-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript_fig_1_a.m
208 lines (178 loc) · 6.78 KB
/
script_fig_1_a.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% "Joint Inference of Networks from Stationary Graph Signals"
% by Segarra, Wang, Uhler, and Marques
%
% Code for Fig. 1(a)
% Code by Santiago Segarra
%
% 11/25/17
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The goal of this code is to illustrate the theoretical result in Theorem
% 1.
close all
clear all
rng(1234); % Fix random seed for replicability
tot_runs = 500; % Number of realizations of the recovery problem
rec_vec = zeros(tot_runs, 1); % Store binary recovery
gamm_vec = zeros(tot_runs, 1); % Store associated gamma
cvx_status_vec = cell(tot_runs, 1);
cond_1_vec = zeros(tot_runs, 1);
% IMPORTANT: We should never observe negative recovery with gamma < 1.
% That would contradict the theorem.
for tt = 1:tot_runs
fprintf('Running realization number: %d.0 \n', tt)
%% Draw a pair of ER random graphs
K = 2; % Nr of graphs being considered
N = 20; % Nr of nodes in each graph
p = 0.1; % Probability of edge appearance
S1 = generate_connected_ER(N, p); % We find graph 1 randomly
rewire = 3;
flag_connected_S2 = 0;
while flag_connected_S2 == 0
% We find S2 by rewiring 3 edges from S1
edge_positions = find(vec(triu(S1)));
edges_to_delete = edge_positions(randperm(size(edge_positions,1), rewire));
matrix_to_delete = zeros(N,N); % Generate a matrix to substract from S1
matrix_to_delete(edges_to_delete) = 1; % Put ones in the edges to delete
matrix_to_delete = matrix_to_delete + matrix_to_delete'; % Make it undirected
S2 = S1 - matrix_to_delete;
do_rewiring = 0; % Do the necessary rewirings
while do_rewiring < rewire
i = randi([1 N-1]);
j = randi([i+1 N]);
if S2(i,j) == 0 % Make sure that the edge to add is not already present
S2(i,j) = 1;
S2(j,i) = 1;
do_rewiring = do_rewiring + 1;
end
end
% Check if S2 is connected
Lapl = diag(sum(S2)) - S2;
ll = eig(Lapl);
if size(find(ll<=10^-6))==1
flag_connected_S2 = 1;
end
end
%% Generate covariance matrices via a random polynomial mappings
L = 5; % Fix the size of the polynomial map (filters squared)
h1 = randn(L,1); % Draw the coefficients of the first polynomial
h2 = randn(L,1); % Draw the coefficients of the second polynomial
% Compute the covariances
H1 = zeros(N,N);
H2 = zeros(N,N);
for ii = 1:L
H1 = H1 + h1(ii)*S1^(ii-1);
H2 = H2 + h2(ii)*S2^(ii-1);
end
C1 = H1^2;
C2 = H2^2;
% Check that the shifts and the covariances commute
if (max(max(abs(S1*C1 - C1*S1))) + max(max(abs(S2*C2 - C2*S2)))) < 10^-6
disp('The GSOs and the true covariances commute ... CHECK')
end
%% Solve the relaxed optimization problem
alp = [1 1]'; % Define the vector of alphas
bet = 1; % Define the vector of betas
clear S1_hat
clear S2_hat
%
disp('Solving the convex optimization problem ...')
warning('off', 'MATLAB:nargchk:deprecated') % Avoid bothersome warning
cvx_begin quiet
variable S1_hat(N,N) symmetric;
variable S2_hat(N,N) symmetric;
minimize (alp(1)*norm(S1_hat(:),1) + alp(2)*norm(S2_hat(:),1) + bet* norm(S1_hat(:) - S2_hat(:), 1));
subject to
norm(C1*S1_hat - S1_hat*C1, 'fro') <= 10^-8; % Numerical equality
norm(C2*S2_hat - S2_hat*C2, 'fro') <= 10^-8; % Numerical equality
S1_hat >= 0; % Positivity constraints
S2_hat >= 0; % Positivity constraints
diag(S1_hat) <= 10^-8; % Numerical equality to 0
diag(S2_hat) <= 10^-8; % Numerical equality to 0
abs(sum(S1_hat(:,1)) - 1) <= 10^-8; % Numerical equality to 1
abs(sum(S2_hat(:,1)) - 1) <= 10^-8; % Numerical equality to 1
cvx_end
cvx_status_vec(tt) = cellstr(cvx_status);
% Rescale the obtained graphs to the true scale for comparison
S1_hat = S1_hat*sum(S1(:,1));
S2_hat = S2_hat*sum(S2(:,1));
% Plot the true and recovered graphs
% figure;
% subplot(2,2,1);imagesc(S1);
% subplot(2,2,2);imagesc(S2);
% subplot(2,2,3);imagesc(S1_hat);
% subplot(2,2,4);imagesc(S2_hat);
disp('DONE solving the convex optimization problem')
% Check if the recovered GSOs are the true ones
if (max(max(abs(S1 - S1_hat))) + max(max(abs(S2 - S2_hat)))) < 10^-3
rec_vec(tt) = 1;
disp('The GSOs recovered coincide with the true ones!')
else
rec_vec(tt) = 0;
disp('The GSOs recovered DO NOT coincide with the true ones!')
end
%}
%% Check the theoretical guarantees
% Here I use the same notation as in the paper
% Build Psi
Z = [1 -1];
Psi = kron([diag(alp);bet*Z], eye(N^2));
% Build Phi
cal_D = 1:N+1:N^2;
C_x_1 = - kron(C1, eye(N)) + kron(eye(N), C1);
C_x_2 = - kron(C2, eye(N)) + kron(eye(N), C2);
C_x = [C_x_1 zeros(N^2, N^2); zeros(N^2, N^2) C_x_2];
B = zeros(nchoosek(N, 2), N^2);
indic = 0;
for i = 1:N-1
for j = i+1:N
indic = indic + 1;
B_row_aux = zeros(N,N);
B_row_aux(i,j) = 1;
B_row_aux(j,i) = -1;
B(indic, :) = B_row_aux(:)';
end
end
I_N2 = eye(N^2);
e1 = zeros(N,1);
e1(1) = 1;
Phi_1 = kron(eye(K), B);
Phi_2 = kron(eye(K), I_N2(cal_D, :));
Phi_3 = C_x;
Phi_4 = kron(eye(K), kron(e1, ones(N,1))');
Phi = [Phi_1;Phi_2;Phi_3;Phi_4];
s_star = [S1(:)./sum(S1(:,1));S2(:)./sum(S2(:,1))];
cal_J = find(s_star);
cal_L = find(Psi*s_star);
cal_L_c = setdiff(1:size(Psi*s_star,1), cal_L);
% Check condition 1
M = Phi(:, cal_J);
if rank(M) == size(M, 2)
cond_1_vec(tt) = 1;
disp('Condition 1 of the theorem is satisfied!')
else
cond_1_vec(tt) = 0;
disp('Condition 1 of the theorem is NOT satisfied!')
end
del = 10^-3;
M2 = Psi(cal_L_c, :) * inv(del^-2*Phi'*Phi + Psi(cal_L_c, :)'*Psi(cal_L_c, :))*Psi(cal_L, :)';
gamm_vec(tt) = norm(M2,inf);
if rec_vec(tt) == 0 && gamm_vec(tt)<=0.9999
disp('PASO ALGO RARO')
end
end
%% Plot the output figure
gam_successes = gamm_vec(rec_vec==1);
gam_failures = gamm_vec(rec_vec==0);
hist_suc = histogram(gam_successes, 0:0.25:max(gamm_vec));
hist_suc_values = hist_suc.Values;
hist_failures = histogram(gam_failures, 0:0.25:max(gamm_vec));
hist_failures_values = hist_failures.Values;
bar(0.125:0.25:max(gamm_vec)-0.125, [hist_suc_values' hist_failures_values'], 1, 'Stacked');
save('data_hist_theorem_2');
grid on
xlim([0 6])
xlabel('$\gamma$ as defined (5)','Interpreter','LaTex')
ylabel('Nr. of experiments','Interpreter','LaTex')
legend({'Successful recovery', 'Failed recovery'})
set(gca, 'FontSize', 22)