|
| 1 | +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +# ============================================================================== |
| 15 | +"""Tests for initializers.""" |
| 16 | + |
| 17 | +from __future__ import absolute_import |
| 18 | +from __future__ import division |
| 19 | +from __future__ import print_function |
| 20 | + |
| 21 | +import importlib |
| 22 | +import numpy as np |
| 23 | + |
| 24 | +from tensorflow.python.framework import constant_op |
| 25 | +from tensorflow.python.framework import dtypes |
| 26 | +from tensorflow.python.framework import ops |
| 27 | +from tensorflow.python.framework import tensor_shape |
| 28 | +from tensorflow.python.ops import array_ops |
| 29 | +from tensorflow.python.ops import gradients_impl |
| 30 | +from tensorflow.python.ops import variables |
| 31 | +from tensorflow.contrib.distributions.python.ops import half_normal as hn_lib |
| 32 | +from tensorflow.python.platform import test |
| 33 | +from tensorflow.python.platform import tf_logging |
| 34 | + |
| 35 | + |
| 36 | +def try_import(name): # pylint: disable=invalid-name |
| 37 | + module = None |
| 38 | + try: |
| 39 | + module = importlib.import_module(name) |
| 40 | + except ImportError as e: |
| 41 | + tf_logging.warning("Could not import %s: %s" % (name, str(e))) |
| 42 | + return module |
| 43 | + |
| 44 | +stats = try_import("scipy.stats") |
| 45 | + |
| 46 | + |
| 47 | +class HalfNormalTest(test.TestCase): |
| 48 | + |
| 49 | + def setUp(self): |
| 50 | + self._rng = np.random.RandomState(123) |
| 51 | + |
| 52 | + def assertAllFinite(self, tensor): |
| 53 | + is_finite = np.isfinite(tensor.eval()) |
| 54 | + all_true = np.ones_like(is_finite, dtype=np.bool) |
| 55 | + self.assertAllEqual(all_true, is_finite) |
| 56 | + |
| 57 | + def _testParamShapes(self, sample_shape, expected): |
| 58 | + with self.test_session(): |
| 59 | + param_shapes = hn_lib.HalfNormal.param_shapes(sample_shape) |
| 60 | + scale_shape = param_shapes["scale"] |
| 61 | + self.assertAllEqual(expected, scale_shape.eval()) |
| 62 | + scale = array_ops.ones(scale_shape) |
| 63 | + self.assertAllEqual( |
| 64 | + expected, |
| 65 | + array_ops.shape(hn_lib.HalfNormal(scale).sample()).eval()) |
| 66 | + |
| 67 | + def _testParamStaticShapes(self, sample_shape, expected): |
| 68 | + param_shapes = hn_lib.HalfNormal.param_static_shapes(sample_shape) |
| 69 | + scale_shape = param_shapes["scale"] |
| 70 | + self.assertEqual(expected, scale_shape) |
| 71 | + |
| 72 | + def _testBatchShapes(self, dist, tensor): |
| 73 | + self.assertAllEqual(dist.batch_shape_tensor().eval(), tensor.shape) |
| 74 | + self.assertAllEqual(dist.batch_shape_tensor().eval(), tensor.eval().shape) |
| 75 | + self.assertAllEqual(dist.batch_shape, tensor.shape) |
| 76 | + self.assertAllEqual(dist.batch_shape, tensor.eval().shape) |
| 77 | + |
| 78 | + def testParamShapes(self): |
| 79 | + sample_shape = [10, 3, 4] |
| 80 | + self._testParamShapes(sample_shape, sample_shape) |
| 81 | + self._testParamShapes(constant_op.constant(sample_shape), sample_shape) |
| 82 | + |
| 83 | + def testParamStaticShapes(self): |
| 84 | + sample_shape = [10, 3, 4] |
| 85 | + self._testParamStaticShapes(sample_shape, sample_shape) |
| 86 | + self._testParamStaticShapes( |
| 87 | + tensor_shape.TensorShape(sample_shape), sample_shape) |
| 88 | + |
| 89 | + def testHalfNormalLogPDF(self): |
| 90 | + with self.test_session(): |
| 91 | + batch_size = 6 |
| 92 | + scale = constant_op.constant([3.0] * batch_size) |
| 93 | + x = np.array([-2.5, 2.5, 4.0, 0.0, -1.0, 2.0], dtype=np.float32) |
| 94 | + halfnorm = hn_lib.HalfNormal(scale=scale) |
| 95 | + |
| 96 | + log_pdf = halfnorm.log_prob(x) |
| 97 | + self._testBatchShapes(halfnorm, log_pdf) |
| 98 | + |
| 99 | + pdf = halfnorm.prob(x) |
| 100 | + self._testBatchShapes(halfnorm, pdf) |
| 101 | + |
| 102 | + if not stats: |
| 103 | + return |
| 104 | + expected_log_pdf = stats.halfnorm(scale=scale.eval()).logpdf(x) |
| 105 | + self.assertAllClose(expected_log_pdf, log_pdf.eval()) |
| 106 | + self.assertAllClose(np.exp(expected_log_pdf), pdf.eval()) |
| 107 | + |
| 108 | + def testHalfNormalLogPDFMultidimensional(self): |
| 109 | + with self.test_session(): |
| 110 | + batch_size = 6 |
| 111 | + scale = constant_op.constant([[3.0, 1.0]] * batch_size) |
| 112 | + x = np.array([[-2.5, 2.5, 4.0, 0.0, -1.0, 2.0]], dtype=np.float32).T |
| 113 | + halfnorm = hn_lib.HalfNormal(scale=scale) |
| 114 | + |
| 115 | + log_pdf = halfnorm.log_prob(x) |
| 116 | + self._testBatchShapes(halfnorm, log_pdf) |
| 117 | + |
| 118 | + pdf = halfnorm.prob(x) |
| 119 | + self._testBatchShapes(halfnorm, pdf) |
| 120 | + |
| 121 | + if not stats: |
| 122 | + return |
| 123 | + expected_log_pdf = stats.halfnorm(scale=scale.eval()).logpdf(x) |
| 124 | + self.assertAllClose(expected_log_pdf, log_pdf.eval()) |
| 125 | + self.assertAllClose(np.exp(expected_log_pdf), pdf.eval()) |
| 126 | + |
| 127 | + def testHalfNormalCDF(self): |
| 128 | + with self.test_session(): |
| 129 | + batch_size = 50 |
| 130 | + scale = self._rng.rand(batch_size) + 1.0 |
| 131 | + x = np.linspace(-8.0, 8.0, batch_size).astype(np.float64) |
| 132 | + halfnorm = hn_lib.HalfNormal(scale=scale) |
| 133 | + |
| 134 | + cdf = halfnorm.cdf(x) |
| 135 | + self._testBatchShapes(halfnorm, cdf) |
| 136 | + |
| 137 | + log_cdf = halfnorm.log_cdf(x) |
| 138 | + self._testBatchShapes(halfnorm, log_cdf) |
| 139 | + |
| 140 | + if not stats: |
| 141 | + return |
| 142 | + expected_logcdf = stats.halfnorm(scale=scale).logcdf(x) |
| 143 | + self.assertAllClose(expected_logcdf, log_cdf.eval(), atol=0) |
| 144 | + self.assertAllClose(np.exp(expected_logcdf), cdf.eval(), atol=0) |
| 145 | + |
| 146 | + def testHalfNormalSurvivalFunction(self): |
| 147 | + with self.test_session(): |
| 148 | + batch_size = 50 |
| 149 | + scale = self._rng.rand(batch_size) + 1.0 |
| 150 | + x = np.linspace(-8.0, 8.0, batch_size).astype(np.float64) |
| 151 | + halfnorm = hn_lib.HalfNormal(scale=scale) |
| 152 | + |
| 153 | + sf = halfnorm.survival_function(x) |
| 154 | + self._testBatchShapes(halfnorm, sf) |
| 155 | + |
| 156 | + log_sf = halfnorm.log_survival_function(x) |
| 157 | + self._testBatchShapes(halfnorm, log_sf) |
| 158 | + |
| 159 | + if not stats: |
| 160 | + return |
| 161 | + expected_logsf = stats.halfnorm(scale=scale).logsf(x) |
| 162 | + self.assertAllClose(expected_logsf, log_sf.eval(), atol=0) |
| 163 | + self.assertAllClose(np.exp(expected_logsf), sf.eval(), atol=0) |
| 164 | + |
| 165 | + def testHalfNormalQuantile(self): |
| 166 | + with self.test_session(): |
| 167 | + batch_size = 50 |
| 168 | + scale = self._rng.rand(batch_size) + 1.0 |
| 169 | + p = np.linspace(0., 1.0, batch_size).astype(np.float64) |
| 170 | + |
| 171 | + halfnorm = hn_lib.HalfNormal(scale=scale) |
| 172 | + x = halfnorm.quantile(p) |
| 173 | + self._testBatchShapes(halfnorm, x) |
| 174 | + |
| 175 | + if not stats: |
| 176 | + return |
| 177 | + expected_x = stats.halfnorm(scale=scale).ppf(p) |
| 178 | + self.assertAllClose(expected_x, x.eval(), atol=0) |
| 179 | + |
| 180 | + def testFiniteGradients(self): |
| 181 | + for dtype in [np.float32, np.float64]: |
| 182 | + g = ops.Graph() |
| 183 | + with g.as_default(): |
| 184 | + scale = variables.Variable(dtype(3.0)) |
| 185 | + dist = hn_lib.HalfNormal(scale=scale) |
| 186 | + x = np.array([0.01, 0.1, 1., 5., 10.]).astype(dtype) |
| 187 | + for func in [ |
| 188 | + dist.cdf, dist.log_cdf, dist.survival_function, |
| 189 | + dist.log_prob, dist.prob, dist.log_survival_function, |
| 190 | + ]: |
| 191 | + print(func.__name__) |
| 192 | + value = func(x) |
| 193 | + grads = gradients_impl.gradients(value, [scale]) |
| 194 | + with self.test_session(graph=g): |
| 195 | + variables.global_variables_initializer().run() |
| 196 | + self.assertAllFinite(value) |
| 197 | + self.assertAllFinite(grads[0]) |
| 198 | + |
| 199 | + def testHalfNormalEntropy(self): |
| 200 | + with self.test_session(): |
| 201 | + scale = np.array([[1.0, 2.0, 3.0]]) |
| 202 | + halfnorm = hn_lib.HalfNormal(scale=scale) |
| 203 | + |
| 204 | + # See https://en.wikipedia.org/wiki/Half-normal_distribution for the |
| 205 | + # entropy formula used here. |
| 206 | + expected_entropy = 0.5 * np.log(np.pi * scale ** 2.0 / 2.0) + 0.5 |
| 207 | + |
| 208 | + entropy = halfnorm.entropy() |
| 209 | + self._testBatchShapes(halfnorm, entropy) |
| 210 | + self.assertAllClose(expected_entropy, entropy.eval()) |
| 211 | + |
| 212 | + def testHalfNormalMeanAndMode(self): |
| 213 | + with self.test_session(): |
| 214 | + scale = np.array([11., 12., 13.]) |
| 215 | + |
| 216 | + halfnorm = hn_lib.HalfNormal(scale=scale) |
| 217 | + expected_mean = scale * np.sqrt(2.0) / np.sqrt(np.pi) |
| 218 | + |
| 219 | + self.assertAllEqual((3,), halfnorm.mean().eval().shape) |
| 220 | + self.assertAllEqual(expected_mean, halfnorm.mean().eval()) |
| 221 | + |
| 222 | + self.assertAllEqual((3,), halfnorm.mode().eval().shape) |
| 223 | + self.assertAllEqual([0., 0., 0.], halfnorm.mode().eval()) |
| 224 | + |
| 225 | + def testHalfNormalVariance(self): |
| 226 | + with self.test_session(): |
| 227 | + scale = np.array([7., 7., 7.]) |
| 228 | + halfnorm = hn_lib.HalfNormal(scale=scale) |
| 229 | + expected_variance = scale ** 2.0 * (1.0 - 2.0 / np.pi) |
| 230 | + |
| 231 | + self.assertAllEqual((3,), halfnorm.variance().eval().shape) |
| 232 | + self.assertAllEqual(expected_variance, halfnorm.variance().eval()) |
| 233 | + |
| 234 | + def testHalfNormalStandardDeviation(self): |
| 235 | + with self.test_session(): |
| 236 | + scale = np.array([7., 7., 7.]) |
| 237 | + halfnorm = hn_lib.HalfNormal(scale=scale) |
| 238 | + expected_variance = scale ** 2.0 * (1.0 - 2.0 / np.pi) |
| 239 | + |
| 240 | + self.assertAllEqual((3,), halfnorm.stddev().shape) |
| 241 | + self.assertAllEqual(np.sqrt(expected_variance), halfnorm.stddev().eval()) |
| 242 | + |
| 243 | + def testHalfNormalSample(self): |
| 244 | + with self.test_session(): |
| 245 | + scale = constant_op.constant(3.0) |
| 246 | + n = constant_op.constant(100000) |
| 247 | + halfnorm = hn_lib.HalfNormal(scale=scale) |
| 248 | + |
| 249 | + sample = halfnorm.sample(n) |
| 250 | + |
| 251 | + self.assertEqual(sample.eval().shape, (100000,)) |
| 252 | + self.assertAllClose(sample.eval().mean(), |
| 253 | + 3.0 * np.sqrt(2.0) / np.sqrt(np.pi), atol=1e-1) |
| 254 | + |
| 255 | + expected_shape = tensor_shape.TensorShape([n.eval()]).concatenate( |
| 256 | + tensor_shape.TensorShape(halfnorm.batch_shape_tensor().eval())) |
| 257 | + self.assertAllEqual(expected_shape, sample.shape) |
| 258 | + self.assertAllEqual(expected_shape, sample.eval().shape) |
| 259 | + |
| 260 | + expected_shape_static = (tensor_shape.TensorShape( |
| 261 | + [n.eval()]).concatenate(halfnorm.batch_shape)) |
| 262 | + self.assertAllEqual(expected_shape_static, sample.shape) |
| 263 | + self.assertAllEqual(expected_shape_static, sample.eval().shape) |
| 264 | + |
| 265 | + def testHalfNormalSampleMultiDimensional(self): |
| 266 | + with self.test_session(): |
| 267 | + batch_size = 2 |
| 268 | + scale = constant_op.constant([[2.0, 3.0]] * batch_size) |
| 269 | + n = constant_op.constant(100000) |
| 270 | + halfnorm = hn_lib.HalfNormal(scale=scale) |
| 271 | + |
| 272 | + sample = halfnorm.sample(n) |
| 273 | + self.assertEqual(sample.shape, (100000, batch_size, 2)) |
| 274 | + self.assertAllClose(sample.eval()[:, 0, 0].mean(), |
| 275 | + 2.0 * np.sqrt(2.0) / np.sqrt(np.pi), atol=1e-1) |
| 276 | + self.assertAllClose(sample.eval()[:, 0, 1].mean(), |
| 277 | + 3.0 * np.sqrt(2.0) / np.sqrt(np.pi), atol=1e-1) |
| 278 | + |
| 279 | + expected_shape = tensor_shape.TensorShape([n.eval()]).concatenate( |
| 280 | + tensor_shape.TensorShape(halfnorm.batch_shape_tensor().eval())) |
| 281 | + self.assertAllEqual(expected_shape, sample.shape) |
| 282 | + self.assertAllEqual(expected_shape, sample.eval().shape) |
| 283 | + |
| 284 | + expected_shape_static = (tensor_shape.TensorShape( |
| 285 | + [n.eval()]).concatenate(halfnorm.batch_shape)) |
| 286 | + self.assertAllEqual(expected_shape_static, sample.shape) |
| 287 | + self.assertAllEqual(expected_shape_static, sample.eval().shape) |
| 288 | + |
| 289 | + def testNegativeSigmaFails(self): |
| 290 | + with self.test_session(): |
| 291 | + halfnorm = hn_lib.HalfNormal(scale=[-5.], validate_args=True, name="G") |
| 292 | + with self.assertRaisesOpError("Condition x > 0 did not hold"): |
| 293 | + halfnorm.mean().eval() |
| 294 | + |
| 295 | + def testHalfNormalShape(self): |
| 296 | + with self.test_session(): |
| 297 | + scale = constant_op.constant([6.0] * 5) |
| 298 | + halfnorm = hn_lib.HalfNormal(scale=scale) |
| 299 | + |
| 300 | + self.assertEqual(halfnorm.batch_shape_tensor().eval(), [5]) |
| 301 | + self.assertEqual(halfnorm.batch_shape, tensor_shape.TensorShape([5])) |
| 302 | + self.assertAllEqual(halfnorm.event_shape_tensor().eval(), []) |
| 303 | + self.assertEqual(halfnorm.event_shape, tensor_shape.TensorShape([])) |
| 304 | + |
| 305 | + def testHalfNormalShapeWithPlaceholders(self): |
| 306 | + scale = array_ops.placeholder(dtype=dtypes.float32) |
| 307 | + halfnorm = hn_lib.HalfNormal(scale=scale) |
| 308 | + |
| 309 | + with self.test_session() as sess: |
| 310 | + # get_batch_shape should return an "<unknown>" tensor. |
| 311 | + self.assertEqual(halfnorm.batch_shape, tensor_shape.TensorShape(None)) |
| 312 | + self.assertEqual(halfnorm.event_shape, ()) |
| 313 | + self.assertAllEqual(halfnorm.event_shape_tensor().eval(), []) |
| 314 | + self.assertAllEqual( |
| 315 | + sess.run(halfnorm.batch_shape_tensor(), |
| 316 | + feed_dict={scale: [1.0, 2.0]}), [2]) |
| 317 | + |
| 318 | + |
| 319 | +if __name__ == "__main__": |
| 320 | + test.main() |
0 commit comments