-
-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathbench_logistic.py
44 lines (33 loc) · 1 KB
/
bench_logistic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
"""Logistic regression benchmarks
TODO: Shogun, anybody else ?
"""
import numpy as np
from datetime import datetime
def bench_skl(X, y, T, valid):
#
# .. scikits.learn ..
#
from scikits.learn import linear_model
start = datetime.now()
clf = linear_model.LogisticRegression()
clf.fit(X, y)
score = np.mean(clf.predict(T) == valid)
return score, datetime.now() - start
if __name__ == '__main__':
import sys, misc
# don't bother me with warnings
import warnings; warnings.simplefilter('ignore')
np.seterr(all='ignore')
print __doc__ + '\n'
if not len(sys.argv) == 2:
print misc.USAGE % __file__
sys.exit(-1)
else:
dataset = sys.argv[1]
print 'Loading data ...'
data = misc.load_data(dataset)
print 'Done, %s samples with %s features loaded into ' \
'memory\n' % data[0].shape
score, res = misc.bench(bench_skl, data)
misc.print_result("logistic", dataset, "scikits.learn", score, res)
misc.save_results()