-
Notifications
You must be signed in to change notification settings - Fork 300
/
.zenodo.json
217 lines (217 loc) · 6.25 KB
/
.zenodo.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
{
"title": "eo-learn",
"description": "eo-learn makes extraction of valuable information from satellite imagery easy.\\nThe availability of open Earth observation (EO) data through the Copernicus and Landsat programs represents an unprecedented resource for many EO applications, ranging from ocean and land use and land cover monitoring, disaster control, emergency services and humanitarian relief. Given the large amount of high spatial resolution data at high revisit frequency, techniques able to automatically extract complex patterns in such spatio-temporaldata are needed.\\neo-learn is a collection of Python packages that have been developed to seamlessly access and process spatio-temporal image sequences acquired by any satellite fleet in a timely and automatic manner. eo-learn is easy to use, it's design modular, and encourages collaboration -- sharing and reusing of specific tasks in a typical EO-value-extraction workflows, such as cloud masking, image co-registration, feature extraction, classification, etc. Everyone is free to use any of the available tasks and is encouraged to improve the, develop new ones and share them with the rest of the community.",
"keywords": [
"Earth Observation",
"Python",
"Workflows",
"Remote sensing",
"Data Processing",
"Machine Learning"
],
"creators": [
{
"affiliation": "Sinergise",
"name": "EO Research Team"
}
],
"contributors": [
{
"name": "Matej Batič",
"affiliation": "Sinergise",
"type": "ProjectMember"
},
{
"name": "Sabina Dolenc",
"affiliation": "Sinergise",
"type": "ProjectMember"
},
{
"name": "Jan Geršak",
"affiliation": "Sinergise",
"type": "ProjectMember"
},
{
"name": "Chung-Xiang Hong",
"affiliation": "Sentinel Hub",
"type": "ProjectMember"
},
{
"name": "Domagoj Korais",
"affiliation": "Sinergise",
"type": "ProjectMember"
},
{
"name": "Matic Lubej",
"affiliation": "Sinergise",
"type": "ProjectMember"
},
{
"name": "Žiga Lukšič",
"affiliation": "Sinergise",
"type": "ProjectMember"
},
{
"name": "Grega Milčinski",
"affiliation": "Sinergise",
"type": "ProjectMember"
},
{
"name": "Nika Oman Kadunc",
"affiliation": "Sinergise",
"type": "ProjectMember"
},
{
"name": "Devis Peressutti",
"affiliation": "Sinergise",
"type": "ProjectMember"
},
{
"name": "Tomi Sljepčević",
"affiliation": "Sinergise",
"type": "ProjectMember"
},
{
"name": "Tamara Šuligoj",
"affiliation": "Sinergise",
"type": "ProjectMember"
},
{
"name": "Jovan Višnjić",
"affiliation": "Sinergise",
"type": "ProjectMember"
},
{
"name": "Anže Zupanc",
"affiliation": "Sinergise",
"type": "ProjectMember"
},
{
"name": "Matej Aleksandrov",
"affiliation": "Sinergise",
"type": "ProjectMember"
},
{
"name": "Andrej Burja",
"affiliation": "Sinergise",
"type": "ProjectMember"
},
{
"name": "Eva Erzin",
"affiliation": "Sinergise",
"type": "ProjectMember"
},
{
"name": "Jernej Puc",
"affiliation": "Sinergise",
"type": "ProjectMember"
},
{
"name": "Blaž Sovdat",
"affiliation": "Sinergise",
"type": "ProjectMember"
},
{
"name": "Lojze Žust",
"affiliation": "Sinergise",
"type": "ProjectMember"
},
{
"name": "Drew Bollinger",
"affiliation": "DevelopmentSeed",
"type": "Other"
},
{
"name": "Peter Fogh",
"type": "Other"
},
{
"name": "Hugo Fournier",
"affiliation": "Magellium",
"type": "Other"
},
{
"name": "Ben Huff",
"type": "Other"
},
{
"name": "Filip Koprivec",
"affiliation": "Jožef Stefan Institute",
"type": "Other"
},
{
"name": "Colin Moldenhauer",
"affiliation": "Technical University of Munich",
"type": "Other"
},
{
"name": "William Ouellette",
"affiliation": "TomTom",
"type": "Other"
},
{
"name": "Radoslav Pitoňák",
"type": "Other"
},
{
"name": "Johannes Schmid",
"affiliation": "GeoVille",
"type": "Other"
},
{
"name": "Nour Soltani",
"type": "Other"
},
{
"name": "Beno Šircelj",
"affiliation": "Jožef Stefan Institute",
"type": "Other"
},
{
"name": "Andrew Tedstone",
"type": "Other"
},
{
"name": "Raaj Tilak Sarma",
"type": "Other"
},
{
"name": "Zhuangfang Yi 依庄防",
"type": "Other"
},
{
"name": "Patrick Zippenfenig",
"affiliation": "meteoblue",
"type": "Other"
},
{
"name": "fred-sch",
"type": "Other"
},
{
"name": "Gnilliw",
"type": "Other"
},
{
"name": "theirix",
"type": "Other"
}
],
"license": {
"id": "MIT"
},
"grants": [
{
"id": "776115"
},
{
"id": "101004112"
},
{
"id": "101059548"
},
{
"id": "101086461"
}
]
}