-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patha2c_robot.py
82 lines (63 loc) · 2.49 KB
/
a2c_robot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os
import gymnasium as gym
import panda_gym
from pyvirtualdisplay import Display
from huggingface_sb3 import load_from_hub, package_to_hub
from stable_baselines3 import A2C
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize
from stable_baselines3.common.env_util import make_vec_env
from huggingface_hub import notebook_login
def setup_virtual_display():
virtual_display = Display(visible=0, size=(1400, 900))
virtual_display.start()
def create_environment(env_id):
return gym.make(env_id)
def print_observation_space(env):
s_size = env.observation_space.shape
print("_____OBSERVATION SPACE_____ \n")
print("The State Space is: ", s_size)
print("Sample observation", env.observation_space.sample())
def print_action_space(env):
a_size = env.action_space
print("\n _____ACTION SPACE_____ \n")
print("The Action Space is: ", a_size)
print("Action Space Sample", env.action_space.sample())
def make_vec_env_with_normalize(env_id, n_envs=4):
env = make_vec_env(env_id, n_envs=n_envs)
env = VecNormalize(env, norm_obs=True, norm_reward=True, clip_obs=10.)
return env
def train_model(env, model_name, num_steps=1_000_000):
model = A2C(policy="MultiInputPolicy", env=env, verbose=1)
model.learn(num_steps)
model.save(model_name)
env.save("vec_normalize.pkl")
return model
def evaluate_model(model, eval_env):
mean_reward, std_reward = evaluate_policy(model, eval_env)
print(f"Mean reward = {mean_reward:.2f} +/- {std_reward:.2f}")
def main():
setup_virtual_display()
env_id = "PandaReachDense-v3"
env = create_environment(env_id)
print_observation_space(env)
print_action_space(env)
env = make_vec_env_with_normalize(env_id, n_envs=4)
model = train_model(env, "a2c-PandaReachDense-v3")
eval_env = DummyVecEnv([lambda: gym.make("PandaReachDense-v3")])
eval_env = VecNormalize.load("vec_normalize.pkl", eval_env)
eval_env.render_mode = "rgb_array"
eval_env.training = False
eval_env.norm_reward = False
evaluate_model(model, eval_env)
package_to_hub(
model=model,
model_name=f"a2c-{env_id}",
model_architecture="A2C",
env_id=env_id,
eval_env=eval_env,
repo_id=f"shahzebnaveed/a2c-{env_id}",
commit_message="Initial commit",
)
if __name__ == "__main__":
main()