-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlearning_rates.py
164 lines (130 loc) · 5.78 KB
/
learning_rates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Learning rate decay functions."""
import math
from megatron import print_rank_0
class AnnealingLR(object):
"""Anneals the learning rate."""
def __init__(self, optimizer, max_lr, min_lr,
warmup_steps, decay_steps, decay_style,
use_checkpoint_lr_scheduler=True,
override_lr_scheduler=False):
# Class values.
self.optimizer = optimizer
self.max_lr = float(max_lr)
self.min_lr = min_lr
assert self.min_lr >= 0.0
assert self.max_lr >= self.min_lr
self.warmup_steps = warmup_steps
self.num_steps = 0
self.decay_steps = decay_steps
assert self.decay_steps > 0
assert self.warmup_steps < self.decay_steps
self.decay_style = decay_style
self.override_lr_scheduler = override_lr_scheduler
self.use_checkpoint_lr_scheduler = use_checkpoint_lr_scheduler
if self.override_lr_scheduler:
assert not self.use_checkpoint_lr_scheduler, 'both override and '\
'use-checkpoint are set.'
# Set the learning rate
self.step(0)
print_rank_0('> learning rate decay style: {}'.format(self.decay_style))
def get_lr(self):
"""Learning rate decay functions from:
https://openreview.net/pdf?id=BJYwwY9ll pg. 4"""
# Use linear warmup for the initial part.
if self.warmup_steps > 0 and self.num_steps <= self.warmup_steps:
return self.max_lr * float(self.num_steps) / \
float(self.warmup_steps)
# If the learning rate is constant, just return the initial value.
if self.decay_style == 'constant':
return self.max_lr
# For any steps larger than `self.decay_steps`, use `self.min_lr`.
if self.num_steps > self.decay_steps:
return self.min_lr
# If we are done with the warmup period, use the decay style.
num_steps_ = self.num_steps - self.warmup_steps
decay_steps_ = self.decay_steps - self.warmup_steps
decay_ratio = float(num_steps_) / float(decay_steps_)
assert decay_ratio >= 0.0
assert decay_ratio <= 1.0
delta_lr = self.max_lr - self.min_lr
if self.decay_style == 'linear':
coeff = (1.0 - decay_ratio)
elif self.decay_style == 'cosine':
coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0)
else:
raise Exception('{} decay style is not supported.'.format(
self.decay_style))
return self.min_lr + coeff * delta_lr
def step(self, increment):
"""Set lr for all parameters groups."""
self.num_steps += increment
new_lr = self.get_lr()
for group in self.optimizer.param_groups:
group['lr'] = new_lr
def state_dict(self):
state_dict = {
'max_lr': self.max_lr,
'warmup_steps': self.warmup_steps,
'num_steps': self.num_steps,
'decay_style': self.decay_style,
'decay_steps': self.decay_steps,
'min_lr': self.min_lr
}
return state_dict
def _check_and_set(self, cls_value, sd_value, name):
"""Auxiliary function for checking the values in the checkpoint and
setting them."""
if self.override_lr_scheduler:
print_rank_0(' > overriding {} value to {}'.format(name, cls_value))
return cls_value
if not self.use_checkpoint_lr_scheduler:
assert cls_value == sd_value, \
f'AnnealingLR: class input value {cls_value} and checkpoint' \
f'value {sd_value} for {name} do not match'
print_rank_0(' > using checkpoint value {} for {}'.format(sd_value,
name))
return sd_value
def load_state_dict(self, sd):
if 'start_lr' in sd:
max_lr_ = sd['start_lr']
else:
max_lr_ = sd['max_lr']
self.max_lr = self._check_and_set(self.max_lr, max_lr_,
'learning rate')
self.min_lr = self._check_and_set(self.min_lr, sd['min_lr'],
'minimum learning rate')
if 'warmup_iter' in sd:
warmup_steps_ = sd['warmup_iter']
else:
warmup_steps_ = sd['warmup_steps']
self.warmup_steps = self._check_and_set(self.warmup_steps,
warmup_steps_,
'warmup iterations')
if 'end_iter' in sd:
decay_steps_ = sd['end_iter']
else:
decay_steps_ = sd['decay_steps']
self.decay_steps = self._check_and_set(self.decay_steps, decay_steps_,
'total number of iterations')
self.decay_style = self._check_and_set(self.decay_style,
sd['decay_style'],
'decay style')
if 'num_iters' in sd:
num_steps = sd['num_iters']
else:
num_steps = sd['num_steps']
self.step(increment=num_steps)