forked from facebookresearch/BenchMARL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_meltingpot.py
124 lines (110 loc) · 3.78 KB
/
test_meltingpot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import pytest
from benchmarl.algorithms import (
algorithm_config_registry,
IppoConfig,
MasacConfig,
QmixConfig,
)
from benchmarl.algorithms.common import AlgorithmConfig
from benchmarl.environments import MeltingPotTask, Task
from benchmarl.experiment import Experiment
from utils import _has_meltingpot
from utils_experiment import ExperimentUtils
def _get_unique_envs(names):
prefixes = set()
result = []
for env in names:
prefix = env.name.split("_")[0]
if prefix not in prefixes:
prefixes.add(prefix)
result.append(env)
return result
@pytest.mark.skipif(not _has_meltingpot, reason="Meltingpot not found")
class TestMeltingPot:
@pytest.mark.parametrize("algo_config", algorithm_config_registry.values())
@pytest.mark.parametrize("task", [MeltingPotTask.COMMONS_HARVEST__OPEN])
def test_all_algos(
self,
algo_config: AlgorithmConfig,
task: Task,
experiment_config,
cnn_sequence_config,
):
# To not run unsupported algo-task pairs
if not algo_config.supports_discrete_actions():
pytest.skip()
task = task.get_from_yaml()
experiment_config.checkpoint_interval = 0
experiment = Experiment(
algorithm_config=algo_config.get_from_yaml(),
model_config=cnn_sequence_config,
seed=0,
config=experiment_config,
task=task,
)
experiment.run()
@pytest.mark.parametrize("algo_config", [MasacConfig])
@pytest.mark.parametrize("task", _get_unique_envs(list(MeltingPotTask))[:10])
def test_all_tasks(
self,
algo_config: AlgorithmConfig,
task: Task,
experiment_config,
cnn_sequence_config,
):
task = task.get_from_yaml()
experiment_config.checkpoint_interval = 0
experiment = Experiment(
algorithm_config=algo_config.get_from_yaml(),
model_config=cnn_sequence_config,
seed=0,
config=experiment_config,
task=task,
)
experiment.run()
@pytest.mark.parametrize("algo_config", algorithm_config_registry.values())
@pytest.mark.parametrize("task", [MeltingPotTask.COMMONS_HARVEST__OPEN])
def test_reloading_trainer(
self,
algo_config: AlgorithmConfig,
task: Task,
experiment_config,
cnn_sequence_config,
):
# To not run unsupported algo-task pairs
if not algo_config.supports_discrete_actions():
pytest.skip()
algo_config = algo_config.get_from_yaml()
ExperimentUtils.check_experiment_loading(
algo_config=algo_config,
model_config=cnn_sequence_config,
experiment_config=experiment_config,
task=task.get_from_yaml(),
)
@pytest.mark.parametrize("algo_config", [QmixConfig, IppoConfig, MasacConfig])
@pytest.mark.parametrize("task", [MeltingPotTask.COMMONS_HARVEST__OPEN])
@pytest.mark.parametrize("share_params", [True, False])
def test_share_policy_params(
self,
algo_config: AlgorithmConfig,
task: Task,
share_params,
experiment_config,
cnn_sequence_config,
):
experiment_config.share_policy_params = share_params
task = task.get_from_yaml()
experiment_config.checkpoint_interval = 0
experiment = Experiment(
algorithm_config=algo_config.get_from_yaml(),
model_config=cnn_sequence_config,
seed=0,
config=experiment_config,
task=task,
)
experiment.run()