-
Notifications
You must be signed in to change notification settings - Fork 229
/
Copy pathtest_base_metric.py
302 lines (260 loc) · 12.7 KB
/
test_base_metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
from numpy.core.numeric import array_equal
import pytest
import re
import unittest
import metric_learn
import numpy as np
from sklearn import clone
from test.test_utils import ids_metric_learners, metric_learners, remove_y
from metric_learn.sklearn_shims import set_random_state, SKLEARN_AT_LEAST_0_22
def remove_spaces(s):
return re.sub(r'\s+', '', s)
def sk_repr_kwargs(def_kwargs, nndef_kwargs):
"""Given the non-default arguments, and the default
keywords arguments, build the string that will appear
in the __repr__ of the estimator, depending on the
version of scikit-learn.
"""
if SKLEARN_AT_LEAST_0_22:
def_kwargs = {}
def_kwargs.update(nndef_kwargs)
args_str = ",".join(f"{key}={repr(value)}"
for key, value in def_kwargs.items())
return args_str
class TestStringRepr(unittest.TestCase):
def test_covariance(self):
def_kwargs = {'preprocessor': None}
nndef_kwargs = {}
merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs)
self.assertEqual(remove_spaces(str(metric_learn.Covariance())),
remove_spaces(f"Covariance({merged_kwargs})"))
def test_lmnn(self):
def_kwargs = {'convergence_tol': 0.001, 'init': 'auto', 'k': 3,
'learn_rate': 1e-07, 'max_iter': 1000, 'min_iter': 50,
'n_components': None, 'preprocessor': None,
'random_state': None, 'regularization': 0.5,
'verbose': False}
nndef_kwargs = {'convergence_tol': 0.01, 'k': 6}
merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs)
self.assertEqual(
remove_spaces(str(metric_learn.LMNN(convergence_tol=0.01, k=6))),
remove_spaces(f"LMNN({merged_kwargs})"))
def test_nca(self):
def_kwargs = {'init': 'auto', 'max_iter': 100, 'n_components': None,
'preprocessor': None, 'random_state': None, 'tol': None,
'verbose': False}
nndef_kwargs = {'max_iter': 42}
merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs)
self.assertEqual(remove_spaces(str(metric_learn.NCA(max_iter=42))),
remove_spaces(f"NCA({merged_kwargs})"))
def test_lfda(self):
def_kwargs = {'embedding_type': 'weighted', 'k': None,
'n_components': None, 'preprocessor': None}
nndef_kwargs = {'k': 2}
merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs)
self.assertEqual(remove_spaces(str(metric_learn.LFDA(k=2))),
remove_spaces(f"LFDA({merged_kwargs})"))
def test_itml(self):
def_kwargs = {'convergence_threshold': 0.001, 'gamma': 1.0,
'max_iter': 1000, 'preprocessor': None,
'prior': 'identity', 'random_state': None, 'verbose': False}
nndef_kwargs = {'gamma': 0.5}
merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs)
self.assertEqual(remove_spaces(str(metric_learn.ITML(gamma=0.5))),
remove_spaces(f"ITML({merged_kwargs})"))
def_kwargs = {'convergence_threshold': 0.001, 'gamma': 1.0,
'max_iter': 1000, 'num_constraints': None,
'preprocessor': None, 'prior': 'identity',
'random_state': None, 'verbose': False}
nndef_kwargs = {'num_constraints': 7}
merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs)
self.assertEqual(
remove_spaces(str(metric_learn.ITML_Supervised(num_constraints=7))),
remove_spaces(f"ITML_Supervised({merged_kwargs})"))
def test_lsml(self):
def_kwargs = {'max_iter': 1000, 'preprocessor': None, 'prior': 'identity',
'random_state': None, 'tol': 0.001, 'verbose': False}
nndef_kwargs = {'tol': 0.1}
merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs)
self.assertEqual(remove_spaces(str(metric_learn.LSML(tol=0.1))),
remove_spaces(f"LSML({merged_kwargs})"))
def_kwargs = {'max_iter': 1000, 'num_constraints': None,
'preprocessor': None, 'prior': 'identity',
'random_state': None, 'tol': 0.001, 'verbose': False,
'weights': None}
nndef_kwargs = {'verbose': True}
merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs)
self.assertEqual(
remove_spaces(str(metric_learn.LSML_Supervised(verbose=True))),
remove_spaces(f"LSML_Supervised({merged_kwargs})"))
def test_sdml(self):
def_kwargs = {'balance_param': 0.5, 'preprocessor': None,
'prior': 'identity', 'random_state': None,
'sparsity_param': 0.01, 'verbose': False}
nndef_kwargs = {'verbose': True}
merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs)
self.assertEqual(remove_spaces(str(metric_learn.SDML(verbose=True))),
remove_spaces(f"SDML({merged_kwargs})"))
def_kwargs = {'balance_param': 0.5, 'num_constraints': None,
'preprocessor': None, 'prior': 'identity',
'random_state': None, 'sparsity_param': 0.01,
'verbose': False}
nndef_kwargs = {'sparsity_param': 0.5}
merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs)
self.assertEqual(
remove_spaces(str(metric_learn.SDML_Supervised(sparsity_param=0.5))),
remove_spaces(f"SDML_Supervised({merged_kwargs})"))
def test_rca(self):
def_kwargs = {'n_components': None, 'preprocessor': None}
nndef_kwargs = {'n_components': 3}
merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs)
self.assertEqual(remove_spaces(str(metric_learn.RCA(n_components=3))),
remove_spaces(f"RCA({merged_kwargs})"))
def_kwargs = {'chunk_size': 2, 'n_components': None, 'num_chunks': 100,
'preprocessor': None, 'random_state': None}
nndef_kwargs = {'num_chunks': 5}
merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs)
self.assertEqual(
remove_spaces(str(metric_learn.RCA_Supervised(num_chunks=5))),
remove_spaces(f"RCA_Supervised({merged_kwargs})"))
def test_mlkr(self):
def_kwargs = {'init': 'auto', 'max_iter': 1000,
'n_components': None, 'preprocessor': None,
'random_state': None, 'tol': None, 'verbose': False}
nndef_kwargs = {'max_iter': 777}
merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs)
self.assertEqual(remove_spaces(str(metric_learn.MLKR(max_iter=777))),
remove_spaces(f"MLKR({merged_kwargs})"))
def test_mmc(self):
def_kwargs = {'convergence_threshold': 0.001, 'diagonal': False,
'diagonal_c': 1.0, 'init': 'identity', 'max_iter': 100,
'max_proj': 10000, 'preprocessor': None,
'random_state': None, 'verbose': False}
nndef_kwargs = {'diagonal': True}
merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs)
self.assertEqual(remove_spaces(str(metric_learn.MMC(diagonal=True))),
remove_spaces(f"MMC({merged_kwargs})"))
def_kwargs = {'convergence_threshold': 1e-06, 'diagonal': False,
'diagonal_c': 1.0, 'init': 'identity', 'max_iter': 100,
'max_proj': 10000, 'num_constraints': None,
'preprocessor': None, 'random_state': None,
'verbose': False}
nndef_kwargs = {'max_iter': 1}
merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs)
self.assertEqual(
remove_spaces(str(metric_learn.MMC_Supervised(max_iter=1))),
remove_spaces(f"MMC_Supervised({merged_kwargs})"))
@pytest.mark.parametrize('estimator, build_dataset', metric_learners,
ids=ids_metric_learners)
def test_get_metric_is_independent_from_metric_learner(estimator,
build_dataset):
"""Tests that the get_metric method returns a function that is independent
from the original metric learner"""
input_data, labels, _, X = build_dataset()
model = clone(estimator)
set_random_state(model)
# we fit the metric learner on it and then we compute the metric on some
# points
model.fit(*remove_y(model, input_data, labels))
metric = model.get_metric()
score = metric(X[0], X[1])
# then we refit the estimator on another dataset
model.fit(*remove_y(model, np.sin(input_data), labels))
# we recompute the distance between the two points: it should be the same
score_bis = metric(X[0], X[1])
assert score_bis == score
@pytest.mark.parametrize('estimator, build_dataset', metric_learners,
ids=ids_metric_learners)
def test_get_metric_raises_error(estimator, build_dataset):
"""Tests that the metric returned by get_metric raises errors similar to
the distance functions in scipy.spatial.distance"""
input_data, labels, _, X = build_dataset()
model = clone(estimator)
set_random_state(model)
model.fit(*remove_y(model, input_data, labels))
metric = model.get_metric()
list_test_get_metric_raises = [(X[0].tolist() + [5.2], X[1]), # vectors with
# different dimensions
(X[0:4], X[1:5]), # 2D vectors
(X[0].tolist() + [5.2], X[1] + [7.2])]
# vectors of same dimension but incompatible with what the metric learner
# was trained on
for u, v in list_test_get_metric_raises:
with pytest.raises(ValueError):
metric(u, v)
@pytest.mark.parametrize('estimator, build_dataset', metric_learners,
ids=ids_metric_learners)
def test_get_metric_works_does_not_raise(estimator, build_dataset):
"""Tests that the metric returned by get_metric does not raise errors (or
warnings) similarly to the distance functions in scipy.spatial.distance"""
input_data, labels, _, X = build_dataset()
model = clone(estimator)
set_random_state(model)
model.fit(*remove_y(model, input_data, labels))
metric = model.get_metric()
list_test_get_metric_doesnt_raise = [(X[0], X[1]),
(X[0].tolist(), X[1].tolist()),
(X[0][None], X[1][None])]
for u, v in list_test_get_metric_doesnt_raise:
with pytest.warns(None) as record:
metric(u, v)
assert len(record) == 0
# Test that the scalar case works
model.components_ = np.array([3.1])
metric = model.get_metric()
for u, v in [(5, 6.7), ([5], [6.7]), ([[5]], [[6.7]])]:
with pytest.warns(None) as record:
metric(u, v)
assert len(record) == 0
@pytest.mark.parametrize('estimator, build_dataset', metric_learners,
ids=ids_metric_learners)
def test_n_components(estimator, build_dataset):
"""Check that estimators that have a n_components parameters can use it
and that it actually works as expected"""
input_data, labels, _, X = build_dataset()
model = clone(estimator)
if hasattr(model, 'n_components'):
set_random_state(model)
model.set_params(n_components=None)
model.fit(*remove_y(model, input_data, labels))
assert model.components_.shape == (X.shape[1], X.shape[1])
model = clone(estimator)
set_random_state(model)
model.set_params(n_components=X.shape[1] - 1)
model.fit(*remove_y(model, input_data, labels))
assert model.components_.shape == (X.shape[1] - 1, X.shape[1])
model = clone(estimator)
set_random_state(model)
model.set_params(n_components=X.shape[1] + 1)
with pytest.raises(ValueError) as expected_err:
model.fit(*remove_y(model, input_data, labels))
assert (str(expected_err.value) ==
'Invalid n_components, must be in [1, {}]'.format(X.shape[1]))
model = clone(estimator)
set_random_state(model)
model.set_params(n_components=0)
with pytest.raises(ValueError) as expected_err:
model.fit(*remove_y(model, input_data, labels))
assert (str(expected_err.value) ==
'Invalid n_components, must be in [1, {}]'.format(X.shape[1]))
@pytest.mark.parametrize('estimator, build_dataset', metric_learners,
ids=ids_metric_learners)
def test_score_pairs_warning(estimator, build_dataset):
"""Tests that score_pairs returns a FutureWarning regarding deprecation.
Also that score_pairs and pair_distance have the same behaviour"""
input_data, labels, _, X = build_dataset()
model = clone(estimator)
set_random_state(model)
# We fit the metric learner on it and then we call score_pairs on some
# points
model.fit(*remove_y(model, input_data, labels))
msg = ("score_pairs will be deprecated in release 0.7.0. "
"Use pair_score to compute similarity scores, or "
"pair_distances to compute distances.")
with pytest.warns(FutureWarning) as raised_warning:
score = model.score_pairs([[X[0], X[1]], ])
dist = model.pair_distance([[X[0], X[1]], ])
assert array_equal(score, dist)
assert np.any([str(warning.message) == msg for warning in raised_warning])
if __name__ == '__main__':
unittest.main()