-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmedqa-train.py
218 lines (164 loc) · 8.01 KB
/
medqa-train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from numpy.random import RandomState
import pandas as pd
from datasets import load_dataset, Dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForQuestionAnswering
import torch
import os
from torch.utils.data import Dataset, DataLoader, TensorDataset
import sacremoses
from huggingface_hub import login
from torch.nn.functional import cross_entropy, one_hot, softmax
import torch.nn as nn
from torch.optim import Adam
from sklearn.model_selection import train_test_split
import numpy as np
import time
import matplotlib.pyplot as plt
from torcheval.metrics import MulticlassAccuracy
# login()
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
num_gpus = torch.cuda.device_count()
TRAIN_BATCH_SIZE = 16
VALID_BATCH_SIZE = 64
TEST_BATCH_SIZE = 64
LR = 0.00001
OPTIMIZER = "adam"
EPOCHS = 5
device = "cuda" if torch.cuda.is_available() else "cpu"
medQA_dataset = load_dataset('bigbio/med_qa', trust_remote_code=True)
medQA_dataset_train = medQA_dataset['train']
medQA_dataset_test = medQA_dataset['test']
medQA_dataset_valid = medQA_dataset['validation']
medQA_biogpt_tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt", use_fast=True)
medQA_biogpt_model = AutoModelForSequenceClassification.from_pretrained("microsoft/biogpt", num_labels=5, problem_type="multi_label_classification")
# medQA_clinical_bert_tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
# medQA_clinical_bert_model = AutoModelForSequenceClassification.from_pretrained("emilyalsentzer/Bio_ClinicalBERT", num_labels=5, problem_type="multi_label_classification")
# medQA_bio_bert_tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-v1.1")
# medQA_bio_bert_model = AutoModelForSequenceClassification.from_pretrained("dmis-lab/biobert-v1.1", num_labels=5, problem_type="multi_label_classification")
def appendAnswer(datapoint):
mergedQA = datapoint["question"] + " Return only the letter. " + ', '.join(f"{item['key']} - {item['value']}" for item in datapoint["options"])
return {"questionAndAnswers": mergedQA}
medQA_dataset_train = medQA_dataset_train.map(appendAnswer)
medQA_dataset_test = medQA_dataset_test.map(appendAnswer)
medQA_dataset_valid = medQA_dataset_valid.map(appendAnswer)
def loss_fn(y_hat, y):
if not isinstance(y, torch.Tensor):
y = torch.tensor(y, dtype=torch.float64)
else:
y = y.to(dtype=torch.float64)
return cross_entropy(y_hat, y)
def change_y(y):
mapping = {"A" : 0, "B" : 1, "C" : 2, "D" : 3, "E" : 4}
for i in range(len(y)):
y[i] = mapping[y[i]]
res = one_hot(torch.tensor(y), num_classes=5)
return res
def plot(model_name, t_loss, v_loss):
plt.plot(range(len(t_loss)), t_loss, label='Training Loss')
plt.plot(range(len(t_loss)), v_loss, label='Validation Loss')
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.title("BioGPT" + " Loss over Epochs")
plt.legend()
timestamp = time.strftime('%b-%d-%Y_%H%M', time.localtime())
plt.savefig(model_name + "_" + str(timestamp) + "_biogpt_loss.png")
def train(model, tokenizer):
model = model.to(device)
model = nn.DataParallel(model)
X_train = medQA_dataset_train["questionAndAnswers"]
y_train = change_y(medQA_dataset_train["answer_idx"])
X_valid = medQA_dataset_valid["questionAndAnswers"]
y_valid = change_y(medQA_dataset_valid["answer_idx"])
X_test = medQA_dataset_test["questionAndAnswers"]
y_test = change_y(medQA_dataset_test["answer_idx"])
y_train = y_train.to(device)
y_valid = y_valid.to(device)
y_test = y_test.to(device)
X_train_token = tokenizer(X_train, return_tensors='pt', padding=True, truncation=True, max_length=512)
train_dataset = TensorDataset(X_train_token['input_ids'], X_train_token['attention_mask'], y_train)
train_data_loader = DataLoader(train_dataset, batch_size=TRAIN_BATCH_SIZE, shuffle=True, num_workers=0)
X_valid_token = tokenizer(X_valid, return_tensors='pt', padding=True, truncation=True, max_length=512)
valid_dataset = TensorDataset(X_valid_token['input_ids'], X_valid_token['attention_mask'], y_valid)
valid_data_loader = DataLoader(valid_dataset, batch_size=VALID_BATCH_SIZE, shuffle=True, num_workers=0)
# batch_idx = torch.arange(0, len(X_train), TRAIN_BATCH_SIZE)
# batch_idx_valid = torch.arange(0, len(X_valid), VALID_BATCH_SIZE)
# print(batch_idx)
optimizer = Adam(model.parameters(), lr=LR)
tr_losses = []
val_losses = []
val_acc = []
for epoch in range(EPOCHS):
torch.cuda.empty_cache()
model.train()
training_loss = 0
print("TRAIN")
for i, batch in enumerate(train_data_loader, 0):
print(i)
input_ids, attention_masks, y = batch
input_ids = input_ids.to(device)
attention_masks = attention_masks.to(device)
y = y.to(device)
optimizer.zero_grad()
output = model(input_ids, attention_masks).logits
L = loss_fn(output, y)
training_loss += len(input_ids) * L
L.backward()
optimizer.step()
print("VALID")
model.eval()
torch.cuda.empty_cache()
metric = MulticlassAccuracy()
with torch.no_grad():
total_valid_loss = 0
for i, batch in enumerate(valid_data_loader, 0):
print(i)
input_ids, attention_masks, y = batch
input_ids = input_ids.to(device)
attention_masks = attention_masks.to(device)
y = y.to(device)
valid_output = model(input_ids, attention_masks).logits
L = loss_fn(valid_output, y)
total_valid_loss += len(input_ids) * L
_, labels = y.max(dim=1)
metric.update(softmax(valid_output), labels)
val_losses.append(total_valid_loss.item() / len(X_valid))
tr_losses.append(training_loss.item() / len(X_train))
acc = metric.compute().item()
val_acc.append(acc)
print('\tEPOCH: ', epoch, ', Training Loss: ', training_loss.item() / len(X_train), ', Validation Loss: ', total_valid_loss.item() / len(X_valid), ', Validation Acc: ', acc)
timestamp = time.strftime('%b-%d-%Y_%H%M', time.localtime())
torch.save(model.state_dict(), type(model).__name__ + "_" + timestamp + ".pth")
plot(type(model).__name__, tr_losses, val_losses)
torch.cuda.empty_cache()
return tr_losses, val_losses, val_acc
# print(disease_train[:6])
print(type(medQA_biogpt_model).__name__)
tr_loss, val_loss, val_acc = train(medQA_biogpt_model, medQA_biogpt_tokenizer)
print(tr_loss, val_loss, val_acc)
def eval_on_test(checkpoint, model, tokenizer):
model = nn.DataParallel(model).to(device)
model.load_state_dict(torch.load(checkpoint))
testing_loss = 0
metric = MulticlassAccuracy()
torch.cuda.empty_cache()
X_test = medQA_dataset_test["questionAndAnswers"]
y_test = change_y(medQA_dataset_test["answer_idx"])
X_test_token = tokenizer(X_test, return_tensors='pt', padding=True, truncation=False)
test_dataset = TensorDataset(X_test_token['input_ids'], X_test_token['attention_mask'], y_test)
test_data_loader = DataLoader(test_dataset, batch_size=TEST_BATCH_SIZE, shuffle=True, num_workers=0)
print("Testing")
with torch.no_grad():
for i, batch in enumerate(test_data_loader, 0):
input_ids, attention_masks, y = batch
input_ids = input_ids.to(device)
attention_masks = attention_masks.to(device)
y = y.to(device)
output = model(input_ids, attention_masks).logits
L = loss_fn(output, y)
testing_loss += len(input_ids) * L
_, labels = y.max(dim=1)
metric.update(softmax(output, dim=1), labels)
print("Test Loss: ", testing_loss.item() / len(X_test))
print("Test Accuracy: ", metric.compute().item())
checkpt = "DataParallel_Apr-28-2024_1218.pth"
# eval_on_test(checkpt, medQA_clinical_bert_model, medQA_clinical_bert_tokenizer)