-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathworld.py
778 lines (671 loc) · 27.5 KB
/
world.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
import logging
import sys
from abc import ABCMeta, abstractmethod
import numpy as np
from ale_python_interface import ALEInterface
from actions import get_action_diffs, action_number_to_name, \
get_action_number_diffs, get_valid_action_numbers, get_inverse_action, ACTION_NUM_DIFFS, ACTION_NUM_DIFFS_WITH_NOOP
from tuple_utils import list_to_tuple, list_to_tuple_with_value
NUM_ROWS = 6
NUM_COLS = 6
QBERT_Y, QBERT_X = 28, 77
SCORE_Y, SCORE_X = 10, 70
BLOCK_COORDINATES = [
[(38, 77)],
[(66, 65), (66, 93)],
[(95, 53), (95, 77), (95, 105)],
[(124, 42), (124, 65), (124, 93), (124, 118)],
[(153, 30), (153, 53), (153, 77), (153, 105), (153, 130)],
[(182, 18), (182, 42), (182, 65), (182, 93), (182, 118), (182, 142)],
] # (y, x) coordinates of blocks in RGB numpy array
INITIAL_COLORS = [
[0],
[0, 0],
[0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
] # Indicates if the desired colors are obtained at a block position (0 for non-goal color, 1 for goal color)
INITIAL_ENEMY_POSITIONS = [
[0],
[0, 0],
[0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
] # Indicates if an enemy (purple) is present at a block position
INITIAL_FRIENDLY_POSITIONS = [
[0],
[0, 0],
[0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
] # Indicates if a friendly agent (green) is present at a block position
INITIAL_DISCS = [
[0, 0],
[0, 0],
[0, 0],
[0, 0],
[0, 0],
[0, 0]
] # Indicates if there is a disc at the left or right at each row
LEFT_EDGE_BLOCKS = [(1, 0), (2, 0), (3, 0), (4, 0)]
RIGHT_EDGE_BLOCKS = [(1, 1), (2, 2), (3, 3), (4, 4)]
BOTTOM_BLOCKS = [(5, 1), (5, 2), (5, 3), (5, 4)]
COLOR_YELLOW = 210, 210, 64
COLOR_BLACK = 0, 0, 0
COLOR_QBERT = 181, 83, 40
COLOR_GREEN = 50, 132, 50
COLOR_PURPLE = 146, 70, 192
AGENT_BLOCK_OFFSET = -5
AGENT_BLOCK_OFFSET_RANGE = 30
DISC_OFFSET_Y = 14
DISC_OFFSET_X = 14
NO_OP = 0
SAM_SCORE = 300
GREEN_BALL_OR_LEVEL_UP_SCORE = 100
KILL_COILY_SCORE = 500
LOSE_LIFE_PENALTY = -100
LEVEL_BYTE = 99
FLASH_CHECK_Y, FLASH_CHECK_X = 40, 140
class World:
__metaclass__ = ABCMeta
@abstractmethod
def perform_action(self, a):
"""
Perform the given action number a.
"""
raise NotImplementedError
class QbertWorld(World):
def __init__(self, random_seed, frame_skip, repeat_action_probability, sound, display_screen,
block_state_repr=None, enemy_state_repr=None, friendly_state_repr=None):
ale = ALEInterface()
# Get & Set the desired settings
if random_seed is not None:
ale.setInt('random_seed', random_seed)
ale.setInt('frame_skip', frame_skip)
ale.setFloat('repeat_action_probability', repeat_action_probability)
if display_screen:
if sys.platform == 'darwin':
import pygame
pygame.init()
ale.setBool('sound', sound)
ale.setBool('display_screen', display_screen)
# Load the ROM file
ale.loadROM('qbert.bin')
# Get the list of legal actions
legal_actions = ale.getLegalActionSet()
minimal_actions = ale.getMinimalActionSet()
logging.debug('Legal actions: {}'.format([action_number_to_name(a) for a in legal_actions]))
logging.debug('Minimal actions: {}'.format([action_number_to_name(a) for a in minimal_actions]))
width, height = ale.getScreenDims()
rgb_screen = np.empty([height, width, 3], dtype=np.uint8)
ram_size = ale.getRAMSize()
ram = np.zeros(ram_size, dtype=np.uint8)
# ALE components
self.ale = ale
self.lives = ale.lives()
self.rgb_screen = rgb_screen
self.ram_size = ale.getRAMSize()
self.ram = ram
# Verbose state representation
self.desired_color = COLOR_YELLOW
self.block_colors = INITIAL_COLORS
self.enemies = INITIAL_ENEMY_POSITIONS
self.friendlies = INITIAL_FRIENDLY_POSITIONS
self.discs = INITIAL_DISCS
self.current_row, self.current_col = 0, 0
self.level = 1
self.enemy_present = False
self.friendly_present = False
self.block_state_repr = block_state_repr
self.enemy_state_repr = enemy_state_repr
self.friendly_state_repr = friendly_state_repr
self.num_colored_blocks = 0
def perform_action(self, a):
score = 0
friendly_score = 0
enemy_score = 0
enemy_penalty = 0
score += self.ale.act(a)
initial_num_lives = self.ale.lives()
self.ale.getRAM(self.ram)
level_up_score = 0
while not (self.ram[0] == 0 and self.ram[self.ram_size - 1] & 1): # last bit = 1 and first byte = 0
if self.ale.lives() < initial_num_lives:
enemy_penalty = LOSE_LIFE_PENALTY
if self.ale.lives() == 0:
break
score_diff = self.ale.act(NO_OP)
if score_diff == SAM_SCORE:
friendly_score = score_diff
elif score_diff == KILL_COILY_SCORE:
logging.info('Killed Coily!')
enemy_score = score_diff
elif score_diff == GREEN_BALL_OR_LEVEL_UP_SCORE:
while score_diff == GREEN_BALL_OR_LEVEL_UP_SCORE:
level_up_score += score_diff
score_diff = self.ale.act(NO_OP)
else:
score += score_diff
self.ale.getRAM(self.ram)
if level_up_score != 0:
if level_up_score == GREEN_BALL_OR_LEVEL_UP_SCORE:
# Green Ball
friendly_score = level_up_score
else:
# Level Up
score += level_up_score
if self.ram[LEVEL_BYTE] + 1 != self.level:
logging.debug('Current level: {}'.format(self.level))
self.level = self.ram[LEVEL_BYTE] + 1
logging.info('Level won! Progressing to level {}'.format(self.level))
# score += self.reset_position()
self.update_rgb()
return score, friendly_score, enemy_score, enemy_penalty
def to_state_combined_verbose(self):
current_position = self.current_row, self.current_col
colors = list_to_tuple(self.block_colors)
enemies = list_to_tuple(self.enemies)
friendlies = list_to_tuple(self.friendlies)
discs = list_to_tuple(self.discs)
return current_position, colors, enemies, friendlies, discs
def to_state_blocks(self):
if self.block_state_repr is 'simple':
return self.to_state_blocks_simple()
elif self.block_state_repr is 'adjacent':
return self.to_state_blocks_adjacent()
elif self.block_state_repr is 'adjacent_one_block_left':
return self.to_state_blocks_adjacent_one_block_left()
elif self.block_state_repr is 'along_direction':
return self.to_state_blocks_along_direction()
elif self.block_state_repr is 'verbose':
return self.to_state_blocks_verbose()
def to_state_enemies(self):
if self.enemy_state_repr is 'simple':
return self.to_state_enemies_simple()
elif self.enemy_state_repr is 'adjacent':
return self.to_state_enemies_adjacent()
elif self.enemy_state_repr is 'adjacent_conservative':
return self.to_state_enemies_adjacent_conservative()
elif self.enemy_state_repr is 'adjacent_conservative_with_position':
return self.to_state_enemies_adjacent_conservative_with_position()
elif self.enemy_state_repr is 'adjacent_dangerous':
return self.to_state_enemies_adjacent_dangerous()
elif self.enemy_state_repr is 'verbose':
return self.to_state_enemies_verbose()
def to_state_friendlies(self):
if self.friendly_state_repr is 'simple':
return self.to_state_friendlies_simple()
elif self.friendly_state_repr is 'verbose':
return self.to_state_friendlies_verbose()
def to_state_blocks_simple(self):
"""
Simple state representation for blocks around Qbert.
None: unattainable
0: uncolored block
1: colored block
"""
row, col = self.current_row, self.current_col
top_left = None
top_right = None
bot_left = None
bot_right = None
if col != 0:
top_left = self.block_colors[row - 1][col - 1]
if col != row:
top_right = self.block_colors[row - 1][col]
if row != NUM_ROWS - 1:
bot_left = self.block_colors[row + 1][col]
bot_right = self.block_colors[row + 1][col + 1]
return top_left, top_right, bot_left, bot_right
def to_state_blocks_adjacent(self):
"""
Simple state representation for blocks around Qbert.
None: unattainable
x: number of adjacent uncolored blocks, including current block (0, 1, 2, 3 or 4)
"""
row, col = self.current_row, self.current_col
top_left = None
top_right = None
bot_left = None
bot_right = None
if col != 0:
top_left = self.num_adjacent_uncolored_blocks(row - 1, col - 1)
if col != row:
top_right = self.num_adjacent_uncolored_blocks(row - 1, col)
if row != NUM_ROWS - 1:
bot_left = self.num_adjacent_uncolored_blocks(row + 1, col)
bot_right = self.num_adjacent_uncolored_blocks(row + 1, col + 1)
return top_left, top_right, bot_left, bot_right
def to_state_blocks_along_direction(self):
"""
Simple state representation for blocks around Qbert.
None: unattainable
x: number of colored blocks along each action direction (0, 1, 2, 3, 4 or 5)
"""
row = self.current_row
col = self.current_col
top_left = None
top_right = None
bot_left = None
bot_right = None
if col != 0:
top_left = self.num_blocks_along_direction(-1, -1)
if col != row:
top_right = self.num_blocks_along_direction(-1, 0)
if row != NUM_ROWS - 1:
bot_left = self.num_blocks_along_direction(1, 0)
bot_right = self.num_blocks_along_direction(1, 1)
return top_left, top_right, bot_left, bot_right
def num_blocks_along_direction(self, row_diff, col_diff):
r = self.current_row + row_diff
c = self.current_col + col_diff
num_colored = 0
while 0 <= r < NUM_ROWS and 0 <= c <= r:
if self.block_colors[r][c] == 1:
num_colored += 1
r += row_diff
c += col_diff
return num_colored
def to_state_blocks_adjacent_one_block_left(self):
"""
Simple state representation for blocks around Qbert.
None: unattainable
x: number of adjacent uncolored blocks, including current block (0, 1, 2, 3 or 4)
final boolean: True if one uncolored block remaining
"""
row, col = self.current_row, self.current_col
top_left = None
top_right = None
bot_left = None
bot_right = None
if col != 0:
top_left = self.num_adjacent_uncolored_blocks(row - 1, col - 1)
if col != row:
top_right = self.num_adjacent_uncolored_blocks(row - 1, col)
if row != NUM_ROWS - 1:
bot_left = self.num_adjacent_uncolored_blocks(row + 1, col)
bot_right = self.num_adjacent_uncolored_blocks(row + 1, col + 1)
one_block_remaining = self.is_one_block_remaining()
return top_left, top_right, bot_left, bot_right, one_block_remaining
def is_one_block_remaining(self):
return self.num_colored_blocks == 20
def num_adjacent_uncolored_blocks(self, row, col):
num_adjacent = 0
for diff_row, diff_col in ACTION_NUM_DIFFS_WITH_NOOP.values():
r = row + diff_row
c = col + diff_col
if 0 <= r < NUM_ROWS and 0 <= c <= r and self.block_colors[r][c] == 0:
num_adjacent += 1
return num_adjacent
def to_state_blocks_adjacent_old(self):
"""
Simple state representation for blocks around Qbert.
None: unattainable
0: uncolored block
1: colored block
2: adjacent uncolored block
"""
row, col = self.current_row, self.current_col
top_left = None
top_right = None
bot_left = None
bot_right = None
if col != 0:
top_left = self.adjacent_block_value(row - 1, col - 1)
if col != row:
top_right = self.adjacent_block_value(row - 1, col)
if row != NUM_ROWS - 1:
bot_left = self.adjacent_block_value(row + 1, col)
bot_right = self.adjacent_block_value(row + 1, col + 1)
return top_left, top_right, bot_left, bot_right
def adjacent_block_value(self, row, col):
if self.block_colors[row][col] == 0:
return 0
else:
if self.is_adjacent_uncolored_block(row, col):
return 2
else:
return 1
def is_adjacent_uncolored_block(self, row, col):
for diff_row, diff_col in ACTION_NUM_DIFFS.values():
r = row + diff_row
c = col + diff_col
if 0 <= r < NUM_ROWS and 0 <= c <= r and self.block_colors[r][c] == 0:
return True
return False
def to_state_blocks_verbose(self):
current_position = self.current_row, self.current_col
logging.debug('Current position: {}'.format(current_position))
colors = list_to_tuple(self.block_colors)
return current_position, colors
def to_state_enemies_simple(self):
"""
Simple state representation for enemies around Qbert.
None: unattainable
0: block/disc
1: enemy
"""
row, col = self.current_row, self.current_col
top_left = None
top_right = None
bot_left = None
bot_right = None
if col != 0 and self.enemies[row - 1][col - 1] == 0 or col == 0 and self.discs[row][0] == 1:
top_left = 0
elif col != 0 and self.enemies[row - 1][col - 1] == 1:
top_left = 1
if col != row and self.enemies[row - 1][col] == 0 or col == row and self.discs[row][1] == 1:
top_right = 0
elif col != row and self.enemies[row - 1][col] == 1:
top_right = 1
if row != NUM_ROWS - 1:
if self.enemies[row + 1][col] == 0:
bot_left = 0
else:
bot_left = 1
if self.enemies[row + 1][col + 1] == 0:
bot_right = 0
else:
bot_right = 1
return top_left, top_right, bot_left, bot_right
def to_state_enemies_adjacent_dangerous(self):
"""
Adjacent state representation for enemies around Qbert.
None: unattainable
0: block
1: disc
2: enemy adjacent
3: enemy
"""
row, col = self.current_row, self.current_col
top_left = None
top_right = None
bot_left = None
bot_right = None
if col != 0 and self.enemies[row - 1][col - 1] == 1:
top_left = 3
elif self.is_enemy_adjacent(row - 1, col - 1):
top_left = 2
elif col != 0 and self.enemies[row - 1][col - 1] == 0:
top_left = 0
elif col == 0 and self.discs[row][0] == 1:
top_left = 1
if col != row and self.enemies[row - 1][col - 1] == 1:
top_right = 3
elif self.is_enemy_adjacent(row - 1, col):
top_right = 2
elif col != row and self.enemies[row - 1][col] == 0:
top_right = 0
elif col == row and self.discs[row][1] == 1:
top_right = 1
if row != NUM_ROWS - 1:
if self.enemies[row + 1][col] == 1:
bot_left = 3
elif self.is_enemy_adjacent(row + 1, col):
bot_left = 2
elif self.enemies[row + 1][col] == 0:
bot_left = 0
if self.enemies[row + 1][col + 1] == 1:
bot_right = 3
elif self.is_enemy_adjacent(row + 1, col + 1):
bot_right = 2
elif self.enemies[row + 1][col + 1] == 0:
bot_right = 0
return top_left, top_right, bot_left, bot_right
def to_state_enemies_adjacent(self):
"""
Adjacent state representation for enemies around Qbert.
None: unattainable/enemy
0: block
1: disc
2: enemy adjacent
"""
row, col = self.current_row, self.current_col
top_left = None
top_right = None
bot_left = None
bot_right = None
if self.is_enemy_adjacent(row - 1, col - 1):
top_left = 2
elif col != 0 and self.enemies[row - 1][col - 1] == 0:
top_left = 0
elif col == 0 and self.discs[row][0] == 1:
top_left = 1
if self.is_enemy_adjacent(row - 1, col):
top_right = 2
elif col != row and self.enemies[row - 1][col] == 0:
top_right = 0
elif col == row and self.discs[row][1] == 1:
top_right = 1
if row != NUM_ROWS - 1:
if self.is_enemy_adjacent(row + 1, col):
bot_left = 2
elif self.enemies[row + 1][col] == 0:
bot_left = 0
if self.is_enemy_adjacent(row + 1, col + 1):
bot_right = 2
elif self.enemies[row + 1][col + 1] == 0:
bot_right = 0
return top_left, top_right, bot_left, bot_right
def to_state_enemies_adjacent_conservative(self):
"""
Adjacent state representation for enemies around Qbert.
None: unattainable/enemy/enemy adjacent
0: block
1: disc
"""
row, col = self.current_row, self.current_col
top_left = None
top_right = None
bot_left = None
bot_right = None
if self.is_enemy_adjacent(row - 1, col - 1):
top_left = None
elif col != 0 and self.enemies[row - 1][col - 1] == 0:
top_left = 0
elif col == 0 and self.discs[row][0] == 1:
top_left = 1
if self.is_enemy_adjacent(row - 1, col):
top_right = None
elif col != row and self.enemies[row - 1][col] == 0:
top_right = 0
elif col == row and self.discs[row][1] == 1:
top_right = 1
if row != NUM_ROWS - 1:
if self.is_enemy_adjacent(row + 1, col):
bot_left = None
elif self.enemies[row + 1][col] == 0:
bot_left = 0
if self.is_enemy_adjacent(row + 1, col + 1):
bot_right = None
elif self.enemies[row + 1][col + 1] == 0:
bot_right = 0
return top_left, top_right, bot_left, bot_right
def to_state_enemies_adjacent_conservative_with_position(self):
"""
Adjacent state representation for enemies around Qbert.
(top_left, top_right, bot_left, bot_right, row, col)
For top_left, top_right, bot_left, bot_right:
None: unattainable/enemy/enemy adjacent
0: block
1: disc
row and col:
Represent Qbert's position on the board
"""
row, col = self.current_row, self.current_col
top_left = None
top_right = None
bot_left = None
bot_right = None
if self.is_enemy_adjacent(row - 1, col - 1):
top_left = None
elif col != 0 and self.enemies[row - 1][col - 1] == 0:
top_left = 0
elif col == 0 and self.discs[row][0] == 1:
top_left = 1
if self.is_enemy_adjacent(row - 1, col):
top_right = None
elif col != row and self.enemies[row - 1][col] == 0:
top_right = 0
elif col == row and self.discs[row][1] == 1:
top_right = 1
if row != NUM_ROWS - 1:
if self.is_enemy_adjacent(row + 1, col):
bot_left = None
elif self.enemies[row + 1][col] == 0:
bot_left = 0
if self.is_enemy_adjacent(row + 1, col + 1):
bot_right = None
elif self.enemies[row + 1][col + 1] == 0:
bot_right = 0
return top_left, top_right, bot_left, bot_right, self.current_row, self.current_col
def is_enemy_adjacent(self, row, col):
if 0 <= row < NUM_ROWS and 0 <= col <= row and self.enemies[row][col] != 1:
for diff_row, diff_col in ACTION_NUM_DIFFS.values():
r = row + diff_row
c = col + diff_col
if 0 <= r < NUM_ROWS and 0 <= c <= r and self.enemies[r][c] == 1:
return True
return False
def is_friendly_adjacent(self, row, col):
if 0 <= row < NUM_ROWS and 0 <= col <= row and self.friendlies[row][col] != 1:
for diff_row, diff_col in ACTION_NUM_DIFFS.values():
r = row + diff_row
c = col + diff_col
if 0 <= r < NUM_ROWS and 0 <= c <= r and self.friendlies[r][c] == 1:
return True
return False
def is_enemy_nearby(self):
r, c = self.current_row, self.current_col
return self.is_enemy_adjacent(r, c) or self.is_enemy_adjacent(r - 1, c - 1) or self.is_enemy_adjacent(r-1, c) \
or self.is_enemy_adjacent(r + 1, c) or self.is_enemy_adjacent(r + 1, c + 1)
def is_friendly_nearby(self):
r, c = self.current_row, self.current_col
return self.is_friendly_adjacent(r, c) or self.is_friendly_adjacent(r - 1, c - 1) \
or self.is_friendly_adjacent(r-1, c) or self.is_friendly_adjacent(r + 1, c) \
or self.is_friendly_adjacent(r + 1, c + 1)
def to_state_enemies_verbose(self):
current_position = self.current_row, self.current_col
enemies = list_to_tuple(self.enemies)
return current_position, enemies
def to_state_friendlies_simple(self):
"""
Simple state representation for green agents around Qbert.
None: unattainable
0: no green
1: green
"""
row, col = self.current_row, self.current_col
top_left = None
top_right = None
bot_left = None
bot_right = None
if col != 0:
top_left = self.friendlies[row - 1][col - 1]
if col != row:
top_right = self.friendlies[row - 1][col]
if row != NUM_ROWS - 1:
bot_left = self.friendlies[row + 1][col]
bot_right = self.friendlies[row + 1][col + 1]
return top_left, top_right, bot_left, bot_right
def to_state_friendlies_verbose(self):
current_position = self.current_row, self.current_col
friendlies = list_to_tuple(self.friendlies)
return current_position, friendlies
def result_position(self, action):
diff_row, diff_col = get_action_diffs(action)
return self.current_row + diff_row, self.current_col + diff_col
def update_rgb(self):
self.ale.getScreenRGB(self.rgb_screen)
# Score
score_color = self.rgb_screen[SCORE_Y][SCORE_X]
if self.screen_not_flashing() \
and not np.array_equal(score_color, COLOR_BLACK) \
and not np.array_equal(score_color, self.desired_color):
logging.debug('Identified {} as new desired color'.format(score_color))
self.desired_color = score_color
self.enemy_present = False
self.friendly_present = False
self.num_colored_blocks = 0
for row in range(NUM_ROWS):
for col in range(row + 1):
rgb_y, rgb_x = BLOCK_COORDINATES[row][col]
# Color of block
if np.array_equal(self.rgb_screen[rgb_y][rgb_x], self.desired_color):
self.num_colored_blocks += 1
self.block_colors[row][col] = 1
else:
self.block_colors[row][col] = 0
self.enemies[row][col] = 0
self.friendlies[row][col] = 0
# Agents
for y_offset in range(AGENT_BLOCK_OFFSET_RANGE):
agent_offset = AGENT_BLOCK_OFFSET - y_offset
# Enemy (purple)
if np.array_equal(self.rgb_screen[rgb_y + agent_offset][rgb_x], COLOR_PURPLE):
self.enemies[row][col] = 1
self.enemy_present = True
# Friendly (green)
if np.array_equal(self.rgb_screen[rgb_y + agent_offset][rgb_x], COLOR_GREEN):
self.friendlies[row][col] = 1
self.friendly_present = True
# Qbert (orange)
if np.array_equal(self.rgb_screen[rgb_y + agent_offset][rgb_x], COLOR_QBERT):
self.current_row, self.current_col = row, col
# Discs (relative to edge blocks)
if self.screen_not_flashing():
if col == 0:
if np.array_equal(self.rgb_screen[rgb_y - DISC_OFFSET_Y][rgb_x - DISC_OFFSET_X], COLOR_BLACK):
self.discs[row][0] = 0
else:
self.discs[row][0] = 1
if col == row:
if np.array_equal(self.rgb_screen[rgb_y - DISC_OFFSET_Y][rgb_x + DISC_OFFSET_X], COLOR_BLACK):
self.discs[row][1] = 0
else:
self.discs[row][1] = 1
logging.debug('Discs: {}'.format(self.discs))
def screen_not_flashing(self):
"""
Indicates the screen is flashing after a powerup.
"""
return np.array_equal(self.rgb_screen[FLASH_CHECK_Y][FLASH_CHECK_X], COLOR_BLACK)
def reset_position(self):
reward = 0
while not (self.ram[0] == 0 and self.ram[self.ram_size - 1] & 1): # last bit = 1 and first byte = 0
reward += self.ale.act(NO_OP)
self.ale.getRAM(self.ram)
self.update_rgb()
return reward
def reset(self):
self.ale.getRAM(self.ram)
self.level = self.ram[LEVEL_BYTE] + 1
return self.reset_position()
def get_next_state_verbose(self, a):
diff_row, diff_col = get_action_number_diffs(a)
new_position = self.current_row + diff_row, self.current_col + diff_col
new_colors = list_to_tuple_with_value(self.block_colors, new_position[0], new_position[1], 1)
enemies = list_to_tuple(self.enemies)
friendlies = list_to_tuple(self.friendlies)
discs = list_to_tuple(self.discs)
return new_position, new_colors, enemies, friendlies, discs
def get_close_states_actions(self, initial_action, distance_metric='simple'):
states = []
actions = []
if distance_metric is 'manhattan':
for a in get_valid_action_numbers(self.current_row, self.current_col):
states.append(self.get_next_state_verbose(a))
actions.append(initial_action)
elif distance_metric is 'hamming':
for a in get_valid_action_numbers(self.current_row, self.current_col):
states.append(self.get_next_state_verbose(a))
actions.append(get_inverse_action(a))
elif distance_metric is 'same_result':
for a in get_valid_action_numbers(self.current_row, self.current_col):
s = self.get_next_state_verbose(a)
states.append(s)
actions.append(get_inverse_action(a))
return states, actions