-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHomework7.Rmd
787 lines (552 loc) · 28.2 KB
/
Homework7.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
---
title: "Homework7"
author: "Sam Rosenblatt"
date: "10/10/2018"
output: html_document
---
```{r}
library(tidyverse)
```
## Part 2
Dr. Gotelli: To start simply, assume that the data in each of your treatment groups follow a normal distribution. Specify the sample sizes, means, and variances for each group that would be reasonable if your hypothesis were true.
Sam: My variable of interest will be the percent of a simulated population infected by an SIR epidemic. The control group is the set of simulations where the population was is immunized through random immunization, whereas each treatment group is the set of simulations where the population is immunized(at the same immunization coverage) according to an immunization strategy particular to that treatment group(i.e. the different immunization strategies are the different "treatments")
To specify the sample sizes , means, and variances I used the below plot to approximate
<p style="text-align:left;"><img src="PlotForHW7.png" width="500" height="500"></p>
## Part 3
Dr. Gotelli: Using the methods we have covered in class, write code to create a random data set that has these attributes. Organize these data into a data frame or tibble with the appropriate structure.
```{r}
nGroup <- 7 # number of treatment groups
nName <- c("RandomImmunization","BetweennessImmunization", "DegreeImmunization", "CorenessImmunization", "AcquaintanceKKimmunization", "AcquaintanceKGimmunization", "AcquaintanceGGimmunization" ) # names of groups
nSize <- c(10000,10000,10000, 10000, 10000, 10000, 10000) # number of observations in each group
nMean <- c(0.059,0.017,0.015, 0.05, 0.022, 0.007, 0.005) # mean of each group
nSD <- c(0.04, 0.01,0.01, 0.01, 0.025, 0.02, 0.015) # standard deviation of each group
ID <- 1:(sum(nSize)) # id vector for each row
resVar <- c(rnorm(n=nSize[1],mean=nMean[1],sd=nSD[1]),
rnorm(n=nSize[2],mean=nMean[2],sd=nSD[2]),
rnorm(n=nSize[3],mean=nMean[3],sd=nSD[3]),
rnorm(n=nSize[4],mean=nMean[4],sd=nSD[4]),
rnorm(n=nSize[5],mean=nMean[5],sd=nSD[5]),
rnorm(n=nSize[6],mean=nMean[6],sd=nSD[6]),
rnorm(n=nSize[7],mean=nMean[7],sd=nSD[7]))
TGroup <- rep(nName,nSize)
ANOdata <- data.frame(ID,TGroup,resVar)
str(ANOdata)
```
## Part 4
Dr. Gotelli: Now write code to analyze the data (probably as an ANOVA or regression analysis, but possibly as a logistic regression or contingency table analysis.
Sam: We are comparing distributions of continuous variables so we will use ANOVA
```{r}
ANOmodel <- aov(resVar~TGroup,data=ANOdata)
print(ANOmodel)
print(summary(ANOmodel))
z <- summary(ANOmodel)
str(z)
aggregate(resVar~TGroup,data=ANOdata,FUN=mean)
unlist(z)
unlist(z)[7]
ANOsum <- list(Fval=unlist(z)[7],probF=unlist(z)[9])
ANOsum
```
Write code to generate a useful graph of the data.
```{r}
ANOPlot <- ggplot(data=ANOdata,aes(x=TGroup,y=resVar,fill=TGroup)) +
geom_boxplot() + scale_x_discrete(labels=c("AcqGG", "AcqKG", "AcqKK", "Bet","Core","Deg","Rand"))
print(ANOPlot)
# ggsave(filename="Plot2.pdf",plot=ANOPlot,device="pdf")
#+ theme(text = element_text(size=20), axis.text.x = element_text(angle=90, hjust=1))
```
## Part 5
Try running your analysis multiple times to get a feeling for how variable the results are with the same parameters, but different sets of random numbers.
###Same Parameters Run 2
```{r}
nGroup <- 7 # number of treatment groups
nName <- c("RandomImmunization","BetweennessImmunization", "DegreeImmunization", "CorenessImmunization", "AcquaintanceKKimmunization", "AcquaintanceKGimmunization", "AcquaintanceGGimmunization" ) # names of groups
nSize <- c(10000,10000,10000, 10000, 10000, 10000, 10000) # number of observations in each group
nMean <- c(0.059,0.017,0.015, 0.05, 0.022, 0.007, 0.005) # mean of each group
nSD <- c(0.04, 0.01,0.01, 0.01, 0.025, 0.02, 0.015) # standard deviation of each group
ID <- 1:(sum(nSize)) # id vector for each row
resVar <- c(rnorm(n=nSize[1],mean=nMean[1],sd=nSD[1]),
rnorm(n=nSize[2],mean=nMean[2],sd=nSD[2]),
rnorm(n=nSize[3],mean=nMean[3],sd=nSD[3]),
rnorm(n=nSize[4],mean=nMean[4],sd=nSD[4]),
rnorm(n=nSize[5],mean=nMean[5],sd=nSD[5]),
rnorm(n=nSize[6],mean=nMean[6],sd=nSD[6]),
rnorm(n=nSize[7],mean=nMean[7],sd=nSD[7]))
TGroup <- rep(nName,nSize)
ANOdata <- data.frame(ID,TGroup,resVar)
str(ANOdata)
ANOmodel <- aov(resVar~TGroup,data=ANOdata)
print(ANOmodel)
print(summary(ANOmodel))
z <- summary(ANOmodel)
str(z)
aggregate(resVar~TGroup,data=ANOdata,FUN=mean)
unlist(z)
unlist(z)[7]
ANOsum <- list(Fval=unlist(z)[7],probF=unlist(z)[9])
ANOsum
ANOPlot <- ggplot(data=ANOdata,aes(x=TGroup,y=resVar,fill=TGroup)) +
geom_boxplot() + scale_x_discrete(labels=c("AcqGG", "AcqKG", "AcqKK", "Bet","Core","Deg","Rand"))
print(ANOPlot)
# ggsave(filename="Plot2.pdf",plot=ANOPlot,device="pdf")
#+ theme(text = element_text(size=20), axis.text.x = element_text(angle=90, hjust=1))
```
###Same Parameters Run 3
```{r, echo=FALSE}
nGroup <- 7 # number of treatment groups
nName <- c("RandomImmunization","BetweennessImmunization", "DegreeImmunization", "CorenessImmunization", "AcquaintanceKKimmunization", "AcquaintanceKGimmunization", "AcquaintanceGGimmunization" ) # names of groups
nSize <- c(10000,10000,10000, 10000, 10000, 10000, 10000) # number of observations in each group
nMean <- c(0.059,0.017,0.015, 0.05, 0.022, 0.007, 0.005) # mean of each group
nSD <- c(0.04, 0.01,0.01, 0.01, 0.025, 0.02, 0.015) # standard deviation of each group
ID <- 1:(sum(nSize)) # id vector for each row
resVar <- c(rnorm(n=nSize[1],mean=nMean[1],sd=nSD[1]),
rnorm(n=nSize[2],mean=nMean[2],sd=nSD[2]),
rnorm(n=nSize[3],mean=nMean[3],sd=nSD[3]),
rnorm(n=nSize[4],mean=nMean[4],sd=nSD[4]),
rnorm(n=nSize[5],mean=nMean[5],sd=nSD[5]),
rnorm(n=nSize[6],mean=nMean[6],sd=nSD[6]),
rnorm(n=nSize[7],mean=nMean[7],sd=nSD[7]))
TGroup <- rep(nName,nSize)
ANOdata <- data.frame(ID,TGroup,resVar)
str(ANOdata)
ANOmodel <- aov(resVar~TGroup,data=ANOdata)
print(ANOmodel)
print(summary(ANOmodel))
z <- summary(ANOmodel)
str(z)
aggregate(resVar~TGroup,data=ANOdata,FUN=mean)
unlist(z)
unlist(z)[7]
ANOsum <- list(Fval=unlist(z)[7],probF=unlist(z)[9])
ANOsum
ANOPlot <- ggplot(data=ANOdata,aes(x=TGroup,y=resVar,fill=TGroup)) +
geom_boxplot() + scale_x_discrete(labels=c("AcqGG", "AcqKG", "AcqKK", "Bet","Core","Deg","Rand"))
print(ANOPlot)
# ggsave(filename="Plot2.pdf",plot=ANOPlot,device="pdf")
#+ theme(text = element_text(size=20), axis.text.x = element_text(angle=90, hjust=1))
```
###Same Parameters Run 4
```{r, echo=FALSE}
nGroup <- 7 # number of treatment groups
nName <- c("RandomImmunization","BetweennessImmunization", "DegreeImmunization", "CorenessImmunization", "AcquaintanceKKimmunization", "AcquaintanceKGimmunization", "AcquaintanceGGimmunization" ) # names of groups
nSize <- c(10000,10000,10000, 10000, 10000, 10000, 10000) # number of observations in each group
nMean <- c(0.059,0.017,0.015, 0.05, 0.022, 0.007, 0.005) # mean of each group
nSD <- c(0.04, 0.01,0.01, 0.01, 0.025, 0.02, 0.015) # standard deviation of each group
ID <- 1:(sum(nSize)) # id vector for each row
resVar <- c(rnorm(n=nSize[1],mean=nMean[1],sd=nSD[1]),
rnorm(n=nSize[2],mean=nMean[2],sd=nSD[2]),
rnorm(n=nSize[3],mean=nMean[3],sd=nSD[3]),
rnorm(n=nSize[4],mean=nMean[4],sd=nSD[4]),
rnorm(n=nSize[5],mean=nMean[5],sd=nSD[5]),
rnorm(n=nSize[6],mean=nMean[6],sd=nSD[6]),
rnorm(n=nSize[7],mean=nMean[7],sd=nSD[7]))
TGroup <- rep(nName,nSize)
ANOdata <- data.frame(ID,TGroup,resVar)
str(ANOdata)
ANOmodel <- aov(resVar~TGroup,data=ANOdata)
print(ANOmodel)
print(summary(ANOmodel))
z <- summary(ANOmodel)
str(z)
aggregate(resVar~TGroup,data=ANOdata,FUN=mean)
unlist(z)
unlist(z)[7]
ANOsum <- list(Fval=unlist(z)[7],probF=unlist(z)[9])
ANOsum
ANOPlot <- ggplot(data=ANOdata,aes(x=TGroup,y=resVar,fill=TGroup)) +
geom_boxplot() + scale_x_discrete(labels=c("AcqGG", "AcqKG", "AcqKK", "Bet","Core","Deg","Rand"))
print(ANOPlot)
# ggsave(filename="Plot2.pdf",plot=ANOPlot,device="pdf")
#+ theme(text = element_text(size=20), axis.text.x = element_text(angle=90, hjust=1))
```
Thoughts: The results are incredibly stable throughout each run using different sets of random numbers. This is likely due to the very large sample size and the large difference in the means between the control and the treatment groups.
## Part 6
Now begin adjusting the means of the different groups. Given the sample sizes you have chosen, how small can the differences between the groups be (the “effect size”) for you to still detect a significant pattern (p < 0.05)?
### Means Adjustment 1: For all treatment groups change the means so that they are approximately only 50% as far from the mean of the control group as they were in the original analysis
```{r}
nGroup <- 7 # number of treatment groups
nName <- c("RandomImmunization","BetweennessImmunization", "DegreeImmunization", "CorenessImmunization", "AcquaintanceKKimmunization", "AcquaintanceKGimmunization", "AcquaintanceGGimmunization" ) # names of groups
nSize <- c(10000,10000,10000, 10000, 10000, 10000, 10000) # number of observations in each group
nMean <- c(0.059,0.04,0.039, 0.055, 0.042, 0.03, 0.029) # mean of each group
nSD <- c(0.04, 0.01,0.01, 0.01, 0.025, 0.02, 0.015) # standard deviation of each group
ID <- 1:(sum(nSize)) # id vector for each row
resVar <- c(rnorm(n=nSize[1],mean=nMean[1],sd=nSD[1]),
rnorm(n=nSize[2],mean=nMean[2],sd=nSD[2]),
rnorm(n=nSize[3],mean=nMean[3],sd=nSD[3]),
rnorm(n=nSize[4],mean=nMean[4],sd=nSD[4]),
rnorm(n=nSize[5],mean=nMean[5],sd=nSD[5]),
rnorm(n=nSize[6],mean=nMean[6],sd=nSD[6]),
rnorm(n=nSize[7],mean=nMean[7],sd=nSD[7]))
TGroup <- rep(nName,nSize)
ANOdata <- data.frame(ID,TGroup,resVar)
str(ANOdata)
ANOmodel <- aov(resVar~TGroup,data=ANOdata)
print(ANOmodel)
print(summary(ANOmodel))
z <- summary(ANOmodel)
str(z)
aggregate(resVar~TGroup,data=ANOdata,FUN=mean)
unlist(z)
unlist(z)[7]
ANOsum <- list(Fval=unlist(z)[7],probF=unlist(z)[9])
ANOsum
ANOPlot <- ggplot(data=ANOdata,aes(x=TGroup,y=resVar,fill=TGroup)) +
geom_boxplot() + scale_x_discrete(labels=c("AcqGG", "AcqKG", "AcqKK", "Bet","Core","Deg","Rand"))
print(ANOPlot)
# ggsave(filename="Plot2.pdf",plot=ANOPlot,device="pdf")
#+ theme(text = element_text(size=20), axis.text.x = element_text(angle=90, hjust=1))
```
Result of Means Adjustment 1: p value is still unrealistically low
### Means Adjustment 2: reduce the difference in means by approximately 50% again
```{r}
nGroup <- 7 # number of treatment groups
nName <- c("RandomImmunization","BetweennessImmunization", "DegreeImmunization", "CorenessImmunization", "AcquaintanceKKimmunization", "AcquaintanceKGimmunization", "AcquaintanceGGimmunization" ) # names of groups
nSize <- c(10000,10000,10000, 10000, 10000, 10000, 10000) # number of observations in each group
nMean <- c(0.059,0.05,0.049, 0.057, 0.053, 0.046, 0.046) # mean of each group
nSD <- c(0.04, 0.01,0.01, 0.01, 0.025, 0.02, 0.015) # standard deviation of each group
ID <- 1:(sum(nSize)) # id vector for each row
resVar <- c(rnorm(n=nSize[1],mean=nMean[1],sd=nSD[1]),
rnorm(n=nSize[2],mean=nMean[2],sd=nSD[2]),
rnorm(n=nSize[3],mean=nMean[3],sd=nSD[3]),
rnorm(n=nSize[4],mean=nMean[4],sd=nSD[4]),
rnorm(n=nSize[5],mean=nMean[5],sd=nSD[5]),
rnorm(n=nSize[6],mean=nMean[6],sd=nSD[6]),
rnorm(n=nSize[7],mean=nMean[7],sd=nSD[7]))
TGroup <- rep(nName,nSize)
ANOdata <- data.frame(ID,TGroup,resVar)
str(ANOdata)
ANOmodel <- aov(resVar~TGroup,data=ANOdata)
print(ANOmodel)
print(summary(ANOmodel))
z <- summary(ANOmodel)
str(z)
aggregate(resVar~TGroup,data=ANOdata,FUN=mean)
unlist(z)
unlist(z)[7]
ANOsum <- list(Fval=unlist(z)[7],probF=unlist(z)[9])
ANOsum
ANOPlot <- ggplot(data=ANOdata,aes(x=TGroup,y=resVar,fill=TGroup)) +
geom_boxplot() + scale_x_discrete(labels=c("AcqGG", "AcqKG", "AcqKK", "Bet","Core","Deg","Rand"))
print(ANOPlot)
# ggsave(filename="Plot2.pdf",plot=ANOPlot,device="pdf")
#+ theme(text = element_text(size=20), axis.text.x = element_text(angle=90, hjust=1))
```
Result of Means Adjustment 2: p value is still unrealistically low
### Means Adjustment 3: reduce the difference in means by approximately 50% a third time
```{r}
nGroup <- 7 # number of treatment groups
nName <- c("RandomImmunization","BetweennessImmunization", "DegreeImmunization", "CorenessImmunization", "AcquaintanceKKimmunization", "AcquaintanceKGimmunization", "AcquaintanceGGimmunization" ) # names of groups
nSize <- c(10000,10000,10000, 10000, 10000, 10000, 10000) # number of observations in each group
nMean <- c(0.059,0.0545,0.054, 0.058, 0.056, 0.053, 0.053) # mean of each group
nSD <- c(0.04, 0.01,0.01, 0.01, 0.025, 0.02, 0.015) # standard deviation of each group
ID <- 1:(sum(nSize)) # id vector for each row
resVar <- c(rnorm(n=nSize[1],mean=nMean[1],sd=nSD[1]),
rnorm(n=nSize[2],mean=nMean[2],sd=nSD[2]),
rnorm(n=nSize[3],mean=nMean[3],sd=nSD[3]),
rnorm(n=nSize[4],mean=nMean[4],sd=nSD[4]),
rnorm(n=nSize[5],mean=nMean[5],sd=nSD[5]),
rnorm(n=nSize[6],mean=nMean[6],sd=nSD[6]),
rnorm(n=nSize[7],mean=nMean[7],sd=nSD[7]))
TGroup <- rep(nName,nSize)
ANOdata <- data.frame(ID,TGroup,resVar)
str(ANOdata)
ANOmodel <- aov(resVar~TGroup,data=ANOdata)
print(ANOmodel)
print(summary(ANOmodel))
z <- summary(ANOmodel)
str(z)
aggregate(resVar~TGroup,data=ANOdata,FUN=mean)
unlist(z)
unlist(z)[7]
ANOsum <- list(Fval=unlist(z)[7],probF=unlist(z)[9])
ANOsum
ANOPlot <- ggplot(data=ANOdata,aes(x=TGroup,y=resVar,fill=TGroup)) +
geom_boxplot() + scale_x_discrete(labels=c("AcqGG", "AcqKG", "AcqKK", "Bet","Core","Deg","Rand"))
print(ANOPlot)
# ggsave(filename="Plot2.pdf",plot=ANOPlot,device="pdf")
#+ theme(text = element_text(size=20), axis.text.x = element_text(angle=90, hjust=1))
```
Result of Means Adjustment 3: Ok well now at least the value is not less than half of machine epsilon. Lets keep going
### Means Adjustment 4: reduce the difference in means by approximately 50% a fourth time
```{r}
nGroup <- 7 # number of treatment groups
nName <- c("RandomImmunization","BetweennessImmunization", "DegreeImmunization", "CorenessImmunization", "AcquaintanceKKimmunization", "AcquaintanceKGimmunization", "AcquaintanceGGimmunization" ) # names of groups
nSize <- c(10000,10000,10000, 10000, 10000, 10000, 10000) # number of observations in each group
nMean <- c(0.059,0.057,0.0565, 0.0585, 0.058, 0.056, 0.056) # mean of each group
nSD <- c(0.04, 0.01,0.01, 0.01, 0.025, 0.02, 0.015) # standard deviation of each group
ID <- 1:(sum(nSize)) # id vector for each row
resVar <- c(rnorm(n=nSize[1],mean=nMean[1],sd=nSD[1]),
rnorm(n=nSize[2],mean=nMean[2],sd=nSD[2]),
rnorm(n=nSize[3],mean=nMean[3],sd=nSD[3]),
rnorm(n=nSize[4],mean=nMean[4],sd=nSD[4]),
rnorm(n=nSize[5],mean=nMean[5],sd=nSD[5]),
rnorm(n=nSize[6],mean=nMean[6],sd=nSD[6]),
rnorm(n=nSize[7],mean=nMean[7],sd=nSD[7]))
TGroup <- rep(nName,nSize)
ANOdata <- data.frame(ID,TGroup,resVar)
str(ANOdata)
ANOmodel <- aov(resVar~TGroup,data=ANOdata)
print(ANOmodel)
print(summary(ANOmodel))
z <- summary(ANOmodel)
str(z)
aggregate(resVar~TGroup,data=ANOdata,FUN=mean)
unlist(z)
unlist(z)[7]
ANOsum <- list(Fval=unlist(z)[7],probF=unlist(z)[9])
ANOsum
ANOPlot <- ggplot(data=ANOdata,aes(x=TGroup,y=resVar,fill=TGroup)) +
geom_boxplot() + scale_x_discrete(labels=c("AcqGG", "AcqKG", "AcqKK", "Bet","Core","Deg","Rand"))
print(ANOPlot)
# ggsave(filename="Plot2.pdf",plot=ANOPlot,device="pdf")
#+ theme(text = element_text(size=20), axis.text.x = element_text(angle=90, hjust=1))
```
Result of Means Adjustment 4: Lets keep going until we get p > 0.05
### Means Adjustment 5: reduce the difference in means by approximately 50% a fifth time
```{r}
nGroup <- 7 # number of treatment groups
nName <- c("RandomImmunization","BetweennessImmunization", "DegreeImmunization", "CorenessImmunization", "AcquaintanceKKimmunization", "AcquaintanceKGimmunization", "AcquaintanceGGimmunization" ) # names of groups
nSize <- c(10000,10000,10000, 10000, 10000, 10000, 10000) # number of observations in each group
nMean <- c(0.059,0.058,0.05725, 0.05875, 0.05875, 0.0575, 0.0575) # mean of each group
nSD <- c(0.04, 0.01,0.01, 0.01, 0.025, 0.02, 0.015) # standard deviation of each group
ID <- 1:(sum(nSize)) # id vector for each row
resVar <- c(rnorm(n=nSize[1],mean=nMean[1],sd=nSD[1]),
rnorm(n=nSize[2],mean=nMean[2],sd=nSD[2]),
rnorm(n=nSize[3],mean=nMean[3],sd=nSD[3]),
rnorm(n=nSize[4],mean=nMean[4],sd=nSD[4]),
rnorm(n=nSize[5],mean=nMean[5],sd=nSD[5]),
rnorm(n=nSize[6],mean=nMean[6],sd=nSD[6]),
rnorm(n=nSize[7],mean=nMean[7],sd=nSD[7]))
TGroup <- rep(nName,nSize)
ANOdata <- data.frame(ID,TGroup,resVar)
str(ANOdata)
ANOmodel <- aov(resVar~TGroup,data=ANOdata)
print(ANOmodel)
print(summary(ANOmodel))
z <- summary(ANOmodel)
str(z)
aggregate(resVar~TGroup,data=ANOdata,FUN=mean)
unlist(z)
unlist(z)[7]
ANOsum <- list(Fval=unlist(z)[7],probF=unlist(z)[9])
ANOsum
ANOPlot <- ggplot(data=ANOdata,aes(x=TGroup,y=resVar,fill=TGroup)) +
geom_boxplot() + scale_x_discrete(labels=c("AcqGG", "AcqKG", "AcqKK", "Bet","Core","Deg","Rand"))
print(ANOPlot)
# ggsave(filename="Plot2.pdf",plot=ANOPlot,device="pdf")
#+ theme(text = element_text(size=20), axis.text.x = element_text(angle=90, hjust=1))
```
Result of Means Adjustment 5: Lets keep going until we get p > 0.05
### Means Adjustment 6: reduce the difference in means by approximately 50% a sixth time
```{r}
nGroup <- 7 # number of treatment groups
nName <- c("RandomImmunization","BetweennessImmunization", "DegreeImmunization", "CorenessImmunization", "AcquaintanceKKimmunization", "AcquaintanceKGimmunization", "AcquaintanceGGimmunization" ) # names of groups
nSize <- c(10000,10000,10000, 10000, 10000, 10000, 10000) # number of observations in each group
nMean <- c(0.059,0.0585,0.058, 0.0589, 0.0589, 0.05825, 0.05825) # mean of each group
nSD <- c(0.04, 0.01,0.01, 0.01, 0.025, 0.02, 0.015) # standard deviation of each group
ID <- 1:(sum(nSize)) # id vector for each row
resVar <- c(rnorm(n=nSize[1],mean=nMean[1],sd=nSD[1]),
rnorm(n=nSize[2],mean=nMean[2],sd=nSD[2]),
rnorm(n=nSize[3],mean=nMean[3],sd=nSD[3]),
rnorm(n=nSize[4],mean=nMean[4],sd=nSD[4]),
rnorm(n=nSize[5],mean=nMean[5],sd=nSD[5]),
rnorm(n=nSize[6],mean=nMean[6],sd=nSD[6]),
rnorm(n=nSize[7],mean=nMean[7],sd=nSD[7]))
TGroup <- rep(nName,nSize)
ANOdata <- data.frame(ID,TGroup,resVar)
str(ANOdata)
ANOmodel <- aov(resVar~TGroup,data=ANOdata)
print(ANOmodel)
print(summary(ANOmodel))
z <- summary(ANOmodel)
str(z)
aggregate(resVar~TGroup,data=ANOdata,FUN=mean)
unlist(z)
unlist(z)[7]
ANOsum <- list(Fval=unlist(z)[7],probF=unlist(z)[9])
ANOsum
ANOPlot <- ggplot(data=ANOdata,aes(x=TGroup,y=resVar,fill=TGroup)) +
geom_boxplot() + scale_x_discrete(labels=c("AcqGG", "AcqKG", "AcqKK", "Bet","Core","Deg","Rand"))
print(ANOPlot)
# ggsave(filename="Plot2.pdf",plot=ANOPlot,device="pdf")
#+ theme(text = element_text(size=20), axis.text.x = element_text(angle=90, hjust=1))
```
Result of Means Adjustment 6: Almost there!
### Means Adjustment 7: reduce the difference in means by approximately 50% a seventh time
```{r}
nGroup <- 7 # number of treatment groups
nName <- c("RandomImmunization","BetweennessImmunization", "DegreeImmunization", "CorenessImmunization", "AcquaintanceKKimmunization", "AcquaintanceKGimmunization", "AcquaintanceGGimmunization" ) # names of groups
nSize <- c(10000,10000,10000, 10000, 10000, 10000, 10000) # number of observations in each group
nMean <- c(0.059,0.05875,0.0585, 0.05895, 0.05895, 0.0588, 0.0588) # mean of each group
nSD <- c(0.04, 0.01,0.01, 0.01, 0.025, 0.02, 0.015) # standard deviation of each group
ID <- 1:(sum(nSize)) # id vector for each row
resVar <- c(rnorm(n=nSize[1],mean=nMean[1],sd=nSD[1]),
rnorm(n=nSize[2],mean=nMean[2],sd=nSD[2]),
rnorm(n=nSize[3],mean=nMean[3],sd=nSD[3]),
rnorm(n=nSize[4],mean=nMean[4],sd=nSD[4]),
rnorm(n=nSize[5],mean=nMean[5],sd=nSD[5]),
rnorm(n=nSize[6],mean=nMean[6],sd=nSD[6]),
rnorm(n=nSize[7],mean=nMean[7],sd=nSD[7]))
TGroup <- rep(nName,nSize)
ANOdata <- data.frame(ID,TGroup,resVar)
str(ANOdata)
ANOmodel <- aov(resVar~TGroup,data=ANOdata)
print(ANOmodel)
print(summary(ANOmodel))
z <- summary(ANOmodel)
str(z)
aggregate(resVar~TGroup,data=ANOdata,FUN=mean)
unlist(z)
unlist(z)[7]
ANOsum <- list(Fval=unlist(z)[7],probF=unlist(z)[9])
ANOsum
ANOPlot <- ggplot(data=ANOdata,aes(x=TGroup,y=resVar,fill=TGroup)) +
geom_boxplot() + scale_x_discrete(labels=c("AcqGG", "AcqKG", "AcqKK", "Bet","Core","Deg","Rand"))
print(ANOPlot)
# ggsave(filename="Plot2.pdf",plot=ANOPlot,device="pdf")
#+ theme(text = element_text(size=20), axis.text.x = element_text(angle=90, hjust=1))
```
Result of Means Adjustment 6: Woohoo! We did it! With the differences in means between the control group and the treatment groups approximately (1/2)^7 of their original difference, we no longer see p values below 0.05. This is likely due to the very high sample size.
## Part 7
Alternatively, for the effect sizes you originally hypothesized, what is the minimum sample size you would need in order to detect a statistically significant effect? Again, run the model a few times with the same parameter set to get a feeling for the effect of random variation in the data
###Cut 1: N = (1/2)N_original, Run 1
```{r}
nGroup <- 7 # number of treatment groups
nName <- c("RandomImmunization","BetweennessImmunization", "DegreeImmunization", "CorenessImmunization", "AcquaintanceKKimmunization", "AcquaintanceKGimmunization", "AcquaintanceGGimmunization" ) # names of groups
N <- 5000
nSize <- c(N,N,N, N, N, N, N) # number of observations in each group
nMean <- c(0.059,0.017,0.015, 0.05, 0.022, 0.007, 0.005) # mean of each group
nSD <- c(0.04, 0.01,0.01, 0.01, 0.025, 0.02, 0.015) # standard deviation of each group
ID <- 1:(sum(nSize)) # id vector for each row
resVar <- c(rnorm(n=nSize[1],mean=nMean[1],sd=nSD[1]),
rnorm(n=nSize[2],mean=nMean[2],sd=nSD[2]),
rnorm(n=nSize[3],mean=nMean[3],sd=nSD[3]),
rnorm(n=nSize[4],mean=nMean[4],sd=nSD[4]),
rnorm(n=nSize[5],mean=nMean[5],sd=nSD[5]),
rnorm(n=nSize[6],mean=nMean[6],sd=nSD[6]),
rnorm(n=nSize[7],mean=nMean[7],sd=nSD[7]))
TGroup <- rep(nName,nSize)
ANOdata <- data.frame(ID,TGroup,resVar)
str(ANOdata)
ANOmodel <- aov(resVar~TGroup,data=ANOdata)
print(ANOmodel)
print(summary(ANOmodel))
z <- summary(ANOmodel)
str(z)
aggregate(resVar~TGroup,data=ANOdata,FUN=mean)
unlist(z)
unlist(z)[7]
ANOsum <- list(Fval=unlist(z)[7],probF=unlist(z)[9])
ANOsum
ANOPlot <- ggplot(data=ANOdata,aes(x=TGroup,y=resVar,fill=TGroup)) +
geom_boxplot() + scale_x_discrete(labels=c("AcqGG", "AcqKG", "AcqKK", "Bet","Core","Deg","Rand"))
print(ANOPlot)
# ggsave(filename="Plot2.pdf",plot=ANOPlot,device="pdf")
#+ theme(text = element_text(size=20), axis.text.x = element_text(angle=90, hjust=1))
```
###Cut N = (1/2)N_original, Run 2
```{r}
nGroup <- 7 # number of treatment groups
nName <- c("RandomImmunization","BetweennessImmunization", "DegreeImmunization", "CorenessImmunization", "AcquaintanceKKimmunization", "AcquaintanceKGimmunization", "AcquaintanceGGimmunization" ) # names of groups
N <- 5000
nSize <- c(N,N,N, N, N, N, N) # number of observations in each group
nMean <- c(0.059,0.017,0.015, 0.05, 0.022, 0.007, 0.005) # mean of each group
nSD <- c(0.04, 0.01,0.01, 0.01, 0.025, 0.02, 0.015) # standard deviation of each group
ID <- 1:(sum(nSize)) # id vector for each row
resVar <- c(rnorm(n=nSize[1],mean=nMean[1],sd=nSD[1]),
rnorm(n=nSize[2],mean=nMean[2],sd=nSD[2]),
rnorm(n=nSize[3],mean=nMean[3],sd=nSD[3]),
rnorm(n=nSize[4],mean=nMean[4],sd=nSD[4]),
rnorm(n=nSize[5],mean=nMean[5],sd=nSD[5]),
rnorm(n=nSize[6],mean=nMean[6],sd=nSD[6]),
rnorm(n=nSize[7],mean=nMean[7],sd=nSD[7]))
TGroup <- rep(nName,nSize)
ANOdata <- data.frame(ID,TGroup,resVar)
str(ANOdata)
ANOmodel <- aov(resVar~TGroup,data=ANOdata)
print(ANOmodel)
print(summary(ANOmodel))
z <- summary(ANOmodel)
str(z)
aggregate(resVar~TGroup,data=ANOdata,FUN=mean)
unlist(z)
unlist(z)[7]
ANOsum <- list(Fval=unlist(z)[7],probF=unlist(z)[9])
ANOsum
ANOPlot <- ggplot(data=ANOdata,aes(x=TGroup,y=resVar,fill=TGroup)) +
geom_boxplot() + scale_x_discrete(labels=c("AcqGG", "AcqKG", "AcqKK", "Bet","Core","Deg","Rand"))
print(ANOPlot)
# ggsave(filename="Plot2.pdf",plot=ANOPlot,device="pdf")
#+ theme(text = element_text(size=20), axis.text.x = element_text(angle=90, hjust=1))
```
###Cut 1: N = (1/2)N_original, Run 3
```{r}
nGroup <- 7 # number of treatment groups
nName <- c("RandomImmunization","BetweennessImmunization", "DegreeImmunization", "CorenessImmunization", "AcquaintanceKKimmunization", "AcquaintanceKGimmunization", "AcquaintanceGGimmunization" ) # names of groups
N <- 5000
nSize <- c(N,N,N, N, N, N, N) # number of observations in each group
nSD <- c(0.04, 0.01,0.01, 0.01, 0.025, 0.02, 0.015) # standard deviation of each group
ID <- 1:(sum(nSize)) # id vector for each row
resVar <- c(rnorm(n=nSize[1],mean=nMean[1],sd=nSD[1]),
rnorm(n=nSize[2],mean=nMean[2],sd=nSD[2]),
rnorm(n=nSize[3],mean=nMean[3],sd=nSD[3]),
rnorm(n=nSize[4],mean=nMean[4],sd=nSD[4]),
rnorm(n=nSize[5],mean=nMean[5],sd=nSD[5]),
rnorm(n=nSize[6],mean=nMean[6],sd=nSD[6]),
rnorm(n=nSize[7],mean=nMean[7],sd=nSD[7]))
TGroup <- rep(nName,nSize)
ANOdata <- data.frame(ID,TGroup,resVar)
str(ANOdata)
ANOmodel <- aov(resVar~TGroup,data=ANOdata)
print(ANOmodel)
print(summary(ANOmodel))
z <- summary(ANOmodel)
str(z)
aggregate(resVar~TGroup,data=ANOdata,FUN=mean)
unlist(z)
unlist(z)[7]
ANOsum <- list(Fval=unlist(z)[7],probF=unlist(z)[9])
ANOsum
ANOPlot <- ggplot(data=ANOdata,aes(x=TGroup,y=resVar,fill=TGroup)) +
geom_boxplot() + scale_x_discrete(labels=c("AcqGG", "AcqKG", "AcqKK", "Bet","Core","Deg","Rand"))
print(ANOPlot)
# ggsave(filename="Plot2.pdf",plot=ANOPlot,device="pdf")
#+ theme(text = element_text(size=20), axis.text.x = element_text(angle=90, hjust=1))
```
Results for Cut 1: random variation has a greater effect but p is still unrealistically low. Lets do a smaller sample size
###Cut 2: N = (1/2)N_original, Run 1
```{r}
nGroup <- 7 # number of treatment groups
nName <- c("RandomImmunization","BetweennessImmunization", "DegreeImmunization", "CorenessImmunization", "AcquaintanceKKimmunization", "AcquaintanceKGimmunization", "AcquaintanceGGimmunization" ) # names of groups
N <- 2
nSize <- c(N,N,N, N, N, N, N) # number of observations in each group
nMean <- c(0.059,0.017,0.015, 0.05, 0.022, 0.007, 0.005) # mean of each group
nSD <- c(0.04, 0.01,0.01, 0.01, 0.025, 0.02, 0.015) # standard deviation of each group
ID <- 1:(sum(nSize)) # id vector for each row
resVar <- c(rnorm(n=nSize[1],mean=nMean[1],sd=nSD[1]),
rnorm(n=nSize[2],mean=nMean[2],sd=nSD[2]),
rnorm(n=nSize[3],mean=nMean[3],sd=nSD[3]),
rnorm(n=nSize[4],mean=nMean[4],sd=nSD[4]),
rnorm(n=nSize[5],mean=nMean[5],sd=nSD[5]),
rnorm(n=nSize[6],mean=nMean[6],sd=nSD[6]),
rnorm(n=nSize[7],mean=nMean[7],sd=nSD[7]))
TGroup <- rep(nName,nSize)
ANOdata <- data.frame(ID,TGroup,resVar)
str(ANOdata)
ANOmodel <- aov(resVar~TGroup,data=ANOdata)
print(ANOmodel)
print(summary(ANOmodel))
z <- summary(ANOmodel)
str(z)
aggregate(resVar~TGroup,data=ANOdata,FUN=mean)
unlist(z)
unlist(z)[7]
ANOsum <- list(Fval=unlist(z)[7],probF=unlist(z)[9])
ANOsum
ANOPlot <- ggplot(data=ANOdata,aes(x=TGroup,y=resVar,fill=TGroup)) +
geom_boxplot() + scale_x_discrete(labels=c("AcqGG", "AcqKG", "AcqKK", "Bet","Core","Deg","Rand"))
print(ANOPlot)
# ggsave(filename="Plot2.pdf",plot=ANOPlot,device="pdf")
#+ theme(text = element_text(size=20), axis.text.x = element_text(angle=90, hjust=1))
```
In order to get non-significant p values, we have to drop our sample size to N=2, which is ridiculously low, but emerges that way because apparently our variance was unreasonably small.