybJly/r1LysrY8qUKX1/T5o0CYA5c+aQm5u7X3tVVdV+c9544419/973dheLxViyZMlhyVRQUND39vV5Pv/22tvbS0dHB7NmzaKqqore3t5BH6PBcrTlaG5upqKigkWLFuHxePraTzvtNMrKyvr1ffvttzEYDPzwhz/s1/6///u/aJrGO++886Xyv/DCCyxYsACXywVASUkJ48aNG3C5CODaa6/FYDB86bgAp59+Otdddx2/+tWvOP/887FarcfU9H00ztN9vP322wD7HduBLBCf/60lSaKzs5Pi4mK8Xi/r16/vN+bkyZOZOHFiX1tKSgrf/va3+433/vvv09PTw6WXXtrvWjAYDEyaNGm/a+FAfOc73yElJYXMzEzOOOMMent7ee6555gwYQIQtzy89tprLFy4EE3T+s01b948ent7+8l/sP2ORCJ0dHQwefJkgINudzAuvvhiJEni9ddf72t777336Onp4eKLLx5w7oMd84F4++23MRqN/M///E9fm8Fg4Ac/+EG/fvuuxauuuorExMS+9pEjR3Laaaf1nSMH45133qGzs5NLL720r+3SSy9l48aNAy77Heh+ovPNQV8qOkx2795Nb28vqampA37f1tbW7+/P3/SBvgdqTk7OgO1f9EkRRZHCwsJ+bUOGDAH+a74+VJkKCgoG7Ldy5UruvPNOVq1aRSgU6vddb29vP2XgaHC05aitrQXiCsQXGTp0aL+bcm1tLZmZmX1Kxz72RYvtG+tAbN++nQ0bNnDllVeyZ8+evvbZs2fzpz/9CZ/Ph9vt7rfNgfb3QDzwwAP861//oqKighdffPGAv+/h8EWflCM9Tz9PbW0toihSVFTUr30g0304HOa+++7j6aefprGxsZ9/0eeV1Nra2j6l6WBj7t69G4grXAPxxd/kQNxxxx3MmDGDQCDAG2+8wcsvv9xvaay9vZ2enh6eeOIJnnjiiQHH+OJ193m6urr45S9/ycsvv7xfv8N9SRg1ahTDhg3jlVde4ZprrgHiy0TJycn9jsdgj/lA1NbWkpGRgdPp7Nf+xd9h3/Uz0G9eWlrK4sWLv9RB/fnnn6egoACLxdJ3jRUVFWG323nhhRe49957+/U/1OtL58RDV1wOE1VVSU1NPeBb9RfXnw/0hn2gdu0QHEMPV6aB/AIqKyuZO3cuw4YN48EHHyQnJwez2czbb7/NQw89dEAnyM9zoDBgRVEGbD9WcnwVPP/88wDcdNNN3HTTTft9/9prr3H11Vf3azvUCIcNGzb0PdQ2b97c783zQFitViD+cBqIfYrgvn77+CrO04H4wQ9+wNNPP82Pf/xjpkyZgsfjQRAELrnkksP6rfdt89xzzw0YtjzY6KcRI0Zw6qmnAnDuuecSCoW49tprmT59Ojk5OX3zXH755QP6d0DcunAgLrroIj755BN+8pOfMHr0aJxOJ6qqcsYZZxzROX7xxRdzzz330NHRgcvl4t///jeXXnppv/0+2sf8WLAvzUAkEhnwReTFF1/knnvu6XfP0SOIvvnoisthUlRUxJIlS5g2bdpXcqGoqkpVVVWflQVg165dAH3ObUdDpjfffJNoNMq///3vfm/fA5nWD6Sg7HNc7Onp6Zdz4susF4crxxfJy8sD/vvW/Xl27ty5X98lS5bg9/v7WV127NjRb6yB0PaGaJ5yyil9Tquf5+677+aFF17YT3E5FILBIFdffTVlZWVMnTqV3/72t5x33nl9SxUHIiUlBbvdvt/+7mPnzp3Y7fY+R89jQV5eHqqqUllZ2e+NeyCZ/vGPf7Bo0SJ+//vf97VFIpH9olTy8vIG9bvus/Kkpqb2KR5Hg/vvv5833niDe+65hz//+c990VKKohzyPN3d3SxdupRf/vKX3HHHHX3tA+3foeYEuvjii/nlL3/Ja6+9RlpaGj6fj0suuaRfn8Ee84HIy8tj6dKlBAKBflaXga6vgdohfo0lJycf1Nry+uuvE4lEePzxx/c7V3fu3MnPf/5zVq5cyfTp079UZp1vDrqPy2Fy0UUXoSgKd999937fybJ8TDI7Pvroo33/1jSNRx99FJPJxNy5c4+aTPverL9oNn766af36+twOAYcc99DY8WKFX1twWBwwBDNoyHHF8nIyGD06NE8++yz/Uze77//Ptu2bevX98wzz0RRlH7HFuChhx5CEATmz59/wHn2hWheffXVXHjhhft9Lr74YpYtW3ZEYcu33HILdXV1PPvsszz44IPk5+ezaNEiotHoQbczGAycfvrpvPnmm9TV1fX7rq6ujjfffJPTTz990L42h8O+Y/fHP/6xX/vDDz88oLxftN488sgj+1npzjzzTFavXs2nn37a19be3r6flXHevHm43W7uvfdeJEnab7729vZD2pd9FBUVccEFF/DMM8/Q0tKCwWDgggsu4LXXXmPLli2HNM9A5zgMfHz2PdwHe18pLS1lxIgRvPLKK7zyyitkZGQwc+bM/eYfzDEfiDPPPBNZlvulJ1AUhUceeaRfv89fi5+XfcuWLbz33nuceeaZB53n+eefp7CwkO9///v7XV//7//9P5xO5wEtzDrfXHSLy2Eya9YsrrvuOu677z4qKio4/fTTMZlM7N69m1dffZU//OEP/RJXHSlWq5V3332XRYsWMWnSJN555x3eeustfvazn/UtAR0NmU4//XTMZjMLFy7kuuuuIxAI8H//93+kpqbS3Nzcr++4ceN4/PHH+fWvf01xcTGpqanMmTOH008/ndzcXK655hp+8pOfYDAYeOqpp0hJSdnvIXo05BiI++67jwULFjB9+nS+853v0NXVxSOPPEJ5eTmBQKCv38KFCznllFO4/fbbqampYdSoUbz33nv861//4sc//vF+/hmf54UXXsBgMAwY3gtw9tlnc/vtt/Pyyy9z8803D2q/P88HH3zAY489xp133snYsWOBeG6b2bNn84tf/ILf/va3B93+3nvvZfLkyYwdO5bvfe975OfnU1NTwxNPPIEgCPv5BhxtRo8ezaWXXspjjz1Gb28vU6dOZenSpf18gfZx1lln8dxzz+HxeCgrK2PVqlUsWbKEpKSkfv1++tOf8txzz3HGGWfwox/9qC8cOi8vj02bNvX1c7vdPP7441xxxRWMHTuWSy65pO/8e+utt5g2bdp+yupg+clPfsLf//53Hn74Ye6//37uv/9+li1bxqRJk7j22mspKyujq6uL9evXs2TJErq6ugYcx+12M3PmTH77298iSRJZWVm89957VFdX79d33LhxANx+++1ccsklmEwmFi5ceFBrxcUXX8wdd9yB1Wrlmmuu2S9sfbDHfCAWLlzItGnTuPXWW6mpqaGsrIzXX399QN+Y3/3ud8yfP58pU6ZwzTXX9IVDezyeg9ar2pdm4IvO3fuwWCzMmzePV199lT/+8Y/9Uj3ofMM5HqFMJyJfDIfexxNPPKGNGzdOs9lsmsvl0kaMGKH99Kc/1Zqamvr65OXlaQsWLNhvW0C74YYb+rUNFMa6aNEizeFwaJWVldrpp5+u2e12LS0tTbvzzjs1RVGOqkyapmn//ve/tZEjR2pWq1XLz8/XfvOb32hPPfXUfuGYLS0t2oIFCzSXy6UB/UKjP/vsM23SpEma2WzWcnNztQcffPCA4dBHKseBeO2117TS0lLNYrFoZWVl2uuvv64tWrSoXzi0psVDZ2+66SYtMzNTM5lMWklJifa73/1OU1X1gGPvC9GcMWPGQWUoKCjQxowZo2naf8Oh165d+6Wy+3w+LS8vTxs7dqwmSVK/72666SZNFEVt1apVXzrO9u3btYsvvlhLTU3VjEajlpqaql1yySXa9u3b9+t7pOfpQGHw4XBY++EPf6glJSVpDodDW7hwoVZfX79fOHR3d7d29dVXa8nJyZrT6dTmzZun7dixY79QX03TtE2bNmmzZs3SrFarlpWVpd19993ak08+OeB5sWzZMm3evHmax+PRrFarVlRUpF111VXaunXrDnrc9oVDv/rqqwN+P3v2bM3tdveF27e2tmo33HCDlpOTo5lMJi09PV2bO3eu9sQTT+x3zD4fKtzQ0KCdd955mtfr1Twej/atb31La2pq2u/4aJqm3X333VpWVpYmimK/fR3oGGmapu3evVsDNED7+OOP9/v+UI75QHR2dmpXXHGF5na7NY/Ho11xxRXahg0b9ttHTdO0JUuWaNOmTdNsNpvmdru1hQsXatu2bTvo+L///e81QFu6dOkB+zzzzDMaoP3rX//qOxYHup/ofHMQNO0oedfpHDOuuuoq/vGPf/SzFOjo6Ojo6JyM6D4uOjo6Ojo6OicMuuKio6Ojo6Ojc8KgKy46Ojo6Ojo6Jwy64nIC8Mwzz+j+LTo6Ojo6R8SKFStYuHAhmZmZCILAP//5zy/dZvny5YwdOxaLxUJxcTHPPPPMMZfzy9AVFx0dHR0dnZOAYDDIqFGj+NOf/jSo/tXV1SxYsIBTTjmFiooKfvzjH/Pd736XxYsXH2NJD44eVaSjo6Ojo3OSIQgCb7zxBueee+4B+9xyyy289dZb/ZIrXnLJJfT09PDuu+9+BVIOzDc+AZ2qqjQ1NeFyuQ45bbaOjo6OzsmFpmn4/X4yMzP3S9p3NIlEIsRisSMeR9O0/Z5tFosFi8VyxGOvWrVqv1IW8+bNG7DC+1fJN15xaWpq2q+yrY6Ojo6OzsGor68nOzv7mIwdiUQoyE+kpXXgIqiHgtPp3M8H8s477zxoVuLB0tLSQlpaWr+2fbWvwuHwcSto+Y1XXPYVzquvrx90KXsdHR0dnZMTn89HTk5Ov6KrR5tYLEZLa5jazZfhdpkPexyfP0beiBf3e74dDWvL15lvvOKyz4Tmdrt1xUVHR0dHZ1B8Fa4FLpcRl/vwH8MaKnDsnm/p6em0trb2a2ttbcXtdh83awucBIqLjo6Ojo7O1xFV01CPID7mSLYdDFOmTOHtt9/u1/b+++8zZcqUYzrvl6GHQ+vo6Ojo6BwHVLQj/hwKgUCAiooKKioqgHi4c0VFBXV1dQDcdtttXHnllX39v//971NVVcVPf/pTduzYwWOPPcbf//53brrppqN2DA4HXXHR0dHR0dE5CVi3bh1jxoxhzJgxANx8882MGTOGO+64A4Dm5uY+JQagoKCAt956i/fff59Ro0bx+9//nr/+9a/MmzfvuMi/D32pSEdHR0dH5zig7f3vSLY/FGbPns3BUrcNlBV39uzZbNiw4VBFO6YckeISjUa/8d7LOjo6Ojo6xwKVI/RxOQKl50TmkJaK3nnnHRYtWkRhYSEmkwm73Y7b7WbWrFncc889NDU1HSs5dXR0dHR0dHQGp7i88cYbDBkyhO985zsYjUZuueUWXn/9dRYvXsxf//pXZs2axZIlSygsLOT73/8+7e3tx1puHR0dHR2dExr1KHxORga1VPTb3/6Whx56iPnz5w+YAvmiiy4CoLGxkUceeYTnn3/+uHsd6+jo6OjofJ05nMigL25/MjIoxWXVqlWDGiwrK4v777//iATS0dHR0dHR0TkQh+Tj4vP5UNX9jVOKouDz+Y6aUDo6OjrfBGRZIRyK4usNEw4feUE9nW8W2lH472Rk0IrLG2+8wfjx44lEIvt9F4lEmDBhAm+++eZRFU5HR0fnRERVVHy9QZoau/nkk928804FH320k6rKNoLB6PEWT+drwledgO6bwqAVl8cff5yf/vSn2O32/b5zOBzccsstPProo0dVOB0dHZ0TDVlW6O4K0NEe4O23N+L3RSgoTMXrtdPrC9HZ6ScWk4+3mDo6JyyDVly2bNnC7NmzD/j9zJkz2bx589GQSUdHR+eEJRyMEZMUtu9oprQ0E7PNyNbtjWze2kBDYzeyotLW4aeqpp2Gpm58/shBk4LpfHPROLKIopP1rBl0Arru7m5k+cBvCZIk0d3dfVSE0tHR0TkRicVkgoEIGho2mwmLzYTRbMTlshEMRRk2NJNtO5tYX1FLrz+CzWZi2JAMZk8bSka65yupSKzz9eFIQ5pP1nDoQVtc8vPzWbdu3QG/X7duHXl5eUdFKB0dHZ0TkUhYQpZVjEYDuXnJOJ1WNm6u55HHluAPRNixq5m33ttMY0sP0ZhET0+ItZ9Vs/TD7fj8+/sP6nyzUbUj/5yMDFpxOf/887n99ttpbW3d77uWlhZ+/vOfc8EFFxy2IPfffz+CIPDjH/+4ry0SiXDDDTeQlJSE0+nkggsuGHB+HR0dna8DqqKACDa7maQkJ5VVbaxas4fsnERGjcxld3UbZUMzufj8CXz7wslcftFkZkwdQktbL13dgeMtvo7OCcGgl4puvfVW/vWvf1FSUsLll1/O0KFDAdixYwcvvPACOTk53HrrrYclxNq1a/nLX/7CyJEj+7XfdNNNvPXWW7z66qt4PB5uvPFGzj//fFauXHlY8+jo6OgcS0xmIzZNw2g0EI3JVNd2YLOaiEYkzCYjo4fnEIvJfLJqD7V1nbicViZNKGT2tKEoykn6+nwSo3Fkfion6xkzaMXF5XKxcuVKbrvtNl555ZU+fxav18vll1/OPffcg8vlOmQBAoEA3/72t/m///s/fv3rX/e19/b28uSTT/Liiy8yZ84cAJ5++mlKS0tZvXo1kydPPuS5dHR0dI4lDqcVRVGJRmKoqkYkIlFb10lWVgIej43mFpE/PLGMzq4AokFEFAQ2bq7nW+eP5/xzxh1v8XW+YnQfl8PjkBLQeTweHnvsMTo6OmhtbaWlpYXOzk4ee+wxEhISDkuAG264gQULFnDqqaf2a//ss8+QJKlf+7Bhw8jNzT1oJt9oNIrP5+v30dHR0fmqUBSVcERGAJKTnBgMIpqqoSgqW7c30d0TAuDzfrifra8hoOd30dEZFIO2uHweQRBISUk54slffvll1q9fz9q1a/f7rqWlBbPZjNfr7deelpZGS0vLAce87777+OUvf3nEsuno6OgcDkajAYOsIEkK5WVZ+P1RhpdnoigqnZ0BCvKT6eoOEolIGI0iXo8ds9lEZ2eA/Nzk4y2+zlfIkTrY6s65X0JHRwfXXXcdl1xyCVu2bDniievr6/nRj37ECy+8gNVqPeLx9nHbbbfR29vb96mvrz9qY+vo6Oh8GXa7BYvZiKIopKW6WbhgFD5fhHBYwuEwYxAF0tM85OcmkZ2ViN1uwWAQcDosx1t0na8YFeGIPycjg1ZcrrrqKtLS0jjvvPM488wzjzhh0meffUZbWxtjx47FaDRiNBr58MMP+eMf/4jRaCQtLY1YLEZPT0+/7VpbW0lPTz/guBaLBbfb3e+jo6Oj81VhMIrIiobTaSMWU3jymRW8t3QLoXCM4WXZGAwioXAMXyBCMBRFFKCkKJXk5EP3EdTRORkZtOKyfv16Lr74Yi666CJaWlpob28/oonnzp3L5s2bqaio6PuMHz+eb3/7233/NplMLF26tG+bnTt3UldXx5QpU45obh0dHZ1jiaqqBINRdu1uoaXVh88XJibLJKW4mDChEJfTgstpxWG3kJWTyOTJJZjNh7Vyr3MCo1tcDo9BXynnnnsut912G/n5+YwcOZLU1NQjmtjlcjF8+PB+bQ6Hg6SkpL72a665hptvvpnExETcbjc/+MEPmDJlih5RpKOj87XGZjOjqho7d7fgclopKU5FkTXe+mAjMyeVMHRoBj09QTwuG063jab2XpK6HbicR2/ZXOfrj6YJaNrhKx9Hsu2JzKAVl0cffZSXX36Z7u5u7r777mMpUx8PPfQQoihywQUXEI1GmTdvHo899thXMreOjo7O4aCqGiazATUQX06XFQVFUTEYReoau/j9E0sYWZpNcWEqveEoNRuq8AcilBVnHGfJdXRODAatuIiiyGWXXXYsZWH58uX9/rZarfzpT3/iT3/60zGdV0dHR+do4Q+EiUZlpJjC+LH5OJ0WykqzSE50MmNyCUs+3kEgFMEXCCMIAoFQlMLcZDwu3dpysqHs/RzJ9icj+qKqjo6OzlEiJsm0t/mwO6zIajwc2ma38N4HW6nYXM/smcMozk/FYjKiaRqCABaziaREfZnoZERDRD20dGr7bX8yMqi9PuOMM1i9evWX9vP7/fzmN7/RLSQ6OjonJbGoTMAfwWI2YjGbqGvo4p//WU99Qxe79rRisxiRIjLvLt3C408t54VX17BhUx1STEHUK0OfdGhH4XMyMiiLy7e+9S0uuOACPB4PCxcuZPz48WRmZmK1Wunu7mbbtm18/PHHvP322yxYsIDf/e53x1puHR0dna8dsqSQlOyitqad3PxkVq+tZN2GGjweO+eeNYb2zgCvvfkZkqxgsRiRZIX1m2qRZIVz54/G67Ef713Q0fnaMyjF5ZprruHyyy/n1Vdf5ZVXXuGJJ56gt7cXiGfRLSsrY968eaxdu5bS0tJjKrCOjo7O15FoREIUBSwWE0uWbuWqq2fS64v7sfj8YcaMzOXjNXuorO/AF4hgs5kxmwzYrCZUVWPq+EJdcTnJONKQZj0c+kuwWCxcfvnlXH755UC8CGI4HCYpKQmTyXTMBNTR0dH5OqMoKi1N3WxeX0txaQYJSU6MBpGODj/pqR7cbhsWixG3y0ptQye+QARRFPqWhsIRibYuPx3dQYYc533R+WpRNQH1CEKaj2TbE5nD9uzxeDykp6frSouOjs5JTWtzD/96ZS2fLN/Je/+qwGw2MmlyMZ+s3MXQ4jTS09yUFKZiNBpwuayIooDBICIa/vvQiUoyCbq1RUdnUOhRRTo6OjqHSSwqs3VjHQF/mDETC0hIcuL3hSkoTCEQiGAxGZk7o5Tahi4kWWHimALWbKhBlvs7444bmU9SouM47onO8UA9wqiiI9n2REZXXHR0dHQOk1hUQtNg/rlj8fvC7N7ZTCgUZfzUEsqGZxMJS2Rkehk3Nh+rxURGpof/WTSLD1ftpKq2A4fdwriRucyaOhS7XS+yeLKh+7gcHrrioqOjo3OYiAaRwpI0lr23hd7uIKMmFuL02Ghp7iYzMwGnw4zZbEJRNUxGkW5/CJvLwiXnTURRVARBQBPAZjdj0WsV6egMiqN6pSiKgsFgOJpD6ujo6HxtMVuMtLf5cHvtDBuby7pNdbS29TJ7+lBciQ68FjuVjZ1U7GxAVTXmTRmGaBDZWdOGJCs4bWbys5LISvVgMur3zpMN3Tn38DgqisuuXbv461//ynPPPUdzc/PRGFJHR0fna08wGCUSkcgbmsbjz67A5w/zP9ecQkiW2FrdgtFg4Nm3PiXJbeeKBRPYVtWCyWhgaF4qFrMRQYAEtx2r5cQNcpAkhd5AGF8wgigIeFw23A4rBsPJ6X9xKGgIaEew3HMk257IHLbiEgqFeOWVV3jqqadYtWoV48eP5+abbz6asuno6Oh85UhSvAKMyTQIC4iqkZTiYs3mOtq7/Jx35hhimsrz/1nLj644hf98tBUBgeljijCIIjaLCVlRqdjRQILbTnKCE38wSm5GAi7HiZfyPxKV2LKnmY/WV9LQ2oMoChRkJTFnYglFOSm6FUnnmHDIisvq1av561//yquvvkpubi7bt29n2bJlzJgx41jIp6Ojo/OVEAhGaGn1UVXbjgDk5yWTkerBeZAaQla7GW+ik9rGLvILUhk7Np9/r9hCaoqbRI+dcEzCYjJSXpgGGtQ1dYEAacluZFmhsr6d3PQEJPnELJfX2NbLP5dtIhyRgHhl7Mr6DvzBCFcunEhGiuc4S/j1RnfOPTwGbcv7/e9/T3l5ORdeeCEJCQmsWLGCzZs3IwgCSUlJx1JGHR0dnWOKPxBh+65m2tp9pCW7SU1209MTYndlG/5A5IDbWSwmXB4bBQXJeBMcIEBLp58J5bnYLCZ8/jDdviAepw0NSE92090b5u0Pt/DJhiocNgsGg0g0Jn91O3uUiMQkNu1q7FNaPk9bV4Ddde0oqnocJDtx2Ke4HMnnZGTQFpdbbrmFW265hV/96le6A66Ojs43Bk3T8PnDiAhs297Epi31pKa4mTShkKKCVKJR6aCVm61mIyNLs3E6raQmuhian0ppQRq+QIRRQ7JYvm4PTruFju4gT762im2VLQAIArz/yQ6uOm8yWWner2hvjw6aphGJSnT2BonGJDJTPGSmegFo6fDR3h2g2xdCVTV0V5cDo1eHPjwGrbjcfffdPP300zz33HNceumlXHHFFQwfPvxYyqZzAhEMR+nxhQkEo9htZrwu20Fv9jo6XxcCwSiBQJTX//UZO3a1cMkFEykry8RiNiKK8TfaSETCat3fgVZRVMLRGAU5SURlmdrGLqaOysdoMLB0zU6mjCpEVTREQaBiRwPbKltIT3YzYUQubqcVfyDKqopqZowrIj3Z/VXv+mERjUlU1XcSkSTcDisLZpaTmugiFJUQgJFDMunxhUnw2DDqWovOMWDQisttt93GbbfdxocffshTTz3FpEmTKC4uRtM0uru7j6WMOl9zunqDfLy2koptDQRCUawWI2XFGcyePIT0lBPjZqxzcqKoKrKs0NTUzYaNddz2/xZQkJdMd1eA7TtbUBSNwuJU0tLdiKIDs7m/8hKJxBAEkZrGdt5fvZNvLxiHw2YlEIzw6ZZaAqEYC2cNR1ZU6pu6uGTBWMaV5+ILRWjtClCYm8LsSSUIwolh8o/GZBpae3jxrbUU56Vy5oxyNuxq4LF/fMy26hYMokhZYTqXnD6WwuzkE2a/jheqdmQhzap2FIU5gThk59xZs2Yxa9YsHn30UV588UWeeuopZs2axcSJE7nwwgv1yKKTjGhMYu3GWtZU1FBanE5RfjIOu4VYTKa+uRuX3YLDoWcE1fl6IkkK4XCMltZeLvnWRMqGZvDp6kpefXk1ba2+eLhyopNzzh/HrDllJCf3V1z2WWTWbK6ltCCVjt4QT//nU7537lROnTiUih2NLFm1g6vPn8KEkfm43TZeW1bB2m11KKqGQRSYNDyf75079Xjs/iETiUnsqG6jpcPP9LFF9AYjvLtqO7KqMawgHQGQZIV3PtlOQVYSHqfteIv8tUZ3zj08DtuO53K5uO6661izZg0bNmxg4sSJ3H///UdTNp0TAF8gyq6aNs6YXUZRSSobG1t5bc0WPtpVQ0iTiMgnntOhzsmDQRQRDSKZ6V7OOmMUba0+nnnyQ+pqO4lEYoTDEq0tPbz4t5XU13QgfyH6x2w2ggD+YJRx5bms2lzDyooqeoNhJo8qwGgU+XhDJYFghLLidD7eWMW67Q1oe+c2Ggxsr2ll5eZq/KHo8TkIgyQak1AUlar6DrZVtlCUm8L6HfX4Q1EUVaXbH6I7EEbRNHzBCBt3NfWFluvoHE2OSgK6ESNG8PDDD/O73/3uaAyncwKhKColeSmIVgMvflRBbzgCGtABWxtauUIcx5RheZhNejpzna8fJpMBm8VEaWkmJpOB7dsa6ewIED+J42+zqqoRDEbZWFHLkGEZGJ3/DU4IhiVEQaAwJxmbxUSPL8R9Ny5EEATaewNcdtYEtlU209oVICPVze6GdswmAxrxMYwGkdREF3sa2vEFI7i+xvWKRFEgEpUwGQ1kpXpw2MyEohL1bT10+0KIoogoQFuXn2SvE18wgqQog8uHc5KiaQLaESwVHcm2JzKDfpr88Y9//NI+giDwgx/84IgE0jmxsJiNFBem8k7FThq7eunoDRKVZMxGA0keB8u3VlGak0aq13m8RdXRGZBwRMJsMqAqGlJMRhAFBEFAADQtHkGjaRqypO7nU6AoKs0tPYwakonRKPKtU0fjslv554ebWbOlhuHFmYwszsRmNaFp4HZaKS9Kpyg7hfREFwaDSEN7D80dPlTt6+2wEI0p7KhuZfrYIrZXtSCKAmmJLrp9oXjNJU2LZ3IVoKMnQHqSS6+/9CUoiChHEBl0JNueyAz6rHrooYe+tI+uuJx8uJxWArEYm2tbqGnpYt+9V1ZU1J4AW2pb6A6GdcVF52uJJMkEglGikRiZGV6GDMvE67Hh88dzt4hCPK263WZmyLAMLJb+t0yrxUhVbQdFhak47VaiUQVF02jq6EVRNXr8IVx2Mx6XDbvVxPRRhRRkJBKOSFQ3dmGyicwYWYjBIOIYIGrpaBONyXT1BKmu6yASlcjPSSY1yYlzEFl7BQEEBFxOC2fOKCMqyeRlJDC8OJNtVS17O8X/r7wwndyMBBRFxSCenA9XnWPHoBWX6urqYymHzjEkJitEZBkBsJlNGI/ijURVFARBQFYUjAYRRY2HfppMBgwGA6FIFD2wQOfriigKBAJRCvKSMBoNZGUncObCMSxZvBm/P4IggMtlY9KUIkqGpsd9Wj6HzWpmeGkW73ywmUvOm4CKRiwmE4nKzBlfwtkzh6NoGgICZqOBcUNzeGPZJt78aAvRmIwoihRmJnLdBdOwW8wAhKMSMVnGIIo4rOajFpkTjUnsqWmnrcNPoteB02GltcNHe5efoYVpeN32g25vMRsZkp/KWyu24HHG6xF1+cN89+zJrNhQScWuBgDGDM1m5pgiVE3To4q+BHXv50i2Pxk5qna8xsZGsrKyjuaQOkeApmn0hCP0hMIEozFAwGU1k2C34bYdnRwr/nAMoygwIi+D3c2d/51b1YjJMsOys4/aXDo6RwtJjkcTGQ0iWVneeFh0WEFVVGbNKSMrK4HdO1tQFJWikjTKR+bEM+MOQHaGl4vPnoDBIFLb1El2WgJnTi9jWF4qUVmhrdOPy2ahrdtPZ0+QDTsacNmsmE0yFpMRURT5aH0lw4syqO/oYd3OBpq7fHgcVsaVZFOSlYzDduS+L/5gFE2DSEzmPx9sJhSJUZSbwshhWfgDEVxO60GtI1FJxmoxEZMUrBYTBoOIhsbWmhZmjCli7oQSEARkWaG6uYtJZbl6raIvQUM8oiRyegK6I6ClpYV77rmHJ598klAodDSG1DkK+CNRqtq7WLJtD5sa4lW7R2VncPrwEopTk3BajvxmGJMUQtEYU0vzaejoZc2ueJinoqoMyUrmvMnDserOeTpfI8LhGMFQlJ7uIAkJDlRVw2gQqa/r4O1/fsbZF0yksCSNwpJ4fSGDUcRhtxyw2rHRaEBSVWIRBVnR8IejlBemYzKINLf7+PfSzcyfVYbZbGTxqh30BMLkpicwd8IQUrxO/KEIyV4ntW3d/N9/VrO7qYNwVMJsMvLRpioWzZvA1PJ8LEfo4B6NyqzdXMsb71b0+dNs3N7I+q31fO/S6SQnOrFZzQfcPh6BJZCR4mH0sCx6A2GsZhMpXgf/WFaBzWreGw4tM29SKWmJriOSV0fnQAz6Suju7ub666/n/fffx2w2c+utt3LjjTdy11138cADDzBy5EiefvrpYymrziEgqyqtvgCPfbCKrU1tAIiCQE1HD5XtndwyfzaO5CMzQyuqiqppRGMyNpORS2aO5tQxJTR09pLscpCZ6MZpMWM26g56Ol8PAsEIiqxSW9vJtq2NTJxYgMlqwuK1s2NrI8uXbqNyTyuTppaQW5AMmkDlrhY8XhsLL5iw31IRgCwrbKtuIS89gYwUNy9+UMHV88Zjtluo2N5ATWMn4l7n1VBE4tSJQzl3zgiCkkRLr5/0BA/5SQk8+/5nrN3VgKrFFwDCMYneYIQ3V21lWE4qGUlHlszRF4jw7vKt+zkB1zR0UrGtnoKcg9ecs5pNBMMxcjMT8LrsbKtrJTfVy9gh2aQluthS2YLRKDKyKJPsVK8eSTgIVE04wgR0J+dS3KDPrFtvvZVPPvmEq666isWLF3PTTTfx7rvvIooiH3zwAZMnTz6WcuocIlFJZlN9C5/VNqERv1GJgojFaGBLYxtbG1vJ8rqP6C0uHIlhMxvBYaU3GGFHYxvdgTCiKBAKRuk1hSlMT8R+kLc4HZ2vEqPRQHdXkEgkRmFxKuGIhGaIRxFZrCY0VcOb4GTY8GyyshMBcHlsBHyRA1pcwjGZ2uZuHFYTCV4HNc2d9ATCOKxmdlS10t7lR5IUjCYDF502isK8FJZuq2Tp1j2EJZnJRTlcMmkUn+2qR1HVvQ7u8XBsQdBYv6eJrkBoQMUlKsnIiorZaPjSZZnWDh+hiISqashKXDkyiCKiKNDQ0oMsH9xjQlU1qhs78YdjCCIkue00d/q466nFDMtNozAzkYik8ey7a3HazNx4wYwjVra+6egJ6A6PQT+13nnnHZ555hnmzJnDjTfeSGFhIaNHj+bee+89lvLpHCZRSaams7tPaQFQNZWIpGEzm6jv6kVWVQ53sUhRVCRZpbMnyI6aNip2NTB9TBEF6YkYRAGbxYTVbMSuv3XpfE3QNA20eIhzW7uf51/6hNKhmVx66RSiMZnyETl878ZTmTJrGE1NPbz//hYUWWXU6FzGTizEdoAcK6IoYDYZ2FHbxty0oaQmOPFHYpiMBpK8DqKxuON6ksfOkNwUVlXW8e7mXQRiMULRGB6HBQEBjbhy8N9rVkPQBCRZ2c+hPhqTaer0sbuhnUhUwmW3UpKTTHqi+4D1gZwOCx6XjcbWnvix2IvHZSPBbT+gYrYPWVGoa+0hFpMwGES8TjtvfbKNlk4/HT1Bqpo6EBBo7vRhNIqcPW24rrh8CdoRWlz0PC5fQlNTE6WlpQDk5+djtVq5/PLLj5lgOodPOCYRjMVIdzsR9mrk+1KTq3sTUaS6nZiOoMq3LxzZGz0hsWFnA7XNXTR3+rjmnMnkZiQQlRViskIgJmG2mI5oLh2do8G+XCOhcIwXX15FV1eQppZuvG4bjS29FOUmMTtpBO+/t5lnn1qBhsapp41AEAV6fCFkRcHlsu1XwsJuMTG8KJ0NuxqxWowsOmM8oipiNhqYMbaIaEwGEdp7gnjcNtbXNlHX3YM/EkVAYGdLBxeMMzF5WC7balr7ReFpaEwckoP7c+HKkqxQ1dxJR2+QFK8TVYtH8tW2dCErKnlpCQMuAWekeCjOT8FoFOn1h1FVDYfNjMtppWxIBnbbwcOxDQaRjGR33KIalhAFaO0KMH9yKdNGFGDfG84dlRU27m6gudN3BL+Wjs6BGbTiomkaxs/5KhgMBmw2vQ7F1xFZVans7GJMXhajsjPY096JrMbNwCazyLC0FMbmZWA+TI//UCSGPxjFajBgs5rxByNkpnq58eLpxFSVFTtr+GDrHjoCIYrTkphTXsT4Aj26SOerRdM0AoEofl8YRVFJTnahaCoNjV10dceDCMaOzmdPTRuKpqEJSbS1+fjn6+swW4x8+4pplI/MYX1FLe8u2YrBKDK0JJ3Jk4rIyU7ss1AIgkB+ZhIuh5UddW1ked08+dLHZGcmcN4ZY0hNdvH2uh30BsLkZyfS2N1LKCb1RfB0BMKYjSJzxpRQ29bDik2VfUs5w/PTuXTuGFyfiyoKhmNomkZzl4+PNlfT3hMgI8nNzJGFpHhdBCMxnF+IQtI0DUlROGXyEN5avgWL2RTPyyLAhJH5ZKR6iMUUjLaD3BM0KMpOYmtVC92BMKkJTs6ZPpyILPPRxirW72pE0zRGl2Qye3QxJdnJR/Pn/EaiIqIeQWTQkWx7InNIisvcuXP7lJdwOMzChQsxm/v7L6xfv37Qkz/++OM8/vjj1NTUAFBeXs4dd9zB/PnzAZg9ezYffvhhv22uu+46/vznPw96juOJqqp0hyO0+P30RqKkOh2kOB14rMf2AW4xGVEUFa/DyvdmT+A/FTvY3Bh/kxuRlc7Zo0tJ9xy+x384JuG2W4hEJJx2CyOKM5kzeQhRVWHZ9irertjBxMIcRudlEpYkFm/ajaJqzBxWgOUgjrqKqtIdCNPWHcAfjpLmdZLkcfS7aevoDAZN02hq6Gblih3s3NFMJCKx4OwxDBuRjaZBSrKTzq4gublJrFpfTWVNOxNH5bN1awOhcIzhw3MYN6GQV177lE/XVREIRDGbjeza00JNXQeLLp9GRroXiPt6GcR4kjo0jQ1b6mhvD9DS6sNkMHDGqcORFJUFU0oxGgykelxIStw7QRDiSe7aeoOkeBxcc8ZEThtbQl1bN8keJ0WZSWQkuvot7ciqyme7G3l28VrkvT4xrd0BttW08v2FU0hNGDjZY1V9B0ajgUsXjqexpYdQJEZuZiJWi4mqhg4yvqSSeygaQ9lrpVm7s45544eSkeLmvueXsmFXI+zdn3fX+GnrCnDbFXOPym/5TUbbu3R5JNufjAxacbnzzjv7/X3OOecc8eTZ2dncf//9lJSUoGkazz77LOeccw4bNmygvLwcgGuvvZZf/epXfdvY7QdPkvR1QdU0qrt7+Pe27exo70DVNCxGIxOys5g/tIRU57HLJGs2GBiTk0llVxftsRAXThrBwlgpCHsjA+QYvdEodvPhOc0aRAFNg5q2LkqyUpg9oQSjyUBLjx+jKPKD06fR0uOjqctPmsfJ2PwsJEWhNxQh1T3wfiuqSnVLF29/up269u6+paWxJTnMGVVM0pckx9LR+Ty9PSHef3cTWzY3EAxFURSVnu4QqqKSk5NITk4SZosJs9mI1WLkf66atdcxNr6UNPe0MmrrO/nwo53xQoFCXBkKBqOs31jHxPGFpKa4icVkfMEIUUUhFJWwmkxs2tFIXVs3bruV9VvqGTMql/xUL9FYPE/M7GEFLN9RSYc/FL+OOnpo6O5FblEoy0tjpDOD0rw0TAYRQRBo6vSRk+IF4tWsQ9EYSz7bRSgqIQjxpapQTEZSFJZV7GFyeR5e+lvDBUEgNzORp15fRXqym7zMRBwOC7vr2tlV28b86WXYrCaCkbg1x2YxDZDTRcAfimC3mtnR0I7DaiHRZSMSk0ny2PEFoxgMAgkuO4qmsaOujYwkt57LReeoc9iKy9Fg4cKF/f6+5557ePzxx1m9enWf4mK320lPTz/qcx8NApEoUTnueOe0mPtd6L2RCO/s3MW2tva+tqgs83FNLW6LhflDh2A9ho6rVpORbZ3tvLx5Eyk2O4WJiViMRrqjYbrCYb49YhRpTifiYYRDW80meoMR/KEomiBgMhvQNA2X3UJOkpdnP1zHhppmVE3DIAiUZqVy7dyJGMUDz9UbjPDJtmry0xKZMbwQ+K8ys6m6ienlBfoNUGfQtLf5qNhQS0trb9+ySyQmsXlbA8NKMpg6uZjlH+3E5wsze8pQkpKcNLX2Uj48G7vdTHZOEh+v3kNMUuJeYlo8IkkQBCRJpra+A0UpptsXoq0rwLqqBlK8TorSkzAYDYSjMcaNzGPK2AJSEl2kp3p485OtKGikeB3cvnAOy7ZXsqulgwSHFY/TSlSU+PN/VjG2KIsElw1/OMrmqmYWTC7FZjZR3dxJbyCCy2FFUmQunDmSMcVZGA0isqJSUdnInsaOA0YHpSe5mTwyn4/XVxLeWyyxxx9mbGkOQwpS2VrdytbqFmRZoTAriaG5qSR7HH3+MnarCZPJgCiK2MwmZFXhs10NmIwG8tITUVQVAQGjQcRkNNDa5ScmK/p1exD0paLD46g8OX0+Hy+88AJPPvkk69atO6wxFEXh1VdfJRgMMmXKlL72F154geeff5709HQWLlzIL37xi4NaXaLRKNHof8vD+3xH30EsKslUdnSxtrqe5l4/LquFMbmZDM9M6/Pj6AqF2dbaNuD2m1tamZafi9V07KwusqYRlOIOuoqqUdXbjVEU+xSV9lAQRVURD8NpNiLJCAgMyU4FTSMiSdjMJhxmM8u3VrJmT32/YnQba5t5p2InQzNSDjimLxihPC+D1m4/b6/dTncgTHqCi3El2SS67AQiURKcutVFZ3B0dQVpbfchyUqfOT0ciSF1+NlT3c4Zc4aTmZlAbV0Hmeke/KEYyz/ZydmnjeK7352N0WjE5bQgEHdst9pMGI1iXy0ep8OKrGpUN3RithrZ1dROTzjCqKJMpk8oIiPVTXFxGut2N2ByGhlZlMWupg4qW7s4d2Y5UVli4djSvmih7nCY8ow0Lp8zlorKJrbXtZHosnPhzFHkpnrZXtvG68s3MqE0j1ElDn543kzaewK8++kOWjr9pCe5mDGykJkjCzGbB76mnQ4LcycPZfzwXHoDEVRVw+2w4nJa+HhTNWu315GZ4sEgiqzcVM32mlbOmTGib+lJFARcNgsGQWTmiALq23vITHKzflcjiirutZJqsNd3xu2wHjDCSSeOHg59eByR4rJs2TKeeuopXn/9dTweD+edd94hj7F582amTJlCJBLB6XTyxhtvUFZWBsBll11GXl4emZmZbNq0iVtuuYWdO3fy+uuvH3C8++67j1/+8peHvU9fhqZp7Grr4PlVG/BF/qsgbWtq46xRw5g9pBCb2URMkZHUgd98glJ8rfhYYjYYSHU4MAgiA+kmWW73YdcsikoyDqsJUYCtVS0MyU/FbDQSiMbY2dSxXwVdDY3dzR2EYrEDjmkxG6lv7+HNNduQZQVV02jvDVLZ3Mmls0djFBMPS1adkxO324amacRiCrKiAFCxoY4LLp7Ey/9cS3t3kPGjchk2LDNea0tVsNvMVDd0MGPWMARBYNSIXPLykunuDsRDlTUNQYVEr4ORw7ORJIX6xi4mjCsgIim8vXo7dpOJb80cRVqahwdfXU5jh4/zZo7AF4qQmuCkyxci0+shOzmB6s4u6rt7cVrMlKan4rFbSfU4yU7x7q39ZcBmMdHtD/Hxpip8oSi9wTAOmwlfMMJj//yEYCSKqhG3TFY187/fmsXQnNQBj4mqqvT4w2zc3UQsJqOhkZueQCAaRVU1zp05AklSUFQNi9lIIBylqqmDRLcdo0GkqzdEQ2sPacluijOTyUtPJBiO8Z8129nV3I7RYCDJZSfF7cRpMzOyKOOIs/3q6AzEIZ9VjY2NPPPMMzz99NP09PTQ3d3Niy++yEUXXXRYWViHDh1KRUUFvb29/OMf/2DRokV8+OGHlJWV8b3vfa+v34gRI8jIyGDu3LlUVlZSVFQ04Hi33XYbN998c9/fPp+PnJycQ5brQPgjUVZV1vVTWiB+U/t4dy0js9LJMntwW6wkO+x0BPcvgZDt8WA7wAWtqCqKqmIUDX0hzIeDoGmMSktnRW0NnaEQRlGMJ5sSBIoTkyhKSDrsrLkWowFJVpFllc7eIJGYjMtuRo2oOCwmMhNctPuCSIqKxWgg1e3AYTFzAD0OiIdpr95eS3OXj25/GEVVsZiMJHscrN/TyPD8jMM8EjonIy6vjbHjC1m6dGtf25YtDcyYOZRFl05l1foqlq3chappnHXaCDIyEzh1Zik1NR0899InzJw+lPy8ZK66Yjr/fHM923Y0ARqlQzM57+yxpKV5EASB7MwEREHAajTS4w/z17fXUJaXRk84gmqAGy+YjtEgsnZ3PWeMH4YggC8apaKymVA0hsNqJmKQ2d3egc1sIsPjwmYxAf8NTQ6EotQ2d5GblsCw3FQkSWX9rgYsZiPhmIS2twKz3WJi/e5GRhVn7hdVBNDlC1Pf2k2Cy0aXP4QvGCHR4yAck0h02/nH0o1s3N2IJCvkZyQxf2opw/JTiURj2K0Wqps6CUdl1q/aTpLHTkl+Ku3+AIvOGM8Hn+2htrUbTdNI9jo4e2q5nsNlEOgWl8Nj0IrLa6+9xpNPPsmKFSuYP38+v//975k/fz4Oh4MRI0Yc9kPQbDZTXFwMwLhx41i7di1/+MMf+Mtf/rJf30mTJgGwZ8+eAyouFosFy1GowXMgwpJMQ1cvEFdW9lVANQgCXcEQ3aEIWQkeEu02Zhbk86+t24kpKhrxXAsui5lpebm4vyBjTJJp6w2wtb6V3mCE3BQvhelJpLgdh3xsQ7EY7cEgJtHAhWXDWVK5hzpfLw6ziVFpGcwpKCTlCJycrWYTgXAEDY2inGTW7ajjlLHFWEwmcpO8lGalMjwnHafVTESS2dHURltvALvlwHkigpEY2+pa6egN9rVFJZmmLh+7GjuISvJhy6tz8mEyG5lzWjlOl5W1a6sI+CMUFqVisZrjRREXjscfjGfD9bjtKKpKKBDlww93sGlrA7GYzCUXTSYvL4lrrpqJ3x8GwOux4/HYEA0CFrOB3KxENu1qYtaIQj7bXU8kKuNyWFm7p4GFk8uZOCQHfyRKY0cvE4fkEohG+biyhkeXrkIQBExGAxaTkfQEJ+eNKef8UeW4rP3vDYIgcNqEoSS4bYSiMUJRie11bThtFtw2C4qmYRAFVA32NLQTjkn7HQ9N05AkmVBU4qXF69lW1QLEIxCHF2fwyvvr2V7ThtViwm41Ud3UyVP/Xs0tV84lPyORmCRT09RFSV4KuxvayUgp4q112zGbjJw7qZyC9CS6fCEEAZI9DrxOG1bzwfPCAEQkiXBMxiAKJ2W6BE0TjiiJnJ6A7ku4+OKLueWWW3jllVdwuY5d8SxVVfv5qHyeiooKADIyjt/btygIWE1GQjEJo0HEZbUgKSqBSBSHxdzncGszmZicm4PFYGR5VRUdoTAFiV7mFBUyLCUZ8XPLNJKssKWulec+XE9NaxeKqmI1m5g0JJeLpo0kJ9l7SDL2RCL8e+dO/rVtGwuGDuXUwmIsRgMui4U0h5OkI1BaopLMnqYOvA57XwRBa3eAmrYeMhJdXDFzLHUdPXy2p4GGzl6S3HYmFOdw5phheA4S1iyKQtxEbTIiKfGlIoMYT+KF9vn8vzo6X05MkgnFJEpHZDF95lBEUSAmyXT0hOjqDpGbk0BSopNgOEbF7gZGFWexa08LO6ta8XrtjB9XwOLlW4lKChPH5JOS4sJgEAlHJVZX1JCa7GJMeTZGo4FVm6o5e/YIfnPtAoxGA6leF2OLMynLSUNWVYwGkREFGfSEwqiCxqqqOlx2K0kOO2luJ5Ii0+IP0NjTi0EU6A6EicoyZoOI3WLG47Tiddn4w98/YlRJJhnJHgKRGO098ZcBg0FEUTVikkxOircv6eTnUVWNSEzm1SUVfUoLgMlooKs3Ht30nYUTyU1PRCPuD7R+ZwM7atoYVZKFxWzEbjWhqhqpCU7SEl20hoKUZqfy5/dWs6elg4K0JERRoDcU5sJJI5k+7MCFISVFobGrl0+rGtjR1I7LZmFaSR5D0pPx2K34YzGisoxRFHFbLAetWq1z8jFoxeWaa67hT3/6E8uXL+eKK67g4osvJiEh4Ygmv+2225g/fz65ubn4/X5efPFFli9fzuLFi6msrOTFF1/kzDPPJCkpiU2bNnHTTTcxc+ZMRo4ceUTzHgkuq4UxeZnkJyeQk+hBi/uiEYpJmI0G0twOACKyzPaOdnqkMAvKhiIQt9A0BXx4bFaKE/9b0KzTH+IfqzaxvrKhL7OtKEZ4v2IX6Qkuzp88HNsg3l4AYrJMZVcXL27ahM1oxGwwIAjgNJuxiAY0NFRV7ac4HQr+UBQNkBUZVRWwWczIqkowEqO524/JIPKPlRvZ09JFOCZhMRmpbunm6rnjyfQe2HRst5gYXZTJh5ur+m52mgaKqjGqKBP7IPdfRwcgEIySlurGZjETjMRQVRWP00F6upduXxBRFAlHJJrae5AkhUA4SmVdB61dfkxGA4JBoLHNxwef7GDJx9sZVpxBUpKTbl8ISVKYNq4QTYu/aM2fVobZaCAr2UtnOMyGmgYmFeUSjkgEw1E8bjtDs1MQBIHGHh9RSeaa6eMYkr7XWV0AsyBSmJzE1rpWlm+tpLq9m/MnDifRbiMn2cvqrbW0dvlIcBZiMRkZW5LFO2t2EJVkBDlea0kUBEYXZ/ZlsP08giDQG4ywtbKlX7ttr+Jz5YIJbK1u4W+L1xGMxBiam8rMUYU4rWYUVcVkNFBWmIGqqkwfWYjXaWN0fiZr9tSxeOMuBAHqOnsxG+NL3G+ZtlOWnUpGwsDXfG1HNw++8xGBqES610VPOMwj7zdyx3lzqe7tpq63l5gSL3WQ6nAwPC3tmOe/Oh7oS0WHx6AVl7/85S88/PDD/P3vf+epp57ixz/+MfPmzUPT4g/Cw6GtrY0rr7yS5uZmPB4PI0eOZPHixZx22mnU19ezZMkSHn74YYLBIDk5OVxwwQX8/Oc/P6y5jhaqqjA2J5NPqxt4esU6drV2Mre0iMumjsbjsBKQY2gR6I1GeX5TBVvbWgEBl9mM0WDAbbEwOz9EutOJ02xBkhXafQE+3VVHJCZTkJbIqPyMPqe8bXWtnDqyeNCKS0SWWd/chEGA/5k0EbfVTEyT6YgGCSkS3piVXNVLqu3wUv6rqorbbsFkNCBLKpKiUJCRSCgcJS3Ryb/XbMMXjpHicaBpcQuVhsaKrdUUZySTslex+yImo4H5E4bRG4rw2e56VBUsZgNzRxUzeVgehiPw99E5uQgGo6QkuWjr9LNs7S62V7YQikikJbmYNqaACaPyqW7swmY1UbGriZElmTS295KW6iYUiSEIAq3tfjLTPKiqhi8Qpamtl5iq9L35Z6R6cNjMRGMymake2rr9BGJRFlfsQhRhdmkRm3Y0YTAIOBxWbGYTgWgMk0HkhjlTaPL7+b8169jR3o7XauXJi8+jqrWT+95Yhi8UIdFpw2o0UtnUidtqRZIVfvnd+bjsFgyiwOkThhCOSny8pRpBA7NRZGJpLnPHDcEywL1CFAVkRcHtstLd+1+/O5fdQkaKm1eWVvDmyq0oiooGNLb3sqO2jf936WzMpvh9IjPFTTgm4XXbiUgSBqPIuqrGvmrTqqygAQkOG/5IjIau3gEVl0AkSkVtM6eNGEKCw0YwFsNsMFCYnEiPFCGiyKQ7nfiiUWwmE2aDgdqeHoqTkrCbTPiiUbpCIQKxGC6zhUS7DdcxdA84lqjakVV4PsYxHl9bDsk512azsWjRIhYtWsTu3bt5+umnWbduHdOmTWPBggVceOGFnH/++YMe78knnzzgdzk5Oftlzf06ICkaWxpbeX3dFsIxmVOGFXLFjLGEVYmK9maaAj7mFwyl3tfLp40NfWbbkBRfd5acDvZ0dRKMSTjNFmKygiSrSIrKdWdMpjAjiTZfgN5whLK8NBLsNoyHoGDE37xEJmXnkGCzEtMUWsK9vLRrA7t7OnCazczKLuSqYRMYkZh+yMqLzWJCFTSCUQmLwUBbT5AEl52sJDdGk4EdTW009fpwmM2YjYb4RzDQ2NlDIBw9oOISk+ORH5fOHs3CSaXxlOIeZ986+eH6UOmcfESjMTRg9aZq3li8kV5fGA2N5AQnZ84qp6XDz2Mvf8T/XDydYCSKIEBDWw9JSU7GjcqjqaUHk1Fk2oQidtW00tDci9tl7VNa8rISKchOQhRFnHYLHT1BTFYjGgINnT1cNWs80ZjMxl2NjBqa1be0XNfRQ0FKAgFfD79Z9hGBaAwByPV6ETSBdyt20huKgAaZiR4A2nr8WM1GJg/PY9W2Wj7aWMUN500DEc6cXMqp44bQ5Q+R7HHgdlhw2kzxiu0DkJ7opjQ/jd117XT5QiiKiiAK+INRPtpUhbzXyRchbuls7OhlS3ULQ3LiliFF1YjKCj2BMJUtnZTlppHismO3mAhEYhhEcFrNpHucmI2Gvvw5n0fTNMIxmdxkL1saW3lixafUdfXgtVv5y5XnYTIaWNPQwNu7dtEWCGI1GpmSm8P55WUoqkqL38/i3XtY39hESJJwms2My8rk9JLiY5rU81ih53E5PA47Vq2kpIR7772XX//617z11ls8+eSTXHrppQf0T/mmEFNkPtheSVVHNy6LmfPHlxNQYvxl46dsaW/hp5NnYhINyKqC12pjdl4BYzMzcJjNdIfDrG9u7kv1DfGKqwlOGz84cxo2u5lH3vuEHc3xpHUWo4HLp4/py5o5GBRVZXR6OrkeD/5YDKNZ4KGKD/FL8TdJQRBY1VILgsYtY+aQ5fAc0v479zoDtvlD9MhhrEYjwUgURYRoLIbLaiHF6UBDwyAasJmMmI0GDAbxoMnuIjEJu9VMZVMHvnAETYOo1ENaggu3w9JXa0lH58tQVKht7GLlukqyMxPIzkzAabcwrCiNlEQXKz7bw67aNgKhKKX5adS2dJGXnsiK9Xu49sqZoBFPiR+McsnC8WzY1kBTay9mk4HCvBSmjM4nMcGxdy4Vk8mA1WAiJssUpibi3utcazUb8bhsSIqCLxzh5ZUV/OyCOVQ0NZPlddPmDxCVFabm54IGuxo7iEkyqqrFCzMC2xva+LbNwq76dt5cuZWZo4pwWM1kpnjYUt1MWIpXhpYUBVXVSEtwH9AfJNFjZ86EIcQkmfRkN5oWD3tu6vThdcXDx3sCYVQVnHYzSR4nLV1+pL0vFcreJWFRFKiobkJDoyw7jZbewN7Xs7h1VdM0PHYrOUnefvN39QZp6wqQle6hMxjijx980je2x2bFZjGxsq6Oys4uFo0ZQ4bTiQpUNDezZE8VRYmJLK2s4uOaWgAcZhOjMzIoSEzAH4thi0ZPWMvLV82f/vQnfve739HS0sKoUaN45JFHmDhx4gH7P/zwwzz++OPU1dWRnJzMhRdeyH333Yf1OC3fHXGQvSiKLFy4kFNPPZVHH330aMj0tUPTNHyxKDE1nuOgNxRBUVW8dhuJbgcv7qigsqeTv84/H1XTaAsGsBlN3DFrNr1SlI+bamkLBchxe5iWl0u2y4PLHL/AZCW+9DKyMINfvbGUyvZO0hOciIKIrCh8VttIaVYqp5YVf2kGypissKa+kWEpSaQ4HfREw7zXuBNNEHCZLQgCGIT4Ta2yt4sd3W1k2t2HbM0QBHBYTKysb2JmUR5l+ek8uXId04rzSPY4qKhrxmQwxOu3mONvYKXZqbjtBz7JnTYLK3fUkJucQEFGEtreSImWngBtvUGGZA2cm0JH54tEoxLdviCIAtlpXsaW55CU4CQzxU0kJtHY1gOaxmfb6jhr1gjqttRQmp9ObkYCChpr19fw6WfVGAwCMyaXMK48h1MmD8FhN+Ny2nDY/lsqQ1FUnHYztXXd+CNR5gwvoicUQdU0JgzP2xsJJCErKjFFoanHR01XN16bFa/diqppnDuiFIMoYDEZCEXiltktdS1EJZlLZo4hHJNobO/l5otnYTEZ+WhzNakJDk4dV4LZZEJSFCxGI16HFeNB7hEaMHZYNk67mS2VLURjMTKT3UT3Wn2ddite595SAXvvCW67BaNBRFIUFFUlJsk4bRYEQaCho5dZI4rY1tDGp3vq0dBwWi2ke52cOqKYJNd/gwDauwO8t2oHTruF9DQ3mxtb+6ysAvGXNFEUSLTZuKC8DEXTsJqNCKLAgmFDMBuM+KNRKpqaAUiwWTm7tJSIIvFBTRU94TAj09OZkpNLnsd70JpoXyc0BLQj8FM5nG1feeUVbr75Zv785z8zadIkHn74YebNm8fOnTtJTd3/Pvviiy9y66238tRTTzF16lR27drFVVddhSAIPPjgg4ct+5FwSL9ue3s7a9aswWw2M3fuXAwGA5Ik8dhjj3H//fcjSRI/+clPjpWsx4WwJLG1q43VzXV0RcJcOWQ0eUkJ7GzpICPBhaQqrGmp546pc2gLB3l0wypuGDWFTIeLLl+IBz/7iK5IGA1Y29JARXsTt08+pe/CEkUBAYFgTMJiMTK2KCuenE7TMBhEjKLI5oZWJhXlkGg8eDSQrKokWC1YDEa8NiuqoNEeCRKRZUSBeOZcMW51sRiNdEVDKJqGcZCKSzQmx6M1ZBm72cTYvCzMJhNRVaYlFGBjcwuzRxTR3ONnU10LBlFA0TRGeTOYM6IYt/3Ab0MJThtlOWk8/cE6glEJs0kkJilMLM7h/MkjDruStc7JRywmk5nupaw4g0kj86lt6qK6sZNJI/MxGkRSE13MnTyUESVZmE0GxpfmEI7EOGVsCZu2NfD+iu0YDAJOm4U166vZuqOZtBQ35505up/Soqoanb0h3E4rm2qa6Q1GGFWYhVGQ+XD9Hs6cEq8PFohKxCSFUbkZhCISckxla0MrVpORHK8bq2ZA1ODUkSVsqGoCIBSVqG7r5sIpI2js6GXc0BxMRpG/L9uE02ZmwZRSqlq6Wbe7ge69S0XjS3IYWZCBa4DrLByRqGvpQlE0zAYjk8vzcNrNRGIyTquZkuxk9jR2EIzGFSeLyYjLZmFMSRZ2qxlJUgiG4gkkzUYDU4flAgJVLZ2cPmoIRWlJ7Ghqw2u3Mnt4EaWZqX1+ebKssL2qhaw0DwaTgUhMRlZVMr1umnt8aMSPkc1kIt3pJChL1Id6WLJ9D42BXrJdHr4/ahLJVif+vRb9uUVFtIUCPLJmNUEphigItIQCbGpt5YpRoxmZmnbYAQhfJZomHJGPy+GEQz/44INce+21XH311QD8+c9/5q233uKpp57i1ltv3a//J598wrRp07jssssAyM/P59JLL2XNmjWHLfeRMmjF5eOPP+ass87C5/MhCALjx4/n6aef5txzz8VoNHLnnXeyaNGiYynrV46qqmzpbOWZbesJy/ELOqopTCjIYlNDC06zGVEUSLM7yXZ5+GPFSjZ2tpDmcGAyGFjRWEOSw47JaEBSlL1+H0Y+bqyl2JuE12LrSykelWVkTaO1N0BnIIisqrisFtLdLiKy1BdtdDDMRgMFSYl0BIOoghWbwUi+KxENDUWLl1VQNY1Esx2HyUSeK+GQsuf2+INImobZZMRmMdPpD/FpZR1luemogsaO9nayEz1cPXcCrT1+Gjp7SXM7GVeYTeZBTNgQd9gzmgxcOnM0e5o78YejjC3MIi81YcAoCR2dA+FyWrEoKqdPG0Zrp5+8zESisozNakKWVWaNL6at08/y1bt4450NfOvMsaSmuJFkhZraDrJSPaCBYW+RQ0lSaGjqZuvOJjLSvX2JIcNRiZWbqjht0jBMBgNbaluQFQW72bw3TYCftCQ3ZqMBu9XE2IIs/JEos4ryWVFZjS8cZerYfCJRiTVba5k+ppDOuSH+8clmfOEI44uzCISjxGSF3DQv/165FYNB4LpzptDU5ePRN1fS0hV/8HsdNjZUNnLF3HFMLy/YLwzZF4ogSQovv7ueDTsaMBlFzp87mmSvE7NJ5KwpZby/bic1zd1ogNthYcbIQkqyUzCIIrKgsru+jfysJBRVpSQjhd0tHdz1yvsMzUplemk+c8qLMBpEdje2YxJFxjmyMYgioahETFaw2Ew8+Opybr54NpkeFzmJHpJddgKRGEPSkrAY4jLv8Xfy8vaNTMzIYXhyGv5YjJd2bOT6UVNIdTpQVI0Eu40X124kKMWVKYvRiCgI9EYjfFRbQ77Xi9fav9DkN5kvlrY5UD6zWCzGZ599xm233dbXJooip556KqtWrRpw7KlTp/L888/z6aefMnHiRKqqqnj77be54oorju5OHAKDVlx+/vOfc+aZZ/Kzn/2MZ599lt///vecd9553HvvvVx44YXHUsbjRm8syifNdX1KS5LVjoCAx2XnjFFDqG7rxG408b2RE1A0lfVtzeQ4PaRYHbRHgqxorMYfi+Ixxx37/FKMjkgQh8lMIBbDa7FhMhqIyQppbieKqlCakcK4/NHYLWa6AkFWVdaT5nJiNX35w1sEesJhHGYzKxtqKUlI4rScEj5qqmJrV+venAhWMpwuxiRnUeAafBp9fyieWtxmMRGJyYQlieZuHwUpiURjErGIzIa6ZrbWtnDpxNGcXlZMeW4aAgKJDttBa5ZEYhI1HT3c/NLbFKUkML4gixnlBdiMJnY3tOMLRSlKTyQr2aPXK9L5UswWI76eIEleB93+MH9/fwPrttczJDeF/7foFKxmE6s/q2b1+mr8oSidvUGuOn8yI4dmAf+tfq7tTS65D63vf+NtiqLQ44+wfkc9w3JS+WxPA0ZRZEdVC2OGZrGlrgVVgOYeP6U5qWhaXMFwO6z8euHprKiuIdFpA0Hg5ffXYzGbuGDicE4dUYw/HKUoI4n27iAWkxGb2Uh6oovTxg/BaTPz9trtNHf5EEUBTdUIRmNEO2U+qNjD8Lx00hL659qKSjKNrb2s21aHomhEJRm71YTVbCC2d7nr1AlDaO8OEorGyErxkpHo6qt7JIoCLruVbZUtjBqahdFooLatm+KMZMKxGEs378FsMJCd5GV8UdxKE45JOK0W0CA10cU767ZT39ZLfWsPE4Zls6WphZ6QiMNiZuHIUiRVQTAIaJrKrVNm0RUN0xjopcybSqrVgUEUmJSbQ2VnF7KqsqP9vwVsE2zWvkCD6p5ugrHYCaG4qEdocdm37Rezw995553cdddd+/Xv6OhAURTS0tL6taelpbFjx44B57jsssvo6Ohg+vTpaJqGLMt8//vf52c/+9lhy32kDFpx2bx5M4899hhlZWX86le/4sEHH+S3v/0t55xzzrGU77gSUWSaAv/VZJOsNjRV48/rPmV2QT5njSnFZjSS6XQTlCVsRiN57vj6qqJpdEVCRGQF/94aPRoaJtFAWI713RBlRSUUlbCbzdxy5mzag0E2NDTT2d5OYVIC18wcT7bXzWCigWVVjYcIWi3s6e5kQ0sTN4yfxN2T57G8qZJdPR0YRYHhiemcljOEZOvAET4DoWlx51ijINITjhCKxfA6bCzbVEmyx8FZI4YRU1RuOnVaPMy0tYXucJhcr5fRxgysZtMBrTuhmMTulg56giE+C4aYPiQfOabwzAcVbK1tBU3D67QxrTyfsyeXk5GopxLXOTCxvUVAQxGJ15duZFtVC3armab2XjxOO41tPazfUU9SgpMx5TlcvHA8FpuJqKqQn5fMitW7iUQkDKKIy2nFajFitZoZUth/+cFgEBmam8J/Pt7KFWdNoCw7LV4DSIOqli5e/ngj/3vuTFI9Th781wrOmVhOqseJpmpMzcthekEeqqaiShqTy/P5vzdW8a8PN3PWtHLKC9IJRWJ4HFZMhhhWs4mhOak0tPbicljZWNUcd7ZHwGSMO76rmsa2ulZC0f0z5xoNIpUNHYSj/7XeGg0GSvJTqW/v4eY/v4ndamLG8AKsFhOrdtTiC0e57eJTwAvdvhDJXifrd9TT0R1g4awRWM1xh2RNA7NB5IwxQxhbnE2z38+quno2tbYyNjuDHLcHh91MZWMnIwszGFWcSYLDxoKRw1i6vZL2QJD81ATQIMFmozAxiWe2rWNlSx0Oo4l5eSUsyC/FYTIzJSeHTJcbFRWH2Ry3NtmseCxWxL0KZTx31YkRhXi08rjU19fjdv/3vng0s8cvX76ce++9l8cee4xJkyaxZ88efvSjH3H33Xfzi1/84qjNcygMWnHp7u4mOTkZiIdF2+12hg8ffswE+zpgFEUcJjPt4Xga+kSrHYMoUtfbw6+WL+ecoUP5wbSpLK2vZF5eCXNyikizO4kqMmbRwIS0bJY3VPeNpwEFTjc3jJqCSRAJRWPISjxLbkiS6I5EeHrNeqo6upAUFYfFzPjcTK6cOAav/cvfHlRNI9FmQ1FVRqVlYDEZeLNmG0lWB7Myizgtewgm0YDdYCbd4UQQBHoi4XhYpiDgtlgO6JUviiIxRcGiqoRiMZJcDvzBCCt31HLKiEIWlpdxWlkJW9vb+O2yZTT54yHRiTYbnzY2cMXo0QxJSh5w7EhMxm42I4qQl5TAjCH5vLh0PZ9sq0FT42+9gXCU/6zeTqLTzsLJZYNKJ65zcmIQDSR47eyqbadiVyPGvUkYh+aloWgau2vbaer0keC0sWDucDQDvLdhJ+MKsvB67GRnJbBs5U6sZhPdvSHSUz3MnVlKanJ/K4amQW56AkXZyZgNBs6ZWo6mamSleXhnw07kqIzbZqW528eFU0ayrrIBXyjC2MIsxpfk0ODvYX1DE6cPKebMaWVUNnZQ39rDX/+9mjOnDOPcOSNxWkXqWropzU/n0621pCQ4EUWBBJeN7mA47sRuELEYDRhEEavFNGDOI7vFHI8cUjUc1vgSdyAUiUcVdfsYXpjO3DElJOx1zh1dlElNWzc9wQixiEJXb5CoojB9dBHVTV2s21ZHWXYqhamJjC3KZkReOi6HldcqtrBkVyURScZgEFlTU88dp56C3WImJy2BUcWZGM0G3ti0jbAkMbesGJfFjMVkxGQQsQpGltTv5pOWOrxmKz8ZO5MUm5OYpNDo9+EyW8hP8CCpKmcNHcrGlhaMBrFftuDS5BTclm9esrqD4Xa7+ykuByI5ORmDwUBra2u/9tbWVtLT0wfc5he/+AVXXHEF3/3ud4F43cBgMMj3vvc9br/99uPiS3RIzrnbtm2jpSWeeVHTNHbu3EkwGOzX53hmtT3aeMxWxqRmUOPrBqA3GsFqMjI9L4/WQBCr0URMlWkL+rGbjJxVOIzmgA9Z1VA1lYuGjKQzEmJTR/yYDUtI4YEZZ9LiC/Lmzp2cnl8ECngcFlRJ5YmVn9ISCJDmcSEI8bTYq2viS0XfnTL+S+WN10KyIGkqQ5OTeWDDh7xbtxMAi2jglOxi5uUOYUZGAZKisLuri7d372J9cxMmMZ775YziEgq83v1Oxpis0OUP4bZbsZpMOCwmpJjMt2eNxmO1IgA90TDPVmygpjd+vKRohEAshqJpLK+uJsPpGlAxUlSFnCQP80cOY0h6MpGozKpttfH8NrKCIIBRNKCoEVbvqGXmiEJdcdE5IA6HmZikEI1JuBxWfIEIkqyQl5VIhy+Ix21DlhVGlmbjdtvYVNeCBuysbGX7nmbmzS5j9PAcdu5pxWEzM6o8m6HF6Tgc/c9dm9WEIAicf8ooGn0+3v50C1fMGouoCfSGI1w6ewxGg8i/127DZbcyZUguRelJOGxmKppaeGn9JtxWC2MzMshP93LbotNYv7Oe5g4/o0uycNosdPWGSE1wEgxHqW3uZlJ5HnarmfFDctjREF8qkVUVdW+ZkCmleQM658qKwuQR+Xy2rZ6evXWXRFFEkhRSvS6+NXMUG3Y38PzWGoLhKDNHFHLa2BIyEj188OkuSnKTSTCbWLx6B8PyUslIdpPssnPdvMnsbO8ghsqGhiZe27SV6L5oIQE2NbUQkWVCwSjzJw0jPdFFRzjEqpq6eLHJ5mZGZWZyzZSxGBCIqQq7etoRBYFLh47CY7KhKCpt/iAvbtpEVyhMhtPFjydPZX7xEMKSTHVP/H4jAKUpqZxSUIjTbN7vGHwd+aqjisxmM+PGjWPp0qWce+65QNyXc+nSpdx4440DbhMKhfZ7Hhj2Lstp2vHJgHdIisvcuXP7CXrWWWcB8eRg+9aDlb0l5L8JmA0GpmTk4o9FWd1cT1c0QkiWOK+8jPklQ5CVeHj0GQUl7PF10hUJUp6UAWh7I3kEfjRmGs1BP22hAN8qHs6mllYe//RTpubmomgq3b4wLpsFfzRGbXc3ESl+/IyiSESWCcZiVHd1E5IkvBzc6qLsrYuiKRq1gW72+DuwGU0kWuz8aNQ0hiWkYhREREGk3tfL/R9/yI6Ojr7tt3e0U9Xdxc1TppH1Oe09GIkSkxS2VLVQkpVCqsuBpCokuR2ku13IqgIGgcZeH8srq9EEDbPRiNVoRBFVOsMhtre3448NnGfBbbdiMho5a3QpZqOIJCv0BiMomsbYkixG5mdgMhlo7fLT5Q+h6DlddA6CxWxCFESyUj3kpHmplDqRFAWT0UB9ew+pbieTRuaTl5lAVFbYUtvCzLIClizfztadTYSCMUaXZTNqZA5WsxGjyUAgFCUpwdF/qUgUSU9y0xMKs2JHNYjQ2OMjJ8HDpGH5jC5IRwFsFjOVzZ1MHpLL7pZOMpLcvLdzD2FZ4oyCEpo6fPz6laUsHF/K1KF5TB5hxmyKF1+0mAyEYzKSrJLksWO2GAmEo8wdVUwgHGVpxW4CkRhmk5HZI4o4c/wwPAOkHejuDeF12zh3zkheevczdtS0squ2jYWzhlOUkcTf3l/HG59sweOwct2CKYwpzsRkjJcIcTkspCe7MBnjBRmff3cdO+vbuO7cqZQOy+CfW7Zz++mzeWPTVgKxGDH5v7XGorJCc8hPhsVBWrKL0N5iqV6Hje5ohMqubiKyzHenjKM7GgERvFY7pYmpjE3JIhyTaPeH+c3Kj5BUBafJQrPfz4/e+Q9/mH8WV48ZS21PD63BeLqJXI+X5COoxfZVczxS/t98880sWrSI8ePHM3HixL7s9PuijK688kqysrK47777AFi4cCEPPvggY8aM6Vsq+sUvfsHChQv7FJivmkErLtXV1V/e6RtIotXOvLwhjEnNpCUYwGu1EpMUKuqbWVFdw/+bPR2r0URvxM/PPn2Hiak5/GbSWRjDIm6zhU0dzciKSrbTg6rBmzt30BoMIgoCdpOJkCmGIMQ118LkJKKKgj8SJaYoJNhtZHvdOCzmQRUZtBiN9IaCmA0GtnQ2YzKIjEnN4IcjppNocdDo97GpvYULS8pZ3dDA1vb4m83nT/0VtTUsKBlKhssVXzdXNXY1dJCe4CIckwmEorgdFup9PmQxXu5BM8SXnKKKgsEgoKjxmkkCxLOGStLetOADX2SiIPLxzmoKU5MoTkukszfEsJxUzppSRmKig91dnQSkKGOyc8jzenAepFijjg6AyWTAYbcwvjyXmKygKCqqppGV7KGmrYtzTx+FLMVr8CCAw2Im3eui2WGjvqmbpuYeRpdmM3dmKVFZ4bPKRva0dTE0J4UUjxPb3krnbqeVgBSj3R9kdlkh7cEgLpuF8cVZaGi0dvs4fdQQ1lXWE1UU2noDZKd5qO3uxiCKZDhdvPJhBR2BIM9+uJ4XP66gMCmRsYWZzB5ZRKbXTXdrJwkuG+WFGYQliX9/vJ1Lpo3iohkjmTd2CL5QhPy0RBJddsxGA4qq8UXrvcth5em3P6UwM5mrz5mEPxglK8WD0SASjMRYua0GQRD4xbdPoyQ7mZisEIjGMBsNjB6SjaJq1DZ1EJQkrl44CYMoUJSTwmubt6JqKhajkYisEI5JffcqQdPIcDtRFRWnO76E3R0Mke52kZ/o5ZO6OmRFRVJVoopMUJLwWC1k2z14TFZcRgsmDLxQuYkJmVnMyM0jxe4gLEmsb2nm2Q0b+N9p05iSk7ufI7XOgbn44otpb2/njjvuoKWlhdGjR/Puu+/2OezW1dX1U9B//vOfIwgCP//5z2lsbCQlJYWFCxdyzz33HK9dGLzikpeXdyzl+NpS5+/hjaot8RBBs4Ukm43mzgBvbd+JyWDAaTbTI4cQERiTnIVPilET6CTV4UbRYEJqDjFVIdvpJiIpbGltQ9M0TAYDAgLZyV5afQES7DYyPC4+qqolKsffSrrDYTxWC7OKC3AfxNkqqsj4pSg20Uh1TzfDU1LxWm1k2T3878iZeCw23qrcSUVbM5PSczCKBnZ3dqJpGprAftVkd3d2MDUnB6vJRCASZXdjOyleB7NGFdLa7cdsMYAGwXAUl9PKhoZmbPZ4TZHRGRl81tiEKAhxE7amYRYEhiUn4zqA+dYfiWI1GQlEo6zYUcPEghx+ctFsNne0cc/y5XSEgkhyPMnWNVPHk5rgQnfP1fkymjp8jBmWjdViYktlM75gmNzUBCqbO/lwezWXzhyN2WxgyrB8kjwOCnKTefmdz1BVlay0BKZOKmbNzjoWr95BWpoHm9XEsgoz8ycOY/yQnD7lxWgQcdjiIdCiCG9v28mC8mF4rFZCkoTLZuXcScNZvGknp48cQkiRCEoSuQleTIJIS7cfURBwWk1keN0UJCcgyyqSrKIJGpmJbgRBJD8zgZiqUt3cSVSW8Tqt2K1mSrJT6fYF+WhTNb5QhIxEN+X56aQnuvqi+XzhCBW7m/nnh1soyUlh/LBs0pLd+CNRGjt6SXY7mDG8kJEFGXQHw+xu6eDT3Q14HRa+c8oEmjp8LN9UzcvLN/CTb81idHE2vmiUDTVNtAT8mI0io7LS+efmbf1+g9OHlWAWDJgMIt2RKIoSrwA/PjebDyqraPEHMIpxHxWv1UpHIMiIhHT+uWdL/KVKg9MKishzednZ2sGqpjoS7XZOzy/GYjIgCgL+WNw6axINOEwnxhLRPo5WVNGhcuONNx5waWj58uX9/t6X7uTOO+88rLmOBYecXnDt2rW89NJL7Nq1C4AhQ4Zw2WWXMX78l/tgnGj4Y1E+aNzD1q5Wcl1eLAYDRgx8Wt+ApKrkej0YDAKCIrClq4UFuaV81l5PU8jHy1XruXboVEyCHTTwWm00+uIOq4G9JdvDMRmDKLKjuZ3JxTnMKi7gk6pawpKEQDxKoCQliQm52QfMBNkc8vFpWz0rW6qZnpZPsTOFznCY2RlFzM4sItFsZ1NHC3W+bi4oKGdPYweRTJmEvYXbzEYjXyx3kbw3Dw0Q9w1IT0RVNaxmE7vq2nC7rDR1+yhJSSamKOxsbSMjwYVmhEuGj6AlEKDZ5+8LKR2bnsmZQ4Yc0PFXUhTSvS7+/ulm7GYz4/OzsDnNrNpSR2KCjaTEuFO0IMDqpnoKk5M4tbAQo6gnpdM5MLKqsnpLDaOKsygtTCPBZScQilCUnoTdYqK5x0+yx8HIvHSqmzvxJNg4depQ3l+5nRkTiukJRXh71XaSk5x9eVGCkRjvfLqDvNQEctMS4j5YCGR7PSiygt1h5cNd1RQnJTM5Pxu31cqelk4mFufEDY4GAYtgZN7QYlJdTpKdDsblZ1KckcyQrBS8ThuqphFTFBLtdnpDERLsdmpau+gNR8lPT+SHZ09nc3Mrr6zbyA2nTMGsGPj78gqikoLJYMAoiqzdWc/Fp4ymJCvuEO8LRXHYzFxx5gRK81KxWozkpnsJ7U182eoLcNvUOUiKwtLNe/jL+2uI7fUv+/a0MSiqSjgW4xffPpXygnT+uXYLc0aWkOZxIgsqUVlhbHYmZwwrYfGOPSCAQRCYXVSAWRaISPHooxSPg55wmJgi87+zprOzLb5UbRQE0ERe2rCJ0dkZXDJ0NGbRQJrXiSppPP7RGkRRJMXpoD7SS5bLxenlJYTkGC2heFZzq8FIgtVGgsV24mTO1YTDSiL3+e1PRg7p1/3pT3/KAw88gNPppLCwEIAPP/yQP/zhD/y///f/+M1vfnNMhDxe+GJx59Irho7FKhpBEPCYrfgjUfZ0d3LhyHIUTSUsy9QGuslyePh++VQCcpS/1/Ty08/+ycSkPCan5DPMmI7LbGZ2fgFPrv8Ml8WCrCh0BcLkJHrY1tKGURS5d+E8NjY20x4MUZycSHFyEl2hEL2RCCnO/uHLHeEgL+/ZwIt7NgDQGQlyx9jTeW37Vi4fMZreWJiIQWZ3Vwdzs4r5eGMNW2tbKPQmMj0vnxc2biSsyAiCoa+OUJ7Xy5j0DAyiSDgmYTEZMZpEKts6GZqeTEaiGwGBdbvqSXPYSfa4EAWRpm4fE4qz8Usx7jn1VDa1ttIWCDArP5/y1DQiskxlZxdWYzyrr2Ov9UWSZWxmE4qm8eGOKpKcDr53ykTqento8vnQBFA0FVnRMBtEjKKBre2tTM7OPiHyNOgcOqFwjF5/mJikYDEZ8Lht2KyDf5PWNI1gOEZ2sodAKMLLS9bjddk4a1o5m/Y08em2OuZPKSUr0cOaPXVMHZrH5spmIjGZ+XOGM21cEcOK0nln3U7S0+IlMRRNRdDi0UnBSIzt9W1kp3ipbe1md2M7s0oLaPMFsZlNxFSVrnCIUCRGsstBTyjC9sY2Ul1ORAGiqCwsH8aGphbaggHOmTSclh4/kqqyZPsePt5Tg6xqXD1tHIVJCfjCUexWM08sXsMNC6aS6Laz+tN6ClITyXS7+ddHW2jrCdIdCCEATquFYCTKx5urSE9w4bJbSHTZOXt6OYkeO5sqm8lLT6DFF8AkimQneSjKSCLV66Sx28ezH36GpCh99dQC0RiJbjtnThhGeoKb9zbv5t11u1gwtoxpxXn8fulH1HR1k+528d2p45lRlM/m5lZcFgt5Xg+fbqolLcmNw2pCFATCisySXZXMHzaE04YUEVNUjKKIrMaXp+5btoJTi4u4fMwoHEYztZ09XDR2BF6bjfzEBJw2EwZBpDsaZmVjHR/UVtEa8pPpdHN6XjHTs/PJcLoOWhvt64KuuBweg1Zcnn32WR555BH++Mc/ct1112HamxBNkiQef/xxbrnlFsrLy7nyyiuPmbBfNUZRZHpGPmuaGninehcRWeKvp5+P2xbPSluYlEhYkfmoqZqz88sxiSLvN+1giCeVcm86WY4ESj3pWEQj4ZiM2WDgrKFD6Y1GaA0EUDQNSVFw2yyEVJnHP1rFkJQkRmSmk5fopScc4c1tOxARGJ4eX3+MKTLt4SAWg5GaQBd/r9zYV1Z+c1czMUVhSFIyvliE3lgUs2ik0JOI4lfZUh2vf/La6s3cftFc7j71VJ6t2MDW9jYMgsCErGyuGj2WTJdrbxVXCVEQ2NLYSprbic1iJhSV+PeHWygtTOP1NVu59tRJnD2qFKvVhNsajzgKSDFm5uWRbHegaRpL91SyrqGRnmiERJudi0YOp8DlxR+OkuJ1YjKI2EzxPC/doTCgEZIkYqpCSyBATziComq4LGayvR6isnxE5dzlvQ7kh1J1W+eroasnyOYdjUiSgrA3rNdsMlI+JINE75fnHVJVjcbWHmIxGbvDzJlTy3l39Q62VjcTCEeRZAVZVfloYxVOmxlN0djT3EmnL8Tu+nY6e4JcPHcMgkGgvTvAzrq4H5jXZSPJ48BhMyMKApIkE47G2FHfRmaSm47OAMkeBx6rlYn52XFZiPt47W7poLKtkwsmDMdoMNDQ04kqafxn63YuHjUCKaKgovFRZQ2Lt+xiRkk+GQlu8pO8GA0iqqJht5g4fewQXA4r1d3dNPb4GJebiUETWL+7kfrOHgSEvlxJkZjEpqpmzpgwDIfVTLLHQVF2Ettr2xhRmEFKgoMtjS3YzCamFORy/YKpWC0mKlviWas/T3VbF6PyMkjzOmn3BVmxpZI5I4uJqBKJNjsXjB7O7vZOHBYzkqowPCuN4pSk+DKVBr3+MFaLkagkowkCPYEw104az8bmFv766Wdsa2nl/BFlXD91EmVpaWxtbeOdnbsYnZlBmsNJWXoqa+sbicoy2clu3q2tYmZmIUtqK/n92o8xiQbMBgNtoSBbOloRBIH5hUP66sHpfPMYtOLypz/9iXvvvXe/dTGTycQPf/hDZFnm0Ucf/UYpLnaDme0dHfzfprXIqsrQxGRCssS47Ex2trfFMz0Cu3o7GJOSSXvUx3tN26j2d3D9sBnUh3p5dvcayrwZzEkdSlckhMVo5IrRownHJBIcNmRVpbnXR4bbiaypvFyxmZcrNmM0iFiMRqwmI4vGjcFuNhFTZDZ3tvB/Wz7l7smns62rlbAiIasqGnFFa21HPcO96Uh7I29q/V0MS0hjceXO+E3NbETWNDp8QcZkZDA2I4OIHE/YFVcehHiOh0g8x4yGRmNXL7OGFIAG63c08NYnW7lj2BnMHzuMzkCQ3GQvHZEQf/lsLZ81NTIhK4tMp4uzhpayvLKKNzZvJxqTMBkNTMnJJtFo45WPNpLmdXLK6GL80ShJTjuTi/PoCYXxR2Lkebz4YzG6QvHQTUGAoBSPsLqwrBz7IDIJf5HeYJimLj9b61pA0yjLTSczyY3XoVtuvg6EIzHaOnx4nDaaWnpoae0lNcVNUqaDjq4AdpsZq+Xgv7svECYmyYhGkermLhLcduZOKGFyeR6ZKW7cditbq+PpCXbWtTFzbDGd/uD/Z+89wx3JyzPvXyVJpZyOdHLOoXOe7unp6cmBSYzJBhuwjQ32Ekzw7npfc2GWXcCYtQGvMRgv2UMeBpjIhJ6ezjmc7j6nT86SjrJU+f2gdtuY4BnCwrDc19UfTqv0V0kqVT31PHegIR7ke4dHSUQDFCsaU/MZOhujSKKAJIo4tkOuWEGRxFrSdGuCqmESCahML67yiW/s54/u20lfZ4J71w6iCBJet4Jp2Szlixy+PMuuvnYa40GSXj9fOXmWbLWKX3FzYnyODZ1N+Nwu/utde0mXypR1A9N2iHhd2FbtN7iuqxFRFLBtG0WSaAqHEAWBdKGMqih4FBnVpaAZJpZtU7yS5FzVjFq0iCAQD/v43JPHGG5L4gm5+IenDtP7mjiJqB+XLKG6lCtEW/PqZzqfzdMRDTO/mkeSJUbaG/itnWv5zvkLnF1c5iUjA/TVxbEFh5MLiywU8kDtc7u3d4Atw23gCMiShG5Z4NS6OF8+cZqxdIayafDk+CSv3byejS0NnJxfoNOKsLujHUWSGF1e4YHjp/jUq+7lK5fPUNJ1tiRNvnLhLIZtXz3XuSUZ07Z56PIFrmlqfVEULhYC1s+gKvpZnvtixvMuXM6ePfsTXXLvvvvuX5qL3i8KFdPg5PICpmNTsQxKps5isYCOxe9s3ojPpeAWZXbWtxPzeHlw7CSXcisMhOopmDqfHN3PeCHFrvpuXJKEA/z14We5oaOb7kgURRIRxSseJY7DXUMDzOfzVwqJms9CcyjIxpbG2h1FpcQnTh1Ety28igu/4qKg6zhXePwCAo/MXmBHog0Lh5LpUDYNfIqCx6WQqZSZyeV47bUbydka6eUl8prGWCaNKAr0x+toDAZpDYRwzJpiSJJE3JKExyWjmxaFUpU7dg4hyyKKIBIP+rFweGZ6ioNzM9zc3cO6+gY6wxE03eSbJ8+zmM2zpjFJYzDIbT19PHToPF9+5iT/3ytvxLRtTNthLr/KHev7ubiYQqLWDbmzt5+/P1IrGmtdX4G+WJzhRPIF+wdkSxVOXp4nW6rScMUOfXI5QzpfYri94arx1m/wy4NhWJRKOl/+2mEujC1e/f+Otjivun8bep31HxYuhmFh2w4zKxkkWeJvv7aP27cNsL63GVkSCfpUNg+0cmR0hsVMgVy+Qnt9lJZYmMn5DHfsGGR2Mcux0VluuWaAl123jrpogIZY7ZipVA1Ut0IiEsC2HaJ+L9948jQhn4do2MvHnzrI2264hqpm8o1DZ9kz3EVAdZMI+ZlJ59jS24pHqnFK6v21NXTLIh70MSQm+dKxUzx58TI39vewu7udim4gCCKqx4XtgChAYziIbdtMp1fZ09XBnrVdJCMBBtuSSKKAadmcvrxANKASVN1oukmxqmED3zxwlrNTi/hVF3d2D3HvxmHymsZ3Ry9x50gffU11DLUkOTe7hGFZOIBpWKwWK5ydWOKakQ7u2TZM2TA4ODnLc5MzHJyY4W9fdiePTI3RHoowmEwgCiIuSUT11Pyeat2WGmcuGfbzhROnKOo6fXVxdrS3sqahHgGBhlCAl28cwbYcXLKEYdscmJphT28XFdvk+7PjvG39LhwH0pUSfsWFadsYtlVzzEVgvpBHe5HYcjjwvBSjP+n5/y/ieRcukiShX7Gu/1EwDOOXpun+RaFqmWS1Cp3BKFmtQrZaRbNrnBHdsnj9uk1UHZ3BaB0uSeJCbomSoXNz0yAThTRThQz/aWgPumkhiQIhtwfdtnnPkw/z0v4R3rZpB2NLaYJeD+eXl2mLhflvN13PgakZstUqHdEIG5sbr+7PVH6VA0vTvGvDbgqaxmCknlZ/mKni6tVtnlmYIGdUqfcGyOtV1sQasIH+lgRZrYqDw/aeVlwuhS+ePsnh+TnWNjYgCwJPTU2wtamF14ysI6DU7lYkQWSkpQFRFLFNm8HOeprrI/zTE0c4cnGGD77hDjpaYpxaWOCPt26nbBl849I53jCyCcdyWNNYz/tuu4GA241XUciVqozOLPPGW7Yy0laPIAoUNY3vjY7x+m0bqQ/58aseDs7OMhRP8Bd79vLczDRFXWcokWBtfQO5SrUWmvcCui6FchVZllhczfPQ4XNYtsOa9gY29jRTqmi/KVx+BaAbFk/uu8Do2OIPFKYTUykeffIc7a0x4Cc7ohYrOuMzKYIhD/mKxu+/ZDuhgMqpqQVOTMzTkYxy7fpOdq3tAEfAsm0SQR8uReZNd+9ARODgyUn2H7/MNSPt3LStn0Nj0zxw6DQ4sKm7mV2tHfg9LkzLxiVLzKfzSJKIjUNF1zFMm+lUli88ewKv20VXXZSOuggjLfVg2aiKQtDj5tDMHDYOu/s68LldHDg9yvfOXgKgpGl4ZJl0sUyqUKK3vo6KruMgkCqUuXf9MEen5gioLn735i2cmlrgW4fPsZgt0BwLsXdtN9t7WskXqsiKCAiUKjr7zkxgO3Dg/BT3X7uW+zYP89C5izSHgzx6eZztTa285tr1fGHfCZZyRRzHQXW7UF0KA21J/D4Xy+UyhapG2OvBdhwUWaaoGxyaneGr587S4A+wprGeiMdDeyCMKIlkCxUCfjclTcfvdTOWSTNfzPOqjWup8/t4bn4a1SPTFY3SEYvgFWu/bc0ysR2HxmAAcPiDkW24RRlJEGj0B7mYSeGSJGRRvhoj1RoMXQ1s/A1+PfG8vXo3bNjA5z//+R/7+Gc/+1k2bNjwc9mpXxXIooggQsHQCLk91HsDHFtaYGtzC6lKmWemJymaGnPlLB5Jps7jp9kfJub2k9Uq3N+5nuVyifcdeZyqZeDg8OrhtVzT3EZBr2I7DivFEkv5AiFV5W+eO8DxhXlu6O3kTds3s7enk1S5xHQuiySKZLUKumXR7A9xfGkeWRD5sw176QnWAbUspHrVT703QNGsEnZ78CoKBb2CIMMf3LCNxlCIuqCfpWKBjkiUv9izl5f09HNbdx9v27aTpkCwZq3tcdfm647DUHMSWRKRZImN/S2cmJjj7PQi9bEghy/NYjsOt/b2ktLK/MX+JxjLpcFySPj9/P72zUiIZAplJLF2R3THlkEs2+bI2AweWcGwbG7u7+FLJ07zwNmzeF0KIY+b//HY01xYWOH69k5eOjBEWFF5/NI4U7ksrhdQJJd1nZJm8PX9Z/jkw4c4Nj7PqYkFPvf9Y3zmsSPkylUq2o8vyn+D/zuoVnTOX1zAMC2qmkmlalDVTAzT4vzFBSqV//g7Ws2XmV/KkowG6GyMEQqoPHX2Mh/59j6+dvAMH/7WM1xezlDRTJ45dZmxuRSXlzN8/pnjVAyD1VyZkE+lLuLH63fzj48f5svPnmIpV2SlWOKxM2N85dBpsuUq2WIFr8dFX2sduWIFbGgMh5BFgZNT8/z27g30N9Wxob2Jde2NlA2DbLmKqigMN9QzvZolpLoJ+zxUDZPRpX8NDRQQyFc0VgplPK6aLUFAdVPRDf7XI/vwyQpv3LkJWZK4sLDCVw+eZmwpTeaKlPn4xDz5QpWZ+QwuRaZ2dqh5nZiWhSSIuK4YzJU0DUkUyVQr/OW+79PVHOddd1/H7+7ZxG/v3sie4U7CAZXOphjL5TL7xqcYT2W4vreLkOrGsE3AoSUYruWlmTqz+Tzjqxks28F2HC5MLaNIEq4rKc4t4RC39/cR9an85TNPoioKAY+LR2YucCI9i205WLaNR5FpDAXwuV3Uef1UdIM/efzbFA2dO7r68SoKpSs+UaIoEHar3NDWTeRFQtx3EHGcn+Hf87+E/1rheZel73jHO7j77rvRNI23v/3tV81qFhcX+fCHP8xf//Vf8/Wvf/0XtqO/DHhkmetbuzi5skBOr3EtpsdWMRyT16/biCxKuCSBpWqOYRrY29jHN6dP4hIlWvxhyobBFy6eZG9zL6IgoZsGy8Uirx3ZgHVlTt2XrCOnVXEEiHtUGoJBqo7JkdQsmmXRH62jKxRDEkXagxGCVzohFg7vefoR3rfzBv7Xzru5nE8jOLAu3oRbknl4boJ2f4S4p4WybXBicYFAyMO777kOv8dN0h9At23+7tghTiwuICCwNlnPy4ZGCLjclPUax0UzLRRJZDadpy6g4vO6WC1XaW2I0pYI05YI4VdctITDfOrZI+iWiSKKRFSVoMfFUr7Et46dpycZIxnw4VddzGVyfPTBfdy1dYhtA+20RkJcWEnx7fMX2NTcxGKuQFskwobWRj5/7CSfPXoCj6JQF/TRWRfhZU1r8L4AS28RgYVMnifPjNdas07NKFsQBE5enufC3Aod9c8/Kfs3+MVAEIXaSFI3azfPAvR2Jdm4to3mpgiBwPPJn3FoaYgQC/moGCaZYpl/fvYk85laWOqOvlZUWeF9n3+MRMjHm+6+hu+eukCmUMEjyuw7MUZHe5w7dg2SqVR44vTYVVm/T3XR3hjj8nKGXLnK2cuLxII+rt/QQ7ZQwe9SuH6wC0mS2D3QyXw2z8ceeY437t1CZ30Ux3aoWhZlw6A9Guatu6/Bq7gwTIeqrhFU3TSEA6SLZSzHqcm5x6Z5+bY1yIJA1bCuFB8iH374GT76yjsoVDS+f2ac1UIFUQCvW8G2Hfqb6lhOFVhaLtDf03A1mXp9TxPnJpfY2t9GJOBFFiRaImEuLaforIvS5AtyenaRy6kMQY+bzroIgg1ej4uyZaBZJquVCg+dvcC7b7qWP969nW+cOsexmQWu7+jiYiZN1FdLvbcch1W9QlzxMrWYYctwG4IAmmmyu7ODimHw2OQ4CZ+fW3q6Kds6s+UsNzb11sbDooAqy+zoaMOv1PhC+2dnSFcqfOLYQf5o4zYs2+bpmUmyWpVmf5DdrR3sbe/6qThwvww41EjcP8vz/1/E8y5c7rjjDj7ykY/wjne8gw9/+MOEQiEAcrkcsizzoQ996GoEwK8LRFFgKJ7gj9fv4NGpMaYLWeIeL3VeP5Io0BqqSYM7A3FKpkZvKMHv9e7CxiasqHglN5plck19G4JTk1EWdJ0nzp5ke3Mra+JJ6kN+pmdyHJ6Z5Z17djGaXeajp55hsrCK3+2iOxrnns4hbmnpp07189sDGxAFgd5onIKucefXP8dv9Q2zp6WT7nCMs8vLrK+vpyMQ5U8Pf433rr+DgXA9DaEAn3juEM2BED3JOJIo8lcHn2Uun695pOBwfHGB5VKJv73lDsq6SbZUYWxxhY0dLXzr2DluWdtLZ10Er6pw+5YBWhvCNIQCeGQZtywxk88hCgJFXcMru9BNm30XJtl3cZJdPe1UNBNZdjg1sQDAg4fO8qo9G2gMB1gqlshpGsmAn4NjM/jcLl63aQNtsQgnFmruw12xCDtb22kOvDD7OcuxmU3lcK7c/Tlwpa3sIAki8+n81cTc3+CXB7dbYbC/kUJJI1+ocO9LNtLVm2A2l2einEecnmeoOUki6L9qrPbv0ZyMoCgyhmWjSCIzqRwz6RxQK4S29bVxbnKJycUMN2/qo2wYTC6v8p9u34ltO1yeSVMX83Pdll6+dfT8VQfRkM9DPOzDo8j4PS5wYGpplfPTy7xizzre9eq92I6DJdQUQH7Vzce+9BypQpHGaAiocU9GV1JsVpt5+vIEO9pb8cgSOU0jX67SEgox6V+lzu9Ds0xkSSQZ9pMvazRGghSvjI/WtjaQrVQpVHW8sotjY3NEgyrCFadrSRQIqrX8MFkRKVd1NMPE61a4cX0PFc1gbVcDXrdMvlIl7vXy/UyePb2dVAyDd3/1eyzmi3gUmU+8/C5kWWJieRVVVShqOlvbWzg6PcfXT53jJUP9vOuGa7EdaI4EqfN7OTA/c9WzKmtUafGHaE1GyJXKuD0Kl5ZTNMdqn0l7NsK9/UO1sVi5xHC0gRPpOW5pGEBWJKYLWZJhHw1qkKVykVy1Sm8kzsGFGeTjIi8fXMP2xlZ0yyLh81Hn9b0oSLm/wc+GFzQIfMtb3sI999zDAw88wKVLtVlsb28v9913Hy0tLb+QHfxlIiC7kUSB+oCfN63fiu04uEWRsFsl4vZiWg55o0xPMAk4pKslAkpNEogAftnNy7rXsi3ZSq6ksVqqsretk7jqpWzqTORW6YnGyFYr5KpVckaV782NEvC7GPYlEQQBwzZ5cOocA5EkSbefuzuHCLrc5HSN1w1v5NjyHMPxJAmfD8t26AhFUESJNn+UW5qGGCussC7WQlcsyt7uLp6emGS5VOLiaopCVUNVFGzHviqlLOgaF9Mpks1+dNPCLbso6zoCtcwiWZbYPdzJqlEl6ldJ58p889BZbtnUx3Cinul8lo3JRkQRyrrBI6cvEfWpeK+QKnXToqQbdDfESBfKHDg3yV07hon7VFrCoVo2iurmfV99nJdsHOTm9b3saKodW7bloFdNhBdwi2LaNrplEfapNESDzKZyP/B4fcRPJKAi/ZgL4W/wfw+iJLBuTStTM2nuu3MDDZ1RvnL4DHO5PLIicXRuntbLYe7fPEJPfa34/vdQPQp+n5vZVJbWZATVVfMOcYRaYRrzezkxm6EjEWFDTxMTmSx3bBog4veyuJRjw0gL8bgf07KJh320NUT4l/bPxq4m1rc14XO5CHk9DLYlaakL4VZk8lWNh09f5NnRSd57/41cnE/hkiXu3DhI1OfBsh0qpsmjo2Ns62wh7vPx9bPnecvWrQRVN8cn5xhMJjgwMcNyscgqAheXU+zu7WApV8C0LQRB4MJSinUtDVxYWGFuNUdzOIQiiVycTRHyeZClWtbXSq5Id2cr1arBzOIqNuCSda4Z6CAerPnJqC4Xo/PzHBib5rbBXryywsX5FF5ZIeH3IYsifck6KrrBI8cvUh/x09YSoy0a5pbBXjTDpCcRJ+z1ULVqysRN9c0M1SWpGAaSKBJye3AJItuG2ynoGj6Xi/lcgYjPS1MkyLamFh4dG+OGnk58sgvDsXhq4TL3daxFs01Kps7DExf5vYEtZEsVCkWNqEslGvXikRS+P3mZiFvFI8vc3Tf4oitaflnOuS92vGAGU3NzM29961t/EfvyKwdJFOkMxlBEifOrtRjw4Ug9siAxlk6jyBLzlRx+t8LF/CI3NPVjOw4Fo5bb0xesR3VJaKaBz6VQqGh85dAZblvbR1sszOGZOR4bG6fO5+O6rk7mKznGcmlWqzUui1uWSHj9uGWZxVKehKcmmfbIMidSC2xINrCpoYHnlsfJGHkCcoKsXqWY11AVidf1bEOzNY5mxtgY7uaatjYiXhUHh4Ku0xAIsFIqYeMgICCJAgmvH6+rFnuPAN0NMYqaxl2bBlmtVJjIrBIJecnndCREPv3sEQ5cnma4vYGeYJR8tUrU4wVqxMdCVaMlFiIR9CMhkClVCHs9aIaJX/Wwqa+FsUwan8dNezTMSqnMnvYAI60NPHR8lGOT89y7cZCgx8P0yiobupvxqc9/TKSbBgA9zXF6GuMEVDfZUm3sF/apDLUm2TnQgUv+9SKWvxihGya+oJs/edNeJJfM146dZSqfI1utoBdrkQ8lw+Cxs+PUhwOEvT/MYyhVNAzH5gv7TvDm23bQFAvS31zHhbmaQ6vXrdDTGOfs5UXqYwFQBNxyLW4ilS+xcbiVmUyOz37/KLvWdJItVSlVNV5xzToGGhIcG53l4swy/99v38xwRz3FskauVOXScorPPn0cBIeT04vMprJs6Gji7u1DFHW9FtkhwIHLMwgI7Ghr5XxqBVGsmTe2xyPEgj7+/LbrOTW/yFRmlUy5jCKKOKLAcxMzDDUk+OKBE1w/0M0rtq1lOr1KUHVz26Z+Pv/UcXKl6lVxbNjnwe9zE4v6MXF4+vgYd+weZmw+hWVZdDcnUCSRQlXjs/uOMZXK8uabtpMrVUl6/dR5HRynFjSbzpVYLZRZ215PbyLOibkF7hjqJaiqpKtlHjh/ludmpkGALY1N3NTVQ2sofNVTJlUoIssSs5kcPo+LnV3tzOdrXc4LKyt85cwZhpMJ+uvj6I6FbptYhoUjcMUN10vZMNCqJgOxOuYLBe4ZHCTs9WDZNpbtEPaoLzq7f7jCcfkZeCovBo7LxMQEzzzzDFNTU5TLZerq6li/fj3bt2/H43k+498fxvMuXL71rW89r+1e8pKX/FQ78qsKtyTTHYrT7AthOw7pSplcReNb50a5bbAXVZZJ60VGog08sXQay7a5tXE9K9UCFVtnupimP1CP7ThkimVuXtODIVpUDJOA240kCLSEwwgCPL08zsVM6iqJTtQFNMuiwRegzuvjicVz3Na0hryu0eQPsKpXeHzhLOfzC7xj6CYAJnIZ6gN+Hlu4zO/0bea5VC0c88mZcZ6emmRXcwcdkQiL5QJ+lwuXJFHUdSRRJOzxoMoKvZEYVd0kGfRfmUkbBHwe9k9Ns6u7naKhE/N6SRfLHJ6aRbcsvn9unL1ruplZzdVIhiMOHkXm5pFerh/oxC1LVKoG6WyJxkiQS/Mp1nc14XbJHFtYoGqY3NTXzf85doIzqWV+65oRiuU+muMhDGp+Mv2dSZqCwR95p/3jIIkSRa3CaqXCnnXdPHVqHK/HRcSvcvumAZpiQWwc0oUyXreCqig/svtSNUxWSxWypQqKLBH1qYS8nhe0L7/BT0bQr1KpGlyeTpNsCnFwbIZLi7WLuyLXPEDKus7hiVlesmHgRxYuHrfC9Gqefecn2dLTwp6Rbt5441Y++eghJpczxIM+wqqHe3avwRYEGiJBcuUqZ+aXqPN7QYQDF6Z4/NQ4azobee21Gzg+Oc9AQ4JPffcQ00urtMTCiKJAJl9mIVMgHPBwemYRcMCBTLFM0OvB41aYKxXQbRt3VCbq9TLYUMdysciyVuSlI0M4jsPxyQVuGOni/MIyM6s5GsNBru3qIOn3IUoiK6USz01OM1ifQBJEvnTwJH984w5uGOlFx+LWjf0Yls2BC1NUdJOwz01PUx3ZQhnVo+D1udm1oYtHjl7kmwfO4vUovHLPejb1t9AaC1MfDPDMhQmGmpOoLpmTUwuEfSr14QAODpZlc81QO03xMFOpVfKVKrIik9WqfOzwQR66dOHq539obpbTy0u8c8cu2sIRypqO4Aiki2USao13lCqV+eqps7xm03rG0hlCHpUTC4tsbWkBBLYl2tEsC1uwafAFaAuE8LtdGLrFGzZtIm9qPLUwzuOXLpGqlOmPJbinc4gufsNT+1XC5z//eT760Y9y5MgRkskkjY2NqKpKJpNhfHwcj8fDq171Kt71rne94CzE51243H333T/wtyAIP+SlIQgC1otEP/9C4ZEVsloFVVL43vQlRleXudnpps7rI+goPLl8mq9OHeK1ndfikiSavGEKpo5mGViWjWFYbO5qpoLBoaUZhvV66r1+6rxe5nJ5OuIRGtQgEiK6baFIAp4r+Sh9oQQZrUhY8WLYFk/PXWZ3cxc5s8TZ3DxFQwMHFEniQiZFVFW5vqmHimVwsTDP5kgfTy5e5LnFccJeF+2RMAG3u3bBrpYJuNzIokjZNBiI1RH1eMlVqlRME59LwSXJZMsVBEEg6lVZ1atUTIOqZeISJGIBlXPTSzSFgvz20AaifrVmaCcrvHTzMLpuUdZ0qrrJc6cnuHXHICG/im6aLBWLJH1+PrDvaV69di1/vGMb2WqVtU2NLJVKfOP8Wc4tL6PIMu3RMDd2drOlsflqZMB/BMdxyGhlplazuGWZN9yyBQGBiE9lJpOlappopsnozDKyJNLdGCcZ8uP9NxbzxarGmZklVkvlmkLDgbHFFN3JOB2JyC+8eDFtC8OycUnSr3WhpEgiU7MZTo3OckvTCAvZHLphIQg1Hx+XKNeO2VIJ0/7R80K3IiOK4PO4+OsH99FeF2WwOcEHXn0LiixRrGhUcFg30MTJuQV2dLZSABZzBbwuBdO2yRYruGWRy4sZbt7Qw+7BTg6enUKrGnQmo3hdLgRB4PTEIiOd9ZR1oxaPIStcO9BOSyxMW13N+frhqYvsau3gn4+d5FWbN/D6HZso6BofPfAcm5qbeEXfGoZaEhyZnONrx8/WMnau+J20x8K8+9brQBCuFm7tdRH+9LZrKWHw6PQlvJLCmkQ99+9cw9413WRLFRIhP03REJMzaUzBJhLx4vW62X9uklyxQjpXoljR+d7oRW7p6+WuzYMcHJshpLrZ3NnMVDrLxEqGimGSq1RxyRJr2hrIFMtMpFfZ1tUKwMV0igcvjmJfIbt3RqLsbuugKxKlbNSMMTXTxDJtimWNaMiLJArsn5rmmYkpXr9tExXTwKsobG1poWBouEWZkWgDtgOSJLJUKnFNYzsuUaKrPoZjOxxLzfLwzAVw4Kb2HtbEGlBEkeVyAZ+svKgyzGyHn8kF/FeVmrd+/XpcLheve93r+OpXv/pDVBJN03juuef40pe+xKZNm/j4xz/O/fff/7zXf96Fi/3vThSBQICTJ09ezSz6fwGWXWP6n0ktcWk1RUnT6Y3FmCqtcHDlEn82fDdb4t3sWznP+kg7sqBQpwZQJAnLcvC7XHzjwlmmC6u0qRGafUHGUhm+fW6UV21Zi0928/L+tXz98hmEf5PZ3BGIsljJcWvTMBmtwnKlRMU0uJRfJnOl8Eh4AjiOgEuSafAFUV0i4FAyNfJGBQebkqmzPtHM9yYvEXF7+f2Nm3l84jInlxZAgPv7h7mlswdwKOs6eU1j/0Sam/u6ESWB/vo6ZrN5kiE/RV0jrHq4eaCH41MLFDSNQ+MzbOpoQlFE0uUSkiMSVlWOj8/S05ZAFgVa6yOUdYP2RIRY0Eve1nAJErf39fE3hw4wUpfkpu5uViplPnH0IGXTIHjF2XapVOKfz50hqqqsTTY8r+9MEkVSWoWBpgSVisFirohl1fw2PLLCar5cC7LzewEYnVkmUygz2JJAdbtwHIflXBGXIoEgcHxqHo9SI0hWdJ1sqUIs8B9b0f800EyTuUKeC+kUdV4vDb4AqqygupQX5GHzYsFqrsLRU1P4VDeqS6G/MUG6XEWWarYEjlPrRHYnY3hdP/r9qx4XDeEgm3qbGZ1d4a8feoa/eMVNOEAmX2UpU0CWRPRKkUMzs2xtb0aRZXoScS6vpAm53Fy3pptdw51ULZNvHxvljg0DzKXzrOtqYm1XA4loLRJDFsVa0rsosmeok10DHVRME0d0SAb9hP0q4bSXqWKWrkScv3lqP2/csZlVvYooijw5cZlb2ntoiob4ztkL6JbFarmCLEkEPW4awkHymkZbJMSp+QVsx+F3dm6i4hhMLK3SFYhxeSXDA8fO0BWPsr29laG6esIeD4Ig0JgIkcmWmJhJs1qtolkW7Q3RmqmcZdMeifLguVFeunmEm9f2ki1XSIb93LNxiG+cOMfRqVkmUqu0hUK4XTLZcpWeRAzdshBEOJdaxrpyXbi1p497+weREJFEAUEQSJfLuAWJqm5gaRaiIKKZJqlSCdO0ccsS9f4Ah2bnaIuEOLG8gEuUGKpLoIoyBjanVhZIqj7Khs10OovHJ/PwxAUSqp+X96zFIyucTNdUnwWz9ptu8gavkqp/1VEzoPsZsop+frvyc8UHPvABbr755h/7uNvt5rrrruO6667jL//yL5mcnHxB6//Gped5wnEcJEFAF8B0LEqGTrZSwS1JONi8smMncXeQvFHGL7k5k5tiONROmz8KjkPUqzJXzvPY9EU6QlFiXi+OAxdWUlR0g3xV49GpMe7s66fNH2Hf/ARVy2RDoon18UYWtRwuSWa+VGBrfSuO4+CWFCIeld5gEhDIVirc2N5F1TRwRBHDMenw1zNamGVrYxuPTl4kqnqZLeT5yuhpXtq3hr0dndzTN0BXOIrjCOQrVRSvinlFgaNIAn6PC9EQCHrcfPCxZ/jPN19HczCIYTls721jLJ3m5TvWcv1gF+OlFP97dD8vbV1LNl1hIJHk6Plptg63UTVM+tqT/O9HDnBmeonr13Rxz84Rjs9Osquljd1t7Vi2Q9znZTyTqTkIO6CbJpIgIkkiumVxdH6e7kjseXVdFEmiNRhCsAUuz6X57DPH+Z3dGylUJFqiKgVZIpUv89iJSwgCrO9sJh70kStrV7OZNNPiwWPn+e6pCzWZJgIBj4vf3b35F1a0lA2dk0uLnFxa4I6uPmy7lvCbsSqoLoWIt+aKqvyamD5qmkGprHH05DTRsJdbbxrmro2DTGayzGRy2KaDLIk0hALcsW4Aj+vHn7pCPg83r+sjW67whuu3Mp3J8dlnj7GurZH+ujgdyQjfuzDGQ8dG+a11Iwi2Q32wZnm/XCgx3FzP42fG+MfvH8a0HHoa4vQ21xH0e7i4mOKx/eP8wY3b6GyMcmZqkb7mBD31dTx4apSSpnPfhiG+e+wCuwY72NzQzIcOPMPvrNnA1o5WvnvuIjcMdHNLTzcH5mdI+H0IFpycXmQivXr1EuaWJda3NjKfy9MQCnBdTwdxf005tFTQcAsS/+vJ/ZxdXEYQavy09kiEd11/LZtaawRi3TCZX8pRNUxQBCZmUvS1JrhhQy9dzTHa66O0xcJUbZN9k9Ps7Gzl/NIKj1wcY2tPC9cNdNISCZPPV/B4FFayBdrro6yUSiRd/qteKcOJJC8fGiFXruJXXRxPL3D+0jIBl5s/WrsVRZJYXMrR0hhBMyHodrOhpeZrs66xgZxWRRZFREAXdD45+hzvGrmefFWjNxynrBtgw0w6y0i8nqKgcWfLAHlD4y+PP05Wr9R8aabPcWvLAK/t3URbIPKLP2h/Dvh1DVn8SUXLv0csFiMWi72g9X9TuDwPVE2DqVKapDuEhcXOtjZGU8tc09pGxdJIekIIgsjF3BJJNYhP8fD5scdZSWS5t+kaLLuW/yMIsKpXyCzPIQ2LV0cvuu0wUFfH2ewSD41dYFNDE78/tB2AkmGQ13T6g0ksxybmVol6vKxqFUbCjXxl8ggNaoiKYTK+mmFTUxPj2TQul4eHZk5zTX0HmmUwHE3yJ+v3gC3QEghxTFKYK+YZW01xS2cfjgNjyykeHR3jJSMD+NwK7YEIqiJT0HQW8gVURWalWOKPH/g2//z6V3B8bhqXR+YDL70Vw7FI6yU+efYA44U0HcEYe5LdGKbFHbuGqZgmqkvGEWC1XKEhFkA3TeqDftY3NGA5NouFMkfn57i9p4+VUolMoYxjO1dOzCKqW8brdpHTNSzn+UuLWvwhLi6mePD4eSI+lajfS0s0TKmq87VnT/PolaIF4MnTl7llQz+vv2kzRtALApyfX+Zbx89fvbsEyJQq/NMzR1nf1khj5F/l2YZlka1Ur6oq/m0S9vOFZposl0ucXl7it/qHyZY1DoxN8/ToBNlylc66CHuHulnT2kDdvymcShWtZq3ugCJLeD2uHysb/kXAtGzyxZqZnygIBHwe/N7np/IoV3TKFZ1kXZBSVcOxHcJ+lT+56RpOTi8wt5qjMRJkfVsj8aAPWfjR76uqG5weW0AVZf7wxu0EfB7+7sGDnJlfomIYvGTdAG5Jwi3WOgGjC8tUqwZDzUk64hGEeJSFbJ79l6ZIRgLkSlVkSaKnJc7ffu85Hj1VO1ZaYiFetWs9z5ybwAZ6WutYyOV5zY4NXFxIUTQ0zswvoXoUtje08sFnnuYVa9ZxfVcHMa/K9W2dzBRyqJJCXtMIed14CwqWbSMKArIksn9sipuHenh6fJKb+3sQECjqOoog8sSFy1xKpXHLtSgRy7aZyWX5+ulz9Cfr8Llc5PJVFpdzhKNeXLLMfdeuYX1vEzOrOb64/wSvu34zulBLZF6tVHDJEk9dnuCb587z3QsXaQoF+a2RYXoCUWaWs8QCfgzTYj6bJ+T1sKGhka3Nzfzpjl1omknUr/KFCyc4t7qMAFTN2g3e+7bfCIJAPl8lFFLZ3t7KuaVlyrpBydC4vb8PlyRRHwjwrenT3N7aT65SpVjV8bvcVE0Dn+RmoDmBIIBXlEmoAT56+hmmi1kkQcCvuHGJEpdyKzyzcJk6dQSv/OIj6/6646GHHuLJJ5/EsiyuueYa7rvvvp9qnRdHP+2XCMdxOJ9b4J8nD1E1TSzHpjsW5X17bsQRHVb1MgFFxXHgcnEZv+xBs3WmyssookLWrIIAE/lV3JLMpvpmDGwOLU8jAMP1Cf777TciixI7GtvIVqv8l+8/yp88+m0+emQ/46tpYqoPVXaR1cpEPN5aR8Wp+Vv/Xu+1DIbq8UoKEZcHy7FZrhZRRIlzuQW+NnGS65NrMDDZ0JykMxrl3p4hPnz9bbxx3SZu6eol6lZZzBX40GP7eODYGWZWc9T5/bhEiYmVVTTT5JunzmJYNncM9/GuG66lpOucXlxCQiCnV7mwmmK5WmTVKBNVVR6ZucCF8jJBn4e6WICHjo/WRma2TVkzWEwXuGVDPyvVEjGvl5VymY8fPsjxpQXCbpUmfxCPIuNyy4iyiCyLWI6Dblo0+P24XoCltyJJTC6tousW06tZZlazhLxuppdXefTEpR/a/pHjF5lJZXGcmnz77OwSlm1fMSL71+0yxTKXVzJX/y5qGvsmp/jb/Qf5Lw8/xgeefJqvnD7LfC7/go65smmQq1bZ296JZcPDpy7ygYeeZN+lSc4vLPPouTE++J2nOT+3TNUwsW2HdK7EfCrPhakVTl6aZ2pxlZXVIpphvKDX/mlR0QyOj87wmQcP8oFPP8ZHvvAk33jyNLNL2eeVK1UsaVQrOjdeO4BHVajqJrphMZ7KkAj7uG6oi7ZEhIVCAeBqofnvsbJa5POPHOVDn/s+lmYzn81zdr6WGBxQPQRUNyuZIn3xOK3RMAcnZqgL+XnvN57gnw+ewutSGJ1bYWI5Q1kzCPk8dCQiTKZWubC4clV99tDxUWRJJBH209sU59jUHO2xCJppcnp6gf6mJN89fZFvHjvH7pZ2vnT/K3jp4BAhVeVyYZVLhRVet2Y92LCYLXBdXyeiUFM4yZKIZTtMp7Nopsl1PZ3kylXSpTK6aSILIucWl3FLMoooocoK29paee2mjWxoarh6kBqGyeXJFJGAj9VsiZfuXstEJstHvrMPr8fFQrFAvd/P+aUVwqqHsmFQ1HUMy6IjGmFzSzOCKJCMBrgwswK2g+M4pAplihWNBl+AD+y9mZDbgyAKzFXyzFVq/i0+l4tkwMd0Mcujc2NsGmplfnEVWRRpDAW5qb+XlnCIgNtDXq/iU1yIImyIN1GyymiWxcXFGu9MvML3k90CmUqJezvXUDYNzmQWEah5AhuORcjlQRElLuZWKBjajz5AfsVgI/zM/14s+K//9b/yzne+8yo/9q1vfStvectbfqq1fuqOiyDU5pi/7sgZFZ5YPM+J1RnAwbBsZstZtibbWK7mkESBklkj7UYUHx5RwSu5CSk+1oQ7KekGjiRyKZsipvq4s32Q8VyGT54/yKZEMx3BKKZt89njJ8hpGvd0DXJrRy9ZrSZL7IpEiXlUZFFCFiWyWpWw24UgCsyXV2n0BqnzBJlNF+iOxag6BivlIrLQyKZ4G9PFDOOFFb4xc5T7WjbjsV00BoJUHB1FElAkAd2yODI1x8XlVI1kF49gWBZV3WQ6k2NTezOaZXNmfolb+nt57sIUyYAfn6wQVb1ULIOcXqUuGCWrV1kqF3CcWrF2Y2MvS7kSGzsaKWk6bklGcBxa4iESET9L1SKmZfPFcyep2AZ7WtqRbWgJhuiKxPjWufNXRlYS8YCXkfp6NjU04ZFf2KFrWBbz+TymZTN3xUX18mLmh7YTEBAFuLyYZmtfK+DgcclIgohm1RJzBUFAFAQiAe/VC6ht25xaWOLvnjuMZpmIgkBB05nJ5ijpOq9ct4aw+vxsyA3LIuByUaf6mVvN842jZ9nV28Hmjma8bhfpYokTk/M8cXaM4eYkhigxtZDh/OQSPrUW1TA6uUTA62ZdbxP1sf+YD1PR9KuW9ABhrwevS0F9nt2i8ZkU//D155hfyWOYNc+Ry7NpsoUKr7xlA9HQTx6pCQLILomOtji3isNkSmW+e+oie9d2Y+GQ1zQSAR+qonB6bpGoV8Xn/sFuTrmiM7W4yqkL87XuT6mK7nLQdIuoX+WV29aysJonXSih6xZvu3Enj5y7hG5bvHbXBh4/M8ZyvkjlCtm2rBmslmqjuYPjs8iySFdjDMuyiQa8rORLDLfV4/W4yBQrdCdjZMoVWuMR4kEfmUoZ23ZqGWWWxf7ZaeJ+LwdTU3zp0gle2bueV3Vu4MD4DNf0tPGabev47umLzF3hkd042E0y6KcpGODiUi0fza+6cIkiPsVFUdMJetz88a7ttIRCzGfyVCoGy7lSzWsm5EVWJEIBD9FIE1XD4OT0Aj3Ndaxtb0ASRTyKwkqpxGCiDsOxGG6opz9RR4MvwPRKllSmhNQuMdiW5HOPHuX379zOUGOCb58a5Y27NjNdzBJS3LRGQjx85iILhQKqouCWJWwc3LLM18bPMBJLsnagmZJp8OTUZa7v6MTCpi0c4pm5SWIFL1GPStny8sTiabrbm5AEkYjbQ7ZSJVMpU8XgW+NneP3IdlJaCY8so1kmXtlFvTdIyKXWPHt+ZZkfP4xf11ERwJEjR9i0adPVv7/85S9z8uRJ1Cvnwde97nVcd911/M3f/M0LXvt5n/0jkcgPFCrFYpH169f/EAkqk/nhi8GLFY5TI7eeWp0hpeWpOgaPTF1ibV09mmWi2Rajq3Nsr2snoHjYWtfNklagUY1yb/MO4q4gc8UCftmDR1b48NGn+fNte3n7ul3sX5ziWGqW3nCcpVKJr58/z1KxyGPj42xubsbvcnGgMoNPUXjbzp0k/X5UWSFdqaDZJqpUkzK/7egX+dCGl1OoGCSDfmZLGfqicc6ll7m+vp+0XuRIZoKb69cwuZTH8Avook3A5WL/ykX6Ao20qXVMZbKoisxN/T3UBXxkKxX8LjeWbSMJAptam0gXyyyvFgl5PfhVF0MN9XhkmaJd89hQBAmf5Ea3cvzewBZ2htuxbQe3IhEP+plL5dB1k3u2jTA6u4RHkQkILlLlMqPpFYIuN9e3d2PZDqdmFri5oxu/rPDczAyaabE2meSlQ8M0+Pwv6Hu0bJuOZBRZFPG6XWxoa8QBgj43Eb/K6hVfl38pSOJBH36PG5csoZsWA40JOhIRUoVauJwkCsR8XpqiNRdigFxV49mpKWxqab9lw0ARayTLg1Mz7O3qfN6FiyBAXPVi2hbFisbv7dlK1K9yamaR8ZU0bbEwr9yxjkyxgiyK5EtVDNOiKRHm5NgcxYpGT3MdIb+HXLFKJKDi/jFkVoCyprNUKDK+nOHEzDy27bCutYE1zQ0ICJhOzcRPEkT8bhe6YV1JLYaA6qaqmew/NcHUwiqOw9W74GJZ46mjl9i9sesnFi6lsobX62a1WOXTX3+O+25aRzjkY7KQ5XMHTjDQWIdHUVjI5hlPZ3DJMtf1/rAooFCsYui1dOieljit9RF00WZ7Tyt3rhugqy7KiYkFkgE/n3t4H9dv6OW+NUMgC9SH/KxvbSTsU+lrrMMly9i2zdbuFnxuF16XQizg4/rBLtoTERRJREDAxiFfrjLSXE9Z1ykaGtt6WsmUK2SKZf7o+u24FZmZfI6vnj/LO3fuIqtX6I3G2dXYgVep8ZX+/vGD3LdlhD+77TpEUah19wC/24Uo1l5LM0xiPi+mY7OttYV0qcTrtmzAJ7n4q+8+g6aZNEaCnJ9dZn1bI3es6+e+29djO7Wk5Wy5ymqpTEB14XO7GKivo6wb9MRj+NwuJEFka0sz52aW+J8PPsXcag4H+M6J83zydfextruRv/3Ws/zhXTu4dbAHW3B4fGqc1wysw3FAFASSAR8lUydnVnCJMpIk0uGPEJG9nBhfIBLzIjgCqXKZsNfDmfQSXx49Rde2MEl/DJckcnR1gle2X8O6jgZKZhW3KLN/Zoq+9hgTlQwPT53njs5hbm7pZ6qYQbryuxWvXJ+6g3X4fzMm+qXjD/7gD9i5cyfvf//78Xq9dHZ28uEPf5j7778fXdf5xCc+QW9v70+19vMuXP76r//6p3qBn4RPfOITfOITn7jKKB4aGuLP//zPufXWWwGoVqu8/e1v50tf+hKapnHzzTfz8Y9//GpO0i8aZUPDcRw8kkxI8ZLVK1zILnNqZZG3bdyJKrkQBIi6gxi2SdDl4YNnvsufrbmdmxs2ots2kgA+2UW9N4DlOLx73/d4ac8Id7YP0uyv2V6XdZ3lUglBqP2gv3fxYm0HBBiMJ2qfhWUgCSJ1qg8bG80ymS6nKFlVypZOPOBnNL3Cql3CxGQo3Eydx0/c42e5msOPlw8e3sc/3v9yKrbOeHGZz1zez7sHb0fxiTQHg/zRrm0MNiZxgIDHDQ7s6mknV6kyVJ9ANyxmUlm8ARefPHyE31ozQlj1UK2Y+F0upvM53jS0ncfnL3F/2zpW82UK5VqKbLZcxet28fUnT3Hjlj46EtGaN4No1YqSugYiai1Ndilf5MPfe4aN7U3sGehiV2s7jgOWZTOxuEpHKPJDd9s/CVXTwuNWuGfLMOlimapp8ZXDp9ne0Up3Y4xUrkS+oiEgEPJ5SIR8rOtspKqZLKULdCdijDTXc3ZuiWToStHkOOwd6rrKMdEsk8VCkalsloL2r21qpSjRHgmTqVSe9/6qsoJLlFgplmiJhZnL5vmLbz7OSqF0NWOpr76Ot9+yE9WlkC9WmVxc5ZMPPkfp3wQRbupv4Q13bqs5IP+EwiVX1Xjo1CgPHD6NdWXM4HUrDDQkmFzNcnh2jvNLy7x20wZceZFDF2Y4M72IS5a4bqiTgZYEU/MZNL02thIEkCUJSRIoljUWU3lGuht/7OsXSxqyLCLJIucnl/jv//AI/+VNt9ISCvHMhQnOzyzjdkm0NURxu2TWNjcQ9Pzw97+wksOjyLzspvVsGmhBcUmosos/vnEHB8en6UnEyFUqBFQ3t2wb5DPfOYTHJdPeEEMSYKitnnuuX0My5Oe+LcMokshAc5JsucIta3sZaavn4lKKf9p/DAT4oz3bCXvcPHdhioZokLqYj3DAw2ql1rW6ebj3yu/J4ejiPD3ROFFVJSR7uKtliB5fnJVMkd19HSznCuTKFZpjoSuEawevS8Hvrl2Aoz6VlXwRzbI4Ml1TQ2mmSXc0xj8fPMXd6wfpqY+jSBKKJLGULZCrVgn63Dx3fAIB6OpLEvC6KesmCDXS/dGZeeqDftxSratoWzZPnr2MT1JoDAQRBYGXb1mHIApsGWhlQ18zoiLQF0+Q1iqcXFrgDSObqBgGO5va+NrEGbLalRsBYKlc4M83X8/schZbcHC7ZLY0N/PM/CQ3dfTw1MwEtuBQtnXOrc6S8AYRgYnSEn3BRgp6lagU4PzcMt0NUdbGGzmRm2WwUM/Nzb18efw4JdO4elPd6g+zq6EDn/LicNC1+dmyin6W5/6icfDgQT70oQ+xYcMGPvjBD/LpT3+at7zlLXzkIx/Bsix27tzJF77whZ9q7edduLz2ta/9qV7gJ6G5uZkPfOAD9PT04DgO//RP/8Rdd93F8ePHGRoa4q1vfSsPPfQQDzzwAKFQiDe/+c3ce++9PPvssz/3fflRyJm1O9o99QN88tKTZPUSYY+HC+U0F1dTbEo2clvTWhwsDq+eo8/fienYTBdXaQ+ESWlZukLNFHSdoMvNH6zZyoeOPs37Dz/JW9Zu51W967BsC1VRajyPUpHeWJyhZBJJEJjKZrmxswsdk+9MX6aga7y8az1LlQKSIFAyNeJuP1OlFNvCUfbNp9na2sRYYZGKXeHb86NsjXfT409yYGwOy6olqAYUF4enL/OSpvUMhhuQJYkbBrtJlUos5At0J2rdCQdoioTIliscn5pjT1/tLvfTx49yfnmZuwb6EEUBEYGI20OqWqY9GGN9vJFiwcCrumtu6aKA16NQ0QwuL2d4/xcf596dIwy0JwCH1kCY3W3tDNclKZU0EEBSRJ67PM3BiVkawgFEARazRfpa6tjd2/ECv0mH0dQy/S11tARDPHn+Mtf0tFMfCnDP9hG+e3iUoqYhAAGvh9s29dMUC2FaNs+enmDn2k7u2TjEcFOS0YUV3IrE2tZG+hrqCFy5sMiiiFuWf6BoATBsi0y5QugFOESKgG6beFwKVc3g8XNjpIvlq9Nsx3GYWMlwZHKOTe3NlDWDLz1+/AeKFoAjozOs722mo/HHM/YN02IyleErR85cLVrWtzayo7uN+XyB/3PsOEdn53nl+jVIFnz4W09zdGwWtyzRlgjzhhu3IAgCQZ8Hy6oF4zmAZpgojojHpRD7D8ZELpfMaq6E3+tmoKeBheUcpy/Mc/NQDyuFIucXVlBkCUkQ6E/WsbunE/+PKFzdLoWZhSwv2TXE6clFSnM6kYCXkF+loOsEVDfrO5r45GOHuH19P29/xXWcHJtH003625JsG2wj4HGzWqxw05oebAc+/sRzJAJ+Xr97E8+NT/HlQ6cxbRuvS2G1VKI1GkIQBMpVneZECFVxcWxijvUtjVzX14lLEnHEWtG9u7Wd5y7PsLe5F9OwKFV0/vdXn+WN9+zgjddv4bnJGf7P0eMUNJ3+ZJzd3R20CGHS5TJprYLP60Y3LZ64dJmb+nu4f/0w6XyZuzYMsVAs8MWjp1jOF2kIBbhxoIeITyWVKuI4Dts2dFCxLOpDQR46dp7CSDe27RD0uPnKqTP8/rYtuBWZy/NplvNFIl6ViFflrk2DbO5q4dT0IrlKla19LRi2TVarUtENoqq35tdim8RVHy/rWcMDl05RsWqJzYPRBB3eCKdXFimKOiulIp2xGJdWV7i2pdaR9couHBw+fPp7fHT7q3hJy3rGiwv0hRqxBbCwWdvaQNitclNzP58ZPcTx5Vle3beJP1Kv4bmlyVoXK5RgY7yZRu8LyzL7ZeLXeVQkSRLvete7uP/++3nTm96Ez+fjb//2b2ls/PE3Mc8Xv1RV0Z133vkDf//lX/4ln/jEJzhw4ADNzc186lOf4gtf+ALXX389AP/4j//IwMAABw4cYNu2bb/w/TMdG8Fx2BLvYL6yiiA43NDSy/nMs3gUGRvI6iUKZpFjmUu0qo1sirWyJtrE6ew4FatKu7eJqXyW/XPT3Nc7xN/uuYuxXJrtyVYeHRujLRymKxrjlSMjqC6F9liYnF7BchzuHOylIxLlwelzHF6e5tU9GwC4mE0xEkvS5A3jlRUs28TvdrMmWU9IURmONPLxi4/y1NIol5qW+J3O3RQNjaKpYZo2qiyxra4L2xG4mFsmTojOaOSKGVuWxWyetniUbLXKoblZrmlpJVOqSQ4dEUaXlvmD7VuZLORoCIeYTGfY3tZKulrhT554iL++7raaiZZtocgixWrtgpoqlrhubTef+PZ+Dp6fZtemThS3REXQ2dPeyVQ6R0nU8fndrGtt5NDYDPlSlVJFw6+6SUYDdCdiqFe6B7Zt48CPNGUzrFrBoJsWhmgSD/j4+4OHeOuOndw43IMiScysZqmPBXj9LVuYuMJ3aU9GUD0uTMeuhU8KAk+dGOf27QNEu1oYbE6iSCIBjxtFElGumATKosiWlmYOz8yytbWF+oAf3bI4Mb9Avd//IzsEPw4FQwcHJEFkqVAiW6nSFA6SLVexbBu3IhPze5lbzWPaNulckXSudPX5LlliQ18z/e1J2uojP5bICqBbFqdnl37A0G17ZyumZXNuZZlnLk+hKgrXd3VxbHyO/aOTuCSZiE/lnffuQbpCtNu1oYuzYwsMdNXTWBesBQpOLOP1uGio+48uJA4+1U1FN+hpqWNhJce+U5cJBjz87o5NLJdKVGyL7mSUtliEuM/7I1eJRXwsruTIlqqIksClhTS+1QJNyRAdsShl3aBqmmzrbeUzTx+lNRZmXVsDybCfjZ3NSKLI5GIGzbCQXRLHpmZIFcvcPNzDZDrLxZU0g80JChWNvYPdKJLMSqHE+s4mRFngfz93hBt7u2kIBhhdWiFXqXLTUC+6ZbKpsYmpTJbPHDrGZ15+HydS8zR7QuQKVSYW08zPlnjk4hiSJGI7Ds9cmCTh89FTF+Phy5cwLZuX9A5QNQxaIiG+c+4ifpeL7liM5yan+cRTB9GvmH/OZvPU+X1c09FKoVhlw0gri7kiR8Zm2dHdylK2gGU5zOXzNIeCSJLARCbD5tZmyle4PYvFAgONdfQ21GHaNiem57lz4yAFXSdfrVI0dbySwnUtnZh2LdDyOzPnua65k20NLVxYTeGWZG5sro1+Q0GVfeNT3Dc8giQKNPiDzORzDMQSZPUKIiINvhAFvcr2eB/PLI9SNmtd0EylxKb2ZsbTaVqjYd657no8iszTS5fI6CX6IknckkLJqPLw/FmuSXaxNtL8/wQH88WAzs5OHn74YT772c9y7bXX8ta3vpU/+qM/+pnW/JWRQ1uWxQMPPECpVGL79u0cPXoUwzC44YYbrm7T399Pa2srzz333P+VwsUvu8nqxZo5W+smYu4gS5UCL+kcoD0YwcHmbH6a/mA9JbPMipbhrpYN4DhYtk2Lt56sVsXG5szKIpO5DHd29bOroZ1ctcrTk1O0hbIM1CV4xdo1HEvN8fFT+zm/ukzEo/K6wY24XBKHV6ZpD0TpCkWpWLUiIKdXiboDdPuT3Ny4jkJVoyMc5VJ2hYJTIK3neXn7VvbWD1OvhtnZ2smTFyc4s7DInp5OGtUI//nYN3lj9y4s2Ua3bVKlMo+eH2NHRyuWbbNaqSALIg4O1/d3UdYNXLLEnq5ORFng9PwSWxtbWCyWKBkGJ1cWiHg8pKtl/KIbw7aQJRHNsChpOk+dm+C6wU7eft9uVgtlkASWygU0x6ROCXBmdoGX9PeTThXZ0d7CYq6AEbVq5Fy5xhe5eaAHjyyzki+SLVcxLZug6sbvcRG6YgGvmyZnl1Z46NwoaxsbWLCzJNQAL1u7Bp9LIaR6WCmUODG9wKNnx+hJxmiP13gLj10Y59JSij+6fjuDjQl2rukkUyrz7KUpYgEvUb+XiuEwk8nRFA0R9Kq1YDvbZqQ+wd/ecycT2VXOriwR8av8ya7t1Hl9L4j7r1kmEhJVywAcEAXiIR8Rf+39qYqM6dS6Z7XPWCIR8aMbFjdt6eOW7QPopsX5mSWWikVm0zmagKD3h7s+kijiVn7QC6YhHMCwbc4sLl+1QQy63ZydXsR7xfjumsEOoj4VqJFf+9oS/MUf3sb00iqjE0t4VRevvG0jjfEQIf9PLtpEsdax2HdknJHOBsoVnSePXOKjn3uK3Ru7eOmN6+hprcOn/uR1gn43G9e08d3DowRUN2G/SkB14zgw2FjHaqnCX3zjcV69Yx2/d8NW8uUqqlthfUcTFcOgXDH4yhMnWUzn+dPX7GW5UMLrUdjQ3sRDpy9wZm6JuoCPgNvFupYGjk7NMdyYZKAxwYnFBb53/iL9iTjXdraz//gM3zp5jq0dLahuhdZQmEcvjBFwuzFtm1OLi+xoaeX6zd1Eoj4+v+80Fa3WpSiUquzsauf2oV5ymkbC62MonmRsOUVPIs729lZOzC5yfmmFvkScR85fIlepXjXoEwWBuoCPVL5MfV0IQaJmxvfgPu7dPsx9m4ZpjoWQVZGsUeUt1+ygXNWpmDrNsRAr5SJlzeC+jcNUdQO3IuNzu4j5Vc4sL+PgcCq1yLq6RhIeH7Io4VZcLFbzfPzcPnpDCZp8QTySiHjFf0lWRHricc5mlhiWk2xuaGK2kGdbQwvHlubIVw3e0LubqUKWE+k5rm3spM4TJKdXKZtGLSjVq/Ltsxe4pqOFQEDhkfmzZPUy+5fHUWUXLlFGAFyiRKc/TtD1/Dhlv0z8Ondcstks73//+zl//jxr167l3e9+N7fddhtvf/vb2bZtG5/85CcZGRn5qdb+pRcup0+fZvv27VSrVfx+P1//+tcZHBzkxIkTuFwuwuHwD2yfTCZZXFz8setpmob2b9r1+fwLk6L+WwQUlbJV4RszT/OKtpvIG1U+O3aENdFG/LILAwOfqOCV3XT4G7hUmGJzrJ+KpdHkjSMKMrpuklB9/PbwBh4cP48kSRQNjYpRkzVuaG5isZTH61bYtzTBXT2DvCN0LZIgklD9nEjPY1gWWxItWI5JwajSFojgkgSWymne3HczmmmRLpeJ+304OJxZneXm+nXsSvZj2BbL1Qwd0Qh39Q/z5WOnuaGnh9lSlqVqAcOxqPP5sWyH1XKFP9i5BVkUr96BDyUTnJpfYiiZ4PGzY2zrbeWmgV4enRzjpo5u9o9N0R+Ps1gsMJXNEvN4MSwHVZUJ4UYSRUSxJoGuGAaKIrFzXSeCI6CoIudySzT4AkiOyHQhR76k8eB3T3LDDcO8Zss6Ti4sslqqEPWqbGlrpi9ZR7pYZmwxzaHxafIVjf6GOtZ3NNEKhLwqK6UyXz11huViiTUN9Xhkhb8/e4B7u4a5PtxJsarjdStcXk4zm8lS0Q3SpXLNZ6dYQRRFJtOrDDclSUb9lG2dBjHIbC7HI2PjqC6Fre3N6LZJUdMIe1UCLheZSplvj13gubnpK5+fwIH5aV4+uIYNDc+/PRp2q1Qtk5KuE/V58bhlUsUStw/30dtYBzhkihUiHhVJEEjGAuxa18nmwTYa64KcmlzkC08eJx70EfK6OTWxwObeVvau7Sbs/8GTuUeRWd/aRNR3lkypDNQStT1CrVhxKTWfEFGAoMeDYdbiBzZ0NeL1uDAtm/GFDPWRAPtPT/LM8XE0w0QQBE5dmufePWtY39/8E9+vbTqYls1XHz5OR3OcO64fYceamhmhZdmsrpYpxfT/sHCRJYmqYSGJAl0NUQzBYTFboLc+RjIQ4OJCiplMjvd+4wkGmxL0JGO8asc6NMuiUNFYXS3z7JlJbtzSg0uRMBybTR3NuJWav0pJNyins7Vuq+Nw+PIsg40JbBzOL60Q8/noqovhdStEfSp+j5sDEzPs7e9GFh3aQhE6IxGcK47WlgA3bR9gKpclVSpTrurIksRQc5LXX7sZVXGxUq2wob6R8wspmsMBTszOgwP3rh3CME1M2yFbrl4JsK5dxGzHwbYdDMskFPSwnCtxcSGFYVl8ed9Jnjozzn/5rRsISh6+dOEkbx7ZQUHTsEQbURR46eY1fO7ZYzRHa0GJy/ki27vbEBCYXs3SHAlxIZ1iOJ5ksVBkXbIBlyTR4ovwzYlz7F+cBqA9EGZnvIOyZRNUPbREwnzmzFESPh9Vx2BbQwtZo8qd3f2MZdOsSwzx1NwUj8xepGwaJJQQYY+K26vgQubJ8QkQwOURGM8vs1TJE3B5cHDQbQMRAUWUWKzk0Wzzef/efpn4WSXNv8py6Ne+9rVks1le8YpX8Pjjj/OmN72Jz372s3zmM5/h8ccf52Uvexl33nkn/+N//I8XvPYvvXDp6+vjxIkT5HI5vvKVr/Da176Wp5566qde77//9//OX/zFX/xc9k0RJSRBpDvYhCIqFIwyTy+OcyI9y/ZEGy5BIukNUTLK7Kpbw7KWwbRNqraO4ZhgOdR5a94OnWGZP9m4g8PLsxxZrrI20sBdg/1cKqZYrOapC6jsbuwir2l8Z/ICXsXFK3rWUe8LYKDTHYoiCJCplkmoATySTNjy1Zj0VyYlK4UikiiyLtZGTyDJ+dw8PkXkRPY0e+q2s7GzHrcqMpZJkdHKdAUSzFdz7FIULNuhLRJmIVcgGfAjiWJNLinL7Ls8RW88xun5JXJGlZduGiHh8yE7Ip/af4Tf3rae6/o78Ugy59MrNAYCxDxefLJCulBGkkRcssSdGwe4nFnlgRNn+E837AABGv1B6tw+bBNESWA5XyAQqElxW9UQjYEglmPjd7tJBH1UDYNnL0zyD08coiMRxaPIfPv4KE+ev8yf3rEbv8fNpZUUK8USm1ua6KuLI7hg/9Ikj8xd4N7OYUzbxnYcIn6VezcNM9SYQJYkBMDGYXw5Q9ynUroiERYkkYdGL/D4xctXj43vjV7iNZvWcu/aIQBEUeR8OsU3LpxDt2qtc8eBhUIeVVHoj9cR9jxPObRts1gq0OgNkq1WedXWdYgSTBRX+T+jx8hpVTY2NPLajo0cmZpDESXuunaE8eU0M6kcRy7N8Mrd6wj7a90gWRSZTWUZW0ixoavph5SA7bEwr9m+nq8dO0u2XGEytcqu3g62t7fw7dFRKoaJYdts7W/lC08fx61IdCSj2LaDadVUPIfPTfPPjx0nHvLhumKKtpDO8/WnTtHaEKWpLvRj368ggiQKJOMh1gw04XbLKJKExyWysJRnOZ1jTV/Tf/i5lasGE3Np1nY24nEr6LZFYzRI2OulappEfCpt0RDTmRxBj4cbBnuI+33oV0z7FlJ5OptivGzPBsqmwa6edpKhAJppMNSUxOdSKOsGhmVhWTZBr5vLyxnWtDbgd7nY3NJIxdYpmwbXdLXx7PgUS4UikiAgCwKbWhopmTpL1Tz9iQSr5RJB2YNt2pRKGgONCe7fPEJLLERMVclXNWKql5Ju4FZEchWNjzyxn1ylyl1rB7ln7SCWbdMcDSKIArlSFdO28XlcpCtlogEflmUjSyLxgBdFErlz8yDb+tvoa6pjorLK7wxvYi6Xw3YcYrKXZyYmGW5L8p+COwmqHhRJ5JHTl7h9fT9VwyQZ8HM5nWFtsoHPnT3Bf95+HZIkslIuMRSuZ32sicVKgc5gFFVWAIHTl+fZMthGzOulalucXF5kTTJJwdT4/NgRuoJxNiZrSr+yYdLijbEr2c3T45McX1jkAzfdSMkwOb24xKu3jDBXTdPkjxJ2e0jreXTLRJVdRF1B/IKHgOL+sQaFv8H/PTzxxBMcP36c7u5u3vjGN9Ld3X31sb1793Ls2DHe+973/lRr/9ILF5fLdfUNbdy4kcOHD/PRj36Ul73sZei6Tjab/YGuy9LSEvX19T92vfe85z287W1vu/p3Pp//oYCn54uKqVGxdK6Jr8UwLRRRpNEbpN0XQZVrbUlFrIkiBUdjJNSNYVt4JBdnsuP0BmqdBc02eXT2EluTrTw2e4ntyTZCHg8Rn8o/HTzO3914F6IIp9NLLJby7GnpwKtIhD0KVVtmW6IZ07FRBRc+BVb1Ig2eEI1qGMcRMB2LfEUjFlDRLIvhYBOzlVWKZoV5bZGoK8zBpRkemj7NrS0jNAWDpOwQHlFhtVLCLcvYtsPMao6OWASEGmfDI0rIgkhI9YAg4HW7uLCQQnBqcl3bcfDJCt87eZHOWJTdLZ24JJmE14eum2SNWrhixTDxe1x4PApfP32O39+9BUdwyOkVFstZ+kJ1ZCoVOmNRgj4P1+7o5ZEjF3hw31nW9TYy0F6PYVjcvXuEomUwm87xnrv3EFZV/KoLEYGFXIGzM0u010XIVqrc2NvNxqZGKlWdoNvD/V1r+MbEGUzHxrBq4W93bxji8nKGx8+Oc2RyFtuGDe01GelgUxL7Cln1wkrqB4oWqI2jPn/sJNd0tVMfDFDUNU6vLJDw+ynpte6SLIsE3T6WyyVmC3kaA8+PNFjQNXTLRJRgoVigORZk3+Iknx09TtUwa8RQo8JKqcT3zlzktds3gggl3cDjVbhhXS8HL05x4OI0Vd1kTVs9N67rxeOSKWsG/n/XuQiqHm4e6mGgoY5Ts4t01EWJelUQ4E3bt/LgufMUNJ2O+ijvfukeBEGgLuirqYgcCPtVHn7uPF6Pq2bUd8VHQ1EkVgsVLs+lf3LhIoj4vG7e/NvXMjq5zHf3nyca9LJhoJm+viTdUoJVu0o1bxFR1avjqn8PTTeYW8mxNtxIUdf51L7D/Nnte6joBuOpDK3hEBvam9jZ28413e3Ylk1ZNxAFgaDqJhL2cs+uYUzB5sDULDvaW1kqFFAlhaDbzR/s3spnnzvOarnCqblFru3rIF+uYpoWaxrqiQdqRVvFMvDKLt5y3XZKVZ2zc0usaamnORwiq5V5aPoM62IthFWVJw5eYqSvkf929146E1GOLM9RzZnUqT7mcnm641Eqtk5IVbm4lOLScgpZkvjMc0eRRYGb+3vpjsWYSudIhHwIgoBp2RycnOWPd+9gKV3A7/ewvrOJt9+1m7qon8OTs/Q0xmjyBxnNrpDJVRCA/mQdumXxvsef5Mbebm5WXVSqBuWqzpnpJQaaE/TE4hyZm2d7WwszuSwFQyOMh8emx7Adh/dtuRUTg6JZQRZq491socp8Kk805kUWRf7uxCH+247rqfcFmC3nOJqa5XuuUf5s3Q0IAuT0CmFF5auz55nN5ciUKyiyzO6udlRVwKPJ+GSFuKpyoTCLgEDJqlIwy3T4GlkbbSGgPH8y/C8T/97U8qd5/q8qenp6+Pu//3ve8IY38Oijj/5QArTH4+H973//T7X2z7Vwee9738uePXvYtWvXT72GbdtomsbGjRtRFIXHH3/8qi3whQsXmJ6eZvv27T/2+W63G/cLkMr+JJQtjaqpockGum3ilT38Xv8O3JKIDXhEGb/kwRFMvjn7Pe5ovAe/7McjySQ8UVySiCyJrORLGLbFfKnAqlYlr2s4wIpWpDUUos7jpWKbeCSJtck4D87tZ1dygIhH4VxhnNtbRrhUWGR9tJ2QIpE3bBRJxnAMRGCpXCTocXM6tYTf5aIvEmWssEyD18/B+XFua9jDV2fPM1VI45fdnE4t4nN5UGyFbfEucpUqqqIwl8uzs6uN84vLxHxevG4XqiLTVxenYhhc091KSdPRDJPWYBg3Em3RMHP5fM2cbqSXtck6DMvGMG2ylSq6aVGu6NiOgyPBzUO9eBSJsq2T0gpMFDJI4jhxV4Dh+iTt4RiXpld4/MhFfv++a2hoDJLSS+i2TTikkk/p7OhtxXKgZBtMrKziAH11cbobYtiOzWAygVdRmFjM8PDJi1zT18pwewN/PLyzdhfoqsUv2LbDQydGeXJ0gvIVX5LiBQ3DsmiJhqgL+DAdm/OLy5Q1HdOyQag58boUCceBSyspRhqSGLbNQqHISqmE3+0mpHpwHIdctUratim/AAdbtyShORZ/d/Y5Xt29idliji9fOI2iSKju2tii3hcgV6xy17pBGiMBnrs0DQLUBX18+vHDPH32Mo5TG/s8cXqcSwtp3nXvdT82XTqoehhuqqc7Ecd2bE7PL9EeC3P7QB9bW5pRZYWzM4vcsK6X0dklqoaFw5UC1yUT8qnYtsPU4ioVzUCWRCJBL03xELr+k9v2ogQet0ymUBuX3LprEJ/qwhNw8d3Llzi5uIjmWCT9fna0trCrrZ3Ij/DEkUSReMjHUqaAJts8fWmSV6RWCahuvC6ZkNfDvZuGsW2Hp0+Ps3u4k7BPRdNrctpoQCUe8pOtVtnQ1MBCvkBLKEimUkUQRHqTcd53941cTmXwuV1samuiVK0dF2HVQ8SvojkmLmT2j03VJMuGRV7QeHZ+CsUQGWxI0htL0BCsjUcdxyHs9dCQCPLVi2f56OH9vHfXXiyndsxUDONqjo9l2/hcLhyn1hkMeTwoosjW9hZWyxUeOzdG2TCI+LzcPNiNJAgUShrZfJmO1jg+r4sD49Ns72nD63FRMDWenhvnukQ3EjUi+lBDEueow6cOHWFdYwMRwcPWrhbOz68w1JIgkytzS3cP51eWub2zj5ZgCJdYSy2PezyM5mfYnzrPVGkZwYH/NHAnm/tbuTC3jOSV2N3SwbGleb4zcZF19Q0MR+qveEWJjGaXub6ph+VKAQEB3TJ47cb1uGUZSRTZ2NJIzi6giCLPpc5wb+tGREQOrIxhYRNWvNzU2M9IpPFFkxDt/Iyjop8loPEXjU9/+tO84Q1v4GMf+xjr1q3jH/7hH35ua/9cC5d//Md/5AMf+AB79+7lwQcf/A+3f8973sOtt95Ka2srhUKBL3zhCzz55JM8/PDDhEIhXv/61/O2t72NaDRKMBjkLW95C9u3b/+/QsyFmg9B2B2gahvIQs1boTcUZ6qUomLqKIpI2BUka6ySNwv4ZC82FufyF0i6G4i7gmhWLXtkR0M7Zb1m1Z+qlnCozfXftHYroiAhCzYNfh9/d+m7pLUC7xq5m3O5cY5mxri2biOOUPPH8EgubMehaFSoWiYhl5eKaRBXfZwYm2e5XOSa5hZkQcQjKSQ8Ibyym7DLxz1tW6h3x/irA/t447otvGf9jcynC3zh6DFevWkjfYl4rYvidnFkZo66gJ9EyEdfMo5bkokHfQz5k6xUiiiKhN/l5r6NwwiSSE6rIgqQMnI0CgqGWcvs0R2Ten8Av9fNcrFIQ9CPJImkikU+ObqP1/XsIKkG0S2bS6UUfcRZWC3wllfspuQ2+J+HnmIil8GlyPQl48TdflYKRZa0Ep8+ehTdNIl5faSKRf5g5zZu6u6hJRxiNp3lk48f4r6tw3hcCjPpLC63RIMviM/tQpFEvn/+MpdXMnQnau7F/2JitZgtcGp6gdvW9VPWDbxuBZcsocjSFWdOsC2HSFBFvlIIyIJIdzTGofnZHypSYqqXph/RbdEME8O0kGUJzxV1kuM4eGSFuVKOOtWPV1FYrpS4nM1cVQeJiDT5QkS9KmGfim5YWLbDurYGUtkyz45OYdm1UEKPVONjpPIlTk0uMNjykz2QPIrMarmCW5b4ztmLPHZhjK54jN9aP0IyFODyUpp/eOww7335TWTzZRriIcIBlbb6CA88fuLqOoZpkS1UCHrdtDVGf+zrGYZJOlvGp7oxTJue9gTffOYMt1zTz5Njo3z95FniYT9N8SCpcpkHRy+gSBLXd3Ti/nfuycWKhnjF0VuRJTTDZDK1ykhLPS2REAcmp+mMRbF1m7UdjeASaxdNWUIWRaq2hcslUykYNFwZ08mSRMyropkmBa3K5eU0plMbkU2ls6xvaWApXyRX0miJBvFLLvIljeZwiKJmYEgWf31wHx/ccxvnpmsRDRviLUwWUwQlDz2tdVQsg2xR48vnTyFLIlXTRBREQm43y+UyiYAXn6LQFo0QVlXm83kUUaIhGKBY1ZlZyXJdVwd7+7ooVHX87prdfrmso7oVvvjQSV7/0u1olkl3Q5wHjp9GlAYRvHAxl+LVPRuoVE2Kuo4jObzj+l1899xFwh4P8/M5/KqbW9f3MZPO1jo6ms36ZAO6beGWZGRR5LrmDuYqad5/5mtk9RpXqs4TJKr4kUSJNd2NPDo5xkCijs/ddj+CJGA7Nlvr2jiTWUAUBDySRHswyG1tvTiCxSvWrKEh6qVs1rqmhmDiEhVEweEzE4/wkqbt3N++gbta11G1DGIuH25JQhR+hdsQ/w6/zuTcdevWceTIkV/I2j/XQeDExATpdJo3velNz2v75eVlfvu3f5u+vj727t3L4cOHefjhh7nxxhsB+MhHPsIdd9zBfffdx7XXXkt9fT1f+9rXfp67/BPhlT1IgCKIWI7AkaU5DNuizh3AK7vIGgVM20YSZLp9XaiiG8vReWTxSU7nTmHYJrbj0OwP06AGSHoDNPkCrIknEUWBTclmIm6VVa2MS5JJ66sUjAJvG7ytZgKn+Lg+uZHZcob+YCNFo4KEgFd2M1dZ5ZmVUQQEwu4al2G4LskbRjYhIrIm0kzCE2ZNuAdZcNhV38eaaDPnUytc09xOIuAhILm5NJ+iKxQjrHroTcaxHIeYz8tCoYAkCzw7M0XMq+L3uKgYOm5FxrpyYjiVWqSlLsKRhTmenZzCkWy+M32KqmniAHU+L4vlIpJbwCWL1Pl9+N1uqqZJxTRZLhcIKP+qBvApLuazOSJBlWDMwz+cOsRCtYDqURBFgSPzc9iOjSDXOiZfeMXL+OKrX85H776dB177KjY3NlGsVpFEgcuLGeoCPhIhP5JL5MmFCTxuhaKmXyGhCsxkclxaSjOVzpItVelrqOOVO9bx+3u30t0Qp6IZLGbybGxuoicZJ+rzIkkiXpdCSyxMSyTISEP91YJnR1MrvdEf9EyRRZHfGhwm4v7X1rVumEwuZfjusQt8+dmTfPfoKJcXM2iGSU6vktUrtAcidAXi7JubIqqqtARDRDwqIbeHmFclqqo0RYKoisJCtsCmjiaqhslMKktAdVE1TIqajmaaSKKIX3WRK1d/QPb84yAA2UqVjz19kJBHZaghgSXYtMTDHLgwzcmpeXLlCrMruas5RL2tCTb0N19VtXhcCqpbZs+mXoK+H922N0yLXLGKT3VRNQzqIn4efPYsVd1AdEs8ev4Slu2wvFpgtVjBdmry96Nz8+S1H86iyRerHDo1iVuWqA8G2NHTVitsfSpV02QxX+TBM6OkimVCIRWPIqFbFg4OZb2WSwQ188WKWXM+Ni2LXLXKcrlMyTYYaWtkT18nW9paaAmHkGWJ6ZUsH//es4wvZfDICi5JZKixFop6cGGa9ckm6v0B1rU2slAscDmXQrQFXLJEMKhiCzCXzzO1mkUzaoRbRRKJ+2r8GxBqBZRP5RWb1iALIsONSRRB4jvHzzPSUk9ZM5hdyZIvVskVK8iiRL5YJZUpsmmkjcmFVQRH4NunR9k/Pk3VsPAqLmRqyp+HL4yRL2tUTIP5ap5XbF7DYH2CgdYk8ZAPn8fF4fEZzszU8oGqVZOIW8VxHHTbIq56maosoFkGsiAiCyJ3t2wES+Z/PvU0JjY6FpplIkjw6XOHeM/+7+I4Aq/t3cLaaCN9kTjfmtuPWzEYiNWxsbWR/StncckSRU0jpRUoGhphVy1a5Rtz+/nw6Jf5/vIRzuYvcjBzmqdXjmG/iCz/f13xfPLJfhb83Dkuqqpy2223Pa9tP/WpT/3Exz0eDx/72Mf42Mc+9vPYtRcMj+SiJEpIgoJuGZxIz9MTibFQKRD3BLAci5xZRBYE9ib3Yl1t+tn0BHrRbBNZUJAFgVy1ikdWePOa7VTsKhPZZTrCCZ6YHWd9vLGmJLE1tiW7CLp8HF4ZZ2uik4xWIq9VCfm87Fs+TzjhRxEl0lqRpCfEcjWPR3YRUNxc19oJ2CxUV0h4opzOTtHoaSbsUokqCrmqxmpBY1dvC4agU7U0XG6HwdYEY7kUrYEomlGTPAdVN6Ig0BuLUTR0Tiwt0BIIoVsmPpcLVVZwcHhq8jLfGbvIe3ZdS9nUeXb5MnsbRmhT61AcieZwCN2y0CyLpUKR3kSc6eIqLmT+att9JNQQn7t4nPFCijf2b0XRasZmj86OMZ3N1sjHTk0pMZfPAdAei9DbEOfZhSkembxEplJhpK6eOzr7aPOFqRgmK/kSa1prbeiipDPUkKAtFGFmNQe2Q8TroTkSQlVkqqbJy7evZU1rPYdm5jh1ZpGWSIjf27qZYlmnKxllR3srz1yeIuL1XPG0F7i5r4c6f81TxC3LeCSZt2zezomlBS6kUwTdbrY2ttARiuCSaq1ry7a5OJ/iy8+eJFv6VzfdI2MzvOGmLThugU+ePcifrNvJ6ZVFRtMrvCwxwtaGFi7nMjjUJK+KKOKSZYqajs+loJkmJ6YX8MoKIZ+K6nJdWd8h6vcS8anEAl4k8SffoZU0nZKuc35xmd/aMMw1PW2cSC/wv08e4L9tv5FMsczv37CVuqCfiE+lWKnikhVmllf5nTu2smNkmdHJJdwumY39LTTEA6zmyyQiPxjT4DgO88s5XLKIx+PCQ60DdfjsNNtG2tDtWsHgODW1TLGsEQ16cckiq5XKVc+Sfwuv6mJsJkW+VOU1L9nC63dtIhmsva5ALabh1PwiDcMBKo5JulpBQcbnU7iYSdEYDCLiEAt4WSoUmc3mqA/4KWg6JxYXSJfL7Khv4czFeXKlKgOtCXxuF+limXxF44MPPsVn3/yymmReN5EkkXS5zO+u3YgsiRRNnaplsFjIsC1QU+l4XDJFU8clSqiyjGHbJDxedNPCJUm0hkNEVS8XllIs5grs7e+iPR5hKV8k7PWwvaeNbKlaGzeFA8iSRMjrJqi6yVtVHt13npt2DdLeHGW5Wmbf2CS24xD2eQi7Pbyqfz2lqsFoaoWb7G6SvgAnFhc5nVqiP1JHLORjbCmFJAgIgsinnjzC7oEO7tjQT0SoqdpEUaRg6BiOTlcodiXg0OHa5ABFTWdyNUtR19nY0ESd18c/nD3IY1Pj3N87jCKItPnCbIg3UbAKmI5OzBNgpryEKqlYooGFhe1AQPHwtclj/E7vNu5o3sIzK2cwbJOp0gJhlw+f7GZn3Rr88ouD3wK1WIef5RL/q1qi/YsL/r333ovrJ+SdXbp0ib/6q7+ira2Nd7/73c97/RdcuBw+fJgvfvGLXLxiS9/b28srX/nKHwhT+nWCW1DIm1U8kpv2QBS3JPPU4kX6QglcosKqnkfAIuhtIG+UUCWF65O7UETX1emjZhlIYk0GvWJkOJOd4u6m7SyVixxbmsMlSqyva6AzUEfWyDFXWsUne1AEEZ/s5dDyDE2+CAHFg+kYeASFpBqibGicXJ3DL7vYHOtEFgQKVgUHWNZWeWj+MK/r2IvhGIzlU6yNthHr8FGwS6Sqq2SqKfrrk0iSxFKhRFsQViolmoJBBpIJPIqMJNccdPfNTHFTZw/fG7/E767fiO6YNPtDPHDqLLptElTdaJZFZyDGP08d4J1Dd5KrVpkvZemLdlHQdB46PUrfDTtxSwpxVabJH2C2lOfb02eYLK4yU1zlfWtuwSe5EFy1pNyqbgACiiwiuUS8bgXFJfGVi2d5/8EnrxJon5mbpCcSo8kbZKlYoi0RYTadpakuxEpmnh31bZiWzWK+wNrGeuZXCww3JxluSuLzuFnX1sjH9h/kzMISQdUNksBkdpWGYIBDl2dY39hAZyzK+SuJtSMN9bW4A8Mk6AGvolDn83F8YYHuUIyN9U0YlkXlCpn2X5xeCxWNZ85dxrJtNnY11zpZusGlhRSLq0UiCZVHZi/xppGthFwqt3b24ZUUbm7t4RMnDjCaSaHKMsuVEjg1knDEp3Jqbon9l6d5+aY1xEM+/C6FvqYEsiSynCuykMmzvrMJ/48xwjMsi9VqBbtG46E+GOC6xjq+cOEkJ5ZrBZEowp2bBwl63ZyeXqS7PobnyklpdjnL6OQyg51J7to9gu04LKzkePzQJe7bu/YHXquiGZTKGgsrOfraEhQKVQIBDw6QLVVYSBVQBJGo18dyoYhLkbBs5yoRMeH3/9CYCMDvddOYCHHywhwf/swT/PGrdyOLIqNLK/Qm4zRHQrSEg8QCXs6sLFPUNWRfzdivbJi1AhnAqSm7MuVKLbPL7WKxUODapjay2TLtdRG8TTKxsB/NNIkHfXgUhTs3DtQ6WjaMLizTGgtzZ18/YY/KYrHIiYUFrutqZyGdok4NoFdrnUnTsvEpLm7o6OZCJoVHVHjg6GleumEYRZQpGQZLhSLve/hJbh3q4bahfgbq63CLEk8tZfjY9/ZjWDYh1Y0sSbhlif/x6lvxqi662urI5ssE/U1kTA37iqw9EfQxXVxlfbyJS8tp+pJxLq6meXxyjNet2UBXJIZLkZjPFmiOhqiaJt0NMW5d18fukU4cRSDn5CmV8rR4k8iiTFD2o9smCa8fSah1hvOawfqmBnJ6ldZQmKKpcXBphrdt2EnM6+Wrkyc5kZ7n5uY+bm5r55q6YRarGWbKy2yK9iOKkK9UCbm8uCQPsiDzzMJldtatxXJsJopzmI6DIkqsDXezOdqPR3px2P0D2I6A/TOMe36W5/4i8Td/8ze8613v4g//8A+58cYb2bRpE42NjXg8HlZXVzl37hz79u3j7NmzvPnNb37eU5p/wQsqXN75znfyoQ99CL/fT2dnzf79qaee4qMf/SjveMc7fio99osBpmPjkwS2JmvqpFWtylwpS0cgigCktAyGbRCQfYgCdPi6+P7SQW5p2E2qWsQnu/HJLixM/vniAWxMXtK4jbymsVAs0OgL4AD1nggNaphGT4y4J0TBqFAyHaqWSdEo0RGIczJ7gW2xNTSoYWbsNKqksCnawUIpT9zrpWhUCLncnMlNsSnaQcTtJa+XeWLhIp3+eryKgm7qHEqfJCD7uLuxB5ta5S5QUws5Ti2A0Ce6cK4ME8MeFQf40rnTdEVjbG9tJuz20OQP0uwLUOf3M5nPcGPTMF+ceJYlLYMiqAS8HgoVHUkSqQv6mEhlaAgHkCQoWwY5o8KqVqm5c6bnuVRNsd3dTn8kQUdDlIpm1MLmVDcjyXqiPm8tXfv04atFy7+gNRDCsGyOz8yxtqEBr6LgdSu0BsJXPB5E6oMBHAcOjs3QmYzyhuu2YFgWF1IpLqVSxANeEsHahXEmn6MjEuHbpy9QqFTZ1tVKaySEZTscvjzDfKHAG3duJhGo3dU3BYOossxCocBCsUjc66U3Vsun+ZcAuGJVJxrwsrW3lUJVZylXoCkWYqi1HlkQ8EgK93YO4ZXdNAdk0uUyj10aJ+B286ebdpPWShQMnTWxekzbwrRsbKnWKTk4Ps0bdm7iz+7dw3KuyFQ6S0nTuWawnYZwgLrAjw6nrJomJ5cWePTyOLd09dDkDbC9o5UjK3N8e+wCBa3KntYapyQe9DG1nCFXqhD1e7m8kManuhjqbOCDX/w+39x/9mr4YkM0yJ4N3T9g+Z8tVjg7ufj/s/eecbblZZ3vd+W1c6y9K4dTVSfnnDp30zTd0DTYgGDAwTGg4Kg4ejFMdHRGvQqiGK6KCCggkkGgc+5z+vTJsXIOu2rnvVde675YRQMj3kHAO43O8/msF7V31b/+tWvtvZ71PM/v+yOfiLF5oIDjeLiux3qlSS4VY/+WXq7PrNJu2Lx61xY+dPociiyhawqSKCAJAkd6e0l/kwRsvdbijiOb8f2AU5dmOHVxhoP7B1AlmZbt4Pk+r9m1HVEQmKiVKUbj+AKsNVoUYrFQtiyKrBttUrrG5kKeaysl9vZ1s7ezi3wkSqti8pEvneEVh7cST+jMlWqoskxfR4ptgwVmmxWKaoLFSp3BfIYt2QKm67LabuIEHoossTPdAz6MX1ti696+cAjXc7h/ZBtnVhdIqBq6IKEqMjfKa8SV0BQRAT585gKfv3KDX7rzJvb39PDM9ZlwUDoIWGu0EUWRO3YOoykKQgB337wdy/W4OrdKKhlhb08nXakEgiAw36yxKZkjqevsLHZyZnWBwz19IAakNI3AD2gYJulomqevTxPXNd58016urZfY1Znj47OPcbJjN8utBpqscDg/wrXGDMtmlZYbDhXbeBwfGMDxfFqOje177Ml30Z9M8f4rz1C1DfbkutieKdIXy2H5Nh+be4zN8X5SSpyaZdGXzPDc7ALj5XXuHN6GGdik5Dj3dR9j1arQdk26I3mKkSwp5f/bXuL/xP8/cccdd/DCCy/w1FNP8dGPfpQPf/jDzMzMYBgG+Xyeffv28UM/9EO85S1vIZPJ/JPX/5YTl7/8y7/k93//93nve9/Lj//4j6NsSBIdx+H9738/v/iLv8iOHTv4oR/6oX/yJl6uEQQBHh6qIOEGPnPtCgJwIN/HmfU5BhMZNElBEkVs3yGmRmk4LUBkwVhh3a6QVrMoooSIiOjDeGOFoXgHK+0GAgG/dvQOls06TyxN0J/S2ZYcJC7HeWTpOrd2DbNuVkipGsvmOv1SgbgcZaa1wqZ4F/2xPH3RPKbrMtesUozFScgRLK/FSLwX1w8t3kVBJCHHcTcgWpIAU80FDmZ3kNB0KqZBWtUREajbFjkp5HCsmA2G03m8wGdnR2FD/i3xd9cuc6Svh5iqcqC7O7yLDwIikszm1BDDyQIEAo7vMpzIoRCSZQeyGRbrTbKxKClVoWK0aTom+/K9XKuu8MDgTnbFu7g2u8xAf44TPQOcWp5HFAWyWoSD2R6CIGCuUWOl1fwH/6+UplNrGSQ1ndV2kyP9fSzXG/Qm0hCEcxuFeIz5ah3LdfnrZ85xz54t7Bvq4fTyIqPFPJIgkNA0IqrClZUSt23aRHc2yQtTdf7uxcuIQmjEmE/GiKgK0gYvIggC1tptZitVTM+lMxanMxEnoWrfoOSJKDKj3R18+vRlnrk2jeP5SKLA3qEe3v6KoyRVjR/bcYS6bSALMrIgcX5piZObBjBchwCBqKxQtUwKkThxTcV1PfqzKX7u7puIKAqTpTKfOXuVmbXQrTkT1blj5wh37Rglov1DKfFcvcZfX7pAw7YREVhrtcklory4vEhnIs7mfI7Xbt5OtWXg+QGaLHPz9k20bYe1aotSo4UoCLz9dSd44cocy2t1dE1m92gPt+4feWnGxXE9zk0scuraDD9850EkSaDddhGAct3A931edWwbjutx9to8dx3fQiKi88zUNLl0jO50koM9vezv/uaqkbVqm4XVKq+5dRdvvvcgqbhO1bGQFZHlWoNcPEYQhPMsmiTj+j7ztRp9iSSSJBLXNYIgoGFYFFMJCvEYp2bm2NfXw+7OIuX1Fn/0qWcRBDi0vZ+GZfHpc1fZ19/FO+8+gYGDQ5icHNrUx3y1zpCSQRAEGrbN9kKBmtWmL5LBMwNSmRiXXpxhZEc3uiBTMlrc1rOJzbk8+UiUhmXxpetj3DQ4iIDA9x/czZevjPETNx0hm9GpmSaVlkEuEaVUb+J4HhFZYv9wD4IfJnKpZJTVepPf/tTj/ODt+3nD/l0M5DOstBocLPTi+j6CCN3JBMnoEFWvxe9dfow/zb4RMRBRN2B7bdvh+nKJro4Ee3u6uNaY4itzl7mjeAjX95mprHGwq4tXdR/iS0tnuVybo+EYqLJITyZJTFHRZBnX8nnT5j1cq68iCPDWzYfYne8krUbIqDFuNOa5WJnlrsJRVlsGD/QeI0Dg4soKvakkfbEMdb/K1fo4o4l+tiT6EATwAh/5Zayw+cfiX/JwLsDJkyc5efLkd33dbzlx+YM/+AP+23/7b/z0T//0NzyuKArvfOc7cV2X973vff+iEpeW2+a59RfYm96NGwR8fu4iMVnnVX3buV5dwfQsnl0/xbbkZuJyFDdwabgtmm6bkx2HEJFJKDpNx6Rs1YmpKjsznWS0JJqkYNgWnfE4n5q5wK8euIsXq1dwfAc/kHl6dYKbi8MkFZ0lJERBBMFHQOQ/X/4rbu3Yy5sHbkNXNCbbFcqmGUKktBSrlkFCTrJkrHO9vsbWRD9b00V8fFabbXrTOgk1xnB8ENN1UUURUZDwggDXC6gaJpbthTJQ1hlKZ9ma66BsGpzs6+em/kEiksJqu8XuriKX10vEFJm+VJK63SavJ/jU7AWO5AeRPQFXDHhmaobRjnwoD2+0SMUy+PhcqS3xg5v34+OjyxIrlTrv+eSj3HNwJ3ftHyWvxnhhcZ6bO4fwrIBa03wpGfAD/6X2gSDAartFq2wxlE/TnUriBwHXl0scGe6nahg0LYesGGG53mCwkOVjpy8w+2iNX4zdgu/7bM2HOPVsPKyQKKKIKkls7cwzuV4mm9jwyAnHbuhNJ19yh16sN/jr8xd4cmYad0NJ1pNM8sP797G/p/ul1oYsS5wen+Pxy1/jwnh+wJmJeS7NrXBHboS642AHHiISnudxfLCfsmvwHx99mIoVMjcOFHv5g9tfQ+CHMyBd6SQJTWW9afCHX3mWyVKFTCxUPVVbBn936hKdqXBg9esTKct1eXFpkf5Umj3FTgrRGE3TwvE9BtJpLlaWqVgGGTUE8mWiEUa781yaWWagI0M6GeHZGzOMdOfZMlCgvzODYYYMm1RMR9e/lig1DItz4wvUWiaCCJblIooia+s1urrSfOLh8xzY3scDt+zmhSuznLk4y70ntvO6vdtxAx9Vkklr+oZ78j+MTT05JuZKOL7H2MIaOzd1UrdMPnn5CnePjpKLRqi1Tcotg83ZHIuNBj3JJDFVxXY8LMfF90LTv/VWmy+PjXO4r5dKu82mTJanZ6aYX6vyM993M1FNoWaazJarfP+RPZQaLQq5OHPNCmk5QiER4/ziEkP5DJbvko1EyGoRNE3AdDxSisbkxCp/9iePsmm4wJvfepKBwRy5VBTb88PZLMPm+bl57hwZIaPrDO3axuv37MTA5omlCU5mNmF5Lroqs6mYJQigIxnn5m1DtJt2aF7ZNDg/tcTY4hqnrs/xY/cdZapWIR8L52hyMY3papVN6SxpQeOPTz/JeKOEE3hoCGTjURzPY6QrjypLaIrMutHmenWJd+54NUPJIquNFttyeT45fRYrsLm9sI87O/ehSyopRcXxPKKyioCA5kgUYjEeX57gROcg+zu6aXgGCVRMz8EPYHd6Ewoaf37lOX7r+GupGBZ7uorIssRMfR1PNtmZHmbFLPHk2rO0PZPBWDc7UptRRBlV+sdnKl5u8S91xuWfO75lVdHly5e5//77/9HnX/va13L58uXvyqZeLtH0WlxtjPF46WmCIKBiGXxq9hxPLI+zP9+PGzjktCxtt4ksSBvUXBNNlBmI9aKKIpZvs2o2mGuX0UWFu7v38squPeQjMXJ6hIVWjV8+cCcL7RopOYPle9Rsk8V2nUWjTkqLYPsefdEiCTnO+eo0TdfgC8vP8ftjn8J0Q3+TDj0EwomCSFZN4xNwrTHFp+aeJEBiS7qDop6gZpkIvsxtHfsoqlkkUaTtusiigOv7ZCMRrpZK/MSnPs3pmQXqhoXpOBRiMTalM/z8sZs42B36jDw8PYEbBOSjERDB8CyW7XXGG8t8avYFAnw8L1SxPD+7wFy1xkA2Qyqq4wc+cVnDcG06o3GWrXUmm6vYhkdaifLc+Um+/MgV+uwEP7L5ALf1D1MqN3j81Bg98SQ39w4CofQ1RJ0LPDE/SWcqQVcyibRhW9CyHJarjdBPRZKwXJfVZgtNl7n/wA4ats35uSUe3LOTu7ePcml9hfedep73nX6OAJhYWWdLoYO+dIpSs0Wp2WK+XMNxPe7evplMJJTKPjU9zTOzs6iSTERR0BWZUrvNxy9dYr3dfumcMiyHyZUyEUUh8EM0e+AH6IrCarWB5bvUHYuIpKBIIjFVJR2P8KcXT1HdSFoCYG9HF6utJg3bCi/qcsiVmSvXKDXb9OXSJKMaUV0hG48SAOdmlmhZ3+gg7fg+xVicE339XC2VuLpeIh+PoUsyewtdrLZa3KisEVdDz5+IqmK7Hk9enEKRJTrScQaKGWRR5Gf/5LO8448+zW996nHe/8XnOHVjjrbrsNZsUTMMbMdjqdxgvd7G88F1fSRJpLc7Q1RTuPnAMI+eHqNea/PALbu5/9ZdzDsNPjp+gT+9fIoPXz/L8ytz1G3zm75fc+kodx7dwnNXZ1lcq6GqElXD5NTCAueWlvAJ0BWZatvA9Xx2FYooksRao0XTsZkuV1koVQmCgAtLKzwxOc0nLl9huhKqp9qGjSJJHN05gCBATFf56TuOkY1GaHthK0qVJCqGyWw1tAZQZYlKu013LEExHkcWJJpeaHZ67doiruszObnKr//aJ3nPb34hRB2YFi0nVIS94/hRcrEIghgq6WzP4+r6CjvTnUQUhaFClusra0yuVViqNbj/4DZUSUYQBcoNA8t2KNWbjHTl+bevPMJ0rcr51WVEQeBLUzcYr5TJ6hHiisKKWWfdaXGiOIQgCHh+gCKKIQohHuWunSNIosiNtTUO5IbZkx3m/NoSUU1BEAMWzBJPrF7nvVe+wt9OneH02gSW5/GX11/kPReeomqb6IqMgEBGj3C0MEDbt3hy9SpB4FOxWwSBwPbUQGjMqEZCLy5RIBeLcXl1hXRUoyeW5Xz1Kv/39b/gsdVTvFi+zN/OfYm/nv40i+Y/bgfzf+JfTnzLFRdJkrBt+x993nEcpH/kTuh7NfzAw/EdZtvziELAllSBs+U5PjJ5GtOz+bGtR0nKUTJqmopdJSpHiYg6SSVO2zUI8DA8C0kUGU0W8QLYlR6kYjfxA59iIo6iiBiew3uvPMarerdzrNBPw3W5qTjM1lSBudY6PbEEEjKSIOH4LoZncjK/i9uL+2m7BhFZoS+exvFdQNtQ4XhcqI4z1V5ixaygCRGstkuXGuf84iq3Dh+gZYdJz7rZRhFFIrKC6wucmpunadv89YULPDk9ze3Dw+wuFjna34fjuFQtE5tQ0tywLTpjCQQB6m6bp1cvcWvxAIVIAgIRVZPx3ICkquH5PudmFknqGrmEhibJvG5wH6tmjWdL4/zE5tuxBJ+S26DabjN9ZZ0XJ+foT2X48TecxHE8PvLZF7j75u28Y98xIODxuWkCIKtF6EukGcinCQRAEFirN9nUkWWx2uBgOokiSciSSF82xd9duMxPnzjKbVuH6ckkqNoWf3vlEo9PT+P6PklNo2nZfOLsJfb3dPPG/bu4ZXSIybUy6YjO1mIHPckEqiyx2mxyaXUVy3Mp1dq0nfACl42EqouFep3uZMhx8QIfzw/ozIQMDsN20FU5lOA6Hm3XQZMkJDF0XY5pKuvrbRZajZeSFgHYXwyVaIbt8uzkLIcGerHdcNYhE4tQajSptELjvWQkVJwYjoPnf+M9mipJ9CQSvP/MaZ6YneZtew9woq+fpWYDRZD4wW17+ci18yFNWQm5J54fsLknj7EhIR4qZPnYE+eZWg0dtlVF4mfuP0k6FWWx3qBpWaQiOv3JFPGIymq1AQQoioimKlwbX+bTXzzHA6/azxtfsY/JxXUkSeRGfY0Pj53FE8K/ea5Z40p5hdeP7OKWniF0+RvbXvoGkl+RRR64ZTcr9QYSAjs7Orh78yifuXKNezZvRpUkmhvAwUrLIKGqzFfrnJtfYnsqz3KtSdOzUEWJXcUChXgMNwjo6UgxUEyTjkdoODaKJLKnt4vZtQoN12KmWmU0n+PL18YpGwa7C52YrovjB0iiyJrZ4rG5Ke4f3orX8pFliXxHAsO02bNngFe8chfuhs9Q03RQFYmYprLUbNCXSIWuzgH0JFKYjs+60ea2ncOUWwZP35imJ5NkpJhnrdokHtGot006swkGOzLcc3ArNh7nVpYQRZit19AUhbZrgxBgex5lq82r+rZxMDnIxOo6/fE0EV3BCXziuoYbhDchl1dXuWPTUZqujSDA+bUl9hU7aboWiiQiSgLrTh1JlDi/vsCF9SVePbAVRRQxXQ9RhD25LvJajEdXLzHdKIW2FO01GrbLjtQggSdxR89m7MALK2xCSJGOqzpVp8oL5XP0xbJ06QX6oz2ookLNaXC5doOC1kFUfvkbLEIIkPtOIHIvZwDdP2d8yxWX/fv38+EPf/gfff6v/uqv2L9//3dlUy+X0CWdDi3H1sQoUVnj5s4RBuNZREHA9BwkQSSlJBERKdnriAik1cRGgmFQcxr4QYAmyqTVGMtGDcNziMk6c80qVbtNXo+xZjZ5cmWC3738KG3XpUOP89r+PVTtOhW7xryxjC7LGJ7BrvQmNsf7ubf7GFfrc2iSRlyR6YonuFxZxcdHEEIgmhe4mJ4ZyqOVBBfGl6ivm5wY6KdstVmxyhAEqJLEumngEd5hKZKEgMCb9+zmV++4jcMDPaQ3VB8vzC2Q1SN0xRPs7ChSiETRZQlJkGg4Lc5VJwnwOZwfomq18YOAmVKF/b3ddCWSfOLMZX79s48iIBKRFIp6grLd4NW9+7hUWaStWNy0K7yzsz2XuVaZbVs68X2fro4Ub3vwOFfmltmW6eC/nHgFH773Dfzhna/hQ/e+gVcNbUFTZCRBRCC8KHWlkqFzsu+hSxKTlTKpqMbP3HKcuXqVTDKC7fs8NzfHarvF5o48g5k0g5k0miTRsmy+fGWMz5+/Rsuw2JzPkdUjPDs2w0IlNPAMCHH7U+UqdStkpRiOw0K9zmqzGRJ3v3pOKTKpmMZytUFAmJgIwEqtgSKH7a+MGmWhXcYNXBQp9IvqTSRQNgiq3fEE+/KhP0652aa6IQ+O6yrDxRxrjRYrtRb2hiHierPNXLnGcCFLTAul05Yb0mwVMfSZObU4D4QzOIbrYrouH712kaSq86tHbyMiKdQ22CmBH7BnuJu2aSN81QpivkRY94IfvuMAuUyMr1wf592f/TK/+Nkv8Z4nnsUn4NCWPn7lLXcS1VTicR3Lcnn+hUlm58u8508e4uOffAG36RBLqHxlagxrg7PiBaGRgBcEPLk4RcX6mpT8q+EHAZNLa9xzfBuu57FcbxD4AT917BgNy+bp6Vkc3yWfiDGczbLSamK4Droi07JtLi0tk05GqDdMCpEYtw9tojeV4vHJKdquw3BvntHeDiRRoGXZ3CithX5eqsKF0jI1w8TyPFqOzcOT44hSmHxWNthCpXaLR+YmsTwXRZHo6c1y0y1b+b/+w2u59d6d5LqS2L4XsoIUGUWWWGrWGclkiSkqdcsiqikklQgPT42xZrS5srzCm47v4c9//Pv4/be+Bs/1mV4qoykyyZiOYbkc3txPRFcgEPCDANvzsT2XnB5lKJ3B8TyW2w0KWoK9qT4+de4yl5aWeeTieEheHp/EcG0qpoHluXQlEoiCiO35fHTsApP1dSzPQ0Rmor7GWH2NycY6cTnC2dICP7zlADd3DlNuGuiSTMms07QNdFnmSnWeJaOKJIgsGiVSqk5SjjGQyLEt10kQBFi+gyKKJDQNWZTwAhsPh1s7jnM8f5iIHMXyXUYSQ4wmNuEF3xsGi/A1VdF3cvxrjG85cXnXu97Fb/zGb/Dv//2/Z2Vl5aXHl5eX+YVf+AX++3//77zrXe/6Z9nk/65IyHF2p3ewP7Obc5VxMrrGz+68g+8bOMAbhw7gBR4xOcZEa5ycmqXmNlFEBVEAw2/hBh6WZxOTFfwgeKnEfbE6hyZLXK2F5WvP95EFkVWzyccmz2F5DnPtNcaaM8QVjYPZUVRJZqa1yFC8k/t6jiEJEncW92L5DiWrieE5VKw2pmshiyKKKHEguwUIWDJKEAjMrVToyico203GmsuklATldpu4oqHLCn8/dQNdUTg+0M/37djBzZsGubi+vIEcF7A9jy0deeK6SkzR2NVRBAT8IJzTSCg6JbPOTHORV/XsphBJYbkez16fYSCdIheLMl+uct/erTi+Q8szAJ+cmqA/lueF9RkeWbvOyYPDvPHmg4x2FdnaU+TIzkHOjM2TSUYYGS3giAGfuXGNJ6en6I0l2ZfvwnZcXlgKL76yJGI4DoVkAifwMD2HimlguC5ztTppPULbdZBlCVWSqBkm840aS40Gk+UyFdNkulplsdXgyGAfgiBwZanEh58/z588cZqPn7nEUq1JTyasooS8jSR+8A/hbposU/w6NY8siRwd7UcUBBbLdWbWKiyU6ziez2A+TVqN0PYs2p7Fx2dP4+EzlMownM2zo1hkd2cn/2bXAVRJpu24OL4Xqn3iUXRFIaGr3Llz9Bv2IIkCd+0Y4ejmAa6tr/H58et8fuwGF1aWadk2M7UqvYkkaV0no4WzLAhgey7/8amH+eOzpylbba6USghSiJvPJqKUG23WGy0EAYY6s3SkYhTScQ5v7efM3CJ//PRpluoNQGBXZ4HADzi8tY/cRuuq2bYwbYdrkytEoxrxmMb8YoULV+YpN9vM1qtYvsdqu8Viq8662cb0XBZbDVrfxEJBAIY6c0iiSL1t0hGPU2q26YhHubG2RjERZ6y8jiCGrYq26yJscG3y8SjrLYO255CIagxmMhwa7OVLN8Y42N9D2WyTTUa578SOELDoQ18mTaVlEFGVlwiyU/UyQ/kMU+UKLywskNA0tnd00LRtoorKnnwnc+0yqi6zd/8A+44M8dj5CX7jz77MQ8/fIAj8MOnQNRK6yr7ObrQN+nFUVfnEhUsEAVxZK7HutOlOJcMWku9TMQ3apk0+HQ9tOQppTMehmIljex5RRWFbvoOlRp3BVAZdlhCEAE2Sma5VyesxZFfi769f5/raGl35JFOrFa6trHF6dgE/gEulZY73hQyadbPNC6vz7Mx18sLqPCcLW9BFNWxzeR66qHCo0M+ebDefu3advzp3jqSqEZFV/mzsMURBIK/HuadnNzFZI6lEyetxzlfn+Mj0s0gSqJKI43ukIzqaFHqnRWSNo9n9ROQIH5n9DH8y+Td8aPbT/N6Nv+C59XPfM87Q/xrCdV0++MEPfkPO8N2Ib7lVdN999/G7v/u7vOtd7+J3fud3SKVC07RarYYsy/z2b/82991333d1c/+7QxEVtiU20/IsGk6bxXaZhmPygyMHUCQRAQ8/8JhqTrAzuYuZ9hJeEJBVYuhSBFkQmG6tsTXZh0RAToth+S5/v3iOd26+F1kQMVybpKpzqGOA06UZXHyqjsGV2iKH8130RPMEgcCqWaMv2k3babAj1YcuaSTkCCtmHdN3WTUbZDSdutMgQKDtBRzMbmO2vURc1hEE2DZURI/LjDdX6I6l0QSZBi6+55HQNFw/4PLaCjsLRQrxGE8tTnNT7yA100QMRDzPpz+XZqXZIB+Lh7h0QgnpjVqJoVSWk4VtrNl1XDcgLmn4GyqgT75wmR88uZ8thTx37RjFxaNs1gkQ2JToYN1q89zKNCWrwURHifu27OYnd95EPhrHanu0bZd628IMPHwJ3nf6WdbbofO0IksIAty/ZRsnegYxPZdz80uc2DTAbLXKfKtG3bXYmu5gOJvB9wOmK1V2FDtwPR9JEIjIMjPV6jcMuy02Gtw+uonz80u8OLv40uMt1+YNh3aRjn6tHH24t49nZua4sLzMcDZLOqLjeB73bt2K9nUt1HrbQlNk3vGqEzx1bYr59RqFZJyT24bIJmMogsSqWSOtxphtr/EXE0/wA0MnuXdoC39x5QUs32V7rogXBKw0G+iKzLauDiCs/IytrHPL1iH6simeHpvBsB2ObOrl3v1bubpWQpIE+tLJMHFwLMqmQUxRiamh6iMXjVA3TZIRncNdfZxansfwHb48M8YDwzsQEIhuKJPqLZO+Yoa6aTHcypR4oQABAABJREFUnWOuVGWoM4skizw6NokX+CiShCTA63bvQJVlJMIWXjKuU660ScQ04lGNc1cXiGhhlUGLKCQTOvGYxpm1Bbyvk73HFJWRdA7lm3gumZZDVzZJxQyrMYoksqWYp2mHLY3dXUU0Web5qTm2FjtIaRoL9TpD6QySIPIztxyjL52mP5UipquM1yrs6CxQc0y6hQSlepNMKooqySQ0iGkqD10aZ1Mhy9HePlzfY9lsEpVU/s2BA8RUjfH6GoOJLKoiojoSBzu76Y4mqdVaRGIKE2tlHjszhuV6jM+uoopyqHpSZaKqgh2EqjNZkKlZJp2JJLIosimdIyYrHN3azxPj0/zxE6f4sx98HTYOtu/TthxiusK2/iL1lokuy4iiQCEa40hPH4oksjXXwYvlObbEuyg12/h+QKttMxjPERFlRjrziKJAVFE4PbvAzcOD7C12IyISkWUqlkFK0xEEgU9NXuYNI7v5pZ338tTqDRbbVYqRBJsTMZYbLSzX5UcPHKRpW+S0GG/YdBgQeG3fIaKyysXqOHvSI1ytL/KZ+TPE5SiCIFCzW2iyhiIovH77TmRBJqUk6Yv18JfTn2CmtcBXuyW273C6fIGR+CBpJYEs/m/3EP5fRyCEx3fy8y/jkGWZn/iJn+Dq1avf3XX/Kd/8jne8gwceeICPf/zjjI2NASGA7vWvf/237cD8co+IrNNwDTojOZ4tjbMr08tUa56BWAFNVIEAWVRwAxeCAEWQaXpt4nLYnsiqApZn4/kecUWn4bYZaywzZ5Toi2VZs5rktDg/OHIYw7VpuzZ122C8tsqDA/uxfQfbD/jc/BneMHiYh0tP8IriLUSlJG2vjeu7ZLUop0uz7Ex3k9YUZluXiUodrFltfnjwPpJyjHLTZqQvz5rXQhZkdFlCl1Uura7z2bFr/MzhY9zWN8S60WamXqEQj3NL/yZMO0SfL9Rr7OjowPF94pqG7YfGdBFZYcmooUsSUVHnjQM3Y7s+n5m4zKuGtuN4Ptv7ivzR489xcKSXm7YOkk3o2NgYfnhnlpDjWK5HUtVZtRqk1WjoySRCPhHncmmZtuUQ1VXKDZNzK4uUmqEc2vd9XNdD1xQ2pbPULStslUkiDdPCFwKeWpjhQLGb4WSOfCSG6bpkIjoN2yYR01Blme0dRaKK8g138rlIlMVWg7cc3cuRoT5urK6R0DQODvaSjum0HJuYFnpHma7DL91yE5IYSr8RILFBGBaFr7vICvCxZy6wqZjljl0jKFIIV7s0u8SpsVk2d4W+UIvtCrcUtvDByaeAgAf7jzKUzHCutMhAIo0oCHhBQNtzSSgqV5ZW2d4ZJmJ/8+x5XrFrlJ975UkEQJYkTM8jFpE5vTbD6fFZHN9nd66LV0d2sr2jwOOz01Q36M6uH2A6Doe7enmLtYe/unaWj49d5MHNuzAsB29DNdWdT/Ps9Rl29Bc5NNrHWq1NvW3i+QENK6z8qYrEpnyWrB7B8wNc18OyPVw3IBZVURWJYwc2ceHaAuVam8H+PPfcsZNsPMq2XIHnVubCwdSNl6/l2IymciTUb+S4GKbD8xem2THaheOH59IXLl3nFTtGWW406IjF0GUJVZT54PNnObGpnwcP70KXZVRJQgS2dHTw6LlxJpbWeOs9h1hvtxnKZfnM2FWOd/XzwafPsFJr8jP3nmShViOfiNGybd7/6PP8ymtuI5BBs2Uur6/wA/v24hFwfn0Rt77GlnSBuXad7bkishSwatbx2nDq0gypTIxsLmSWLK/XyWZCpZoqy3ieixE4JCQd1/e5bcsQ61aL12/dQT4SZb5a56/PnOfWLUOoskgkEWVmpUwmH+H6YomEptFomGzZVMQOPM4uLnLz4BBjjRI7skUCPMzAwvU9YopGKhahIxbjnq1bubZcYu9AN9s7O3h8PIRrmp7H9dVViokIndEEu7Jd9MVTbM128OmZS9zXv53vHzqGIECHnsCyw5ubW4aGaLk2U2tl9haL7Mn288zqDQ7lh2m6DR5eeZ6inmequY5I2OZWBJEV1+I3z32c39r/ZuwgnOtJR2Rc32PRWN3w7wrPj5SSIKHEGW9MszO1maT4zblFL6fwg/D4Tn7+5R6HDx/m3Llz/8Ad+juJf3JK2tvby8/+7M9+1zbwcg/Xd9BFBVlUGEkUWTQXqZg1Nid6MP02uqSwJb6ZhlOnoOfx8blam2B/Ziu6KNIZiaKKCpeqc4wkukgoOnsyg/zl5OO8e+cDRCWdiKywKZ7l3XteQVqNEgg+u7K9SCKIvsCKUWF3ZgDHtziU2UtGyeAEDstmiaiYQhJhJJGnEImji6BLMdasaYbj+4lJEnZg4nguiDIIEFMUXN8PP4TKJb48NUZcVfn5IyfQJJlPXrvCK4ZHSKoaa60WGS1CXzINhG2RlmdhuQ5ZJY5hu5StNlldZ7I1SV+kF0sSqBmT1CyL55fmOTLcy1va+zg1NcfPveIm1s02KV1BF1WWjTU8r4zpBLymfw9Nx+JQfIjLU8u0Yw57O3tIRnX2bOoCPyAiyzS+6tSMsPHBFeC4HnFFpdRs0ZGIkYrqaIpM1FewXZeeeBII8IOAiCKTjUaYrlQYTKWxPA9Nkvh3R4/ziSuXGcpk2FEosLtY5M9feJG4onKgt5u7CqN4gc9kucLFGyv86KEDJDUN0wqTO0WWmaqVadg2iigiCBCVFQ529750PkVUhZ39nfzNU+f4/Jmr6IqC6bh4vs8P33YQVZbISnG+sHCOHele3nPwB7B8jzWrSVaP8tpNO0gpOnP1Oobj4Hgul0oVOuJR6obFaDGHt3uUXDzKXLWG5brs6e3C9B0+ev1FHlkYx9vwK7pSWWGsVuK3jt7Pg9t28oXx6wiAjYtr+qiaxO5iJ+9O3spEdZ2cplNvhX+bIktEdIVPn7rMaq3JW27ez4MndzO1UkYRBfb0dDK+VkYQBY4P9eO4XjiILMnEY1poLSHJPHVmku1bu3nLaw9zY2qVe+7aiSvBUq3BnlwXrxzYzMOz4zj4aJLE8a4B7ugbQfyfhhLLtRYPPXMNRRLpGworBW3H4drSKqgCS/UGt23axNRahWsrJd56dB+qKDGYylBrmXSlkiyt1/mzLz3P219zgpZnU4zHqVoGHdEoiihiuS4PXRrjjt0jzJQrJKM6PZkU1abB//jc4/zqa2+nP5GmEImHpqOSgC7JvPfSk7xt62FmKw2G0ttYs6sYooUiaSyv1VhariAKIl7g89EvnuHNrz5EZyZJ1QpVOI4HTdtmZ2cRW3CZqZUZSuSwHZfx0hqKJHNwoAfb80lqMtlEKHWeXC6zravApcllNg3m0WQZH7iyusrmzhxVy2AgnufplTHuGNpBwzYpJuM8sHcHTdOiIxnjxflFctEov3D7SXxCVMLu7k4mGot0RjP86I4DeNjc2j3MIbePfCTCklFFFkRyaoyGY5GJRFhrtZlorJOPRzhbnkNXJDJanLLVJKkqNLwmTbdN3TaYa69xLD+K5VsEAexMDxIEIk8sTHDP0GYc38Pybfqj3Zi+hes7aJKOIoRsHjtwv2nb9uUY/xqGc9/+9rfzcz/3c8zNzXHgwAFisW+EBO7evfufvOa3nLicOXOGd73rXXz6058mmfxGp9tarcZrX/tafu/3fo89e/b8Iyt8b4YT2AQIpJUYRD0its/thX3oksZcexZNUihGCkioJJU4La/F1foELbfFHYWjJERwA5mMGuMri+d4Tf9BjuVH+OzCi7z32hf4j7vfwNnSPIOJHP3xDGW7jozEK7t30nQa6FKcvJZiNNlJ22uRVFIEG+r/AA9JlLE8m2I0yarZIqW69EY20XTKZNQYtl9lzXbR1Ti1ioGSkMnrCVxC+WYA/MrJ27htYIizpUU2pzsICEjrOivtJn2JFJbjYcvhQKemyAiCwBPLE9zTvYPp9QqjnR14mJTtCGW7TUSIoG+wFJ5emGa2XuG1O3cwnM7SchzKdhtdiZNVEywaVfzAZ6Vd5+7u7Zimy9RSmTu3heZ8puuSjGuk4zqLqzXiCY0DXd18YKPi8FUvG1WS2JTJYlsekiCQj0cJ/ICIrPAjuw9g0SapaZQNE1WQiCoqnufjBmEytNpusbNQ5L4tW1gz28zUqqEKSRSZrFSYr9f/wbmR0nUqLYPHxqa4Y+swE7UyHbEo0YjERGONhKyRSySpWqFyJaqouJ7P4ZE+/CDg8UsTrNSadGUS3LZzhP1D3QRAwzG4pbgVy/OYb9f4/PwlxuqrKIJMZyTJv9t+O1XT4iuTE7x17z4mViss1BukVZ3hQo7+jgwfPHWWJ8emcXyPT/zbN7NgVHlicYJ8NHQaBoGMGuH7hvay0mxS0GO8ZcdeYprCZ8av8spNm3lyaYpHF8bZ19HDQDKNH0DTsujPpqkaJqoScj3S0QgPXRjjofNjHBjuoTuX5LbRYc4tLDNfqzGaz+H7AY22RSKr4hEwsVJmqJDl3JV5xqdXuf3oFl55507OzS4xsbTGSLSDL0+PcffIZm7rHaZiGXREY8QVlcVmnf5E+hv+FyvrdW4+PMrIYAFFDWdC9vV3Mba8zvEtA/zZ6TPs7Q5pyof7ejg42IvleyRVjXrdxPE8xubXyMSj7BntpmqbG20ukddt3YHte+zs7+Thi+O4ns9ao83Eapk3HdvD9u4CO3uLSJKI43mUWi0q7TZbOjqYaKzz/OoMr+rbyrZskbLRwhAs2rLFpkSWbYOdLJTqJBI6kiRxY36Nq2MrFA8lqJgGXVIMAphv1BhKZbAdh4wW5Wp5lbt6R1Ekif29XYx05JBFEdcP548mV8oYdqhMmlmv4PtwY6XEkZ5e5mtVorLCR8bOsjmd587u7RT0BI/OT9B2He7qH6FUbZGM6nzw9Flu2jTIlo48ADFFBjEAfHTFo9Yuk5QT7Mt1c746z/uvP8KZ8gyaKPOeQ99Ph5rCDXz8IMD1fQqxGIHp8GTpBj8wdAzDs7B8m7gURZMUuqNpqnaTXelebM9FEuA1PftwPJ+24+AENgoyGSVJyzXw8JCQaLkGlufQqefojhS+p7D//9LjTW96EwDvfOc7X3pMEMLBdUEQ8L6J79j/Kr7lxOV3fud3uP322/9B0gKQSqW46667+K3f+i0+9KEP/ZM38XIOw/P40sKL3Nd7GEWEghbjqbXH6I8MkFIzPLzyMA/2vwGJEJDV9hwOZLbwpcUnOZgZICb5rFkJclqco4VRXqxcZCie56c230lBT2O4Litmk82ZPE+uXuSvZx7n9s7dfF/fMUzHQ0Igp8VZNlfIaWkMHAzPICJFyChpLN/B8hzaNnREYkTkgJZnMpLYhx+YKGKC6fYFPN/hcPYoBg6aIuP6Mp4vcNvAEF3xBI8tTNIdS2B5Loe6e2k6Nl7gk9J1lpwGS+0Gfck0ASAKAm7go4gi2WiErBalbNvoUoS59hI9epFcJELdNjja3c+ltWWWjTo7OwpcmltA00TOmwsc795ETyRHEAhogs5Ku0WXlGA4k2O52WS+VWd7sUBM06g1w8HDsakVDh0Z4ocPHOCjly6E9gQRnddu3U5S0bDwmF6vsqOrgysLq/Rn0nTEVWZbNSRRIKKEd2WiKLCzs5NzKwtsyxY52tOLg8/fT4/x0WsXMT2HXzp8Cx3xGNfX1shoEcSvMyjsTSXRpXAewXFd3MBHU0Q+P3+ZT05dxPJcREFgOJXjJ7efpBCNEVVUFEliarXM/qFuDg/34m+QjW3XZb5cY3N3B3W3zapZY1uynz+98TTTjTKqGO57olGiYrfRJJVzS0s839HBwf4enp6YRhRFVpstPnPpKqvNJiOdoVO1rsgslkP7AjcIqNkmEVHmRzYfYWGtyV8++RAJOcJQNsNrdm+jP5lmzWhxsbzMQrvO4kwdx/d5/8kiK40mg/ksT49Nc3ioj9t3jzDSmePPHz7NhZllri+VEEWB+w5v5523HOPUzDzFRAJVkVBEkVhEpWW1MSwHWRKxPI/1pQq2F8rrH7k4TrnRZtdoN/O1Gv/1iUc40TdATzJF3TS5XFlld76TuPKNkLFCLkk2HWe13gp/lyIzkM2Q1HWiisIPH9hH23EoxuO8ft9OZEnki1M3eOXgKJoqs9ZsEwgB9xzeGsIHJYmLS8ucGBggqiqcXVxk36Yebt2+ifn1Ktt7CvyXTz7McCHHDxzfSyymsdiuo8gSK80mbctBQGChVeOVvVu5tWeEluNQt0xysRiyqiAIInef3E7DcShk4+wc6SIdj9CdS21AIF3qsoWuqFxeW6EzFiep6dQdm6X2IpIgsrXYQVRXObO0yJ3Dw1i2C2JIctZkCU2TGe7O0bQsfuvvn+Df3nyYg4M9LJh1rlRX6IunMGwPQ3aYrJd5enGaw4U+dEVhqdKgJ5UkGw1ZRUEAcV1FEiClSqyayyybK4x29LFgVPjI1DM4OOzOdAPw/Po4r+s7hOAJaJLEgc4ejMCiblvk1QRRWaPttThbHudExz5AYCRR4M6u3QzFOgkCgYKeoGH6SIJILrJR+fLaZNUU93XfxmOrzxFs3MqJikCnnmdXavP3TOLyL52cCzA1NfVdX/NbVhU9//zz/58Aule/+tU888wz35VNvZzC8wMuVWeoWm3icoTJ9g0u1y+iCCo5Lcfu1G4IHK5WT2N4DUyvQVoR+Hdb30ZSVgiEKJPtSdatVTKqxmRzCkWU0ESZiKhRtQx2ZboomVU+t/gcGU2nO5LB9Awiko4fuLiBy3hzElmQiMo6DbdFgE9MjlGxavTFcjQdg4gk4ePzt3OfRBLCu2pRUIiIKqoogyLQ9l1eWJ9El1QUUaYnkaRstSm1GxSjSZ5ZnCEbjTBTr6DLCqIg4BPg+h5N26ZmmsRkldu7RhFEgVwiRsuxkQUVx3f48tJzCGLA0d5eeuNpXjW0hR/bcZh92W4alg2CwJnZJTJqjLrTJqPGyGpxVFEmIes4jkfdtvjElYukIxHajosvBiyWakiyyAuXZrl8foHv37Kb/3r7K3jDrl382P5DvHXHPhZqdURRoCsVR0Dg2mKJi4vL1J0W/dFOpioVLq0uhzMNokBUVXh2cY7pepWYqnKtXOL/fuEpJmtllppNvjQ9xsG+bvKxKJb3NaVCRFG4e/NoeHFQZHb0FJFEgUvVJf5m/OxL3+sFPpP1df7s+rPUnFBRlorqDHfm+PTpK3zpwhjPXJ/hKxfHeOTSBKNdeXRFpjuSRRJErtaWOLM+Tc1p0XQMCpEY9/TsQEEmFdE50N3NF65fp+lYxHWNvlyKmmnypctjLFUb1A2TSrMdElL1GE3X5lp5lcVmjeFkHtcO+KNnn6PpOAjAfLXGFy5dp6jH0SSZqKQiIpBQtXDex6jRlUrg+j6r9RYPXZngwHAvMU1FEkU2d+d59cFt7Brp5s9ePIOuyrz54B6K8RjT5Qr5TJwzYwuossRwTx5Egb7uDCcODWPhs7Be48LUEqfH5piaX+f7d+zhLbv2cufwMNsKeXYVO/m+0R3cOTBC/OtmXFzPQ9dkqi0D2/X4yBNn+dypK/iuj6SK/PGLL7Crs8h4tcx0vcKe3i58AuKyxky9iiyHbb1CNsEtuzchIhBXFAYyGc6vLiMAmUiEdaPN/Ud3MNCRYXNnBz988wGevjGFpsqUzCbn1xbxNgZjDcfF9wO2pjv4d7tvYaK+zgeunyaqaKSUGDMrDU4tzJJORXjba49y4sAwekIlm41iBS6LtQbLlQY+An7gk4vEuFhaQRZEMlqETckM5VYbWRK5UFrm/NISIOC4Pj4BiYhGNhGj6Trs3NSN5/losszsehUBgbpt4Ac+u7LdtB0H03XDFmwAcUVjvlzjzNQ8t45uom6Ec2MLlTqKIKFJCpZXQkChNxpWCU+tT3JqfYKZZoklo8KCUebjM6d5qnSDdESnEI/TdG3W2m1c3+NYxzCaKKGIAp9ceBxFUChqWSzP5kc23UxGiROXYyiijLzhED+aypFUdEy/TcOtszu1mfu6b2Mw1k1vpMDx/H5e3X07eTX7/9v14TuNIPjOj5d7DAwMfNOjr6+PixcvfltrfsuJy8LCAolE4h99Ph6Ps7S09G1t4uUcmqSwIz2IIop4gcO6tcb39byZocQwpmuwL7uXeWOMhJrB8U0azioJOYWPi4/MqjnJ5sQgbiBSsqoczR3A8UVSaoKaYxIQkNWjG4okj/l2lS2JPgJCtUtcieP4Lh1aFsNrIgsyMTnK5fp1HN+lK5pjujVLfzyNJilUnRoJJY4kSAQEuL7NpvggI7FtWI5L0zZ5dnli42+TaLkWVdtgW7ZI3TY5u7oIApTtNgEBq2YDSRJIahEqlsHFtRWiogJCKON2fY+KZaBJasitIWDNaiJJMLFWJnADAtMnG48yW6miiCJXVkrExCgla42J5hSqoNCwbVbbTWRBpOU69KXTdCbjNGyLz12/TioeoVxvc/fN2/n8Y5f54IefI1qC13Zv5e7eERzLI6qqrLQbzLfqLDbrdGWSjK+sE/gCDdvCJ+BT167xXx9/jJZpo0oSh7p72ZzJUjYNHpqeIAhAk2Q0SeKxuSnOri3xIwf38+DunRzr7+OukWHecfwouzs7iWsq8oZxoy8EvLA2ixf4uL6Pt9Fj94KAxVaduVYF4CU34QeP76Yrk8ANArZ0d/BDt+xnUyGHIAhk1Tg70/3UbAPLd7itcws/t+Mu3jZyktcN7COtRlEkkROD/SiKxOfHbvDK7ZuJaSqW59KRiuETYNguUS1sT40k8iiCTFQJpbt7sj1cWlyhZpkkFe0lz6XpcoVL8yt0RhPcN7iVbCTCutWmarURAoGhfBbDdsjGIjx0eYz5SpViOkF3Lkmp2eLQ5j5WzBY/tG8v6UiE1WYTURSZXaviBwEPnRujbdsoikSlZXBozwB7t/fy3I05RFGgryNNRFN5+Pw42/MFhgtpvrx0lT+5/jSfnDlHwzeIq99YbXG8kNDsE6AqEpdnVvj4kxd4+Pw4T0xNEZElxitl5mpVupNJYrqCIAjs7ChieS7Xq2tkYhFSMZ1ERGOhUUcUROKayn9+7BEmKmWKsTh/+dwZ/vi507QFB1kRef3hXfziq28jpmtcXF9iud2gO56kK5HgxeUFaqbJyeJQeC4tTPCJyYv87sUnCDxYrNQ50N1HqdFisd6g4VuMtUs0HAsBAdNx+eCps0RkmXXToDuRoCeZZKYeepeNpMPWzXK9yY31NV4xOkLLshAFsOzQ/+nQaB9t18YWPZIRnZ99xUniUY3PX75OWo2yP99LVApfiy9NjXG42MvP7D5OpdVmrdni+mKJTfksxWScpu0Q1RSWKnUkQUCXYmS1PAkphhf4rJsNgiCg5dlUnTZ1x8ANPD49d4aa0yaiKlxaX+FSaZX9uUEGY3kCQJc0+qI5/MBFk0QkMeBC9Rq6rLDSajLWmAcxYLnVYCSTRRVl0mqKq43LvG/8PSwbMxzO7uRkfh9dehpFBOFfLQj/eyPGx8d597vfTW9vLw888MC3tca3nLh0dHRw/fr1f/T5a9eukc/nv61NvJwjqUS5rXMXgiDiBj6b49sp6EXqbp0z1TM4vs1k4yIDsa3IgkbJmkWR9DAbFmQWW5dJKikWjXWyaoquSCeKKCMiUbbCN3hMVmi7JjXb5mc3309vtCN0Ew5CkqoqKvRECpheDVWUicsRLtev8UTpGQgcTM8hoUZw8XB9l0OZg7iBBwh4gYMiaMiBgmE6SILAPb27Q2M7q0XLsREISKg6Dcfi9v4R/CBgql4mCOCJxWniikpvPMlCo05ai9BwLBbbNQTClpHrB3xV96GKCjFZp2y0eHZhkkrbIB7RqbRNvCDg6soq//7Wk/SmEwjASHwwNLCsVyjGokiiSExT2NvXxdXKCo7nb8y56Cyu1ejpyvDz//YObj4yQn3DtwhC6WtHNIrt+1yrlPjzy2cY6sigKzIxOcZiu4IuyYxmczw8OcG9H/orrpVKHOnsw3Q9yqZBxTCoWxZ106RmmtQtiw9cOsPHxi+yqSPDG3bv5P4d2xjN54iqCkEAbctCUSS8IBweDYKAbZkCb91ymJ/ecZK3jBxgd74L23dxPZ/zc0v89hef4PGxKQqZBAeGe9B1maUNkzwAVZIp6El2Znr4t6M3c2vnZlRBxvb90KlcUXlqYYbJRpk379nNzYODiILAYzNToQJHgkIqTiEVR5AESq0Wtufzo1uOsiVdQJEkNEnG8wP6E6EUWBQFdnYVuWf7ZnpSSXRJoieW4u7eLUiCwInOIdJqhLJhcGlume3dRW7aMsTmzg4sz+XIaD/vevUtjHTlOdLbE547M9O89/lnMV2Hu3aO0jJs4hGNdDwKgkDNMJEUEUSBUzdmGV9c5/jWARzP49i2Ac6W5vnvzz/M1fIKCAHrdpNPz17gyeXxkPi6EbYTvraFdJyWaTO1XMawbLLJ0PenL5liqlzhddt28OXxcR6amkQSBHKRCB2RGLIkUnVNCskYkihyeX2VF+bmmalVycViPDUzjSiIJHWdS4srPDo2xYXFZWzPpb8jjef71GwTxw89hlJRjbLV4uLqMrqsUjFNaraF6/vk9NDCY1MxjecFRFUFF4+ZVpmRdI64qiIJQkhM3qggPTY/xRembxBVZVx8Fo0KhWgMXZVRFQmBIGzn+B6IAtWGweTCemiroYYEaF2RWaw1kASRW0eHyGpRTnYOoUsKDcviAxdfpBiJM5zI8cLiAoV0nAcO7kQQoCudwPU9cvEotbZFw7GJSvnQdFWSkAWJzckuIGxRBUH4eZDXEvzklttZMFZwgpCyXbFMGrYdKtdcFwGZV3ffxLbkIHWnhiQYdEeyEICLy6dnT9Hy2mQjUdasOo7v4gUep9afo+qUeWT1IZ4oPcKCMcOqtcSKuYLP98ZgLnzNq+g7Ob4XwjAMPvjBD3LzzTezZcsWnnnmGX7t136N+fn5b2u9bzlxufPOO/n1X//1b/pcEAT8+q//Onfeeee3tYmXe0RECQiQUMioWQKgbJXZFBsiwCOtdCAJMpKg06GPYnkGXmASBNAfP4bn+wzGO5GQAYEFY42mY2K4Dmk1CggMxrr4+W33MZIMy6WaqBGV47S9sKSbVlNoUpR1aylkGchJDM/A8i1EIpi+zXxrhZyapSfaTcNtIQkaPh627+H6AVemV0hIEbalC1h++OHh+D4N1yShqUzV19ie72C51eDWnk1EZYW2E9oCdMeTtBybq+urSJLI2sYdliKG7amx2hpdkTBxjUoqriPgETpGa6rMdKUSujxHo+QTUc5VZ+lQO3ADH9vzKMTimL6BIEIhkaDstnlycYKYprC/2IXhONx7006Wy3U+/JUXuTC7TNWxMVyHZtticmEdVZbJRiJcq5T4wvR1qp7JkeF+NEkhqqgktQgHu3voT6UJggDTcUOyqWFQaRsbQL0NrL4g4Ps+judzo7wGQFzTXjJLBDAcF8/1UUSJlu2wN9/Dfzh0N7+w72a25OKoWpv9nTl+fPsR9mZ7qRsmT9yYYqJU5lNnLvM/vvAYv/H5x/ijR57nk2cuU21/jQariDJ9sQwnCsPYnk/dtvmL66dwPR/H96hZJr9x6jE+euMCh3t7WG01+YsXz9CfSXPPli20bYe6YUIQsN42OFtaJPBFfnrbzfyXA69iT66bE/2DRCWVqKbytuMHuGXbIH7Ep7+Ywgo8HpofIy5rvHvvHbxlZD8i4fzGpfkVBOC1B3ZguC5/d/YS23oLGI6DIkkoosT5lWV+88knuL6+higItAwHx/G49/B26oaF7/vIskgxnaBhmCxVGnz21BX6cmnece8Jdg138qWZa6y3WjiuR0xRUcTQtfzZ1Wkq1tf8n+qGiaJssHIC2NLTwdvvO87uwS6OD/ZzoLuHvV2dGI7Do9MT3Da4iamVMq4b0BtPMZTKMlOvUvFMfD8goihMlMustVrosszlUgkv8DkxNMD/eM0redvhA+zt6eLc0jJT6xXatsOefDf9iTRlu83p8gw/sHcfe7u6sT2XmmWyN9fNqwa28n/tux1XsBlKZVFFCUkWkWWRrkSciebKBl/HJhnRePcrbgnpua06p5bnMFwPJ3D4+dN/zZ9PPEFUVehMxDk+MEDFNqjZBrIcfqRXGwaX51dYr7XYXMizUK2T0FX2D3bzxPQ0C5U629IFIooSQhgtk7JpsNJokItF2NXbyZ6BLq6vlJAlkYis8tj1SUY6cyy2KyH40mji+CAisC3VzdH8CIIgIAoioiDw5sGjJBSFuBjF8wP6EimGkhnmG1UkUeSZlWl0SWNLchMRSadkrfD8+qMMJTpRxBA2Z3kun5h5knw0iumbNFyDmlPD9A2icoQ39r+BVxRvIaO46GKVuBzgB9Y/y3XgnyO+qir6To6Xc5w+fZof//Efp7Ozk9/7vd/j/vvvRxAE/vAP/5Cf+ImfoFgsflvrfsuJy6/8yq9w8eJFjhw5wsc+9jHOnz/P+fPn+ehHP8qRI0e4dOkSv/zLv/xtbeLlHH7g4+LQcg18QBIU2q6BLkUo6nlMt8HezK34QcCatY7pSXTovTTcFVpOg4w6BILAdGsRO3AwXIu2a+L4AVXLIKooVKw2W1N9dOgahtvCC3wiUkgXlQSJRWN9I7UW+Ou5P6Fmr7ErvY19md0k5BRn1+eZrK9Sthso4lfL/j6r5gqyoCALEoIY0DJsVkoNZFHE8U2iioofENrXiyJxVUMVJfJ6hGIkyVKrwZZMnkCAhmMxmMrQn0yH7QwtDmKALspEZYXPz1xGFXRuL+7D9ExyepzRTJ5sNIoAJHWNj1+6xG0jQ9Rdg8/MnCMQQBYkJEGgLxlH9ULCsK5IrDtNPjt1iaSmkZI12qbDaqXBZ5+5zI35Ei/emOfxcxPU2xarlRZdHSn8wKcQjZFUdQzX5Scf+hRzVpWErDES72SxXqcrnuBXb72VH9i7hx2dBUzXZb5aQxQEtucKvHJolD2FTl65aZRXbBqhP5ni/pFt9CVT3+TsCHAIwsFFH24qDjOSTvLxuUf5fya+yCcXnuEPxj7DwyuncAKLtu1wdaGE43m8ctcWfuX+O/jV+2/n5+65iZFCFtMJZ2MM12a8sYznezQcEz+A37/yFKooIyKwbrYYyWTpjqV409Y9uL7PXK3Gj+4/hGE67O3u4p6to3TEYqH1g+ezI1vkCzPX+OzUVaZqVS6UVohFFfb3d/POm45R8pr85ouPcbo0x2qzSdu1eWppinc//0U+PHaWtuvQdmzKZpv9g90sVOpcWVihbphkolFuLK/x6TOXUTcGbr88PobluVQNA1kSQx6QIpJLRJHF0BhT2TC9BIFtvQVuzJf41DOXOTjcS2c2QSKp8rYDR/mlQ3fy49tP8G82H+UV3eHwbN352sVptd7CJ6DeNKnW2/zcAzezZ7SbVExnMJXGC3y64klmalUe3L6LpmnxlasTCH5oJfDJq5fxPJ+0GsFyPLbnO7DwGEilWazXCTU0AQcHephdqfDi5ALnFpf46zMXqLaNsPIST7M104Hte/zZ9WfpiEWJKxp1y0YMBG7rGeaX99+B5TvMGkuoQgjmUySZhK5yoTrHp2fPIiCEMnbPZbgzFyYxqkZEUZBFgbZn0vQcPjt/jqlWCV1V2N/Vw7LRpO5YWLaHKAl05hKMLa5RbrZZLNdRJInhjhwVwwgrapqE5dvIgkBPPMmeYheFWIzOZIJiNIEiiTRtmwsLyyiSxGq9wfsffx7b8zasA2DZaPM7l75C3TEo6il+dvvd/NjIrezO9PFTm+/knp5dGJ6J6Kk0bIuOSJS7+kcYSefxAh/Dc7len+P0+tVQGSiqHMye5HzlGogOqqByIDfC06tXuVSZIKHouL4bGjAqaV7X83riss/Dy3/M46sf4oX1z/LI8p9ypfYQTWf9n/fC8H/ifxm7d+/mwQcfJJfL8cwzz/Diiy/y8z//8xumuN9ZfMuqouHhYR566CHe+ta38qY3vemlXx4EAdu3b+crX/kKIyMj3/GGXm5hecZG79ZktdZgS6qLtmeRUZN4gcG6PcdwfB9eAOv2Os+tn2V7aidVewXbn2MkfjOiAAvGKgfSm7GCYKPMHdAXzzDbKtMfywIuJWuOwehmEHwEBBzfQhVVUmqUyeYEKS2Jj8+NxiUO5m5GwMfxRVaMGitGhbeO3ozlO6iCR0KOcbZyinkjxp70CcQAdg118f7PPc1vvO1uYopOy/EhCBhO5YnKKkcKA0RkhZbrcHp5nr+4dIbfv+M1aJLEbKPGs0uz/PCOfbQci55oChmRgIC4qnGiaxMlo8Wu1BYEAjxF4ljvEIoqIgcShu+Si0TQZZmK1aRlh9ArRZZQRZGsHrZ5HNNDVxQ6Iwlu7h/GCcKvHdvjwvgSj5+dIBWP0JVLMlDMEPgBiiSQTERw8HB9n5t6BvjI1XOsWwbvfPRzfPa1P0BSifI358+jKTJv2LWLnzx0BEEQaLoWdcsiJ0sMZtL8p5N3UrEMGraJKAiktQg5PUpai1C3LVq2BYJAStVCF15goVqn6ZrsiHdwYeUGTbfJvuwQKTUG+KxZZSZaCwyI/SR1lQcOHEHVZB6bnmK6XKUQi3Hr6BAxXcXyHK41FmnYBh2Z0Ltmtlllqr7O8cIgIkKYKBHwvjtejSJJTNbK9KVS6KLMb3/5CXb3dPGK7aO8Ytsovh96UUU0mbv7N/PluRusrYXVioZr8ZPHjlAyW/zRmeeZaVZ4xcBmLpVWGEhniMoqXhCw2g7bWIokkdJ0MnGdnOPyx4+f4u23H2Vnd5HPnrlKqdbC9rxw5sEIq0eqLFMzTLJKhEq7TRyQRZEvvniNw6P9GJbDUrnOgzfvIZ3Quf/YTuYrNbrVJK/u34kn+Dy+PM5Ms0xGi3K8OMTrBvaQVL42nJuNR/H9kNFzYXyJN7/yALIs0HIcfMHn0xNX+NFdh0hqOltzHRimw317t+KKPlPVCn9z9QIxRaUnlsQ3fDqzSbYXCsiSyL87dpzuRIJACFiuNnjo/Bg/cuchPnrpIqok0p9JUzctHM9nKJ2l7pi8fdtJpEDi/OoSPYkkQ6ksuiIx3aiQVjVabgtbsbAqAV09GRzP5smVMRZaFdwgtHBQJIlr6yWOdPexr9DNpfIyWS2KL6ZIqzoFLQm+wGy9SncswaiQI6Xq2IaLqsgMdecpmQYBENUV4noI+6uZJk/MzPCq7Zuw221iik5EifCLh2+iNx6iD1YbLfrTaVbqTTLRCDXDZKXRYldPJ2XDoCuZRpU9VMkgr8eZa1dYNOpsThZ5w+ARXj9wCFlwaXsGSSmGZfjIcthGS6gadhByj3ZmCjxXPkvVrnBTx07yWgEvqLI304sbtElpcfZlRlnqWafpmiTlCIIIHjEGosNk1SRPr34Q06+jiOHcky5pLLQvkFY7GZaPbYgUXsbxHaqKXs7k3OvXr/PGN76R2267je3bt39X1/4nAegOHjzIpUuXOHfuHGNjYwRBwObNm9m7d+93dVMvp3ADB1VUSStRrtWm2ZQs4AOyAOvWEn3RHS99b0ErclPHIVzfJiZnKLdvoEkabc8kJulEFA1cl4is4gcevbE0z82M0xdLUbarrJjL5NQOYnIKL7AI8CBwSSlRJpoldFlnV+owm5O7EAloe01EIca2ZD998TQxOYoowLI5yUBsG3E5xcfm/oic1oXk9JCI67zm6C5qTQc1aiIKERquSYeoM2es0xfJhWA61+W5xTletWkzbuDSssIh4q/MjvGakW3MG2U2JbI4fkC93UYRJQYSaSYaJezApCMSZ80s0xfvZby2xkA0x0K9zjuOHwvx7YHAnT078PEwPJO0nEIWRATB55mz15ieX+M1r99HcVOSseoaw5EcnufTaJsMdmd54KZdbB0ukopHyMajeE7oOFtpGXzq2hXesHMXv3bsdj49fpmf2XeCXFRnvWXQmUjy4fPn+eKNG/zF619PdyrJmtlka7EDGYGErjNRX+PxxUkm62VkQWBrpsibRvZwZX2VR+YmuF4OnWxv6Rnk5q5NRFWViK5wbd1ioVnBDQLevvk+ZFHCD3wERHw8ynadSFzhLcf2stxu8V++8ijlr2sNXVldpZhMMKKkUAQRSfRpOAYJRcPyXEaTHSiCRERWyOhRHp6d4K07DvD56eucWVngvxy7i4vzK4wWOtjS1cFfnDrLeGkdWRQZzKV4y4G93NE7zEg6x9nSIn4QcFfvCIokcqa0wPVqKSQ/ixIr7Sam4/Kq/q3s7+hhKJllIBleoF1B4YlrU9y2bZjNnXmSmoYqSazVW6zUG5iOiySJbOvo4MzSIm3HYa5eJ1eMoqoKhhW2KCtNg4AARZZ56vIUd+/fzC8+eDvPTszyiRcu8Uv3hW2S/3T6i6xZLXRFRhYlnl6Z5Ke238TmVMdLr11nKsHcapWmaTPUnUUQQ5aqKglM1mt8/OplDhV7GErmiCoKcUWl6VmcW1sk8AQ0SSal6ciCxLXlNfqyaXZni6yZBrf0D2H4NoEX8PDVCRaadSRJRBZE3nxoLzFdZbXRRBJUltYbDHSk2Zvt40qpRN2w2FUookgiFatN3TZJqxqbEwPYrkO77eN7odRXlgTqjonh2nQnk3i+x3A6gy/4DKZT/LfjdyEikFUS3NG1DV1UKDdNBtJZrldKbM7mUUWJqmlRqbfozCYZLGSZXa8Qi2gYjo0s63z+xg2GshkCwWfOWKRar7MnuZOeZIqIIrNQrYcD5l44YN4RjxEEAT3pJHduHcYOQtNLywtIKTrfN3iQj069yOfmLiIJAptiOf7T/lfji8v06APk1TQrbRPTdhlMZTE8m4gsoksSXdEEnUaSV3bvRZU0fA+Keo5lcyFsT+tRuqQUPzrySgzfQkCmZrVRJZ3j+RNU7Qnm2uMICCiiTFbNEJfjCILAqjlGX3QPEfmbVUpfPvGdKoNezqqiyclJPvCBD/CTP/mTGIbB93//9/OWt7zlu1Jx+ZZbRV8fe/fu5cEHH+QNb3jDv+ikBcLW0LpdJyZH2JPpZ7FdIylFkUWJuJxFFlT8wMD3m+S0NJrosGYtkFQKdEcGcX2Htttme3IICRFNlEkpUWKqStM16ImlWTaqeL5DUevmmbUn0EQd06vScpdpeWtookpBy2F4bXYk9yAJEnW3gojMdGuO23u2ktJi/NqLnyIIAiJSnLbboFMf5Be2/jabYsNUjTYLlRpaJCS8uoFN2aixKZmhZDZwPB8/gDWzhQAMpNLsK3ax0KpxprSAKAi8cmgzM/UK080yfhA6Cc+Uq7ywME/JbBJTJB5eOc+iscajK2dxfI8vzF3GCTxkScB2PRqWRUKOsCfXRdWuIAsCiiTiBQGttkWrbXPvbbvoS6bJ63H+buISrcAmFlHZPdzND77yEPt39ZLJxPAUj7HmKroeyrYvlVZ4bGaKj1w4z8mufv7wjgfI6zHWzTqL7SoH+roYyqQ41jNATyrJQrNOQtVRVZF8IsZ8q8Z/PvUwf3XtLE8vzvDY/BTrZpuyafCeM0/zkSvneWZhlmcWZnlyfpaAgFREo2ZaFKIxspEYx/LbOF8d4z3XP8avX/kAfzLxd1ytTzES60UgoDeX5vT8Ao0Np2VJECkk4qRiEWarFVzfY6I5z3RzGdcPJbt7c904nsdoOvTd8b2A1wxvp2qZrBktHpsPfYEkQeDAQA9/+uwZPn7uEucWlzi7sMhXrk+w3GwyVl1nsVGnN5ZiW7oD2/WpWRZVy8APAnxgqVVnUzrHWHmNfR095CNRTM/hTGkB03eJKApX51dZqjY4NNTL+ZklNEnm4FAvjhcwtriOIAjcPrSJ0WyOIAhYaNZpWBZRNVSwtC2bm7YP8fz4HOMr6+TTcaZLVeqGyd+evsj8Wo2GbXFqdQZVlonI4SC0QOhVdKo0S8P52nCuKIZrfuXMDW7eswlVkXBcD8cPEfEV02CqViWhqcQUlaimsGo2eXR+gs3ZPB3RGMf7+hhIp9g90MnnTl3l1z/0FSQbFDGsylUME9fzqbZN1hot7t42ioXLYzNTDOYynJ1d4t2f/jLrTQN8gcV6g0PdvdQdAw+fstUir8f4nQuPE5FiZJUU2Xwcs2UTk1UOFwa4pXuEhmciK6E5Z0cszpJRY7a1TkaPMVEu89HzFzmcHuXW4jZ0IZSrz9ZqIEDDDt2jAwEmSmWW63WODPfh4vP89ByW5zG2HiazCVXhSn2Sv5t9DF0VmGysYfs2ju9RMdogQC4WJR+PIQTQnUpwYmSAtKazZjRpey6CAI7vc3ptGnlj/mjBrNMZjTLTmkHAJ65ENhKiGqok4fgesijQcFsklAjH8ztJyjpVe31DCeljuAYZtYMn1l7kVPUcht9mvF5iolniozPPc3p9lpyaIyHHGIj20xPppj/aT1bNoYhhhcUL3A26y/+J/13R09PDL//yLzM+Ps5f/dVfsby8zIkTJ3Bdlw984APcuHHj2177W05ctm/fTrlcfunrt7/97aytrb309erqKtFo9NveyMsxLK+N43tcqo5Tc9pcrMzg4ZFRUwSBSEot4voWQWDj+XWCwGbZuEbdWSEuZ+jWR/HwWTSWGIx14gQOU80FOiMpopLC9foSI4kCBS2NKmp06J1IgossSth+jSvVT+EFdezAoCvSS81Zp0vvxg4sIlKMuBJFlzQCfJ5ZHcfwbSKSQkLO0nKbZNUMGlXcwCalqTx1fYLPnr1C27XxfYUzpRlUScJHoDeaxQk8FlpVREHgeHc/M80Ktu/xQmkOD49Dnb1oksxwIk9MVrE9l6n1MpmYjud5XK7NIAoBOS3BULJAgM+xwhCKKDKSy9N2HZ6dmUMWRBKKwnR7EkFwsbw2TcdCliRGBwt0FJLUHYt1s82S0eDplWkyySgjvXn2bOkGRWTeLPP+60/wGxf+nrprYLtuyMeRZU72D6BIMlPVMl8Yv44TuCRUmf5MinfddDMP7t4RGrhZBr4fEFc0vCDg1MosN2prWJ6L5YXOy28a3cOp5XmeW5qjbllYroflhvMPbcfB9DwenZxiulwhqehcqk3w8dnHWDLKtF2HBWOdTy88yayxgigKGK5LqdViV28nBwd72D/YzUA+/RL11Atcni5d4qbCTpzAxXAdYrLGT+88yXAyx3S9yrOzcxQi8ZD2mysiiyJnVhYYyKVZaTS5uLSMIomhq7cgcNOmQZDhPWee5uPjF/mbG+eZaVS5sb5G1TTZli0gCyJ+EPDk4hRb83l2F7qYaqwz3SwTlVU+cuMcf3b1NIIksLu3C1kQGMhmeP7GLA9dGOPYaD93bB/mi2evgRcwnMnyc8ePc/+2bfSlUqHihuAlfk5UV/nKpTG+fPEGJ3cO8cr9W5heq3B2apGIKuMEHpO1dYqRBMOpPIOJLIOJLF2RJC3Homy1XnqfGraDrsrYtku5ZbwktWhYFhFJ4WBnN5vSWS6sLYU+VqLIdLNCSo8QUxR+aPde3rBlFy3bRpFlHnrxBq88vI3JdpnJSiWsPhCwq6+TTCTCzHKFrcUOnpqboWoatC2Hvzt3ic2FPKtGA9f3Wao36EzEudFYwQ08IrJKxW6z3G6yalSoNg2W1uoImkS1ZnE8P8q+fD8Nx+Cz82fRpZBQvdSq0h/PYDrhefbHp0/jWSKd0TSZeGTDkiBEJthuOPDcnUkyV6nxhQvXabkhIbuYSiIJAl2JBAv1OnFFRxZEeqIdrJtN5lrrLJnrZKI6iiiS0jQy0QhpXWe10iSqKi9ZYwiCyGqriesHXK0u0RlJsS3VyY5UFw/07yUmKwQ4KJJK07HRVJmIoiIIIAoifuAhCSJtr01EkhEEkbHGeUrmHLZv0R3tZbw5x8PLz7EnvZW263C9WsIP4Gp1maikULYqJJUinfoAu9K3cST/Bg7kHmRb6i7y2iayai+KqP/vuXD8E+Jfi6ro9ttv50Mf+hBLS0u8733v45FHHmHr1q3fFu4f/gmJy7Vr13Ddr0G4PvShD1H/Ogx6EASYpvltbeLlGk03LJv2RosIiHxl+TzvufpZDN9EFlREJEyvgigoyGICy69TMi8iCwE1ewVRkFEECcuzcHwHx3fw8Pnb2YcRBeiJZsiqEXJ6nKicpO3a3F54HV7goYgR1ozLrLRfpOk2uVQbpycyhCZF8H2PmJzE8U16IgVsz6PhWvzuwTfSdCtU7TU61E4IaghItN06SS1C4MOrDm3hK/PXCAIZWYxgei55LY4siCw2a8RVjUAIyEYirFoNIrJMWo0wVS9TjMbZmS+yJ9uDKolU7CaCHKAIIrlIDNs32ZrqJK8lGIn1oIgiO3JFrjcXiSmh/Pbz165TMyxEQSAhR5luTVJzq6GKQBapVFoEisBCs44my/TEkvQn06iKhBv4eFKAi8sjS9cYb6yyZraoWG1myzW25Tr4+WMnaAc2VdvgC+M3mK3VSCpROmNJJmplSm6D3T2dVG2DiKKw2KijiBJu4DHXrCHAS8eObJGMGuHq2ipNy8ZyQ9sDx/XYkS5wo1QKOSArJbpSCap2i2v1GSRB3ID2hYqpIBCYaS9hui6yJJKO6rh+QKnZZqFap9w2EAQwHQefgB2pfgRBoGStYXkeTyxMsDPbyUxrjbSqU0zEqVptymabrBblbTsPcqmygiJLrBtfU9t8tSB7fFM/L5YWWGk38Tdqyzk9ylqrzQuLC3THkrxhdDdBEHBhfRnDc3Dx+czUFbakilwrl5iqV/js9FXee+lpDmzuQVVlAgIGOzI8eWWKizPLvO7wToY7ssysVogqCge6eviZI8fYks3z+UvXubZSIhJRScUiqIrMWr3Nc2OznJtZxCNAEsPXRhJF8vEYiixyubxMzWyTUaNERJlVo4ETeGjS17rcddNCEEVed8tuTk/MM1eqoqkhadhyXX5q/zHswOPc2hIrjSYNwyavxzhc7OXxpSm2ZQsoosTz0/O0LZtdg110dib54xdOoUjh/FU+GmVrdwf37d3Kc5OzmK6Lh09nPE6lbTBbrpGNR1kxGkQVlR/euw8/CML/q+eSkDXmmjVeM7AdUXQQPInuYorT43P82Pv/jvaaz/HcCCk1wrnKLB4hJr8YTeL6Hp7vs1iv846jx9jRWeDZ1SmW7Qq5aAxdklFEiYiiMFWrENNVBGBLZwdjpXXiqoquKqw2mhzs6Wap3sB3JY7md5LTUkSkCP3xHJbnMm0ucHJokFKjRbVlUG+b6LoSknxdl78+dYG4pNGfSFOMJBEFAdtz+IHhQ7zv2Bv5qW1HUEWFLYntqEII2Dy/vsBQNoMiSCGiX1CQBBFVVPADDy9wOF99ltnWGLIgIwkKV2tT/MLWt6GKCpKg0HQcREHgB4ePEpUbfHbhY4hChP25B4kpXVyrn+Ns5QnWrHUGY0fZlDj+PZG4AF9ziP52ju+xSKVSvP3tb+eFF17gxRdf5NZbb/221vm2WkUQJir/c3w3elcvp7B9Ey+wGIh2IQoihmeR1aLIgogsSIgb0j9JiCGICp5vEpc7UKUIQeChBjoKsCU5ght4SIJMUc9wb/cJVsw1clocy3eZba2xbplktQIROUHbayELcQbjR1BEjZnWLI+sPoEs6ARBQIfWieub2L6F57v4BDzQtw8EsHyTD0z9Ji4OhjNNVBkGfBTJ5/joILNmmT84+xiKKLM1k6PtmOiiQgBUHYNiJMFSu0ZWi5LVIni+z2uGdhAEoEsSs40qa0aTdbvBql1hczGLKkkUIgkyapS96QHEoEG3nkdE5HJ1npZnokoyCAH3btuMKInIgkCnXgj9mIRkOFtjOnTkEzRdm7Ztk9MivHF0DxXLwLAcmmYoo7UCh6dWJrheWcNyPXJqDNf3w9kQWcD2PaqmyUqrwRt37CYiKzQdl6/M3CAfiVEymoiCyJLRoD+TYq5VwXAceuOhnYUXBPgE3NEzAkHYnvj6M1vd8LA5P7OELIpsKXSEuP12k4rVZjBWpKClyagxOiMZeqJ55lrLyJJARJbZWuhgtlxlvdWmblos1RpMrpURBQFVlLm9uB/Ls3ls9Sw+PjXbYrq5zpZkJ13xBDFd4f9+8Un6k2liisJd/aOMpPK4gU9vOsXmYp5CIkYmFqEvk6KQjLFutFEk6aX3aEaLkIlE+JuLF2laNq8b3slvn7yXdx+4lc5ogpZjs2a26NBjLLYaLLVCBsiX524QSAGXlleYWa+ya6CLxWqdvzt9GT8IeOOJPaRzUX7j1GP87otPcnZtiYZt8dzCHO9/9nn++KlTyIqIJkts6c5zbPMAh4b7WG+0iKkquwe6iKoKcVVlX66XH9t6jP9w4F5+fOsJfmLbzfz09lu4pXOEjPq16m7gBzRNi3QiQiDA//PQqZDTEo2yUK/RHQtVMttzRSzX5XcefZKRZI7OSIKy2YYgwPF8xlbWsTyPvSNdTDbKNBwLSRTQNmaLJupltg93cv/h7ciCSDEepyMWQ1MkMlEd1/PpS6QJfJ+EpvHo4jiD8TzXq0sk1QgZLcKRzn4iskpEU5FliUcuTtCZjqNrEiklQnckzUiiQNM1CPDJanGaXhuEgHs2b+bQYCd24PL48nVeKM+gyxIj2exLNgVlo025ZTCYy3BydIDVRjiv9OjYJG3b4ebBQXrTKR6ZmGJLcoAfGb6HrJYgJutoosbT65dIRFTGltepbTh9i6JARFVpWDafu3QNx/GxAwfbt7m5c5T/vO8+9mS7Mb0mF6qnCAKfgeggTbdNAJxfW2LBqCAAcUnH9MI2jiSEJqk+PobXRJdjRKUoBALH8ntRJBlVVIjIKqbroggKw4kkz68/yvGO4zi+yZIxy1Olz3G9cYbJ5kVeLD/CC+XHaHttvhfCD4Tv+Phejb179/Le97732/rZbztx+dcQmhSh5ZbRJRlNlDiUG+aNA8dBCDaEsBCRM3hBExEJXYqxKXEYRZDJ690bfXmXgpZFEmRqjkFWTYPg8PfLj2yUTCXKdovZdok/n3iclusSBD5Vp8Vw8h6GErdg+yJJJUNGTbJorCAJEobXQhJEgkAkKesk1Qgt10QQJCJyDAhQxTx+4Ic9Ze80/cU0V6srvG3fCTyaJLWv8mLCC3NXJMmTC1McLw7Sth12pLohEGg4Jjd1DbFqtPjts09wubxCzTaoOwb5pM62zgKyGLA3M0xKlZmsfwbXcbAcj65IGlWUWLVrgMDxwQFiikTbq1HUO9gUH8H14cW1OXw/QJbClkVK11EkkYSiIYkCrbaNJIhEVZWWYzHdqBAQcLK4CXyBZFQHAa5WV0hpOi3X4hVDowxnspStBtO1Kn2JNKIoYPousiiwJZ3nkcUbXK4uIghwtHOAHdkCqighINAXT2M6Lid6BkjrkZfOC8N1SOoaWzuLSILI4b4eHM/Dcn1aRsBqyyQmRSnoWWJSjLrpEJWi6KqMLIjsKha5aWgAf4Ml4/s+e7o62dlZJCFHSSqhe6rrO9ScBglNIqtFSStRXHzWrBa9iRTdsQQXyyv84tNfZLFVww08dnd3simXoSedZCCboZgMHbz7k2lSuoa0kbj4BPSlwoHMpVqDvniKo539nOzeREzWsFyPvniKuKLREQmlvZokk9NilE2DZ+dmkWURTVf4N3cc4ifuOsL0epWryyU+dvkCT83MMFGusNxsIIoi/ekUFdNElkRqbZO6YXL7zhHedGwP5UYL03a5NLPEAwd28JYTezEDmzt6t7At08UXZ6/x3ktP8pfXX2C13eKWzlFiX+dVFNdD40bbdikkY5QNk78/dx1NkthZ7OTs0iIZVWdLpgNdUTi/uMz4cpliNMGxzn6SegRBgL5MisGODL35NFXT5GT/ICk9guF5LDUb/MXZF/ny9Bj7NvUSUWSO9fQxnM6SiUY5PNTHxYVlErKOF/g0XYvVdpOMGiVAYL5VYV+uh7SqEhVjqIoMgkDDMHn7vUfJZHVOlSd5pnSDA9lBarZF07LRRImErKPKEgf7ulmxQwJzzTHQpdDl3fJcVFFCFKAvmWKuUsW2XTqTCQbSadZabYrxGMV0nMl6mbtHh7lteAgJmaSSQpMkEqpG3bG4rbiHihM6j8ciGt3ZBKos42/wln7p7luRFIGWY5DR4hT0BBktwpXqPB51plsXcLAI8Kk5Jep2i9cO70QXNB6bnMYO3JfowG7gISJtyKBvYSg2guG3icoRckoOCQEIUASBfble0moEN6iT03KklDSG1+R89SkEZJJKJxm1h6icoWTNM9G4gO39y+oA/J/4WnzLiYsgCP+govIvrcLyP0dMSuL5Dj4+ba/N3V37GIwmEBHxAhcIkAUNzzcBASFokJVlMmovoiAiSxI+DnW3hiIqrFtNLN/ixcoFbuo4jLDhQ9IXzTLTWmbNrnC+OokkyGiSRsVxiMoFeiJFknIMWRRpeS0s38INbDzfRpPUDR6DSN1tIwkat+TvRxZUIsoQEGC569SdCXRVZFdnF28a3UfFWcHHI6IqeEGA7XtEJIXeeBpZlDi/vERK0al7Fk3HpuXanCstcryzn5s3Lm47Un10RdMIosCyuUpK1RBxqNhXabmrgI/tu9RsA8mX6IhGMV2HbDSE7tWcMjE5gSAIDCfyyIrI8lrtJQy54TrcqJXojiZZrTSx7PADOibrFLQ4BLAj3YXnBcRUBU2VWWw2mG1U6IolOdDVg+GF5GDTdeiJJ7E8jxWjzli9RDYSpWab9EYyuF5AUtZ4x54T3DOwhaFUhmI0TqneojuW5F2HbmJHrgCALIikNJ19fV2cmVugJ5Ukreu4rsAtXbtYaTWZqFaYrlVZaNaxfY/9mS1ookLFMDg3u8iDu3fyW/fezS/dfjO/ee/d/OiRg6w32rhOOFgYkVRGE320vSaD8Rz/L3v/HW5ZWtZ5459n5bVzOPvkUKdO5dzV1aE6Nx3JIAKOOCimARsVdWb84egoYhqc1zGPij9EBaRHgqA0NHSmm87dVdWV86mT085hxed5/1iHdnqEeZtGR8aZu651XbXXXnuFs9d+nnvd9zeMpPNU/S4L7SampvHWLXuYaTe4f/Ys37VpFzuLAxxaWsCTId9z2R62D1RIWQaOmdCRbxqbZCxXePHebvg+XhTyn267nS39Cf7j/3nmq/zsI/cw3azR8HtcMzhJ1rTYXxml4qZpB8l9EEkJGvgy5s+feo4rNo/hxRGPnDqPZgheWFnk5vGN/PCeKxhK5whkxC2bNjGYyfLanVtp9jz+5pnjXL1pnGMzS/zyX99H2wsoZVNMVUrcuH0jlmFwqVXjD449ypfmjnO4OsfjK+f5i7NP84Xp4/Si8MVrKaZd+vMZQiXZOTbIrrEBXMvimbk5zldrTBVLbCr00QtCbEPnrft2818eeAwbnS35CrGSGELjlq1TCAQDhSx7B4Z4zbatPLZwkaxlcbFew7UM3r4r6ckvdzscGBxJWogy4p1XXcb1myaZqzYZzGQRCHYWB/mjQ08x7pYZSxcxdY1Q9RDKoBP6OKbBW67ezcbhEmfai/z2iXu5b/44rm7S7+T469Mv0A0jhlNlQhkRESGUwBQ6m3P9pA0LIQSnqiuJkGTYI2WZZFMOh2bnabQ9xgt5BnIZbpya5Lmleb507gxF18W2FOc6C6z5TeZ6a+RNh4vtNS61W2SNNFsG+gjiCNsyKWRcTq+tMlbIsW9iiMVOi9F0GT8O6URdTrcWuLpvI1V/kVcP/isEGr7sEcgO/akMZcel0wsYyWQ521xmxWvTi/xEp0ozcbQUu/JXEEqPry7fh60ZhBIc3SCSMau9NptzSUWxEXSZym7A1W1CGTDfu8T5zjlOtU5yrn2O1WANCSx7M/jy71l737HxfwrI5R85XjYdWinFLbfcgrGuHNrr9Xj961+Pte4b8t/jX/6lhK27DLkbiJQikD4Zw0WqDlBc1w2QKBVi6Dli5dP1n2Ct9wBTfb9HIGOEiJFYtIIaw26BzZkRWnGT2d4ie/OX4cURBSsNQnGmNcPZ1jTNoMGNlW2kdBvHGaUddUnpDq8ZugUUZAyXUIZoGLTjJsOmzaLXWK+cOCz16uwsXEE3blEwE5VfU0uTtw+iaxq3jGxlOahhigymlqYRdAl1yUqvw3A6z/ZiIsrWjSIMQ2euU+e24a10woDJXIltpQrdOKTfyZHoPgq8KKAVesSxJG+4xHGAprWwDAPhCSbMAVbaPaIIyq6LF/eIlIalpehFAX12DkvXaIY+ITHKlwylsmh68lTWCHpsTPfxzLFLvO7GnTi6yXdv3M8fn/wqw5kC7a5PMZ9isddiR6mfZ1dmOTi4gW4UEMYxfWmXLcU+nl2epuT0cbi2xqfOHea3Dr6JKytjdHsRv/D4l3nnvv3s7h/kx/dcSyBjRlI5js4tUW977CkPsPGqmxJnZcMkY1goBF85fZYHz17gp2+6lkbocVV2B0OZHC/Uz1INWmT0NAf7dnBZaQumbqAJwfOzC5xcWmXbQIW867Da7PD42WkArpgYIZYxQRxwsG8HujCxNJtYxXixT9nNMpEvsNzrMNtpsLlQZtDO8oWzpxlKJeaIU4US777mSiKV6AG5ho5lmHz/9v08NHuec4012qHPgJNG6IkQ4p8ee5oT1SUc3SBlGjhGIiyoo5GzbO7afZB7pk9yaGWeQMXsHx7B0nS6QcBCo8XfHj5BJ0ralgeGRrlqZIzPnj7OA9PnmSqVeN/+a/ilO24mZVjMdhos1Vustjo8f36OiUqRtVaXq7aM8fDxc1y/Z5Kc6/DQ/FkOVWcxNB0N8GPJfLfO5y8d5VUjmyk7SWVK0zRGijm8TEjPD3nLlbvoy6f5zMnjfPb4cf7Lq1+NENAOAuYaTV67Ywu3b5tCNzWqvR7twGdLoQ/f92gFPg+/cI7XX7OD8+0qH37uSW4d30QlleIdu/chVWI4utzrMFkscnx1BVvX2Vru4/V7t5FzbUxdJ2faBHFMJZUm5yRJwfNrl7htbAIv8ljphIwXLA5unaClejy6fJq7tt7CgJvlROsSY6k+XNPixx/4W/7sjrcw3a4x4GYZSOVY8qrcPryDi+01IqVQClpRj/uXj3JT3076c2n2T4wgUeRdBzMMiYSk4fn84J7Lydk2p5rT2JpJtK6v8tTqeSYzfXziwhNcXpqkksshBPhx8p3ec+40//bg9TRDj0Am4Npq0CCl20ilcA2Trbl9rPk1Mhik9Sx9zjAoiS0SPFQ5l+LvZs+wMV/G0vvpRF2UrmMIE1d36EZrjKUm8aVHJGMsLU0gI+bbDVzTYSXosK88wmyvRcrIUQ+rVMOEMGKI5GGnFtTQMRh29RdtSL6T49tVv/1OV879p4qXnbj84i/+4ktefyOn6Le85S3f/hl9h4VrZAlkQN5M4eoWjVBxrn2SbdltgE8sWzjGMGHcohtdBFXHj5poegYNg1iG5KwCkQoTE8RIsie/g7leDVOzGXAKtOMu3biLqWmU7CySGI2IlJFn0VslY2TpRi0kEXkzi0BhCBNHdwGJrRt045Cc4SKVxNHSNKJuoiMidCy9nzhoE0UKKSIeWDzEW8evJVIw16nx6PLz3DG4F0vTQYEmBFPlIlJJRtN5spZNGEt2lQeo+l1MXaBrJt24jSUcPBnjammGU0U0ETOZu4W8048QOmnNZbbbZLbdwpcRP7h7P13Z4VDtBDdWrmHeW+BSb5pRd4Rqt0lpIE0UxPSMiJKbYk9piG4YUjBdNB0OnZxjZLLIlX0bqOzLUHHSEAoanscLa4uMZQtcXhnlQj3pqZedRCocvctwOseGbInTjRVO11f5yuxp7hjdxodPPs10s8azC3NsLvVRclKkTJNm22Mgl+H+0+dI2xab+ssMp3IJe8k0qHd7hJHkwQsXOLm0wu++5bVgxGzURxlLDSSKwWaKopUlYyatprzrMFrI8+T0DMcWlxOwruPgmiY3bt6AY5jEmuJY8xy78lOcaF6iE3lsyowz4OZACSzdYKZdo89Jce3gJE/PzXLrxBRz7RbPLs7Tn8rgx4kYn6YlInBF22V7sZ+xTIFW6GMIQdq0uNBe5WKzzgtr80RSctXgGI3Qp+553DA8Sd3z6IYhnSDgbVN7+MHtV9DnpBi2c3hByFUbxpBKcXRhmXq3mxhhbtzM586e5IvnTyOA6Wad8801RpwsS+0WPT9k/+QI9U6Px05Nk085ZFyLrxw5w3Kzg9KSCuCZ5gpSqZc4cxuallSeuk22FxO58F4Y8vz0PFnL4rEXLnDT3k3rCbvOr9x6K0O5HIudNlnLQiKJhcKxTdb8LucbVe4+8QJ/fPubUQLans8ffvFxBotZ7EGDgUyWqt9lqlTikelppkaLLLTbTOQKBLFksdXiwPAoK+0uURyjGWAaGpam40URb9q0g6Vui+WgzquGt6EjWYurdEODuXqNTYP9xIHkuv7NpEyTv5n7GlIpriptY3eln/FcDl9GVP0uFTtLznToxT2GU3mGnTyhTNzKvTjkywtH6IQB3zNxNTtGB5CRpBeENHoehazL1SNjaBpcaK3xXHWaHYVRBtwCkQ4fOftlvnfyIP+/3a/GwmSp3ULXNMpaCk0IrhgeIVbxi99BKGPakUfBTLEtN4wQGnGsyBg5DM3Aiz3qQWKs2W+l6M9mOFtfY09plEi0mOksMp4epBNViZQHSELZYWt2O5EKiWmjVBpNQNHO0gh7ZA0ThcGgPUmswBAOG1Kb8eIWjp48QCfV45BBZwJb/5fFcv2/8ffxihOX/1PCj5O2TMZII0RSm1v1l5CZzUjVQSgfpSI0YQEuftzE1NN0og4Zw8IUFqGKCGQAmiClu2xIjXKqtYYCerFHLH2uKG1lfm6Fd07cjqtZ1ILzGMIkpbsE0uOp2uPcWLkBW8tgCEEoe3hxC6kCMkaeZhARaWBq0Ik7OJoLQuDFDWJl0uqCnY7oCY9TzWkMcQOxUjy3Nk0oI0bSOUIVE6oYoQRZ26ITBWzJDaAJQX8qTTvysXUDyxAYQnCyeZ4Bp4+C2UfezBKjsITNaOZ2GmGXjK7T8yP6M1kemb1EyjSQAjS0dWokHG0c49na8/z7be8jm7H44vPP8c6br+fI2jzXDk8wnikyu9bg/Noa11+2CRkpLM2gIQyurExQsByCnuR8o0bHD3mwdo537tjP4aUFhjN5yqkUnWiNL87dx7um3oFSMJktszVX4ZbhTaR1iyCK+LErDnLN6ASLvRafOH2Id227nHrTQ7ME24f7ObdS5e+OnqTgOGwfrFBOpZiuNrhiYpQHz57n6g1jeHh8cfZJzrcXKFtZMpZLLCN2FzdyXWUXKd0mUpKDU+Mcnl9gpZNQeus9j1u2bOS6qQ2kbYtO2GMy3c+yX+Pzc49wsLwbXdORKql89uIQIQSTuRLTjTo7+vp5YPocGhrv2rufhu9TC3o8tXKJ51fmALi8f5RXj29lY65M3nbW7+0QReK821s3LdxXGWa6WefZ5RluGN5AK/A5sjLP1cMTIBTdOKAdeWwolQjCmILr0gtCRos5/DDi7FKV7WP9HF1ZApJ2ctay2Fkc4Mkzl9gyVOHM4gr7JoYJY0U2ZeNaJlnX5oGvnmXv+PA6dktSshNsTSRjFElCbWh6Qte1/p4xUm13OTm/zK6hQXIpl1goGj2PW6amsAyNut+jE/oMuFlMQ8fzQwIVcby2SFZ3OVpd5NDyPBtTJRzTpD+f4cj0AreNbSFrWtS8HhnD4Xy1ys0bJhP5+nVD0Bs2TJIxTZ65NM/xxSXecfUeVnodcqbNnr4hPBmSMS0ydgWF4mR9lT2lfpxij/tPn6RYcEmbFjsLI3z0/H2cay8ilaQb+7iGybZSH7WgR8a0CCLJQCbHrNfl/sXHuKpwNbZuMpTOoYmYmwd2cFlhis+fP07atLipfzNRLPnqiQu86aqdjGSy3Dd3hsVui75Ulk7oUbTSSNWj6ndIGwZn2+fYlJpE1zQ+fvoQb5jczqZ8mWvGxomJUcj1v72iz8pSMNOESmIIA00YzHRnmNKHaIZ15noz7Mztpen7oMHX5qZ51949/Pn5h/i+ydcw762S1gUKxVz3HOOpSYSIQEmGU31EKqIb1xhIFSnKFC3Z5pMXH+a9W15LI2ohEdwy8F08tvIp1vwLSGIsLcv23DVMZXa9qKb7nRz/kgXo/vt4+OGH+c//+T9z4sQJIJFX+Xf/7t9x/fXXv6L9fdvg3Icffph77rmHWq327e7qOzI0odGJEifkJMu32V88SCtqoYkUpj5EEC+A0Mi7NxKjo5RkrnsUhIYmDGIpUUg0wBAGg24/O3PjFK0MuiZY8BbZXZjgV3b/IJtzZWLVw4tqKNUjbWRohnV0oWFrKdphDYUkkB0szSaQHTQBmgadyKcTtmkFlzA1i1D6+FHy2UvVOpZhopRiT2GKmAgNcHWLGwa205MhC706uhDMtGtomkYz6OEYBl4Uoa8zqBKgsgFCshqs0QyaVOwcKcNESYVQXSSKi80Oh1anQQoKjstStw2AUAJbs7m8uJdABix4C0xmJuhGEcKO+L7rDyJ0jR3FAbqRRzPsMb1S5/T8Gkh4+vg0Tx+apuK4nGnN8fjKWUxLAyHYlCvz6Mw0a70uW0p9BCqiGwb40ufq/n0EkWK12yGO4XeuezMlJ01PBtw5tZX9gyNcatf5pSfu4xMnD6GhgYBPHD7Mhx55hJrf5cDECJsGyhxfWWGl0+H0yio7Byr8ymtv5R1X7OaFxgUeWzqNgcV4epAxd4DRVIWj9QtU/QYtP+CLJ0/jxxE/9apr+bHrruKt+3bzM6+6ljfv20kxlVRl5npnsLSIJa+WKA0jKFlpvDjCMQzWvDYTmQKRjOlz0nSCkKF0jjdu2U43CmlHPn964kn+6OgTHF5d4Fh1ib889Sx/eOxrLHRbL97bhkgqA2O5PGUnzUi6yPbiAIGMeOuWdX0FBRsLZS51q3zywrM8OH/6RZfoThwyVswzXirwlst2MVbMU2t38cOInG2zpdTHaC7PmzbtoGS6fOWFs9S7Ho2ex5GZBUZKOd5+zV5GSjkytkXOdQhljCUSZdobhzfh6CaObuLqJrZmoCO4un+CoXTuxeu4sFKjHYQ4psE1Oye4WK0RSUnKNFnutQlkTNZ0iJGkNJPVdpdIxZyqLTGQyvCBg7dRtB0cy6CUdbl5zxTXbt/AQDpL1nTWmYOChVaLIJb0pdJIpdCBwUyaMJZcrFZ5277dmLpOJwxohQFFJwHqDqQy9Nlp6kGPJ1cusuJXOdp9khu2TKKh4eo2jbDDIyvHWPEbbMmNMGjnKTou9bDLC7VLjKVLpEwTWzeoB3Wu7NvLmeoKnz1zmL5UirzpckNlF1+8cIY/Pf4Utm4SS4mUCc280fGJUTy3MseTSzNcUd7C5vwAmtBJGRYf2PtmdpcGudiZxjUccrZDJwzohiG2bqBk0pJa6XYoOS6+TFq8vdjHFFrSMpYBnbCLhoZE0grroAyOLM0lTD2h8GIfWwdHt3ho6SlsPUXGKLDkXSJnDRJKDwMTKSVLnS7nGkewDZ9+N0szbLCzMEk7WsOLGqR1k4yucUP/6znY90YuK97Gqwbezu78fmzt/8wWyndifOxjH+PWW28llUrxEz/xE/zET/wErutyyy238IlPfOIV7fNlJy7/6T/9J37hF37hxddKKe68805uvvlmXve617F9+3aOHTv2ik7iOzk0NGw9hSY0Vv1lLC0RcvKlhy50NGHhheeodf4W2xhjsvjzAAy4m4hlgFSKTtzG0RxAUA9rmMJkLFVBFzqmMFEIpAqYzJQJ4waR8hlKXclK73E0odCFwd78ZQTSpxFWEYCludT8WSwtRdVfQUMQypC0oQMeofSoBQvowsTQTIZzRXw/xsDk1sHLEaqNpcH1A5spmEkv+e9mDyMQaJqGF4eJqqymoQkIZIyJwNUtdKERq5ArS3vYktmMlOG6sWNiO9gNI+6fPcJ9s0cYymVxDYPLB4f5vl37UEqhIRiw+4hUiCl09hcu56tLZ/FjQdpxMLVEYTOIY45VF5lvN7h28zhffvIkf/3gYUp9LpdaaxTNNKYmWI2ajOSySKn44LW3EYsI1zI4W1tjpdul3y6zMbWFuu9RC3p0g4BYSVqhxwMLx9nUV8KXEY/NT3OxWSdWClvXEIbg+fkFji0t8XuPP85PfeEL/NQX7uGPn36K5W6bDaUipqFzxfgoQoe57gr/auO1vGPjtWzMZkiZXTZmi9w5vJ9QSjpBwAuLS/zeY0/wF88eohOHVPJp1rwen3rhKIvtdsLekB7tKKnGGJpOqMKE7q3p6JqGVODJiKNry6RMkyCOuGF8A6fWVlES5joNnlmexdJ0YiVf1G55dnmOY7WFBFwLREri6ia7y0O8dmIHtqZTclz2lAcZzeSoRW360mnKaZffOvIgR1cX+a6JfRxbWuGXHrqfQwsLfP7oSR44fZ6rpsb47st30QtD2r2AkungCIORTI7rRicIophza2t84cgJbtqROF4/cWaaV+3cyLtvv5qBYpbNQ30M5DNomoZrmOwtD/Oj2w/S56ZphD2UUNw8vIl3br6CopUkeUopvCjk5NIyxYyLlAmuo5By8aKQdhhQdtIUHRdL1/GCiFBKHN3g1RM7yNsm28p9fOHiSXphSBxL3vmqy9k4nqgHv21qD5vyJTQ0ym4CLs85NkU3RaPnr38vGvtGhlnstHF1E4FirltfTywTZ+SvawWlTJsTzTMYIoVphFRS7jod2MfQNNKGzesGr6LW9UmbBpGMqAYdHM2i5LhEKqJo5YmkYtVv0gi6HFqZZ7XnIWPBU/Mz/JudBxm1i7SDRFZg99gQmp4YxpqaznSziqObzHRXON9eAqXYVRxhxatxQ+UaGmELU9f4oR0HmEwXCaKYU0urL7L+WmGAuY5b6cQ+z9dOAWBqJpuyQ8kYIgRD7iiO7tDwAtpBj5Fsll4UMuQmCrcVt4hSEkd32Vu8HqnidWVdk2bY5WuLZ0kb4zyx/BV6caL9tLe4gbnecWLVxRAdHpz/Bc41Pkta9xm0s/TC01xofJyl7kNE/zuAc/8PiF/91V/lQx/6EHffffeLicvdd9/Nb/zGb/DBD37wFe3zZScud999N7t27Xrx9ac+9SkeeeQRvvrVr7K6usqBAwf4wAc+8C0d/Nd//de54ooryGaz9Pf386Y3vYlTp069ZJubbrrpRUbT15d3v/vd39Jxvp2QRBjCIFQhGSOLEBCrgLxZQCERwkAInbnGf6Ha/hwZ6/LE+VbTuNR+BIQkpafQhU6oIkCy6M/RlQFCQTcOGHVHmcyM0giX8GUXU0sjhIYixA/n6LcHSek2rbBGziwh0ImJKNljxCpaNxJT61oMGn3ONiQSoSIy5gCm0BjJF/jcC0cRUjDk5vDjNbrRDIOpAkpBKKMXVUWLloOuBMOpHO346+h/DUTiuxPKGCljKnYfvVBypjmLUpK04SLQCKXgXHOBRxcPk7YMOmHIa6e2oRAcWV4ikB6h6mFpBoN2HyPOGBdbTc63aiw3O0RS0ox8/Fhx76UTXLNpgiiQfOqRwxQKKforGSIR8WdnHuIDz3+K3z72BdKOzlg+z1Amy7nWCu3QZ3u5worXAWUTxRqOYXKpVWNDscjFVo1eFHG8Pk+MxNA0ztRXUSg0IbBNk5RlYpv6i/eCLgQDmXRiaGgY7B4Z4PnFBWZadYSAHfkJ+h2Xz85+jt8/+xE+Pv0Z/vT8n/PY6ldxdYFSirYfsNbp8tzcPH/29HP8/mNP8KdPPsPRhSVMTaMb+fTZk5TsQcZTA9SCNU61zoGCnOXgRxECQdFyaQQehi64eniMc/UqTd8jY1ucbawSSUkk5YsAxYSaL7jQrOHHf8/IcQ2DkB63bNjAdWPjeDJkOJOjF4ccr1/C1jVONBbJOCY/uecGVjpdfvWRh7hlchMj6RxPX5xhKJ/l8elL5LIOb9i/g750mjdu20EpnWIwlcEUOt044sDkKFdtHMe2DG7csZFNI32Uc2lcx+T47BI37djInqkhFpptGlGPTtjl+sFJfuXAq/nzG9/Bf73mu3nX1isZyeQSXSASwG1fLoP+dQdqXWOir8BaN9GtGU3n15PBiKxpI4QgUhFeFFGyHZZ6Tf767BHW/B4L9SZHzs6jTEUvCnno0gVMoSNRrDTbXDU6hhdGZEwLTSVYFqXA1HVOra6wua9MO+rh4RPFEgVkTBtPhigFacOmaLnsyG1iIl1BF4J6N8SLQlzdZjzVz+XFKSpm4gsVS4kfB1zXvxmExJchsZKUrRKH6mcZy+W4dnSKB2bP8vjCNOfrNW4d28oNg1N8+vljnFpZwTR0xso50ASLzTYHBkbZ0zfMfLfGpXZynyihON2aZ9gdoBY0+ezc/fTiHoOpHF4Y0VtfOr2QoVSGoXQaUzMJZEgr8CnaBVBgCsHx5lNc6JwirWXYkduJY2hsLfeTMU2uHBhnOFXkqvJedCG4rLCVZrhKJD367AEC2UJKnUAGRCrgdH2exY7kuoHXMdOpk9GzGCKRh6wGFwniRUp2kbRRJGP0UbLHGU3tZjC1lyCuEau/dxD/Tg21brL47Szf6XH+/Hle//rX/4P1b3jDG7hw4cIr2ufLTlwuXLjwEnnee+65h+/+7u/m2muvpVQq8fM///M8/vjj39LBH374Ye666y6eeOIJvvKVrxCGIbfffjudTucl2/3Ij/wICwsLLy4f+tCHvqXjvNJQSpIoXsSgIKWnUCrE0hwEar0/GWEZw+Scg6TsLUjVIYzb1LxTTLfuBySWbhDIEKkUq/4qR+sv4Mc+uhDEKlFW7cYd2mENXVhYWgYpPUrOlXiyg6PbdOOk5eNoiS6Eo+USoTtiskYhqRJoJnlrEAUYwkIXBhDhR5fQhWK+3max1iWWTWzNJZCCWEYYWqKd8tbxK/jS/HHqYZeMnZj7PbVynjW/9aIXzlK3g6lppM0MkVQsNJvJRK/bNMIqkQJTM6g4Za4f2o1jmDQ8D9fSafgef/zcUyhl0o0axLLDbUN3YOsmKV2wNT9ItdWl6feoe138KOaR+XNkXItaq8tyo8NoXx7b0fny0mHO9hYYzOb53g3X8+nnj/CZQ4fRBKx4LYI4sQD48sXTRCrG0BJcTagUXhwmuKMoZlt+mLluHQRU3DQZ02IgnaEXhOQdh9u3biHvOrxt7x7+n9e/hl997W38+mtvZ0OhQCcMWeq2KafSrPV6bMxVeHjlUc53pskaLq5u04sDDtePsuwvYRk6W/r6EkVVBJsrZfYODzKWz7OhVKTkuix5VTRh0w67KAJu6r+cywvbiVSEreu0w3Bdet1kb98grcDDNU0uNRrsqgxiaYmDcy8Mk+pHEODHCUYkY1nkLPvF6pitm7SjHr958tMcap7kpvExBlIZfBmy0muRt9Is+w1WvTaDbpaJdJknZ2Z59+VXcv34BI+fv8RIIc9Ku8Nv3PcIv/SlB/jzZ5/nY88cwsHke7bt5orhEQDO1tZ49y1XUyll+Nl77uVfffxuPvL0s8zUG3z88UPcf+wMGwaKLAYdDi0tsNpr8yenH6LqtxhK5RlJ5xlK50kbFqca87TDRKNjudOmp0LeevkuHNPAthOF5qbvkbVs8rZNoGIOVxdY7LbJ2jYpy2K526Ibe0gl+PKlExi6wkRw/Z6NLHZbpC2LiXyeSjbNitem7nssNppkbItuFOKY5rq+iaIbhlw5PkzKStolj6y8wJZSH89XZ2kEHroQGFrSlrtxYAv9TpHF3jRFfZTnLs1zdnkVP4x4w8iV9Nl5pIRSKsVKt0fWSFELm0mVN4rw40Rd+XRrHvSYjfk+umGIa5gUHIfXbdzGhbUas40GlXSGlGVimglQ+KGLF9hZGOTOiS0gYgIVULBSSCV5bOkEhqZzvHmBZb9GParR8jx0obHS6rC5v0wgJeY6e0cIkYhwajpKCWY6K3iyw+Hakzy4/AUMzUSqiOONZ9lR6SdtOWwulBPVXE3j2epz9Nslht1RdM2iF9WwtRQ5q4BA0I0XuX54C4OpPJEyCaSkG8nEsd0aQxMGtlZgX+kH2JS7jjA+xWL7U9S8r5E1hxlM3YBA/waj+v+N/9UxNjbG/fff/w/W33fffYyNjb2ifb5scG4URdj231vJP/7447zvfe978fXw8PBLvIteTnzpS196yeuPfvSj9Pf38+yzz3LDDTe8uD6VSjE4OPgt7fsfI2LZRaoYlMDQkqqGQCFVjABMPYOUbZRSjBfeTzs4iyYLCLGGF61yReU9OELDR6DQCOIugfTZW9xHxrDRhE4Qe8SEzHdXyekeabMfEGjCwtFL9KSiES4i+HrbyqYbtsiYGby4QdqoECuoBR28KGR3cRiFjlQdSvY40MOP5wllgy39BbYN5pE00YhpBCmWezNsyU+w6jUxNYN7547zW0fv5/eufhsFy2HFa/PA4knuHN5Nn52hG4WEMqIdJW6ty90OV5WHiIk40z5OyexjMj3JzcN72dc/wqrXIedYeHGcsEMEnFxZY2tFR9MESiUMqleP7cXUQoQZUu92WOw02ZAtszE7wKV24nA7kM9w8/7NBCri2ep5umHAdZXthB785TPP4Ecx2wYq6FKnGXh0A0nJSSEJsHWXI6uL9Dtp/Dhmtttg2CmwqzBKO05KylcPj/OVmTNM5osoYHq1xmu3bGX34AC6oXh0+Twn5xZ5947rUAqqvS5nqmtYusZz1WX29xeJVYvNuZfeq0UrT781hB9EXDU2iqXpbCwXydg2QiSGegOZNJaRmAN2Iw9f+ty39AA397+KtJFj0V8lbSQsMh3BYq9FxrSY6zXYIEz29g9S6/Q45gdcPzTJJ9OHmes2AAijmP5UmuFMlv2VURwjMaIL4pAz7Xm8KOAzM49zujnH2yduoGgWWfbajKRzuEaS7Kx4bXQ0xvKJe/X5tRpnVte4fdtmHjp3gYbvk7ZMji0sc3xxmdOrq7xmxxZunNqIpgkebJ3n4Pg4T8/NEShJLuUwUsgTRpLZtQY/fNMB/Djm6flZ0rZJuWVw89BO2mHIh089xvnWKinD4orKBFf0jfN1Cal2GHCmusYbt2yn1wtQKqkaLnU6LLfbFFIOQZz4bbmGwb7iMAPpLLEeM++toimTThRwcHCC0b4iCIEhNExN4+aJjXQjnyPVWS4vTPKRp5/hmg0TdOOQtGHR8n3qPS+pwhUz1MImSsU4uslir85fnX+ad20+yL5SoidUstIIEdKJm2xM78ALYx47O813H9hFjyb9ToFNmSH6zByRUjy3MMctY5OEJBWbBJws6IYeA3YJb72iMJDKcPXQGLrQ0EgE/t6yexcC6AQBUoOcbVN0XR69MM0btm+jHjX45KUZ4AoUcLCyFVB0oqRNeaxxmo2ayUimhFxXFo5UzFqvi2tDxnQQQpEzLL62cpGbB3cSqibduEXdu0QtXFkfMzWCda+mduRxtr1AL17Alz1ShkskQyQhluaCSjCArLfH9/ePApJW0KXipFnsNTGFQ86sMGCPoQlJ3T/CibXfxI+TuUcIjeXuw+wo/1sy1tQ/0czwjxffbtXklX72D/7gD/jN3/xNFhcX2bt3L7/3e7/HlVde+U23r9fr/If/8B/4zGc+Q7VaZWJigt/+7d/mNa95zf/nsX7mZ36Gn/iJn+DQoUNcc801ADz22GN89KMf5Xd+53de0fm/7IrL1NQUjzzyCACXLl3i9OnTL0kuZmdnKZfLr+gkvh6NRjLQlkqll6z/+Mc/Tl9fH7t27eL9738/3e43l3P2fZ9ms/mS5ZWGJEAXBo7u4sc+3biNJgwkElN3QEXEsomplZFIUtYUftiF2GAiexuGpvDjBNPydbG5UXeM482T60+9iovds5iaxrn2LGlziFD6qHV2fi88i8CkGzVx9QwZLU+sIiJCYnr4MkSoGD8OqAUt8paDIsKXPt3IX6+4gJQ+hrbC63btxDFMNEw82eVobYGSXUSiyJouXhyy6nW4ZmAj/W4CTNyU6+dkY5Fm2EMiyZgWtbDF2fYMjm6SNm2+7orjxT3unv3/Uwvr3DiyGVszqPkd6n7yfVX9Lq/aMMUzC/O4Rh4dm1iFLPlzFG2d483DuGlFt+vhakYyeYxsJmelKOdTvP7anRSK7rpSqEGkJBvTA7wwu0g3DAHF4Zl5rh3cyGA6SyQlY9k8lqYhiVjxOtw/c5aMYbG7MIht6pSsDLuLYwynsxyojPCxO97Oe/ZeiWkmrs2EitFCls/NHuHB+dPcNLKJrHCRKpH+98KQXhTixSGxjFEiphE2meststBboRN1uaZ0LUvLIbNrDXw/4rU7trLQbPGnTzzD7z78OJ89cpzjiwn1t2CmkzYfOp24hxd3iWRMSreZbq/QjUPqnkckJeeaSal/odNkIl/gxPIyH7j/QSwMPnDwNl41NsVEvsC2vj529w3yvZv2M5YuvHh/x0rSCDpsSPfz87u+h7dP3EQgFQXLZX/fGI8vTVOw0mwvDLEpV0lk+st9PHDuPJcaDSbLxQSMGgQoIIhj5LoiViQVJ5dWWe10KLsuB8fGWW63eWJuhrRr8Za9O3nz7h0YQnDbzk3EYUJ7nmnVuVivsbs0Qs5M8VvH7ufvZl7gRGORQ9VZPnL6azwwf5pIJscZymTZPzzMbL1BL4wI4qSV+ciFi9SDpGLgxyEHKqM8uXKRXzvyFVKOSSWVYdDNY2gau8tDjLkFvCDxohpMZ6kHPWIhaQY+voyxLZ2fv+VVECdJwFdnLtL2A1q+T8ay6MoOa36iK3KwbysXW1WON+a42F6lE/k8tHQKQyOp9MUBJW0EKRV37trCQC7DWLrCudYijyydSKqDwOZCiUhKcmaaJb+BLnQi2UERc3lpii3pCaZrNb5/+wEaYZda2EYTgg3lIpeNDlFKp8g4DrahM1trcu3IOHds3kzT93F0i6nsMOfb8xTMFJPZEjo6WdNhwZtn2V8jUD6toEtfJk0vDNE0DV3TON9eJFIRvdgjUD59TjapKgmTIXcMV3cIYg9TWJStjcQSLM2gHna41FmlZPUxlZlc9ynyaAWLuEYBhMCXDTQ0Bt1xhJDoWgBCEcQhKcNkul0jY2TxZRupQmr+c4SyTiRbRLKFlAGG5rLafZxINl7x2P8vOe6++25++qd/ml/8xV/kueeeY+/evdxxxx0sLy9/w+2DIOC2227j4sWLfOpTn+LUqVN8+MMfZmRk5GUd7z3veQ+f/OQneeGFF3jf+97H+973Po4ePcrdd9/Nv/k3/+YVXcPLTlzuuusu3vve9/JDP/RDvPrVr+bgwYPs2LHjxfcfeOABLrvssld0EgBSSt73vvdx7bXXvgRL873f+7187GMf48EHH+T9738/f/mXf8n3fd/3fdP9/Pqv/zr5fP7F5ZWWogAEFqATqwCFZL57CVNLY2o2QkEsmyBA1yziuIohHHp+g7nVE+v26gk2phcn5n0pI02MpOavEauIWMV04yatsIEhIFImXtwGJdGEjh/Pg6pTskdwNJe4ZaChkzHSKCUxhEUoAzqxR850cIykLtONuwjx9WKaQdrahqkPowmFwEATJq4+QMFUFG2HdtijEyUJ0xvGdvOvp66kHfQwNYN+J0cz6NHvZJnrNsiYFlJJtmY3YGo6k6UCAg0UjKc3IhU8ufZYojYsfSxDo+0HeGHCiNlW6ePOTVNEMsRXPRSK480XqAcrzHnn6GiLTJRLXF2ZpJKyec2GKcpWCqXBa67dwWrYwQ8le0sTjGfKOIaBQKybthncOLWJDYUypq7Tl3LZUxlA1wzmvTl2lvqZ7TS52KyxpTBA14swdY3z7WX+dvYQrmXQVh2+uHCIE805vDDihblFHp09z3Pzs1zZN8HrxnZxfrWKrgkc3eC2qU1crNXZXhzEMRy8KKl+ScW6aFxMRRvlC8+cIGWaTPaX+NShF/jskeO01o3rDs3M0w0DmusTT0pzKdslrijup89OKnCublMNulSDFhO5xLButdfB1gx8mbhIF22XKJa85zOfI+7B+3Zfz388cCs/set63r39IFdUxl4ila+UYEtmlJsHLmO20+C3T97LLxz+aw7XLpLSLb5n434CGdMLExO9TtzDNQzOrlZ5dHqavaNDtDyPXUMDFF2H8WKBkUKODeUSb9q9nTfu3U5PhDy1PMPmSpm0ZdELInb0V7hscIgHTp0jkDEb+0t89eQFDE1jPFdgb2WIgu3y/NosF9tVulFAJ/QJZIQQgkNrc6x6STvZ0nUuNet0vIAnzl1KTP+kxLEMNAFCQNq0SZsWn7l4hPvnz1ALu8y2GqQNB0vXeN2GHaRMC10IgihJituRz0y7Rs5y2Fkc4mRjAQPB554+BjKxfRACKukUhq6z6C0RqYhYhkxm+rF0A6Uk+8tj1MLEJDJSMfWgg6NnCWOFa5mMFQssh3U+du5rDDl93Da8j54MMTQNXUu0aHqxz9H6RQxd4MsAKbtMZRLF6IV2C1+FHKnNcLw+Ty8IKadd0paFF0R0PI8olszW65QzKQ6tLvDcyixHqhd569gNbMj0Y2kasfKQRGzOjFA0sxyuHyeT0llsNbEMDdc0sfTEny1nOnjSRyKZ7kyzMTOAQmLrKfYWDmIIi4yRJ63naQcJziqUMYGMCGVExSng6OtjqApReOgY6EKnGy3RDM6T0jNoKJr+JSzdpBp08WXAplyFSPbw4iaRbNH0TuAaQ+SsLWStKTLWJIawaUfniGSL7/T4Oh3621m+1fit3/otfuRHfoR3vetd7Nixgz/6oz8ilUrxkY985Btu/5GPfIRqtcrf/M3fcO2117JhwwZuvPFG9u7d+7KP+eY3v5lHH32UtbU11tbWePTRR7+hFtzLjZeduPzIj/wIv/u7v0u1WuWGG27g05/+9Even5+f5wd/8Adf8YncddddHD16lE9+8pMvWf+jP/qj3HHHHezevZt3vOMd/MVf/AWf/exnOXfu3Dfcz/vf/34ajcaLy8zMzCs+JwEgFJHsIVDESmJpNhqKULaIVQ9L6yeOl7GMYcK4jhBJ+0Oh0LUMoQrxZReBSCTfgyp9dh8L3jJeHDDmbmCue57tuY3YmrVOuw7QhMDRR3A1Bw0LPUrT7XQwNRtFgCYsDKGjawnzQNdAECKEjiEMilYZqSSasBDCxper1Lp1NE1DqQBL1zjQvwsv9glV4loN8OaJvUx3VuhInzPNZQ6tXeIDl72RrOXwQnUOJWDQLWPrJq2oSc7RyVoOp1onGXCGeffUT/Oqgdtphz5KKvrcDP2ZNA2/QxTHlF2Xeb9JNWgRy4BIxTSjBoEKE0NDLY+mw2Auw4I3jRIBC80Gn3nhBSxb51x3jUBK7hzay9s3HOSKykZu2riZvaUx7rr6RraN9nOxvcpfnHsiodjaFpECgUbRcbhlfIqRbIa61+Pw0hKL3Sa/88KDrPQ6nGku8Xsn7mO6s0IsJU9Pz5BN25xvrjLi5nn9hi2EcYxt6rQ9n1q3x8GRMbaXK4xn8rRDj+v6DqILnUDGyaScnkCGGv35DIOlLFIpDs8t0uh5NL2AguPyw9ccYM+GHJ9f+DKfn7+PjJlGANtyO5IWg53D0HQyRlLd+vSFwwyls4yk8+iahm0mrtBb+vsYyybU5j9+/Gk+/tQRzs3WmFtqocXiJUlLEEWcqa0ykRnAFBZ/ePornGkusjkzRMHMMt1eQwmIpeRvLx5DFxrPVS+gaYLNfWUu1mrMtZpsH6hwx9bN3L5tE/tGh/i+A3v5ldfcwoHJYe6bP8OfHHuSlV6HQEZUMmnu3LqJ127dyiNnLvKxp55PxAVTLucXq/T8kHfuvow3bt9GNeix6nUYTRXJWg6uYZExbAadArrQmeskT9NVr0fatMhYFnNrTbKOjUZyrSPZPL0wJGvaeHFIxrD5vWu+C1sz6MY+X5w5gaNbHBgYJWs62KYBCGSssDWDPiehOg/aebbkBzg+v8zhmQUabQ/HMOhGIf2ZDF4UYesWS94iY6lRzrTm2ZLv567ttzCaKiAU7MgPo1Ccbk2T1gssdFsJS8cUPF09z6cuPs1vHr0HL+oRxL0XgfKBDPDjiE3ZYULpE0goWAVqQROExlAuy+n6Eo5uMpIqEMWKdpAoRgug44cEccxVE2Os9Lp88tQROmFIzkyx7K9xsnmaQPk0wzqtsEkvbvADk2/mTSO3sSE7wObKIK0gSJIh0yRlmmzOjSAQNIIOju5QsNKYQieUIZPpHbxn0y/i6Il8RBirxL4jDBIbi8wwGlAyy6BpWJpNOzhKIziBodkEsk4nnFlviyXq2qamUXLSpA0TQ0hiFa4nPDHdaJZ2cA6pQiy9jJQBreAsUdz8+gj+f0T8j10G3//GwOQgCHj22We59dZbX1ynaRq33nrrN8Wofv7zn+fgwYPcddddDAwMsGvXLn7t136NOI7/Sa7l5cTLxrgA/OAP/uA3TU7+8A//8BWfxHvf+17+7u/+jkceeYTR0dH/6bZXXXUVAGfPnmVq6h/2MG3bfgkW59sJhUy8IISgHcywObudSAZIQlAKQy8CAVK2McxR/GgGS88xWNqOQEcgcfU8nchHCNCFjqM5pHSXU83zbMxsoM/OsSG9mQF3EFNoBLKDQEcqD0PLo+mVxC8pFJhOYjtmCAtI1GulstCFTy1co2xXUEpRMAtI5aHjIOgSxmuEccCltRXGS8NEysMQaSzNQBLR8RtszI4iJbTjgMdWTvPvd76WBxZO4cuQ2W4VVzfZmOtLBkQzaXtd6s5wuH6Et4+9hbVgidF4iJTh4MdrzHUixjJDzHWXWQpqbMtuoup5xEpyqDpLnzPKkJsmRsPRHHpRm1srb+S5C4tU2yf5visvx487WKLASqfNXzzzJNsGKpSdRJSsP1UgZwkeX32KawpX8qbLdnHdlklqUZsVr82J+gLT5RVSukPJcXG1PLPtNV4zsQ0hFEeXl0lZBsca85yqL/NjO25krrdGzk4cuG1hcmrtIoWMQ8F2+f4dV6KbHUAymS/S7vicra1hmjqp2MK1bY41zjGeHuL7N7yDo41jdKI2+4q7sHSTW/Zupt71mKk3sDSDH7vuKjb2l9A1wca+HPcsPMCjK88zlCrhyR5e3CNj5GkEXWzNwIs1BtwcF5pzpE2T2U6NqVyZWtDD1DTKlommNG7etJGvnD6LKXTmGi3WOl1u2LiBgUziCeXHAYEM8QPF44vTlNxtnG0tM5bqox52+P6NN6AQ9DkZTKEx22yxOV8hlDG1oMfx1iy7BivUej2GslkquTSxUvzw1Qdoej6H5xcwDI0vXDjB/XNnuGV0E/v7RjhbqxLHMTdv3EgYxTx09jwx8KnDR/n3r7qBsXKewI8optKs9Bq04wB/3RF4zC0jRCJmF8mYWMkXBeg6QYCtGeRSDnfs3Uyz5xFHMZtLJZSAhV4LUxNU3Aw/s/smJtJlfBmz5LWY6dQI5RiOnkJIaPY8Ol5IOZ8mZVikDYuVXpcPH36a2yY2sVRvU0i79OfTaK7g6MoSFTeNH0WU0n1Mc4lQKT5+4VHeMHoFb57Yy4pXp8/JrLf/NHbkJwllyLG1RfrdLIYpmG6vommCa/s3E6geA1aRi80a/SmXVb+OIQxKZo5IQS3oUrLKZAxFTwoGMxm+ujzH9uIQrmahI+j6EmV9nR1nkLEsOlFItZt4Xc20mtw8Mcbx5hmmMhUEkkZYJWsW+NraI1xevJLr+66mHcWEIiaQgrSVodnpMO7m6cRd5rqr5K0023ObCKWHremYmkEQxziaxkznMMOpa7B0g+Vum6zpkDNS9BUyQEisAqJYIERA1XuOpc6THBj4NTLGALo5ymz7KwykriNnj9IKV6nYg3SiNpKkUm1oNkpFDGdejanlydnbkqEaQS+cw4+XMLXcNxnZ/+XF/9hZ+MVf/EV+6Zd+6R9st7q6ShzHDAwMvGT9wMAAJ0+e/Ib7Pn/+PA888ADveMc7uOeeezh79iw/9mM/RhiG31SYtlgsvmwvw2q1+rK2++/jW0pc/rFDKcWP//iP89nPfpaHHnqIycnJ/8/PHDp0CIChoaF/4rMDDZNQNtCFQzOco2hP0ooaOHqKlFFGE4I4PIdhTCJVgKZlkPoajrkRIRS2ZmOqpG9bD2sUjAIFK8+yv0jWtPjM7D28e+pfY+sWQezjWjkCqa1XbSCIl0kZE6AFSKOHm3FRJOaO3XCWTrRMzr6SJa9GxcpjCINmUCNlZIhUD0tPoVCE4RKBP4uUfeuVnzJ+PIMQY4QxDLgVYqUQIqHjXlWaIme4DLl5xtJFnq9eZHtukKlsH1IKulGPlOFQDao8U32OGyrXMpGeRABSBUx3niGlH8DWLI43LyIQKBFx9fAYgZLESlJxKmhiFYHLjtxuStYA0stStAJu2jtKpOqkjQy9KCBlW5TdLF84dpK7broWTZc8Uz3OlxYeZDzdj14yuH7LJEIHokQRdrZb5UJ7lanMIEJIpNIJYsHp6jKbSmXqnodEsdRt8u7t1yftgJk55rt1mmGPZb9JOZ3iqelpvu/q/fRlHO5duJf+8iAZK0Wt3uXA8AitIGC6VsM0CzSDgC/Wv8Ytg1fw6qE7UEoRyIiMYWOEEU+cm2GgkOXtB3bRxufPTjzNRK7I9xa28sTaEYSmGLArmMKgu16NMjWdRtiiE0aU7QyOZrKvb4RQxXzs/NNIpXjLxF5yto2rW7x17y4OjA1zdrXKUDbDhlKRvlSarGOz4lc5XD9B0SwQ9dIc6B8FAStem7SRYnt+lMl0P9E6fTiSMc8tz7G9XKFsZ9iWG+FzM89x58A+hvM7yNoW5+s1XlhZZH//CJ8+eoyrRkfpxSGfOX+UxU6L10xsY7bV5Fe/9iD7+of4sf1X4/sRtm4gHMGW/sSv6arN4/iR5PTaKrolOVqb40BlnC/PnUQTAlPTMfREmG5PaZTRdaxO3nYS4KomsC2DpWabQsrl1k2bEvaYjPjMpef5oc3XM+hkeaG6yHimiCbgxqFNfPTcV/lXEwfJ6RmsUOf+Z07z1pv3EaiYPsPibG2WvzzxPGnTYtwpcPuezUx36jwyf4E3bdzJ6bU1Yim5PD3I/sJlNKOQs+0FZrtr7I9jpBI0wjaPrhzhrWM3U7TSdIIWNa9BPejRZ6UYS5d47/ZbOVjZRNoQ+HHME4sXefOmncx2l9lT3EzHl6T0NGOpQQSQMVPMt6sMpbMse23Gw5C+dA5baFTcIm0/wDENHCth8XTCAIHgsoFhHNMAFBOpHE+sfooR90fJmjkEsCu3G1OYoHS6YQ8lBa3Ax9UtvDjC0HSWuzWeqZ3kX0/cjkJxpHGYy4t7kDKiFy8hVUQgG8SqRdHJ8tj8JW4b3YprGomCOAoE+HEHW4/XE6dj9KIFMuYwvWiRM/U/YSB1EJ0ESJ4yLEKZsB9D6ZPSiyjZZDz3PdS85zlf/wSt8ByO3sdw5g6GM29A17L/5HPEtx1KJMu383lgZmaGXO7vE7V/rId3SGAc/f39/Mmf/Am6rnP55ZczNzfHb/7mb37TxOW3f/u3X/z/2toav/Irv8Idd9zBwYMHgYTcc++9975EG+5biW9bOffbibvuuouPfexjfOITnyCbzbK4uMji4iK9XsLyOHfuHB/84Ad59tlnuXjxIp///Od55zvfyQ033PASavY/VShiDM1FAOPpK4lUyEz3GF+35JSqh6YXCZVPzT+GqVfQDYkQAbqwicOLxEpgaDatsEU7buFoFoPOIJPpUbJGlkVvJVGbFBKhBGIdo6JpKTSRRgN0YRFos6Tc1DrINybC42zjv6GJkLluQg91hEXOKuLLHo6eRxEhIw1d5ei0L7JtaAqpJAqfKF4DlWh05AwXXWg0wi6geNXwDla6baayFSpOhrKd5nxnkZRu0Y0CsmaaWMXkzByvH34dDkUG7WEszcKPm6x4J5jIDtKLIoadfqbcjfzN6eOsed3ErHNoC5H0WOg8jpAemzI7sDWXjh+wdXCQIIpph6vYmolrOFiWwY2bp/jqhXNoCKQIeWDpSea6Va7vu5qZtRahkjQCj7yVot/N4suQopVic66fTtxCA55bWqAZJqX3kWyO2Vadm4a28Jrx3XhxRFq3melUaQY9Hls7ze7xQdZ6XTKWQygjVoI1jjQP4xg6qbTNudUqZTdFKeNyaHmRGwf28YbR68lbLrPdOZa8ZRQSy9AJ4pgvHztNMeWgbMUHH7+f+y6eJWWYxEqy0K0SK0Xh615UmrluNGcRSUmoYjqhz/ZiPyUnxYrX5hPnnma+W2fN6/HM8hynGkt8Ye4FNCfm4NQouZzNrN9IsDF+g4eWn+Cp6mH8OKTZDelPZVnqthlyC3SjgI3pfoTS11Vmoxcr7SfXlvHjCD+S7CtNsBCssmdwhCNLiwRxjGuYPDM3xxfPnGYon6UZeNS8HiOZHHnL5cTaCh+6+U5+7PKr6YUBlqGzb2SQn7vtRt64ezteFLJ1tELKNXl6dhZbMzhZX6TiZPiRbddQsFJ0owCpJFf0TfCWDXsp24nBYsayKNgO880m51arVLIZDs/M0/MTJk7GtDjRWOBCe5luFPFHxx+nFXrsLA6x6NUYdAsUzRyxlFimzqnpJU5fWiKMI8I45tjKEmUnxdZyHwc2DLNnYoinlmb402NPc7y6RNayKKdTzDZbZPQCru5QtnKMpsosey3ypsvJ1iWW/DoICSpG1yXXjm3m4ZlT2LrJ60cvo99N88jyUSzNoRP5zPeadIKQicwgBTNN0U7RDgNMTV+/JyLytkUj8NhbGmPFa2HpOinToh0E6HrSnlxnvqMLjf50mpvHJlnqtRBAN5rlQOlGUkaOslUhbbhcX7mR/cUrCeKYnOFS83oUHCeRF9B1NC1R237r2M0IIdZbWYmgoyLmXOshLC1NyigiVUhKF9w2tmVdTdijGjTQNR0hNCw9hcDA0UsUzDESSHIC2B1wDyIw0TQbQ7NohW2EkBiajam5WJpDyhyiGZzmQvO/0Y0XQAgC2WKmfQ/LvcdRKvgnnyO+3fjHwrjkcrmXLN8scenr60PXdZaWll6yfmlp6Zsyd4eGhtiyZQu6/vf08u3bt7O4uEgQfOO/8fd///e/uDz22GP88i//Mn/1V3/1ogDdX/3VX/HLv/zLPPzww6/gr/bPnLj81//6X2k0Gtx0000MDQ29uNx9990AWJbFfffdx+233862bdv4mZ/5Gd7ylrfwt3/7t//k5xbJkFj5aIRIFeIaeVCw4s0QqR6giGUDTWQIZZNWcAEl2xhaDkQEqgOUaYQdDGEmwmYIfNkjb6QZT/XxPeN30GcXMPVEEwEUoQo43XwWoWJsYxhUDAjS5gZCeommDDECnd2l9yKUz57CFIawsfQ0rai97gWU6JZ02gJNldg88m9fdPKWqgtagU7k02/nCVRiYlcPeri6RTcMuG/+DGndwtENsqbNE6unaUc9Vr0uhtCZ7y0w6Ayy0d2BUmBpFq6eRqAxnj5AFBvMN9sM24N87PghNhcqaJrGUrdFICXL3hq2sQnLKNAKW5SsAoOZLB3fxzI1/Nim2l2gaOWpyx43bt/ID195EM8PkUQseEsMp/oYMpMfW6jidWsFhaMb3DG8k0E3T0o30QHXsFnrdan2ekgUKdukz02zpzxCJwg4WptjNFXiivIk45kyi70GkRXwb191E3OdJrFUDDoDnG2dwzA0bNvg88dO0vKSNuDuyiBlO0dPNvn4pU/x+2c+yu+f+QjPVJ+l43soErG0ThTw7MoshbSDaxqseB1szWJXcRJdwLbcBiIVkTML6AJQOpZmYmvQihKQuKMbnGoskbdcfmzbjZxeW2NTocRjK2cRQhFLwZ+dfJZff/ZBPvTcQzw0f57z7XmON84DULKzbCqXmWs3cAyDvcVRIhWTMVw0TdCKPGzdoBN57K4MMpkr0YkCnlmZI6dneM3IPhqex3OLC0ilGEhnOLq0RCWdJlARvozYUxkkb7mJdP/YJCjB7z31BN/16U/y9OIcb9izg02VMmeX12h5AZ999hiubVL3ehBr3Diymfvmj3N1ZQMfueF7+cytP8Jf3fQu3r/3drbmBhJBRBLwata2MYRGq+chBOTdhHmmCUHGtKg4GS6212iGHhdaVe4+dxjXMFn1mlzXvwVb15ju1NFMwS0HtiBFIvYXqZiMafIzV1yHY4coMyLjWAQq5g2TO7hmaILJUpFnFud426fv5oGL53F1i9uG9qJIWHSsY9ssYdCNfKSKsYTFcNZm/+A4OoJ21GWms8zlxQ2AIGs6DKXTfG76EAUrQyBDUqZF1e/ixT4g6EUeOdPmqwvniWPFrUNbyZo2sVQ8fvFSMoYhOV5dxjR0MmZCR7YMneuGJsibNgWrn6HUdvzYJ2WkiWSHTrSKUokXliYEKdOkEybKzca6avOQk7TuPOmjCY2x1BhCQKR8WuEygpiyvRlbz6FrBgqoBcmYaQidMO6hoaMLE4VO2b2KjDmJEA5S9tCBgczbMDSXIA4IZchsdw1HcxEqJqVn6IYLxKrHfPuLdILTSJmMexAQRAvMNj+NH3/rLYh/6WFZFpdffvlLdFWklNx///0vVkP+x7j22ms5e/Yscl1xG+D06dMMDQ29OKf8z+Lee+/lzjvv/Afr77zzTu67775XcBX/zImLUuobLj/wAz8AJH27hx9+mLW1NTzP48yZM3zoQx96SUnsnyo0kfwMkAGmMAmlj6lbDKc2Uw+WkEoilUccayA1HFFBENLxHlhn2WjEYY5zzfNYwiClO9i6iwYUTUmn9xD9ZkzJyuPq9joLCby4y3h6B5IuxFWUgDAO0EWKWPpIQmIVkzFGyOlbUUrQb6eZyPQTqJCTjWNoIlH0RIV47YDQS9OOTC7Ua6j1apGhFVjurTKVq7DmtzE1nVgqLN2gGfbWB9oQDciaNmkjKRXbmk4nSiozQRziahlSpo4mdKSKyJp9DDlTeFHMQrtFy4/Y3zfG9aNTzLRrZC2bQ9UZMkaakj1KqCRZ0yWUARpJArfYatL0LDYXdjHfrTHk5tmQL/Oa3dvZUCrh6CYg2JqbJAoVw7k8Ld9H1zWkkix5NX5g07XszI9wdG2JgdQA9vrTaDcOyJoOK36TWzdMEUlJJ/J5evUCKPjpHXfy6uG92JrNl+ePUcq4nGmu0g4DrilfzR3DNxETYuo6TsogkDEDqQxF1+Vs6xKfnfkKptDYnB1jMjNMM2xT81vYus4VG0bphgEXGzVGC3l2Dw/SkD1c3eW2gWvod8qU7NQ6M8ZDqhBD1+nEXRb8BVphyFfmT5I1HSpOhvduvwGUYDiTpRP7HF6b5dr+zXzl0lleWF0CBCndJmNanGnNUvOTildGT5O1baRSLPVqXGgv896tt7AzP4wuBM+sXEqqZ9Kj7Djs7h/iXH2Nm4amGE5l8YKIlu+z0G7RDUNylk3KNNk3NERfOkUn8njn1ssZSmdJWxYC+OypYziGzife9N3cMTnF1oE+VttdyukUK80OH/vaIc4urPJdO3aSsiz2Fyd4++QVWLrBifoi984d58GF08x1G3j/nfKvoSWaK32ZNNdvmcQ2DAbzWUAwW21gajq3D+9kIl3G1U3ypsv9c2do+B7bC4mhoxSw4nVQGtywb4qxsTyPzJ3BEBo3jE0yWcziq4CTa6sEMua2sU1837bLWO52aIcBTy/Mce3YOAdGh+hFPjvyo+RMhwE3y4X2Gluyo4ykygQyXgfLa6wGF8mmq3Rjn/OtJQ5WNnG8fZRYRawGa1zWN8SQW2Shu4YmNAIZ4ZpJkgMKJWAtXCVjmTy7MouugVSKnh9RTLkstdvMt5q0g4BW4CM0eGptms9NH+by/hF0oVG2xmkGTSzNTQgHKqDmL6ELMIWe6MIIQcqwONesYunJGBERc759KcGCaU4imrc+dltaDoHCXL/OQErW/A6xUoQqomBl6cUJ5bkRrRErRd7awYb8O2gFc+vkApdQZpIxRvo4ekJy0DSNSLWIVA9NLxDKDq3gHAJBJFvrWL4GSoX04jnC/x3o0OofYfkW46d/+qf58Ic/zJ//+Z9z4sQJ3vOe99DpdHjXu94FwDvf+U7e//73v7j9e97zHqrVKj/5kz/J6dOn+cIXvsCv/dqvcdddd72s45XLZT73uc/9g/Wf+9znXrGEyivCuNTrdc6ePQvApk2bKBQKr+jg39mh0IQBIkcsayAsYukx7G7E1Bwi6WFrozSW61i5NAV3B1F8iZR1NdAFBgnCHgUjQ6QCckYOUzMoWXlkPEfO3gH0MHQdQRpDOITxMpZmkzNyKNWh5z9PyhgHIVEiRBPauuqqjqXl6fhdhKkRqTq2yOHHXYp2iVj5CFIEnsB0TFJ5lyWvh7E+sWsihVJdyo6LFwdkdRcv9ilYKQyhkzMd9leGkcQs+av02VkG3R10Y5+Sk2auu8hgqp922EPKmEAqhFAEcRuBD0oiREKB1BBcM7KBWEm8OEYIwaMLFzhYmUAIga2nCeM2PjFCpFBS0fFDpgbyGKLDhdYaw26ZBy+d52vTl/jxa6+mmHK5oX8vKS1Dvekx2l8iCiXznRpeHDGYKhBIn+XI53xzhasHB4iVYme5nx3lCoEM6LezGDr4cdL731caQyrBw3MXmMj2s2vjGEoleiQJzVhgOXC+fphUJoetZdneV+H5xQXe1r8TT/ocqh1nrltnZ26S6/sPoAud56on6aoOaZXl+i0byGUdco7DsbkldE1DRxDEMVOZDfzriTetWwNEREpRD1Yp22Mshx3aYYe2v8rXls7ytsnLuLp/Ayio9jzGsgXOd1b4/s0HaYcBz68u0PEDRjI5MqYFSpA3sjQCn4LtoqTGfLvFaC7HfYsXeGrtDPtKE2wfG8bRDQxd48H509w6spko0lhot7jQrLG11Ec76lL3PZbbHW7dOMXZ+hqbS1t452WXsdLtEIQxJTvNQCrLD+28ApSiHfjsGxhm3+AgTc9npd17kaqcsSx6fsjBTWMcmBylHnp8/Nhh3rB5C8VUir+5dJhn12ZQKmGnPLk6zetGd3Hz0BYypo1rmrR8n4LrEEYxXhhT63SZzJY5O1elmDPZUxghbbj4MuKm4Y30uRn8UDKe6mOp1yaSMZtyJZa7bSpmmhP1Jf700Nc4OLCRjYUSz9dOUzaL/NcXnuC64SlGMwUuNmtcqNUYSGcIZcx/vP5GTrdmWPUaDKX6COKI7bkMRdtFIbm2bzcKhSkcOrLDU9X7uKxww7pflM1Md5aHlx/n5sp1nGxc5IrSbjZmBznWTCxQpIrImRarQRtTGIQy4LHVp7i6dAMLnTYxkjCSWIaWWBCsrBKImB2VCn4U0458Gn6PH9p6NRnLIFYKTTMTliEhnuygYWLpaZ6q3sdVxdfR8kMKlouhabywvMiV/SPoAjpRwNO1F9iaTX7XKd3lYvc0FXuQ0fRluEaeUHYwKBFLWPXajLpFWmEXQ4swNJtIBTSDNXKpSWIZYWolHFMgMDH0HHGY2Bu4eopquMKwW1nH0CmEMFnonmIiPYGjl+lFF8mam7CNCrH0aQVn0ISNrrn/fNPHy4xE0vTbEKB7BZ99+9vfzsrKCv/xP/5HFhcX2bdvH1/60pdeBOxeunQJTfv7msbY2Bj33nsvP/VTP8WePXsYGRnhJ3/yJ/nZn/3Zl3W8D3zgA/zwD/8wDz300IvkmieffJIvfelLfPjDH/6Wzx++xcTl4sWL3HXXXdx7772o9eaaEII777yT3//932fDhg2v6CS+I0NJFBZCBQihI5XkYvsRNmRuQBcJs0fT4Mzz5xnaUGRk2wb8YAHb2k7H+womFXrdDkOlCt2ogaaZxLGJqSkMLYUMnkE3L2MlaJAzcklSQkhKL6ILgSCDlCki2UPXsii5SiQbmNpoIrNNkhzEqoOhlRACTGGR0nXE+r9uw6dRbZHqc4hkTBTH9GSPlAZCmORMi7PNNfaWxznbmsaPQ0r2BGnTIJAejp5iqVdlQ8pmPDXAAwsn2ZTTGHTLhLHPiFvhZHOeop4ikgEC8KIVlBijFbbZXRkkZVkstBukLZMN2SJBHDPgZkkZDto6BduXISk9R09FCZ4oX8DWa3SigKncAAuNNr/95EPcODGFpzyOVJe5ZeAg3aiHrAq6XkAuZXOs2eK+xRP83J47OVS7wKnmHK8ZvZJQhcx1G2wv95GxTA7VznBVeQe92KcV+qQMi72lce65dIIvXjqFrRtMZkvcMrwJJFzZP0asYqY7h1j059nlWEyv1HjVximOrSxjiMSIUqDxn/b9TKJzEbeRxGzN34KjZel50JdN041DdhQGuPf8aTQh6B/McqG1RE912JofI2uAkhGGMOnGXZyoRcUpMNOdoWQ7bCuUWfGaDKaKNIIuedvBjyP67Ax9doalbodN2TLXb9vAQCpL2jBxDROhB4yvVVCERISYmknWtAhVyIXOEofrF9mTn2RXfoxt+UF+59gD3DGyg4vtGsdXl3nthm2cbS8mqrK6Q18qxcZykb849jzTzRrbyv18/PghJgtFbpgc47+c+CI7CyOMpQ+Qdxz2OA4vLC2xtdjH/EqDyaESacui1Q1IGQbvf/3NtIOAB6fPc8fGKTKuxuHaLI8snWHN79AOPXRNo8/O8oXZo+woDJIxK6x1upxaTnyCmh0Pw9DZPNTH8dUVJgoFghDclMmxxgJnGyu8Y8t+On7EX584ylu376RkpXF0g5F0ntV2l8MLCyzrTV41vpW84yKEJG+nWGmF/Kvt+wmUTygFnSAgihKNki2lMhnb4PDiOSbTg0xm+nF0k1pQw9IdFnprNMIOYRxxff9uvLDD9uxVDNu7UOiMpAp8ZuYxRp0KGoJt2Y3cN32WjGlxzeg4hqbjxT46JgNOkUa4hBAmlxV2kzJsrhucJIhDTN3GNiyma3VqvR6ptEnatLA0nXrP46rKBrK2xVKvTtF2sHWdvFFe9x/zcfUc5+uP8tDyZ9meu4pq12ayVKDu+7xm41YUSSIfq5gxZ5CUnqIVtnAMk3ZY51j9KW4ffCuGMJAiRhcmXtylHfmU3RSh59MM6gy5FSIVM+AME6kuQVwna46RMookquEp0noiqJc3U1gihyESKQAhTAIVkDPLGFqakcwbGE7fjGuUEOu8okjFBNLH1r49QdR/yfHe976X9773vd/wvYceeugfrDt48CBPPPHEKzrWD/zAD7B9+3Z+93d/l8985jNAgpF59NFHX0xkvtV42a2imZkZrr76ao4cOcIHP/hBPv3pT/PpT3+aX/7lX+bw4cMcPHiQ2dnZV3QS34mhECB1pPQRwiAmImWUCKVPO5wnlFXieImwJzn93MnEZExP6NlSecRRC1O30ZA0ghlszUWJpAWlwlMoUaIrKpxpn1pXGxVYeh8WLYSwCHoG6dRuhKqt77PNSvNjCKGQMkKSKOMamoWpJe7OmlAs9s7gGhkC2UBKxeL5ZfzYR2gRtqEn7TihoyuJa2SYyFQA6MZd5rwFQhkSqpDn60cJVMiB0jZ6ssNcb5lYSQ5XLwExFzon6cYtDG19oIibGJqDrRdRSvDgwpNUUi6gEtBjMwFbtoKA7998JWU7ebpDKUzNJlQ+vqiScSwyKZsobtCNFAXL5mK1QShjfvTyqzE0jd89dj9fW5hl2B0il07xxNFLWMJgU67CxUaVhW6D8+0lFnp1iraLoelEUmemuwJCsiE9gBAKP5Is9JZJ6Rq2brLU6RDImKVei2sqE3TWQmxNJ1KSetDi+bXjbMlchhAG9x45xcW5FW7dNJWYNGLwtok7MLWIh5f/hj88+0v8l1P/nrunf5+GXyOMYmKl+MwLx9lRGOCHd19BfyqDRgJw/MSFe/nq8rNoOFh6Gl1AxeknbaSwNQdfRriG4Lsnr0RoGs+tnU9wPcT04oCUYWEKg9F0njdP7aQv5eKpHsdblzjSuICrO3zv5B1sSA8z7y1STruYmsGgm2CdlFIYmuDo6hIZzeEDl72Omt/j0bmLDGUy5GyLNb/BaKqEpgkcR+dvp49y28Yp9vUP8cLKIgudNpcPDXOkdolO3KMWtABF1rLx45h+N4WrmZxdWAMgiiSDuQxRFGNbBtVejzhWlNM2UgqO1RY421xmqdekF4d0o4CFXp2L7TVO1Bdp+z6PnLvIaCFPx09wGJomsAyDQ0sLfPncWUpOCj+OeW51ho+efZK0bnFqdYWSm7hHj6RyuJqFY5jEoeT56XnGM0VeO7WTSEWsBS3yZppuFHDdyCSHG+dZ8moMpjMMZbPMthpcP76BSEZcW9mJEgZ/dvZhWlGHVtSlFweEMuYLc0+xLTdGKH0szaXP2srCUhuvE5I1XSpumpFUBSM2UJHB35w/wqn6MmUrT81fxdVtvEgiiDjdeh5Xc+izB/n42aexDY1AJsrDQiSGqM/NLLB3YAjPj5hbbZA1bbYVBzjVnOdYYw5Ht9FJTFNBoxu1AcF87yICuG/p4xRdK1EjjmJsXUeKmE7kYWkmN/VfQaQCbMPGi2P6nTGONZ+iF7eIZB1LywGSY9UlDpTHCWRE3kox4A4ghI6jZzA1C1QIBEjVRUOgCYNIdkkbWSxhoqPRDBIKdCQVOjYo6LMH6AYXqLj7cIXHcv1DXFz5Ieaq/54oeII+ZzuWXvxfOme8ovhnaBX9c8RVV13Fxz/+cZ577jmee+45Pv7xj7/ipAW+hcTll37pl9i6dStnzpzh/e9/P29605t405vexM/93M9x+vRptmzZ8g154//7hiIKJUr2SLg+JmV7K6FalxGP5ojiJcZ3DLDzuisAQasWAQLb3Izp6Oi6jZAaJWsUXSTGekJ5KCTSPIAf+wzY/fTCFkrFgE8oWwhihK5hiBymVlq3ADAYyv8QkeygaQaoCMMwsbQsCrn+ww6AGKl61P2jmLaFUoowDohUl4qbIW2k8WOJoZfw44C0aRHKiCGnn63ZTSz7DYI4ZMlfJVYhgQp4dPU5NGBzboBOFNAIG+hCY657jryZxtZsYhWjYeLoJUwtRBc6s70lEJKC7XKytoQuBCXbJW2YtMMaAtbN2kx6cYuzva+RTRnESmLqKWpBj4XOEgXL5T9cdxuWZtD1YvJamuPVBXpRouo6OpDn1KUl+u0c373xsvXytcNrRy4nZVjYmk3RtomkTyBjhtw+GkGHuXYDXTPR9QSgFsiIlGHyC5ffyrhexI40TEPnQrNKPegx4o6xKbWHM41lrtk+zubhCp0oYM3rogmdWPl8deXv+OrqPXTjJgpFT/ZYaTe4/+QJqt0eR5eWuf/0OS4vj/HBg7fz5qmdTGYH2F4YRRca9aCNQuLFbfqsCpbmMNetMpYaI2daDLh5IhnTlSGObnCodpE+J5MwRdaTD9fUOd+Z5zePf47fOXEPv3X8C/zkU3+BjsMbh29he24KL46pBz02ZvrZXRzjyr4pKnaek9VV2kHAC7UFLraqTOaKFFMGpxsz7CtPEKgIQxccrc9z/8IpHpo/Qy+OuNio8X0791JJpzjRWOTWwd3cNLCTQEXomiBtmPjrSsVz1Tq9IKLl+bR6HrlUwijzwohrxsZZ9ZsYmk43CpjKVnjP1hv4tf1v4oOXvZ63b7icjGFRtFNUuz0Gcxl0TWOl08E0dGzDQCiYyBX4y8OHWOl2aIaJQvN1AxtfNJjc0d/Hn5x6nOdW5/DiEB2BYxjkUzZbygOMZIogFHW/RzeK2FrsRxJzpHaeWAUEKkLT4Ux1laFMloxlo2sGf3Dqy+wvTxLIEFuzsTQdpSRvHruGrOlwsnUcU2RwVJqV1TY9LyJrpBhPD2FoGl6jS8sPWajWuGZwA5KY2d4chqYTK0moQnJmGVu36IYhDyyc4quL51joNunGIffNn2Lf8BBv3LWVzaUyad3kww89iYiSWe5Ma577Fo+uA1kVkhiBhqtnEGjkjDI5s49aUMW1Y1baHcIopheF9OIAhSKtpzA0g+46EeBo4wIZo8z1ldfjxV2E0IlkHYgp2A6BlDQDD0czMYRBJ1qjF1UTbIpq4+hFetECoAMBhmahUSdnukDITKeKrRu0og5KWImvET6xrNHzn6TTuwdXz1Cw95I1xwnDo7S6f4v8vxiXf7HxshOXL33pS/zqr/4qjuP8g/dc1+WDH/wg99xzzz/qyf1zhkBD0xWIDKgmpkiShEjGuHoJQ7joYoh8xac8lEconbX5FkpF6FoZFadZnV3FFFks3aLmvYChWYAi0HcmTquawVqwQKRCFBFC2UTKBuWjawG96kMokSaUXQy9gqn1o5RECB1NWCBCEBINga4lAL682YdSAXXveTQN0jkXR7gozUMpSS9u0QwT/6Za0MCPI7pRj4KVw9Ic7l86wqVuFVs4lKwclzoLmMImb+bod7LcPLgVR7foyh4pI4eBiSTG0DPEyidWClMTXNk/SSNoo0Qy6N04tIVD1cTobiVo0lnHlkTSw9AScG/WqBCJRPFRksEQJl9dfJYtlTwHRyZ4/NIMtbbPB698E2/bfDlpw0bTNB45fYF2EKJCeN3IbrYXhnjV4C5MLHwVE8oQXetyzeB2OpGPFwc8XT2JZWhEgYmlOyjguqFJfnz3NWzJ9NHu+Fy7cxIFnG2sUfdCrq7sxYubfOX8o1y5aYJMxiWWMTU/MeNshGscbTyFJrQX23U5s4CMNTb192MZOs2ux1OXZvmDR5/k/pPnefrCPLV2yL7cDnJmGtcwYb0G14vbRCriSP08T66eZsgdpOZ3MYTGpkwFlCRlWMz3qgn42LIIpaQddzhcu8g7Jq/l1y9/G7+6/23866lrOV6fRaHh6gm9eNVrs+q1+Zltb+C9W28hZWqMZ3OkbINDq3NMZAscGBxhwV8iIgSl8cenv4ptGpyqLyM02N8/QjvwuW50A8fXljlfr7K3ME7FyfP7Jx/m5577HJqWGBe6poXQBAOlHI2uh6MbfPHZk1TyGQxdI4pjso5FHCed/9eO7eK9228ib7k8vHiaJ1YusCnXz/t2vopNuQS7MZTPcmRxET+OkEAnDOiEAYPpLO8+cIDxQp6a32VXcYjvmtiLVIpN5RL3zBxnpl1jc6GMp3xCKRnKZ7l++0buP3UO1zCxNZMX6nM8vnye8UwJgSBlOHgy4HR9hS/OnuD1W7ZScVPoQud4fZ4Bp8BEuo9YKmzdIqXbjKYrDLtlunGXw/UXUMrA1iwq5Rx/99hRVmotNqQmqNhlur0eltR57/5b2Nk3gB97TKQnaIZNKm4GlGDQnUTKmBhFwUpxsr6IIXQaQY+s6TBSyHL52ChLzTaRlDjC4Nx8FU1oiRCcadOKWijA0VzaUYusWUZDsDGzk6JVQeER4xPEMQvNJq5hEStJJ+wl1GelUEIhlcLWLLxYclnxJvLWEIZWZLX3OFG8xu7SEPPtJq5p0o2SBLIX16j60ygEmkoSKEPLIVWQMJqAmvcsSsmEhfUiDVdhCJFYrgidtLWBnn+IKJAQG+gqhZA2KtTo+c8TyZX/pXPG/43/dfGyE5fV1dX/KYZl48aNr0gB7zs1hNBRoosQFlLWCaJpDM3Ai7uYWgY9GqWxohH6VUzTAWHiuC6gEYUnEJrBmecv0mrU6cVVdM1GqgCh5QmUnlRNUASxR8bMA4mWkKanAAEqxLAHiJF48RpR3ETSQxcWQikEFrGKkkQGha3puLqDodkgdEJZp+clTxxCQcUZWH+KbRHIJgqJqZksey0kkkhG+HHE06vneG7tAncOXUesFNWgwcG+3eiaRi1oMOjmcfREXyZnlmgHAUveMu2wiyQiWDeiTGuLTGTy6BgstJoMpfI8sniOk40lamEbRQpFhFQ9lFRkjCJD7gSz3acIVEg71Ki4fWhCRzPChGkTRWzvr7DiN/DimIuNKhExV0yNEciYtXYHXRN0o4BYwVSunyAKWfVbSBUSx5KM4RCqiEbYYSLTx8Z8hUAm4MWd5X4O1c8hBIz3F+lESfthZ3GAHcVB/OgSSrX5sQPfRacboqRcB/BKhFB04za+7K2XvLV1ZprGSG4ITen4fsTloyNYhkEkJYcXFnlqdpZPPPcCk6lxrizvJq0b614vRTpR4rXS5+TYU5xiurvMueYiRStRD17xm6TNxE03a5rrDBtBO+rxhrH9dGWb/3bpET45/SAlO8W2wjAPLh3m+dqZpJrg+aR0G0MLOdL4Gr2ozbZyBT+OuGpgnK+tnCVn24QyYEt2glONZc631pjv1RnLFlAocmZCefbjiI8efZ75ZofL+sb50txxzjSXuWN4J83AQ1OCUjrFWrfL5tEKUips02DXhiGeujiDYxhsrfQl4EtlIJVi0M3xwMIpfuPol/ji/FE+d+kwHzz0BU41Eon7vOvgy5hat0clm6aUdpiu1tEQFB2HH9p/AEmMpQs25/oZSGXRBNiGznK3ze9e9yaEFtOOOolLt2lwpr6GYxrrIHgNheC24W00oioi1rmqbytrfov5Xp3BVJaRTIHH52ao+wH1oMd1/Vup+l367Dy6SATz8maaZtihGwdsSG3ANUxMQ2N+pcE9T5xgoV7l4uoMW9PbKGTzDJgulw0OY+sWuqaTNtLroFSJqVmk9Cy6puPoOgf6Rnl8+RyrXoexdJGxTIFemHgd3Xv8DKGU3LRrI/s3j1Dt9LiyvJnXDl+GJKQbt9ZB811a4RqWbjGe3siAPUAse0hpUHAdHr5wEUvTcTSbduwTE+PLAEdL0QybbM4Oc6p9gkdXHietJy7PgWxzePlnsXWNVuhjaybRemXYj5tUg2mABEArdCw9D0hAIFGYeomqX0cXFhuzfdiaScnMJa7gqo0hXDQsomANJev4vfN0W8fwuueQcR0V+cj/DbyK/m+8snjZicvQ0BDHjx//pu8fPXr0mwrY/O8YiVyxABEgcDH0CpHskDXyaMKitRry6d/9PEvTJlKaRGFEZSyRz47jWXRdZ3iyn3TRwdBSZM0pWuESEnC0NKYwUChG3AkUMZowiWUTXRjESgcsDHcDGgpHTxPFCb1VCA2Ewo8X0YSBQsOXHicajyJVl4yRRmCSd3bRtZ8hVjHV5homSR/fNRyieBkNjbTholSErdms+U00IejGPs9UL1C2i6z5HSzNYUt2gnbUw9J1GmEbUzMZdsdw9DQlJ4Ot29SCS3SjBimziFIhpq5R9x9EINlTGcaPI840V+h3sww6BSq2TRhXUSpEiQQbv+qdphnNr6uk6iDgjrHrWfCaoODGyUk6ccAjc2eJQnhscRqpFBN9BRrtLvmsw/n2MrWgg1AkIFkVkdJdpEoSlpyVQii4beBK/Cii6Nh0Qh9L07nUWeFofZqc6SbuyytVqt0uI5k8lh5S949ScnNkDZcnz1wilgoZg8G6+aWexxIpQpmoA8dKMuJMoSmDs4trpE2TV2/dTJ/rcub/Ze+/oyzLzvpu/LP3PunmUDlXd3Xu6ck5aPIojMIogZCwZPySLGOCwYRXXoDhXWCMbV7xw0hGgATCIATKSCNpNCONJueemc65u7py3ZxO3Pv3x6l3/Hrx2hZj2UjAd627VnXV7X1PnXvr7Oc8zzesbnBus0E/iJivVMjbGQoqm9ramwApFAZFK2qwvzhPVrk8tXmU2fwQjrJpR31acY+XGud4qnaUTpx2Z1zLYjZf5csrz/CHpx/ghfppHGGhMXzo5Bd4eP0lnm+cwpKCnG2zszjGqn+Ol5rPUgvqCEyqRBKGkUw6hrmiuhOQXOg2yKsMT2+cY1dphJl8mT3lUYqux9HaBj959Y3cMbeNxBhOdza5b+ZyJjJlPnT4MZSVEpjbfsCJ+gbzoyVGijlGynk+/fwRbKUwAuJEs9rrU3ZzHG+vcrKzxp7iGNPZMrP5KrvKYzy6dpJG0CPv2IRJwvXzsxyprdOPYoayWQqeS6M/YL3bpRMNyFiKrG2jhKAbB+Rsh3919V24dprno4RDI0jVUlGS8Ma9eznfTUeZt4/vAeHjSIflZpv57Di7i1PsKA7x/TuvouX7/MWxlzmyvk7ZzuFIGykkSigg4fnGIWKdxiwkxnDr6GvQ9IgTzanFTYIwJWL7cpOc7WEKEZVqgeFsHiUUQdIF2DKdi3ClhyMd/GQAhNw6ucBNYwt89MRj2NIi1gZri4z74vIK0hbcfekuTjZqfPnkCSYyFXYWywiT0I42MWiKdhFbSAZxi/X+i1xavo53zPwkmAzKEty+sJ2nzi/iCJsRr4hAAGl2WyceMEj6rPnL7CnOAZpIb+KqIbLOAsb02V0ZpRtEOMIGDFlrGBsXicKS6fXKkvm0iwxIXISYo5ckICwKlgsCLCEQRhNE5zBGgHFQMo/fPUPkb5JEXSK/xqB3GmNipPhusPwX34bH3z98y4XLfffdx8/8zM+wsfHX22/r6+v83M/9HPfdd9+389j+VmFMjG0VEXQwMo+SHs3gDEVnOLVJX9zg5MEH+eQHfwcpYdAdpCqfRGLbe4ijmNn900hlIVAgrK1uiQZhGCRtBIqiXUERY0yQdh9MQM1/Gm1sEp1HoHFkHktmkeRQwkWbAIFCGo0wEBqfc/3D+EmTzcGTaJNQdi/BciTTl2TI5/Msds9gSZCkBD4dWUQ6purmaEU9Ah2TtRx2FSa5YXgXIFgZ1Nlb3EZWZZAIPOWwEXToRi0sbDABrgVjbpko2SBvjSCFRT+6yCA4y7Czm5zt4CrFIInYnh9iyM0y7Bbx5IA4WcIAgQ5oRTXW/JMM2TvJKIe1YIX/ePKjlByHG0f34ioLx1LUg7T9fbbV4LGL56hkMzzw0kmu3D7DQARbXjMWJSdLPwrJWy6ecki0jSNt/C3nX0e4CAntqMtyr4EtJSfaK5zv1QmTBD+JeejEacJYo43BsywC7RPrPH4U8/DhMyxttBECoiiVehftCjcM38Vcbp49hb0cKF3Bruy11Lo9to8O8fDxszx69Czfd+ml/Mrr7uKf3nAd//Taa3n9rl0MZ7M0gwCJlSrajMaSHs/UX6RoZ2lHA+pBB0fabPgdYqNZGWzwttnr2ZaboGjnCHVC3nJpR30e3ziCEhIlJNeP7OF4Z5EXm2cYJAEX+5ssB2tM50pYUnO6e5RA92jHG1zs1vCURSvqcUVlhnrQZdipsDZoc0klDQrsRxHb8kP8q8tfhyMtlJTsqQ4zlsvTCHyawYDLKzO8e/u1vFRf5uXmMs/WzuNaFjnHYd/4GIfW01HTII5442W7SbRmqdVmpdlhvlBGG8Op9gbaGDSGgu2RtxwSnaAx1IMekdZUPe8VUvF6p8NYIU8vjHhmcYl+FGFJi1bYoxf7CCHoxQPKbppfVQ9qGAOedGmHAYnWXD8zCxgaYZ/z3QZDbpZQh/ixRitNEsFsbpTbJndhS8XpRo0XNlY41axzSXmGfhQzninRCHsE2mfVX2N5sIItJePuEIkZ0AguYoxGKsGPv+NWdk1PcsP4bdjKZsk/Syw0Bs2qXyPUEf24g6tcbGVhCYUhDSY90X2Zsmvx3l1X81MH7iTY+uzHiabt+1w5O5ma1sUxTyxeoJrLsNRtUAuOYRhQsoexhYUjbISw6MZ1Ht34A16s/wVla4ZEw+HNdcaLefaNjaIEeMrBkTYZlaETt5nMjLLiL7O3sBNXLAMR7eA5MlaVqcIbaQQnKDoOj108zyA0SBRFa5LtxWtJdAcpXBxZQscJaWaHAEIyVpV+otOIAKEJkjAlEguBkjnAgLbw7KtIt7EYiIAYoyM8+3KkKP0t7R5/A/wDx+VV4VsuXH7pl34J3/dZWFjg/e9/P7/927/NBz/4QX70R3+UHTt2MBgM+MVf/MX/lcf6vxXGBBidoMOLCJOmxmatYdC9lKxrhRjj02u2MQZ0nH6GBt0AS82htcZyFRpNN7pIon2yqpyOcUyXSPuESYyjPKSw0SYC7SG1h6sK9PsNGqsR4CCwsOUMGJXyWoxOOzRxE7+zgkQx6m7DlgU2/HOcaT9IbEI8a4xMycNYhpO9w2kKtB5QsSdpbXbAGALdYzNo8ifnv4olBG+avobrhnbSiwLmcsOU7CxgcKRNYmL8JKAVNcjbOdaDE7SjRQp2ntncpTgyh8AiYw2z2v8qoalhSGfizaDPPdN7saSkEfQRRGB6OKpKPx4wSPw01C0uEeqAc93z3DN+G4aQpf4GsUjohikvxpYST9ncOr1Au+9zxbYpslmb5V6DspNlxCugpOBkq4YtLTQhFTc1JevGW21ro+nEPc71lsnaNq6yyNku45kivThACsH5RjMN3osCBrEmby8Qb+Wl2Erx23/1aGrZnxheXlnDU3luHH4t1w/dhadcPGlD4mAMWJbi60fPsNzo4AcRV09P8eb9u9k9PkQvDIjihE4Ywpbrsa+bWMLhfH+J5xvP40qL7YVxELAZdOlGEXeNXUUUJ9w+dgkZlWHFb7DqN1kZ1Ki6eZQUSCkYz5Q501nBloogidBG8+D683i2IjYRvg4IdMix7ou4VkIQR8xnh9AmoeZ3iEx6Fz+eLfL+Pbfw7oVr8JM0okJu3QlnHYc/O/YitaCHAd48cwmtqM+jKycZz+ZoxQOKWS+VxVfLgODsZoNS1uPq2SkGUcxap8t8pcxsuUgtaNCNu3gq9RVylcJRaRxBxnLI2y71fh9HKdqRTzcKGMrl2Oh0qQ/6PLF4gTObDTxpM5cfBZPGnk5lqxigE3cxCPpJhC0UrrAoOi5FxyE0MbO5MqOZLMmWU2s96GKshKVolQdXniXRmkDHRGh+/vpb2Tc8hkkUl1fmcKRCG0NiDL0ttc6QW0xdqeMaBXsYYQ+47aodXHvZHFqGONIh1AETmVlio+nGAf04IKtyrPoXiZJkSwUUEuo2AsmR1kssD07hqpBt+XQ0FSfp50gguHvPjtTfRidEOkmLurjHy7WXOLjxEDlVIDY+trQZJD7aGCa8Xdwx/pN0Q8E3z5zFkYpvLJ2mnPNohAOeXD9FLWgQ6IBB4uMpB0+6bM9N0Bg8iyEmTlpYIkPBXmCp9yCCHnnHJYgTQhPhSIsouUiQrODHK0BIFMRporMQJDo9Z4nRhIlPkrpppl1wI7HUEAiF1k1MmGN87BfIZq9FqSqus8Dw0A+SdV6TXpT/Ad8RePbZZ/nZn/1Z3vWud/G2t73tv3q8GnzLhUulUuGpp57iPe95D5/4xCf4yZ/8SX7qp36KT37yk7z73e/mySefpFqtvqqD+E6EwMUQk2iH2G8Ahpw9TmI6GBMwPJVnYtseLLkNECjbwnFsVs+s01i3sR2FVIZIx3Ti5S0/lrQAirVPRpU52DxII0xlxELYEJewrAwZa4LYbPLMg09tOZ0YQt/G0Ce1xI3RpotAsn7+z8moHNvzV9CM+iyUXkvNf5lB3CbSAa3wGJHuM5fbRYxGCAfXGiKOYpZfXqfhN7YuPjbP1I6yqzDBzuIk9cGArGVTC1rorY0rMQnDbp6sVcKSkiDpkreqGCPIbEkPoyDBU1V2VH4QKYdZH5zYMr0TzOeHSIwh0DFCOGTtHWiTEOk+7WjAXO5SwgSkUExnp5jNjbLhdzjavMDh2jKRTrCxGc4UuHFyntfP7yZJDL6JqfX7DHvFLVddUEgWu02+dPYojnAo2h6NoE/e8gh1RGxiGkEPMEzny1zo1tmWG6XiZlkKN8g5DlfOTLHZ69OKAmpBD9eaAyARCTfsnuOl88v82l88xO6hYaqZHImO6CcblKwM1w/dw7VD9+AqFyUEtiV57YGdvPGqPeycGmagfB6pH+NLG89zMlokED5KaMIkQQpBJ1zEVTbzuSmerr9AwXa4qrILgcCRFgv5Mephj42gzabfxVGSlX4DKRSecpjMVpnJDTHs5jEYKk4eV9mvWOUPOSVsqehETeZzO4hNzJH2yyxGL+NYFqOZEgkR3WiApxT1oMeZ9ga7i+P81fljPL12HoOhHfnERnOsvkEQx4RJgkJQj1rUwy7vXLiSdy9cS6INm36Pvg4xxjCczfKVwycpui69ICSIYnYMVSllPTpxh7P9C+wtTXC6e5HlwTqduEMv7tKIGjhSUnVzgGDT79OJAjpxgNaGlu8ziGKCOOFjzz9PL4gYdYtklL3VgVIkJuZU9wLTmUksYbERNhnLFZAmlVIvd2uMZvLYMg3Ak0IRm5iC61IP21w3vBcEdKKAfUOjOErxfz78VX7o/s/S7MZkpEPFyWILl5ztgkg7DaEJ8FQRSOjFS4xUcwwVMoQmItQDMipHxiqklgQ6ZjRTxVUeWZXjSHsJISSRHtCPTlGyS8zn5/na2l/y6Yu/x4p/Cltt8aoE2EoylMthS0WsNddMzRAnGozEVVkWe8vEJkQKCynSgrZgj3Dr+E+Qtaqsd7us9zrsrA7xmpl5bKFoRwNerC9SC9oMkj7nuifRJmIiM4kShm50nlZwjqJ3A0XnAIkJGMSbtIM19gwNM5rPkuiIUDcYhIvknHn8eDm9nmlBM3yZIGkjRIlQhxTsDKv+YurAayKUcAAfJXLpzaOE+vKf4Td9qsX3Mzn2Hxgd+gAq3k2v9g0Q3/lZRX8fOi6f+MQnuPHGGzl69Cif+cxniKKIw4cP89BDD1Eqvbqu2N/I8r9SqfChD32IWq32SiBirVbjwx/+8N+pogVASAudBMRRBaWyWzLlNF8jSVYpDnvc/X0/gJJT9Ns+Rqdm+ieePc0v3febrC/WUcrGkjYlex5bZol1QJw0yKgKsYk53TvFQ+sPbmWDSGzHwuATRS+RLzrsuWonGE08kCSJJokjBA4piS0BUWJ2749idA9XZjEIKs4e9le/n260Toyg7O7HUzk8Ncpqv4enyiS6Rb6UxcFi2BpmzK3yvXO3sS0/TGJ8PCXJ2DZ+4jPslkhIaIV9siqDLQVDzghGx0xk9mOJPFIIDKkySiqFFB7D3lUYkcOx0lyTqVwRgyGIY7bnhzDkMCYCAjT+Vq7MNDk7hxKKhfw2Ej3gaGuFzbDJpt+lFfbxg5h7Zy+hYLus93pkMw5PLF7gfKPBqFcgjXozIGAyV+Rjx54hMQlKStqRjyMt2nEfJaDq5tien2bD7/BnZ58j1nDD8G6+uvISlgN371pg/8QorcCnHfqcbC2TsRX9JOaKHVP8+Btu4n13XM1m0GOuXCIybR5f/xhfW/2/ebb2Z7xQ/3P6nMWPIiZLReYmKpTyGXpiwG+8/CX+/aGv8qmzz1Nxs7zUeJFYdLFkmk3lJy20CTlQ2s1kZoLp7CglO09iIqpODldJXmycY0dh8pWictStcHhzjfncBDmVoeoUmc4Os+m3uKq6E086FKwsSkruGE0VNu2ow5g7znXVW8AIjncO0QxbW2F+bMll4UR7lelchePNDR5YPMGNY/NYUnL/4lGUkKz1u/hJTJwYPEvxbP0UBctmZ3GUz58/xN7yOP0o4rdfeBLLUmBgrd3FGAiimOVGmsZtS0Uj6PLp809QdTO8afpK2uGA5V6dRthBIbh3+lJytkvWtmgEffpxyI7KEK3ApzMIQRhes22ei80WUaRTdZ3loYQg0umodMxLr1eWhHO9VVxL0glDEq2xlCLUETk7wyCJUMIC0pTv8UwFjSHU6XkJkpgHzp6iF4X8zLU3sn3Y5uLgHI6yKNtFDpQu4Uz3/NY6DoHucLb9IEPeTBpRQYIlJP24Q1bl0SYh0APGvTKJiYi1YcSboBGkwbNSKBId4gjYX9zLmDdBZAZU3ZRfmHNs8q6DZ1t0/YCC7dENI3ZUq0gkUrhM5y7jlok3Y0l763fwGfLG0MgtWb/BkpKbF+Zohn2KVobEGAZJxFK/QWygEbYZ8kaJTUBO5RBCok3CidYfk7N3IEiQwmLI20szECQmRpsYJaz0GujsQJjUe8ogsB0HW5boR2toEkLtYwmwpELriLXBcsqtMQmatJMirSxDk5ezfu5DnDn4S1w4/B859/K/Y+3cb5IrV1DquyAd+u8Bx+XXfu3X+K3f+i2+8IUv4DgOH/zgBzl27Bjf8z3fw+zs7Kta81VlFQkhGB0dZWRkhK9//et88YtfpNFovKoD+E6GkIowyiOsLFHS3SpcckTROXQ0RL5c5G0/cS+D3oDDTxwHYxjbNsqpF87yI5f9S4J+hCCm4i6AkBgSEtPHkXli4yMRTHqTaQtUJ6BCMBE9/3E2W/+G6d1jYPpIIQl6AUZnMMZHyjzGJGhtESvNuv9MmpaqMhzvHOJg6zA9U6Wvs2yEbTyZoxsahpw82gwYxOsIoRneM4xredgq7eKMeCXO9l7kqdpXyds2trRxpMJPBkQ6xpMZLCFwpYUlbCzpoKSDFIIg2QBjkBJIAhQGVxZY9ddYGpwmo9LngWQjbDJIBiTkieMeOatEwXIo2yNM5aewhEIJhRSSXhxwuHmOqWKBo/VVZitFXGWx1u/wiSMv4topx2L3yMgrkk1pJEu9JpPZIr950xuRQjKIfEpOBikkK4NNCrZH1vIoWFnOdZt4wmImW+G1Ewd417YbWQo3mRuq0DMhJddlsTNACotnNp6i4nl4nsU7br4Mr2DzwIWTFFyHTrRBO1qj7EyQmIB+XCdjZylkMiAhMZpC1ubz51/gmc3z9KKQyUyFrBJ8de1raBJiHaB1n6nMlQigF2/y+vFbSUyHbjLgmfpxyk6GQEdUnTxSSDLKxpM2QitKThZXuNw7eR1Z5dGNAl6on6HqFPjH2+/hsvJ23jh5HSPOEP04wJE5jrePcEX5Gv7R/A9z5+gbUMLl4dVTSCzmckVCnZDd8k451drk1657PXLLs3+hOExiEnaUh+jGIU+sXCBnudSDHtrAocYK79x2OUanzUJlJEEck3cd/tH1VxDGCfVOHyUkjlIM4ghjLDb8Np9dfJibRrfzK1e8le9fuInv23YjH7j0zVw/so2Mcsg5LkXH41BtmWvGp8k4Np1BgCUk181N88nvfxeFnM2m38BWklCnRaFNmh227G9yqnuWXcVxOlFAbSvLaThTwE/SdOln62cJE41r2XjKRgnoxyF+HFFyPFZ6HS50m/yzK6/n5rlRIrpM5SZY82uEJiBIEl4zciMG8JOQKOkzktnNcv85DOk4yZEWjvQItc+av0jFSUnR53pLfHPjIDmVZ195ikhrpJDknR10k0260QleP34v3zf7o9giRysc4EiFkpKi69LxQ0pOGkAZRBGThSKT2RLz+d1sK+xFIhgkDbTRxDogq7L04xqxjhgt5FJeV6R5cWOFxCRb3UxDPegjUORVEW00QqSE2mrmCprBcTCph60tXCayt7LYgQfOHSHQfuqbJNOuchQvYaEBiZAJWWsy5fIJQaB7CGEYdidwlUvWyqQFi8iQ6E4aAUFMvnwH2y79HqrjRbxsg+q4xeyeN5Mt3AHC/lvbO/4B/wWnT5/m3nvvBdKQx16vhxCCn/qpn+L3fu/3XtWa33Lh0mw2ed/73seBAwf4oR/6IdrtNrfccgt33XUXb3rTm9i7dy8vvfTSqzqI71RI4WCphDjSZK1xIEDKAhnvFjYutvm/f+R3uf/3v0pjrbVVWBimdoxzw5uvxu/5vPjIQXrBEhKFJLXpd1UVg0YQMezkmMqMAYIwPoPEIkHjOZci9SaoYxjTxXIkQkqSMCKMN5DYWKpEIgYEcYeCvTc14QqW+cLyx/jq2p/z54sf5g/P/js+fPpX6cRNKo5HRtqEuoMUGRCCbtLFsSWb/jqj7hBnui9xtPUMo94CQkaU7Dy+HhDpNLOklwyIjaId1XBULuX2mAQA8YriSSBFnSBpoESW1cEygzhmsBWMl1GK4+2LxEaiI5ckbmLF61ScERzp4schkYm40F8hq4rsK02x2F2hEW9yxdgUnqNwpMViu8WXzx9ibdDm3VdehrEMdX9AyckS6oROFNCM+uQdB0OCb3zyloMlBFW3wCDxkSKhHrVwhcX/sftGVvwVfvfEJ3lg+VGGrCxr3Q5fO3uMITdVClXd7ewo7aMZt8haNoGOeWz5HNdNzKZF2Vb2UjdaZ8M/STfeRMRDHFleox+FjBRytMI+BxuLr9wnzeWHGSRttAZtHFqhjxAetnKIdRtPWnTiTTrRJoMk5ONnv0FsEhSwqziBEgJLKlzpkrEclvpNlnotMA6vHb+O101cz5XVPZStAreNHuBN01eyLVvlXLNOrA2hFmzP76Ue1CjZZRbyu+jFMR8++gibQUTFzWJLi1GviATumdnFuXaDlV6bvOUwlSvzRyefZaZQ5NrxaV7eXCPRhuuGtlNycjhSMZEt4ScJGctme6nCRq9H0XNxlaToOWQsm7mRMgJBK/Rp+jF3jF/BsdYFntp8mSHX5fVT+7hheI5RL0fBTr2k8q7DZK5INZOlFnSZLBSo5DKEYcJ0qcRUOc/p7ipFO08nHBDokEQblts9BolPpCMe2XieTtQEBEfqa1hK4kibWtBDG8OG3+H3Tn6Dop12HpWweGT9KJ6l0i6pUAySmDft2LnV60sYJAFVJ08tbHG8cw4hIKMsutEAR+U40bqfo63PAGCJlGfkyAyhDmmGawjS97EfBxxsHqEd9SjaHmfamwgErqqijeaJjY9wsP5RMjIh1jErvSaebZPotONYzWTYaPWoNbsMgpgkTvAsi6LjbXX0DJEeIKWiH7eRAiI9IDYBrpUGtXbCkOP1TTKWTcnOcvPYbr5w/hBRYjHkDqcjGySR6VN1r+Ty4Z/dGmdLBD45ewY/8bnYvYjB0A17OKq0Fcraou9/E0WCxSKWLJG1JhF6gCNdJAl5VUAgqdr/b/t+CaRGdzpZI1e8i8mFX2Bm908yNvezZAp3kabZuP9rN4hvA4z5n398p6NSqdDppNL0qakpDh06BKQ1Rb/ff1VrfsuFy8/8zM/wxBNP8K53vYuXX36Z173udSRJwhNPPMFTTz3F3r17+cAHPvCqDuI7FUJK8sVVbMtJ/QOQJCZCCJelk8vU1zpcOL7GI3/5JGPzI7Q2OxSHCrzr597KW3/iDRgNtklneKFuUPdPgHARxGSky97SPgpWFkxIFJ8HbAQ2Wfc6HPsAcbyGMH2kilBKMuh3sGSZvv8oUbSIETEWWSLjEZuIY+0X8HV/6wOdprWW7CEGusVYtkigQ2xZxJIZvJxNySttRRkUiYzPs/Wvs690PZbw0CZtYfuJz8nuUTxl0wo7RDpmzV8h1AOkEOkdsk5wpfuKhNyYiOPtVaIkZntuDyu9iFOtFXpRmEqypYMVZhi0Y7Q5T5Q8jzGGThhxplljEEdYQmAJwVQ2zzvmbmF7fprZ4hCOkrSjHjnLoeCksuW85/DoyjmONzcoWhnaYZ+87RLomBdqFwBDohWn2uus+k08mRrO9eIeNi5XDM0QmB4fPvFpntg8hKc8Wu2IlXaLXdVRzrTrTOfLhLFkseez1uvTjyO6UUgvipjI5wmSmLw1hCM8prIHuK38k7xx+P8iiT2+ePA49d4AI9IRg7fFNfEsC0sKLGkxnhlDa4tWoJDCItRdGuEp5nI7sWWqtnClxVSmRDvqI7cIyv8P2dZRikgnlFyP+5cO8+jaGSa9CreP7eXO8UuoeDkW++e4f+VzrPs1vrl4jObAJ6+yjLhjbMvP0QjPEekezWDAdK6KEiGhBkzMVLa81TWTnGxu0op8giTiXLfO6qCNpQTfs/sA/3jflSQmYVt+AlfZ7C2P4ScxM7kStW6XN+3aTdH16IURQ/kc3W7A9GiZIEle4UJ94+I5rh+6nA9d/5O8Y+468k5CztJM54uUncyWHDdFNZPl9bN7uW5slqV2h7FKgelKkZJrM9Ah9aBL3srSilNVVqI1Ty9dBKPoRH0uKe0kNtCMUofdfhSl46b0CsBllVkeXD3Kvzr4WaIkHXWs+y1ibbjQqTOez3Pb5DzljEs7bnGo9TKOtIhNRJiE3Dl2HUHSx5EKR1kESYel/rOUrBk8y0FrQ2JSSbQtLbbl99CLAhp+j32leca9YWIToU1MxnKwRJYw6SCFYszbSytaJTJ9spbLztII9aC79ZmSWFJS7/X51596kOMXNig4Lv3EJzapEZwhwZEZtEnIqAKJDrGlhy0lSkr8JMaPI8ZzeWKjGcQRV1W3c8v4Lh5ZPUMQCyITEBsfgWKl/yxldw862RphGImve0wVXO7beT1CKAbaBxQCiVIVkmQT0CTBwygslMwhCclbGXJWjtgE9GMfR7lbfI4AKXNoE2FMEcvZTRKfIAmexiSn0fEp0CFSjSG2GILf0fh7wHF5zWtewwMPPADAO9/5Tn7iJ36CH/qhH+L7vu/7uPPOO1/Vmt9y4XL//ffzkY98hA984AN86lOf4sknn+TXf/3Xue6667jmmmv4jd/4DZ555plXdRDfqRCAMX2k3CQ9VSm5FpOQK+YYmRpGCMFjn32K9maHpVPLKEsyvm2EN/7I3ey+Yjf57AiaKN0QwhMYIxFGYUuX2cws45lZhJAoWcXgI0WGyGjczOtA5lFqAgiRliSJDFIIuv0vsdH8BaQKkVYJP0kdJttxHVd6WNJGCYUlbcr2EI5wwQiCxAcka4PnMCJEKUmUJBSsHKH20SZmyJ0mp7IokcbcI+DhjQeIdIARYDBkrRLdeAWAQCdb8+3mlquvpGdKPF97kcP1Fxly53h6fTHdqJWNLSX7y/MkgwSpwLCJUDMgoB+GnKhtstrpMullqPfup6QEd0/ezNlGn7Vul0Gc2o7PFEv8o33XULQ8WoHPuXaD2CTpqEhK1gYtxjIFan5KwDVbEto1v8WfnnucrOVhSwsSiassTrTPsVCY4t9d+eO8c+ZuLq50GckVsC2Ln3n8C3z82DNUvQzHW6sMOUVio0mMYSyXQ6MJkhglbG6u/ihTm3dx+HNrDNbl1lweqtlMSoYNQm4e28G2YpVd5RH62idvldhX2oNE4lqgdUxqwz7E+e4jONLFlR55y+aW0f0MkhAMZJRNLxlQtNPNx1YKS0peN7Wf71u4hPP+Uf5y8dMM4h69uM0Daw/wcusEvaSPLRXHNpcZy1RoRuf40tIfcqZ7hEEk8JTFTaPbyNmCZtShGbcoWhmylkMnDJjKl3huc5HNoEc96POGmX18+uQRPnniIPtHhnl08zD1sEPecsnbHjllESQxT11cZDiTJ2tZ2DI1ZzOAUuk5ev78CiXHYzJXZCJTohEu04xqxLrPqe5BVvtnCJImvXiDIG5jjKEdBPSCCFfaPHl+kdhoVjs9zjbqaGPYVZwg1AGWEAQ6RklJy/fp+3CuvcGVlX1U7CqPrh3nspEJemHEQyfOUHZybPptprJVfmDHLXjKYrHXIKsy3DNxBa3Q53SnxmKvwVt27QNjONU5QV7lsYSkFtapOAVcaSOE5Ez3DJFOx4djmcvYU/5+2v0B1tbYtR6tpsGacZPYxOwojZBTWe6dvB4/WUcTMeK59OJ1evFFEhOxv3wvt4z+GFm1HWNCHKnoxQFxogl1QqzTbqgtJf/xK4+z3GohTYI2Aa7MoU0arCjQeCoHIs0N68UbWEKTt11yjsPe4REa/oAPv/gUjy8vcnl5G/fOXE7GcnBElkHSxJZ5hjOX0ApSYzkhbJSq0o1b5JyA6fwwR5rnUMIljFcwJkHJYSqF92GMTWK9k85GjEkskFmCeG3L+yZCSkk9aCCEhTARxgQkRmKSJaLeYyjrWpzsm3G8e7Gc12CMg44uIORfd3n/B/zvx+/8zu/wrne9C4APfOAD/It/8S9YW1vj7W9/O3/wB3/wqtb8lguXtbU1du3aBaTtHs/zmJmZeeXns7Oz/58eL9/NENJFqDnQHaSwMYTYMgtCMrF9jKGpCucOX2Dp5Ap/8n/9Je3NLs3NNpalqI6XKQylOUJBUkcJG0u4hLqFFAIbTWgE9fAiiRHYzg4ECm36bPS+SGQSHPtSjHQQIotlazq1ASDQuk3gn8QSqaeFkAkCwYib+myk8QQutrAJkwBPZemETbK2hx/3qHp7MULSjlsokY5SLGEx5E6QVXlclUoze3EPW9jMZrfxRO0RinaWRthGiQxh0kBgpc6xBhLd2iLbGhIcunFMO2qhsNmWn6ZgZ6h6WQxQsDJEfkSuVETJEo61HYHEj2Mag4DT9QaWadHrf4bEdFhsNwniiLVWh5ydITQBjm1408JeGj2fXhAy5GXphgF+klrJCyGQCO6c2o0QEkcKLqlO40qbLy0d5LMXnqXi5LEtSZBEjHlVfmDHm+gmfdb7dS7WmwgNx5vrtEOfx1fPs9zvkBhDGMdIBI4SzBQKeNIiJuUJ1E8EfP4/PISls9S7CRL4J7dew2K9TdH2qLhZ7p68hGuHt1O1C2RVhm5k2J7bTs62GM1mkSI15mqEiyiRxZU5DHBx8DzXDe3GUzahjtgMahhCNJpe4pO3beYKVeaKWT5z8Qt86OSfEmqDa2U437/Aud4iQ06WRnyR2+d3cO3UdtpRjWdrDyEE7MpfyZGNDeI4Zl95DCVs2lGHQZyw3N+kF/sYDENehkuq40zlSuwqDtMNI/746HMcqq2z2K3z8OoxVvupa7PRBqUk/STg6qkp1rtdLrSbZG0LS0pK+TQEc6nRIptx0Inhe3dehpF91oNNQt3lqc0HWcjtSVPJ9Qad8Dzd+CKdsMsji2fZ6PeItcaPIspehi8dPY4xaczAkJOnl3SwpaZk51kcbDJbLhNFknsmr2Hcq5Kxsjy3uUokUuWQlIKcdLGkhSsVb5+5hl++9HWELOJI2Fmc4Gy3RtFxONpYY6pQwGC2QhlrgKET95DIrb9Hxaq/wZP1Z1CyyL7S2wijAp87eBidJCghWemdJdI+zXCNgpUhY9nUwjqYLjkrh6D/Ss7SxuAQCou5/HUgFnhi8wRCGEKdhmUmGB48d4bEGJSU3L5vgULGQ0lwrdQP2BEGW0A/7mMJD1emTrQYyfnekzSCcxQdl/FcntFsnnboc6pV4y9OHOInvvFX/NunH+XZ1RVs6SFRBHGdqruHsew1WE4aW6FN2kVrxedphT6OdAniNKvtZO2XMEhcaxaDw6AreejPHmXQ6qGNRYQi1hGWSAnE9bCBIUnJuVu5aDp6kdbKv6a5+KME/ZeJglX8ztdpXvxJEv8b6Pi7wDnXiP/5x3c4qtUqk5OTAEgp+fmf/3k+//nP8+///b+nUnl1QZjfcuGitUa9khkBSqmt0UCK//fXf5cg1CjCSgs0QRpuaDQoW3H7u25i/427kVJy8rnT/Mmv/gVnXjiHASzHxrIVoe7Tj5a2GPb76EWbCCJCPAZJl9XBy7SjGkrkQDhoE1HxrsOKh9i8uEIUp21rJxPgZQQ6cch4l6PkCII8kjBVYoSr7CtexZA9BvwX7knOyqNNgK83CGONa+UZxGsE8RqtsL41luhjS5cduQPkrTyWsFLH3XATIRRXV28AIcirLHk7y4VBjSF3F1JI+kmPQRxjq8mU44LGlorrx+7gurE7EQguH56mGfVItEYA3biPl3GRKiLjXIot81umeTm2lascWl8miAcMeQsIOcaJxhrDbpbDq6tYQnKme55/d/x3KbgWJgE0XD40ySXVCZSE2ITkbYei41FxsmgNRTtLqGOKdpa3zl7Nmd4aSihi+jjSYkdhhov9Ndb9OkPZEhOVEhc2m2gD47kisdbM5SvkLJtWnJoN9hOfrGNhKwtbSEzX5Ztf+jrN9gY7Lt/HsbPreMpiolrg5GYNYWC+WKHpB7xn2w38s7238dqpXZRcl4nMOAUni6ucLddcgyMLhKT5Q47M8PjGZ6mFL1F1cigp+PLqA3jKoh70CJKE2MQMuRku9M7xXP0lZrJlbh29hn4cEiRB6las13mudj9DWUXBdTnbO8Fz9eMcal5EmCpfP3+Mgytn2VeeRAkbrQWe8sjaLmt+HW0SJnKFNAIhiZnMlnl5YzWVqkuFFIK3z15H1XM43DqNbUnCJGE9bDFfrrLZ7/O5Y8fSTGIpMJjUo0RJQpOw0e/iSMFmsM64N8KLjce4c/xN5CzBev8Z1gcvsOG/SDtcZKPf4qnls8yVKghg18gwsU44vLaG5zhIBK6yMWjO9g6RtVweWz/FtdNTXDI6RtHxqIebZJTNHRO72F4cphX3uWXnDA8tP44QIcc7h5Ai5Fj7SV5sfINYD9K8MstGG80dMzt4fOMMApjMTBLqkEhHVOwSZquXr4TNfG6WZ+sHkaJC0dlJP/Ypux6xSZ81kduGJkEiUVJtdXsjLOkRJC2e2vgQke7hqCyWLFCyR/GTmPPdZW4Z3YcQBiESrK0xjyUlwoJBHHLdrhnefPUepqplPJXDj5eAiMSEdKIl1oPTBFuBhLbKESV9+kkby4oZ9rJboyOBQbPpd4h1woV2k+fXljCk7/vx5h/Q9I8gjdoaXygMPRyZZcxbYLXfomwXqbqS2IBlFTm28QtoBEI4NFYbfOa3v4SVSRDCImeNodH0tY8UkuncFH7cwxBjyRxKOOikTmHsX+OU/ojNpf2ceTlPY+NWMkN/jnQuw/Cd7+Pyd19TBHfddRcf+9jHaLfb37Y1rb/Jk3//93+ffD4PQBzHfOxjH2N4eBjgFfLN3zUIYYMsEusaUuQhuQhinpe+eRi/5/PuD7ydTq1Dv+MzMjOEEIKv/cnD3PGumykM52kHHZTMMojWqHr70cZgyBDoPpiQMXcOYVYxZgRBghJZjF/i5UcP8+SXH+QHfvlncSqpS251YozmakJp/A6q5VLa4TBditYQx/uHGPHmuWv8HRxtP8eafwFP5dlXvAolFIYVuuEIRU/Q9A8x5G5jxM2wPKjhKQFssL98PQqbwAww2Cz1LzLqTlC1h7h95C4SrRlxy5xoL6LEArH2CfWAZT+karuMZyRJfI6sNcau4jzne3Umsw7juTzGZBkkEQaLdtRnJj8MZhOBTaTruGo7iZ0wX65wolZjc+CRZTeJ8cjYHmFiGMkXCHTIyc5ZLgyWONo9Rt6dpN0PuHJyCi1ilIBOvMZkZgSBINIRBTdDP17BkI7Mrh/azePrJ1AoBklI2bZpJ6lqSOCxPmgzN1Hh4Nkl5mcrXFId4+5LX8NQJsvO4ijHW6vMZqs4tmLdb9IM+1w/vJ16r8vyyVWyVRuv5LE7N8WFtQaFapZtQ2UeOXeefVMjIDQPr7/EU5tH6CYDXj9xNZboMeFNIXHTLoqJKDnzJEEbg01CyFR2Dy83v0nFGafkzDDsVNJOlY5oBD2msiWMiVn2L7KnNIY2mrJdYt1vMZeb4onNDtp0EEBEgJ+k/IGCnWdv6XJGvXEq9iaXj23HiISclWU8M0recskol2frxxhzRxjzRmiFqX+LLSUVN0vR8TjfbVBx8jh2xH8+9xWuH76ES8u72Bh0qQ16qLJAyTR80k9SOXEqhhVkHJti1qXguXQjH2HSzbvqVBlyqnTCcxSc7SBsLOFQtMd5ca3LVKGIEYZav89MuYSjFFdPT+NYim6YkHMNEodB3CNIeuwpjWNJgWdLgmRAziqgcLlneg/PbVyk6uaYzNucG1xgjz/DqDdCPVzj0c0HuWnoXoLIoWFajHkFenHIFxZf4lhrlWuHp9ieW+BY+xiRjijaOST2lpIOprOTHCjto2C5REmNklvlsrkpjDAESbhl5e8xm9+HFIYEqDhlskpypPsN2vEyjegC42ofO4r3oI0mTAL2luZphRdpRxuMevPkrWFcJbl9fjune+tITxB2Nd9/y5UMTD/lb/kngRgphig644RJjBSKeniRojXKeOYSCs48G36XM7VVrhyboexmeMvCPj548BHqQQ8B3DI9R6JjtAkJk3UK9gxmaysVCLTuoUxMxZlmKNNAGoGhw6nOI8zk3kAm5yF0F2ENs3Z+k9pyHWEU6B62KLIWLFGIi8zlirgyy6a/iOdWUSJDkiTY2XvZuBjyzU9+gSOPfY1w0MXLVzhw6+u45Z2vpTqR+1vZM/5G+J/lqXwXcFz279/PL/zCL/D+97+fe++9l+///u/nDW94A7b96lVf33LhMjs7y0c+8pFX/j0+Ps7HP/7xv/acv5sQ+OFJcu41mKSGsLdhuzYP//nXufV7b2PH5duRStLcaPHE557AclykpTAmITERrhpFqgFd/2Hyzk1b0uiIvF3B6BApXCI9wLNcJILVMw2+8Pt/hN+P6Nb7lCo5DCUWT5xlc2mRA7dcSr70OrSRaB3jKMmoN8ML9S+yULiOG4fTCxsYXOniyDxZawYsh0j3iHSbOGmTsyZ5obdJoDW3j+2gHw/IWXKL8e/gyhxSQC+pk1EeZ/rLnO5e4Mahqwi0wdCh6BT54NEvkLFc/tUl70BHB9F6jpjdaAONoEXFLeEqj1inPi5TmWEsJCbZwMgKUtgIEWKphOFslju2LRDqiKHcXfgGpgoFGp2Qai5DYjSOcsirLJcW9rMpfHJJgqUEq0E7dXPFI9ABjnTJ2i6x6dEMTmGLA/yHYw+xLT/KexZuRAgLg0Ur7qbUJSP5s7OP8qPb76XWC7l9/w68jM1kqciQ69KPBgTa586JvVjGRiib0UyJF+rnCPUsQgry2SH8uEO5UuLFl88zPlKiOJRDKsmZep39UyOc7lzkD098DSFh2C2xLT/EN9a+wE3Dt7G3tI/E+GASHFVkJjfC0fZpIhMyn7uCHfmrydmjYOCmkRt5uXWUUXeSQRzj6wwF4VG0c9TDLmuDNokxlOwMRRuuqFzLYxtfJCHtfK0OGkxkFnjfth8kowIslrh5ZpqZcoUgCclZkkBrNnsbzOdHKDt5jnXOMpcfRQlB3R/gWYoDw2PM5itbRoUSP/L5wR1vJjGamt/BGMH+6hQXenUmC0XuXFigGwbkvBxKKiKtKXgulWyG5U6bStai7FQQImRH4QBKWGhhkegIYfqsBs/St2dRcoH5YhVtDC+ur3DLzDxZy+GN+3ZtcZr6oCw8ZbMzv5+iU8IyOSwp0EaToHGFTTPoEiaCIEnYlqtysnMKR7rM5CeIdMzh1hGyqkyZORzhsBzWmM9NEOmEQ41lvm/bNSRaMexWuGfsHizppoRXy0VtjZAkIW+YuBPJOlov09cFslkHRyoCIK+qWELiyjyhDvBjQ8Ur48cbCBRXVX+AC/0NlNhg3HWJjcJRLr7ucbj1OBd6x3jLzPsp2zZhEpN3bV5cXOShxZP83GV3Y1RCLwjRJkCKDHHSp+DtBh2StbL04nUeXv1N7p36NYbcnQhRoB9ucq67wc7KCA2/y11zOyg6LvefO07dH3Dl6BQgkMJiofS9uFYJjCGJE6SV+jnZ5hiDJEvOTshYeYJknfX+kwy7c4zlbsBEL4GcI1vwUJbC7wscLyI2Ic2wju1K1v0zjHs70GiMcAFNbaVFoZTjic99lYMPfPaVK7XfafDMl/4SN1fmjne/Fi/n/K3sGP+A/4IPfvCD/NZv/RZf+9rX+NM//VPe+973opTiHe94B+95z3u49dZb/8ZrfsujonPnznH27Nn/4ePvIoQQuNYUUbIC1hS9VpO91+3kHT/9DgadAR//lU/w4Z/+KE9/6Tkuv+MK7v5Ht5MrZkEIsqpEYsAiYbP7JyBAmwjFAFe6WCKVVTb9F8Bogn7C4cePI+OdzMy8DteuIvDwuxEvfeNZ7v9Pf8nH/tUnWDwakIQOjjVMoDtkVYZrh++jGa5yuPkgy4PDaJNu3mkE/Qifv/AooU6wZJbQBCgzYDwzxFy2jCXT6neQ9DBGk2jNsDtHYmI2g1Vs6dAI23xu6SF+/8wn6cZdbJmhGXZY89s8vHaI5UELIYsE/qcJEp+i4wGGpV4r9atQFrZUqC3VgdEDbDWEMTHGGFb9Nn9x4RGUkzCaH0JYU3QiHyVgLJ9LM5a04EBpDz+8/T0kWnCh2WK8VCA2Kc+nHyes9QMUHrFOUtWGDol0j1bk04k63Dm5Cz+JWeq38ZOEMEmwhc3Jzhq1MPUYaPkDGnFqJX+itYEjU2L0sFug4Qf89kuPcq7VpORkubK6jV7iY7IhOy/bgR3lQVqcXqnhejZJnBrg1Xp9Sp7N842TWJbCkorLh7ahTY9TnaNU3Ukg9cpw1RCOcADFZljncOskOwuX46ox+lFMwS6QGM2Da9+gFzfYVZqgHQ1wlctMdhurg3ZaOAQNxjIVusEJtue289qJ97CQv4xAd7GEZDY7Tkau89LGv+Ni7yH2j42/YtjnJ21ebpzmE2cfS3OtnBzzuVH8JFWHPbuxyOfOHWG2UObO2QU6oc8gDtmWm+JQ6wz3rzzGil/nA899ijhJmC1UKHkuO4eGePTCOZSSqXV+GFHJpmqhXhhhWxaJhoo9xHx291Z6eUSiW5xo/gkbgydYGzxKJRMhZUgQx+yoDqGN4eT6JuVsln4YYymBMYLzvXWG3LTQyNkuKTPMAIJQJ7S3nJEvrUxwZHUDP4R7Jl+DIzM0oy4lu8q1QzfgmDKOLRjzSlhSsRl0ec+2a9heGGHd77DqrxHqNoEO+cLy11n217ClR2QG3L/yezTDi8S6QahDnq2doav7SCnIWt6WKqyD3pJcZ22PWMf04k3m8tfhqHGerh/Ek4ooXkUIld4I6IBEd9lZWCBvFTnYPMHj9RcwxuBJm+VBE8+y6EQ+I14BbWIq3vVUvCsAG4m19XdToxmeJzYDlACMIkoMU7kiSob81dnneXrlJDdMzPBvbno9/+nOt3Hl6CRCaCyRo+TsIErqICCOE3SskUhsmSPRLerReRIzIG+PMZk9kDoImw5CDqck9/lRrrv3Sjr1HoZ8qqJSHgPdQwiLQAdklUeoA+IQGqst2rUOx554EqFyIB2QDkJlkTLH8SefolP/9o0m/pfi77Ci6P+BlJJ77rmHj33sY6ytrfGf/tN/4umnn+aOO+54det9uw7s4sWL/PAP//C3a7nvOEiRJdE1EB6bK5s4ns2ZF8/z8V/5FE9/6SAvf/MoX/y9B/nyHz6EMQapJEqkJm4ZlaEbPI/GpN0MYoxJlUaWHKIVvEw9eA6ERMcQdDIEXY+5fbNE0YD1zafROqHbjBgMRnjx4dP87o9/lM3FNolxsGWWQdJmsfcM4940V1TvYWfhaiBiwz+OEJJ6EGJEHkGBkrOPtd4zJKLKbK7MdC4l41rS4mTnZfpJn9hEjHglOlGb2ewuEqMZ90ZwpM3L7eP82tHfReDSCttkLMGOwgQn28tIaztSDGHLCEcaclaeBy6mgX/aaGpBd4srlSCtOdL4ggCE4GynQyMMWOvVaQ+6tKI+L9aPkIiQnKfYPzKGLRXbcrNcVtlPEMUYbQiSOC0qnCKdyOf+5YMkRqfnE40QNgJFNxrwE/tez2imwPKgyQu1RZRQnOquYQmLUGt8HbAabnDT/HYutJqcbG5yrL5O1gZX+lScEn956kX+/Mzz/Mg3/oLldofxTBkDBE6XK+++lO2XbifWGlulqczHVjYYzmaB1IrdkJIW9xRnuLyyDSli9pb2I8gSJAZbFrc21rQYq9hlbhy+ho2gxUbQouAUiXSMnwyYykyyr7AfjaZop+MLizzvnHkTw14RX/sEScBAJzy/8RGUXuWW4dvIK48dxSmMaRImNa4f+5csFG4ka6fSa0ukXKFasMqllVFA04pb7CnO0Y8jbKkIdcLHTzzHn51+ntdv282v3fw6ZvIV1oIGn196mMX+CgZNwfY41LiIRPLSyioSwSUj42z0eoRxwqELaygDQsBspchit0nezmFLh8REJCYho/KsD54g0Zv40Vk2+t8AjrF/eIJBHLKrOowwgq+cOEWsNQeXl8nbLlJILGHRSfp8/Oz9r5x7bTSudNBGEyQRthAoJJ85fJgRZ5ix7DCDOAAjmMzMsqd4FTk3zfTxpMvJ5gYTmRKXVKY4392kFXc41XmJ4+0XaEV1DrcP8umLnyXUAYO4xWLvKEoolMiTGEErWGE9aNEMfOTWZThMOkgMSqYcpyAJiY0hb42y6jdoR5soYdB6HUEaXZBVGfaXr+dA6WYiHXCkfYiTndO0wj77y5NMZUsMeXl6UYwlZCoMkBm06RHoDghDP2nhqjxVZxtZq8Ig2aQV+lS9HHOlAme6R7hrbhfnWpscra9wsdfgYrdB3e8j0FjCgS0PGyktjE53VROfw7bmUbJMN+5uGctpZguvI2fPIESGdt0lDmJyxQz3/dgbUEog8Ii0z0x2Dld4VJ1pQGJJK/17lhIv5xH6EZ1GE3AQMouQWcDFGEm32SCOkv+te8Q/4H+M1dVVPvzhD/Mbv/EbvPTSS1xzzTWvap1vW+FSq9VetbTpuwF+dIwkqaNNTHl4mMVjy7zw4EvM7JliZvc0kzsmmb9kll6rz8uPHiPY8oLoRUs0/WPEup6mPxOj8DDCJTYRCEHTP8h6/xtoHeBm8wxPjxKHCTO7JkH5nDr2RWxXUZ0cZ/H4CusXNjjy5HGe+PzTaJ3eOa75Z2iHq2RUFk9YWMQMOWOMetu21EqGq6o7WOsFVNxLyVhz9BMfR0ZEyRrGpJ4Ha8ESnbieZpyYEE9lKNkVjNFUnSLXVg9QUFlmshPUgh4TmVFyFrx5+nL2lUYRcgjbvZGsMtjCwZUOoU7dNQWCQ81VhIiJ/Bgh8xjjI0SGOBmQtTLcPXwJUV2SUR6xDvnihQc40z5NM2pRyHpoLejHfQyGs2t1xvJpFo9CEuoYWwkuq85StDPYQhLpGG1chrx9zOSGGcsUqAddIh1TcR1KTpZWkPpa7C5M8tN73sJV1QU82ybj2BxvbXD92Byx1oTapxUMeGZ9EYmgHQX85ZmXkEakCdJU6fV7XHrHHhzHwlaCci7DuUYTJSTfc9kBpFDcPLaXD1z6Tr5n2w1UvSzT2WmuH7qObhyx0t9Am2SrCxUR6Yhdhe040qERtpj00jGRnwxITMLbpt5MP4mxhMLBItYJj2+cYzqzix9Z+CFmchOc7V1EylEqzihHm5/kidV/Sy9cRQkIdY+SPUe7/wUWGx+g3vsrqm4Wg8YSNpdV9nNpdYGHNx5h2ClhjCBMUl7KQnGIPeURbhyfx7MUU4UCtpIcaZ2hn/S5OFhnoLv83GWvZypfZanX4oFzJ1FSMFsq0Q9CDi2uUsp6/PHXnyOjbGISND6DuE6kB5ztPZ9yRdA0g5fJWmV2lL6H3eV/giMtpDRIIYkTTS8MuWJqAikErTDAMRY5y2UsU6QZdvjm5gsc65xFCUmiIUgGKCHwLItelAYTrrTS7mWkI6SQFJ0sQZKQlUWynpV6seiE+xePUHI8DIZnamcZ8TwGyQqa1Ddm3JtgLjdLI6yRmJgbht+CEB5KVslaRfaUpjhQnmFj0E9J/wgsmUmLGxTGGEIdUnGm0SahG9cJkhaB1ihZRpDK4S3pMp5ZoB89j8BCkueKygGUkLjC4Qd234hAcLHTRgkLJVwMBk06NtImoRGskFNVbhv/eZSQZK1hEp0Qa03J8TjWfpFSxue9+2+mESb80ZEX+OCLj/OV8ycwKDR90rH0BBjotwdEYYxUc7Qjm24UMuJMIYWhE22mcQrWDIOu4vHPPUIw6NPb4giOzI7g99PismSXGHcncKRLM6qxHtRTZ98wxs062K5NcXiKQTck8jVRoAn6EUmsGZ3bhpv9zjeg+/uAdrvNRz/6Ue6++25mZmb40Ic+xJvf/GZOnjzJk08++arW/LYVLn/XIdC0en/EIHiZTCHH8pk1nvvay9SW6ihL4XgO3WafQddn+dQqQT8gMSGt8DSDpIZj7WQQrxElDRCkFxATIVDp6EZv0I0uYAzsvnoH1fEy3dYAtKFQnEFKm51XbKdQzZIkCcYYPv3Bv0KH8Vamic81w99L1srRjk5xsfsgq/3HiXUbiJjMltCxINENjte+zmj2JhyVJUiaNIMjSCERKKYyC9SCdSpOjlbYwpEOtrDoJR0ONp/k7vEb+IV9P8qbJu/mUOscWSvDj+x4OzeP7AA2qPmLoLahZImCncFTkrum9tEOe8QmRghBkhiOP3sEhE2S1FDCISFmV26M+mZINpdhbdDElRFz+XG+uPgVJjNl6v6AxV6Npf4anahLHCd4SpG1HEKdsBE0qTpZDlQm8HUfJSW2VJzuXcBSw1TcHP0kRArNkOswmc3gSskVQ3Oc7V5gR3GUy6vzdJMeoQ5xlGJbsYJlGWLtomSZQEc4UpG3PPK2x9UjM4QmJtGGuAUPfPwRvvKpr2CSmJsu285YOc9lMxP8yZPPM1kucKK5ydXVXawF6/z+mc/QijrkrBx5uwwYym6OWG+mcm7pYksLKSTNqEfeylJyCtjSopf4+EmIJTLUgy6eclOSq3KYzVURSCr2MGV7iEjHnOjW2FZ6O9sKt7Ot+Boq3mVbNu4e9d6fsd77DIN4k2QrUVebGEtm2FWcItId2lGNMW8k7bYIycVuiyE3yy9edQ9j2Ty/f+Jx3vrgR6gFXUIdYUsbKSTaxHRin4+ceIxWOOCaqem0cDCaMNF89eUTSCm474YDLDaauNIiq0Iu9I4Rm5Az3WcAgZIWO0vfw87yP8FWIyQmJmdfyQPnztLwuwyiCI1hpJgjiGPu27sXX8cIYZAYYp1K3hcK48SJYJBEDHSPXrxJxclS9XLkHYeb5+fw7NQ11lOKftxF49ONQ1zLItJtlFCs+JtgDL6OONveZMTLU7Er7MhfQcnKc031coQBXw9wZI7Z3OV8dfXzxMah4Mxy+dAB/CQk6yj8JNzK8XEIwhAlUgJzgkYJi8h0mPCG0SahE3dQahRIsCV0ojbGtNF6BSUy3DJyJYM44XDnNN3Qx9YOZTdDkhj6UXqjZEyMNmCLzNY4x8VTJSrOOBJBon0qnkt90KPqFbmkspOqM843l8/yyVMHOdvdZDpf5JapyfTKmHRRwkVsqeGiMMYfBMRJmfV+jS+99CB5hlILARlzpP4JdGRornd44evn6bUCNi5s8vOv+1XiMEo7MFaFMAkYcsfRJmbNX+LLq5/hTO8iylbEYUKunOeGt7yeJNb0OwPCQYRUEtvzuPLuWylUi39b28W3jr8HBnRjY2N84AMf4JJLLuGJJ57g+PHj/OIv/iILCwuves1/KFy+Rdj2NqSsEMYvE/YjitUCY/OjtDY7nD10gZWza0ghkEpiOQohUzNsJT0awTGUmmQoey/a9DBmgDIhnqpgiSxDmWuZyN6Dn6yio9Su++733ka24JHJD7F71xvotXt0Wz1+4Fffw53vvpWZPVPsvX43cRggEOwqvgZt+pxpf5Yj9Y+x3H+Us50vcqj+IWrBy+QsBz+KsWXMZu9hpOgjhEAIxXL/JQQGYxImvVmms7M0t9KJMypHZEK6SYcH1r5IqPt0I59G0GFbfoJYh8zmCnSjEzy9/m95YOlfsDI4xunOBn4SshFeYEexQkLCqc4Sl5THEcqivtpBJzF+dAhHZrBlnjhMKGayPL12kcQY8qrP7ROX8b4d7yBvF+mEAf14QKwF636NvTNjbHYHKJlmGmmdmuYda58kMjGxiUEYjndOUA9aSMGWHLuJJWPGMwV60RJDbo6EAEzCkfZJnqq9SMH2kEKwvzrOZLZE3jZgQqQYcNlwFQiwRMKeygi9OOBIa4XIj1m/2GTlcJv18xvs2zbO8xeWQMPNC/P0wjAN1+wu89jGi4w4Za6pzHOx9xi2kJTsDJ4CrftIbBKdkKA537uI0Zpht4rE2uJl+Kgtb9BIa7pRSNHxEAIur86Sty1ebh3mobXHKNo5nq8f41C7zVjuTewrv48gSdUfxrQJ4hXmKh/gsokvUMjeR6gjFDahbqNEl4Hu85qRO+jFIc9tXCCjLAZxxPlug6qX4YsXDvPJsy8wSCL6ccSuwhyJBkc4bMvN8s3VU2wGXUYyeW6anqc18LnYaSOkYPfkKAfPL3Nyc5MHjp3CUzaGLhVnHIHEkTkcmSFnTZCxJnmp9ju8sPmbrA6eYtNvcaHTpOLlCJKEThjSjQLyjk2MxrEFh1unUmm5Urxz5i4Uik+feYooSTtK53rHKNoZpvMlBjrkTfv34Oserkq7INpoCiqLNqlCrRe30ES8bvoAQgiUkHhWGl65q3gNzXCRs72nuLy8l/2lPShhI4TFIIkIdYSmS5w0qYUdTneXQGg2/B4GjRQOUlupt4qURDqkEy6y0n+Osp3juqHb8KQijDcRWPTiemrTH69Q8W5hkIASNi80TlK2yyxUhtlXHSOONXuHRulGEcKkl3wlPKL4AkJIhpxxEtPfujalnddBssElI2O0goR9pRuItMenzxzkVHuZ0AS8ZWEbteBJ1vrnkdIhNj2UyKBjje1YZDIuSWQ4u3GBh597nMcOP5veoOg288U70LGhse7Trlk4rsPFE8uUhksImc4MlVBkrSyx8UlMjC0dLvTP8mcX/oB23MRxbS4cW+Gy26/i3b/4s1x2521M7d7Fnhtu4q0/9c/Zd+Ml2M53ATH370Hh8vnPf56LFy/yW7/1W1x99dXfljX/oXD5FmHJEYrZN+Hal7NxsYaXcxmbHWFiYYzZfdOMzgwz6A5YO7fOnmt2kC1mkMKi6u4l1n3WBi9Rzt6HJUuAROt1HFmgGx6m4Oxne/n70ckSURjzwB8/zBOff5aFK+YolvPYcgMhYp5/4AWOPnmMG99yDT/0G+/lvh97HYmOkUaRUQVq/iE2/ZcIdJ1OtMggXsNPGpzvfBXMgKFMluFMke3lBWysLa+XLLaa52LveWKTEhED3eG5xv04UmJLm1gHONJhf/EAChdEgm+afGX1K5zqniZIGhxv/jmxruEqiwSPdtSgGbU42HgOR4IlBKNemdAERLrLrqt20VxvIUUBYbpYQmF0gufanNjYoOpJMH0ur0xy5fAV+HGMNoaclWE6V0kt/ZMIy5Z849QZDAZbOmBgKjueZsDoLRt5BK7K0Az7ZJVDaAZc7J9FiJAnan9IL7rIttwsjajDC42j3Fq5nlYvYLZQZsjLMZ3NEiZLKH0CV9ncObufS4amAYFrWdTDNjnLQVqKXCmH78eIBPpRxDePneNPHn+eoWyG4VyW0WyOJzaO8d75N/KB/e8DBhxtfIJDjT8koyIs4eDZ24mTZZRQW10Rh/n8GLZQW6MvgyczbM9vAwxFxyNIIiKdcjf6SY+H1h/m4+f/gr9c/CL1sMG1Q/s52DzKXyx+k0DD+qCDJVJfoh1Dv0LBvZGN4CyDpE+kE2KTEMQbhEmPUXcMW7psBE3qQZdk6zUdqdj0e3xz7RQZZTOZKXG+02B7bpI7x64GLfGUx9nOBt+37WpsKdHa0Isj7j95AqUEN++Z56bd83z96Gmunp3GloqKW6XoDGNLj6urb8SYAG1ilnuP0o3OIwBXlpFUuHFqgedrF4mNphMEzBTLbAzSxOhW1OfhtYM0gh5DTpFrqjuIdMDJ9hKnWstILMa8eTbDOquDOh85/k08zyJSHSwBYBhxh0FoHGXRjiJcleN8/zy3TexkkARklMNNowtIIUmMz7A7xqjtsNH9c6pqkSEnVdRFJuHNU+8iTmqERvFS8xST2SFa4YCy4yEAJRRhmLDubxDqCGNiAt1Em4TT7U9xVfVSRr0pwvgMCENiAobcCo4aIudcTifuc6pzkdeO30BrEFMb9Ch5Hic2a1ScLBO5NMXZaDBotEl/T88qY0xEkqyghUDIAi82H6QWrPDZswcxxqUbhSz1unhWhrum9+KpBo+vfYaT7ecRIo/RAVJIjDE4noOyFYN+gO0rdJzw0OFHQEtcVaJi7wYhyORzjG8bozBUoDxaorHexGiDEJCYhFB3qAVnsITNsDtG0SrhqQx+6ONkHbyMy7FnzjK7Zztv/fH38d5//VO89Sffy/6bLyWT/y6QQv89wd13342U395S41uWQ7/tbW/77/682Wz+zx7LdzSkzJB1b8AggVWWTq5wyzuu5y///edZO7dBFMY4rs1bf+Jedl618IpZX9YaY674Bi50voqf1NldehcgcKx5NB260VEQhkb/r/Cj8+SttxOFMUefOoFXkAjZRwQvkclOc+mte/mdf/4hHv7kI5THKiSR5i3//PW85t1XI6Sm5h+iFZ5Jya5AhMBPGmgT04uXmCluR5sEz95B6pZrszhoMpS5gansbPq7iZhmuMaZ7nNcVr6bYWecWPvkVY5rqjfgKIeXak/xwNo3ALhh6Gq60QqrgyN4yttKdbYpOUVqQYft+T2EBgp2juPtJapOESk0lQmb1rqm5FyFjl5CWQrXGYbBgCsnJym7XTw1jE+BQEcEUeoZkneKdOMzDLtTdPsJy90On3r5EFfN302PgGG3xOJghbaVQxtFzvKo2hUEiiAZULBzDDtDrGkfP2myt3g7lhyhYOV5oXGCu0dvRMYuTy5e4JLpcSIdM1PUGN1DCYuqkwZB/thl19EOYsqux3p7g+ncKMtxk6HLxnnkyCFG5ocJk5Qn8L3XXw5O2uEoWC7/aPsdNMIaxzunmM/laUSrdOINvrH6c7xh+sNAj57/FVz7WpTaRd4SuNLQS0JsYZGRDo2ww0D76cYjbTK2S5wYPCE50z3Ho5vPMJOdYEd+nopdZGdhiFF3iKPtM1sbgyY2Ma41S6xDLnQfZZA02Fa4mn4SIIVPpLsIMUzZLnKht0EtanPZ8ASBjii5GeZEBV9HtEOf9yxczc2jC1TcLHk7w5unbuaesevIWi77y1NcUp6k4uRoDwIwECYJgyQin3XIZ1zedMU+ZodLLHXajOZGsaWLFBFD7hBR0iYyPp3wDCPeNRSdeUYyV6IosDYI+A8HH+aDN7+VkXyOrGPjJxGh0VzsNBnxKjxZO8xrJ67DthQijthTmaLoWZxonWF3eTf1sE0nini5eZbfPurzA7uu4mzvNHuKewjReKpAPQxwpE3BriKoIwTYUhElmquq81vjlwiHJifqv02o2wggb2/nkpFfZjozw2ZQIzDrFOwSE94Q05lRJC2ECBAihyDtEAZJQCNo46oMCpvJ7OVs+oe40PkCU96Pk3EuQZFaJ+RkFi1miI3ElQpP2YjEomjbrPV7TGRKGGF45PwZbt8+hyMkUloIcghCOv43KWdeiyQiiM/i2buJdReFoBH0Od05RjveS2w0U7ky6/0uV42MsdZ/9BWTS20ilCwixJYpqUxz0nrNPoWwwLbRuZSzEwdk3XFckUcHmnw1z5ve/zp6rR5TOyfYcfk26qsd8uUMEotacIYznacYy+xHILln/K08sPY5dKJ56svPMrVjkrG5EbqtAZZj4WVdNpfbrD52kuvecCWO+i7ouPxP28h9Z1rQXXnllTz44INUKhWuuOKK/65B7fPPP/83Xv9bLlxKpdL/8Ofvfe97/8YH8N0EKdMqPlvMcv7oRaZ3TvCD/+b7WT23zqDjM7N7krl902QLmVf+jyUzjGauoujM0wrPIIRNlKyg5CjGBLhqil5wkI3up8m7V2LZivn9M5SGCtiuIhz42LqJUF9l5xWv410/93a++sdfZf3cWSzH4cLRi9jqFhLTJUjqaBPyX3+YDYN4HUvksFTASvdF8s4+pPSAVOVjjMX2vEdoIhrhEjmrxGtGvo+qPUJifGyVZxA3Wcjv4UJ/iUc2n0jPhxAEOiJlEZD6VQhBlNQoOzMc7x7jjtErSbbIq460wdg8vLLO1ZUW2WoeyRyGgCDZJGMXGM8XuWtHDkQdENSCkIyy6EcxOduh5ChONk5TsiZIMDy9tMhQPstqt0nFy6LRPLH5Au+dfwtr/oCHVo5x5+QCAolnubzQOMq1Q/so2C6elHiZSWrBgLyVYyY7TpEim36Aa1scWl/jprkZBAmOmgBaCP8LzObfgjZ54tjgoBhySyz1G3y9doS3vv5q5isjOJ6DkIJ7L9/N8dYmOyd3sDbosFAcYslf5sOn/5jZ7DTb82+g6uzCkDCZvYZYd7BEgHLIdQ0AAQAASURBVEGT8hhsXKGRJs0wGpDKRI0xdOI2zajJbGYHGWnTinxiY1jsX+R7Zl7P7vwQGRkjpcMXLn4Vz8oxnZ0ANLtKowRJH9tyGegaZ9qf4UD1/URaM0hCKo6HwyS9ZICSOSKjySuP2fwQJ9s1zvdq3Di8nVrU5/+87B7m8kPU/QEvbK6wPV9hd3WEjvBxpcWt4ztSp1kNRzbX2VkZ5gevvJrlTptf/ebX+c07X8/2kSpL3RZ/deYY/8elV5KxfWwRovCBmEh3mczdTtnbTZgMsFQFR1gs9zu0woCvLB7nn+67gcRA2fGIwpin1xd5w9xeBrrF2d4Sl5YX0PS4eXwHA93m/uWvsKu0ZythN2GhOMYTayd53fS+lBNmNIO4R8HOE+mIQRgzCBT7irtphX38JCRJbIQBKSRZ5XC0+TkinYYggqETneZs64+YLv0UxzsnOFAcBdNnR2GefhSRUy5BUiOxXOJkDc+ZImlHVHNFLKmwxE607rCzeCdHm/+ZfryCJzNoE5G3R7csAqCXtMlbNrsLcyx3Bpzv1NhWqGIpyaGNda6aHEVthXVq00EIF4Gi6L2GRnCBilMijE6SZO4k1gMq7gRJYthWGMeWFo6Kefv2y/izEy/gSEmg43SsZxIivYHWfmo9kGgyWY84ShACakcavOWyN2A8TSfewDcWM/kxBklEr9lnbu80Z166wOZSjfv++etprDbp1ttsu2qGRIec6nyTW8d/jFAHSCT3Tb0HRzs0V9t89v93P5fddglze6YRQrJ0YoUjjx/nlndcvyVa+C7A31EDure85S24rvvK199uZ/1vuXD56Ec/+m194e9mWI7FdW+4kqfvf4EXHjrE1I5xRmaGsD2bMIhIkv9ahmdJj7ycIm9PobVPY/AMWSd9UzP2NK3B/ThqGClc4jhm9zULrJ5dJwpihLawrVm6mx8iW97FdW+4gl1X76Cx1sDNeszs3oYRIVJYFJ0FlvuP8V9/mgUFaxZLjtAJa6z0niDnjJF33oYQhvncBBnLQpsIP+6y2DvE/vIdeNLGEBOZHvVQb3VTBLWwloYBbpFBD7WOcmnpTkbcXTTCUwDUgmcYy97IiFPesqu3aEVt5nNjfHP5HP/55PPYew8w7Z7GBJqcPUvLf5lB9BiTxX/OE2sXKTkFXBVzrLXM3tIcRc9LoxakpuKM0YtjbMvDVpLYJCz1WnQTn5likUESkLNyeDLhG6vHeMvMlWQsm34MWZWhEw3IWWUyylAPfbpRSCfuULYL6AgkkqFclnPdJpoERAZLRgThSYR9C53I4Pt9Xj6/yr6ZMcr5As/WLzDilXCUxeWv2U8iJa4lGKsWONdv4tgWUZwQ6JCXmofZCGtsBDXeNXsvN4/9FJHeJIiXkCIlR+a914LIYkjIWlUQGpmECBwGSYASAls42ELRjlbJuDNbvCrBVdX9eFxkqfW7jOduYylq8XLza3hqlBOdUY63z/K++fsItMKgqftHCeKL5KztvNhYxJKSqcx2EpkQmSYrfh1b2kxnJ1BCcby9yrhXpBsHVOwMBypTPL2+yB8ceYarRqa5c2qBZ2vnGCQBoxmXnflZBlGMELDUaacEXSl56OwZ3nvZFSRaEwuNEIKF8hB+MqAerTOfG93iXg3I2zMYFMean2W1/xzbi69jzBuh6Dj84jV3M1fMc76/xI7CXMqPsj3GswXm8xNohni2dhhtJBlVxHYT3CTLgcoePGnjKYdVf4U7JnbxfO0sB2tLzOYvpxX3UVJxpnuMmdwBjrU3afgdZorbaIR9nto8xr2TN7A26GBQWEIwiM6gTYw2ScpxExYZNUwnavNM/Rl25O+jZNnYwmY1TFOjlfLRJsJSFRKxwbbqAqGWBLpPRjZp9v6cYuYOrhv9BSxRBNMCYQgTAwTAgNj4YHyK9gybKuLgxjKXDU2gDbR8n/lKBa1jsLJgJEJY5J29hLrHmc5DXDX8bjxrDIwhSOqMuNN0I5u7pq6mZGcIdMSeoSHuntvBhW6PHeUdSPkYRcdGCpfNweeYKR2gtVFj+fQal9y0h0I1j207jNnDVGaKtM0qX1z6CO/b/kvo2Kax3mR27xRaaz77O/dz93tv5cDNewn6AYOmz3BhgdncHjrhEjmryKObX6MTt7l9+HUsXDXPY194mkc+9wRf/7MEJRW5YpbqWJldVy3gZr4bui1/d/FLv/RLr3z9y7/8y9/29f+B4/Iq4GbSOPpdV23nnvfdxv6b9jA6O0Kv2ceyFV7uv51KakgI4hW0Dgij89hyiKy9gCVt4ug0CJ8oiJjeNYltZdE6QsudWO4uouYvk89/jYl5zZ5rxlm4dJLqVIH14CViEzKevYEh7xIkDqkrhY0jS+yv/jDdKEYIRWgsvnHxq/zp8V/EElnKtkvRckiLHc1Udg+JGdCP1slaQ0hhUQ828KTNYv8IGeVQdvKpSZ2JOdh8kc0wYHfl7VSdeWyZZbP/MgafS8sLiK1bikgHaAPnOnVeqC3xy889wiObw7R1GSOH0dhMFN5CJ/Z5bPkslrRAZFNlCBpLKpa7LQQWE5l5zrTX6ek+r9m2jVO1TTLCZa5QJdIR/3j+PoIkIWd5/NPdd6OkBjSDOGJncZYj7fN0ogGxDvFjTcXN0Y5aCGEYiA62ZSi4LnOlMkIKEA5oH2ntoq1dekHC0aVVOv4Ay1a4yiKnXC5xx2gs1tlYrmFiTRynIXf7xkap+30ylkWoI5b9dbLKw1E253oreFJQ6/0V2rRIcNDGx1ITW9lVXSxpM4jWCZMVSnYeJSWDJDXkcqVNYkJqYZvYJDjSYcp1GfiPs1B6HRP5u2lHUHV2cFllP/dN3c7to1eg0bjKRRsfJWw8Zw9SeJzpbtCKfAZJl3O941TdaaYy48zlRhGAn8QMu3nmC1XWgja9OKQRDPjkqZd458IB/tmB66mFXf749GOUHY9PLX6DVtTdUkcJbpvfRtP3udhu0fQH7KwMcejiKgjYVqpww+QstmU43TuPkrlUIkw6flzsPcVy/xk0Cc3wLJoe+6ujbK9k+dTSA3xh5TEsKTDG0Bz4vH3+MrpxhyCJKDtFwBBqTZD0KDpZXj95D5bsk9t6//JOxL888FqKtkcn9OmFIUpIzvWOklUWVS9H1nbY6NfJKhclJYEOeXD5BM0gQAmXvDWJrTK4W6RiSzoUnZ1IqfCUxzP1Q2iRRjV0Ap9Ya1xVYBD3EMLGjxZBplEU7ahLJzhH0bsNozfo9T9NED6JEgW0MfTiGud7F1HCIaMKqVRdh5TdtGjzVBpkece2BTKWgxQSiJEyjxQ2SbKEEC6amH7cwnNvII5exFF5DH1m87NUvdRT6MmNU3zw2JcZK3jsHRploXQpN4zdiqaFQZFzDqTn14/4+K/8Be+/9ufw+wHXvPFSOuVN/vL5jxMFmqwocaL1AlJqxmZH0MZQHS8ztXOCL/7e1/jQT/8RwSBi9VydvDXCjsKttKNVGuEq11RvZC67nWebj1Hc6XHV6w8wvX2S2T3TzOyeYnR2mOveeBXTuye+e7Lz/h6Qc7dv306tVvtr3282m2zfvv1VrfktFy5XXHEFV1555V973H777fzIj/wIR44ceVUH8N0IZUm2HZilPFbiwrElTj5/hvpqk20HZhmZHkap//ZplcLDsabohi9hW2k+Uc7ZRxKvE+kLROp5HE9x4rlTeDmBZVu0W+vI7Ptwit9LEjyPZT5HrnCRXLlNTJfF7sOs9p/DEhkuqf4o+6r/hOn8HWwrvpmrR36OkruDRBuixMVTOxkkMVl7mH7SoBEeJTGdLd8OiyF3hm60zmz+BoKkBQZ2FRdoRes8tvEZipbHbHaCicwQBStDzsrw5ZWvY8kdXDnyE+wqvpX54p1bqdMGSyiUVEiRBvBlLJvEaJZ6bX7thYf5Z499lXbsMpS5jsgImsEG47mYjJ2lF2uuqW7HEjatwEcIQZhEODLDsFfiYyceYq5S5O0HDuAKh4xlk7MyDHtlGmGXtUGdq4enear+FBtBjbKbJUpidhdmCXVCP+nhWQ5CQEbl6Cd9vrr2ZYQdMpLNMl8qgxFINEJWCI2HH4UMwoiLtQbX7pil7HnEJmZ/eZLt3ihyYPjoL/wpG2fWSHRCwXUJTcJiswUYLKko20WMgYLKsaswzmr3rwiTFSqZN/JC4wRaFACItc9y71Fi3UMT0AmPpCM3YTGTG8OSFoKYjFUg1IYn1k8hBCh6zBdfS0WGiPggRRVy+9hVXFE5wJp/iEc2PkkrrIERaO0znLmKvL2NyKyzvTDCntIkm+EGQ+4MzaiGrUIyUhDqVEl0/cg2CpbH2qBDznY4227wvTsv5aqxSaSQvFC/gCMtbCkJkjQE1JaSzUGX0Wyemt/nQrvJVKlEnGgWmy0yymLD75GxJbGJ6UUDFAqBwLbGCJIWjeAMeWcKW+VphefQrJG1FC80DnOgtJ0f2/k99PwI17JYbrdQEg63j/Hl1W9QtPJAwmMbD3C0exhHuLjKptb/OoPwUbbnpxj2Kszl89w7eylVN0e4xWu6dfQNBMk6jpKU3JhueJaC7XHj8F5WB03O9tZpRXW0UUzkb6ViT1G0xyk545TtKQQxJavIZGaSJ2qPcrJ7FqMNY7kCm0EPULiqjDGGonsJQRIRJBHahOSdCdr+o5yt/QKr7T/kzObPcKH5H0AYBJqjrWNoHDxZJGtXthLDE14/v4em7xMlMdsrZYzWaWaZERh8jOkhZBlLKMa9nUhijMij1Bh5lSWjhlkdNLClohP5HGxcINIJT2yc4LGNExxuthjN3klG7SBMgq1RqkAqRZJoNi7U+IOf/890ohYH208yPjlOOTvCLRNvpeCWyRYScmUPE2sKlRw3veVauo0ez375IH/0S59kYmGIWIdMZ6+l6s7Rixuc6DzHVGaSa6s3UxzJcc/7buMN/+wO9t22wBV3XsLbfuJe7nj3LZRH/vu0hn/A/16cO3fur00hAIIg4OLFi69qzW95VHTffff9f36/2Wzy/PPPc8UVV/DQQw9x0003fcsv/uu//ut8+tOf5tixY2QyGW688UZ+4zd+g927d7/yHN/3+emf/mk+8YlPEAQBr33ta/nd3/1dxsbGvuXX+XbD9hz8XsD2A3PM7p4CSLM5lETKVBL934bg/8/en4dZkpZl/vjnfWOPs5+TeXLPrMra966u6n1veqNZRBoEG8RddMBRdGYcnfkizgyj44zj/Jwvon5VkBEQUJCdBhp6X+iturq6lq49s7Jyzzz7ifV9f3+cpLAFnabFGbH7vq5zVZ2IE09EZp6IeOJ57ue+M/YWziy/h6J7GVF0CEMIBgvvZKn1YVaDP6cy/Ovsym1BkSBFFsvOceLZj1Hq30+ueEdPoqt9FlufwzRuI0qbTLe/jm9W6CbzZK1xKu4ulI6JVau3T8vh2ZVVLLmT3ZWbqfrrCdLVtRHFDrEOcIx+QJEzh0g1RKpOK2lRdDbRSlZZCk5Sj6e4vLKXB5cewpESgSRSLc4Hy1xc2kvZ2QwIYiWpxzX6nTIrcZ2iVQA0e/qG6XczzHd7ppxHVud5fGGRG4d95ronseQYVw1vJ0g7hCm9ypEwCNMQBYQqYC44yljmIkYzY5xpL/LGnTsJ0xSIQWtineKbDlW3SDNp8bX5R9HK5BUD1yKFZKYzR9Eq0Iy79Lv9HKid4uLSBk60jnGo8QyWtHh19XXknB7BWNArrSe6TqpjhPaYrPaR911sU7IQtBjyyoTtgEc+9wQnD57lrj/+Kj/xW29FS4ktTfK2Q9ZyQWv2Fnfy4NI32FnYhiNCZttfouReSidVfObcV5jMvAXXNGjFs2StUcK0jsRgQ/41BDohVCFRqnClS84qsRzGZEx5YYTXllmSzhcJ2n+C4VzNjsK/ZiVuc/f8h1gMl0BYnO0cwTMvIWcMIHSH9dkrOd++j13FN9NKI3wjh2d6zHXP4hoZys4ohjBYDXujumCRNR0kkpFsnsP1GVJdItUpQRqTotFa8GPrX0XG9ElUgm0ahGlCmCY8tTjLaye3EamUVhghhWS6WafgSoQMmMyO9/6eJAh8EtWl1j2Aaw3hG/0ArAYHsIxxNuSGuCi/G63gvrNnuHHDJFv7qkQq4pnaMUxMxrNDoBMc02QxOEekElwjZTV4mFh1KTg7GPXGaSUBlgBpaBSCdlwnb9loFIlWmHKFjFNmOVqhFjfImCX6nAymjDBlhf7MrSjVphk9AygEBp45jBQGF5f2sBot0YibGIbC0SZl1+e5xrPsr1yCgUarBgIPW1r4RgmDKRqdv8QSPRKnISSt4LPEyY+SNfOsy07SSjpkjBBbVihYRaJUkbVsSOEzzx7h9Xt2EOkYnaZ4Ooswe3VQQ/bTiR5nyNuOKV1a3S/SDR+nnHs7BmMo3UKuEblzpsurN+xm0MtTcXK4ho3Wmli5OGYZreZ72jcZhx1XbOHoI8fJ9+U4dvYoniqwoXoRX59/hvFslW2FSZIoptOIKVSKLM+uEocxP/1bb+W5J09SGSohnZRYNzjb/Aq+WWXE28ux5pM8uvwFHOljSJe8WWbdVVvZc/WrsKWLl3MvDEV8v0Do3usfsv0/VXzmM5+58P+77rrreTzZNE25++67Wb9+/YuK/YITl7/Zs/pO+Hf/7t/x7ne/m7vvvvsF7/zee+/lHe94B5dccglJkvBrv/Zr3HLLLRw+fJhMpkeEfde73sXnP/95PvGJT1AoFHjnO9/J61//eh588MEXvJ/vNWzHIl/J0V5TiEySlFwhg+PbeFnv791W6xiJYjD3JkATJYeI4hNk/B9grPQbhMkUhnmevL0XFQuOPXGMyV0bWL/jdpbnP83i3MdxMhkcdycZeQeG9Cg5Gzje+GtsmWNd7maUDlkNj+MaJfrc3fhWP4mCdhLz6VMnefPmm5nIlbGNGFN4SBGy1PoUA9k3Y4kMUloXHGNb8TyuOYhr+LhmngcXP86VfW/gloEbWY56vivjmUkG3REcwwEcIpXQVW0KVg4pJKdb59lf3sZCUKdou/zK3hv58HNP8vTKeQAsmRCmXc51j7IxN0CSgqQn895OYroqJlQJVT+DKWMqzgBKz3Lnxv00OhH1MOTQyhzbKiVcU5JqTd5ysKVJLQhoxG1806eb9nRUPnXuPu6cuJV+tw/fsBCALU00mu35bewt7aKp58gLD9/sjVgrIoTuIEWMkJqtIwOkQvcqQIZJrBLCMOL4odO004CvffYh3vwbb+LI/Dy7xwZ5+Pw0K90u0kgZcAe4c/wO2kkHUETpKll7jFgpruq/mKVomYpdXFM3tTGlj1YmqdYkOqUWN3tEZ1yUtjFEgtIJ+yoTCEDqLkHnEwCk4WNksnCqM0usQypOBSEMzrWPsLNwBYqE863PYwiLIX8nGUuhhEPGsFGkRKpFxRmmFjXJmjl2FAdJVU94bTxTph1HFB2Hr88d5or+9XSTmM35Af74+D1kTI+S4xGkMUEa4kqHRhRQcFyUVgzlssSpYvfYIEmaIteq+/cuPMMbxq+hp7WcJ9UREkl/5nJa8TSpqvVI7rqDIOSKyh5WuzEGElMITtVWGCsUMCXsyG/iyv6LSFWMKUwGnVHW+xehlQ0k+OYEOfc6mqnF08v3cap1mhsGriBWLcb8SZpxjTwmSbqMYzjEOkJKi6PNk3xj5VleO3Q7Y9kyI/4oEoXSOQaybyCfXk6UzOOZo2TsLZztzJA3M/zw+J3Ea8J4z60u001j1hWGEQjQIQoDW5h0RUTRytINj6NQhGmnl2wIA1vaBNFTZJxrWef7uIZgpXMPfZlXY0mJwOajzz3NzaOb2FTpI0xSHEvTSZu4eKSRjSFTpKVohw9RNEdBK5Jkmpz/WhAOQggS3cUUJXzD5s71lyElZI0M890W051zVJ0cY9kyEgfbWkeaauIo5qIbd9Kud/DzPgLYOrCHBxYOE0tNyS6glKS2qPjYf/kkv/iH72D21Dy/9SP/k51Xb2XXNduY2DHW49zFKxxe+ijC0FzU9052Fy7miZUvc67zGDlrlJxZIGNnyWYy2PLvbs+/jP87+GaxQwjBj/7ojz5vnWVZrFu3jt/5nd95UbFfcOLyv8Odd975PPfoF4IvfelLz3v/wQ9+kGq1yhNPPMG1115LvV7nT/7kT/jIRz5ywYzpAx/4ANu2beORRx7h8ssv/14d/ncNy7Eo9lsU+787dUatQzqdz2Pb20FYoCVpOk298T4ceyeWOYFKjhOLJWT3Zp594Gnu+/Bj3P5zP0Lf2L8E0SSNNe2awblFm417s4xmr+V85xuc7zzCUvAsVW8vnlmmYG/EMQpIYWIbsKFQoRFHvOfRh/nxbfv4gcmxNb8kH9ccIYiPYjn7SFQAwu1xYOxxUt0rW+8p3cjDi3/F3fN/ypC7gWFvM75ZoGD6ZIxv6SaotbK0awgCFbE+M0onDZgJFhlwqoxnC/zXK1+99guBkmOCOo8UNq2kzmIo2exuojnXIDuU41ynwVLQYixbIFVgoMnZVepthYGkEYd8+vRhBrP7GLfzdJMOWvXUbEOl2JbbxMWl7SQ6JUgjbqheTNZ0yJsucTrDzsI4sQoZcKvcMvAKVqNzdAOXtojokFC0i2gVglrCNzJYrkHe9ZgLamTMPFnDpR630SKhUi2RtTz2XLOD1BR87ImDbB7s49DiPLurVU63lvnCzAHevvk6SraHLdsMZi5DqTo5w2NrfoLPznyIiQ3vwjWGkMLAkgWUDHvTWWmKJ10i3e2p6wqBb3oopQhVAGRBzWLLLHHaAAJSYlrJMnmr0DPRRHFV/+tItSBRAavdh1kOHiZvb2Mgcxsl7w4syZovj48lM5xuTzPsWpTdHDOdVRKdMuqXaUYhCSm1uEOie2JqA26O37/sRxjxC5zv1inbGdpxwNHzs+wYGGI8X+At2y/iTK3GxlKFoVKejG0znisy16kTJorHlk7wyuGdaBy0DnCNLGP+xRxePYqUPgJJOz5P1iygtVybrtGMlQpIQ/Dw/GmuG1nPtdVLWAzPkDdHiFFM5nbxxOIMGaNF0S1Qzd5OLQ450ZriL6f/motLe4hUhyBpEytN0e5HiogoXSRrT2IZJVaTOqY0qUd1hv0ysTIwhUGsOsx1HuJ043Pk7DFso4AKTjCaERTtMeaCGR5c+irr/S0MulcTq5R//+CX+cNXvAoza6F0QBgYSBtMKVEkJFrgmKMIbGJVA0DIIlnrFjrhM9jWGEqtYBt9REqyFC7jG1Uenp3mrqnj/NZlt+GbFkGqAIE0E6K2YGUpYmCD3ZP9Txtg+nju1bSiQ2SNITQx9XiJjFkgZ/q4qldl+7OTj/CpM08SqARDCG4c3MbPbLmGzfkB0rRnrvj0Pc+y76bdPQn/TUVWdJc9nokpLI7UZ1gIGjgNxelDMyjVE7wLuyGP33WAx+86wBt++TW8fvv1tOUMWveUnA+t/DFbim/m2uoPEKvXYEqfkj1K1vyWQez3J/55jkMDF/6269ev57HHHqOvr+97Fvt7Rs41DOPCgb5Y1Ot1AMrlMgBPPPEEcRxz0003XfjM1q1bGR8f5+GHH/6OMcIwpNFoPO/1TwlC2EjpobUAbWDbW+lGR+nGT1Fr/y+WGv+VZvsvSJKTSKlxfcXcmTP86a/8R/7X//MHfP59d/P53/8yH37P77E0PY8QgqK9nkurv8ym/OvIWeOkOqJgrafoTGIbuQv7HvCzvHnTHkayBU41VohVTJiuEqsueWc3rtmTYHaNPEHaZqozS84axZU5FoITDDjjXFd9C+P+DnyziGNkGPW3kjPLzyPDJVphCQOlYyIVkrM86nGdMa+fsu1S9bIcrc/yF6e+wUfPfINTrQaOzDGe2UGs2sQqJOokfOMzTyARGELQSiI6SYQiJmuVMIXNYquOaQhWgg5fOnOclU6IxMDC7I2qolkO2vz4+jfiGzaOYZE1PfrdPA8sPUaq6iw0P0LWdOikTQwBsWqQUcM8+PQsi7UWT9emAEkSCqTOkTVsqpkiUsJi2FzT87A411nEzFnsvmYbw5MDXPfGK5CGxLFMpmt1wjgm5zg8vnya5bDNI4unWQkipMgxlH0TWediclaeRLdI6BKmXTyzH1t6RGmvBSa0RApJzvKYbp9GIrGljWPY5OwMy1Gjx9UTPqbRh2OuwzC3IORIr+2R1LGlw9bcpcTaYSGo9STxhdMji0bHqAcHcKSB0ilKdynaIwgMMoaLY/TIxUEakzEdUq2w10rzQ16eII3R9JLWiuvQTFokKsU2TLSCg+fP8/VjJ7GkgUQwks9Ti7oM5rIka9NnWkuuqe6hlXR6lQlpIIVJN3qSIX8vF/f/PIPuZvJmniFvN4Zw6Pn8GKyEHUYLBVbjNu95/Et8Y34apUNONJ8EIanHDeLE4NDKCmGaEqsETYkUhwO1Z9FAqjWukSFvDzHVmccSvZ9PiR5R3TP7AIMNmXW8fcNb6KYNxjMZNIpuusChlT9gOXyaM83P8Vztw5yof4znVj+KFJLHV+7nSONptOhdJwf9HCXXZbYdoAmQwqO1ECAQ+KbNUjiHlusJUhvTHCJjbyNrb6Psv544NAiDENPs73FhnItJtKRkFzGEJGfbnG2u8szKLNOrDQQGvpFDmiCE5LknTyGw8KzNpHoFIXza0TFM2U87OoEmopW00MBssIRv+nxt9hgfO/0YoU6Rotdu+vr8Uf7i9OPUog5CC2zXYnTTEO//5Q/yod/4BHbq4JoOK2Gb3zz0cf7s9JeZ6S5hmJI0UaRxTP9YH5v3fYukefKp06ShwBZ5cs4gAkGiOzy7+qc8vfTfWOneg9TL+Ib/fZ608JIg554+ffp7mrTA97Di8slPfpLt27e/6O2VUvziL/4iV111FTt37gR6TpK2bVMsFp/32YGBAebm5r5jnN/8zd/kN37jN170cfxjQ0oX17kSRIEoPYVGkM++mVrzg2hC0DExyzjOfhzLZPsV2znwlU+TJgmzJ08xe/IUAKXBIdbvGkEIgSlc+tzt5KxREhX0Kiwyh/G3TmqtU3b39VNy9sMa0dUQNovdQ1S9XWhM4rSDZWQI0ibPNQ+zLb8HrTpUnHGeXv08W/PX8cqhn0aSYEgbQ3g9Bda/BVMaxGkbrU0UFomKyNo5ZoMan5s+yMOLp7HWtjvVmOPX99xM1RknY4ZUnD7M1GRy7zrCMCJRmg35vp7ZnSmxhUmYxHSjGLI9x9s+12c0VyBWMZY0CdMYW8aMZ6o9E720jsTFNhweXTnAkFMFuhT9GxDCRAhBnAYYQjK9EDEz32b06j5qzW7PJqDWxi+NUmOZMOpiSo961MGkt/+qV2AhXmTsulG2zG2kunUQITT7xocxpeTWyU3EaUq/k+OS9Vcz3anx/x69lx8c28VVA3tI0iYSRZA2yZoOM8EZdtj76KQxjuGRqhDDsJAqwTYcBrwqAoHSKb50qMctMkaGw6uz7C6OEFNA0MLL/hRdBOsyOznbOkgnWWXY38D5zip9jgNk6fevYb5zL45RYjD3JsSax5BWIYo8GpjIDKPRHKvPM+AWKTkZptsrrIRtNuYH2FIYZDVqMeZX8E2TJ1cPMewN0ef0obXGs2xGshWuWDdOK4qwTYNuEvO18yd43bodKKWZaTYYzRZQOsdYpoJj+EAXrbt45gRGcpQ+apQLN6EQmLikAgKVYkrJ6doKo/kCB1fPYxsmmwtlummb+e4pHGHhrP2ealGDgpWl50AmUNqgHncQGJxqT2MIF1NIjnWOM+IKqu56tKgw3Voga/oMe2M04iYVt8Dd819kQ2YL26xNLAeHCdLl3vZrmk+p6mAYNs14hVq0giFN+p0hlsM6Bdvjp3dexvZyFZV2kLJEY7mBPWDju1kWg2kKVp68/zqmGx/AoKeTVM7tJWykZIsbidMujjmKwkGTYhk2ljS5dmQ9j86dZV//GPVOQKfRZLIwgMDC8STlaoE0iXCt7UTJNJqEKJmn4O9huvEhRoqX0k5bPUVoBN004WuzR3s2Id+8Wa49q9w/f5y3bbicrGWhNQyur/Jz//3HOHngDErHKA2fmHqQ7cVxrh/YxbbCGGas2XbFZlZmz1HoG+CN/+oH+LNf/wvmzyxy9BsnOH9kiXWXT1DxtmDHPmHaQKOxpUc3mcUzSljS/15fnl/GPxLa7Tb33nsvU1NTRFH0vHX/8l/+y+863gtOXH7v937vOy6v1+s88cQTfP7zn+eLX/zid30A38Q73vEODh06xAMPPPCiYwD86q/+Kr/0S7904X2j0WBsbOwfFPN7DdMcR+mYZvteGuE3GMz9NNXKRUTRQcDEsS/CMCZQiWJ8az83/9hbeeCvPkNrdRkQVCcmuOlH3khp4Pmy1o6RxzG+c+sqSCOeWH0OAazPjZEojW2kmNLimZWP4VvjZK0BgnQWRYAlNDdUbwOd0IgWaMUNrur/EWwpCJNzIDMEcUSiU3JWP3n6cY1s7zikRaqTXssJH0uYlOxyz5Cuucgnzj5MqlVPEEtrNJr/cdTl/9l1CxnTRWmNZVkM7Brik089ytXbdrKahJSKZTxTI/HoJufJuRkSrXCkwe9d/2oKrmQlWqXq9uOZDs/Vp7m6uo2znWMYQhKpgLIzyZbsBFf178OkTaR8mlGn55dkWqSR5Oz5BX70hmupxQEZ6QEaKQ2CKGFZL1I2y9TigIlMPx0dkdcuvmHzhyc/w7bcBm7+qetQhstMo8Z1G9eT9RxWwi5n6jWuqm7m/vmTfPHcsyityNo2iarTTJbRuOSsMsvBEkcbB9mW241rFIjVMrbsI1ARzWSFvCgz4g4S6y6myBCqCFMagMGh1Wk25ydxcj9Ft/n7xHIdqUop2VW2Fi5nIThLxR7hfGeVVhITpJKis4t9A+/DEB6GMU6iFYmKQZqgDVIFliFQqF7ryjCIVMKp5iLP1GbYVhzilSO7CZMEW1oIoThQO8xsd4kfGL2N1ahD3vK5av0E/fkMUZqilGY16vLJU8/whvW7UAYYUvLeR+7hNZNbuGF8PaYQoJsI4eMYOTqt/0aanAI8pMwRy0Fk4b8SqZSi5WMYBqtBB9cw+bWLb8I1DcI0ZXPuSkwp8c1ei+nG4S1YRowhPARdpEgZcPuZ7szSTAIO1p7juv4rGPJ6lSpDeNgyZbp1lsmcRyttAoog7XK4fghPZtme34LWMTlrXY+TRK+qIpBkrFG6SQ3XcKnKnnt1SoJKY24YncS3TCQhQsSUhyos1BapVASGzHD3wl3cNHArmyr/kW58sKdibe+iIwRKZlEqxJRr5oYqQgqXI7Uprh+ZJG85FGyXVCV84OR9NKOA//fKtxG0Q5yMQxJpUjmPa20HBJoIIUzK3o24ImZbbhO20Di2z0rYpR713LRLjo8lTZRWNOOQIE3opjGxSnAzDrZrszC1xO7rtiOdlMVug93FSa6qbubJ1cNMd6a5RV7GZbfvI2gF5Esttl66kV98/9s5+thxmittglaCJ6psLLyBU43P0ElmkaI3fTWSuY6is+n7Z+T578M/UwG6v4mnnnqK22+/nU6nQ7vdplwus7S0hO/7VKvVf9zE5Xd/93e/4/J8Ps+WLVu47777uOKKK77rAwB45zvfyec+9znuu+8+RkdHLywfHBwkiiJqtdrzqi7z8/MMDg5+x1iO41xQ7PunCkPm0OkqSoe0w6c5G7+bvHfthVZNq/NVCq4iY4xgmin7blrHxovfxdzpeSzHZmCiTK6oEOKFd/oacZsht0KiDD588nGeWDrL71/xBoSQlN3tzHSeYlP+ZrrJHMIao2D340qTRvgoMMiB1c/S7/wMBiGBNnhq6Uucbj1FqhOK1gAXlV/L9sLl+GYOyzBohfXeE7PqEKQ2WTPLcnuOZ2szQE91V2u91uEVPFs7x+PL8+ytTDDbbrIxUyE2NQfC8/TNFugvV8gYNoKUNAGtFZ5tYgC+adPv2nTTFq5pEqSzFK0iGcslVF2eWrmH9dnt5K0SrrS5uLyFIO2SN21qUYN22mVdtoohbPJWP5Vch3LB58GFsyx12uwsDeBkbGK3SyHuJ040i90WI9k8J5rT7CysI1Ih3bTNV+YfoNMXcF3lej4/dYif23UtU80appQstTv0ZTy+NnuUUIfcPLSNXYUSQXqWViyIdB1D2oz5WzjWeJpk+E5MYSGEDShiFeOZWabap9mQW0+qe4RWpTS+4dKUKRrN0ysPsj63jUr+PWAMotMGS91z7C3eRKSboGHU76OTNKlFZxnx9wKCxc7XqGY20Ii7ZEwXT9hE2saWklpcI2NmqbpZDtenqLolCo7PjUNb+dCpB9hZGGF7YZxzrRqTxTxCCJ6sPc1rR26hGXcRqWQwnyNUCeEaEXcl6LCp0IclDRSaM/VVNhcrbO7PMhcssM4vI0UeiUEaP4lWKz19Gx2g6WK61yGEiScVoYqZKBRYCQKuGZxksdvhkfkZNpdMdhavYqpzmiFvnIKdYW/FphUvsBQuYxFjCZf95d2cbS8Q65QTrRleNeQx6Jbod3LEqtdi25AbZSib5VT7CJtyO2jENepJi8PNZ7h54BbK7k6mWl+mE08RqSagsWSWMNlE1e8nY+bpph0Wwzm25oeRwiFQIbVug3G/DLqBl/FxU4+nFg4xXqjiGhk+dOZP2ZTbzri/DkNI/KhNKZsjVjGm4ZPqCEOspR4qJdWabhpx3cgkaLASg3YU8tTSWcI4IolTDnz9WUY334zhDJMmy5hmPzn3KhxjDNPJkqbnWJ/Zw7nuMQacLfimzZXVDRxcnSHViiCNsQ2bipOlz8lRsFwyGZ+Fs4sMru/H8W2iboRKE4SOuXFwF4+uHCDVCdsLm1FNRW2pzvCGTaCnyeYrWJsH6BspEUcJmYJHGqb05beTs0ZoJedROiJjDuOalX821ZZ/vgyXb+Fd73oXr3nNa/iDP/gDCoUCjzzyCJZl8da3vpVf+IVfeFExX/Cd7/Tp09/x9fTTT/Pxj3/8RSUtWmve+c538qlPfYqvfe1r3zYatW/fPizLet6k0rFjx5iamnrRSdI/FQhcfPsiDOmjdJPV9meYbfwP5hr/k2ZwP669EctShFGZTrOFZx9iw/ZFxjecx9CHiSOfVGVf8P4MJI70+OCJh/no6UcxpUDpkLnuDLY5SZ+zEYEgZ01gSQ/XyJKoZWYaf4YjBTuLN5AxfVIcHl/5Kmfaz+GYQ2SsdURYPLb8Bc60j5Ku+ZekOiZSXbrJEgatnomcNDClJNW9G2zZydDv5te0XiRjfpkwTTjXrBF2ekJ8xUKObCnDjv5Bej5dJjoG2ygzW18mSRL6fI9uGoDQBGmd2fYDnGvdxY7CCImOWI4WcKTPxuxufMMhSFtEKgE0C8EyvunSiCMMYWAaFhdvGO1VFOrLXNQ/CBqkYWBgYugitbCDY5i4pkk9brMY1npTMm6ZEb/CVHuKSHfwbIPpVo1O2hMyK3seM90aJcfjN/feyp3rNyFFQpSuoHHppF2eWDnE/sor2FW8nDPtE2taOHk0KY5wQINrOj0ujzCJVRcpJJFS2NIga/pk7TH+1/F/zwOL99EbKDepuqPMBQe5f/53OLT6l1SdHMNelX5nG4la5XzjQ0TJHFI6xDrBFBJbusQqABSdtIPRG9jFkzaRSlifqfDEyimO1M/jGNaaU7JA0JvmaSQtFsMFcpbLUtgr9XfTmEQpPMsmZztcMThBiiJVimYU8qbt23iq9iRKK4TQIBwgREgPKSxUehqVziHlEE12Mt9ZxDZM5rstFsMWo9kCVTfHk4sz3D1zGltkL/CQHl58iCAJcAwTQ2iUDjhc+zhZI8PW3AbeNP4qNmRHeN3IzaxEJ6jYPlJoYrWE0KsU3B6XZcgbJ0hCbOmwzl/H+eA8jaRGxhyk7GxDrU1BSWGiSYnSZXJmke35ixAITraO9UxOgZnOCg8sHAYECJeV+VVKfpGYhIdnDrKveAN7i5cx153mgcW7Ods5jS1tDNPotSmxEAjCdAnXcPANm7Kd578fvIdQxSDAM2z29q8jYzqQaizH5OKbdnHywEmmnpXY1iYMsmTt7UAHU2aQIk+qY2rRNK20Tc50uGVkB6FKOFqf40xrmePNBea7TW4b2UHFzSKEoNCfp13r4Gbcnpq45TKWrZAxLS4qbuCmgW1E6VHSfA3TFXzqfV9gZbGCis4ik7vI5Y8zvG6VcnWJTC7GkC6+NUDV28ugfxk5e+yfTdLyUsGBAwf45V/+ZaSUGIZBGIaMjY3x27/92/zar/3ai4r5PeO4vBi84x3v4CMf+Qif/vSnyeVyF3grhUIBz/MoFAr85E/+JL/0S79EuVwmn8/z8z//81xxxRX/VyeKvheQ0sGzd1HybqfWvevCQL7AoC/7w5iyj2aty7ljpyn0T5Kaw4i0gxAGWuborKaYzUX83AtzQTWlxXR7kXPtFX5h+43sKY/iWwYrccQ3lh7kpqHXYkufhDaJ6qIlpKpBPXyEcvQk6zIXYwmLWhqxGNUwZI5m3JPEt6WPb+Q50z7KRGYLGTOPb2Y513qIbjLPZP61NOMaOdNlX2U9U+1lrurfTNXrtbU6ScxMu8GQn2clCliXK5EmmnC+zc2VLfh2hk4co0WKLS2kaeIIj7lGi/tPHOZnr78FIXo3P1uYHO8eI0zOo9Mu64o/wJvHf55UhyQ6IdERBTNPI26BtslbGXzTpp2ERKlHlCR4jsVqp8MNI5OU/Z6QnuWYGLh00joPLRzjtRMX45sWw16Fc51Zyk6eglUg0SmGMGimK9wythVX2hcMBSdLZWY6K7xr2xV0koc535bkC9djGf2IRGBLi5nuNFJqtuQupuJUQYhexUHHPT6TtDClJlJtUp2wEJxjzL+ITppyYPUMVa+A1nDFwOsBTSNawDd7ZOvp1kN4MsfG7A9iaBNLKhzDpRWdoh2fZDT/VhaDFfrdCgYxke6yGCxRyE1QscsEKkIi2FIYpRF1SNGYQvLvd/0AK2ELUwoyliZVip2FrTxdO0InjRi0LPKOiwZacUjWtFE6ZSJXZNDNMdtsMpTLsX9gmJQug24V39AI4ZDECiFBGiMIYxTbvQXp3IBhDDLV6GLKmGYS0owDlFY8NnuOHf1V2nHCidVlOrGFRGAJl13F3ViGDVrhGhliFVFy1tNMFjje+gIla5zbBy9jwK0w3TmFI6tYIsEQHrGK0QosCQkuK8EKA14fV/dfx9TUFIvhEhWzw3juZvLWerrpPKBxjAplZwtpuszW/C6yZp7T7eOkWtGIE7qqyzeWj/LG8ct7NgBnFklFyvbhTXxl7gG6CyH7KjvYkN2LFBIpLTyzgOqCl8mTYoKOMeUwqe5iSZ/j9SV+cdd1uIZFI4yYaTa4YXg757vLRHGEb/sMjPfx6d+/h6fv+wq/+qH/RmUoQakmptGH0jHIEpGO8c0qoVKcaE2TNTP8/LYbuG/uOGdaS/S5Wa4Z2Mz6bIVk7YHFzbiMbB6itdpGpRoDi4KdIVKrWLLOF8//LxrxElVnnGuvuBMrv5mHv/gMk9snWL99HZ5vYFgewiwgxEtgxPkl0CqyLOuCO3S1WmVqaopt27ZRKBSYnp5+UTG/q6mi48eP81d/9VecPn0agM9//vNce+21XHLJJbz3ve9F6+/ut/j+97+fer3O9ddfz9DQ0IXXxz72sQuf+d3f/V1e/epXc8cdd3DttdcyODjIJz/5ye9qP/8UIYTEMvrpz/044+X/ykjx1xgp/nsmyv+dUuZ1GDJDmmju/8SXeOhTH2f+zBzNukV9FQ4/+Aif/h+/z+LMygveX6xStNb8zJZrkULw5ZnDxGlE2S5y09APohEgLDrJWVyzSqDaGDKPJctM19+PJwWG9Em0QTdt001WGMtsZHNuDxW7j0a8SCupX6i4GMIiaw1zsnk/3WSVk+2jLEfn2V4Y4Wc23cBitMKfnf4Kf3ziSxyqn+LW4e2EumeoKIXEdi3sWLK1b5g+N0vGtummEYiYNEnprgTsHhij2ZG0whCBYLp9jqxVwDf7qMWrHG/djSsdIt3m6drX1jxkNI5UOFKi0Qz5g7SSJiUrS6zptbmCkPMrDdYVitSiJokOeoaSOiHVCaOZMgXbI1YpE/4g7bTD2fYsV/dfRskuAIrHVp/EtiL6vCyPzJ5judvBlDCeLeMYSzy59BeEaYwhMjgyh29EDLhVthd3ct/8U3x59hFS1ateKN3CEDahCjGFpJssE6uASHWYbj9LomMMITmwOsV0d4FYG4xkrmFr8Vps6SGEQaoDGvFZyu4GkjhLrCIcI6XXglohSY5hGxUWwlUMIXsJsuqQtXx6TQjNbLCEa1osBU0cwyJVKbcN7+Fkc57fPvx5VqM2edtjujNHM4p4y8TrGfOHOdqYpmB7uKaJJU1Mw2A+aKK15vxKk8VWh7lWiw2lCoY0GXQtnlj+MHGoUEmKYZigLZzcezDsHyFoDBF2XJY6ASW7SJgmNKOAXaVhHp+f4djKIgYCA4Oya6NJ6XeqGMLFEiGG1NhGr7I0mrmWU63HObj6KR5Y/H1ONL9Morv45hChUqQ6wpQFtMiSsQ1S1UUrsA2bTtJlwBnmbRM/gSkEK+FhuvEsQ5lLmczfzvr87YxmrkagWQkfw5YGm3I7uLb/VrJWBqUUZSdH3vJZCM6gNPQNlfn4b36GQprjzg0/wEywwEemvsCXZh/hvoVnmG4v4UiHNFGE6QrtZAVTZJHCYKX7KImKGckU6PMytOIAxzD44qnnODS/zFs2XAu+CUKAULTqCyRxyHNPHUGTYOgGQtVQKDopaG3gmwOkOiXW8FvPfooj9WluGdnGO7bewA+t208rbvPRM4+yGnYuXGsMw6DQl6c0UMByTOI0wTUUz6x+mTCt40iLWjzLPc0/I941xZV37mbyovV4xWGc7DqkNfDSSFrgJTFVtHfvXh577DEArrvuOt797nfz4Q9/mF/8xV+8MIjz3eIFV1w+9alP8UM/9ENIKRFC8Ed/9Ee8/e1v5/rrryefz/Oe97wH0zT5lV/5lRe88xeS6Liuy/ve9z7e9773veC43y8wZRZhjGBLD5Uu0JPMHkDKMlK62G5CaWiSZ+75FAfvuQ/Hc0mThDQGJ7ee8tALHzFLtWJDvp9PTz3NXeef5Y3r9mFKC1tUqCctjjWOkrdyGBRQOqUdz1F2BhnMvp5zjQ8w3/oEo4V3kLPK7MhfykRmS28SIe3gGnlildKI6xjCQGlFI27hmcM4xgiBahOpkK/O/RV3jP0LHlo6xDO1k0SqV0U43Z4h1BFnmnNsyW7g0aVzvG5gC/lKDmHZJComRXGqNc+gtw4t4OB9RzAyFm/cvY9OrPAcl8VwkeVwkO2Fm0nTadZlX4kWgtnOcXYUr0bpFEvaoFdxCBHkyFketaSNLQ0QkihRnJ5bZWKwSKISMpZLojtI0TMkdAzNuuwAC0GT5XiFLfkRClaeM+0ZrvL3MjD6WqY656jFdQwBSmvO1Fa5aniCxaDFaMZntnOQQLXYUrwNQYBNm7wzwdFGjfX+Vn5+yyTtpE3FyREkCzjSRIgMvpElVgHduE7TWKVij9LvThDrFFc6XNa3gfcd+zJvmLiMPaUJyk4FzzTWWkktGvEMe53ddFsp5WwGrZpgSGxZAGK0TtiSW0eYhjhSYQhBxc6R6IhO2gEEnuEw350lZ3k4hkWiFX819Q2acZdYpZjC5VRrgU9M3c0vb/thNuZ8TrdnONs+xysHrqXfzRCkMa04pBPGHJmf57atm+noGFMaFEyH4/XH0cJAaY1h9i5RGos49Fmdb7I6X8OwDArjHlrrnleUaaPQnGvWeWRW88rJzeyrjlByLerRIllriLzl0ImPg7BpJx18o4Rp+KxGs4i1qlaoeqPDjuwnUE1MWSHVCabIgkhQaQspfDzDo5nU6CRdclaenJnFsK8iTueYanyAWvAkWkfk7G1Us7fT512OIXp+Qb6ZQWtN0fFoqpQr+reTpKfRrEcpxQ//6utoNOcYz5X56fVv4HT7PLGOmcyNM+D095JGt0akEqTw0QiitI5rjaN1ytZCldWohdASy9TcuG4D/+nBr1PyXN62Yy+vGFqHZUuqY4Ocesbi3LGTiNv3oaMHwL0DIfKkhGhtoLXDUrhMzuxjMazzodNf58On7yFn+QRpSr9Tot8tkurvLIWR6DbNJMAQHcJ0DmvtgUEgCNQqj698lk7+LNcPvh3f+vvFO1/G9yf+83/+zzSbPaX09773vbztbW/j537u59i0aRN/+qd/+qJivuCKy3vf+17+zb/5NwRBwPvf/35+9md/lt/8zd/ki1/8Ip/73Od43/vexwc/+MEXdRAvVSjVIY0PELT+kKD1Pwlav0fQ+iPS+Bm0CsgUMuy58VK84naE7CMKJGmSAWOE3TfcRHmw8oL3lTEdQpVgScm/2nk924t5pDBIteBY41lMYSJRFNwdtJM5PMMjUSbV7BsZL/wMSvXIxDmzzNb8xTxb+xKfP/dbfOn8f+crs/8/lsJjbM7vwhL2mj+NyWocsr30RsK0wYg/zmR2G881z3DPwiNoQoq2RdYSSJH2nlijGs24w8naErU4QEpQEmpxB0tKzrYX0UqTxopzR2dYPbfKuv4SWsJqkLCvsh9NjBYFLun/twz4V5GoiKo7znz3KIqUVCWAg0ifA2I6cZ2KXeyNkkoNGrKejTQFUZpSsXNIYdKOZ7FFL/E5urjYS7q14GRrhn6nzE0DlzHTneG+xfs515kmSgNWomVSnbCtXGU8X+AbS1NrBMqATflrcaSP1hGtmkk9VHxj4SwCONM+ydcWvkKqQ6aadyOkj9JtIMKUFnl7gFbSQArBptylJEoRqYiLyuP87v63sKc0SqJ7KsE9M8wIzygisZC4DBTypLpH7NO6iykkfZnXY4gsqdZrD3KKlAhbakBQsooMub3qxli2QicN8Q2bdhIghOQXtt6Ga1hoTKSwCNKYPjfPqdZJthdGuLa6lwenT7EStFnodOh3s2g0+ydGcS0LkYqeVg0phhDsKt6EaVqYloFKU4QsUl9sc+TR45w+NIVpmwxk8iAkriEZzhYRwGXDo9w0voHNpT5MA7pJQidt95RpiZjvPokQFofrX2KuexhJT5ul39tBn7MVcNEILOmiVUCsunSS80jRsy11zT48w0CRUjAL9Lt9THemONc9hyEsppsfY7Z1F5FaJdUdauETnK39fygdIMW35AkS1SJj2zSiLhcV1+MbBt1wFjfrYJYTnuvezenVhzHSBrvyI+zIVAlaJ1C6dwMwDIlj9hGreK0iaNFNVtC6u6al0xvT/8AzD7GhWOJfXXoNE7kSf/z0E3zh3Elsz+aiG/ZR6Csxe3oKiNHJWZBFenR5i0bc81F6evU4OdPlir5tuNJG0TPbLNo5SnaOiUyFrPmdByJS1cU1eglJ0c7hGzaJCgnTLpaUDHv9OPL/KmPhZfwjY//+/dxwww1Ar1X0pS99iUajwRNPPMGePXteVMwXnLgcO3aMn/iJn7gg3xtF0fOE4W655RbOnj37og7ipQqVniPofBSVzvBNfrlKp3rL1CxCCNbvWsfrfuEtbL3yNkojVzC85VpueOubuOaOq8kWXxi/BcAQkjBNuLivymMr9/Fnpz+MFCaBCqjYfWzJbelJ2+sEz6hgSxelztOMTlLJ/CCjhZ/FlBmUjjjdepjV6ByW9LCkh0Aw1X6c+eAYinRNltziTHuKh1ZOIMQwFXuQrfm9nOssEqmQWEe9kWhhYkuXbhoxmRlmJaqREvKF+edwsi6p1qA1EslEZoDD9QUQcNHNu1h/yxa6pAgBnzjxDB5FbBkT6RDTKLIQzmJJh9Vomnvn/5RmvEiqI7TM4Ni9Ca5OEhKpAEOYPb0QRzJQyfGBp57sKdMiUaqLFAKpu7jS50RtnoVWm8ncAGc7syjdq77fu3gfdy98na/Mf5VYJ1iqRDuKuGp4AiHg4Mo5Um1S9XaxLnt9Txk1dgiDDJ00ZsjL8mzjMCeac1zdd+2aMaUkTHotwUTHxCrCN0tkzAK1aJae73XP66fnExSSMT0yho9vOCi6pDpE6ZSN+VtAJBiGwWx3FSHtXvKSnGMk/5N41hjttIMlTLQOmW/dBRhYwibRXSCiHnXIGC62NEh0imvY3DF+CatRh1958hPMdFbZUVzHzsJWMobDIyuP4BoCTzgcWDzDueZqj5ytYSCTYziXZ7bZ5Ec/+le9cwLNuuw+msnctzy/hCQKUlr1NpWhEn7OI7ElcZhiG5LVqIEhBSmK2ye3oAQ8vniODx57jFYcUrIHSXTak5FPFjGFx6C3jZLTh9JtSlYVtMI0MjSSJbTWmNLEMTwgwRQ+mhhDOghhoHRClIY0kmVOtZ6hz8kx4PbTTaZJ1Sq+WcUQDlLYWLKIKX0a4QFS1b1wPgbJLIIYyzBYjlr41hhhMkdpoEAjmmN9dj+V/CCnW/dzcPGvqUfTlHKDtJJFEhVjGj19na5qo3QEwmCh+yQIFwW4pkms27imya/e+1f4NvzURfv4T9fdxMZSmaUgZnTzCHf84o+z9ZI9oCSGHADhI9dEBBOdEukYUzqcbk9z89AudhUn2ZybYCIzRNnO4xsOV1c3UbC/M2FWYGCKNf8wo8SA28fW/Ca2FzYz7g+TMV363HUvXcLtS6BV9I+BF5zqttttcrmeCquUEs/z8P1vfdk8zyMMw+/9Ef4zhdYBSfQE6Pa3r1M14uhppDGK6ztsu3wLY1vHCDshhmmQLfrYrv1d7a+bRuQsi0dXnuJQ4zCXli8GneJIB0TIEytf5uahtxLE5zGNDEG8wFzr4wTJGQyyFL3LKXpXECiHM63HcKSF5wwBvZQrViHT7QNM+HuxDJfVqE3RLvPp859lS24z9eZJ1mXGGfGGqbrDdNKA1aiJEBLf8Hi2foar+reySJ3t5X7qYYz0TXTUZSJXph4FTGYHONqYYntplL5tgyQGnOs0KDkeN4xsYK6zimenFO0KQdohY+ZQOmG2ewRXZqnYI0hho7VCiX4MJEiHbhrgrSVgkVrEMAv05TxWuiF2xsAzPVY7z+D4lyPpMuAXePT8WXYPDJK3svQ5RWrxEsebJ3Ckxb7SxYyZ2/jikVO8cXuZajaD0orbRnYAgj5nB5IUpRVx10KaLpZhMJ7N0lYx45kKx5pHGHL7qfr7AZCYmMIg1BEznZNsyV+MKSSB6hClLSQ2rTgkZ2VZ6LZ4cvkcPziRxRUBhuEx332aqredrFUmSVMClTDfiRjNeNj2bjrRExiygi8vItEJpkjppucA1XPlVgFT7UNkjF3k7AyusFkOm1TdAnUrw28fuovZbo3/ePCz/Pf9b+K2kcuQQuAaLrVoFVdkKbkZ8rZLxfO5+/wJbhraBAIeOjPNjZsmezwiBXlrmFo4gxCaNFVIaZBEMWmc8rk//DJ+zmPD9dtoJxFZTJ5cPcbe0g4MbbDY7SIFHF6ZwzZNTOlSsLPUogClNZ7Zhykc1mV2cnT1j3CNKuO517ISz7AcnsUxCmh6lSrPKGIbgnbcRKkEoRNsAxId4Zs2T6w+zLP1x0hUys2Dd+BznFbSxjOKZGQfAoHAQAiTKF1B6RiDXvUhTOfpJitU7K10kg6aAN8dpL3SolIa5FTjfh4/+wmUTjBMg5Odr7O5eCM7y69G6QTTkKgkwsDokYd1iw2FN5IiacZdspbJcjLLNeMTPLcyz+89cTcXVcfI2x5zrTrXj23l+nUb2LJ/I2NbRnqVMmc/CBOdtjFEkapTpp102FHYwKdn7uUVA5fx5vWX8vjSGRbCBuNeP1dUN7IpN7Bm8PntMKVHM16lnTTYWXwlT658nKVwFqUTbOky7G1lLHMpjvHCH8L+WeGfKTl37969L1hn58knn/yu47/gxEUI8bwD+dvvX8Z3B63THsfg71qv6qBTED1Gdr6chfILH3/+24jSBCF6I8o/sf6NTGaqSKHQWnOodh9B2lMO1TpB6wSBIkjOEqR1guQMC+EBhuNz5P3XYEuHZrLS02ERErU2paG16rUYdMrT9SNkTZ+fmfwpAD5w+oNc3XcV+0pX4Bo2U505lNZIIQjSkPsWnuaG6m5GvSojo8Ocbq5QTzo0kyZZq4otDc53W+TMfK+84RjEUQJacN/Zs+zuH2CymKGbQidpkzWLaCFoJ702wStHfhktoJ4sIQmpdx9hfeG1ONLGxCBOu1h2jmY7pJsEXDw8wpHGHCVvtOfi6+0hVi2Wg69x0cB+griPIE3YU9i0lvD0eCBKK7Znd3Pg7Ao7+0d5bmWJTbIP0xRc1j/Bue486zMeq517qWReRagS/LyBYRrYmRLnunU+Nf0JNue2sBKvUHUmgRC9plgqEFiGiykdLKGJ0hapFjTiDkWrwEynye8fvY+j9Xku759gU85HYpK3RjhW+yx7yj9OrWFTLeT54+e+zi9vfyVS2NTaf0neexWptZNuElO2LMayd4DukmD3kiwdUPUKmEJQS8LeGLPWzHcbtJKAIa/A/7P7NYQqZGt+GM+Q7C9dTNEuMx8scc34evK2R8ZyCJKYThJjmgaWkPzArp5TtC090HXKziig0UojDIGUgtOHppjcPc4Nb76GyDGIkogwjZFCUjA9NJJnlk9z3egkB1bP8eYNu6k4DnHaxhAms90OFWc3EujEJ4jTVdblXosrYG/xJuaDU2g0Woek2Ji4GELQTRbJ2FWacUS/aROkbYSwOdk6zEz3LBo403mObZk888EMvpllyB3Hkt9qn9hGGfE3FKZNWWChcx99mS0U7Tyd6ASeGCcNIM22OLj4aSxXAjZKKeIw5vDilxnPXUzJGUfrGAMo2mWkMJHaxjZ86lGdE415rqxup5t26SRn+dUrb6UVJrTiCFNIKp5PzjExpYUU/WQLXdAKYW5B6QQhfWSqORfM0027jPpDvG3dqzjRmsayDF43vhff8PAMm5zl/r33AYFJoiIMYeIYeXaV3shc9xDtdJWyPUbV3Yolvzu/t5fxTx/fNFj8x8ILTly01mzevPnCl7TVarF3794LY07f7UTRSx1COEhzDKLvvN4w1/VMGL9HcE2bRCfcOngpOn6CpcYnyZV+gUQbrEZzgCDVIa5VJUwWkdIlSGo04nP00npBO5miSLjmEdLT+Eh1ii1dLOlQtIcxpbOm1xFgCclEYRMH64co2SVc6YFQ3DK4jyANON48hyEkQ36FGwcvxpAGUijOturcdf5ZfnhyHwkx0Ro590szz3LP7HN84qqfRCtNnKqeNPvSIrdsWEc3CdBCABrXcJlPllgK5slbw1Td9UQqQumUSK0yH5xkPBdiCgdbemgUSimeW6iz3Klx/aadJLWYlIj7lp7hhv5rSPUcjfAU6wq34ZollqI6tmGhdUzeylOyS8QqoWINMtc4wpb+Af7gyW/wtj17KfsuZdfpteziGfLuHgxh4XomWp5BKhPP7KcV13nn5ndiCU0rWSQlBZ1gkBArBUKyJbcPSU+wXutVXGOQbppiSJOvzT7HTKfGzcNbcQwLIUCjqXo7iFST2c5DhNF+ymqSOyevRJASxedJYomVu4Ra0sKSFlo42EaWJK0RCguQrM/sJ1YRHRWSqJQht8Rq1KEVB7xr6y28YmgrC2Gdo41zlJ0sOdNlXWY9naRNM24wmennfLNJwfF4xfAmio5HmmounRghJOXxuXNcMlShm3TJmlVSFaASCyyDOE6Y2D7Klks2AppEKRxLooGd+Y1IYdBOIoYyOQRwcd8okV7ClD0bhVTbdNKQgjWIFJp6eIRdlX9JlC5ztv4R+v2rmchsxRBZEt0BAmwjT6RWMaWH1k00NgLVa8uRUI+W13hiCcebz7Ar/0b63N00oqMXlHMBDJGl6O7D/BvtEMfoTTmlOuaRpWNszRVpq6fIe1ewGJwiTVPCIOhdKxAgwHcyrEZnGNMXYwoXqc9iGSMoUqSw6KRNFsODbC3uBSRj3noWwzqPzZ/l3unTTDfqeJbFnv4hXr/xIor2NyvovSqQpto7D3SbFItHl7/Bwdph9hR3c3FpF7uLkyRKEaoWFSdD/gWQaVO9StYs0FUBH596H4PeOOsyW8lZG2gkdR5Z/jrD3kYuq7wC13jptYuE5lsWCi9y+3+K+PVf//V/1PgvOHH5wAc+8I95HC85CGFiWruIjUdR6ZnnrTPMrRjWFsSawdv3Ap5hk6iUVB3j2Or7EShG8m8GOUTOzFOwBmiGc+SsLFJIwEfKEnCOHhVKs9p9kuFsgzF/N2c7h7DM4jdzGizhMpa5CEdmAMGewjY66QLP1u4FUSbVKZZh8sDiY3iGy1vXvYJ2GqGUouIU8AyL1WgR18hzz+xRvj53hFeObsO33DVhuZjZbg3ftEnSFMc0MV2DxZU2t27cSEibI7XjXFTcTMWuoNYmF4pWH1m/r8flQF9IsAf8y5kPF+mzc4RployRoxt3OLY4jRRZHMNkd3mEtqrxufNfYWtuKwOOz2j+TdSSFYatco8ACZzuTDHsVbll8BVEKsaTPp5hYhsGq2GX07VV1hcnidOUMb+AiU2cnCRJ85hmP534NGE8hWP+EHtKe1gOj/Po0keZ7R7jhyf+K4JV+oydmNImSBsYMofSXSxZQKsOvikxcAnTBN+0+JVdt9CIA1ajLmO+iSENgniOjJmlYI+QWv187dhRfmD3Diw07SChs7QBXR4mVgs98Te83r/SI057xn+2zHCyPceBldP84Mi1WNLANWyuqG7AFBDriCP1s1ScPJ87/xB3TryCRrzKk6vfYG/pcgpmhQPhSbaJAap+lqO1BYa9PAP5LKfqqzy7Os/+wSxxOkvW3oUipr4c0DdSwHZNStUCD3/2CWaOz3LHf3gDwjFJdUK/W2Il7NBNIzYX+3hsfoorh0e4Z+4ZBFuIVZsgbTLsVRCYaGFQ8fbjmVWCZIHJ4p0YSDQhQpt4so9QrWAKSagiTjQ+x57yz5BxMihVwzMytNMuVXeEdtpAY9OIlzndnmFj8W09E0C1jETiWaP0+dfimRPPOx8to8BQ9jZmui2+Pv8EiovYU1iH5YHqaIZyW6i4k5TddRjCpJ0sUUvPYlx4mIlI00UMYxwDg1h3iFSHSHVJVEItbiNwiMMMf3Tw8yyGNYQQZOMM3dkUrSx+atelVLxvJQvCKCBVh0g1CVKDeryEITUPLd3DvYtfxZEeFbdK1sjx1nU/RN7K8b9Dks5hiQqJiliJ51mMZjhYewghBLZ06HN6Jq6RCl+SictLBbVajb/8y7/k5MmT/Ot//a8pl8s8+eSTDAwMMDIy8l3He8GJy4/+6I9+18Ffxt8PaQzhZX6EKLyfNDkOCAxrK7ZzDVJWv6f76iYhjuyQRE9gS0msYk6v/j6bqv+NQW8diYpQQpHoBko1EXKIweyraETPkeo2azMoLHW+yobiz5Ozx5ntHiVSHbJmH2OZi6i6Gy7YEFTdMscaT9NMltmc30OYdonSCCkEH5n6a4bdASaz4/Q5fZzpTLE5O4FjdJjwd3Oyucxy0OWeuePcuX4/ppC4hoUlTH580xXYpgkpJLakz/dxHUk7Xeavz32ePcUdCGIaUZ2K3U8zbhCmARmjR7TVKHyjH1PmeHT5Qa7qu4lENzCEjSFNfCvPxaPDtKIQ05RoLVifWcdcsMiYv51msMpisIgvh7CNnmVBkLbppF32l/bRXuwgU3jFhkl8z8G1LO6dOs0dW3fgmRJLSlQ6z2rrgwyV/yc6FQg80qiClbVpJLPcN///sRqdJ2tWKDmjhIkJutcM17qnx+MaGVLVJmOvpx0dJWdfSpgK9vWN89TyNFU3Q7/rozFJdZf5zn0sdB/FM4dYl38Dt27bgdIBQccibpcZHL6DVqxxpUsraRGmCY7M0wyP4Np7UVoQqoj57grjmX4iQpIkwZUmQkhWojkyZmGtWqN4zfBlDLpl7lv4OkI49Dt9hKlmV2kIhCbVmqeWZigO+2Qtl5xtc/XIOpaDADvNY1ouiATb6dWWpDQ4f2qBP/v1v2BwcpDXpwpTm0x3amwueHTSiCCJKbgZDtfm2TvQx2R+sJesojBET0X26wsPMeENcXFpB0JoSu5W0vQ8rfAbRPFJTGOAcu7tBMksic7gm1lG/CuRtFG6gxYRpk4wMNlbvIpWUkesZe9HG0+QN29iV/kdSGJAI4XXkz34Ww8hpvSAKgvhc0Ra8rW5Z+im27ipuo4x62IGc1tQosNKeIRQRfT5k4ybe3taNLJHGhbGCOkakVYKk0h1GPZ28XTtFBeVdtOMIu45dwrfLLDVqTCSLZCxHE41lnh8fprb1299XuLSg+61tHQXmyYly6HqbGJbfivrs2NrE0CSvPnC2tZSeHSib+AZu+h3RuimjbXxchvfLOBIH8uwkd+dpNjL+D7CwYMHuemmmygUCpw5c4af/umfplwu88lPfpKpqSk+9KEPfdcxX55D+78IIQwMawOOMYjWrbVlOeQ/AsNeCInWIagaFbtCK2kSJsfpBA+xvXAlT658GY2BRFDrfh3fex2GsZ4d/f+Rle6DhMkSGXs9JfcKIhUwltnLiL+rRxSUDo7MPM87yZISQcCgO4wjLa7pv4bT7dNcUr6SnOkzE8zRTkOqTg3bcNhd3EjO7I1oF22fME1pRTHLcY1htw/PsHjz+n200oDlqE1wvAYbCvi2jZCaME7ZlNuAZ2RIdZconUNbZY40j/CZc5/hP+3+dUyh8I0cWTNPLVllqnOWdPErXNf/GiLdomhVuGpyAsdw0MDJ5hJVz+aqvsvJSG+tvXWCUXcjK52A/myCYxbZnN/MieZxcirH8YdPse3aHWQ8l1rQZSxf4Jb1G5hqL7K9NITWEEQHiJN5pLBRQmPKSYTfE/paCI5Rj+eQQjKZvRRTOGBkSVQTKUtYRg5LOCjdWRuD9cjaWxFSopFYQnL1wDpOtM5xqHaK4aEdKK3oJOdJVAtNQhzniWVAn2nTaoXU5gQjuzZwZHmF4aJF3s7wbOM4FxcnUaJKMwrIOxmUShjLVImV5r7Fg+wvbaVs5wlUxHwwzfpsga35EVpJmyGvSjPq4Jk2l5YvJ1YpUaopux6LYZM+O8fW0gCnVlf4wuIx3rLzImaDBodXm+yzR2nLZXy7wpFHnmX/rTuIuinP3HeYJE4p9uVZabQZ8ktkTBe0wJIS1/KJ0pSqn6UeBlTdCp0kwBQ2tlnm6fpJDtWPMOYNYQoHIQRhfJK52nsI4iMAePYePPdGEDlOtp/h4uK1jGQuJkpWaCZL5FSJJFzE9Eusy2yhYFd4rvk0tWiJDdkdbMttIogOkKhl0BpDZvHtbTjm+LclL7ESmMLmZH0RhGCqXeOh+eP8p4veQK37LEdXPkqgVtAoLJllLHM9m4t3rJ1nNtLopxkvUbSqmMLAlTlsWaKVnEECGdPjTGuJ68fXc9vENhzZM53UGtpxhPoO7X0hHAzh4Ykl1mUm6DZPc+Pg9fiGYCU8w7IKsKWLI2NcY8Oag/ffDdPoJ1XLZKyEMW+EhdBaq4VqJCCFwYg3+ZKttvxzbRX9TfzSL/0SP/ZjP8Zv//ZvXxjwAbj99tu58847X1TMl9PcfwKQMoNhDGAYA/8oSQuwputg00ot6lEdz/Dps/tptP4cKz3BFZVbcWQWQ7qkukuqppnvPs18OE/Ru52Rwk+Sca7gfHAOhUYSI3QTgw5Cd9E6+Vv7s8hbA/S5o0x1TjPiDXJ131WU7Dw/su4N7Mhto2KXCFQXV9j02xUKxgjNTsh1g5vwDYv9/SMsdlfppglPLJ9lLFvikaWTzLRXaNTanJ6eY7HTQqOQuLxt/Zuox1NoDJRqEaYRz9afJWtnacWraEKyZp5O2sAQVm/kW0PWKqzpz3Qoeg7LnS6mlDxXW2Ch2wIkk7l1KFLq0SkqTpFGHGObLpGKMYVB1e2DDjz1wEHiOOahmSmenD/Pz+29lIuGBtECEp0Sq5BUrWCZPQ2eoBMhqdDVOVKdEKQNTGHhGVk2ZvevkaXBEC4Sq6f+iyJdW9aJZ0mxSVRCrGIqrscXZh/lT05+FSkMbBGjkWStdUBKxhyjGRrMt5eACGlILEeQqi6OaRCrCKUVJ9snEMJmNRYshcssBFPYwmKdP0yQRqz3B8ma3+IGCQIkKSXbY11mkFYUkrd99pUuQUqxdsPUuIZFlCakKDbl+3hqdpaPHTlIKw55dmWOnJ3BNCw6egZpCOIwJgpSkjgmaAc4nkOunIEk5VxzhX43S0pKycpQdjLMtOqMZ0vMtLpkTI+nVu/FMUpobM60Z/EMl43ZsZ7ej+7S6H6eID7KN+UIhHARwiRWmoVgiXp0Dokm0BBraCx1OXj/LJZ2WY1W1gwar+fmwTeyM7+TODmLJfPk7d3k3X341ibiZIkomfu2c3KmU8cSDtsL42gN3SRmPNNPJ1ngWO0TdNJZUt1B6S5RuspU+yssBc+g1s41DZxtP4kGGtERsmYRUwr67CK2NCnaLj+382peObGN0/VVfvvx+/kXX/s0//kb9/D04hxF5zup0yoMXcczSlxcuYFXj/wwfXYWS8SsywyxNTvOZGYYQ6QsR+dI1N9B0vvmdUCWyLpXY7LMnuIlFExNmp5Dqxqm9NmY282G7HZM+b3j831f4SUwDv3YY4/x9re//duWj4yMXLD5+W7xcsXlJQLPtOgmLr53Feda91GLVy+sMzq/wea+X6acu4MknaHoXU2crjKW2cPxxld4tPYJkD4Za4I95beRNQzmmx+jFR1C6RDHHKXsXUfe3Y8peyVkKQz63I3EaUDe1tw1+xkG3AEm/A1szE4y6r2a0+1zGMJkc26SfrvMUqfLxw8d4M0X7eI/XPwa+lyHouXRTiK+NHOIqpdjtlOjVYwYr2TRhuJzjzzBz95yA/1unlS3me+eoOJMkLUnAE2kIzzp0kpWQUuE5QAKSzhc3XcLQ94EYRrjGT6p7tKKWzw5M8sPFHexqdCPRFJybLoqJGdIduUvwzdz+HYNrSxmuvNU3XzvCUAptJkQG5rnVpY4uDDL67ZsQ4mUbpKABiFtHGs7rn0ZWmlMU9JcbZP4AkPaVN2NDHnrMISgaA+R6haJDrFlHi16rSK1JiwnJDhGsWewaAgcw+SJ1XN8ff4Qbxq/ihsHdoBexhI5yu4+loODZM09nFhoUMz3SKxuxqEyImgvH6Bc2E+gOnhS4BseCpPT7Xn2V3aTqpCs6WNKm6pTopN2yZoO7TQiZ3nkrDJzwVkmsxtItCRve3TiBMcSayO7ikSkJFrR5+Q43VxiQ7ZKznJIUs2ZWg0pYGuxhBkrLJEhCROGNgwQBTGOZ7Nu5xhCKFYX6uQcl4dWTlHJbERqQcHK0kkSTMOgJH0G/SxZwyJr2ZxtH2bI30MnaWHoLjnTAi3RNAmiQ0jhonQIaJJ0odeOMfKc7x4jUvsQSExZwkQSaDj80BTbb9yFISXPNh7lYO1RJvzN3DpwC65Zob0cce78LPXFGuXBAfqGB3DKBqkKMGQvWUiU4unlGaQQvG7sCmzD4pnVM1zSt4ladJx6NN1Tc6ZXpREIlApY7D7NkH8ZjpFH0FuvSVkNnsLLjhGlHXYVN5OSkLE8qn6WIysLvPvhu1nqtpHA2UaNU/UVWlHIW7bvpez+TZKtgvg5pHMdpo4Z8ap0kvOE0UGO1z5HJ5nCkxWqmRvoz7yaSAWY8u+WZpDCxLO2YsplBs2YmwZ/mpVolU7apc8doWj1kTH/91yZl/H9C8dxaDQa37b8ueeeo7+//0XFfDlxeYnAEJJYJShjExsq72Kh9Xna0Rlcs4/+7A1Ic1tPQhzR889xek7de8o/xtbim4l1iCfzOIbDXPMjtKMjF2KHyTnmmp/AkDnyzsUXJs88WcQUAX3Cp2jneWj5qzy0fDemsJjMbGFH4SL2li4nY+QwpUmqO3xjZppzzRX+1dXX4dmAlixHHQIVUY+67CmNMZwp4FcNdCNi89AgqVL4tgRMqt44K+Epys4kkYrZnt/CgdoBUkxss4jEAATolI3ZdSyFDUqWR0pvZFMKk6PLx5mcK7BnZIIDq1OcWqxz83AFQ6RM5ndyvtviVGeOjcXt5MwsqU6QQmNlTLZftANpGqy222wvVzGkRGtFI+4SqoRQKcr2XpTqTYwgBELH9LkeQRLS56xj1N/D2fYjJDogTuZRog9Fb4Q+1V1skQUhSVQAIoMhBM14Bc/s49n6FG8av5JrKzbQQGPRaX+UnHsDGwtvwRCDBHETR3oIYWMYIMwGfjZLZBostBP63CwXFS8CrckYRRxpY5s+QVLDMPrIWS61qEasU7RWRDrElkXmuscxxGYilfSSumaNsaKDKx0cw6SdhCitcAyTx5en8Ayb/UMjPH1+jtFcgc1OGVMkYCpcipjSwMs6GIZGSNh59Tb233YxT3/9IEmjS7HgkWo43phnV9FhKWiTkjKSzXO4dp6yO8a4v4V2vEKqOuwubqXfuQYpNImOMYVECLs3TixMQKPUEkIrXGlSMl3OtJ+l6r4CVyacah9nJLONW3/sBqQjeHbpce6Z/wxSGlxWeQWe4TJ3epWv/vnneO7xp0gThWkb7LzySm668430j5Wed04KBF8+d4wbhzfx+rGredXwJWwpDLESnMRYO4d6ir/fgl5LWgEs6bIhdwkgKLkXkaJoJ3V8s0iqE2a680Sxy8Pnp6mH3QsxTSlpJyEPzU5x4/iGv5W4OAjnWroqoZPUcQybTnSAE6vvR9NzdW+nC8y0/hpImCi8Hfj7x5mFsLDNwd41wYLKS8SG6GX08NrXvpb/8B/+Ax//+MeBnpTK1NQUv/Irv8Idd9zxomL+g1pFDz744Muic98n6CQBoVKc786yqscZLP0rNg/8D8Yq7yY1r2YmWEGjMWU/kDK78kss1H6dZut9qOAzWNGDZAyfKJmnHR37tviaiEbwGOkaVydKu5ztHCRMAzpJnUtKV3LzwOtY529i0B2h3xmgYvdRjxZROkXpFMeQ7KhW+frpU9zxkQ+x1ApQ9Awix/wy67N9XF5dz0en7uFLwUHw4RWbt2JgAim2dDjXfpLF4ASRahGnTXbkd2FLh1Otc7iyRKojHCGwpaYTn8A3sggJqQrRKApOll0DE/z1kftYCho8sXya0Wyes+0plNYkGrppQicNiVRMzspiS5u8VUS7XTZcMoKJYGOxRBAGpCpFaRjwcpzv1jjaOEuiY1aDJ0jiFLQmW+ziqmU0Cq1hc/4V7Cq+DqUVqVoCXbtwg7Wkj7321C4wEZgYwuBo8wBap/Q7eS4t9zNX/wipCkh1h3bnL6mt/go5axDLcBgrlUiing6T5QocdxTbK2IIKLm9G/iIN4zQdTblRzGFRaq7uGYR0LSSDpO5MU63ZjCFQZCGHGtOMexvRGiJRBCnCk1KPWwRqYAw7ZKS4koTrXsWFE8tTzNZKvPDu3bjOyaIlEbSBalwrSKmJbAdA4Tgnk98DT/vcuevvp4f+tevx7BMNheHMKXBQrdxga+x2GlxprUEAqL0LBaCQX8rqeqwNb+ZQ/Vn6aYpiQ6RMk/OvXYtGQjROu6pNEsL1El2FS9jyN+I0AGRaqLpGQhWJ/sI04ADqw/3DAjTiKJZIWhqHvjUAzz32CyG2IRtbUHo9Txz/2Ee+fyDhJ1vXStNKdlVHsIQki/PHOMjxw/w5NICi90OBXsjtix+W9IC0Oftwlz7+0thgO5SC0+RsTYQpg08s58UjdIQp4puGnG2uYJnmvimhWea2GsSFq044lzr+U/CQgg0DqlWmMJG6IDlzr2AQtAjuAsEqU5Y6jyA0vV/wFXpZXyT4/IPef1Tx+/8zu/QarWoVqt0u12uu+46Nm7cSDab5b3vfe+LivkPSlxe+cpXMjMz8w8J8TL+D6EZd3lq9SwlZ4ITrWd5cOlBHqsd4v6lR3lo+X6q7jiu4aEJaHe/Cjogio/R7n6FZvevaQVfIEyOE6eLwHc2VItVDaVjAFrJCs/W72ExPMN05xiHGw/Rb5e4dfA1vHr4DWzJbWOm+xwnWwd7HkJa9TReNm5k18AQQar40FMHcAyLME14y+QV5G2XQ7VTHKqf4S+m7ucZeQ5tG3zt5Cks4ZKqkEFvC2P+bhIdUU9W6CQdbh28jZyRRekQIXqkYXSdJF3Elj6xCkh0SJR2SGlwzbotvGbLNTy5eJYd+SECtcAHz3yII81zhGmMKQTXV7dzYPk4S90eX8gUgvsXP0yjfArDkly3bgPbh3oOw4lKKdk+oYqxpEmUrrLYvb+XODgWUp9GtR4lazooFK7MMZ65hLw9jGttIomfQZAihYFrFEhUlzBtY0kfS1oonbISLqJJuayyFU/UaIRH127IMYa1hWLptzgfnGGue5jhfJmM7RCmKyRpHWmYJBRJVMqgWyBWNQ7V7iJSdQqmiSOdnoKrMFEabGERqYRWGhDpngDc4eYp7l44QKA0iYoxpMCSJgU7ixQmZzsnyZouK1GT0+1lruyf5NqhjQRpzBXjY4RpyvlghVBpLENgCItU1cmVTUzbZtOe7fza7b/Ol//XXey/ZTdGn0erk5C1HMazFQwpyNkOOyoDfPX8US6pDNKOz5HQIVINslaZ6c5ZjreOMRcs4xsZkmSOnH8rpcwd2MYIpizhWtuRIkO9/ddUzBbD7jhaR6SqRt7MkSQpgQ5ISXpibUKSsXKY0qK1GnPqqRWEkCTpNElyGqVWMGSZ409O01rtPO98GfLz3Da2DVsa1OOAA8sz3HXuGK7Rx47SD2OKv8l3k4xlb6Tf3Y0hesJ2qYpYDg5xcOUP6RkttnAMH0NIVqIOrulgS4OK6/dkAERvCk6hEHBh3d+GJlpzCJdoYiRhz/5CSKSQa8kNmFKgVefbtv/7kKqAIFmgG58nTFcu8HVexj9fFAoFvvKVr/DZz36W3/u93+Od73wnX/jCF7jvvvvIZF6cYvI/qFX0sujc9w9SFGjNsDdO2f5B5rpnaCTL5DIlKs4YObOEFAaJqhMlJzFkYc15Vq/d7E2i+BS2vbunhcG3X3Bsox+Jjdaa+eAkkerQTRtkzBxL4TTzwVk0EgMTKQSWtNhTvKZn8CgMEDGuKXnHpZdxplZnpdvBFIL12QrdNGY1anKgdpJxv8JEZoBXDu1nutbkz585wKu2TmAYFgYCx8iSInGNEp+a+SQSwRV9V/d8igApBKkWJKpNoAIsyVpVIeHp1c9QdSa5ePQqDqzOkLcFn5j6a0IV8NmZL/HOzf8CS5h0woS5bo2loMGG/FWsRmc41X6cE63HeOPYOJZZ5LKRMXK2w+GVWbaXB1iJmniGByja8XPEUULYjXBkg6WzDzJY+UHAYDk8Si06hS2yDPo78Oz9pKqGlAU0mkQHaN27cWoBqY7Ykt+DUhFlJ0saazZXfpJEO3hCUsy9g46GM40vs6v0Do6vzLOhVKCThsT6PBl7XW/iTLsgUk60HubQ6peZ8H+NrJVFC4EpXEAg0ZScPAvBKgNOCaU1WdNnwh/lL6e/xjV9++lzchgiZixXJhFdOmnARGaSRAWY0mE5aNJfzLActMgbGaI0oejYHG6uUrIUqYowzTyd7oOYdhUj3UW2lOW2H7+Vz7z/rwlaARt++AruP3OKf3vHrazP9rMatilYPqYlec3YTlxTEKYVFjtPM5l/NUEacrz5HKHq8sjSg2zJ3UGz81e49iWUsz9B1r2ROJ3CMtchhIeQDt3wPvLOXlLdWTMhjTFMg07SJSFhMreV5XAOjSJSHVRapdOcJUnOcEHgKG2gVY1uK0eaPv98yVoO1w9tYFO+j4Mr50m0YmdxEEtmGM5cTs4eZan7DIkOKTtbKDiTuEblQitW6YQwXaUZTwOQt0ZRaglDDHCyOcM11V2gQq4anuBLZw/3BBuliS0tMpbDnv4hxvOF5x2T1ikQYQsLzAJKNyk5mwnT83TTOt+85FvSo2BNYBnPb3/9fQiTJRa7D1ELD5KoJp45RMW9jKK7G1O+RCX/X0K4+uqrufrqqy+8f/LJJ3n3u9/N5z73ue861sscl5cI8laGiysbuHv+GxxrnmHMH6Bql/CNErbMYK8R7HqKnxohrDWJcs03C3NhfIyMdxM5ZzeN8Pn+EobwKbiXYhrZNUfiXmKzEJxic/5qsmaO5WgOUzhIIXCMDFmzxHhmywVyn2/Z5P0uZ2aXMETKjevXc7J5giF/lFDHPS4JEkPAa0auINWa1aBLJeOtTTr1LAc0PXKnKRWr0RIzwRQr0QI/v+nnCZNlPLsKAoR0acQLDHrjxGoFKWwSFXGscS8Zq4+N+fWc654hlT05+/FsFU2CJx2eWDzPpvIYyJRuGhKrXhtA6ZhuukrGqbAaBMRpwoCXR2ko2hkKlo0lQ1yjjFaKOIgxvQmWpk8wtE8Spg0MYdLnbqYVz7AanmbY34vWwdpNRSKFiS0zxGoVQ5ZYCacY9zdyunWEfmeCir0FJUqc7RxiV/EKkvQsjahJxd1JN3b56qkj9O3aTirrDDl5lGpiii7dJIunQmY6hwhUA98s007a2IaLKX1iFRGpGNd0kQhyVh7fcmjHEZuyk/zEZJ6M6a4pvWo8S7MYhpjCREhBLV5lzF/PpvwAh2rn2Jit4pk2mp6XVtHOobXAkMVeUkaLhdXfp+z+MQe+fozRzcO8649+iUIlx1k74hXV3axGTQxhobTm0eUzXNk/SdF16CQpGaufY7WDrC+8Go0m1Yq57llKVg4hHExjgIXVXyDj3UbO/0E8+9I124uYnHsNze79aB3QjQ7iWztoYyEAU5gEKWzO7eae7knaSZ3FcIZRfwPVsSznTxl8a9xDoHXM4EQe1/92EmvWcthSrLI+V0bDBc+fVBmYwiNrDtFzLs9jSPf5ZoRCkrFGUTru6aAIzXTzi4zlf5whv8JMZx6Bwc6+Ku+54jbmWnV8y8GWJp5ps6sy+B0rLmBgkKxN3WXJuZfQCg/hGj6JijClgy19Kv61WMYLc6hPVIu5ztdY7Nx7YVkzOk47PgtCUnb39x5eXmr4Z+pV9E3cddddfOUrX8G2bX7qp36KyclJjh49yr/9t/+Wz372s9x6660vKu4/qFX0h3/4hwwMDPxDQryM/0MwERxYPcZfTn8FVzoMuhWyVobFcJVn6yeJVK/FY8gCtrl+bSvB3/yKWEYVU+bpz76Wsnc9ltGPIbJk7G0M5d+Kb23sbSUkVXc9hrCoxXPUozku73sVk5mdsGYRMO5v5fLKbRStbwntZcwsfZkM+0cHuXRsjOGCz2JyjnbSAa3Jmx6DXhEpBUUrw3ynRSoUP3LRHua6DZSKyZllACLVwpE2Y/46JAYL4TzNOEAKCymypDhYcpisaV8g5XaTZSay+9hZvJN2UCFn+VScPEXLI9Yx6zOTPFM7jC0Fi602JauEKaGbdshZfVTsUfqdCZTK8eXzjzJRqPC5M0fJWQ5LYRPftAh1giXzDGXvwPIkSEGnVaQ4fM2aR5QgTJdYCQ7jygK2kSVMVwBBkMz2XIcxEELTjk9jSbuXbArNVPcEn5r5E1KR4Xy4TN7qI0oXekrA5iAj/lW0oxjHNHBNm1pUJ9A+WncJkgXCte9ArCJGvV24hslKWCNWIYkK1hyDIxa7C/iWi7NW4VoIa3zm3BPszG+kbOWxJDSieVIdYUlBxnSIVESsEqbac3imwUJQY9QvE6UJQZJwtj2PJQ2yVglQROkyjr2XRC0TxAdo1E7x+N1fJVvycLMu4/kilZzNbLvnNp21XJ5cPs2Z1hJHG2eY6zawZIaMVUXrFEtaDLgDOIbPxswWBBrPvohS7p0Usz+GafQhSBFrSbtljJJxr0FKjzg5T6xWKTlVOq0ujnIoOAUGnVH2l66n3xlBo/GKAZfefhOOO4llbceydmKZm/GyE+y7ZR/Z0t89fWMb5vOMCg3p4JglsvYYOXsdrln+jg7KOWuCqreXRHd7PCSjjNYxE36VA/Vn+ePTH0bLLlcPr+OS4QmEKTAswc7+KiO5HIZ8/i2gpzVjoIWB1l3a8WGE8OnPvg7PGMUxPByjRNG7kaL3Cgz5wiaCwnSF1e7j37Zc6YiV7uMkf49v28v4/sSf/Mmf8MpXvpIPfvCD/Jf/8l+4/PLL+fM//3OuuOIKBgcHOXToEF/4whdeVOx/UMXlxYrHvIz/82gmbQ43TvAzG16PLSUz3RnmVUzWyNDnDqPp1bENWSLr3UKt9eeoNaJtb3kfGe96hPBwTZ9q9nWU1Y1onWJIf6219K0nprzVz8bspZxofoP54CQj0mJ38Wr2lm7ANXJ4Rg7PyDzPoE0Kg7JdIWOEhGmHTtrBxiRjZtDAbHeBPcVJQCGRnG3WiNKULaUiDy8+yw+u24UUJhrN0fqX2V58LftKlzLdmWI5WuKxlSd4xcA1aJ0SpA1WkzZjmR3Uonksw8SRPtIc4u6powxnTPJ2gG9mqNiD7PSG2JLbygNLjzIfn2fX4ADzjQ6FgslKtMCA28ee4q2cbD1Bqg2qXhmlNUdWF5nMl9lcqnCkfoZYRwz1D1H29pOECbZjcfq5gEzudqRYe9q3hnGkTSN6BoFF0boFjcFK+CSeOdb7+YWNFAat6AQVZ7DXttWCuXCa88EMtbhD0aoicEjVMnlrjCAJaSd1bl6/kTCNGMtsZDY4QyE72NPkERpTeoxn9pCqCInJufZ5+r0+YtUklTaaACHAXxPpaycdHMPkSGMKgcQzTZbCNjmrj1gn5MwsnbRDO22v6Z44DHoO+yqTCNEjqWYsG9e0eXjxCLsK1wCKRAssY5BK/l8QJYfZcdWVZLLDRJ2EZ+55nE1XbMIbt3lg5hhv23IrnTQmZ7l005DpziLLYZPN+WsZ9a/sfbe1wcbsRi4pX0k3DdA6QAiHfOaHUOkZouBrxPFRpCzjZ34UgYFjrscQZTLeDaTpEpZu4voFzh05z8CeAgdrX2fQ28ArBu6gYFWQRpvd11xEJtfPofufoL64TGlwkN3X72f9rn6k8b3lc1jSxZRZNhV+iJ5Kr0PFu5RWsoxllIl1yIBboRZ1+cSp+3h04SyGMIlVzBems/z45qu4fGAC33x+QiUFJGkTRIalzj3UwmMMZG6lku3tRyB6ekI6/Y7H9Z0Qp3US/f9n773DJbmqe+1378qdw8l55kzOSRrlnAEJCUSOlnG4OMHFJthwwebix+aacK8DH1gEB8AgwETlnEfSSJNznjk5dO7K+/vjDAOygmdGEsZw3uc5z5yu7tq1T09X9aq91vr96s/7nBeNH29Hn+VXic9//vP81V/9FX/8x3/Md77zHW688Ub+/u//ni1bttDT0/OSxp5NFf2aEKqIldmFOJpOM6qzIN13XKocKkGNclAma2QQwsA2V1PM5Gl4TxDF0xhaB451BobecyLQ0GQS7UXy0raWYlHmXAaSy/GiMooYU6ZxtAKm5ryoo6wXu2ycfpw5yQUsyS4njGOEgAfHn2Qg1ctlHWvRpUbBcvj6nk0sbzuD7Y19XOAtpMNK4xMy4u6kzVtCWi/wut43sr+2h0l/kjG3xEDSRhM6B6pbKVhLiFRIw5+m25nPoakKZU8wP5vmcH0C24x5fe/r8OIauoAlmQUodDIpyXjZxxQ2R90DBHGD/uRKCmY3SmU4u61zxoxPxRiahiYF+2pDvKZnPVIqgvAQSksShFny7Vnu+pdNvHnZYgzpMNl4kMPVW/CjmY6NlNFLa+IidJFAEREpD0MmSZlz2F/6MrosMpB9DwOpRTwx/QApPYUtdYabe+h1zqVavxc7cQMjzSfpTl+EKbP4qjGjOksHvjIRQpE1BbqwmJc+h+HGLoQQtNq5GeNM5eLHDcK4St6cc6Kz5FhzmLzZwoVty+iwC0RxDUPogEUcRyhtphulFtaYn1qEG0tqgcfcVCu1wCWpm7gqoNXKMeFViBVIYTHsbmO4uZuzildjRcdILZtLaTjkO5/5Lnd//SHOuHoNv/nFt3Nu59LjdUuwKNvOpFchUopJv0IpmMI2+giiMo7Rh6MU6/KrGXPHEWgI4aCiI9Qqf00YbAdAERF4G8m3/BNeeIBKYzupxOUYIiL07sJKn0/PglZqYYkj1Y2MNHeR1osUrR7OabkU3dnHwnVFehddRxTEGKYklZ1C0xoI2fGynMs/j6WlqQbH0KVDw9+FlF3srGxkaXY9Kd2hJ7+Mg5UK9wztxJAGgpAgDvEjhx8e2s5gpoX+9H9YCVINhApQQlELjjDlbWbK24KtdWBpBULVII5rrG7/NI7Re1Lz1GUKKaznDVAMmUW8jIay/634FU4V7du3jxtvvBGAG264AV3X+fSnP/2SgxaYDVx+bbClxZxUF15cpRrs557R7zPtj5MzWliRPwcpumhGLgndQUoHy1yMoffPpC+EiZSnJr6glMKLpjhWf5gJbwdR7JMzB+hKnkVBLjhe7PlcvDBkqHmELeWNzEkuJFKSzdN7WVOcjxLw46H7GUj08u65r6UzlWF9ey+60ADJHSPP8BtzLySKKnTYS0jqSWIE094k6/JrSehplFIzOhgNnd7EShpBmbSRI44nqQYVnhk/Rk8qT8X1kXaDopEhjBscq2+jYHWSNrr52v7v46uQGzqvJGemELKPMfcIphykzZ6DUDZeHFMLfNa39RKqmGboMy/diUQAEa6/FSWLuJGGbi/l/NetR6LhRxMcKH8dNxo78Z640TRBHJKzVxKpOlPu07Q55yCxkNIhjKfw4xoFs5039v4Oad2k3+klY/agVAVNa8GL6pT8A+SMy3lq5BgX9PewtXwP4+5BVuWvoGitJ1ZJBIqUVmAwvR5URE+qHzdqYmspoigkoWXx4pBG2CBlmEgh2Dj9FFd1rkEi8FUdQ2ZoRjFPjg5zXlcvCEWL2Yqt24RBxFBjiha7n0ZUJaeb7C6P4YUBr+87F0vGBMrjcH0rm0o/YbS5j7WF19BrJTm8czuP/vApDMtg+8M7sUODtkweXUj2NIbJWQZ1X7I6P58gdnl88h78qMp5rZeRQmdPbRubSo+zvnARoKPJHM36d/D9x+BE67HCdq7GC7YisEiavch4msB9AKn148c1cJLEgYeuNKZq+ylrR1CqieBCymNpNtz6CHuefIrA98m2trDq4vNZes4iElkfxH/uqHwqWFqaVnsxsfKpes9gmzrlsMaoe5SV2WWEseCJkd20WS0zLeMCNKFhSp1q4LGrPEZ/+j8W2Broeg9+7GJqLUhhEKsANxrCjYaQwsTROtDli+u3/DymViBnLWPKfeo/PCPJO6sxTmGsXyl+hQOXZrNJIjGT3hRCYFkWnZ2dL8vYs4HLrwlpI4ki5OnpJ3hk4sekjQQtZpZQuTwxeRuWNMgbBeBnF9aXYj/gRlPsq/6EKe9nmi9T/i6q4TGW5d9G3pr/nH2iOKYeNTlcP0A5qFAJyyTR8OOQZhSQ1hKkDYdxf5zbhh/guu5LuKpvARN+mbX5heQNBy8qIxEsyF5Ixd+OrbUwmFlGyZ/gWGUPRasLvFYe/f49LL9qDaaTwJAappagEU5Q9o+R0AsUk/2knBQFM8m0f5SC1UJGT7G/PsKEX6EUlPnaoe/w8eX/g4TejaOZbJ5+iF61FH8UCvM7GGtWKToOfckszcinL9lGrGak5oNgH7bTT0ndTGf2D0i0diKEouxvw4+njru5zFyVUuY8asEwSc0AAW44SqRcBBpZcxGG1jPjxyMVvYmF1P0dZIweTGkRxTFJ59WUghESehvDtTIFO0EYe5T8YUrBMfZUHyOdPWsm8BA6e6t3MTd9CaiQSDk0Qg9bGthaDiFh1G+Q0h1iAoQQ9DhdJHV9ZhVNzaj7hjH8+/4t9KayLMgXqYY1wmhGCLEZB/hxgKXpaFLghgETbp3BTAu6FHgKfOVRMPtptQeohuM0oga7ntpLKHwM2+ANf3wdWsZEiZCIiJ2V/eyo7OP67svpTXQghMcdw/cAOo3QJ20ETHpjNMI62yvPsDwzD0lAEOxgRp02YsbMsQPDOmemuivcjfAPg30pkXsnWuYj6FoXZf8gXtxgScu5PD5xC+BTsNtpVhQPfPcxNt52Lxwvci+P1hjaPYxh3cSKi9rRXgGTFVNLEcZ1pNCJoiE67Dx5M4ujJ1EqQaxmWsAbkYtEztRumVk0XSOKnyttIESGSMUIYVB0zmWiuYFI1VHEiBmHIdqTF6OdUuCSpSN5JQKdkreFSDWwtFaKznry1urjAoCz/Krxj//4j6RSM2rqYRjy1a9+lZaWlme95g/+4A9OedyX9dPSbDZxnJf3jmKWlwddaih8xr29tNtFmlEDP25iSou0medYYwdLMmfyn6lgniy1YIgpbzcAhkwh0fHjKkFcY7T5DCmj+znFho0wwA0DFFDyK9jSRCLoSbbx5ORuluUWoFAMprtps7LUwwpJPctDI7tZnu9lYTaDpM54/R7aU9fgigS67ODh8e/z9PR9RCqgzerlNdYfsOmBZzi8cxev+5/vQRY0jjWeJIw9lresYbrp0Z8tYBmgCR9D+Owo/Ru9yYvZUSmhVIVWK8cbeq+mHlYxpcam0gMkRYZdT+3lvh/fz/s+/REEgq1TIzPdG1oCXRNEcQB4BOFBEsoj51xMrFepRyGGmnnvBdpM1xMzInMJvR0vcjlc/RadyWvIWos5Wv0R/dnXkbVWYIhWAgIsKRnzpkkdr33w4mkMkaARVVFK0Ze8gvFGkgm3jhQSTUhq4RQ9zgDNYDv1cDlZR2dP+VZGG5u4vOuDuOEklUBSMG2UilEYWNLA0nS8OCKtp8kaDveP/4Abe25Cl0maYQ1dZBhIF+lIJI7rySik0LAk2JpOLWiglEQKwZxUCynd4kBtkg6nB00oFqXPY0n6XLy4RCOcQpghqWwSTei09bWy4JIlIGe0SPzIJW3Y+LHPuDdOl9NGQjM4v/XVFMwMjeAASnWgCYmtWZT9SRQ6EKDJHFL8LOWpa31oWgsy3AveXSBToEKE1olPAYMEUiTYW/oKC/Pv4uzWG9lTeYRWaw6VMZ+tDz7KjOfRz1IfYRCy+b6NDK5aTubZ1+yXDU04pMxlTLsPsiL7G0z4wxypb6LbOYPuZJr52VbOa59HX6ow40VVmeRYvcaC3PO40AsI4zIxJpbex7z87zJWv5d6eABD5mhJnEvBPgvUqX19JIxuetKvpS15MUr5aDKBIXPHnbJ/PRG8RJPFl20mLz99fX186UtfOvG4o6ODf/7nf37Wa4QQ/3WBi+d5/O3f/i2f/vSnT9s0aZZfBDGNsMSYO4x/ItcssKQ1UxjKyRfb/WfUwhFy5hxa7WU42kznQaRipv0DeFHleYWn6qGPF0fMSc2jP9WFLg1ShkMzmpGJn5fqYSCZ42B9G9vKj9Pp9DM/eRF+FLIw04apxSgVE9OgFuwhZc5jW+UZnpq6ZyYQEBpe3MSjiZPtYP/mJ7nvGz/kst+9hmP1J4iUx5LsejoSXeiaRArQpeJg7Q5Gm0/TkzyHlO5QCY5wXds65qW6qARl/NhjT3Ujlyffxa0P38uKlasQCgyhc1XvQvZWxxhMt5LVbHRNQ5LEttfQcB+iJfM/8KImjaDMSHOUrLUcW2vBj0vEKsSQaZRysbU0mrDYPvlJFhX/hBiPsfpDtCcuBmFxtLGbIIYtpVGu6jwTXZpMu0fImHM4WLufvuQ52HqBiCY/OLCVMzoupcXqY6i5i6Qm8cMkT4zv4eLeJZhakWPNzdRCF12mCKJjKJWgGY4htTYcLY0XzygHZ40kj0/exah7iFhFCDQiFeLognctPgNTaxLEEZa0aYQRofLpcQoEsU9STyKFoMVOMeVX0YBa6JKOLVqtHmrhCEVrAZqIMaTJ8vOX0PJP97Pk7IX4pkAKgSJi2D3KwvQcbGGxKLOQbx16iovbFjKYybK/9FViYEF+GW12kUcnNmLKFEfdYfqdTkzrXDz3HuLjhaMKH02mUcFG4nA3Ki6jWVeimeuIZJqD9SfochaTMOewp/xv9KYu4cK2t5M2OhkqVfAaAl1qtM3pw3JsaqUyk8dGmBpt4Huv3Lq+EJKEOQ83PAJCsr/6FEtzl7O1vIcLOgdZXuzi6an9/GDoMSyps7Ywj4u71tCVeJ6uIOWi4hoxDpGKcGNBd+bNx9cAFc2wSqjECQXfU8HQMhjar2la6NeMgwcPvmJjn3Tg4nkeH//4x0/0ZP/Jn/wJr33ta/nKV77Cn/7pn6JpGu973/tesYnO8tKRQkOgExI+S048VMFxv5aXT0chbw6S1otUvKcZrW4gUg1S5gJanAvQ7aXI5/noxSomrRsYWgerc2fhxx5+3KDTKSCBRlRiZ+Vehpsz6acgztMMG7xx7tno0gcEU+5WUuZyTFkgxmBP9Wki5aFUhEBSDiaYyB5h3rqFjOwbR6kkcTyjO1MNRpj2H6Ev9TZ2lEdZmisiRYPJ5hYUMePuZhZlrmN++o/ocvqohlVMaVIOpuh15pMVrdhxmoVnLufWHRs5Z3AJCdvEMXWGmmUcXUMTEYgmaedqBA5BeARNtuNGGpoQWFoH/dl3cKD8zye6uvyoREJP05a8lJHaXRyr/oDO1FU0w1EC1UShOFzfTKezku5EK2AcT51HKBUQKw83bqLFPgeqU3hxRKgCCmY3C9JnH/9CsthX2snKlnkMpM5l0jvAjw5/mOsH/o6k0QHECCGphxXSRhIvcknpaarhFFvKT6MJhR97CBGQ1NPEKiBv6zTCGduDtNFNM6pRCcq02QVMaVAJ62yc2sdZxcU4uknDd0loJtXJKql2i6xuM9X4d0ruo2gyS9fcP+UN//NaqlM1AhVjajqBioiVImekKeSXsWHiAKaUDGaKlNx7OVr7Aes7vsR4cxsFI8nawmU8M30fXz/wKf5g4edJWueSTN2E6/4EFdeQIosgJg4PouJJAJR3N1rincTEbJv+Pn7UZCB9FQcq91IJxvHigGY0hZOZz9JzL2HRGXPRLQelQEqoTVcYOVTBsF7ZAlRTK9KSuBo39rA0C106TPsV2m2Xe8ee5umpg8clAQQj7iQxAW3OWhz+Y5t2jBFPUQsVCbMLjB4m3N24cRlTJmixl5A1ep+3PXuWWX4RnHTg8rGPfYz/7//7/7jssst45JFHuPHGG3n3u9/NY489xmc+8xluvPFGNO3XUEDovxG6sJibXsGId5BIzaxO/FTGe05qBcYLFMyeDraW4VD9exyr/vuJbfXgIGVvG0tb/gxDe+5FL2s6SBFztLmPglkka+R5ZOJuLu+4noKVYszbwVPT99II60ihYYgMg46GrSmCqIGG4GDlFtLmAAuyv0VduTTCaWI1E9QoYmIVsq3xAGecdx1uZT1LzlmIQlIw59EIp7G0HM3Qp+I1sPUuIgWWtNGFyUh9I6sLv00zttlROUjBMpibnIMmYXn+HKJmg84leTwr5J8fvZux6jRvXn8RjmYQxiG1sIEhQhKGgS5MwniSUu3LZNO/T9rIsa1ykHKYZiBxNk6hn5K/jVgFWFo3unDQjQGWtHyAo5VvM1T5JkXnPBQGSsU0ogpJPYkfK6phHSkUSb0LTRi02ItwoyaCMm7o86YFK4lUwOH6VnqTS0npJg11lL50Nz/Y/whvWXQey/NNjtQf42j9CdqdM4EqUhi4UROlpknoaZqRSzNqMuaN4Uc+XuTi6AZSKI41d9Fl95PRO6iEYygFltRQSA7WhxlIdjLcnKYU1qkELkndwtSyjHo1WtM2qGkOTf81Je/RE5+PIBpj1dV/gWosIcpYxEqhCZ2i1ca0XyWhpSnaaXSpzTiFNzYghYOlt7C19D2CuMbK7PXMSy1juHmUZ0oPsDZ/CXby7ZjWhUThbqQ2AGggi8xoGCli9zakvghpXYulZahH0yywLiLf0k89HMeLKyS0FuzeNta/6nwe+t5jPHHbE5THy3QOdnH+Dedy1qvXk8q98uqwEQJQ9CaWowmNxZm5PDW9h/vGniJrpGk5bqjYiBo8ML6FNYVBMsazz0WldPB242jzaPpHsfQi3cm1xCpClw6WlpvxUnqRzsBZTo6X6jf038Gr6JXgpEvFvv3tb/NP//RP3HLLLdxxxx1EUUQYhmzatIk3velNs0HLfwMiFdGXWMbZxVdTNNsxpEHB7OCs4qvoTywnehktHMJ4kpq3HVPLgJCAQJcOuoCK+wzR83icCKGIlM+uyma+cejvqYYlknqKWlhDiog91aephVUiFRHGAVIY5O0kMSFC6MeF2OBw9YfUo2Po6PQmFvPTL6CZY0gO1bdywNzI1b9xGa2LM4x6w7QnVpE1+sgaK4njmCW5LsK4iVIaHYkV5Mw22pzFaMJhf+0YW0q7yBt53KiBLS2GGpvYGd3NgtXzkFISqYBbNj3IjqEjaEKSt2y2lvdgaQ6oDHE0gufvot64BxWNo8sEG6a284/7vs/m8jEi0UHBvphW5wqkzIPwaLobSBtzWVj8E/qzbyFp9hwvloQuZwGxiij5FSwpUComobehCY2CNR8pbSrBEKtaumaCBGEjBPzo2GcohU0sTbK2rZvD1SN8c9eDJLUzObPlfaSsReyq7UcIAykkCT1NRIilzYjK+XHEQGKQFquAqVk0I59mVGekue+4p44gbRSpRxWONUo0wghdzmiJxCjW5gfZOD5E2nBoRC73j+7ATtjUvM3U3L20J97A3PxHGcx/jLS5lsPNPyXRNkUkFdNenZJfJaXPeAUJIdCE4O923UGkYoI4oBH6M51kxByrP8oTY39F2X2YdhNyWoMN45/hSH0bhrUGK3EjhrUehYm0LkDI/HG7C4lq3IyhJlhVuJ41hVfjR5PsKt/C0xN/x9apf2bz5NdwgwpbH95JdbLOVb9xJe/8xNs597XncGDrYQ7vPPoLs0gJlU/e7AQCCmaOfdVh6lGTIXeMA40jHGwcxY8DNKGxtzZ8wqDyp8SRJKYTpr9HUvnIuIGMfSxhY8skBiZSzhbTviyol+HnNPi7v/s7BgYGsG2b9evXs2HDhpPa75vf/CZCCF772tee3oFfJk7603f06FHWrl0LwLJly7Asi/e9732zUfd/I3RpMOIO0+ksoi+59ESXQBBHjHtjtNrdL9uxmsERdKmTFB04x+tZpNAQQseLRoiUj8az7/Ti41YBQkBMwDOlh1mWOYOUnmLKH0di0GK2six7Dj2JxbRZc/HjCEcIpFBIYVO019Jqr8fSsrjBKMty57C/tolqOEVKzxHEAc2oysL0WnSjhutN8Mz0D7io/W0sL76BOErTCHxaEg7lYIq0YdPqrKXkHWAgdQERGntrB5mT6iJtZGhGVcKwyqS3j3pYpbt9GZ1yPuctWsljh3aTsExSuoUXW2yZ3st5xVXEYZlGeRt6uoAQSaJoglBE1IIa4/4Yf7v3X5mb7GNOqh9TWlzXdR5CTCGlRcN/nDCaxNB7sPQBDGlS9ifoSy6nFjQJCUjoFpqwiFQNPypha23kDMn2xsMsza7F8j0kGoOpMxhq7ubB8W9xTvHVdCQMfnPpa3hoeA//umMDr5l7HrZV497Rp+h1ciQ1Rc4oUgk93MhFCkklaHBe62WMu8eI1IzjdMWf5GhjF+uLryEmIlYzgoKHG6MMJNtpt1OkjARzpYEpDMbcw+wtj1OJS+yrHUMIn1g1mNf6UYSq0fSeQhGRs9ZQSJxDEE8Q0ca030CTPikjQVpPEirFjvIxhtwSo02ftsQZHK7dgRdN0+ms5WD1LprRJHurt2KINEJo2FqOrPUu4KeqsaCERGldyPQHUd4dqHA3iByGyNJuZwlVjb3lb3K48r3jn1xJLnkZ0xMTdMwr0re4m52P7+XQ9qN0zW3nojecSxRF1Kbr5Nqe7Q30cmNKm3IwhqUnOVLbSJuzii6nlaKZox42EEKS0ZMUrTyG1LGk8ZwCzzjy8P0UevICwtKtaFoSaXSjmXMIoxwi0Y6mz9ap/Hfl3/7t33j/+9/PF77wBdavX8/nPvc5rrzySnbt2kVb2/MUax/n4MGDfOADH+D888//Bc72+TnpwCWKIkzzZ7lQXddPtDnN8t8DRybpcvp4eOIubM3Bkg5+7OLHHue2XIbzPOmb00XXcoA4LrH/7Ny+LlMznTPPQRETMSe5kEcnbmdr6UnOLV5JrGImvSmWZM9iXmoZWbMbpTx06XCsXqYvlUMTJnHs05O6ChFC6GnsGbqb+Z3X8raBj+LGVYK4iSYMbC1FWk/T9Degi3ZWF66hFnpkjV6ETFNyawRxgJQGU94YXqwzkLmBlNFFrCJarCwrc4vZPLWfZfkextzDeFEDUxrs9e7j/LZ5vH7VufR1drO0o48Rt0TOTHJ978VIqRF5TSaO7qJn2TtJJl6DNOYQRVVa7DRe3E0lqDHulaiETVqtIklNQ8UR0/VbqDR/fOLdEpjM7biLGB9ijZzZyiKRRhc2kQpoBiPYeiteOIyjdbAsdwEaElMzaMYlTGlwfutbOdzYwlH3EAPOMpYW59GXmUc9DMgYDpsr2/CVx87qEAuSBgkFkgJ+7B+/s89RsDLMSy2jHLigQiyZoB5WCeMQS09Q8yZI6TkGkm0IGfMvh+7iPXNfRdZIsKs8zpxMnqfGj7G6vUBfshWFJGOvoVL/HqX697HN+QhhMF37Iq3ZP8YWK6nGARkjgW0k2VHZxYrscspBk0rYpMVK8cNjm/nNwbUMpK/hcPU25mZfz9z01Ryo3o4mHISQaMJiaf7NJPTWZ30KpcwQiwSRipDOG060AIeyiBRN3GCEkdq9SJmZWelTIZpQJOwszWqJL//vbzI9UjkxXu+iLt76p69H01/5VWkhJEl9xutpzNuDo2dZlZ/LptLB4/5hAl1IdKmRNhzmp7uec/MptBSxf4SJySlyHdciNEGsBLWJEVS0m0L/ja/43zHLK8dnPvMZ3vOe9/Dud78bgC984Qv8+Mc/5stf/jIf+tCHnnefKIp461vfyic+8QkefPBBSqXSL3DGz+WkAxelFO9617uwrBlLddd1+Z3f+Z3n2FJ/97vffXlnOMvLhiY1up0+Lm+/lkONfVSDCp12N33JQXJGESlePpGJhN6Lo/fTDA89a7tAI2utfl43WFszKbmjtFgdnNt6DQ+N3YoQOtNBlbSRptPuxI3rVIOD1Pz95Ix+vDii6gcULI2j9VvpTb2GkUNlhvYfIz1/gMnybqxMnqPudirBCKZ06EuuJinnUGs+RDb1HiYClyiuM+4epMVaTF+6i+mwShjGSBnwk6EvsSR7Lme3LCNSMWcUllINPO4Zfprl+T4smWTKnySlp1mZvJ6Dm46Qb2nnTfPPpBl7fPfII1zavoKuZIZaWCUV2fQv+000PSSfvI6mUgTREeYk8kx7x1iRW01aT+HGHgeqe9GlQdXb8aygBWY6YNxgP5XQw9HbSYo8aWPG0TuM61haHil06tEUYTBC0piDoeUJVYgmdLZN30LOmsNgag1SGBgiye7qJI+P76IWxKwsDJAwHLw4YHf1MH2JM7ARGFIQRjGWNHA0i2lvHN1yKHlVvNij00kwmD4DQ7NBgUJhSJOBVJHHJrfz5NQO3jP3VcRKsbM8StZwOKd9gGLCQOIjYhPiBqDoLnzixEqIaSzEraQYG5/C6c4TCEGkXMI4JIgDNCEomEm6EjmemT7M09NzWFv4LerBbuK4wariu+lPXci4twNd2HQl1pIxe7G05+ms0QbQLIPY30wcjyL1BSgEcVyZqQ8TPRAYxGomE6qJHkSsc9e/3svUSOlECg/gyM4hNvzkKQZX9r/0E+skSOo53LBG1uhg49R3WF14Oxe1LeKRiR34cUigGmS1Ald2rKXFeu7KiWGlcArn0Sh9lT2PfArDyhGHLuliG13L34tmnJyx4iwnwcskQFepVJ612bKsE9/VP4/v+zz11FN8+MMfPrFNSslll13Go48++pzX/5Q///M/p62tjZtuuokHH3zwlKe5b98+vvKVr7Bv3z4+//nP09bWxq233kpfXx9Lly495fFOOnB55zvf+azHb3vb2075YLP816NLg1a7k7zZQqRCNGGgvwL5akMr0pm6jtH6T6gH+4EYQ+YpJi4gZS5GPE+QFKkYlKQWVFiVW8/81FIcLcXu6k5W5RaggDCeZuf0zaws/gF+HNNmZ3CjgEgpvGiUoKnYdN8mdj55J7/xlx+h7ozwwMj/pRFOIoWBqaUI4jptVisKDS9uzIi9qXH2lG8nW1xOqAIcabKpfJTVLa1kjRaemrqdZlTlgra3YwgHP2rS7hQYbQ5TtIssypyLF7mEIwmymQzZziKhivHjgHJQY2vlEKXQ4eyW1WhCofEkYe1xjPSb8COPCfd+zi5ex8r82pmiaSSWbnFZ+zlAjOvvhOOFl896z+JRvDBgpLmFFfm3MuXX6bRbUSg04aCAyeYOWpy1QJ4pz8XRZ1y/C9YgO8s/YHvpu6wqvA3FPL5x4B6mvGmkcCgFda7vW8vVHReQNRNMB1Xc2GYg6QCSw409ZI0CGaOAFzephR4jbglHs1lbuAKBRi2qktTbKYdVbJnC1gzeO+86bKkjhKQ7keXTW+7kK+e/nUpYYWluDl7TRVqKtH0W1fq3abj3oul9tCa/zdDeERQKvSuLoUNKpliYHqQR1ZnyapxRHGTz9GGmgzrfOvwYB2qDnNu6EEs3sWWanmQHHYnVCCSm9sLFslIaIAcQWhdSNRHY+LGLjoGu2vCnshwb2k7o+5iOQ27+Epq+y+iByeeMJQQc2zuC1/RP+3w6VWw9RU9iBccaW9hfvZNV+fOYlzqXA/UxbM1hWXY+rXYeW3t+40fd7qFl8LfJ9VxF0NiHbrWiJxagGe1I7ddUnv+V4GUKXHp7n2298L/+1//i4x//+HNePjExQRRFzzFHbm9vZ+fOnc97iIceeoibb76ZZ5555rSmeP/993P11Vdz7rnn8sADD/C///f/pq2tjU2bNnHzzTdzyy23nPKYJ/2N9ZWvfOWUB5/llxddGui8chcgKXSS5gL69Da8cJxIuVhaK6ZWRHsBwSk39pgKGphSEQc12u1ulBB02+0YwiDCZ6z5BH7kYco2gjjC1nQ2Tx+g3ekkay4jcAVHdm/DSdvots6x+nZ0kSGp20ihoUkbL67jRh62uRg/dklqGjurD9GTXEvNlzx1bC8r2rrIWwnKnmJl/jJk6R7K/gi2tPHCEEMYtNsFRtxjTAfjrCq8irAR4Xsa2c48o0GVFi0NKmJlfi7dToGMoROpAFNzUY1HEPYZTJU/h5W4kaReRBGjC0lMnWlvL5HXpMVeSN4YRMoUmswSxVVmVFlBCAMv2EJn4k1MlX5MqBQH6/tptfIzDtJEhHFMGAckjR6mfXhi/DCXdg4SxB6GVmQgfTFR7NNqLeL2oacJwwOc37qc7kQfUlq0WlkMLeT2kfvYWdnLqvwSehLXESqfo439pDNZIMYUGuNug7yZYfP0Edbr80ho4EV1LCMPCtyoxuJsPxJBI25iCIs56RYu6JhPPfTYNH2AKzvXoZSLFBZTlZvxgo0IBMX0H1CfDmif046u62wrjbOkvQ0v9rA1mx2VnfQn5tCIfK7oWsqtQ0+zrXSYCW+SetTkmq7V5C0bTUg0Ts7ReOY9NhFi5ss9jup49RSl4VG6nXWIgk1v22ocK4ttpImnIoodRSQGtVKdMIgwbYNsMU0qn/yF1wNmzU5WFV7Lgdrj7K3cQZszn3WFuRTMPhw986LyB1JKpNOO4bRjZdYh5Ssg+TvLy8aRI0fIZH62evZ8qy2nQ7Va5e1vfztf+tKXnqN4e7J86EMf4pOf/CTvf//7Sad/du5dcskl/O3f/u1pjfmy3GorpbjttttOOXp64IEH+PSnP81TTz3F8PAw3/ve955Vrfyud72Lr33ta8/a58orr+S22257OaY9yyuMFDqm1oKpndwHXiLZWd3PwtRcCk4RTQqqwSStdoFAhQgCqv4hLG2mpsUj5lB9mq2lw1zcMY+8vZLAB9MSLL/oEjwqHBh/iGo0ji7NGQl9PcIyU4y6R5iXWkEcKQRNSt5OupxzaIYRO8ZH+NdNT/DXV15LqALa7OWsyts0wzIlv0TebMEOBb3JVjKmIFJlwtglqXVgF2OaIqAZufixgxAa6wrzqYUN+pJFKkEFR49RKkWIRj3YjR7uoSt5IZXQo+Lv4unJb9CIJpmpR7C5qvvPSJlrqHuPE8WTRHF9pkZDZgnCUVr1dpbmXocmLMpBiSl/gna7C1SNOBAYFDG1DLWgzL7KOAuzrfSnLYYbu0jrrSzKLMOPXFAerxt4PdN+wGMTh8mbSbqTrTw4/jiVsMLy3EIuaT2bKA7xYpch9xBLs+tm0kwyQVcixw+ObuSCtkXEKp5ZGZEGQeShSx2lBBkjxbRfpRrUONKYYklmkLcPnkktarI0108cRxiGSRSN02huwjQ60PQklnUGMptgeqyMQDLY2UqgQupRg5zMYAidcX+aW47cw4rcAl7fdyav61uPJiSOZtBqp9BeYirUlA7jk1Pc968P8uo/eBX9vesYqj/DuL+TvDZAZ2Ee81bN4cCWI+TaMsQxaJpAN3QGVw6QzP5idU90adLhLCRvduPFdQQCS0thydQpBVGzQcsvP5lM5lmBywvR0tKCpmmMjo4+a/vo6CgdHc81Ad23bx8HDx7kNa95zYlt8XGbCF3X2bVrF4ODgy96zC1btvD1r3/9Odvb2tqYmJj4T+f8fLykT+SBAwf46Ec/Sl9fH9dffz2u657S/vV6nZUrV/J3f/d3L/iaq666iuHh4RM/3/jGN17KlGf5JcbRbM4prsHSQnaWNxDELpVgCAA/bhKqiIzRSaAagDhu5BhQD/2Zzgjl4aRg+flnU+hrJQhqJM0CYVynGUzjBiUQEUFcR6kYTWRwtCymTOFoLYCPoUmKToIj1RJ/dOv3eGjvMVzXYMA5g9WFK2jGASPuKJoW05PooMvpJKkbTHgHZtpuLUHZr5E301QDF0ezUSqiwy4gEYw0j6DQEYlLCVUTFY/TaP4IgYkgYMv0d2hGkwg0tON3+k9NfgNdn0PauZykdSFt2f9Ja/qPSJjnkkteiyZtCvYgtpagPzVIIwoI4iaBC9NHy3SnzkGg4YYhS/IdfG7LfWgkGUyfwai3EzccIorGWVlYzROTR/jLLd/jx0efpBw02Fs9QiXwuLrjUq7uuJSilSNUMdWgThD7jHvD2NLBjQNKQZWLOxZzqD4OQKQUSgUkjQwCSUw8YzURhZiaiRKKHw4/SMowsbUZ4z8NDSEgiidI2POQIiIMDiJFljgGy7GxkhaW1HAjn5yRQwhFd7KXx6e2MOSO8ODERn4yfD9PTm3i4YknuOXInWwu7ZlJRb4EdGHSrHm09vVT8Ud5ZvwWDrsbKKlDHGg8wJS2g/XXrSbfkcNyLJykhWmbdM3r4IyrVv/CAxeY6eRz9Cw5s4us2YmtpWc7QX+J+KmOy0v5ORVM02Tt2rXcfffdJ7bFcczdd9/N2Wef/ZzXL1q0iC1btvDMM8+c+Ln22mu5+OKLeeaZZ56Tono+crkcw8PDz9n+9NNP0919ep2sp7zi4nket9xyCzfffDMPPfQQURTxf/7P/+Gmm246qYjv57n66qu5+uqrX/Q1lmU9byQ4y68eutQwZciTkz9hxBtmeW4dCW0mheLFPkFcpzN5NmX3aRQhEYKs4fDbCy4lVi5KuSAbLDxjIZ6qUY8OMq/lHMbjHYCaqasREl2YdCXmMVH/PklzERljBYtz11L2D9BqS9b19PKDXduYqDfYNjbGotYioarQmWrBkAaHGodp1TX2TFa5tL8TKUzKQRUcRVP5SCnQ0Kj7TQqW4v6xLVzQthxD2jh6klqsk5IGupCIeAIVJwGXWnCERjiFFNZPVWcAGPf2M+YepTf5dkJVJYjLKAUJ52JMmT2RerM0m16nnzCuUPL2k4nmUi81yPc6BHGIrevMy7Tw20vOZW95kt50D+tb3oqhxlAM48Vt/PvhZ4ixQcyMlzYcLmw7gwP1g2wr7+Cqjgtx44BKUKNodXP32A8ZTC1FE5InJ/cz7ZV4Q//5tFpZGoFPyijOFApLi0ZQIogVeStNM2rQaqWpBg0CFeLFHl89cCsfXPRWYk9hOD3E8SRRNIYiQAgNKRUqVjz874+z/s1nk0mlGHXHaDXzWNJCKEHJLzHlTTIiTfbVdApWgYyRoR65xCp+SasuUmqkMkmWXTKfY+oepoP9uP4UcRygSYsd0XdZt/g9vPkjr2XPEwcoT1Ro7Wth3qo5tPQUXurpMcssLwvvf//7eec738m6des488wz+dznPke9Xj/RZfSOd7yD7u5u/vIv/xLbtlm2bNmz9s/lcgDP2f5CvOlNb+KDH/wg3/72txFCEMcxDz/8MB/4wAd4xzvecVp/w0kHLk899RQ333wz3/jGN5g3bx5vf/vb+cY3vkFPTw9XXnnlKQctJ8t9991HW1sb+XyeSy65hE9+8pMUi7NV7b+KBLHHscZOHE1nfeFCDOmQMExiFQESpX4qif86YlVCqQydiTxe1CBSEZpMEUWHSGRasGULpcoj5I35rCq+lt3lO2hEJXSZYn7mEhKaQzXcTawq5PR55O3lVINxvHgvfdklvP+ci9k/OcV1SwcY9zdy0N1BqC2j3VlNwcizrzRJykwSE7O9/DhPTP2YZX2XIgQzrtuxwJYzeeaMMbMiMeUHFM1WAlUj9h5C1wdJOFfS9B6aEepDEcQBESGKmdSZLgyyWgttzgIq/g6OVW9huvk4CMjaZ9CTfj05a/mJ4CWlpfCFTyQ7sEyD1t42hIoxJLQ7qRl5fDPBt/Zu4rYjO3n7grVc19+KELC3OknBKqJJWFPoZ11xLnNTBf792G08PLGB3kQHl8bnzrR91w6yNLsaP/bYXNrAiux6LmhbRCPyyFlJKkGNTRNjXNazgClvPymjH10YlIMGmpQMNYdZnF5Ci9lGI/Q51hxnT+0od448yYX6cqxkB4Y+jygaRWCglMK0TDZv2sHjP36a3gsWsGBBJ2PeJBFN2sw2BtP99Ff7aEYuAo63/JtoaPQ4begvg6VFtjWLgcfo8GYqtcMntod4lLV9bKz8I5f2f5Tz+88i9CMMW58V55zlhXmZinNPhTe+8Y2Mj4/zsY99jJGREVatWsVtt912omD38OHDL2t68FOf+hTvfe976e3tJYoilixZQhRFvOUtb+HP/uzPTmvMkw5c1q9fz+///u/z2GOPsXDhwtM62Kly1VVXccMNNzBnzhz27dvHRz7yEa6++moeffTRF7wYeJ6H53knHv/HNrFZfnkJYg8hJGcWr8KNK7hRFVMmiRFY0qRo9nG4sQsv1Og3i9gaQIwX15CRIqs7NL37iWQfurmOnD3AUP1+upIX0pVYhhtV0aVN1uxHlwrQSVpnsaN8L1P+URZlLsaUJpb0uaB/DpfOHWBX5R4O1B9FETHU2EZPYg3tVieP13Zz/eBC3GiSLaV7CWMPIT2yeppJv46jORQTDrGKWZzt5/HJXcxNtTIv1UrRMKnXt5BQDXLJt+BYFyOFQ9GahykTNKISCohRBChWFG8gVnX2TH/muInezPtVch+lGR5hactfkDbnAWDpFiq0II6QUpEpZvCj3cRxEpTNlN/gaK3Mdw9sQgrJl3Y8TsE6jwu6BojVFi7qmMu5bf2E8QSGnKQRWRyoH8CQGmPeJEeawyzOzKfVbuGxyadYmz+DNruVSCl6EkUem9yNXodWK40QijAO8KMKrpwkqeeQwmTMG6HNaqUalij5PlkzTRjHdNg57hvfyCULltOsD5NKvBtN68B1H0ER4zZCdm3Yy76nD+BN1/GjkBYzx7h7EFsaLEj3MifZzdHG2HHFW+h22ji/dSXzUwWUqgMvrUjWTpp4viSkhpCgYoXUNHRTRzc0vHiKIG6QslrRjVl12VlenP8qyf/f+73f4/d+7/ee97n77rvvRff96le/ekrHMk2TL33pS3z0ox9l69at1Go1Vq9ezfz5809pnJ/npM+sSy+9lJtvvpmxsTHe/va3c+WVV77iudI3velNJ35fvnw5K1asYHBwkPvuu49LL730eff5y7/8Sz7xiU+8ovOa5ZVBotNhD7CjfDe7yvfzmp4PkzaKjLsTOJpBORhnd/Upup1BqqE7swIjNTQpj7tNxxC7aGY3QbCdnDVTODpavw8hbJLGPBJaAUsYaNIhba8nJMnB2mNUghGGG5totxeRMrpYVXgTjajC0cZmIuXhx1Ua4TiT7m56k2fRmkhhaIpm2MSPZwJlYSgMqdGIQqa9aXJmgmbskTVTjLgl5iY7SeoOQvhYWh7PfRhThSQSb2bSG8fU0qxvfStPTnwdL26gS52MnqMnsZqS+yhueGRGH0RYgEIpHy88ylTzSRJ6L9rxFZ5I+dhaHqWqaJqJ6+4ArYN6pHGsUeZorcyxxkxAP9NgrdOMKizLteLHCXaWf8jO8gbWFC8jGwaYUqPFytOMXO4afYB5qTkszy7BFAaPTz5FwSrwmq5XsW1qPz88+gg3zbsCKQR526EelkkaXewqfY8Vxd/C1pKEykcKwbHmEdJ6F9NenayRIVYCgeJoOEGfHKI8cYhk+kqczGtBzdyaSl0yNVJi30N7mL+qn4KZwZDdbC8/jiFMLmhdwpayzb7aYdYXVnFGvgsj3o/buAtPGFjmagx9PpqWO63PqBeNY0idjtQiXDWKUiCEmLlDFYIWaz7mrPngLLM8h76+Pvr6+l6WsU46cLn99ts5cuQIX/nKV/jd3/1dms0mb3zjGwF+YcVec+fOpaWlhb17975g4PLhD3+Y97///SceVyqVkyogmuW/HkMaVIIhdpTvQSDJml14UZ1KWKYSNHD0JHOSy+h25lINA4JYESpFQkuwr3IHZmoNutaFpnUihE699GFMYwEDybOIhYlEx5AKKWJ0mSZjr6cUTNEIpwGIVMCwu4tViTV4EQgRUg1HKPnHCGIPSybJmj34cZ2VLW3UgylMzaFoDjDm7QFi3NjHEBp15VMJPI42JliZ7+bG3nNpsRz2VJ+mJ9FP1lgKwTbC8DBSeVSiEk+O3cHF7ddzSecHGHO3EMZNUkY3pkzgheNosgUhfl6tWqFUDTcaI1YBGtbx9zGFICKIp9FlC1Fcw5AZ3Mhjwq1RtBMYUp7wplrd0squyoPMS6/jcG0H28sPE6kYN6rTJnXqwQRpo0Bab0Eg+MnwXVzZcQlLs4uZm5pDGAcEccye6hD1KODpqf28pnsNbXaGUNXRkXQmVjHt7iBnLaFoFTnWOESH3UVSy3P7yBYyusVFrWv44dBD3D66kbf2LESmx9EtHak5RPEEutnG8vMX46RsvveZH3PO9WfSOa/IhH+Yh8Z/iACW5tazILWG9YUldFgGbuPb1MMtJ9zQXe8REs7VJJ2rkfLU0tthXKPkPknKXMLczPmUg4NMeXtQKCIlyZuDzM9cgSGfXxtllll+Xfj57+D/jM985jOnPP4prWX29vbysY99jI997GPceeedfOUrX0HXda677jpe//rX8/rXv541a9ac8iROlqNHjzI5OUlnZ+cLvuaFFANn+eUnVB4T3gFSep56VEYS04zLZIwUO8obWZ2/jJxRZNo/jKN3EsY6Zb9Jq60x7e9ne6XK4kQ/tkziu7fh+4+A/wjUv4GmFQGFKzLkCjNdbIbWgR1rFOzlTPkHkJhYWpHB9FlUvZCUNXN6uFEdgJ7kKhJ6kZ3VzbRbA9TDIQp6P4OZNcRVRaRimlGTtGHjRRG7S2O0JRIYmkGnmWSouYsfD/0zeauDG7quR8qV6KILQ6RIaE2ONnbyrUN/w+LsevoTyxBCMuVP4MUhCXMeovkQQTRMHFcAgSaz6ForSWMuUvzsMy+FjlAhYKCUxNBbUBgYIqDiu7SkU5zR2suByjQ9yRwJXcONazSjKUrBHuane6iFHs1whIKZYjDdz97abnJGD7aWZsyb5DtHfsR1PVfTYhURSJqRRxD5dDlFDjUmKQc+3U4GXcZsnr6L1fmrMaTDkcYxBpIDJPU0I82jdDlJ0rrNcHOaKzqXsyw3wN7qUSy9D8cwqDa+i+s9ihAJOvLfpHteJ+/8xBtJ5ZJk23IoFGPuERK6QxD77Ko8yb7qM1zZ+RaceJRa4x6yRsuMChwAMY3mnVjmSsxTDlyqTDUfx9CKmEKytvgOpv0jVINhEnorbfZCbC2DFLOByywnyX9BjcsvgqeffvpZjzdu3EgYhifKTHbv3o2maSf8D0+V007CXn755Vx++eVMT0/zL//yL3z5y1/mr/7qr4ii6KTHqNVq7N2798TjAwcO8Mwzz1AoFCgUCnziE5/gda97HR0dHezbt48/+ZM/Yd68eVx55ZWnO+1ZfolRzKQuUkYeW08RE2IKG0ufWXo3pc2kf4Bbh/4Pbxr4PGUV8oOjj/O78y/AlA6T3i7qiaWklCIODx8/p2OkiFCqAmhIYRNHx8CYhxQaCb3AYOY8rHqeNnse3c5CJElMLUITBv3JdZT8YRwtQ7ezlBiFG7nUwim67E6GGhtZkjkDAbhxgK1lKPszvkPbiOlJ5lEqIlIeB+o7qUU1ao293D56F6/tegf1wyGRLbGlzcL0GvbXN8907YRlBFANp4mVIGsuwBQOoZDo+kwLoYrr6EInZy1Fk8az3sgokEgKhKGOYy4hiAKEECzNdzLZrPHh1Zfy40M7mfbqGNKk3Z4zoyBMiKFp5GQCgU8t2M/FbRdiS5thtwRAzsiyIreUvJnD1hxqwRheVKPNSbKrFqBUzO3DG3nbwCVIEbE0ewGRquCFHqEKj/scBRxrHqIWOCzP9ZA3E/zt7tvRpcYZhUGgynTj3wmDLSA0FE1ipnDSKa78jUuoRiHjQZPu2EYRkzNaqARTeLFLRESLmaPR/FnL57Px8f1tGPqC51VwfrFPqMKj4m0ka51JEE/QYS+gy1mOUgGRCrC1AvoLCCzOMsuvC/fee++J3z/zmc+QTqf52te+Rj6fB2B6epp3v/vdp23Y+JKrx/L5PL//+7/P7//+77Nx48ZT2vfJJ5/k4osvPvH4p8tL73znO/mHf/gHNm/ezNe+9jVKpRJdXV1cccUV/MVf/MXsisqvKIa0KFoD2DJNb3IlpsyiREygIgpmL5HyOVB9gozeQtkvE8UWWSOBxKZozaUaHONA9XFarD6EzGIZS4niSZTyEMJAyiy6LCJ+bnXCkCbzUmvptAeoh1NUgohJd4quRJEgbrIgcyFZs50D1UeRgKMlWZRegUTHjUJG3UkOVG9laeF8klqGgIgfDN3LmcXlXNKxgGFviIgkunSIVXQ8ZaHocQYJpwX3ffteXvveKzASEee23cBZ8TUE8SQlbwsQsjyzkoRmEqsq8wvvY6RxD1PuE6Bi8skL6EhejCEMlIpOePoIIZkaKeOkLDQzQhdJDBHjhgEDyTxLcx2Mu1XO7+7DkgYaMV3O/JkWa62HxyoPIwCB4FhjnPParuOy9guRIk2sBI5uk9ZTWJqJH9U5VHuQVnsxq/Pz2VMdJmemWJDuphrUcDQbITya4SEqURt5s8iIO0I9mp4Rp1MejdDlvtGt7Kwco+Q3aLMyLE6OsW/yLuam2knqM63EpdoXyVjvpxErRso1hAm+CnC0Al4ckjFajjueC6TQZ4TxtMTzBydC50SV80miiSRJYw4Vbys560yy5nwq/h7ccBhH7yJjLcE8zdqZWWb5VeVv/uZvuOOOO04ELTATN3zyk5/kiiuu4H/+z/95ymO+rGXvp5omuuiii1Dqhde6br/99pc6pVn+G6EJg4HkGbjRBOPuFuK4QdYaZNQdpsXqQ5c6tWichJGjETXZWz3MG/vPox55OPogLbZPm91LoCTSWArBTgw9DSgE4njw0oXUn13zVA/HeWb6++SNXg7UcnTZrbTaWRJGlrK3H1sIVuSvJGcMEMQeGSPNvsoo/7b/AV7bvwZL7mfH1EPk2q4hFin82OeWw7fzkaUDPF3awRXt5yHQ6E8sZHFmLWcVL2Uw2c/eJw4yefQo1fIELek5SOVSCfZzrPp9QlVHCEHZ3cCy4gfQRQzxKG32ElrtlQAIImRcJpYJlAp+FrigMX50Cq/ZZOm53YxXvkFL+g0kjAKWpjPhVfnoplsYdyu8umcV8zPrMITkqNug3VnJytwhqsEQCEGsFEPNvQykzsTWUihiDGlhHfe4caMyzWgKS9poQuedcy5n3JtkU2k7hozoScynGQ5T9YeIZCtu1ESTGkSCelhhWaGHreUhNkzuJG+mKVop5qZaiKKZm6Bpv46tGWhCEkR7iORT1BrLqYc+/fk0Oys7yBhZ2uwBdlSewjpeoLynuo9V6XPwmwee8zkTIollLDvl2jxdZig6F2Bp3YSqyZ6Jv6cZDR9XDs6TMufTl3kDaWPeKa7kzPJry69oqujnqVQqjI+PP2f7+Pg41Wr1tMac7deb5ZcKPy6xffpfOVS7k7Pa/pRE3EctqDKYGkSKiKzRxpH6ZqSI2VPZzSUdZ/H45AYWZ+YxkFzCUONBJppPsCBzHsJYjgq3o4mZNIoQWazEtUj5MwsCL6qzt/ow+6uPsKbwJuJYMS/dx2izxoCuc6R2JwdrD9KVWE82/1Ym/QYtZgubp47y1Ph+skaaGwbWsSKvcPQCtbBBwZBc0nYNYRxhSYNQNdFVim5nkGu727GkAdEI5UkXrxGTK/YSKp8wLnGw8m3KwWHC2EUKHUfLEauIIJ7k0NSHZ4wi9T4EAi88glI+c1o+jy3m/dy7GFMv1dn68A6Wnd+N2xynao6RMvKYmsaeqRF2V4YRwP2jO3n34BpqYZUjjQmWZOayuvBGRtwdTHqHaLfn0pdcxbB7iGONh/HiBjmjlcHUMtrsPmIVkNTbiJAMu8O4seLOkftQSNYXFjDU2EhGN7G1JFLPcKh+kEWZpYSxz5Q3hZQxQRxTDRuUghq2NJnwaixMtCGEIFTRzM3N8RhDqSZ+GGKbOroGRxpHKAclzmu9iLnJxRxs7AIFrXYvCasfQ43ieg8C0fHPQIJk4rVo2qmLWgohSJrzMLQiB0pfxY3HkMLG0LJowsYNhxmr34udacfUsqd5Bszy64TgVNf9nrv/LzvXX3897373u/mbv/kbzjzzTAAef/xx/viP/5gbbrjhtMacDVxm+aUhigMm3G0crd8/41otTEDRarcSqQZBVGNOaj2H61uI4zKv6r4cP/ZRQBCN8cD415CiiSkNpLDpS1xCwjobGQ0jtTS6sQIpO56VKnKjKofrTxOrEC8qcW7bORyYLmGZGhV/ClsrcEHnx0BFWHoaEZWJVEw9aLKqOMg1vfPxvDt4ZuI+Fre9F8twWJhuoz/ZTaQUg8kemuEUhqFjaTa+X0eqCCkErT1t+G6MaRoE+FT93Yy6W4jUT+vEFG5UIlQNAn/GuTVWLm6w+8T8hbBo+DtJmqsQwj6+l6Ktr8iuz+0hCl9FLnMWzRjK9R30plZRDVykmLlkHmtM48c6urTpsovsrByl3S7Qaq+ly1lNUk+wvbyBvbUtzEktoKi148cem0oPsbZwKQnNIqm1EsQCTZjcO3YHQ82jrCuspWA6HKvtJ2OsIIjrZKTJQHKAaX+SlJ5mfcuF7K1upycxh8FUF5WgOTOn5hRG60Ky5jx0Rv7DyohOwjTRNUkYQV+yh/vHt7Nh6hHmJuezMnceIBhxR0h7DfoS12Nb6/CDbQhMTHMlutaJlC/sDP1iSGESq4BmNIatdSOEQPAzTamqv4cwrs4GLrPMcpwvfOELfOADH+Atb3kLQRAAMz5HN910E5/+9KdPa8zZwGWWXxqCuM6Eu/X4I0EjGidPBCoCFROqOlmjhfUtNxLEHr3JTvw4YH6qh6H6nQy7+/jpPciB+mG2mQ9zRvHVzElfianlT6RSfh5FTBDPdA2NNHeyIH0DDx3ewbxiCz3pDK3OKkbr9zPcuJ/5uXfQ6lwChCzItrEkV0QF97Nv8l9QQD0YRhMGqwoXESkTP6gxJ9XLpLefUXc3Xc5ctpbvYmX2PNJmJy09EWe+ajXgI4TEi2rowiKlZ9CEMWN1ENVohCPoxJh6D2E0Tnzcq0nKJLpsAyFnDCR/+s4JKHbbXPs/rsBvNEln1xIEDYpGFjcOGEy1kdBM6pFH2nBoRnVarByeYTLiNvnCnrvYNH2INYU5vHvwTBqRy2Ud1xHGdWrBKAWzhf7EIPWgTNbox9bz6DKBFC5u5NNqt3Np24VoIuRQdRNpczFCzCgDb5h6mION/ZxdvJA5iXm0WR0odNYW5rKtfBQpNKb9OvsbEQvyN6GCexDRPiDE0Acw9T6ySZtq1CSlW9jGAnZUNnGosY+jzYPHC4wVPU4/K3Jr0LU8upbHNBYDAiFevkuefJ6xFPGz/i9mmeVF+TVIFSUSCf7+7/+eT3/60+zbtw+AwcFBksnTu3mA0wxcNm/ezO7dM3d9CxYsYMWKFac9gVlm+SlCCDR+2h0jmXL30O6ciyV1NKnhB1M8M/EpBjNvpD1xLiW/TM7MkDfTbJ06yH9cOI3jCsfq95Mzu+lMnvu8xzSkTbu9gGowhhtXUEToUuOfNm3kwv6rGHaf4mD1RwgEE42NFJ1zmPaOsSg3hygaZuvw7ce/rKAZTtCVeR2+EhhCooiphSUyRiu2lqAUjLC1fA9rctcghMRMbmHt5asQQiNWETlrMS3WPNxokjCuIYVO2ijih5Ok7cXUvA1ImUCp8Pj7ZSAwSZrLTkj+//S9S6QOs+7KQaan/h3ZOJNcepBRt4EpItqcDDf0ncFX9z9A3kxS9afosFtoRgH/cuAhdlSOANBqZzGEZGl2Kfuqd3Oo9jiB8jClQ4ezhEWZq1BKkjG6iNBIGWm8OKTVKpAz03hRnYZKsHHyDi7oeBvNqMnW8jOUgkkeURFhIWAwOZ+0keBV3etotXLsrg7jxiFHGiWWZFZQdOajVBlFhCazaLJAHChc3ydhgI7O5e3XsLm8kb3VbQAMphezIruOlPYzzRshfq7r6iWiyyQpYy4Vf/tznksZczBk6nn2mmWW5+HXIHD5Kclk8mWLFU4pcNmwYQM33XQT27dvP1FUK4Rg6dKl3HzzzZxxxhkvy6Rm+fXEEGnaE+vw4jIdiXXYMokmNIQUKOVT8rdR8fewp/zPCDmHCJta0CBl5GmxOpjw9uBoebJGJ1KAIRroQseQ6Rc8pikSLMhcxLi7H6UipICVnZ08NnSIql9msrmdMBbEKqQRNgmiCnuqd3JWy7vRNI02WxKLM2lNX0LBWQc4lPwSrVYRWzcp+zUSmkNSN5luDAECU7NQqokm5yJFBqFZSOVh6220OOewfervUISAQgstWu06CWMhGfsCKu6Dz0p1Ze0LsPU5z/qborgOsoimD5PIJKhNCZK6YMrzaHV03LDJdb1r6E+1sKN0jKLVigBGmiUO1UcxpEakYqI4pCfRzu7K7Tw9/QMMYSKFpBlVqYXTWDJBtvAGEnqeKA7RRYMup4MV2cW4Uci+2jQLslfw6OiXOVjdgm32kzYydCf6WV84l0ZY5r7xHxLELqvz53Bxx2LObVtMrBQJzSRl2EghgeJ/+Ps8MqZDM6rixXUqwRhzkr3MT83U+YTKpxFO0NATOPrLr2KrywxtiQtohkMEcenEdkPmaEtciH6K+jCzzPKrzpNPPsm3vvUtDh8+jO/7z3ruu9/97imPd9KBy/bt27n00ktZvHgx//Iv/8LixYtPbP/sZz/LpZdeymOPPcaSJUtOeRKzzAIgpaTFXoqjJRip38ox9ynaEhfRnX4LSoVEcZOk3knBXALCwhI2R+pPsCBzIQuyl9GdWEHGaEOIGIlEIWmGkySNFxYsNDSbgtXHBe2/RS2cwo8j2tJJblp1JpqYcQxqdebgx1WShoMmLRrBNIdqTzE/tYTezOUY1tlMeLvw4yqhyGBrFqEKMIRBxsjy5NRDnFW8mJzZgUECiQnCpDTcYPeTuzj72iVoMmCo8RSOMcjqtr9gyn2SMHbJWUvIWosRIkUxeS0JcyF1fxsCQcJchmPMR9fyz/qbYlVHiBRCCuqT8/nhF77Plb/7bqycxr0jG5mT7qLdzrOu2M+ZxbnkLQc/rlIOajMeTrHEkBqWNIhpcrixkaLZhXY8NSKYCQ6ONjazOHs1CT2PFweMNEc4t2U9jjSIgftGtrKq0M+Fne9DqCpSaigVcE7xfIaa+3lg7CfEIkYAQ+5BFqaWcWH7tRTM9hf9nDT8AM1UmNJiwjvEPSNfJ2NmyeoFQFAKJmiENV7V/VsUzPaXXdlbCo20tZDB/HsouZvwokksrUDOWomjdyNfBjPHWX49+HUozv3mN7/JO97xDq688kruuOMOrrjiCnbv3s3o6CjXX3/9aY150oHLxz/+cS6//HK+853vPOtCsGrVKt785jdzww038PGPf5xvfetbpzWRWWYBiFWN8fqPqPtbEarJtPsIXclrEcIkY86nxV6DreWJyCKkQ9FewD0jX+WqrpswqTFU/Wcq/nY0YdGSuJCu9A1YsvCix7S1LNKU5MxenpgYodPOsqqzBSEq2EYLzXAIU+ZJGJ3owmFF/noQGpWwiW1fwuHabRysfIsLuv6VGAECpv0qWTNLEDcJVMDR5jCtVo55mbOxZJo4UDQbJXRTJwyaxGbAlPs0Jf8IeWsxBWsNUuq44RQHKrcxmLUo2kvR5XqS5nJAIEXieb+UpUjhB/vR6WP3E3sYPaCwEw6RjDjanOTusWdYV1jIwkwvtjRYpfdT9ffRk8jR7RQZao7TjFwypkGsYgxpUg0a1MMSkQowpE1aL2JKjeh42kqhONA4SIvZQk96Abo06HJa+dLuO1hdGGR9y3yW5DpYlbuASEU8NnEP6njQIhAk9RTTwQS7q5tZk78AU76wVpMfRpiawDQEZX+YlOFQDcaY8A4gEFhaiqSeY9w7TG9i4fEi75cXTZikjAEcrRNFgMA44RU1yywnza9BquhTn/oUn/3sZ3nve99LOp3m85//PHPmzOG3f/u3X1QF/8U4abGBe++9l4985CPPe6EUQvCRj3zkWWp5s8xyqsQqoubvohkewpBpkkYnpkgw5d6PIqbdOYs4LnG08nVsGeDHIbVQ5+KOdxFERxmrfRelSiT1Io6WpRnsYKL+Y0I1/aLHlUJi61ksLU3JdymHTSb9MXSZpmCvZcQd4UjzCM1Io+SPkLP62Vl5hP2NbYTojDafBAwi5aMLHQmYmkktqFMLp1mcWcmh+iiPTe5gTeEahBAEXkh9us7XPv5vKGWiVEAcDqGLkLK/jT3lb7Gn9E2G63fTDI+dmKsQEk2m0OQLuxwLIkDDq+sc2TVOpiUmCGtkzQQLMr0ca0zwvSMPccvh+9lbO0akFM1wnIzeYF2hl55EKwPJbixpYUiHhJanEowTqZmOgCB2mQ6GcbQC1vHuHFMatFltPDH9JPvrh3A0gzNb5jEv007eTNCMQsaaNZZkltOMqviqeXw/i7xZxNFmgrAJbxg/dl/0/8vUBeWmiy50hFBM+8NUgnGaUY1GVKUSjFEJxpgJp17ZK7smLXSZmg1aZpnlBdi3bx+vetWrgBmn6Hp9RqPqfe97H1/84hdPa8yTDlyq1Srt7S+8hNvR0XHaYjKzzAKglEczPHz8UXy8CDVkuvkQYTyJH48RxiW6M9cfr/OYSRckNZuSu4FqMEo9rBMoAcIENGr+Ttzg6EkdXwrB8nw3GVMja+bYWdmFEv0szb+LnLkIKWx06TDpHWXCO0Zab8eNSuiylZS1nFo4CggcLYEfeUSElP0p8kYbU36N3kQrtrQRQiGEZM/GA+x75hBuo4lULvnEmcTKR6iQlF7A0bJASEJvwdFa/rPp/+x9JCSodSE0hW76BP40mphZHVlbmMe5rUu5vucc/sf8K1iSdfCiKnlrLl64m6u7V3JV12oWpDvJmwlA0pNYS0LPowsD87jQnC5M+lJnYhx3Qjakwfz0IB12O2kjSS0coiuR4PcXvZ5Fufnsqo7zwPhuBAY5I0+n3U2n3UOr1U5KT6MdT6/owphxwH6hvy2uk7Wm0eIADZMWuw8vbjAjMjizeqOUwovqtFl9JzR8ZpnllxIF4iX8/HdYccnn8ydig+7ubrZunekcLZVKNBqN0xrzpFNF/f39bNiw4QWdlh9//HH6+/tPaxKzzAIghI4uUsTKJYzLM0WmgCbTBNEEYVQmay1nvHEXrck+ElqaTKKTUNUZa+7gaHP/ibE0odFu95HSs/jR6EnPod1O48aCSIU8NvU4Q40pzmk5k7mZt+JoNhmjnRH3APPSZzIntZpasJ+qP4QmLQ7X7qHFWU+oYrZXdrA4s5Te5Hyk8FiSHaQ/kWNf5cesLLwZpRS1Ug3D1CmPT5PIJWl1zkITadJmL7pIoIhpBKM4RjvWKUjJS5JYlkC3KyxY280z99+K0AxuPfoQ81K9/M68V4NweWbqLo419zAv2U9Sb6U7uYZGeISzChbr8ktJ6i3Uw2lMLcuVnR9i1N1OPZjA0tK02YsxtQyB8rGPH7doFnlV59WYQjLceBQlOnhwbIQNkwcJj2vIfXn/3bxl4AyKZgfV6LkrYd3OHOwX8/qJhjDC7RSSlxKrgJSWY3X+cp6evhNx/Cou0VhduJKEliZS4azp4Sy/vPwapIouuOAC7rzzTpYvX86NN97IH/7hH3LPPfdw5513cumll57WmCcduLzpTW/i/e9/PwsXLmTZsmXPem7Lli184AMf4B3veMdpTWKWWWBG3CttLeVY9et44ciJ7WFcnald0DuoB/vJmEuRMokfu5h6knpYR4kUPzuLBbGKmPCGsLUkpvbixZ4/T8IwiQObaljmQG2IUXeSw4e/R0ZPk9QT/MGC36HDGcSRWcYaT5MwirQnzqDs7yBltCLwiJXGlD/F3toe1uXnc7h2K3NTr6UZHmbb9L+xwLkOhE17fxtd8zpwG+DFIYaw6EyuJ4rrxMoFoVGw56PL7PNq0Lzg+ygtpNEgCsfpWWRzzmuupFlzCSLFF3Z9hz9f89tUov3srm2j5rtY0iaIpxhvPEDF30fRXoejdyBoYogWdD2PraXIml0oFSOFRKDhxc1nrWgEcZ1yMEJSS2NpBbZXJvjRse+hiZmUk1IRGyfrnFHoYUXuXDaVH6QWlmfmjMbc1BIGkovQ5PNflpTyUcEOquIc7tmzjwvn91EORliQPpNuZwFHGztBCPoSi3G0NPVomiLPf6M1yyyz/GL427/9W1x3Jv37p3/6pxiGwSOPPMLrXvc6/uzP/uy0xjzpwOXDH/4wd911F6tWreLyyy9n8eLFKKXYsWMHd911F2eeeSYf+chHTmsSs8wCMzUumrDpybyVoeq3aQQzKygJYy6W1oYQFoqAMBpDihgv8jGlwb7abtoS5zJUv58wrgEzIUwQezj6fGyj+6TnEMQRQTQjLpY18ox5kwBUoyrNqEkjqtFv9dCMphh3d7HIuoy5mcs5WPFI611EcUAYR2TNLLWoxrR/lEn3Seamr2PY302kGvhxE0dLMHfVAIOrB7CcDIgGUtg0/N00g0No0kITNkI4JIy5SGEhtZM7XYXQUHFIFAc46ToXv/F1BJGiu97Gby68gRYnzZPD2xltlihYrejSphEcJKH30JZ8NY2oSTmYwiZJu9WKG5c5WHuEw/UNNMIpkkaRnsRa+pPrMY+nisKozqQ3xO1DX2Zt/gp6kovZVtpMSs+yrriGLqcdiDlQO8Sdw5v4rfmv4dK21zHqHaEZNWi3esibLST0F25dhxj0AcbLMTc/8TDt2QTdLUXuHvoaXYl5tNvz0aRk3D1IJRzjvNa3vGAQNMsss/xiKBR+1hwhpeRDH/rQSx7zpM9q27a59957+exnP8s3vvEN7r//fmBGgO6Tn/wk73vf+2Zdm2d5ScTKZbr5MKbWytzcH57QyDBkjlg1cfR2/Oggh0qfYkHLzUgx0wZ8tL6HhLaMZcU/4mj1R0x7OzBkgvbE2XSkX4chiy9y1Ocy5TbJ2AbntJzFwfphAuUDgkWZBeQMB1CEUYOexFKIjpIxulmSfysKh1gYKAJWZJezq7qbIPYZahymEhxGFya2ZqObitgLyLdluORN55HMmlhaCi86jBQxBWsAEe5CqXGEtgjwULjAyStNhoGObrYTB908c/9j6EbMGReup6rqhCqmEXpkDJsWc8Y40dTakFoPm0oPsHHqxzTCKp3OQt7Q/2GONZ5hpLmV7sRKbC2NHzeZcPeiCYvB9AXopPBVk721zYAgVD6GTDCQXMB5beeR0B2UCjCl4MziEmphwJH6FH3JRRSsNpRSJ9mybCG0Hg5OjzFRr/GDrVt530Vnc2bLq3l66k42Tt6NqekszK1idf5qUvqLd5PNMst/Ob+iqaJKpXLSr81kTl336JRuR0zT5IMf/CAf/OAHT/lAs8zynzFTlBkzWvs3LL0HW59ZKamEj+GGx1hQ/BR1bwsqbjBW/TJt2T/DkDY9yfncOvxNzm29hrn59yIJiVREhImmdZ6SU68hNbK2RaRCOuw+3tb/ZjZOP824N86S7GIczaIZjmFpaSzdQYt2E5Y/hIom0ZPvJLJeT8YwCWKfRel52FrE3PRKSt4ztDln05NYj6ElEHpEvVJnYEUfuTYbCNGUwFQlVOPfkcwsrYbu3QjrImTyDfxHIbYXIo5dBBLdyLB7w1Zu/cebaR/oovvMJVgpEzdSLM0tpzE5zKg3gh+HmDLDgdpWtpU3kTTmkTRgYfpMgriBKR3mZy5i0t3OqLeDhN7K3NR6YmZsCiwtRRB7mNLmova3ogkLS1qc0bKYSlAhjIcZa26iHkxRsHroT69jbXEOujzuZn2SOitCCJRIkjBmbpCeOnqEg5MrWNi+iFanGy+aKfRz9DSp4+mtWWb5peZXNHDJ5XInfV5HUfSfv+g/cMrrqEopnnrqKQ4ePIgQgrlz57Jq1aqXXeRpll8/NOmQsVZRaj6EFx7FC3/WDSSFgyJCqSam1k7ZfYDOzBhh3Mb89EocLYklDSKlIbUEYRSgHe+CORXcyKfk16kHHkJq+FGSS9qvBGJazQKakNSjCgWrHYNJgtq/EfrPoFCE1c+SSryNZjRGxdtLwZ6PUNCfugJTK5IwelhefDcSE7fhsu3hbSw5eymVKY9sWwpLakT1nxDHQwRxBdDQZQERPArhGpTWfVJBmFIRQpM0Kw22PvwEUQj9i1cw1Zii4LRhGzqd9gIcbTPD7naCeKZuZdgdOW4iGAGKpJlFFxaagCfH/y/Vn+vOSugtrGn5XTQ5U/iqC4v+5ArcyKXij9JqtSKFwgv3c//IF2mEJWa8gmB/9RGu7Pk9UsaiU/q/ARDSoi+f58y+BVyzZD7FTJJGpGHKLBkjiyYkhrReEcXcWWaZ5eT4eWmUgwcP8qEPfYh3vetdnH322QA8+uijfO1rX+Mv//IvT2v8Uwpc7r33Xm666SYOHTr0LMn/OXPm8OUvf5kLLrjgtCYxyyw/xTb6aE1dy2T9diL1s66i1uSrkMLG1DtxjC6iuIgf19hd28nCzNm023kOVB9kpLkTUzr0pdbRnzwHW3uRDpXnoRl6THs1Wp0sSd0kqVvsqQ7jRgFZYyY1ldCLKHSEqhN6T/5MK0TViFVIFHvkrcV43mPEaOTtC6mHHtP+OBX3AeZkXk8cKVacv4xHvr+RbGuaS956FoR78f2nidTPZAWieBJD60EPtoG5DsSL1YDMIIgJvZgwCCmNTxH6Ct20MAyTSXeSomZysF7iqq43UfaHSOspQiLcqDETHBKiVEw1mADmc7j2wLOCFoBGOMGB6l10OKsBsLQMWhQw6u7gYH0Lc5LLCOISeyq3Ay6mZiIAXUgqwTH2V+4la3Zhaae+TNySTPInF12E0kO2lQ9xbHySGEXeSpIxEyzK9NApTMyTrAmaZZb/Kn5VlXMvvPDCE7//+Z//OZ/5zGd485vffGLbtddey/Lly/niF7/IO9/5zlMe/6TX0Pfu3curX/1qBgYG+O53v8uOHTvYvn073/72t+np6eGaa65h//79//lAs8zyIugyTd65gP78H9GeupGO1Jvoz/0hOftsdC1D2joDXRTJWGeDbCdGMenv4+HRv2e0uQVdKGLVYHflDnaVf0IzLJ3S8WuBS1+qlTG3xOd3/ph/3HsPE16VlO7gaCZB1CShtTLtV1AqQtfySKEh0ZBCRxFjaDkEDer+HtD6USqgEpap+Yd5auLrgCSRcaiVXL73/36IH8zokChVnZHrPz6Xn/4bxhMo5XLS68LCQkjQNI3OOXNp1lxGDg2R0tLYhoNCkTESPDy+k53VGrq00IVO3iwSxlU67R5W5y+kze4lUi71YITnXCqEpBGMEqmZlFYQBwRxk23lh+h25iOkJFY1hhtbkUSYUmBIgSAkUi5jzT0nXLlPFUuPKaRsSmGFnJVgSb6bjmSSou2QMxOMu2VqYfO0xp5lll8o6mX4+SXn0UcfZd26dc/Zvm7dOjZs2HBaY570LcnnPvc5zjrrLO6+++5nbV+0aBHXX389l112GZ/97Gf5f//v/53WRGaZ5afoMokukzjGwHOes/UB2tJvQ6HTjCParF6GGxuY9o8w4ywUA2AIk1GxhYH0eTh67qSPnTYdKn6Tr+y7l6emDwCKu0e3IBCc3bKAP1/xagJVxYubxCKNNNagoxFFE6ANIDAwhKQZ7gPZhhQpQuVTC6qo6DCtdgsKH820OLjtCNNjFdp60oRhFU0fRNe6kcJExMdXVmSVWNUQ+hwQJ7d6JAiwEjblsSYrLzqDp+99gB2PPsMVv/kGelt6qIceT05t47aRRykYWa7tOh+pFPNTy+mwB4iUxoHaUdyoSpvVSkLLkzN7aIRThMpDFxYJvUBSLyBOhFeKUHmMeodYnj0XQ0gsaWEJnbTp4Bxf+XIjl2roktRt5GncL6rYJQ73EKh+NCl5pryTu0aeQKHQ0OhPdXJ99wXE6r/BFX2WWX4N6O3t5Utf+hJ//dd//azt//iP//iCunD/GScduNx3330vmI8SQvBHf/RHfPjDHz6tScwyy8kipU3SWkUtrKDHPhmzhZ3lowQqQCDQhI5AYEgLKTSqwTCt9snXUiQ0i+3NY2wrH+Xnb2cUiv21MSIVMeVuwtQX4ikL3byQOBpGl3m0xNsRAkI1I7nvGHOwtBxhPEXWyKLp3Uw2dcaam2g3zsRyDAodeTTdwPfGse12rMRv4ZfvOFGwpulpjMRiMFYjTlYFVgWEvqRSapLJ53jH//pjtjy4DcdMowmBrwKemNqGGzUZj0NmdG88MkaREbfGofpB5qTaSGkWAoOCvRA/rmBrGRQKgUQKnaK9GPO4E7IgxpQWOhI3qqNUSMoosLJ4AUfrm5kOZtrU03qCnkSOruQSDHnqxbMqHiWOKghNY1flEIfqI7xn8FX0J/IoYo40yuyuHmYg2XHKY88yyy8awXEF3Jew/y87n/3sZ3nd617Hrbfeyvr16wHYsGEDe/bs4Tvf+c5pjXnSgcvhw4dZvnz5Cz6/bNkyDh06dFqTmGWWU0GgoQmdRlzF1hySRssJH51QBSS0FGmjgCZ1nP/gnPyfo5jyqxhSogmbQEWgFLrUWJbtpRGWSeotGBrUwoC0sQwl3kXkP4Epu9BUTBwHaFormpRIYaJURMFqpRG6WPoygihAWII5y/tZvH4+uzYMseis8wn9JKiLCbQ2KuOPEEcumbbVOPoZqLAT7WTV64WF3/Q5tPUwqy+ez8DiIl2DlxHbMW7UIIwDTKljSgM/DgjiCCEE0944ulCszRWZdu9npHEAGV9OZ2ItjXCMWjAEzLQuJ/UO+lIXYWozK0PR8fd9ee58vLhOpGoIkaU9cQG7K7uoBBMANCOf+eYAHYlzME6x60epCBXsxFNLCFRAQjd577xLqQfbmWo+iELRbc1jQWoJcrZZYJZZfim45ppr2L17N//wD//Azp07AXjNa17D7/zO77zyKy61Wo1E4oUr9ROJxGn7Dswyy8milE8c7AXRyqbp+5mbXM6C9CXUg6MEx835hJCYwiJr9JExT158DiBUIT1OEUvTaYYBltQAgUJhapKUnqLiPsnh6dvozL6HQA2i6UuQWj+a1ooUOkIKqr4ibaTwowa6LFAOpvEiWJi7jsO1HzHkQrZtPde85woObDuEYSQZO1zmx1+8g0TaYsUFV6Lpkq23jnFoxz286reuoH9Jz0n+FRIpJYWOHFLz2P7YbroWDaKbOo2ojkLQYecwNJ166DLUHKMnkSLCJKsNsWPy07jhCCAouduZn/8NFmRfQz0cpxFO4OgFCtYCHL0VeVzR15Amrj/O2sLljDYPokuHHZWd1MOQczp+j5K3m2Y4RdroJGH04sapU9Bv+SkRYBBig4IzCr3sLX+L/ZV7cKM6Umgk9SfpSZ7FovxbTun/fZZZZnnl6O3t5VOf+tTLNt4pld1v376dkZGR531uYmLiZZnQLLO8GHF4BL9xC6HzdlrMTjqcAXQJS3PXsb96N/VwHENYFO2FzMtchqOdmghZrBStdoorO1dy29AzVIIGCkVSt+l3WtBFyHj9dtzoGFX3flJ6AUN2g0yhjrcqRypmzDs6k5aJyuTtAab8g9hScKB6LyVvE7ZsJYeia7Cd7vmtRCEc2zPMpvu2YZgGj3x/IwowbYPQDxlY3k/HQCtW4mREHl1Mx2LRmT3sf2YXd//Tj3jXZ9+HFDrVsEGL1c6S7AC3DT+IpTkMu+P0JXKkNcnB2j344RTyuIllpBrsnv4SzWAfi4t/iCbTSKGfCFh+ShBXMTUbL44ZTK0mUhG7K/t5cPxu5qcWsSCzgIQ+wKFGhb21+5mTWsHVXedga6ciWmkgtG7iQOFoJtPeIXaWfkSogpn6JhVSCcY5Wn+YnuSZZIyO58xzlll+qfgV1XHZvHkzy5YtQ0rJ5s2bX/S1K1asOOXxTylwufTSS0+0Qf88QojTuHuaZZZTQ8Uukf8kKp5CB+Zn19IMpxmqPk7W7GBR9jpC5WLKBCmjk4TWespfXEIIgtjlyq4V5M0k20pHaEYec1IdnN++GEUNTRgsKPwvHHMJ5bDKwepG/DhgVW4daSMGpWZcigUY2szqQEbP0wwPsHX6x1iayaLMUiojNT73u1/kbX92NansMkYPjoMSHNs7QrM2s3pkJyxaeoqMHx7Hc/2TDFwEptWgWYNtD2/CSuaxrQRjQYW80YIEziquQBMaj008Sb+TJVIelhQ0g6MgBKgYhEQ7XhDcDLbiBfvIOOuf94ix8olJocuZ/VAxllYgrRdptdtpsQo4moUmTArBjJv0qWbohRCgtaJHIUIETHrbsbUEjpbBkCagcKMGQdyg7O+jPbEOKU5ebXiWWX7h/IoGLqtWrWJkZIS2trYTOm8vFDu8ogJ0Bw4cOOXBZ5nl5cVHRaOgyphahnLYZMrbxtH6nRyoVEkaHaT1LjTpYEiHRbnX45yi3P9Qc4xq0CBtOJzVMoczi3MRQpLULTJ6AoFHb/YmLGMBe2q7eGj0OzSiaaRwKJpF5qXnoxGQMXIktSy18CijzU0U7KWUvQ1EKqARBiTMNrZuP8KWh7YyMXQ2S8/VcdIOx/aOUC/PtEcDeA0f3wuwEha6cZKnq0gios2EQS9TYyETQ4oQyZbSLlbnF/DI2J30JeZzVnEZ6wrLaTVMYjx0qZM1Wph0m5hypusnUgGWliGlp9G0Fw4CLK0dN26yo7yBotlJX2IuK3JLmJPqwJYVJtynqXgVUkY357euJGf2YWun7tostAIJo0oA2FqOvNmGH9dohmWkkNhalqSemfF5Yna1ZZZZ/is4cOAAra2tJ35/uTnpwKW/v/9lP/gss5waOkLmQNh4SiFExLS3jbp/lIzZj61lceNpJhqPkNAL9KbOx9FPLXCZ9Ms8NL6Rpdl5DCS6yBkZbM2kHFTZVh5mTX4OhplhKpjmwZEv0whLCCCiRD04ghd14EidvJklVjHT7h52lr7LZT3/l4I1gCVtYkLiOGDi6CRCCjbfv48LXn8hfYu6SWSc44HLz1Yj4kgxb/UcDPMUTBb1XnRDw04VOLpnK0Ec0em0Uo/KHGnu4WhzL3bpfvoTC7m49RIgwgtG6EiejVBHiVQ002IsJJrQSZmLXtRlWwpJ2R/nzuF/5sa+9yMEdDhptOZ+dk7fQnhc78UND+KGe8gX3g6cnpdQLAQSjVZ7BXtK36IWHjvxnBtNkTXn0uasQT9F1eRZZvlFI9RL7Cr6JV1x+fl44ZWIHWalJWf5b4OQCTRrHWGwHRToQkMiWdv6h1haFj9uoAuLeZlrmXS3EkSnLnDWZhUI44ickabFyqOJGDeeQogmc9M5pLQRKmCosQ8/aj7ry7EeltAETPnD5Kxeyv44gfJYmn8DXjhJ1hxgae5yRppP46kx+hZ3k0g6PHH703iNAIXibR99Pd/93I84smsIgGJXgWv/x5Wk8ym8po9hnVxrkdBa0MwmC9fN55m7NxL7MQPJbg41tnO0sQ+AlJ4hb7QQKoHCp+rvoJC4gHQ4wrHqjwniCrowaHHWUki8Bk2+cIdWpCKONvdwXtt19CYWEsUesfI5Wr+PUjBONawdP2YSTf7/7d15eFTV/fjx911mn8xkX4BAiOzIjiBQ6wIYFxRsVcRWqfXr0mqtpa5tFbGt2KqIUr9d/LKo1YJVu/y0xQVBVDaBACI7hD0J2ZPZZ+49vz8CkUiATAjZOK/nmUfnLueeMzwz+dxzz/kcheLAatyWzljjnFlkmGGKg+txW7JRFZ1eiZPZWvEG/ljt5+WyZJDruRZ7nAGrJElnz+HDh/nss884cuQIpmnW23fffffFXZ4MXKR2RdW6Y3Vei6HqqEIh13MVhwLryC9/hZroYTTFSpZzGH28E/Fac+IuP9WWxG25kzDMGH6jnF01qzgQ+ApThHFpXi7NuIUUixtTRI6OBald1wdFxcTEHy1CUVTCRpiQESTLOZxItBir5iZkCjJdVxBD47B/BZ173sToSSM4vKsYRVWpKqlBVVXufGYqZYfLiUZiZOakEfSFKSusIOf8rnG1xV8ZomvfLtzwwI0QEpi2CA7VjVv3ku3swaXpV2NVDARhQMHruIR9gf0kWC4kN3kg4dghdC0RTU0nQhLOUyTaFkLQxdETXVHRFQ1FseCLFFNQs5qwGa17bOOPlRM1g7j1XXQTfqzEF7iEjCoOB76gX+J5FNR8iMeazfD0B45m9xW4LJ0whUF5aCdOd1pcZUtSS+uoPS7HW7BgAXfddRdWq5WUlJR6Y2EVRZGBi9TxKaoDzXoBphlDVwQBo5Ivy18ncnRdo5gIc8i/GpvqJdnWM+7ynZqdQMxPTayKsvBXHAh8QdTwYRIjQIgjoT2kWvrTyZ6FVdUIxmqXb1eEQnloH1HP+fjCG8h2j8djScGmgsOeS1U0wD8PzqeLM4e+novRFRN3oo0bH5xE2B/BV15NRrcU3n/lIyqKq+kxuDuqqrL6P2tRVZU7fncrVntjE7nUsjmsRCMxEpLdKIZCeaQQi6qRlzmZXFcuxcHP2VP9MZ1doxmYPIVAtIL15e8RMX10cZ6PW08iYh7hSGgNKbauXJh6HU694bWSdNVCoiWV0vBOfDEdjyUFQ5hH1z+Kff3vh0LENAmbMRDxD+Y3RIgMxxA0xYEvVso+36ek2HrgtnZGQaXM9xlHgl8xKCX+9U8kSWp+jz32GI8//jiPPvooqtroVYZOSQYuUrujKBZMophmiOLgl3isXVFQjy7YJwgZVfiiRQRipbgtJx+X0ZCQGaY8Ukmi1cqGivVUhPegKhZUdMJGDb5oCQKVBF1lWPLlrCx5E0PEEMAB/0YEN5BozeFA1Zucl/QjDOFHCJP9gR3YVBtptmxiQseiOimJlGLNdtJN78Sqf39Ozvm5XP+za1n34Ua+XL4F0zDpO6o3F04YTnJW45eJP0azaKz9YAMv3TePn//f3fSYmMymqk8Ym/F9jgRXk1+2kIgZoipaxqDkW/AbVUTMIIYw2F69HFPEsKhObJoHi+YgJiInvZYQBjERYJ9vOZ0cQ3BqCYCNTEd/ioLHpkOK2gUphUGSrReaGv8KzhbVjVVJRVF0km192Fz5H8oiheiqFYTAEBHcejoea3y9U5LUKjrorKLjBQIBbrrppmYLWqCZApfq6mpef/115s6dy9q1a5ujSEk6JVPECBhVmCJ29LFQFgomAoiZMUpC2wkbNact55sCsaMrUgPVkSISrV1Rj0u1n+HoiUEMnQD9EnLItP+cqlgNQgjclhQ8llQS9FxS7MNAUVDRCcSKsWtuRqZezl7/LlaWLSVihunizGWA9wJSrB7cSTY++usiLr5hEmMmXsAFeYMBsDmt2J02dEv8M2T8VQHWfbgR3aKhWVXsagKhWICYCLDftwpVUUm0pJJs64kgil1zYYoo5ZE9tdOhgZBRQdCooJOj9ymnlguiGCKML3aIgNEFTYGIadAr8TpCRiUVkX1HV8JV6OIaQWfXaDSlCYNnhYLdkkxUxEiwdqeP9yoqwntJsGRhEsMXOUKfxCuxqt74y5Ykqdndfvvt/P3vf+eRRx5ptjLPKHBZunQp8+bN45133sHr9XLdddc1V70k6ZQUIGZGyXVfSjBWwO7KeVRFtqGrLtIdF9LJdTkuS/e4yw0ZYbwWD7oaI8PRm8LQbkwzAkeXE9QUG7FYIf7wJryOy8myWEk0qjFEBLuWhE1VMUQYVbEQMSNoiknEqCbTns2HRf9gbcWnR+uvUBw+zL7AHn583iNk9+rMqnf9/OPFP9NnxBAycnJQFIV9Ww7Ta/hQbI74eo4ATNMk7A/j9DrpOqQTFeFSRqdeh4qKSZQ0WxYK4LIkIITAobrJtOdQFt75jXLCdHH2wqqcPIeMSu0aUVWRgzi0NBQEFkWlNGYyNPUefNH9hIxyEqxdcepdsalp6Gp8Pz9C1AamESNMWbgGm6oxMPl7WBRR+5mjoShWokKgyM5kSWoTZs6cyYQJE1i8eDEDBgzAYqn/yHvWrFlxlxn3t/vQoUMsWLCA+fPnU1lZSUVFBW+88QY33nhj3F3Zy5cv55lnnmHdunUUFhbyj3/8g0mTJtXtF0Iwffp0Xn75ZSorKxkzZgx//OMf6dkz/rELUseiqzasmhvDPMjm8jlEzRo0xULMKGdvzbuASZ+ku+Mu16baEAjsagK57uFURgqJiSCmiKApNqoiRWRYc1AUK9XRQ+z3LaEyvBVTBLGpCQzPnA2iFFOxAR5iph+r5qUq5uNg8ADDky6mqzMXXdUpj5RS4NtNgX8X/TN7ceUPb2TFv9az9oP9REN76No3nQuuHExGtzQUJf5uVofLTs+huWiaSlKWh9UVn3OR+xpUVSHT0Zfd1TsJxCqojhYzOOXHxMxq+nsvItPR4+g0aBVDCCyK4+jsoyBWGl6hWlWtaKoVt56BU0/CFBESLU58RgrbqzdhUS3YtE4QS8CmO3Do8edwAYiIMAoa5ZFq+nhyUfHjjx6mOrINFSseWx+cemcsauNW0pakViVE7etMzm/jZs6cyfvvv0/v3r0BThic2xSNDlzefvtt5s6dy/Lly7nyyit57rnnuPLKK3G5XAwYMKBJFfD7/QwaNIgf/vCHfOc73zlh/+9//3tefPFFXnnlFbp3785jjz1GXl4eW7ZswW6XORrOZRbVhkOzsd+fT1f3ZXhtfbFrySAEvthBaiI7CBnF2PX4ZpZ4LAlURqpAKHRx9MZMCrK1agnVUR9OPRG77kBTU3HYL2Jz6SzKQquOnqmQZp+EQohQdC8oCbhtmZSHtpBo68fB4DYmdr4JIaLsD2wmHAmQ5ehBH88kfNEAiuoks3t3xt6SxvC8KoQQJCQnkJjmxe5q2h/hhGQ3V94xjpL9pahCo49nOCgCXXGQYh/Arqr/EDaqgWqqIgcR1KbSP8+VS014EzGzErslG6e1M/5Y4GifU8MUNISAgck3UhHegyGCRGN76GI/j86OSUSOzr6yKBoWJYpG/Nkya4M3BUVNINvpRCHIYd9i9te8hSFq10mzaSn08P6QdOfFQDzLCUhSyzsXZhU999xzzJs3jx/84AfNVmajA5fJkyfz8MMPs2jRIhISGp5ZEK8rr7ySK6+8ssF9Qghmz57Nr371KyZOnAjAq6++SkZGBv/85z+56aabmqUOUvulKipeW29sqpVAeC1Vwf+gKQ7c9lEkJ0w4+ognPg69NkiIiRp2VP4Tm5bAyNTrgdrHU1XhAiJmD8JGmKDhx6JlIkQUVXGS4hxNzCjDVExsejoxEcJlySZslNHZmcNu31pWlL5N2AyhoLK9ZhXd3YO4KHUyoeoQn/9zGWv/+y4ZOV1QNY2KwiN0HzSCy753FYnpTUvWhilY+e5anGmjycrtjMAgbFZSHS1jQMqdHAmuozK8C3/kMFmu4VSEVvNl6eza1Z2PLi7pspxHz+Rp2NSTf+8VRUFXrHitXbBriRhmDbqWTlioHPCv42BgJwJBpqMHOa5eePWmBWMOLYEdVQfp582kJvoV2yvnY9eS8NoGIYSJL1rA7qq5eGx9sOlN/MwkSWo2NpuNMWPGNGuZjQ5cbr/9dl566SWWLVvGLbfcwuTJk0lKOnlCqjNVUFBAUVER48aNq9vm9XoZOXIkK1euPGngEg6HCYfDde+rq6vPWh2l1qUrdtx6EocqnyUY/eroVoXq8Kekum8izf29JpXr0B1URYrZ7/+MkFGJVXVjVV1ETT8R049FtZNozUJVvVhV19EcJQoKOoIQuuLBpqZRHStHV6Ic9i8l1TmeDRXvEzGDtQGBiIGistf/JZem30zR3kJWvPMOyZ3S8aaloqgq0VCE/A//S+6gPgy8JDHuUfmRUIQvP9vKga2HKFh/iC7nZWICURFlXemrpDp60cU5hEznKFKs3TDMCiqCHyMIIoRRN2EhahymJrwGtzUX9RR5VwwRpKB6Ced58rBpToJGFRsqPqM0XESqPRsFhQP+jRQFdzE67XoStfhvgBRUgmYMTYlRFd5M36T/wWPtjYKoTauDQmXoS6rDW0iw9kRV5FgXSWpNP/3pT5kzZw4vvvhis5XZ6G/1n//8Z2bPns2bb77JvHnzuP/++8nLy0MIcUImvOZwbBXqjIz6gxIzMjJOukI11D5PmzFjRrPXR2p7FEUlHNlMKLqdby7YVx1cQorzaqBT3OXWRCsAsCo6QWEQNqqPPlKp7VkIxUpwOAeiqwlEzRoMEUZgUh7eRrJtLDHTh6paURRBZWQnmmqjLLwPq2rBrjoJmyFQFDRUvJZktJjG3s27GXfrDXjTs6gq9WFEDXoOG0EkWENhwQF6De+D0xNfsrZgTYi9mw8A8NWn27jo+gswlRiaYsWpp7Kr+mMKapaTaOvK2Iz7MYzDBCJfkqCnERMhDBHDojrQFJ1AZDuG6UNXT16HmBngPM+llAeXY1j7EzDteC3J9EgYXjtdGYGmjKImWkNJuJAESzJanItgCiHomZBF2IyRYr+QiHGYg9WvUBneAKgk2y8gK2Eidq1zXOVKUmtQzNrXmZzf1q1Zs4aPP/6Yd999l/79+58wOPedd96Ju8y4bkccDgdTp05l6tSp7Ny5k/nz57N27VrGjBnD1VdfzfXXX9/gWJWW9OijjzJt2rS699XV1WRnZ7dijaSzRZghosZBHHoWEaMcQwRRFA1dcWPTvISju3BY+8VVZiBWTcyMYlMdZDn7YfiD+GMVGCKKRa3t4dEUgUNLJd0xBH/0EIm289AUG2GjChMLuurEEBFsmpdyM4hF8WKoDuyaHYuaRsysTcimq1Y0pXaV5NxBvTiw7SCvzVjE3s17AUjLTuOKH15O/zHn12bpPQNBX4hAtR+LV2BVnfROvAJV0enkHIDX2hmblkDIVInEDmPRvFgULzbVhSH8xIxq0Lqc9houSxqFvv9wJLgMi5aCqvWmq2sgAh+B6A6iRhVOS1eSrJ0AFxEzgkOL75FRyIgQNUxKIyapdhtflcwhZBxGiNqP6EhgOWHjCOen/U72tkhSG5CYmNjscUGTv9k9e/bkqaee4je/+Q3vvfcec+fOZcqUKfUe05yJzMxMAIqLi8nKyqrbXlxczODBg096ns1mw2aTg/LOCYqCqjixaF501YXAABQURUdFR1VPvprxycTMKHbNiSlqSHcMojq8G6fuqs3qryhYVSdZzhEAdHFfQii6n/LgZwTNchKsfVEVHauaRsSsRFeTSLadj0NLImDUgHGQUKwETU04+ljJXbumkMWCbrHz5rNvc2Tvkbq6lBwoYdHv/87Df320SQN0HQl2ug/IZv/Wg3Q/vyul1QVkubqjWDW6uoaTas2mOLiOI/4VpFg7YdMySHNdjcNyHgnW3iiKimGGqAqvR1fT0U4xxgXAMP2Uh9YjhMCqJuCyJBGIFrCn+g3KQjsQmNi1BDIdo+jquQ6Lkhh3mwxMwkaM6rAfm7oVTRFYVDc2PQNQiMSKESJIILoHpyXnlLlnJKnVnQMJ6ObPn9/sZZ7xLYmqqlxzzTWMGzeOP/zhD81RJwC6d+9OZmYmS5YsqQtUqqurWb16NT/60Y+a7TpS+6UqLpy2IQQi60+YLqyrqdgtveIuU1N1IEpleBMKUXomfpfS0EZCsVIcehrpjmHY9RQM4ac6tJZC399B1C6QGIxspzq0lq6J92LXMggZ5bj0LIQoA3Mf5ydezdqyV4gaxbUXM1S6OAdjUezs27ITI2pBURWEefTXSAGnJ4kdX+ym55BcHO74gher3crAb/fj0K4i7G4bQo1imGEisWpiGOyqfJOa2AEEJod8K+jhnUi29y4ikfUEAm8QM0qwWs4j1X45VssA9NMEgoYIEBPVxMzqozOQwuyp/jsFvs8RQqCgUBMtwx+rwGXJwuGeAMS3jIFdtaKrMayagT9aSbZnCgnWnihHAxQhTGoiO4gYZQgRBRm4SG2Ywjcfcsd//rkorsClpKSE1atXY7VaGTt2LJqmEY1G+d///V+efvppotEoDz74YKPL8/l87Nq1q+59QUEBGzZsIDk5ma5du3L//ffzm9/8hp49e9ZNh+7UqVO9XC/SuUtRNOyWfngcl1MT+gQhQkBt0JLo+i66Gv8ie4pQEATR0Pmq/BkynN8i3T4CXXURNaspC36KQ09DUR0cqnmdYHQfiqKjoCIwCMQO4vDn0NV7NzWRrSTZhxGM7uJQ5dNkeu5nbNaDHApsJWoGSLP3IM2Wi4ZKoCZIUmYyjgQn/sraTLwubwJ2t4NIMIppNO1hdlp2KhPuHE9VaTVp6XZU3SBq+tlb8x+qo9vQlARQdHTVBsKHEd1AMPB3dL0rVr0bCINQ8D101Y3Qkk+ZT0ZTnJjCoCa6E13zEDZK2O/7HItiw667UVGJigghw8eR4DoyXZdiIb5eMYHAa7XhtaQhxChMs4wy/xICkXwURSXBNoQk5zisWhaKEl9QJEktrgPncUlKSmowTYrX66VXr1488MADjB8/vkllNzpw+eyzz5gwYQLV1dUoisLw4cOZP38+kyZNQtd1pk+fztSp8S1stnbtWi699NK698fGpkydOpUFCxbw0EMP4ff7ufPOO6msrORb3/oWixcvljlcpDq6lozXeTVO2zDC0V0oigO7pSe6moaqNu2RoRAhNMVGqn0oRb7/UOT/D0KAIWLYVC+9k+4nGN1OILobIcJHfzxUFMWColgJRPcghIFphrCoTvwiSDi2h4MVv8Tj+DZd7UNRSCRm7MQX/BKv92d06dUJi82KbrHgSHCCAE2v7S3IzE3Ham9awjZFUUjplExSRiIhswxNsRA2DIoCK3DpWXT3fAeHnoZbz8Q0DxMKr0UXd1F5SKfsUAWuRBepnW0YNh+mXoWmnXwmoa46SbQNoDK8HgWVqOknyZqBVbVjEkUIE5fiRVhSiZlBhGhKMCZQFUFpMEaGw8m2sqeoCH2JooCKgi+yn0jsIDnJj8nHRJLUimbPnt3g9srKStatW8eECRN46623uOaaa+Iuu9GBy69+9SuuuuoqfvGLX/DKK6/w3HPPcd111/HUU09x/fXXx31hgEsuuQRxiohRURSefPJJnnzyySaVL50bNNWDpnqa9Gjom4RiomBHpZIcz3XYtCRKA58TEwFSrb3plHAtumpBUVQcehfc1r4k2oejKwmEjCKqwvl4rIMwRQ0Jtp4IEcJh6YlFzaqdkRTdTThagClCRI1ysrx3Ayqde2TSZ0RPtq7agaZ9/Qc3IyeNviN7YbGdWe+BqqkoQsUUJopiYWDKz/BYuxGKHcAf+Qq3nlIbbPjG89k/NpD/8TLCgQCqqtJ9wPlcfst36dqX2kWcTiJiVJLiGIGiqIRiRbitPfFYszkSXE/YPLoGlKLj1jPo5LoMrQnZbQWCQNSgyF+OW9uBQ4+hOtKImX4MU6CrbkxRQzC6A6veWQ7Qldq2DjzG5XQdGYMHD2bmzJlnN3D58ssv+d///V/69evHk08+yaxZs/j9739flxxOkjoCRRgoihtdS6PE/zGp9iGkO2uTJ2mKFZelG6ZRgVVJoHfqDHTFASKEIIrL2pkUxxgUxY0vnI/d2gszdgCL1pnOiT+jpOY1TPMIJgaq4iHJMY5Ex1hU1U5iusb4W75NenYKuzfuJRY1yO7dicGXDSC9a2qztM0UBmGjFLelK1bVSUHVnyn0/RurlkKSrT+6mcKm5ZtZ9e5/vj7HNNm9cRNLrcl89/5cEk/x9E1gcLjmXdKcY3BZuqKrXlIdoykMrD36LF7BFCYCGymOC7Ao8U3vBlAVHX/MRzePm0DsIP6YjlXNxKELNEUBdEyhEY4dQogIyMBFktqkCRMm8Jvf/KZJ5zb6W11RUUFqau0PqMPhwOl0cv755zfpopLUVkVMHyh2QqaXdNdVBCPrMcwYupqCpucSFToWUYGuJqBhJRheTSD0EYZRjMVyHi77FdhtI4kaxZjhMImWHMDEYxuMRbFSHVqOYfpwWs/HbR+FVU2ue6SRlp3Kt28YxbDLB9cueui243A332NRIQwsqgsFQVlwOcX+/9a22SjDFz2A1Z/BtjXbqL2NO/7ZtEbBl4eoKPKRmHbyIMqup2HVkthW/gLdvVNxWgZh1bowJO0xSoOrCRuVJFi7k2IfRsQQREUAG/EloYuZMVLsCQSjYarCFjaUFKKrKk7dgqaqZDkTSLY70bVEOcZFktqwcDiM1dq0R+Bx3Y5s2bKlLvmbEILt27fj9/vrHTNw4MAmVUSS2gKnnkJ55DBR00+FUYOm5qIrFiIIooaBVQliUxNBEQSDn1BRPQshgggE0dgOwuE1ZKS8ilXPojzwXxJs96IY+/D7XsNiHUCq8xoURcc0K4gFPyBs7YvDcRXK0ZWXrXZrk8eznI6i6KgComYl5cEVaKoDVVgRwqAs9DnpsWFEg15UNQ0U7egKyyaKYkWYSYQC0VOWb1GTyE74LgJRuzxCdDf7fKvIcA4h1XkZumIlYgY4HNyKEAZJ9vhX764dTaSxuriQXokDcerJBGLlVEdq0zAoKKQ6OuG2DkKVgYvUxp0LaxWdzNy5c0+Z2uRU4gpcxo4dW29MyoQJE4DasShCCBRFwTDiXzxNktoKU0Swa3YO+j5gS8Ubx+1RsGguRqROw5twCaaxn2r/AoQIoCja0em/JqZZQSD4HxzOSejqakxhgHEYI7oeI7oOFDuKYq0NVBQHiqphmpegaWc/95Bd8xKKFaKiYooYCAMFBUWxUh5aRaptCpndu1F+2A8EESKMojhAseNNSyUp3XvK8lVFI8Hagx6JdxI1fITMAPv9X2CYIWJmCFOJEjKqCRrlpNp6oinxt9mpOSgM+1l+uACHnsPgzLvZVf4PSoLbsKkWEm29SHffjFWLP2OyJLW4DjzG5fhEsMerqqpi/fr17Nixg+XLlzep7EYHLgUFBU26gCS1J4YZBhHloO9TQEVVNBRFxRQGhhmhOLiGbu5LME0/hlEImAhh8PWsIp1A8CMS3LeSZvsRocoYqkUjFktH001UhdpHGIoVFBXQTjnFuFkJ0BUdFBte+2CqIhtQUIEYhlkNzkKGjO3L3k2r8FeUgKIjRBmqnsCwcRfjTfOc9hKKomHX02ofGxk+hqfeQdiooDK8G8MM4bZ2po/nKpx6BhY1/sdgmqIhMCkOVfPXHV9yY4/z6Z12HwPU2p7fkOHEVDo3eUaZJEnNIz8/v8HtHo+H8ePH884779C9e/y9rhBH4NKtW7cmXUCS2hVFJWYEsGtOLGp3LGrtYxuBSdSMYJoBYiKMqjrR1EwMs+zrU48GILqegRFV2b2+iM2fbeHbN3aj+KCBZqnB4XbgSbFjsdcea7EMQFHiz/DbND4UpTbfTLpzHBWhL6gO5wMqFtWLXXXRra/O9T//H9Z/vI0j+0pxJzoZ8K2e9L4gC7szvts7XbFgmH7CsTKSbDmAQAiTsFGKU2/agOOYiOHULYxIz+YvW1eys7qE7gkpdPMkEohGSLS6uHeAXOJDah86cgK6pUuXnrWyGx24/Pvf/25w+7FkMsen5Zek9sqquompAVx6Kv5YMf5YMYaIYVWdOPRknHoqAgNNTcXlyMMXeAdBpO58VUnA5ZxITVmU5W+tpORAKf3GdCe9yy0cLvg//FXlGIZJaudU7I7RWK1DUFpq5osQIBSqIxuwaen0Tv4FlaEvqIlsxWMbiNvSlXDURXpXnctuSiMaiaHpGnanFd0mQPiBxk9hjpg+NEUFUc3+6sVEzRoSrN1Jd3zr6PTlCJoa33iemIhh11Wu6taHnVUlfHRoB/llATaWH6S3N53vDx1Oit0Z5wcjSa2kAz8qOpsa/Yt5qmy1iqJw00038fLLL+N0yh8Nqf1SFA2L5sZrzaU4uKFuccOwUUXUDNLD8x2sqhtV0XG7bkBgEAqvOpq0LgmH4zIctm9xuLCcooLadYc+fGUVeT8YRZfcGcRiX6JqYdzuEVhtuWhacou1TSg6QgQp8f2DqlA+nTw3k+y49OgUbhum4aXySDWr3lvBZ2+vorKkCneimwuuHMolN44hMycFaxypV0wRpiT4GXur3+TYL6wvupvyUD59k6fhtGSiEV/goikaAaOGVIeVh4Zcwg/7jiQUi5JgtZHucOO12rFqcgq0JHVkjf6Gm2bDWS6rqqpYt24d99xzD7/5zW946qmnmq1yktTSDDOIEIIM1ygiZoCD/uVETR8uS2e6ui7Da+2BIWp7Cix6DxITfkTMcS2GWYGuZ6GpmWhaIoZRWldm5ZEK3nnhA3IH5tK1T288qS6SUnuhOVvqEdExFgwRJhDZhtuai6pY8EW+xBA+hKngFTeR//GXzP/lGxixY4Psj7Arfw+KonDN3XlYHY2PXGJmNYd8i/nmbWHYKKM0sIJEaz9Q47vRURTYWrUJryWJ89znkWQPUx4uBkxsehdMPIAc3yK1E7LHpUnO+NbE6/Vy2WWX8fzzz3P//ffLwEVq1zTVRmXoALuq36ez6wIynSMwMdAUG6YQ7POtpJf3KqyaG0VR0bQ0NO3ErGwpWUkkZyVQdugQmBVEA4Lta8rZ/oWTEVeOpM+Ivi3etpjwAQrZifdj1TwEo3uIGgfR1RQSXZdSfTjE0oWfHxe0HKXAh699wiWTx5B4mplFx4uYFRhmoMF9QaMIwamnVzckakZxaA5y3TkUBjeRX/5fyiIlWBSdFFsKfb2X0N19IVatpYNCSWqCDrxW0dnUbH2qffr04eDBg81VnCS1ClOYmMTYU/Nf9tT8l1R7Pyyqi5BRTjBWQ2fXhXUrEZ+KN9XOmIkDWPzycsIBP7rFQkZ3B5nd+zE8b0CzJpZrLCGCgIbd0gl/eCMEcyDcG1MFwxIiFnFQdrji6Gyn438QVSqPVBMORhou+CQsigeHnkYgVoTAPG67E6ee0aQ8KxoavTx98cVK+c+hVygNlxzdo1AariJoBEiyZpPuOPPlHySpRZybsccZabbAZc+ePXTqJHMnSO1bxKgEESXLOZyD/hW141yO0hQ7aY5+2NTTp6q3WgrpPzJCStY0KksEmd29JCQLbA4V3WJimhHUOAemnilFsWKKAGZEp3x7T9Z+tIZDu3djdzkZMX4sfQZnkHN+VyqKq+g/pg+J6R6CNSG2rNxBetdUHK74gi2HJYMU+3C08EYiZg1CGGiqA4vqJtk+HF2NL2sugEW1EomF2evbeFzQAiAIGEGKg+UcDmwmyda1SdOtJUlq+5olcNmwYQMPPPAAV199dXMUJ0mtxiRGWWgjvbzXYAqDwsBaBAZW1UOuJ49M+6DTzoQRIooZ2YDFlkunnn3o0qeYSPBDYpFNBGJ+LJZErM5J6NYLUNWWe6RhURNRUDiwq5S3X3gHX3mY2p+AEP/Y8SaP/N9wJt5zBVfcdhkgqCqtweV1ctUd49A0laSMxj8mqr1eEl0SJqAqKlWRnSAMdDWBNOcokuyDm7QAYkSEiQmDmmg1tZNBj92u1qYA9BshQkZTV56WpJZ1LmfOPRON/uVISkpCUU6cNe73+4nFYowfP54ZM2Y0a+UkqaXpipOayH5MEaN/0g308k4gbFTj1FOxqi4sjUxsZqjfYt82H3bHHqpK/4+SA0uwOW2kd80gKTOMKf6KQ3GjWIc1+L06GzTVQbAmwKZPthOstKEqKkIEURQbuprFZ/9czkWTxrJ04Wd8+MonlBwsw53kYvTEC7jmrstxJMS3mrOqaLgs55Hj/T6h2BFiph+7no5NS0FvRK9VgwSYQiHN3oMEiwuvxYFVtWAKgc8IEohFSbZ3Q5cJ6KR2QY7ObYpGBy6zZ89ucLvH46F3797069evueokSa3GpnnJ8VzFF0d+y0HfElIcA9EVOxWhfLLd47E0oodEUSxUHFHZ/NkWLshLwFexFrvLhRAmhQVFWOxWEtOsRCOr0Sy9UJTTZ6RtDqYZJBoWlB6oIRo7SMws49gPn6Z6yci+hvUfbmLD0q9IykzEm+ZBURUObj/Min99wVV3jCMhOb6AQ1U0bFoqNq15Vri2ajb8sQCdHT34VtrlHAhsOLo2kkKCxUmavSfp9p51C1dKktTxNDpwURSFyZMnY7PJOxmp49JUGyn2gYzK/C2H/Z8CApelM8nWvrit2WiNvJMvLCjBiCoYsSOEAgGEEOgWDc1ioabMR0KiG81SCiK+Aa9nwjAr0TQdRwLEzAqOv1tLSLHjTnKx8t8r0DQVzVH/cdiOdbsZPWlE3IFLc9MUDa/FQ8g06OEZi1VLY0/NRlRFobu7PznuoThbMDeOJJ2J1npU9NJLL/HMM89QVFTEoEGDmDNnDiNGjGjw2JdffplXX32VzZs3AzBs2DCeeuqpkx7fEhq9SMptt91GVVXV2ayLJLUJVs1Nqn0Q/ZJuoY/3WrKdg0iwJNau89NI/soAZYcrMI1kYjGIRQ1CgQghf5hY1EAIgaqm1K5Z1IKs7hB9R/XEorlRFQeKYkVVHDgcSVisFqKhhgOpSChKOBhu0bqejCEE+/1HeKVgBQV+J7meq8lJuIpDwWTWVxTjj4Vau4qS1DiiGV5xWrRoEdOmTWP69OmsX7+eQYMGkZeXx5EjRxo8ftmyZUyZMoWlS5eycuVKsrOzufzyyzl06FD8F28mjf4lFufofHHp3GSYJfiDHxIMr61NLqel47SNxmm/GF1LOu35adkprFm8gYu+25vUThdRcnBZbbkxE4tNR9EcWKwjUZT4Z9Y0laLYEEop3Qc7GPe9iaz6z8dUlVWgqgpkF84IAAAp20lEQVSpnTNIzkom87w09mw4Ma2BN9WDO7H1c6MYIkbIjLKidDMfFH2BpuhYFA1QiIooyRYvOQMzSLK13OcqSe3JrFmzuOOOO7jtttsA+NOf/sR7773HvHnzeOSRR044/vXXX6/3/v/+7/94++23WbJkCbfeemuL1Pmb4hrW31KDCCWpNRmmD1/wA3zBD+q2xYwiqgP/AEXH7RiPqpz6kZEzwcHgS/rz0V+/5Oo7J2OxeSk9/DmqEiS10zBcCVegWfq17HdK0VEVB8L+LkOvOJ8+I39IRVE1NqedpEwXCck1DB07kEPbj9TL2aKoCkPHDSCxEatDn22mMIiYUXbWHKSHuxMjUvqQ5Ugiappsrd7P+vJdFAbL6JEgUzNI7UHzDM6trq6ut9VmszU4rCMSibBu3ToeffTRum2qqjJu3DhWrlzZqCsGAgGi0SjJya33SDauwGXs2LHo+qlPWb9+/RlVSJJam2FWEAh/0cAeQTC8GqftAlQt45RlhAJhvn3DKL76fDtfLq+i3+gb6DviehwJVlTVhaKkosaZ7v5MmWYNAg23/SKKgk+jJ6WQkZqNotqIxAoxmUyvYRcw8V4LG5d9RdnhclyJLvqN6sX5Y/pgjzOPy9lQ2/EruCxjCIlWJ8XhEr6q2oZDtzEipSejUvuRbI1v2rYktRrz6OtMzgeys+uviD59+nSeeOKJEw4vLS3FMAwyMur/fmVkZLBt27ZGXfLhhx+mU6dOjBs3rklVbg5xBS55eXm43a07OE+SzjYhwphmRYP7DKMMsxEDahOS3BzYdphvX38hULvWl6o5KDscIOgL0Gt4awxyV6j0vYXXdQ2dkn9DKLoDIcIoigWX7SLs1v5YNCf9x/SmW/8uRIJRdKuGO9GFbmkbCxfqigWrqtLb05lX9/2LdeVb6vZ9XLyGqd2vZYA3p/UqKEmt4MCBA3g8X/eInq1JNE8//TQLFy5k2bJl2O2tdyMT16/Rgw8+SHp6+tmqiyS1CapiR1NTECKCzdoXVXFjCj/hyFY0LeW0j4kAkrOS6Dm0O5//cw3rP9yEvyZIl15ZXDp5DP1G90bTWn66rq4mYrV0odL/D5LdN5FoHwkiVNtZrThRldqbElVV8SS3zTEiqqqiKzp7A/upCFcwMmUgqdZEDEwOB4rZUPEVw5L64aVt1l+Sjtdcs4o8Hk+9wOVkUlNT0TSN4uLietuLi4vJzMw85bnPPvssTz/9NB999BEDBw5scp2bQ1zToSXpXKCpSXhck1EVBWH6MM0SVLULTttwwImqJp62jLA/xBf/zWfdBxsJ+kKYhknJgTLeX7AUT6qHPiN6tPh3SlWdeBxXodiDEP0CI7gYzEIUNRnVegGK/UqEkt3mv+smUBP18z+515NodRMTMTRFRQiVwmAJRaFSshzyBkuSvslqtTJs2DCWLFnCpEmTgNre4CVLlnDvvfee9Lzf//73/Pa3v+X9999n+PDhLVTbk2uWWUVCCBYvXszcuXN56623mqViktRaVNWFTc/E719EOLwKiAE6NusIXK6bUBsxhbm8qJLNK7Zjc9qwOb/uoYmGY2z65Cuye3dqlVk6KiCi+USrfgfUPvJS1SoUEQIRQ3FOgTaeB0VD5YLk8zFEhNLwIYpCB9AUjS7OXHLcmSjNtwSbJJ1drbA69LRp05g6dSrDhw9nxIgRzJ49G7/fXzfL6NZbb6Vz587MnDkTgN/97nc8/vjjvPHGG+Tk5FBUVASA2+1utaEjjf6GFxQUkJqaesK2efPmsWDBAkpKSlp1sI4kNRfT9BEKfUwksgZTVCFEBEWxEYmuRQul4NRuQlVP3S1bdriCyElWUy47XEEkFD0bVT8l0wwhzFJEZCW6JQsFDVAxRRDTLEeNbkQxx7b5wMWq6miKoMC3E4uq09vdB4GgJHyEqBkix9W7tasoSW3W5MmTKSkp4fHHH6eoqIjBgwezePHiugG7+/fvR1W/TvH2xz/+kUgkwvXXX1+vnJMNAG4JjQ5cunXrBkA4HOatt95i7ty5fPbZZxiGwbPPPsvtt9/eqGdsktTWmWYl4dDnRGMFCBGrt10JfY7dccVpAxdPihtVUzGNE6cMuBNd6NaWH+MiRA2KooEZrL1TUwRgoCpOUBJqs/ialS1er3gIIYiKKFEzTK47F00xURCAQoIlBxONqNk2EuVJ0um0Vubce++996SPhpYtW1bv/d69e5t2kbOo0Zlz161bx49//GMyMzOZPXs2kyZN4sCBA6iqSl5engxapA5DiAhRY1+9oKV2e/To9tPPKkrpnEzuoG4nbFc1lf5jeuPytuxUaAAFC6CClo4gihk7iBHdgRHdimkeASygNs+aQmdLVIQwRYwE3YldVUH4CccKCccOg/BjV9Wjiy7K1aGl9qAVUud2AI3ucRk5ciQ/+clPWLVqFb17y65YqeNSFCua1hnDODEFtqZ3RmnErCJPSgKXTbkIi9XCrvwCouEoSZmJDL98EL2Gn9cqs4oUDIRQUayjiPjexYz5UFQVVRUoFKLYxoJ6+qzArUqAruoYZpiK8FZ2Vb1Jeah2DZVke396eG8i3TGco50wkiR1QI0OXMaOHcvcuXM5cuQIt9xyC3l5eW1+9oEkNYniwOG4hmh0G0IEv96s2HE6rgHl9L0lqqrSpVcWE+4aT1VpDdFwFHeiE0+qB7uz9RYqjcU0jJgN7D/C8P8XI7QdzZKE3XsZ2C5GiFib/nuvqzYMM4zfOMKm0hcIHhdcloU2EYgWMSbrOaxWL3F0KEtSq1DM2teZnH8uanTg8v7773PgwAHmz5/Pj370I4LBIJMnTwbkVGmpY1HQ0C298Xp/SSi0FMM4jKZlYrdfiqb3QFEsjStHUfCkJOBJaRs5RWJRG0FfKYd2vYQ3bQTepB+gu2s7J4IRP4qxFId7LKp+6qzArUlVVGIYlIc2EDZLUVAQiKPBlkLYLKM8tIEEaw6anF0kSR1SXLck2dnZPP744xQUFPDaa69RUlKCrutMnDiRX/ziF6xbt65ZK/fEE0+gKEq9V58+fZr1GpL0TarqQcGOITSczskkeKbhdE7BwIGiOFBbcGHE5hSoMQjUxFBVC4d3/Imd+TMo+OpP7PnyBXasewJ/9SaU0ww6bgsUFKJmDSoqqlL7Uo7+V0Ulatac2RRTSZLatCbfkowfP57x48dTUVHBX//6V+bNm8fvfvc7DMNozvrRv39/Pvroo7r3p1srSZLOlKKoWC3dUVUn4eg2jFgFmpaGwzoAXctotz2MRszk4A4/nXuOpaZ8HbFIObFIOSgaYMdqH4KqprV2NU9LU+14rLlYVDdREUA5OhBXUVSsqru2t0VtvcdxktRozbPG4jnnjKOApKQkfvKTn/CTn/yE3//+981Rp3p0XT9tKmJJam6KomPRO6NrWRxLQKco7XvMhM1po7zQT3JWX7LOu4/ywncJBw6iWTwkZ30bt/c6VK2ND84FVEUjyXY+nVxjKAmuJ2L6ALCqCaTZh5BkOx9VkTc4UjvQCgnoOoK4vt2xWIxt27ZhtVrp1atX3fZ//etfTJ8+na1bt/LQQw81awV37txJp06dsNvtjBo1ipkzZ9K1a9dmvYYknUxtsHL6TLntgcvrpMeQHD57Zw2DLx1AaudBaHoYsGCxpaKoWa1dxUZz6pn0TJxKgqU7VZEdgCDR2psM17dx6vJGR5I6skYHLps3b2bChAkcOHAAgIkTJ/LHP/6RG2+8kc2bN3PHHXfw7rvvNmvlRo4cyYIFC+jduzeFhYXMmDGDiy66iM2bN5OQ0PA4g3A4TDj8dQKq6urqZq2TJLVnXft24duaysZPtrBrg0FyZhKde6SRlZuC1d5+AjRF0fBYz8OhZRATtT0uuuLGosnV66V2RPa4NEmjA5eHH36YHj168Ic//IG//e1v/O1vf2Pr1q3cfvvtLF68GIfD0eyVu/LKK+v+f+DAgYwcOZJu3brx5ptvcvvttzd4zsyZM5kxY0az10WSOgKLzUL3Ad3IzEknEoqi6ioujxNVa5+PwSyaGwsyWJHaKTnGpUkaHbh88cUXfPDBBwwePJiLLrqIv/3tb/ziF7/glltuOZv1qycxMZFevXqxa9eukx7z6KOPMm3atLr31dXVZGdnt0T1JKndcCQ4cCQ0/82GJEmN11op/9u7Rt9mlZaW0qlTJwC8Xi8ul4sLL7zwrFWsIT6fj927d5OVdfJn8TabDY/HU+8lSZIkSVLH0OgeF0VRqKmpwW63I4RAURSCweAJY0iaM1B44IEHuOaaa+jWrRuHDx9m+vTpaJrGlClTmu0akiRJktQ65LOipmh04CKEqDeTSAjBkCFD6r1XFKVZ87gcPHiQKVOmUFZWRlpaGt/61rdYtWoVaWltP9eEJEmSJJ2SHJzbJI0OXJYuXXo269GghQsXtvg1JUmSJElquxoduFx88cVnsx6SJEmSdG6RT4qapNGDc998800ikUjd+4MHD2KaXy9NGQgEzkrmXEmSJEnqiBRAEaLpr9ZuQCtpdOAyZcoUKisr697369ePvXv31r2vqanh0Ucfbc66SZIkSZIk1RPX4NxTvZckSZIkKQ7yUVGTyJXIJEmSJKk1yFlFTdI+83xLkiRJknROiqvH5f3338fr9QJgmiZLlixh8+bNAPXGv0iSJEmSdDryWVFTxBW4TJ06td77u+66q957RTlXxzhLkiRJUpzMo68zOf8c1OjA5fipz5IkSZIkSa0h7jEu4XAYv99/NuoiSZIkSZJ0So0OXEpKSrjyyitxu914PB4uvPBCdu3adTbrJkmSJEkd17FZRWfyOgc1OnB5+OGH2bBhA08++STPPvsslZWV3HHHHWezbpIkSZLUccnApUkaPcblww8/ZMGCBeTl5QEwYcIE+vbtSzgcxmaznbUKSpIkSZIkHdPoHpfDhw8zaNCguvc9e/bEZrNRWFh4ViomSZIkSR2aaIbXOSiu6dCapp3wXqb+lyRJkqQmkJlzmySutYp69epVL1eLz+djyJAhqOrXHTfl5eXNW0NJkiRJkqSjGh24zJ8//2zWQ5IkSZLOLbLHpUkaHbh8M2uuJEmSJElnQAYuTSIXWZQkSZIkqd1odI9Lbm5uo47bs2dPkysjSZIkSecM2ePSJI0OXPbu3Uu3bt24+eabSU9PP5t1kiRJkqRzgFwduikaHbgsWrSIefPmMWvWLK688kp++MMfctVVV9WbUSRJkiRJUiPJ1aGbpNFRxw033MB///tfdu3axbBhw/jZz35GdnY2jzzyCDt37jybdZQkSZIkSQKaMDi3c+fO/PKXv2Tnzp288cYbrF69mj59+lBRUXE26idJkiRJHZRMndsUcWXOPSYUCvHWW28xb948Vq9ezQ033IDT6WzuukmSJElSxyUH5zZJXIHL6tWrmTt3Lm+++Sa5ubn88Ic/5O233yYpKels1U+SJEmSJKlOowOX/v37c+TIEW6++WY++eSTegsuSpIkSZIUJzmpqEkaHbhs3boVl8vFq6++ymuvvXbS4+RaRZIkSZLUCMKsfZ3J+ecguVaRJEmSJEnthlyrSJIkSZJagxyc2ySNng69Zs0aDMM46f5wOMybb77ZLJWS2r5oJIa/KkDQF2rtqkhNEIsaBGqCVJfXEAqEW7s6TWIYBtXlPqrLa0752yRBJBTBXxUgHGyf/9YdmpwJHbdG97iMGjWKwsLCunT/Ho+HDRs21K1hVFlZyZQpU7jxxhubvZIvvfQSzzzzDEVFRQwaNIg5c+YwYsSIZr+OdHqmYVJysIztX+yicHcxdreNfhf2pnPPTJweOSW+rTMNE1+VnyP7Stn82VaK9paQ2iWFwZf2p3PPLBwue2tXsVHKCivYtX4Pm5ZvQQgYcFFfeg7NJbVzcmtXrU2JRmIU7y1h66rtlBVW4ElJoN+o3mTlZmBzWFu7epLUJI0OXMQ3uqS++f5k287UokWLmDZtGn/6058YOXIks2fPJi8vj+3bt8s1k1pBYcER/t8f3+fQzsK6bRuXfsW4Wy9m6LgB2J3t4w/fuaq6rIaCzQd49YlFHNxR+2+oqgqr/t9abnpkEgO/3Q+rvW3/QSsvquC9P3/I//vTB3XbPnz1E678n8uYeM+VpGTJ9AxQ+3u8d/N+/t8f36eiuKpu+6ZPtnD1nePpe2FPdEuTUnlJzUU+KmqSZl1oSFGU5iwOgFmzZnHHHXdw22230a9fP/70pz/hdDqZN29es19LOrVQIMzGZZvrBS1Qe1f3+T/XUFlc3Uo1kxojFAhTWVLNZ/9YXRe0AJim4NCuIpb/fSXVZTWtWMPTE0Kwb8tB3vvLhyfsWzz3Ywq+3H9WbqDaI1+Fny8Wb6gXtAD4qwKsenct1WW+VqqZVOdY4HImr3NQm14hMRKJsG7dOsaNG1e3TVVVxo0bx8qVKxs8JxwOU11dXe8lNY+QL8SBbYca3FddWkPRvpIWrpEUj0gwQsgfYue6PSfsi0Vi7P3qIFUlbfv7EqgJ8tWK7ZhmQz2+8NWK7QSqA61Qs7YnUBPkwPaGv68Htx/GXyU/p1YnA5cmiaufcMuWLRQVFQG1dz7btm3D56uN2ktLS5u9cqWlpRiGQUZGRr3tGRkZbNu2rcFzZs6cyYwZM5q9LhKggKppJ92t6yffJ7UFAgUFzdLwv5Oqq6ham76XQVEU9JPUH0C3qGel57c9UhRO+u+paiqqKj8nqX2K61dq7NixDB48mMGDBxMIBJgwYQKDBw9myJAh9XpFWtOjjz5KVVVV3evAgQOtXaUOw+lxct6gbg3uS+uSQka31BaukRQPu9uBw2On/+jeJ+yzOSz0HNIdb5q3FWrWeM4EBwO/3R+r/cR7Lt2mM/Di/nKQ+FEur4vcAQ1/X3MGdMWd5GrhGkknEJxhj0trN6B1NLrHpaCg4GzWo0GpqalomkZxcXG97cXFxWRmZjZ4js1mw2aztUT1zjlWm4UB3+5H0d4Stq3eUddLmZDs5uLJo/GmeVq3gtIpWW0WvGlexkwaQeHuIjYt3wqAbtXodUEPLr3pW3hS3K1cy9Pr0jOTyQ9fx9+f/Tchf+30XpvTyvU/m0DXPp1buXZth8vrZMRVQygrrKj3iDc9O5UxE0fIwKUtkINzm6TRgcsrr7zCAw880KKrQFutVoYNG8aSJUuYNGkSAKZpsmTJEu69994Wq4f0tbQuKVx5+1gGXtyP/VsP4fI66Dk0l5ROyW1+NooE3pQEdIvGbb+Zwr4tByncU0xql2R6De9BWufkdjHLxJPq4ZIbR9Pngh58tWIbQkD/0bVTfD0pCa1dvTalc48srrvvKvZvOUjx/hKSMxPpPqAbKZ2S0E7x2FeS2rJG/0rNmDGDu+++u0UDF4Bp06YxdepUhg8fzogRI5g9ezZ+v5/bbrutReshfS0pw0tiuofeF5yHpmltflyEVJ/L48SZ4CAzNx0zZqJb9Hb3b+hJScCTkkD3AV0BsNgsrVyjtknVVNK6pJDSKQkjZsjva1sje1yapMl5XFrK5MmTKSkp4fHHH6eoqIjBgwezePHiEwbsSi1LURQsVvnHor1SFAVd1+Mcnt/2yIClcVRVRbXKgKWtEUKc0d/Wc3Xqf1w/W601Wv/ee++Vj4YkSZIkSYovcOnVq9dpg5fy8vIzqpAkSZIknRPko6ImiStwmTFjBl5v254uKUmSJEntggxcmiSuwOWmm26S6wNJkiRJktRqGh24yGyUkiRJktSMZI9Lk7T5WUWSJEmS1BEJUyAaWHcrnvPPRY2eH2eapnxMJEmSJEnNRjTDK34vvfQSOTk52O12Ro4cyZo1a055/N///nf69OmD3W5nwIAB/Oc//2nSdZuLnNgvSZIkSeeIRYsWMW3aNKZPn8769esZNGgQeXl5HDlypMHjV6xYwZQpU7j99tvJz89n0qRJTJo0ic2bN7dwzb8mAxdJkiRJag2mOPNXnGbNmsUdd9zBbbfdRr9+/fjTn/6E0+lk3rx5DR7/wgsvcMUVV/Dggw/St29ffv3rXzN06FD+8Ic/nGnrm0wGLpIkSZLUKlr2UVEkEmHdunWMGzeubpuqqowbN46VK1c2eM7KlSvrHQ+Ql5d30uNbQjtP+H16xwYVV1dXt3JNJEmSpLbu2N+KlpiQEo6Fm+X8b/59s9ls2Gy2E44vLS3FMIwTlszJyMhg27ZtDV6jqKioweOLiorOpOpnpMMHLjU1NQBkZ2e3ck0kSZKk9qKmpuasJVy1Wq1kZmby4kdPn3FZbrf7hL9v06dP54knnjjjstuqDh+4dOrUiQMHDpCQkHBGuWiqq6vJzs7mwIEDeDyeZqxh23MutRVke88Fss0dv83N1V4hBDU1NXTq1KkZa1ef3W6noKCASCRyxmUJIU7429ZQbwtAamoqmqZRXFxcb3txcTGZmZkNnpOZmRnX8S2hwwcuqqrSpUuXZivP4/GcEz8CcG61FWR7zwWyzR1fc7S3JZa2sdvt2O32s36d41mtVoYNG8aSJUuYNGkSUJvqZMmSJSddyHjUqFEsWbKE+++/v27bhx9+yKhRo1qgxg3r8IGLJEmSJEm1pk2bxtSpUxk+fDgjRoxg9uzZ+P1+brvtNgBuvfVWOnfuzMyZMwH46U9/ysUXX8xzzz3H1VdfzcKFC1m7di1/+ctfWq0NMnCRJEmSpHPE5MmTKSkp4fHHH6eoqIjBgwezePHiugG4+/fvR1W/nnA8evRo3njjDX71q1/xi1/8gp49e/LPf/6T888/v7WaIAOXxrLZbEyfPv2kzw47knOprSDbey6Qbe74zrX2nol77733pI+Gli1bdsK2G264gRtuuOEs16rxFCEXIZIkSZIkqZ2QCegkSZIkSWo3ZOAiSZIkSVK7IQMXSZIkSZLaDRm4SJIkSZLUbrTrwGXmzJlccMEFJCQkkJ6ezqRJk9i+fXu9Y0KhEPfccw8pKSm43W6++93v1ssCuHHjRqZMmUJ2djYOh4O+ffvywgsvnHCtZcuWMXToUGw2Gz169GDBggWnrZ8Qgscff5ysrCwcDgfjxo1j586d9Y757W9/y+jRo3E6nSQmJnbotl577bV07doVu91OVlYWt9xyC4cPH+7Qbc7JyUFRlHqvp59uOM13e2/vsmXLTmjrsdcXX3zRIdsMsH79esaPH09iYiIpKSnceeed+Hy+dtned955h8svv5yUlBQURWHDhg0nHPOXv/yFSy65BI/Hg6IoVFZWnrS8lmpvYWEhN998M7169UJV1XrJ0k7npZdeIicnB7vdzsiRI1mzZk2T2yu1ENGO5eXlifnz54vNmzeLDRs2iKuuukp07dpV+Hy+umPuvvtukZ2dLZYsWSLWrl0rLrzwQjF69Oi6/XPnzhX33XefWLZsmdi9e7d47bXXhMPhEHPmzKk7Zs+ePcLpdIpp06aJLVu2iDlz5ghN08TixYtPWb+nn35aeL1e8c9//lNs3LhRXHvttaJ79+4iGAzWHfP444+LWbNmiWnTpgmv19uh2zpr1iyxcuVKsXfvXvH555+LUaNGiVGjRnXoNnfr1k08+eSTorCwsO51fP07UnvD4XC9dhYWFor/+Z//Ed27dxemaXbINh86dEgkJSWJu+++W2zbtk2sWbNGjB49Wnz3u99tl+199dVXxYwZM8TLL78sAJGfn3/CMc8//7yYOXOmmDlzpgBERUXFSctrqfYWFBSI++67T7zyyiti8ODB4qc//ekp23nMwoULhdVqFfPmzRNfffWVuOOOO0RiYqIoLi5uUnulltGuA5dvOnLkiADEJ598IoQQorKyUlgsFvH3v/+97pitW7cKQKxcufKk5fz4xz8Wl156ad37hx56SPTv37/eMZMnTxZ5eXknLcM0TZGZmSmeeeaZum2VlZXCZrOJv/3tbyccP3/+/FMGLt/Untt6zL/+9S+hKIqIRCInb+hx2mObu3XrJp5//vlGte+b2mN7jxeJRERaWpp48sknT93Q47S3Nv/5z38W6enpwjCMumM2bdokALFz58521d7jFRQUnDRwOWbp0qVx/yE/W+093sUXX9zowGXEiBHinnvuqXtvGIbo1KmTmDlz5gnHNqW90tnRrh8VfVNVVRUAycnJAKxbt45oNMq4cePqjunTpw9du3Zl5cqVpyznWBkAK1eurFcGQF5e3inLKCgooKioqN55Xq+XkSNHnvK8xmrvbS0vL+f1119n9OjRWCyWU7S0fl2h/bX56aefJiUlhSFDhvDMM88Qi8Ua0dr2295j/v3vf1NWVlaXSrwx2lubw+EwVqu1XqZRh8MBwGeffdau2tsSzlZ7myISibBu3bp611ZVlXHjxrX65ySdWocJXEzT5P7772fMmDF1qYiLioqwWq0njB3JyMigqKiowXJWrFjBokWLuPPOO+u2FRUV1aVDPr6M6upqgsFgg+UcK7+h80527cZqz219+OGHcblcpKSksH//fv71r3+dvsG03zbfd999LFy4kKVLl3LXXXfx1FNP8dBDD3XY9h5v7ty55OXlNXqR0/bY5ssuu4yioiKeeeYZIpEIFRUVPPLII0DtuIv21N6z7Wy2tylKS0sxDOOs/EZLZ1eHCVzuueceNm/ezMKFC5tcxubNm5k4cSLTp0/n8ssvb/R5r7/+Om63u+716aefNrkOjdGe2/rggw+Sn5/PBx98gKZp3HrrrYhGJG9ur22eNm0al1xyCQMHDuTuu+/mueeeY86cOYTD4VOe117be8zBgwd5//33uf322xt9Tntsc//+/XnllVd47rnncDqdZGZm0r17dzIyMur1wjSkPbb3TLRmez/99NN67X399debXAep9XWItYruvfde3n33XZYvX17v7i4zM5NIJEJlZWW9iL64uJjMzMx6ZWzZsoWxY8dy55138qtf/arevszMzHqj3I+V4fF4cDgcXHvttYwcObJuX+fOnevutoqLi8nKyqp33uDBg8/ZtqamppKamkqvXr3o27cv2dnZrFq16pRLpLf3Nh9v5MiRxGIx9u7dS+/evTtse+fPn09KSgrXXnvtST+LjtLmm2++mZtvvpni4mJcLheKojBr1ixyc3PbVXvPprPd3tMZPnx4vRlSGRkZ2Gw2NE1r8HP65rWlNqa1B9mcCdM0xT333CM6deokduzYccL+YwO/3nrrrbpt27ZtO2Hg1+bNm0V6erp48MEHG7zOQw89JM4///x626ZMmdKogX3PPvts3baqqqomD87tSG09Zt++fQIQS5cuPWm5Ha3Nf/3rX4WqqqK8vLzDttc0TdG9e3fx85///KTlHX9sR2jz8ebOnSucTmeDgzjbcnuP11yDc1uqvceLd3DuvffeW/feMAzRuXNnOTi3jWvXgcuPfvQj4fV6xbJly+pNwQwEAnXH3H333aJr167i448/FmvXrj1hCu6XX34p0tLSxPe///16ZRw5cqTumGNTCx988EGxdetW8dJLLzV6KmViYqL417/+JTZt2iQmTpx4wnTZffv2ifz8fDFjxgzhdrtFfn6+yM/PFzU1NR2qratWrRJz5swR+fn5Yu/evWLJkiVi9OjR4rzzzhOhUKjBMtt7m1esWCGef/55sWHDBrF7927x17/+VaSlpYlbb721Q7b3mI8++kgAYuvWracsr6O0ec6cOWLdunVi+/bt4g9/+INwOBzihRdeaJftLSsrE/n5+eK9994TgFi4cKHIz88XhYWFdccUFhaK/Pz8uinTy5cvF/n5+aKsrKzV2iuEqPvtHDZsmLj55ptFfn6++Oqrr07Z3oULFwqbzSYWLFggtmzZIu68806RmJgoioqKmtReqWW068AFaPA1f/78umOCwaD48Y9/LJKSkoTT6RTXXXddvS/h9OnTGyyjW7du9a61dOlSMXjwYGG1WkVubm69a5yMaZriscceExkZGcJms4mxY8eK7du31ztm6tSpDV7/m70Q7b2tmzZtEpdeeqlITk4WNptN5OTkiLvvvlscPHjwpGW29zavW7dOjBw5Uni9XmG320Xfvn3FU089ddJArb2395gpU6bUy8NxKh2hzbfccotITk4WVqtVDBw4ULz66qvttr3z589vsOzp06ef9voNld+S7W3MMQ2ZM2eO6Nq1q7BarWLEiBFi1apV9fbH016pZShCNGJkpCRJkiRJUhvQYWYVSZIkSZLU8cnARZIkSZKkdkMGLpIkSZIktRsycJEkSZIkqd2QgYskSZIkSe2GDFwkSZIkSWo3ZOAiSZIkSVK7IQMXSZIkSZLaDRm4SNJZ8IMf/IBJkyadsH3ZsmUoikJlZWWL16kp9u7di6Ioda+EhAT69+/PPffcw86dO+MuLycnh9mzZzd/RSVJOmfIwEWS2plIJNLi1/zoo48oLCxk48aNPPXUU2zdupVBgwaxZMmSFq+LJEnnNhm4SFIre/vtt+nfvz82m42cnByee+65evtzcnL49a9/za233orH4+HOO+8E4OGHH6ZXr144nU5yc3N57LHHiEajp7zWgQMHuPHGG0lMTCQ5OZmJEyeyd+/e09YxJSWFzMxMcnNzmThxIh999BEjR47k9ttvxzAMAHbv3s3EiRPJyMjA7XZzwQUX8NFHH9WVcckll7Bv3z5+9rOf1fXgAJSVlTFlyhQ6d+6M0+lkwIAB/O1vf4vnI5Qk6RwiAxdJakXr1q3jxhtv5KabbuLLL7/kiSee4LHHHmPBggX1jnv22WcZNGgQ+fn5PPbYYwAkJCSwYMECtmzZwgsvvMDLL7/M888/f9JrRaNR8vLySEhI4NNPP+Xzzz/H7XZzxRVXxN2Lo6oqP/3pT9m3bx/r1q0DwOfzcdVVV7FkyRLy8/O54ooruOaaa9i/fz8A77zzDl26dOHJJ5+ksLCQwsJCAEKhEMOGDeO9995j8+bN3Hnnndxyyy2sWbMmrjpJknSOaO1VHiWpI5o6darQNE24XK56L7vdLgBRUVEhhBDi5ptvFuPHj6937oMPPij69etX975bt25i0qRJp73mM888I4YNG3bS/a+99pro3bu3ME2zbls4HBYOh0O8//77DZ5TUFAgAJGfn3/Cvq1btwpALFq06KTX7N+/v5gzZ069tjz//POnbcvVV18tfv7zn5/2OEmSzj16K8dNktRhXXrppfzxj3+st2316tV8//vfr3u/detWJk6cWO+YMWPGMHv2bAzDQNM0AIYPH35C+YsWLeLFF19k9+7d+Hw+YrEYHo/npPXZuHEju3btIiEhod72UCjE7t27426fOLqw/LFHPj6fjyeeeIL33nuPwsJCYrEYwWCwrsflZAzD4KmnnuLNN9/k0KFDRCIRwuEwTqcz7jpJktTxycBFks4Sl8tFjx496m07ePBgk8s63sqVK/ne977HjBkzyMvLw+v1snDhwhPGxxzP5/MxbNgwXn/99RP2paWlxV2nrVu3AtC9e3cAHnjgAT788EOeffZZevTogcPh4Prrrz/tY6hnnnmGF154gdmzZzNgwABcLhf3339/qwxCliSp7ZOBiyS1or59+/L555/X2/b555/Tq1evut6WhqxYsYJu3brxy1/+sm7bvn37TnmtoUOHsmjRItLT00/ZM9MYpmny4osv0r17d4YMGVJX7x/84Adcd911QG2g9M2Bv1artW4w7zGff/45EydOrOuJMk2THTt20K9fvzOqoyRJHZMcnCtJrejnP/85S5Ys4de//jU7duzglVde4Q9/+AMPPPDAKc/r2bMn+/fvZ+HChezevZsXX3yRf/zjH6c853vf+x6pqalMnDiRTz/9lIKCApYtW8Z999132p6gsrIyioqK2LNnD//+978ZN24ca9asYe7cuXUBVs+ePXnnnXfYsGEDGzdu5Oabb8Y0zXrl5OTksHz5cg4dOkRpaWndeR9++CErVqxg69at3HXXXRQXF5/uo5Mk6RwlAxdJakVDhw7lzTffZOHChZx//vk8/vjjPPnkk/zgBz845XnXXnstP/vZz7j33nsZPHgwK1asqJttdDJOp5Ply5fTtWtXvvOd79C3b19uv/12QqHQaXtgxo0bR1ZWFgMGDOCRRx6hb9++bNq0iUsvvbTumFmzZpGUlMTo0aO55ppryMvLY+jQofXKefLJJ9m7dy/nnXde3eOpX/3qVwwdOpS8vDwuueQSMjMzG0zeJ0mSBKCIYyPsJEmSJEmS2jjZ4yJJkiRJUrshAxdJkiRJktoNGbhIkiRJktRuyMBFkiRJkqR2QwYukiRJkiS1GzJwkSRJkiSp3ZCBiyRJkiRJ7YYMXCRJkiRJajdk4CJJkiRJUrshAxdJkiRJktoNGbhIkiRJktRuyMBFkiRJkqR24/8DbfLKBkgS/3kAAAAASUVORK5CYII=\n"
+ },
+ "metadata": {}
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "correlacao = df.corr\n",
+ "\n",
+ "correlacao"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ },
+ "id": "wNvJaJVY4h5V",
+ "outputId": "a9b5dc27-d690-4dc0-ad1b-daba3f8c1d3e"
+ },
+ "execution_count": 105,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "text/html": [
+ "\n",
+ "
pandas.core.frame.DataFrame.corr def corr(method: CorrelationMethod='pearson', min_periods: int=1, numeric_only: bool=False) -> DataFrame/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py Compute pairwise correlation of columns, excluding NA/null values.\n",
+ "\n",
+ "Parameters\n",
+ "----------\n",
+ "method : {'pearson', 'kendall', 'spearman'} or callable\n",
+ " Method of correlation:\n",
+ "\n",
+ " * pearson : standard correlation coefficient\n",
+ " * kendall : Kendall Tau correlation coefficient\n",
+ " * spearman : Spearman rank correlation\n",
+ " * callable: callable with input two 1d ndarrays\n",
+ " and returning a float. Note that the returned matrix from corr\n",
+ " will have 1 along the diagonals and will be symmetric\n",
+ " regardless of the callable's behavior.\n",
+ "min_periods : int, optional\n",
+ " Minimum number of observations required per pair of columns\n",
+ " to have a valid result. Currently only available for Pearson\n",
+ " and Spearman correlation.\n",
+ "numeric_only : bool, default False\n",
+ " Include only `float`, `int` or `boolean` data.\n",
+ "\n",
+ " .. versionadded:: 1.5.0\n",
+ "\n",
+ " .. versionchanged:: 2.0.0\n",
+ " The default value of ``numeric_only`` is now ``False``.\n",
+ "\n",
+ "Returns\n",
+ "-------\n",
+ "DataFrame\n",
+ " Correlation matrix.\n",
+ "\n",
+ "See Also\n",
+ "--------\n",
+ "DataFrame.corrwith : Compute pairwise correlation with another\n",
+ " DataFrame or Series.\n",
+ "Series.corr : Compute the correlation between two Series.\n",
+ "\n",
+ "Notes\n",
+ "-----\n",
+ "Pearson, Kendall and Spearman correlation are currently computed using pairwise complete observations.\n",
+ "\n",
+ "* `Pearson correlation coefficient <https://en.wikipedia.org/wiki/Pearson_correlation_coefficient>`_\n",
+ "* `Kendall rank correlation coefficient <https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient>`_\n",
+ "* `Spearman's rank correlation coefficient <https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient>`_\n",
+ "\n",
+ "Examples\n",
+ "--------\n",
+ ">>> def histogram_intersection(a, b):\n",
+ "... v = np.minimum(a, b).sum().round(decimals=1)\n",
+ "... return v\n",
+ ">>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)],\n",
+ "... columns=['dogs', 'cats'])\n",
+ ">>> df.corr(method=histogram_intersection)\n",
+ " dogs cats\n",
+ "dogs 1.0 0.3\n",
+ "cats 0.3 1.0\n",
+ "\n",
+ ">>> df = pd.DataFrame([(1, 1), (2, np.nan), (np.nan, 3), (4, 4)],\n",
+ "... columns=['dogs', 'cats'])\n",
+ ">>> df.corr(min_periods=3)\n",
+ " dogs cats\n",
+ "dogs 1.0 NaN\n",
+ "cats NaN 1.0\n",
+ " \n",
+ "
"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 105
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "import sqlite3"
+ ],
+ "metadata": {
+ "id": "tE9wXNUVpxtc"
+ },
+ "execution_count": 106,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "conn = sqlite3.connect('clima.db')\n",
+ "# cursor = conn.cursor()\n",
+ "\n",
+ "# persistindo o DataFrame no banco de dados\n",
+ "df.to_sql('clima', conn, if_exists='replace')"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "h7ya9LPyp11Z",
+ "outputId": "904de104-e703-4655-e71c-c0c0dbd69379"
+ },
+ "execution_count": 107,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "8784"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 107
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "cursor = conn.cursor()\n",
+ "cursor.execute('SELECT * FROM clima')\n",
+ "\n",
+ "col_names = [description[0] for description in cursor.description]\n",
+ "\n",
+ "# for row in rows:\n",
+ "# print(row)\n",
+ "\n",
+ "df_db = pd.DataFrame(cursor.fetchall(), columns=col_names)\n",
+ "\n",
+ "df_db"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 615
+ },
+ "id": "Mt0WyAK6tgC3",
+ "outputId": "e15b9893-8ae9-46b1-fb8a-4678ef0911bd"
+ },
+ "execution_count": 108,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Data e Hora BR Data Hora UTC PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n",
+ "0 31/12/2019 21:00 01/01/2020 00:00 0.6 \n",
+ "1 31/12/2019 22:00 01/01/2020 01:00 0.0 \n",
+ "2 31/12/2019 23:00 01/01/2020 02:00 0.0 \n",
+ "3 01/01/2020 00:00 01/01/2020 03:00 0.0 \n",
+ "4 01/01/2020 01:00 01/01/2020 04:00 0.0 \n",
+ "... ... ... ... ... \n",
+ "8779 31/12/2020 16:00 31/12/2020 19:00 0.4 \n",
+ "8780 31/12/2020 17:00 31/12/2020 20:00 0.0 \n",
+ "8781 31/12/2020 18:00 31/12/2020 21:00 0.0 \n",
+ "8782 31/12/2020 19:00 31/12/2020 22:00 0.0 \n",
+ "8783 31/12/2020 20:00 31/12/2020 23:00 0.0 \n",
+ "\n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n",
+ "0 23.1 \n",
+ "1 23.7 \n",
+ "2 24.0 \n",
+ "3 24.3 \n",
+ "4 23.8 \n",
+ "... ... \n",
+ "8779 23.1 \n",
+ "8780 24.2 \n",
+ "8781 24.9 \n",
+ "8782 24.2 \n",
+ "8783 23.5 \n",
+ "\n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n",
+ "0 22.6 \n",
+ "1 21.7 \n",
+ "2 21.8 \n",
+ "3 21.4 \n",
+ "4 21.7 \n",
+ "... ... \n",
+ "8779 22.7 \n",
+ "8780 22.7 \n",
+ "8781 23.0 \n",
+ "8782 22.1 \n",
+ "8783 22.5 \n",
+ "\n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) RADIACAO GLOBAL (Kj/m²) \\\n",
+ "0 0.97 0.0 \n",
+ "1 0.88 2.9 \n",
+ "2 0.88 1.6 \n",
+ "3 0.83 0.6 \n",
+ "4 0.89 0.0 \n",
+ "... ... ... \n",
+ "8779 0.97 775.9 \n",
+ "8780 0.91 837.8 \n",
+ "8781 0.89 524.7 \n",
+ "8782 0.88 256.5 \n",
+ "8783 0.94 9.6 \n",
+ "\n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) VENTO, VELOCIDADE HORARIA (m/s) \\\n",
+ "0 11.0 1.9 \n",
+ "1 10.0 1.3 \n",
+ "2 345.0 0.6 \n",
+ "3 332.0 1.5 \n",
+ "4 316.0 0.2 \n",
+ "... ... ... \n",
+ "8779 32.0 1.2 \n",
+ "8780 355.0 0.8 \n",
+ "8781 315.0 1.2 \n",
+ "8782 291.0 0.9 \n",
+ "8783 132.0 0.9 \n",
+ "\n",
+ " Data e Hora \n",
+ "0 2020-01-01 00:00:00 \n",
+ "1 2020-01-01 01:00:00 \n",
+ "2 2020-01-01 02:00:00 \n",
+ "3 2020-01-01 03:00:00 \n",
+ "4 2020-01-01 04:00:00 \n",
+ "... ... \n",
+ "8779 2020-12-31 19:00:00 \n",
+ "8780 2020-12-31 20:00:00 \n",
+ "8781 2020-12-31 21:00:00 \n",
+ "8782 2020-12-31 22:00:00 \n",
+ "8783 2020-12-31 23:00:00 \n",
+ "\n",
+ "[8784 rows x 11 columns]"
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Data e Hora BR \n",
+ " Data \n",
+ " Hora UTC \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " Data e Hora \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 31/12/2019 21:00 \n",
+ " 01/01/2020 \n",
+ " 00:00 \n",
+ " 0.6 \n",
+ " 23.1 \n",
+ " 22.6 \n",
+ " 0.97 \n",
+ " 0.0 \n",
+ " 11.0 \n",
+ " 1.9 \n",
+ " 2020-01-01 00:00:00 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 31/12/2019 22:00 \n",
+ " 01/01/2020 \n",
+ " 01:00 \n",
+ " 0.0 \n",
+ " 23.7 \n",
+ " 21.7 \n",
+ " 0.88 \n",
+ " 2.9 \n",
+ " 10.0 \n",
+ " 1.3 \n",
+ " 2020-01-01 01:00:00 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 31/12/2019 23:00 \n",
+ " 01/01/2020 \n",
+ " 02:00 \n",
+ " 0.0 \n",
+ " 24.0 \n",
+ " 21.8 \n",
+ " 0.88 \n",
+ " 1.6 \n",
+ " 345.0 \n",
+ " 0.6 \n",
+ " 2020-01-01 02:00:00 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 01/01/2020 00:00 \n",
+ " 01/01/2020 \n",
+ " 03:00 \n",
+ " 0.0 \n",
+ " 24.3 \n",
+ " 21.4 \n",
+ " 0.83 \n",
+ " 0.6 \n",
+ " 332.0 \n",
+ " 1.5 \n",
+ " 2020-01-01 03:00:00 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 01/01/2020 01:00 \n",
+ " 01/01/2020 \n",
+ " 04:00 \n",
+ " 0.0 \n",
+ " 23.8 \n",
+ " 21.7 \n",
+ " 0.89 \n",
+ " 0.0 \n",
+ " 316.0 \n",
+ " 0.2 \n",
+ " 2020-01-01 04:00:00 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 8779 \n",
+ " 31/12/2020 16:00 \n",
+ " 31/12/2020 \n",
+ " 19:00 \n",
+ " 0.4 \n",
+ " 23.1 \n",
+ " 22.7 \n",
+ " 0.97 \n",
+ " 775.9 \n",
+ " 32.0 \n",
+ " 1.2 \n",
+ " 2020-12-31 19:00:00 \n",
+ " \n",
+ " \n",
+ " 8780 \n",
+ " 31/12/2020 17:00 \n",
+ " 31/12/2020 \n",
+ " 20:00 \n",
+ " 0.0 \n",
+ " 24.2 \n",
+ " 22.7 \n",
+ " 0.91 \n",
+ " 837.8 \n",
+ " 355.0 \n",
+ " 0.8 \n",
+ " 2020-12-31 20:00:00 \n",
+ " \n",
+ " \n",
+ " 8781 \n",
+ " 31/12/2020 18:00 \n",
+ " 31/12/2020 \n",
+ " 21:00 \n",
+ " 0.0 \n",
+ " 24.9 \n",
+ " 23.0 \n",
+ " 0.89 \n",
+ " 524.7 \n",
+ " 315.0 \n",
+ " 1.2 \n",
+ " 2020-12-31 21:00:00 \n",
+ " \n",
+ " \n",
+ " 8782 \n",
+ " 31/12/2020 19:00 \n",
+ " 31/12/2020 \n",
+ " 22:00 \n",
+ " 0.0 \n",
+ " 24.2 \n",
+ " 22.1 \n",
+ " 0.88 \n",
+ " 256.5 \n",
+ " 291.0 \n",
+ " 0.9 \n",
+ " 2020-12-31 22:00:00 \n",
+ " \n",
+ " \n",
+ " 8783 \n",
+ " 31/12/2020 20:00 \n",
+ " 31/12/2020 \n",
+ " 23:00 \n",
+ " 0.0 \n",
+ " 23.5 \n",
+ " 22.5 \n",
+ " 0.94 \n",
+ " 9.6 \n",
+ " 132.0 \n",
+ " 0.9 \n",
+ " 2020-12-31 23:00:00 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
8784 rows × 11 columns
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df_db",
+ "summary": "{\n \"name\": \"df_db\",\n \"rows\": 8784,\n \"fields\": [\n {\n \"column\": \"Data e Hora BR\",\n \"properties\": {\n \"dtype\": \"object\",\n \"num_unique_values\": 8784,\n \"samples\": [\n \"22/09/2020 22:00\",\n \"02/03/2020 21:00\",\n \"29/09/2020 08:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Data\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 366,\n \"samples\": [\n \"12/07/2020\",\n \"03/02/2020\",\n \"16/01/2020\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Hora UTC\",\n \"properties\": {\n \"dtype\": \"object\",\n \"num_unique_values\": 24,\n \"samples\": [\n \"08:00\",\n \"16:00\",\n \"00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PRECIPITA\\u00c7\\u00c3O TOTAL, HOR\\u00c1RIO (mm)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3756788874165256,\n \"min\": 0.0,\n \"max\": 44.8,\n \"num_unique_values\": 73,\n \"samples\": [\n 0.4,\n 30.8,\n 5.8\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO AR - BULBO SECO, HORARIA (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.725963118812376,\n \"min\": 0.0,\n \"max\": 40.6,\n \"num_unique_values\": 336,\n \"samples\": [\n 34.2,\n 33.1,\n 8.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO PONTO DE ORVALHO (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.592550592979101,\n \"min\": 0.0,\n \"max\": 25.8,\n \"num_unique_values\": 237,\n \"samples\": [\n 10.6,\n 23.4,\n 3.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"UMIDADE RELATIVA DO AR, HORARIA (%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2414089524607437,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 88,\n \"samples\": [\n 0.23,\n 0.97,\n 0.76\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RADIACAO GLOBAL (Kj/m\\u00b2)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1077.0341286354853,\n \"min\": 0.0,\n \"max\": 4085.4,\n \"num_unique_values\": 4259,\n \"samples\": [\n 1895.3,\n 1625.8,\n 479.1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, DIRE\\u00c7\\u00c3O HORARIA (gr) (\\u00b0 (gr))\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 81.78471896065389,\n \"min\": 0.0,\n \"max\": 360.0,\n \"num_unique_values\": 361,\n \"samples\": [\n 145.0,\n 357.0,\n 338.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, VELOCIDADE HORARIA (m/s)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.4052333713147864,\n \"min\": 0.0,\n \"max\": 11.9,\n \"num_unique_values\": 86,\n \"samples\": [\n 6.2,\n 1.9,\n 6.7\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Data e Hora\",\n \"properties\": {\n \"dtype\": \"object\",\n \"num_unique_values\": 8784,\n \"samples\": [\n \"2020-09-23 01:00:00\",\n \"2020-03-03 00:00:00\",\n \"2020-09-29 11:00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 108
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Qual foi a média de valores de uma coluna específica?\n",
+ "\n",
+ "\n"
+ ],
+ "metadata": {
+ "id": "Hwy4uFe5wGa2"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "Média = print(f\"A média da temperatura do ar - Bulbo Seco, Horária é {round(df['TEMPERATURA DO AR - BULBO SECO, HORARIA (°C)'].mean(),2)} ºC\")\n",
+ "\n"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "iMR-WGYbu9Ee",
+ "outputId": "0a612e0a-5e4f-49bb-d9f3-73e5fd7724e8"
+ },
+ "execution_count": 109,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "A média da temperatura do ar - Bulbo Seco, Horária é 23.17 ºC\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Qual o total de registros após a limpeza dos dados?\n",
+ "\n"
+ ],
+ "metadata": {
+ "id": "uslMDyqDxbRE"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "Total = print(f\"O total de registros após a limpeza dos dados é de {(df.shape)}\")\n"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "NWXHP6OKxZ7O",
+ "outputId": "ecf7cd4c-e789-42e7-95c1-32f6767e772f"
+ },
+ "execution_count": 110,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "O total de registros após a limpeza dos dados é de (8784, 10)\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Quais foram os valores máximos e mínimos identificados?\n"
+ ],
+ "metadata": {
+ "id": "rOAxpWUqyNg9"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.describe()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 0
+ },
+ "id": "of8LWuUhyNMX",
+ "outputId": "42b26a38-a333-47cf-b1b5-5182dac81c09"
+ },
+ "execution_count": 111,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \\\n",
+ "count 8784.000000 \n",
+ "mean 0.151480 \n",
+ "min 0.000000 \n",
+ "25% 0.000000 \n",
+ "50% 0.000000 \n",
+ "75% 0.000000 \n",
+ "max 44.800000 \n",
+ "std 1.375679 \n",
+ "\n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \\\n",
+ "count 8784.000000 \n",
+ "mean 23.172837 \n",
+ "min 0.000000 \n",
+ "25% 19.500000 \n",
+ "50% 23.100000 \n",
+ "75% 27.100000 \n",
+ "max 40.600000 \n",
+ "std 5.725963 \n",
+ "\n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \\\n",
+ "count 8784.000000 \n",
+ "mean 15.201423 \n",
+ "min 0.000000 \n",
+ "25% 12.400000 \n",
+ "50% 16.000000 \n",
+ "75% 19.300000 \n",
+ "max 25.800000 \n",
+ "std 5.592551 \n",
+ "\n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) RADIACAO GLOBAL (Kj/m²) \\\n",
+ "count 8784.000000 8784.000000 \n",
+ "mean 0.632725 759.334028 \n",
+ "min 0.000000 0.000000 \n",
+ "25% 0.490000 0.000000 \n",
+ "50% 0.670000 23.100000 \n",
+ "75% 0.820000 1434.250000 \n",
+ "max 1.000000 4085.400000 \n",
+ "std 0.241409 1077.034129 \n",
+ "\n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) VENTO, VELOCIDADE HORARIA (m/s) \\\n",
+ "count 8784.000000 8784.000000 \n",
+ "mean 184.889458 1.939447 \n",
+ "min 0.000000 0.000000 \n",
+ "25% 133.000000 0.900000 \n",
+ "50% 171.000000 1.800000 \n",
+ "75% 254.000000 2.800000 \n",
+ "max 360.000000 11.900000 \n",
+ "std 81.784719 1.405233 \n",
+ "\n",
+ " Data e Hora \n",
+ "count 8784 \n",
+ "mean 2020-07-01 23:30:00 \n",
+ "min 2020-01-01 00:00:00 \n",
+ "25% 2020-04-01 11:45:00 \n",
+ "50% 2020-07-01 23:30:00 \n",
+ "75% 2020-10-01 11:15:00 \n",
+ "max 2020-12-31 23:00:00 \n",
+ "std NaN "
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " PRECIPITAÇÃO TOTAL, HORÁRIO (mm) \n",
+ " TEMPERATURA DO AR - BULBO SECO, HORARIA (°C) \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " UMIDADE RELATIVA DO AR, HORARIA (%) \n",
+ " RADIACAO GLOBAL (Kj/m²) \n",
+ " VENTO, DIREÇÃO HORARIA (gr) (° (gr)) \n",
+ " VENTO, VELOCIDADE HORARIA (m/s) \n",
+ " Data e Hora \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " count \n",
+ " 8784.000000 \n",
+ " 8784.000000 \n",
+ " 8784.000000 \n",
+ " 8784.000000 \n",
+ " 8784.000000 \n",
+ " 8784.000000 \n",
+ " 8784.000000 \n",
+ " 8784 \n",
+ " \n",
+ " \n",
+ " mean \n",
+ " 0.151480 \n",
+ " 23.172837 \n",
+ " 15.201423 \n",
+ " 0.632725 \n",
+ " 759.334028 \n",
+ " 184.889458 \n",
+ " 1.939447 \n",
+ " 2020-07-01 23:30:00 \n",
+ " \n",
+ " \n",
+ " min \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 2020-01-01 00:00:00 \n",
+ " \n",
+ " \n",
+ " 25% \n",
+ " 0.000000 \n",
+ " 19.500000 \n",
+ " 12.400000 \n",
+ " 0.490000 \n",
+ " 0.000000 \n",
+ " 133.000000 \n",
+ " 0.900000 \n",
+ " 2020-04-01 11:45:00 \n",
+ " \n",
+ " \n",
+ " 50% \n",
+ " 0.000000 \n",
+ " 23.100000 \n",
+ " 16.000000 \n",
+ " 0.670000 \n",
+ " 23.100000 \n",
+ " 171.000000 \n",
+ " 1.800000 \n",
+ " 2020-07-01 23:30:00 \n",
+ " \n",
+ " \n",
+ " 75% \n",
+ " 0.000000 \n",
+ " 27.100000 \n",
+ " 19.300000 \n",
+ " 0.820000 \n",
+ " 1434.250000 \n",
+ " 254.000000 \n",
+ " 2.800000 \n",
+ " 2020-10-01 11:15:00 \n",
+ " \n",
+ " \n",
+ " max \n",
+ " 44.800000 \n",
+ " 40.600000 \n",
+ " 25.800000 \n",
+ " 1.000000 \n",
+ " 4085.400000 \n",
+ " 360.000000 \n",
+ " 11.900000 \n",
+ " 2020-12-31 23:00:00 \n",
+ " \n",
+ " \n",
+ " std \n",
+ " 1.375679 \n",
+ " 5.725963 \n",
+ " 5.592551 \n",
+ " 0.241409 \n",
+ " 1077.034129 \n",
+ " 81.784719 \n",
+ " 1.405233 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"PRECIPITA\\u00c7\\u00c3O TOTAL, HOR\\u00c1RIO (mm)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3103.312291243846,\n \"min\": 0.0,\n \"max\": 8784.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.1514799635701275,\n 1.3756788874165256,\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO AR - BULBO SECO, HORARIA (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3098.607701020729,\n \"min\": 0.0,\n \"max\": 8784.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 23.172836976320585,\n 27.1,\n 8784.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"TEMPERATURA DO PONTO DE ORVALHO (\\u00b0C)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3100.8605548552273,\n \"min\": 0.0,\n \"max\": 8784.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 15.201423041894355,\n 19.3,\n 8784.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"UMIDADE RELATIVA DO AR, HORARIA (%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3105.418335843847,\n \"min\": 0.0,\n \"max\": 8784.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 0.6327254098360656,\n 0.82,\n 8784.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RADIACAO GLOBAL (Kj/m\\u00b2)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3046.955106453814,\n \"min\": 0.0,\n \"max\": 8784.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 8784.0,\n 759.3340277777777,\n 4085.4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, DIRE\\u00c7\\u00c3O HORARIA (gr) (\\u00b0 (gr))\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3047.686868662164,\n \"min\": 0.0,\n \"max\": 8784.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 184.88945810564664,\n 254.0,\n 8784.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VENTO, VELOCIDADE HORARIA (m/s)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3104.5674675947093,\n \"min\": 0.0,\n \"max\": 8784.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 1.9394467213114757,\n 2.8,\n 8784.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Data e Hora\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"1970-01-01 00:00:00.000008784\",\n \"max\": \"2020-12-31 23:00:00\",\n \"num_unique_values\": 6,\n \"samples\": [\n \"8784\",\n \"2020-07-01 23:30:00\",\n \"2020-12-31 23:00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 111
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Quantos registros tinham valores nulos antes do tratamento?\n",
+ "\n",
+ "**8784, 9**"
+ ],
+ "metadata": {
+ "id": "tdLdGcDryZid"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 0
+ },
+ "id": "KcscpxeSzKy8",
+ "outputId": "51841f25-c70f-4a9d-e8db-c96cc6b03d8a"
+ },
+ "execution_count": 114,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "Data e Hora BR\n",
+ "31/12/2019 21:00 0.875969\n",
+ "31/12/2019 22:00 0.841085\n",
+ "31/12/2019 23:00 0.844961\n",
+ "01/01/2020 00:00 0.829457\n",
+ "01/01/2020 01:00 0.841085\n",
+ " ... \n",
+ "31/12/2020 16:00 0.879845\n",
+ "31/12/2020 17:00 0.879845\n",
+ "31/12/2020 18:00 0.891473\n",
+ "31/12/2020 19:00 0.856589\n",
+ "31/12/2020 20:00 0.872093\n",
+ "Name: TEMPERATURA DO PONTO DE ORVALHO (°C), Length: 8784, dtype: float64"
+ ],
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " \n",
+ " \n",
+ " Data e Hora BR \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 31/12/2019 21:00 \n",
+ " 0.875969 \n",
+ " \n",
+ " \n",
+ " 31/12/2019 22:00 \n",
+ " 0.841085 \n",
+ " \n",
+ " \n",
+ " 31/12/2019 23:00 \n",
+ " 0.844961 \n",
+ " \n",
+ " \n",
+ " 01/01/2020 00:00 \n",
+ " 0.829457 \n",
+ " \n",
+ " \n",
+ " 01/01/2020 01:00 \n",
+ " 0.841085 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 31/12/2020 16:00 \n",
+ " 0.879845 \n",
+ " \n",
+ " \n",
+ " 31/12/2020 17:00 \n",
+ " 0.879845 \n",
+ " \n",
+ " \n",
+ " 31/12/2020 18:00 \n",
+ " 0.891473 \n",
+ " \n",
+ " \n",
+ " 31/12/2020 19:00 \n",
+ " 0.856589 \n",
+ " \n",
+ " \n",
+ " 31/12/2020 20:00 \n",
+ " 0.872093 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
8784 rows × 1 columns
\n",
+ "
dtype: float64 "
+ ]
+ },
+ "metadata": {},
+ "execution_count": 114
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Quais visualizações forneceram as informações mais valiosas? Que padrões emergiram após a análise dos dados?\n",
+ "\n",
+ ""
+ ],
+ "metadata": {
+ "id": "Ql0kkYpI7sDq"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "\n",
+ "No gráfico de Temperatura do Ar x Umidade Relativa do Ar entendi que quanto menor a temperatura maior a umidade relativa do ar.\n",
+ "Nos meses de maio/2020 até setembro/2020 demonstram ser os meses com menor temperatura e consequentemente menor umidade relativa do ar.\n",
+ "O mês de janeiro demostra temperaturas mais quentes, entre 25º e 35º."
+ ],
+ "metadata": {
+ "id": "4lvVwlma86hO"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Como o uso de SQL contribuiu para a organização dos resultados?\n"
+ ],
+ "metadata": {
+ "id": "lsWVf1dY7yLM"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# De que forma os gráficos ajudaram na compreensão dos dados?"
+ ],
+ "metadata": {
+ "id": "UqGYcLzs7zhm"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Os gráficos ilustram os dados e trazem uma melhor compreensão das informações pelo efeito visual que fazem. Então fica muito mais fácil entender e explicar as informações atráves deles."
+ ],
+ "metadata": {
+ "id": "Mpdz5g2d89Yz"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Qual foi o impacto da normalização de uma coluna específica?\n",
+ "\n",
+ "A normalização vai deixar toda a coluna geralmente entre 0 e 1."
+ ],
+ "metadata": {
+ "id": "WYXIlXAf7-QU"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Normaliza os valores de uma coluna para o intervalo [0, 1]\n",
+ "df['TEMPERATURA DO PONTO DE ORVALHO (°C)'] = (df['TEMPERATURA DO PONTO DE ORVALHO (°C)'] - df['TEMPERATURA DO PONTO DE ORVALHO (°C)'].min()) / (df['TEMPERATURA DO PONTO DE ORVALHO (°C)'].max() - df['TEMPERATURA DO PONTO DE ORVALHO (°C)'].min())\n",
+ "df['TEMPERATURA DO PONTO DE ORVALHO (°C)']"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 0
+ },
+ "id": "_Lmqq7g38AHn",
+ "outputId": "bf633fcf-00f9-4fd4-bda7-ef6fad51b938"
+ },
+ "execution_count": 115,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "Data e Hora BR\n",
+ "31/12/2019 21:00 0.875969\n",
+ "31/12/2019 22:00 0.841085\n",
+ "31/12/2019 23:00 0.844961\n",
+ "01/01/2020 00:00 0.829457\n",
+ "01/01/2020 01:00 0.841085\n",
+ " ... \n",
+ "31/12/2020 16:00 0.879845\n",
+ "31/12/2020 17:00 0.879845\n",
+ "31/12/2020 18:00 0.891473\n",
+ "31/12/2020 19:00 0.856589\n",
+ "31/12/2020 20:00 0.872093\n",
+ "Name: TEMPERATURA DO PONTO DE ORVALHO (°C), Length: 8784, dtype: float64"
+ ],
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " TEMPERATURA DO PONTO DE ORVALHO (°C) \n",
+ " \n",
+ " \n",
+ " Data e Hora BR \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 31/12/2019 21:00 \n",
+ " 0.875969 \n",
+ " \n",
+ " \n",
+ " 31/12/2019 22:00 \n",
+ " 0.841085 \n",
+ " \n",
+ " \n",
+ " 31/12/2019 23:00 \n",
+ " 0.844961 \n",
+ " \n",
+ " \n",
+ " 01/01/2020 00:00 \n",
+ " 0.829457 \n",
+ " \n",
+ " \n",
+ " 01/01/2020 01:00 \n",
+ " 0.841085 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 31/12/2020 16:00 \n",
+ " 0.879845 \n",
+ " \n",
+ " \n",
+ " 31/12/2020 17:00 \n",
+ " 0.879845 \n",
+ " \n",
+ " \n",
+ " 31/12/2020 18:00 \n",
+ " 0.891473 \n",
+ " \n",
+ " \n",
+ " 31/12/2020 19:00 \n",
+ " 0.856589 \n",
+ " \n",
+ " \n",
+ " 31/12/2020 20:00 \n",
+ " 0.872093 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
8784 rows × 1 columns
\n",
+ "
dtype: float64 "
+ ]
+ },
+ "metadata": {},
+ "execution_count": 115
+ }
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.12.3"
+ },
+ "colab": {
+ "provenance": [],
+ "collapsed_sections": [
+ "Hwy4uFe5wGa2",
+ "uslMDyqDxbRE",
+ "rOAxpWUqyNg9",
+ "tdLdGcDryZid",
+ "Ql0kkYpI7sDq",
+ "WYXIlXAf7-QU"
+ ]
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
\ No newline at end of file