-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathtensor_constructor.cc
171 lines (152 loc) · 6.05 KB
/
tensor_constructor.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
// Copyright 2023 Ant Group Co., Ltd.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "engine/core/tensor_constructor.h"
#include <memory>
#include "arrow/array/array_base.h"
#include "arrow/ipc/json_simple.h"
#include "arrow/record_batch.h"
#include "engine/core/arrow_helper.h"
#include "engine/core/tensor.h"
#include "engine/core/type.h"
namespace scql::engine {
TensorPtr TensorFrom(const std::shared_ptr<arrow::DataType>& dtype,
const std::string& json) {
using arrow::ipc::internal::json::ChunkedArrayFromJSON;
std::shared_ptr<arrow::ChunkedArray> chunked_arr;
THROW_IF_ARROW_NOT_OK(ChunkedArrayFromJSON(
dtype, std::vector<std::string>{json}, &chunked_arr));
return std::make_shared<MemTensor>(std::move(chunked_arr));
}
TensorPtr TensorFrom(std::shared_ptr<arrow::ChunkedArray> arrays) {
return std::make_shared<MemTensor>(arrays);
}
TensorPtr ConcatTensors(const std::vector<TensorPtr>& tensors) {
for (const auto& tensor : tensors) {
YACL_ENFORCE(typeid(*tensor) == typeid(MemTensor));
}
arrow::ArrayVector arrays;
for (const auto& tensor : tensors) {
auto tmp_v = tensor->ToArrowChunkedArray();
arrays.insert(arrays.end(), tmp_v->chunks().begin(), tmp_v->chunks().end());
}
return std::make_shared<MemTensor>(
arrow::ChunkedArray::Make(arrays).ValueOrDie());
}
// create a new writer to write when current writer is null or current writer is
// full
void TensorWriter::FreshCurWriter() {
if (current_writer_ != nullptr) {
auto file_array = std::make_shared<FileArray>(
current_writer_->GetFilePath(), current_writer_->GetRowNum(),
current_writer_->GetNullCount());
file_arrays_.push_back(file_array);
}
std::filesystem::path path = parent_path_ / std::to_string(file_index_);
current_writer_ = std::make_shared<util::disk::ArrowWriter>(schema_, path);
file_index_++;
}
size_t TensorWriter::WriteBatch(const arrow::RecordBatch& batch) {
if (batch.num_rows() == 0) {
return 0;
}
if (current_writer_ == nullptr) {
FreshCurWriter();
}
auto num_to_write = batch.num_rows();
if (num_to_write <= max_single_file_row_num_ -
static_cast<int64_t>(current_writer_->GetRowNum())) {
current_writer_->WriteBatch(batch);
return batch.num_rows();
}
while (num_to_write > 0) {
if (static_cast<int64_t>(current_writer_->GetRowNum()) >=
max_single_file_row_num_) {
FreshCurWriter();
}
auto write_row_num = max_single_file_row_num_ -
static_cast<int64_t>(current_writer_->GetRowNum());
auto sliced_batch =
batch.Slice(batch.num_rows() - num_to_write, write_row_num);
num_to_write -= write_row_num;
current_writer_->WriteBatch(*sliced_batch);
}
return batch.num_rows();
}
size_t TensorWriter::WriteBatch(const arrow::ChunkedArray& batch) {
size_t offset = 0;
for (int i = 0; i < batch.num_chunks(); ++i) {
std::vector<std::shared_ptr<arrow::Array>> arrays = {batch.chunk(i)};
offset += WriteBatch(
*arrow::RecordBatch::Make(schema_, batch.chunk(i)->length(), arrays));
}
return offset;
}
void TensorWriter::Finish(std::shared_ptr<Tensor>* out) {
// add last file to tensor
if (current_writer_ != nullptr && current_writer_->GetRowNum() > 0) {
auto file_array = std::make_shared<FileArray>(
current_writer_->GetFilePath(), current_writer_->GetRowNum(),
current_writer_->GetNullCount());
file_arrays_.push_back(file_array);
}
current_writer_.reset();
*out = std::make_shared<DiskTensor>(
file_arrays_, FromArrowDataType(schema_->field(0)->type()),
schema_->field(0)->type());
}
void DiskBucketTensorConstructor::InsertBucket(const TensorPtr& tensor,
size_t bucket_index) {
InsertBucket(tensor->ToArrowChunkedArray(), bucket_index);
}
void DiskBucketTensorConstructor::InsertBucket(
const std::shared_ptr<arrow::ChunkedArray>& arrays, size_t bucket_index) {
writers_[bucket_index]->WriteBatch(*arrays);
}
void DiskBucketTensorConstructor::Finish(TensorPtr* tensor) {
std::vector<std::shared_ptr<FileArray>> file_arrays(writers_.size());
for (size_t j = 0; j < file_arrays.size(); j++) {
auto file_array = std::make_shared<FileArray>(writers_[j]->GetFilePath(),
writers_[j]->GetRowNum(),
writers_[j]->GetNullCount());
file_arrays[j] = file_array;
}
auto type = writers_[0]->GetSchema()->field(0)->type();
// remove writers to call ipc writer close()
writers_.clear();
auto disk_tensor =
std::make_shared<DiskTensor>(file_arrays, dtype_, data_type_);
disk_tensor->SetAsBucketTensor();
*tensor = std::move(disk_tensor);
}
void MemoryBucketTensorConstructor::InsertBucket(const TensorPtr& tensor,
size_t bucket_index) {
InsertBucket(tensor->ToArrowChunkedArray(), bucket_index);
}
void MemoryBucketTensorConstructor::InsertBucket(
const std::shared_ptr<arrow::ChunkedArray>& arrays, size_t bucket_index) {
array_vecs_[bucket_index].push_back(arrays);
}
void MemoryBucketTensorConstructor::Finish(TensorPtr* tensor) {
arrow::ArrayVector arrays;
for (const auto& arrs : array_vecs_) {
for (const auto& tmp_v : arrs) {
arrays.insert(arrays.end(), tmp_v->chunks().begin(),
tmp_v->chunks().end());
}
}
// TODO: no bucket mem tensor for now, add it later if needed
*tensor = std::make_shared<MemTensor>(
arrow::ChunkedArray::Make(arrays).ValueOrDie());
}
} // namespace scql::engine