forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnanops.py
1746 lines (1463 loc) · 49.4 KB
/
nanops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import annotations
import functools
import itertools
import operator
from typing import (
Any,
Callable,
cast,
)
import warnings
import numpy as np
from pandas._config import get_option
from pandas._libs import (
NaT,
NaTType,
iNaT,
lib,
)
from pandas._typing import (
ArrayLike,
Dtype,
DtypeObj,
F,
Scalar,
Shape,
npt,
)
from pandas.compat._optional import import_optional_dependency
from pandas.core.dtypes.common import (
is_any_int_dtype,
is_bool_dtype,
is_complex,
is_datetime64_any_dtype,
is_float,
is_float_dtype,
is_integer,
is_integer_dtype,
is_numeric_dtype,
is_object_dtype,
is_scalar,
is_timedelta64_dtype,
needs_i8_conversion,
pandas_dtype,
)
from pandas.core.dtypes.dtypes import PeriodDtype
from pandas.core.dtypes.missing import (
isna,
na_value_for_dtype,
notna,
)
from pandas.core.construction import extract_array
bn = import_optional_dependency("bottleneck", errors="warn")
_BOTTLENECK_INSTALLED = bn is not None
_USE_BOTTLENECK = False
def set_use_bottleneck(v: bool = True) -> None:
# set/unset to use bottleneck
global _USE_BOTTLENECK
if _BOTTLENECK_INSTALLED:
_USE_BOTTLENECK = v
set_use_bottleneck(get_option("compute.use_bottleneck"))
class disallow:
def __init__(self, *dtypes: Dtype) -> None:
super().__init__()
self.dtypes = tuple(pandas_dtype(dtype).type for dtype in dtypes)
def check(self, obj) -> bool:
return hasattr(obj, "dtype") and issubclass(obj.dtype.type, self.dtypes)
def __call__(self, f: F) -> F:
@functools.wraps(f)
def _f(*args, **kwargs):
obj_iter = itertools.chain(args, kwargs.values())
if any(self.check(obj) for obj in obj_iter):
f_name = f.__name__.replace("nan", "")
raise TypeError(
f"reduction operation '{f_name}' not allowed for this dtype"
)
try:
with np.errstate(invalid="ignore"):
return f(*args, **kwargs)
except ValueError as e:
# we want to transform an object array
# ValueError message to the more typical TypeError
# e.g. this is normally a disallowed function on
# object arrays that contain strings
if is_object_dtype(args[0]):
raise TypeError(e) from e
raise
return cast(F, _f)
class bottleneck_switch:
def __init__(self, name=None, **kwargs) -> None:
self.name = name
self.kwargs = kwargs
def __call__(self, alt: F) -> F:
bn_name = self.name or alt.__name__
try:
bn_func = getattr(bn, bn_name)
except (AttributeError, NameError): # pragma: no cover
bn_func = None
@functools.wraps(alt)
def f(
values: np.ndarray,
*,
axis: int | None = None,
skipna: bool = True,
**kwds,
):
if len(self.kwargs) > 0:
for k, v in self.kwargs.items():
if k not in kwds:
kwds[k] = v
if values.size == 0 and kwds.get("min_count") is None:
# We are empty, returning NA for our type
# Only applies for the default `min_count` of None
# since that affects how empty arrays are handled.
# TODO(GH-18976) update all the nanops methods to
# correctly handle empty inputs and remove this check.
# It *may* just be `var`
return _na_for_min_count(values, axis)
if _USE_BOTTLENECK and skipna and _bn_ok_dtype(values.dtype, bn_name):
if kwds.get("mask", None) is None:
# `mask` is not recognised by bottleneck, would raise
# TypeError if called
kwds.pop("mask", None)
result = bn_func(values, axis=axis, **kwds)
# prefer to treat inf/-inf as NA, but must compute the func
# twice :(
if _has_infs(result):
result = alt(values, axis=axis, skipna=skipna, **kwds)
else:
result = alt(values, axis=axis, skipna=skipna, **kwds)
else:
result = alt(values, axis=axis, skipna=skipna, **kwds)
return result
return cast(F, f)
def _bn_ok_dtype(dtype: DtypeObj, name: str) -> bool:
# Bottleneck chokes on datetime64, PeriodDtype (or and EA)
if not is_object_dtype(dtype) and not needs_i8_conversion(dtype):
# GH 42878
# Bottleneck uses naive summation leading to O(n) loss of precision
# unlike numpy which implements pairwise summation, which has O(log(n)) loss
# GH 15507
# bottleneck does not properly upcast during the sum
# so can overflow
# GH 9422
# further we also want to preserve NaN when all elements
# are NaN, unlike bottleneck/numpy which consider this
# to be 0
return name not in ["nansum", "nanprod", "nanmean"]
return False
def _has_infs(result) -> bool:
if isinstance(result, np.ndarray):
if result.dtype == "f8" or result.dtype == "f4":
# Note: outside of an nanops-specific test, we always have
# result.ndim == 1, so there is no risk of this ravel making a copy.
return lib.has_infs(result.ravel("K"))
try:
return np.isinf(result).any()
except (TypeError, NotImplementedError):
# if it doesn't support infs, then it can't have infs
return False
def _get_fill_value(
dtype: DtypeObj, fill_value: Scalar | None = None, fill_value_typ=None
):
"""return the correct fill value for the dtype of the values"""
if fill_value is not None:
return fill_value
if _na_ok_dtype(dtype):
if fill_value_typ is None:
return np.nan
else:
if fill_value_typ == "+inf":
return np.inf
else:
return -np.inf
else:
if fill_value_typ == "+inf":
# need the max int here
return lib.i8max
else:
return iNaT
def _maybe_get_mask(
values: np.ndarray, skipna: bool, mask: npt.NDArray[np.bool_] | None
) -> npt.NDArray[np.bool_] | None:
"""
Compute a mask if and only if necessary.
This function will compute a mask iff it is necessary. Otherwise,
return the provided mask (potentially None) when a mask does not need to be
computed.
A mask is never necessary if the values array is of boolean or integer
dtypes, as these are incapable of storing NaNs. If passing a NaN-capable
dtype that is interpretable as either boolean or integer data (eg,
timedelta64), a mask must be provided.
If the skipna parameter is False, a new mask will not be computed.
The mask is computed using isna() by default. Setting invert=True selects
notna() as the masking function.
Parameters
----------
values : ndarray
input array to potentially compute mask for
skipna : bool
boolean for whether NaNs should be skipped
mask : Optional[ndarray]
nan-mask if known
Returns
-------
Optional[np.ndarray[bool]]
"""
if mask is None:
if is_bool_dtype(values.dtype) or is_integer_dtype(values.dtype):
# Boolean data cannot contain nulls, so signal via mask being None
return None
if skipna or needs_i8_conversion(values.dtype):
mask = isna(values)
return mask
def _get_values(
values: np.ndarray,
skipna: bool,
fill_value: Any = None,
fill_value_typ: str | None = None,
mask: npt.NDArray[np.bool_] | None = None,
) -> tuple[np.ndarray, npt.NDArray[np.bool_] | None, np.dtype, np.dtype, Any]:
"""
Utility to get the values view, mask, dtype, dtype_max, and fill_value.
If both mask and fill_value/fill_value_typ are not None and skipna is True,
the values array will be copied.
For input arrays of boolean or integer dtypes, copies will only occur if a
precomputed mask, a fill_value/fill_value_typ, and skipna=True are
provided.
Parameters
----------
values : ndarray
input array to potentially compute mask for
skipna : bool
boolean for whether NaNs should be skipped
fill_value : Any
value to fill NaNs with
fill_value_typ : str
Set to '+inf' or '-inf' to handle dtype-specific infinities
mask : Optional[np.ndarray[bool]]
nan-mask if known
Returns
-------
values : ndarray
Potential copy of input value array
mask : Optional[ndarray[bool]]
Mask for values, if deemed necessary to compute
dtype : np.dtype
dtype for values
dtype_max : np.dtype
platform independent dtype
fill_value : Any
fill value used
"""
# In _get_values is only called from within nanops, and in all cases
# with scalar fill_value. This guarantee is important for the
# np.where call below
assert is_scalar(fill_value)
# error: Incompatible types in assignment (expression has type "Union[Any,
# Union[ExtensionArray, ndarray]]", variable has type "ndarray")
values = extract_array(values, extract_numpy=True) # type: ignore[assignment]
mask = _maybe_get_mask(values, skipna, mask)
dtype = values.dtype
datetimelike = False
if needs_i8_conversion(values.dtype):
# changing timedelta64/datetime64 to int64 needs to happen after
# finding `mask` above
values = np.asarray(values.view("i8"))
datetimelike = True
dtype_ok = _na_ok_dtype(dtype)
# get our fill value (in case we need to provide an alternative
# dtype for it)
fill_value = _get_fill_value(
dtype, fill_value=fill_value, fill_value_typ=fill_value_typ
)
if skipna and (mask is not None) and (fill_value is not None):
if mask.any():
if dtype_ok or datetimelike:
values = values.copy()
np.putmask(values, mask, fill_value)
else:
# np.where will promote if needed
values = np.where(~mask, values, fill_value)
# return a platform independent precision dtype
dtype_max = dtype
if is_integer_dtype(dtype) or is_bool_dtype(dtype):
dtype_max = np.dtype(np.int64)
elif is_float_dtype(dtype):
dtype_max = np.dtype(np.float64)
return values, mask, dtype, dtype_max, fill_value
def _na_ok_dtype(dtype: DtypeObj) -> bool:
if needs_i8_conversion(dtype):
return False
return not issubclass(dtype.type, np.integer)
def _wrap_results(result, dtype: np.dtype, fill_value=None):
"""wrap our results if needed"""
if result is NaT:
pass
elif is_datetime64_any_dtype(dtype):
if fill_value is None:
# GH#24293
fill_value = iNaT
if not isinstance(result, np.ndarray):
assert not isna(fill_value), "Expected non-null fill_value"
if result == fill_value:
result = np.nan
if isna(result):
result = np.datetime64("NaT", "ns")
else:
result = np.int64(result).view("datetime64[ns]")
# retain original unit
result = result.astype(dtype, copy=False)
else:
# If we have float dtype, taking a view will give the wrong result
result = result.astype(dtype)
elif is_timedelta64_dtype(dtype):
if not isinstance(result, np.ndarray):
if result == fill_value or np.isnan(result):
result = np.timedelta64("NaT").astype(dtype)
elif np.fabs(result) > lib.i8max:
# raise if we have a timedelta64[ns] which is too large
raise ValueError("overflow in timedelta operation")
else:
# return a timedelta64 with the original unit
result = np.int64(result).astype(dtype, copy=False)
else:
result = result.astype("m8[ns]").view(dtype)
return result
def _datetimelike_compat(func: F) -> F:
"""
If we have datetime64 or timedelta64 values, ensure we have a correct
mask before calling the wrapped function, then cast back afterwards.
"""
@functools.wraps(func)
def new_func(
values: np.ndarray,
*,
axis: int | None = None,
skipna: bool = True,
mask: npt.NDArray[np.bool_] | None = None,
**kwargs,
):
orig_values = values
datetimelike = values.dtype.kind in ["m", "M"]
if datetimelike and mask is None:
mask = isna(values)
result = func(values, axis=axis, skipna=skipna, mask=mask, **kwargs)
if datetimelike:
result = _wrap_results(result, orig_values.dtype, fill_value=iNaT)
if not skipna:
assert mask is not None # checked above
result = _mask_datetimelike_result(result, axis, mask, orig_values)
return result
return cast(F, new_func)
def _na_for_min_count(values: np.ndarray, axis: int | None) -> Scalar | np.ndarray:
"""
Return the missing value for `values`.
Parameters
----------
values : ndarray
axis : int or None
axis for the reduction, required if values.ndim > 1.
Returns
-------
result : scalar or ndarray
For 1-D values, returns a scalar of the correct missing type.
For 2-D values, returns a 1-D array where each element is missing.
"""
# we either return np.nan or pd.NaT
if is_numeric_dtype(values):
values = values.astype("float64")
fill_value = na_value_for_dtype(values.dtype)
if values.ndim == 1:
return fill_value
elif axis is None:
return fill_value
else:
result_shape = values.shape[:axis] + values.shape[axis + 1 :]
return np.full(result_shape, fill_value, dtype=values.dtype)
def maybe_operate_rowwise(func: F) -> F:
"""
NumPy operations on C-contiguous ndarrays with axis=1 can be
very slow if axis 1 >> axis 0.
Operate row-by-row and concatenate the results.
"""
@functools.wraps(func)
def newfunc(values: np.ndarray, *, axis: int | None = None, **kwargs):
if (
axis == 1
and values.ndim == 2
and values.flags["C_CONTIGUOUS"]
# only takes this path for wide arrays (long dataframes), for threshold see
# https://github.com/pandas-dev/pandas/pull/43311#issuecomment-974891737
and (values.shape[1] / 1000) > values.shape[0]
and values.dtype != object
and values.dtype != bool
):
arrs = list(values)
if kwargs.get("mask") is not None:
mask = kwargs.pop("mask")
results = [
func(arrs[i], mask=mask[i], **kwargs) for i in range(len(arrs))
]
else:
results = [func(x, **kwargs) for x in arrs]
return np.array(results)
return func(values, axis=axis, **kwargs)
return cast(F, newfunc)
def nanany(
values: np.ndarray,
*,
axis: int | None = None,
skipna: bool = True,
mask: npt.NDArray[np.bool_] | None = None,
) -> bool:
"""
Check if any elements along an axis evaluate to True.
Parameters
----------
values : ndarray
axis : int, optional
skipna : bool, default True
mask : ndarray[bool], optional
nan-mask if known
Returns
-------
result : bool
Examples
--------
>>> import pandas.core.nanops as nanops
>>> s = pd.Series([1, 2])
>>> nanops.nanany(s)
True
>>> import pandas.core.nanops as nanops
>>> s = pd.Series([np.nan])
>>> nanops.nanany(s)
False
"""
values, _, _, _, _ = _get_values(values, skipna, fill_value=False, mask=mask)
# For object type, any won't necessarily return
# boolean values (numpy/numpy#4352)
if is_object_dtype(values):
values = values.astype(bool)
# error: Incompatible return value type (got "Union[bool_, ndarray]", expected
# "bool")
return values.any(axis) # type: ignore[return-value]
def nanall(
values: np.ndarray,
*,
axis: int | None = None,
skipna: bool = True,
mask: npt.NDArray[np.bool_] | None = None,
) -> bool:
"""
Check if all elements along an axis evaluate to True.
Parameters
----------
values : ndarray
axis : int, optional
skipna : bool, default True
mask : ndarray[bool], optional
nan-mask if known
Returns
-------
result : bool
Examples
--------
>>> import pandas.core.nanops as nanops
>>> s = pd.Series([1, 2, np.nan])
>>> nanops.nanall(s)
True
>>> import pandas.core.nanops as nanops
>>> s = pd.Series([1, 0])
>>> nanops.nanall(s)
False
"""
values, _, _, _, _ = _get_values(values, skipna, fill_value=True, mask=mask)
# For object type, all won't necessarily return
# boolean values (numpy/numpy#4352)
if is_object_dtype(values):
values = values.astype(bool)
# error: Incompatible return value type (got "Union[bool_, ndarray]", expected
# "bool")
return values.all(axis) # type: ignore[return-value]
@disallow("M8")
@_datetimelike_compat
@maybe_operate_rowwise
def nansum(
values: np.ndarray,
*,
axis: int | None = None,
skipna: bool = True,
min_count: int = 0,
mask: npt.NDArray[np.bool_] | None = None,
) -> float:
"""
Sum the elements along an axis ignoring NaNs
Parameters
----------
values : ndarray[dtype]
axis : int, optional
skipna : bool, default True
min_count: int, default 0
mask : ndarray[bool], optional
nan-mask if known
Returns
-------
result : dtype
Examples
--------
>>> import pandas.core.nanops as nanops
>>> s = pd.Series([1, 2, np.nan])
>>> nanops.nansum(s)
3.0
"""
values, mask, dtype, dtype_max, _ = _get_values(
values, skipna, fill_value=0, mask=mask
)
dtype_sum = dtype_max
if is_float_dtype(dtype):
dtype_sum = dtype
elif is_timedelta64_dtype(dtype):
dtype_sum = np.dtype(np.float64)
the_sum = values.sum(axis, dtype=dtype_sum)
the_sum = _maybe_null_out(the_sum, axis, mask, values.shape, min_count=min_count)
return the_sum
def _mask_datetimelike_result(
result: np.ndarray | np.datetime64 | np.timedelta64,
axis: int | None,
mask: npt.NDArray[np.bool_],
orig_values: np.ndarray,
) -> np.ndarray | np.datetime64 | np.timedelta64 | NaTType:
if isinstance(result, np.ndarray):
# we need to apply the mask
result = result.astype("i8").view(orig_values.dtype)
axis_mask = mask.any(axis=axis)
# error: Unsupported target for indexed assignment ("Union[ndarray[Any, Any],
# datetime64, timedelta64]")
result[axis_mask] = iNaT # type: ignore[index]
else:
if mask.any():
return np.int64(iNaT).view(orig_values.dtype)
return result
@disallow(PeriodDtype)
@bottleneck_switch()
@_datetimelike_compat
def nanmean(
values: np.ndarray,
*,
axis: int | None = None,
skipna: bool = True,
mask: npt.NDArray[np.bool_] | None = None,
) -> float:
"""
Compute the mean of the element along an axis ignoring NaNs
Parameters
----------
values : ndarray
axis : int, optional
skipna : bool, default True
mask : ndarray[bool], optional
nan-mask if known
Returns
-------
float
Unless input is a float array, in which case use the same
precision as the input array.
Examples
--------
>>> import pandas.core.nanops as nanops
>>> s = pd.Series([1, 2, np.nan])
>>> nanops.nanmean(s)
1.5
"""
values, mask, dtype, dtype_max, _ = _get_values(
values, skipna, fill_value=0, mask=mask
)
dtype_sum = dtype_max
dtype_count = np.dtype(np.float64)
# not using needs_i8_conversion because that includes period
if dtype.kind in ["m", "M"]:
dtype_sum = np.dtype(np.float64)
elif is_integer_dtype(dtype):
dtype_sum = np.dtype(np.float64)
elif is_float_dtype(dtype):
dtype_sum = dtype
dtype_count = dtype
count = _get_counts(values.shape, mask, axis, dtype=dtype_count)
the_sum = _ensure_numeric(values.sum(axis, dtype=dtype_sum))
if axis is not None and getattr(the_sum, "ndim", False):
count = cast(np.ndarray, count)
with np.errstate(all="ignore"):
# suppress division by zero warnings
the_mean = the_sum / count
ct_mask = count == 0
if ct_mask.any():
the_mean[ct_mask] = np.nan
else:
the_mean = the_sum / count if count > 0 else np.nan
return the_mean
@bottleneck_switch()
def nanmedian(values, *, axis=None, skipna=True, mask=None):
"""
Parameters
----------
values : ndarray
axis : int, optional
skipna : bool, default True
mask : ndarray[bool], optional
nan-mask if known
Returns
-------
result : float
Unless input is a float array, in which case use the same
precision as the input array.
Examples
--------
>>> import pandas.core.nanops as nanops
>>> s = pd.Series([1, np.nan, 2, 2])
>>> nanops.nanmedian(s)
2.0
"""
def get_median(x):
mask = notna(x)
if not skipna and not mask.all():
return np.nan
with warnings.catch_warnings():
# Suppress RuntimeWarning about All-NaN slice
warnings.filterwarnings("ignore", "All-NaN slice encountered")
res = np.nanmedian(x[mask])
return res
values, mask, dtype, _, _ = _get_values(values, skipna, mask=mask)
if not is_float_dtype(values.dtype):
try:
values = values.astype("f8")
except ValueError as err:
# e.g. "could not convert string to float: 'a'"
raise TypeError(str(err)) from err
if mask is not None:
values[mask] = np.nan
notempty = values.size
# an array from a frame
if values.ndim > 1 and axis is not None:
# there's a non-empty array to apply over otherwise numpy raises
if notempty:
if not skipna:
res = np.apply_along_axis(get_median, axis, values)
else:
# fastpath for the skipna case
with warnings.catch_warnings():
# Suppress RuntimeWarning about All-NaN slice
warnings.filterwarnings("ignore", "All-NaN slice encountered")
res = np.nanmedian(values, axis)
else:
# must return the correct shape, but median is not defined for the
# empty set so return nans of shape "everything but the passed axis"
# since "axis" is where the reduction would occur if we had a nonempty
# array
res = get_empty_reduction_result(values.shape, axis, np.float_, np.nan)
else:
# otherwise return a scalar value
res = get_median(values) if notempty else np.nan
return _wrap_results(res, dtype)
def get_empty_reduction_result(
shape: tuple[int, ...],
axis: int,
dtype: np.dtype | type[np.floating],
fill_value: Any,
) -> np.ndarray:
"""
The result from a reduction on an empty ndarray.
Parameters
----------
shape : Tuple[int]
axis : int
dtype : np.dtype
fill_value : Any
Returns
-------
np.ndarray
"""
shp = np.array(shape)
dims = np.arange(len(shape))
ret = np.empty(shp[dims != axis], dtype=dtype)
ret.fill(fill_value)
return ret
def _get_counts_nanvar(
values_shape: Shape,
mask: npt.NDArray[np.bool_] | None,
axis: int | None,
ddof: int,
dtype: np.dtype = np.dtype(np.float64),
) -> tuple[int | float | np.ndarray, int | float | np.ndarray]:
"""
Get the count of non-null values along an axis, accounting
for degrees of freedom.
Parameters
----------
values_shape : Tuple[int, ...]
shape tuple from values ndarray, used if mask is None
mask : Optional[ndarray[bool]]
locations in values that should be considered missing
axis : Optional[int]
axis to count along
ddof : int
degrees of freedom
dtype : type, optional
type to use for count
Returns
-------
count : int, np.nan or np.ndarray
d : int, np.nan or np.ndarray
"""
count = _get_counts(values_shape, mask, axis, dtype=dtype)
d = count - dtype.type(ddof)
# always return NaN, never inf
if is_scalar(count):
if count <= ddof:
count = np.nan
d = np.nan
else:
# count is not narrowed by is_scalar check
count = cast(np.ndarray, count)
mask = count <= ddof
if mask.any():
np.putmask(d, mask, np.nan)
np.putmask(count, mask, np.nan)
return count, d
@bottleneck_switch(ddof=1)
def nanstd(values, *, axis=None, skipna=True, ddof=1, mask=None):
"""
Compute the standard deviation along given axis while ignoring NaNs
Parameters
----------
values : ndarray
axis : int, optional
skipna : bool, default True
ddof : int, default 1
Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
where N represents the number of elements.
mask : ndarray[bool], optional
nan-mask if known
Returns
-------
result : float
Unless input is a float array, in which case use the same
precision as the input array.
Examples
--------
>>> import pandas.core.nanops as nanops
>>> s = pd.Series([1, np.nan, 2, 3])
>>> nanops.nanstd(s)
1.0
"""
if values.dtype == "M8[ns]":
values = values.view("m8[ns]")
orig_dtype = values.dtype
values, mask, _, _, _ = _get_values(values, skipna, mask=mask)
result = np.sqrt(nanvar(values, axis=axis, skipna=skipna, ddof=ddof, mask=mask))
return _wrap_results(result, orig_dtype)
@disallow("M8", "m8")
@bottleneck_switch(ddof=1)
def nanvar(values, *, axis=None, skipna=True, ddof=1, mask=None):
"""
Compute the variance along given axis while ignoring NaNs
Parameters
----------
values : ndarray
axis : int, optional
skipna : bool, default True
ddof : int, default 1
Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
where N represents the number of elements.
mask : ndarray[bool], optional
nan-mask if known
Returns
-------
result : float
Unless input is a float array, in which case use the same
precision as the input array.
Examples
--------
>>> import pandas.core.nanops as nanops
>>> s = pd.Series([1, np.nan, 2, 3])
>>> nanops.nanvar(s)
1.0
"""
values = extract_array(values, extract_numpy=True)
dtype = values.dtype
mask = _maybe_get_mask(values, skipna, mask)
if is_any_int_dtype(dtype):
values = values.astype("f8")
if mask is not None:
values[mask] = np.nan
if is_float_dtype(values.dtype):
count, d = _get_counts_nanvar(values.shape, mask, axis, ddof, values.dtype)
else:
count, d = _get_counts_nanvar(values.shape, mask, axis, ddof)
if skipna and mask is not None:
values = values.copy()
np.putmask(values, mask, 0)
# xref GH10242
# Compute variance via two-pass algorithm, which is stable against
# cancellation errors and relatively accurate for small numbers of
# observations.
#
# See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
avg = _ensure_numeric(values.sum(axis=axis, dtype=np.float64)) / count
if axis is not None:
avg = np.expand_dims(avg, axis)
sqr = _ensure_numeric((avg - values) ** 2)
if mask is not None:
np.putmask(sqr, mask, 0)
result = sqr.sum(axis=axis, dtype=np.float64) / d
# Return variance as np.float64 (the datatype used in the accumulator),
# unless we were dealing with a float array, in which case use the same
# precision as the original values array.
if is_float_dtype(dtype):
result = result.astype(dtype, copy=False)
return result
@disallow("M8", "m8")
def nansem(
values: np.ndarray,
*,
axis: int | None = None,
skipna: bool = True,
ddof: int = 1,
mask: npt.NDArray[np.bool_] | None = None,
) -> float:
"""
Compute the standard error in the mean along given axis while ignoring NaNs
Parameters
----------
values : ndarray
axis : int, optional
skipna : bool, default True
ddof : int, default 1
Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
where N represents the number of elements.
mask : ndarray[bool], optional
nan-mask if known