-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFuzzing.py
218 lines (162 loc) · 8.28 KB
/
Fuzzing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import argparse
# from absl import app
import tensorflow_datasets as tfds
# Helper libraries
import os
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
import os
from datetime import datetime
from tensorflow.keras.models import model_from_json, load_model, save_model
# import multiprocessing
# import itertools
# from Dataprocessing import load_MNISTVAL, load_CIFARVAL, load_MNIST, load_CIFAR, load_SVHN_
# from utils import filter_val_set, get_trainable_layers
# from utils import generate_adversarial, filter_correct_classifications
# from Coverages.idc import ImportanceDrivenCoverage
# from Coverages.neuron_cov import NeuronCoverage
# from Coverages.tkn import DeepGaugeLayerLevelCoverage
# from Coverages.kmn import DeepGaugePercentCoverage
# from Coverages.ss import SSCover
# from Coverages.sa import SurpriseAdequacy
# from Coverages.knw import KnowledgeCoverage
from Coverages.TrKnw import *
from tensorflow.keras import applications
from tensorflow.python.client import device_lib
import tensorflow
import os
os.environ['TF_GPU_ALLOCATOR']="cuda_malloc_async"
os.environ["TF_CPP_VMODULE"]="gpu_process_state=10,gpu_cudamallocasync_allocator=10"
__version__ = 1.3
#
print(keras.__version__)
print(tensorflow.__version__)
def parse_arguments():
"""
Parse command line argument and construct the DNN
:return: a dictionary comprising the command-line arguments
"""
text = 'Knowledge Coverage for DNNs'
# initiate the parser
parser = argparse.ArgumentParser(description=text)
# new command-line arguments
parser.add_argument("-U", "--adv_use", default=False, type=bool, help="use adversarial attacks")
parser.add_argument("-M", "--model", help="Path to the model to be loaded.\
The specified model will be used.", choices=['LeNet1','LeNet4','svhn', 'model_cifar10'])
parser.add_argument("-DS", "--dataset", help="The dataset to be used (mnist\
SVHN or cifar10).", choices=["mnist","cifar10","SVHN"])
parser.add_argument("-A", "--approach", help="the approach to be employed \
to measure coverage", choices=['knw', 'idc'])
# parser.add_argument("-P", "--percentage", help="the percentage of TrKnw neurons to be deployed", type=float)
parser.add_argument("-K", "--nbr_Trknw", help="the number of TrKnw neurons to be deployed", type=float)
parser.add_argument("-HD", "--HD_thre", help="a threshold value used\
to identify the type of TrKnw neurons.", type=float)
parser.add_argument("-Tr", "--TrKnw", help="Type of selected TrKnw neurons based on HD values range.", choices=['top', 'least', 'preferred'])
parser.add_argument("-Sp", "--split", help="percentage of test data to be tested", type=float)
parser.add_argument("-ADV", "--adv", help="name of adversarial attack", choices=['mim', 'bim', 'fgsm', 'pgd'])
parser.add_argument("-C", "--class", help="the selected class", type=int)
parser.add_argument("-L", "--layer", help="the subject layer's index for \
combinatorial cov. NOTE THAT ONLY TRAINABLE LAYERS CAN \
BE SELECTED", type= int)
parser.add_argument("-LOG", "--logfile", help="path to log file")
args = parser.parse_args()
return vars(args)
def Fuzzing(approach,modelpath,dataset,TypeTrknw, percent,selected_class,threshold, attack,split,use_augment,augment):
model_path = 'Networks/'+modelpath
img_rows, img_cols, img_channel = 32, 32, 3
model_name = model_path.split('/')[-1]
print(model_name)
if model_name == 'grape':
if tf.executing_eagerly():
tf.compat.v1.disable_eager_execution()
model = tf.keras.models.load_model("./Networks/leaf_disease_coloured.h5")
print("Model grape disease detection is loaded")
elif model_name == 'vgg16':
model = applications.VGG16(weights='imagenet', include_top=False,
input_shape=(img_rows, img_cols, img_channel))
print("Model VGG 16 is loaded")
elif model_name == 'ImagNet':
model =tf.keras.applications.MobileNetV2(include_top=True,
weights='imagenet')
model.trainable = False
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
print("Model imagenet is loaded")
else:
try:
json_file = open(model_path + '.json', 'r')
file_content = json_file.read()
json_file.close()
model = model_from_json(file_content)
model.load_weights(model_path + '.h5')
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
except:
print("exeception")
model = load_model(model_path + '.hdf5')
trainable_layers = get_trainable_layers(model)
dense_layers=get_dense_layers(model)
non_trainable_layers = list(set(range(len(model.layers))) - set(trainable_layers))
print('Trainable layers: ' + str(trainable_layers))
print('Non trainable layers: ' + str(non_trainable_layers))
experiment_folder = 'experiments'
isExist = os.path.exists(experiment_folder)
if not isExist:
os.makedirs(experiment_folder)
dataset_folder = 'dataset'
isExist = os.path.exists(dataset_folder)
if not isExist:
os.makedirs(dataset_folder)
subject_layer = args['layer'] if not args['layer'] == None else -1
subject_layer = trainable_layers[subject_layer]
skip_layers = [] # SKIP LAYERS FOR NC, KMNC, NBC
for idx, lyr in enumerate(model.layers):
if 'flatten' in lyr.__class__.__name__.lower(): skip_layers.append(idx)
print("Skipping layers:", skip_layers)
####################
# print("the model layers")
for idx,lyr in enumerate(model.layers):
print(idx,lyr.name)
if approach == 'knw':
model_folder = 'Networks'
method = 'idc'
knw = KnowledgeCoverage(model, dataset, model_name, subject_layer, trainable_layers,dense_layers, method, percent, threshold,attack, skip_layers, nbr_Trknw,use_augment,augment,selected_class=1)
Knw_coverage, covered_TrKnw, combinations, max_comb, testsize, zero_size,Trkneurons= knw.run(split,TypeTrknw,use_adv)
print("The model Transfer Knowledge Neurons number: ", covered_TrKnw)
# print("type",TypeTrknw)
print("The percentage of the used neurons out of all Transfer Knowledge Neurons : ",percent)
if use_adv:
print("Deployed Adversarials attacks", attack)
if split>0:
print("Test set is splited and only %.2f%% is used" %(1-split))
print("The test set coverage: %.2f%% for dataset %s " % (Knw_coverage, dataset))
print("Covered combinations: ", len(combinations))
print("Total combinations:", max_comb)
line=[model_name, dataset, testsize, zero_size, Knw_coverage, covered_TrKnw, TypeTrknw, (1-split),len(combinations),
max_comb,Trkneurons, attack]
else:
print("other method")
logfile.close()
return line
if __name__ == "__main__":
args = parse_arguments()
method= args['method'] if args['method'] else 1
fuzzer = args['fuzzer'] if args['fuzzer'] else "RInp"
iteration = args['it'] if args['it'] else 10
repair = args['repair'] if args['repair'] else False
model = args['model'] if args['model'] else 'AllConvNet'
dataset = args['dataset'] if args['dataset'] else 'Leaves'
approach = args['app'] if args['app'] else 'knw'
layer = args['layer'] if not args['layer'] == None else -1
logfile_name = args['logfile'] if args['logfile'] else 'fuzz.log'
logfile = open(logfile_name, 'a')
startTime = time.time()
Fuzzing(method, fuzzer, iteration, approach, model, dataset, approach, repair, layer)
logfile.close()
endTime = time.time()
elapsedTime = endTime - startTime
print("Elapsed Time = %s" % elapsedTime)