-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy patharithmetic.cc
232 lines (186 loc) · 8.37 KB
/
arithmetic.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// Copyright 2023 Ant Group Co., Ltd.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "engine/operator/arithmetic.h"
#include "arrow/compute/api_scalar.h"
#include "arrow/compute/cast.h"
#include "arrow/datum.h"
#include "arrow/result.h"
#include "libspu/kernel/hal/type_cast.h"
#include "libspu/kernel/hlo/basic_binary.h"
#include "engine/core/tensor_constructor.h"
namespace scql::engine::op {
void ArithmeticBase::ValidateIoDataTypes(ExecContext* ctx) {
// TODO(shunde.csd): check input and output data types for arithmetic ops
}
// ===========================
// Add impl
// ===========================
const std::string Add::kOpType("Add");
const std::string& Add::Type() const { return kOpType; }
spu::Value Add::ComputeOnSpu(spu::SPUContext* sctx, const spu::Value& lhs,
const spu::Value& rhs) {
return spu::kernel::hlo::Add(sctx, lhs, rhs);
}
TensorPtr Add::ComputeInPlain(const Tensor& lhs, const Tensor& rhs) {
arrow::Result<arrow::Datum> result = arrow::compute::CallFunction(
"add", {lhs.ToArrowChunkedArray(), rhs.ToArrowChunkedArray()});
YACL_ENFORCE(result.ok(),
"caught error while invoking arrow add function: {}",
result.status().ToString());
return TensorFrom(result.ValueOrDie().chunked_array());
}
// ===========================
// Minus impl
// ===========================
const std::string Minus::kOpType("Minus");
const std::string& Minus::Type() const { return kOpType; }
spu::Value Minus::ComputeOnSpu(spu::SPUContext* sctx, const spu::Value& lhs,
const spu::Value& rhs) {
return spu::kernel::hlo::Sub(sctx, lhs, rhs);
}
TensorPtr Minus::ComputeInPlain(const Tensor& lhs, const Tensor& rhs) {
arrow::Result<arrow::Datum> result = arrow::compute::CallFunction(
"subtract", {lhs.ToArrowChunkedArray(), rhs.ToArrowChunkedArray()});
YACL_ENFORCE(result.ok(),
"caught error while invoking arrow subtract function: {}",
result.status().ToString());
return TensorFrom(result.ValueOrDie().chunked_array());
}
// ===========================
// Mul impl
// ===========================
const std::string Mul::kOpType("Mul");
const std::string& Mul::Type() const { return kOpType; }
spu::Value Mul::ComputeOnSpu(spu::SPUContext* sctx, const spu::Value& lhs,
const spu::Value& rhs) {
return spu::kernel::hlo::Mul(sctx, lhs, rhs);
}
TensorPtr Mul::ComputeInPlain(const Tensor& lhs, const Tensor& rhs) {
arrow::Result<arrow::Datum> result = arrow::compute::CallFunction(
"multiply", {lhs.ToArrowChunkedArray(), rhs.ToArrowChunkedArray()});
YACL_ENFORCE(result.ok(),
"caught error while invoking arrow multiply function: {}",
result.status().ToString());
return TensorFrom(result.ValueOrDie().chunked_array());
}
// ===========================
// Div impl
// ===========================
const std::string Div::kOpType("Div");
const std::string& Div::Type() const { return kOpType; }
spu::Value Div::ComputeOnSpu(spu::SPUContext* sctx, const spu::Value& lhs,
const spu::Value& rhs) {
if (lhs.isInt() && rhs.isInt()) {
// if lhs and rhs are both integers, the result will be integer.
// so we convert lhs to float here.
const auto lhs_f = spu::kernel::hal::dtype_cast(sctx, lhs, spu::DT_F64);
return spu::kernel::hlo::Div(sctx, lhs_f, rhs);
}
return spu::kernel::hlo::Div(sctx, lhs, rhs);
}
TensorPtr Div::ComputeInPlain(const Tensor& lhs, const Tensor& rhs) {
// cast lhs to float64 if both lhs and rhs are integer
auto left = lhs.ToArrowChunkedArray();
auto right = rhs.ToArrowChunkedArray();
if (arrow::is_integer(left->type()->id()) &&
arrow::is_integer(right->type()->id())) {
auto cast_options =
arrow::compute::CastOptions::Safe(arrow::TypeHolder(arrow::float64()));
auto result = arrow::compute::Cast(left, cast_options);
YACL_ENFORCE(result.ok(), "Fail to cast lhs type to float64: {}",
result.status().ToString());
left = result.ValueOrDie().chunked_array();
}
arrow::Result<arrow::Datum> result =
arrow::compute::CallFunction("divide", {left, right});
YACL_ENFORCE(result.ok(),
"caught error while invoking arrow divide function: {}",
result.status().ToString());
return TensorFrom(result.ValueOrDie().chunked_array());
}
// ===========================
// IntDiv impl
// ===========================
const std::string IntDiv::kOpType("IntDiv");
const std::string& IntDiv::Type() const { return kOpType; }
spu::Value IntDiv::ComputeOnSpu(spu::SPUContext* sctx, const spu::Value& lhs,
const spu::Value& rhs) {
// NOTE(shunde.csd): if lhs and rhs are both integers,
// `spu::kernel::hlo::Div` will behave like `IntDiv`
return spu::kernel::hlo::Div(sctx, lhs, rhs);
}
TensorPtr IntDiv::ComputeInPlain(const Tensor& lhs, const Tensor& rhs) {
// NOTE(shunde.csd): if lhs and rhs are both integers,
// arrow `divide` function will behave like `IntDiv`
arrow::Result<arrow::Datum> result = arrow::compute::CallFunction(
"divide", {lhs.ToArrowChunkedArray(), rhs.ToArrowChunkedArray()});
YACL_ENFORCE(result.ok(),
"caught error while invoking arrow divide function: {}",
result.status().ToString());
return TensorFrom(result.ValueOrDie().chunked_array());
}
// ===========================
// Mod impl
// ===========================
const std::string Mod::kOpType("Mod");
const std::string& Mod::Type() const { return kOpType; }
spu::Value Mod::ComputeOnSpu(spu::SPUContext* sctx, const spu::Value& lhs,
const spu::Value& rhs) {
YACL_ENFORCE(lhs.isInt(), "op {} left data type is not integer", Type());
YACL_ENFORCE(rhs.isInt(), "op {} right data type is not integer", Type());
return spu::kernel::hlo::Remainder(sctx, lhs, rhs);
}
TensorPtr Mod::ComputeInPlain(const Tensor& lhs, const Tensor& rhs) {
auto left = lhs.ToArrowChunkedArray();
auto right = rhs.ToArrowChunkedArray();
YACL_ENFORCE(arrow::is_integer(left->type()->id()),
"op {} left data type is not integer", Type());
YACL_ENFORCE(arrow::is_integer(right->type()->id()),
"op {} right data type is not integer", Type());
auto div_result = arrow::compute::CallFunction("divide", {left, right});
YACL_ENFORCE(div_result.ok(),
"caught error while invoking arrow divide function: {}",
div_result.status().ToString());
auto div_chunk_arr = div_result.ValueOrDie().chunked_array();
auto mul_result =
arrow::compute::CallFunction("multiply", {div_chunk_arr, right});
YACL_ENFORCE(mul_result.ok(),
"caught error while invoking arrow multiply function: {}",
mul_result.status().ToString());
auto mul_chunk_arr = mul_result.ValueOrDie().chunked_array();
auto result = arrow::compute::CallFunction("subtract", {left, mul_chunk_arr});
YACL_ENFORCE(result.ok(),
"caught error while invoking arrow subtract function: {}",
result.status().ToString());
return TensorFrom(result.ValueOrDie().chunked_array());
}
// ===========================
// Pow impl
// ===========================
const std::string Pow::kOpType("Pow");
const std::string& Pow::Type() const { return kOpType; }
spu::Value Pow::ComputeOnSpu(spu::SPUContext* sctx, const spu::Value& lhs,
const spu::Value& rhs) {
return spu::kernel::hlo::Power(sctx, lhs, rhs);
}
TensorPtr Pow::ComputeInPlain(const Tensor& lhs, const Tensor& rhs) {
auto left = lhs.ToArrowChunkedArray();
auto right = rhs.ToArrowChunkedArray();
auto result = arrow::compute::Power(left, right);
YACL_ENFORCE(result.ok(),
"caught error while invoking arrow pow function: {}",
result.status().ToString());
return TensorFrom(result.ValueOrDie().chunked_array());
}
} // namespace scql::engine::op