Skip to content

Commit 7d630ba

Browse files
committed
logistic and ridge regression'
1 parent 44f57d1 commit 7d630ba

File tree

3 files changed

+557
-3
lines changed

3 files changed

+557
-3
lines changed

.idea/workspace.xml

+6-3
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

logistic-regression/logistic-regression.ipynb

+445
Large diffs are not rendered by default.
+106
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,106 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"\n",
8+
"### This is an example of a basic 10-fold cross validation on the boston housing dataset of sklearn using Ridge-Regression."
9+
]
10+
},
11+
{
12+
"cell_type": "code",
13+
"execution_count": 46,
14+
"metadata": {},
15+
"outputs": [],
16+
"source": [
17+
"import pandas as pd\n",
18+
"import numpy as np\n",
19+
"from sklearn.datasets import load_boston\n",
20+
"import matplotlib.pyplot as plt\n",
21+
"from sklearn.linear_model import Ridge\n",
22+
"from sklearn.model_selection import train_test_split\n",
23+
"from sklearn.metrics import r2_score\n",
24+
"from sklearn.preprocessing import Normalizer\n",
25+
"\n",
26+
"\n",
27+
"boston_dataset = load_boston()\n",
28+
"\n",
29+
"X = boston_dataset.data \n",
30+
"\n",
31+
"transformer = Normalizer().fit(X)\n",
32+
"\n",
33+
"transformer.transform(X)\n",
34+
"\n",
35+
"y = boston_dataset.target.reshape(-1, 1) # Converting to Column vector "
36+
]
37+
},
38+
{
39+
"cell_type": "code",
40+
"execution_count": 47,
41+
"metadata": {},
42+
"outputs": [
43+
{
44+
"name": "stdout",
45+
"output_type": "stream",
46+
"text": [
47+
"Cost after iteration 1 - 0.7126916135010682\n",
48+
"Cost after iteration 2 - 0.6580161986180606\n",
49+
"Cost after iteration 3 - 0.6593572420098802\n",
50+
"Cost after iteration 4 - 0.6827689513882875\n",
51+
"Cost after iteration 5 - 0.7427883698752009\n",
52+
"Cost after iteration 6 - 0.7037718042199794\n",
53+
"Cost after iteration 7 - 0.6266438909778318\n",
54+
"Cost after iteration 8 - 0.7455364640710955\n",
55+
"Cost after iteration 9 - 0.7291283475880821\n",
56+
"Cost after iteration 10 - 0.7353142325508967\n",
57+
"Aggregate R2 Coeff 0.69960\n"
58+
]
59+
}
60+
],
61+
"source": [
62+
"r2_coeff = []\n",
63+
"clf = Ridge(alpha=10)\n",
64+
"for i in range(10):\n",
65+
" X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)\n",
66+
" clf.fit(X_train, y_train)\n",
67+
" y_predict=clf.predict(X_test)\n",
68+
" \n",
69+
" RSS = (np.mean((y_test-y_predict)**2)/np.std(y_test)**2)\n",
70+
" r2_coeff.append(1-RSS)\n",
71+
" print(\"Cost after iteration {} - {}\".format(i+1, 1-RSS))\n",
72+
" \n",
73+
"average_r2 = np.mean(r2_coeff)\n",
74+
"print(\"Aggregate R2 Coeff {0:.5f}\".format(average_r2))"
75+
]
76+
},
77+
{
78+
"cell_type": "code",
79+
"execution_count": null,
80+
"metadata": {},
81+
"outputs": [],
82+
"source": []
83+
}
84+
],
85+
"metadata": {
86+
"kernelspec": {
87+
"display_name": "Python 3",
88+
"language": "python",
89+
"name": "python3"
90+
},
91+
"language_info": {
92+
"codemirror_mode": {
93+
"name": "ipython",
94+
"version": 3
95+
},
96+
"file_extension": ".py",
97+
"mimetype": "text/x-python",
98+
"name": "python",
99+
"nbconvert_exporter": "python",
100+
"pygments_lexer": "ipython3",
101+
"version": "3.7.4-final"
102+
}
103+
},
104+
"nbformat": 4,
105+
"nbformat_minor": 2
106+
}

0 commit comments

Comments
 (0)