@@ -16,6 +16,9 @@ Aside from the default model configs, there is a lot of flexibility to facilitat
16
16
17
17
## Updates
18
18
19
+ ### 2022-01-06
20
+ * New ` efficientnetv2_ds ` weights 50.1 mAP @ 1024x0124, using AGC clipping. Memory use comparable to D3, speed faster than D4. Smaller than optimal training batch size so can probably do better...
21
+
19
22
### 2021-11-30
20
23
* Update ` efficientnetv2_dt ` weights to a new set, 46.1 mAP @ 768x768, 47.0 mAP @ 896x896 using AGC clipping.
21
24
* Add AGC (Adaptive Gradient Clipping support via ` timm ` ). Idea from (` High-Performance Large-Scale Image Recognition Without Normalization ` - https://arxiv.org/abs/2102.06171 )
@@ -95,39 +98,40 @@ Training sanity checks were done on VOC and OI
95
98
96
99
The table below contains models with pretrained weights. There are quite a number of other models that I have defined in [ model configurations] ( effdet/config/model_config.py ) that use various ` timm ` backbones.
97
100
98
- | Variant | mAP (val2017) | mAP (test-dev2017) | mAP (TF official val2017) | mAP (TF official test-dev2017) | Params (M) | Img Size |
99
- | --- | :---: | :---: | :---: | :---: | :---: | :---: |
100
- | tf_efficientdet_lite0 | 27.1 | TBD | 26.4 | N/A | 3.24 | 320 |
101
- | tf_efficientdet_lite1 | 32.2 | TBD | 31.5 | N/A | 4.25 | 384 |
102
- | efficientdet_d0 | 33.6 | TBD | N/A | N/A | 3.88 | 512 |
103
- | tf_efficientdet_d0 | 34.2 | TBD | 34.3 | 34.6 | 3.88 | 512 |
104
- | tf_efficientdet_d0_ap | 34.8 | TBD | 35.2 | 35.3 | 3.88 | 512 |
105
- | efficientdet_q0 | 35.7 | TBD | N/A | N/A | 4.13 | 512 |
106
- | tf_efficientdet_lite2 | 35.9 | TBD | 35.1 | N/A | 5.25 | 448 |
107
- | efficientdet_d1 | 39.4 | 39.5 | N/A | N/A | 6.62 | 640 |
108
- | tf_efficientdet_lite3 | 39.6 | TBD | 38.8 | N/A | 8.35 | 512 |
109
- | tf_efficientdet_d1 | 40.1 | TBD | 40.2 | 40.5 | 6.63 | 640 |
110
- | tf_efficientdet_d1_ap | 40.8 | TBD | 40.9 | 40.8 | 6.63 | 640 |
111
- | efficientdet_q1 | 40.9 | TBD | N/A | N/A | 6.98 | 640 |
112
- | cspresdext50pan | 41.2 | TBD | N/A | N/A | 22.2 | 640 |
113
- | resdet50 | 41.6 | TBD | N/A | N/A | 27.6 | 640 |
114
- | efficientdet_q2 | 43.1 | TBD | N/A | N/A | 8.81 | 768 |
115
- | cspresdet50 | 43.2 | TBD | N/A | N/A | 24.3 | 768 |
116
- | tf_efficientdet_d2 | 43.4 | TBD | 42.5 | 43 | 8.10 | 768 |
117
- | tf_efficientdet_lite3x | 43.6 | TBD | 42.6 | N/A | 9.28 | 640 |
118
- | tf_efficientdet_lite4 | 44.2 | TBD | 43.2 | N/A | 15.1 | 640 |
119
- | tf_efficientdet_d2_ap | 44.2 | TBD | 44.3 | 44.3 | 8.10 | 768 |
120
- | cspdarkdet53m | 45.2 | TBD | N/A | N/A | 35.6 | 768 |
121
- | efficientdetv2_dt | 45.8 | TBD | N/A | N/A | 13.4 | 768 |
122
- | tf_efficientdet_d3 | 47.1 | TBD | 47.2 | 47.5 | 12.0 | 896 |
123
- | tf_efficientdet_d3_ap | 47.7 | TBD | 48.0 | 47.7 | 12.0 | 896 |
124
- | tf_efficientdet_d4 | 49.2 | TBD | 49.3 | 49.7 | 20.7 | 1024 |
125
- | tf_efficientdet_d4_ap | 50.2 | TBD | 50.4 | 50.4 | 20.7 | 1024 |
126
- | tf_efficientdet_d5 | 51.2 | TBD | 51.2 | 51.5 | 33.7 | 1280 |
127
- | tf_efficientdet_d6 | 52.0 | TBD | 52.1 | 52.6 | 51.9 | 1280 |
128
- | tf_efficientdet_d5_ap | 52.1 | TBD | 52.2 | 52.5 | 33.7 | 1280 |
129
- | tf_efficientdet_d7 | 53.1 | 53.4 | 53.4 | 53.7 | 51.9 | 1536 |
130
- | tf_efficientdet_d7x | 54.3 | TBD | 54.4 | 55.1 | 77.1 | 1536 |
101
+ | Variant | mAP (val2017) | mAP (test-dev2017) | mAP (TF official val2017) | mAP (TF official test-dev2017) | Params (M) | Img Size |
102
+ | ------------------------| :-------------:| :---: | :---: | :---: | :----------:| :--------:|
103
+ | tf_efficientdet_lite0 | 27.1 | TBD | 26.4 | N/A | 3.24 | 320 |
104
+ | tf_efficientdet_lite1 | 32.2 | TBD | 31.5 | N/A | 4.25 | 384 |
105
+ | efficientdet_d0 | 33.6 | TBD | N/A | N/A | 3.88 | 512 |
106
+ | tf_efficientdet_d0 | 34.2 | TBD | 34.3 | 34.6 | 3.88 | 512 |
107
+ | tf_efficientdet_d0_ap | 34.8 | TBD | 35.2 | 35.3 | 3.88 | 512 |
108
+ | efficientdet_q0 | 35.7 | TBD | N/A | N/A | 4.13 | 512 |
109
+ | tf_efficientdet_lite2 | 35.9 | TBD | 35.1 | N/A | 5.25 | 448 |
110
+ | efficientdet_d1 | 39.4 | 39.5 | N/A | N/A | 6.62 | 640 |
111
+ | tf_efficientdet_lite3 | 39.6 | TBD | 38.8 | N/A | 8.35 | 512 |
112
+ | tf_efficientdet_d1 | 40.1 | TBD | 40.2 | 40.5 | 6.63 | 640 |
113
+ | tf_efficientdet_d1_ap | 40.8 | TBD | 40.9 | 40.8 | 6.63 | 640 |
114
+ | efficientdet_q1 | 40.9 | TBD | N/A | N/A | 6.98 | 640 |
115
+ | cspresdext50pan | 41.2 | TBD | N/A | N/A | 22.2 | 640 |
116
+ | resdet50 | 41.6 | TBD | N/A | N/A | 27.6 | 640 |
117
+ | efficientdet_q2 | 43.1 | TBD | N/A | N/A | 8.81 | 768 |
118
+ | cspresdet50 | 43.2 | TBD | N/A | N/A | 24.3 | 768 |
119
+ | tf_efficientdet_d2 | 43.4 | TBD | 42.5 | 43 | 8.10 | 768 |
120
+ | tf_efficientdet_lite3x | 43.6 | TBD | 42.6 | N/A | 9.28 | 640 |
121
+ | tf_efficientdet_lite4 | 44.2 | TBD | 43.2 | N/A | 15.1 | 640 |
122
+ | tf_efficientdet_d2_ap | 44.2 | TBD | 44.3 | 44.3 | 8.10 | 768 |
123
+ | cspdarkdet53m | 45.2 | TBD | N/A | N/A | 35.6 | 768 |
124
+ | efficientdetv2_dt | 46.1 | TBD | N/A | N/A | 13.4 | 768 |
125
+ | tf_efficientdet_d3 | 47.1 | TBD | 47.2 | 47.5 | 12.0 | 896 |
126
+ | tf_efficientdet_d3_ap | 47.7 | TBD | 48.0 | 47.7 | 12.0 | 896 |
127
+ | tf_efficientdet_d4 | 49.2 | TBD | 49.3 | 49.7 | 20.7 | 1024 |
128
+ | efficientdetv2_ds | 50.1 | TBD | N/A | N/A | 26.6 | 1024 |
129
+ | tf_efficientdet_d4_ap | 50.2 | TBD | 50.4 | 50.4 | 20.7 | 1024 |
130
+ | tf_efficientdet_d5 | 51.2 | TBD | 51.2 | 51.5 | 33.7 | 1280 |
131
+ | tf_efficientdet_d6 | 52.0 | TBD | 52.1 | 52.6 | 51.9 | 1280 |
132
+ | tf_efficientdet_d5_ap | 52.1 | TBD | 52.2 | 52.5 | 33.7 | 1280 |
133
+ | tf_efficientdet_d7 | 53.1 | 53.4 | 53.4 | 53.7 | 51.9 | 1536 |
134
+ | tf_efficientdet_d7x | 54.3 | TBD | 54.4 | 55.1 | 77.1 | 1536 |
131
135
132
136
133
137
See [ model configurations] ( effdet/config/model_config.py ) for model checkpoint urls and differences.
0 commit comments