forked from xorbitsai/inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAI_translate.py
75 lines (64 loc) · 2.41 KB
/
AI_translate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Copyright 2022-2023 XProbe Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import os.path
from xinference.client import Client
logger = logging.getLogger(__name__)
def _prompt(text):
return f"Translate the english text to chinese: {text}"
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
parser = argparse.ArgumentParser()
parser.add_argument(
"-e",
"--endpoint",
type=str,
help="Xinference endpoint, required",
required=True,
)
parser.add_argument("-i", "--input", type=str, help="Input text", required=True)
args = parser.parse_args()
endpoint = args.endpoint
logger.info("Connect to xinference server: %s", endpoint)
client = Client(endpoint)
logger.info("Launch model.")
model_uid = client.launch_model(
model_name="OpenBuddy",
model_format="ggmlv3",
model_size_in_billions=13,
quantization="Q4_1",
n_ctx=2048,
)
translator_model = client.get_model(model_uid)
logger.info("Read %s", args.input)
with open(args.input, "r") as f:
eng = f.read()
paragraphs = eng.split("\n\n")
logger.info("%s contains %s lines.", args.input, len(paragraphs))
input, ext = os.path.splitext(args.input)
output = f"{input}_translated{ext}"
logger.info("Translated output: %s", output)
with open(output, "w") as f:
for idx, text_string in enumerate(paragraphs, 1):
logger.info(
"[%s/%s] Translate: %.10s...", idx, len(paragraphs), text_string
)
completion = translator_model.chat(
_prompt(text_string), generate_config={"temperature": 0.23}
)
content = completion["choices"][0]["message"]["content"]
stripped_content = content.split("\n")[0]
logger.info("%s", stripped_content)
f.write(stripped_content + "\n")