-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_cityscapes.py
180 lines (157 loc) · 5.83 KB
/
inference_cityscapes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# python3 inference_cityscapes.py --arch deeplabv3+ --model savedModels/model_unet_40.pth --save True
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
import matplotlib.pyplot as plt
import time
import segmentation_models_pytorch as smp
from dataset_cityscapes import cityscapesLoader
from segtransformer import segformer_mit_b3
from liteseg_model.liteseg import LiteSeg
import argparse
import config
import yaml
from addict import Dict
import numpy as np
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model", required=True, help="path to the model")
ap.add_argument('-a', '--arch', default='unet', choices=['unet', 'manet', 'linknet', 'pspnet', 'pan', 'deeplabv3', 'deeplabv3+', 'manet','fpn', 'segformer-b3', 'liteseg', 'stdc1', 'stdc2', 'a2fpn'], help='Choose different semantic segmention architecture')
ap.add_argument("-s", '--save', default=False, type=bool, help='save predicted output')
args = vars(ap.parse_args())
# replace device accordingly,Prefer to do the
device = torch.device('cpu')
# replace with location of folder containing "gtFine" and "leftImg8bit"
path_data = config.CITYSCAPES_DATASET
n_classes = 19
batch_size = config.BATCH_SIZE
num_workers = config.NUM_WORKERS
val_data = cityscapesLoader(
root = path_data,
split='val'
)
val_loader = DataLoader(
val_data,
batch_size = batch_size,
num_workers = num_workers,
#pin_memory = pin_memory # gave no significant advantage
)
ENCODER = 'resnet50'
ENCODER_WEIGHTS = 'imagenet'
CLASSES = 19
ACTIVATION = 'sigmoid' # could be None for logits or 'softmax2d' for multiclass segmentation
model = None;
if args["arch"] == "pan":
# create segmentation model with pretrained encoder
model = smp.PAN(
encoder_name=ENCODER,
encoder_weights=ENCODER_WEIGHTS,
classes=CLASSES,
activation=ACTIVATION,
)
elif args["arch"] == "unet":
model = smp.Unet(
encoder_name=ENCODER,
encoder_weights=ENCODER_WEIGHTS,
classes=CLASSES,
activation=ACTIVATION,
)
elif args["arch"] == "manet":
model = smp.MAnet(
encoder_name=ENCODER,
encoder_weights=ENCODER_WEIGHTS,
classes=CLASSES,
activation=ACTIVATION,
)
elif args["arch"] == "linknet":
model = smp.Linknet(
encoder_name=ENCODER,
encoder_weights=ENCODER_WEIGHTS,
classes=CLASSES,
activation=ACTIVATION,
)
elif args["arch"] == "pspnet":
model = smp.PSPNet(
encoder_name=ENCODER,
encoder_weights=ENCODER_WEIGHTS,
classes=CLASSES,
activation=ACTIVATION,
)
elif args["arch"] == "deeplabv3":
model = smp.DeepLabV3(
encoder_name=ENCODER,
encoder_depth=5,
encoder_weights=ENCODER_WEIGHTS,
classes=CLASSES,
activation=ACTIVATION,
)
elif args["arch"] == "manet":
model = smp.MANet(
encoder_name=ENCODER,
encoder_weights=ENCODER_WEIGHTS,
classes=CLASSES,
activation=ACTIVATION,
)
elif args["arch"] == "deeplabv3+":
model = smp.DeepLabV3Plus(
encoder_name=ENCODER,
encoder_depth=5,
encoder_weights=ENCODER_WEIGHTS,
classes=CLASSES,
activation=ACTIVATION,
)
elif args["arch"] == "fpn":
model = smp.FPN(
encoder_name=ENCODER,
encoder_weights=ENCODER_WEIGHTS,
classes=CLASSES,
activation=ACTIVATION,
)
elif args["arch"] == "segformer-b3":
model = segformer_mit_b3(in_channels=3, num_classes=CLASSES)
elif args["arch"] == "liteseg":
backbone_network = "mobilenet"
CONFIG = Dict(yaml.load(open("liteseg_model/config/training.yaml"), Loader=yaml.Loader))
model = LiteSeg.build(backbone_network, None, CONFIG, is_train=True, classes=CLASSES)
model_path = args["model"]
print("model_path: {}".format(model_path))
model = model.to(device)
model.load_state_dict(torch.load(model_path, map_location=device), strict=False)
model.eval()
with torch.no_grad():
for image_num, (val_images, val_labels) in tqdm(enumerate(val_loader)):
val_images = val_images.to(device)
val_labels = val_labels.to(device)
start = time.time()
# model prediction
val_pred = model(val_images)
end = time.time()
elapsed_time = (end - start) * 1000
print("Evaluation Time for arch: {} on device: {} is {} ms ".format(args['arch'], device, elapsed_time))
# Coverting val_pred from (1, 19, 512, 1024) to (1, 512, 1024)
# considering predictions with highest scores for each pixel among 19 classes
prediction = val_pred.data.max(1)[1].cpu().numpy()
ground_truth = val_labels.data.cpu().numpy()
# replace 100 to change number of images to print.
# 500 % 100 = 5. So, we will get 5 predictions and ground truths
if image_num % 10 == 0:
# Model Prediction
decoded_pred = val_data.decode_segmap(prediction[0])
decode_gt = val_data.decode_segmap(ground_truth[0])
#fig, ax = plt.subplots(ncols=3, figsize=(20, 10))
fig, ax = plt.subplots(1, 3, figsize=(20, 30))
fig.set_dpi(100)
original_image = val_images[0].data.cpu().numpy().astype("uint8")
print("original_image.shape: {} ".format(original_image.shape))
original_image = original_image.transpose(1, 2, 0)
ax[0].imshow(original_image[:, :, ::-1]) # BGR to RGB
ax[0].set_title('Original Image ')
ax[1].imshow(decode_gt[:, :, ::-1]) # BGR to RGB
ax[1].set_title('GroundTruth Image ')
ax[2].imshow(decoded_pred[:, :, ::-1]) # BGR to RGB
ax[2].set_title('Segmented Image')
filename = "output_images/output_{}".format(image_num)
if args['save']:
plt.savefig(filename, dpi=100)
plt.close(fig)
else:
plt.show()