-
Notifications
You must be signed in to change notification settings - Fork 146
/
Copy pathTYY_train.py
154 lines (118 loc) · 5.26 KB
/
TYY_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import pandas as pd
import logging
import argparse
import os
from keras.callbacks import LearningRateScheduler, ModelCheckpoint
from keras.optimizers import SGD, Adam
from keras.utils import np_utils
from TYY_model import TYY_MobileNet_reg, TYY_DenseNet_reg
from TYY_utils import mk_dir, load_data_npz
import sys
import numpy as np
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.mobilenet import MobileNet
import TYY_callbacks
from keras.preprocessing.image import ImageDataGenerator
from TYY_generators import *
from keras.utils import plot_model
from moviepy.editor import *
import cv2
logging.basicConfig(level=logging.DEBUG)
def get_args():
parser = argparse.ArgumentParser(description="This script trains the CNN model for age and gender estimation.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--input", "-i", type=str, required=True,
help="path to input database npz file")
parser.add_argument("--db", type=str, required=True,
help="database name")
parser.add_argument("--netType", type=int, required=True,
help="network type")
parser.add_argument("--batch_size", type=int, default=128,
help="batch size")
parser.add_argument("--nb_epochs", type=int, default=90,
help="number of epochs")
parser.add_argument("--validation_split", type=float, default=0.2,
help="validation split ratio")
args = parser.parse_args()
return args
def main():
args = get_args()
input_path = args.input
db_name = args.db
batch_size = args.batch_size
nb_epochs = args.nb_epochs
validation_split = args.validation_split
netType = args.netType
logging.debug("Loading data...")
image, gender, age, image_size = load_data_npz(input_path)
x_data = image
y_data_a = age
start_decay_epoch = [30,60]
optMethod = Adam()
if netType == 1:
alpha = 0.25
model = TYY_MobileNet_reg(image_size,alpha)()
save_name = 'mobilenet_reg_%s_%d' % (alpha, image_size)
model.compile(optimizer=optMethod, loss=["mae"], metrics={'pred_a':'mae'})
elif netType == 2:
alpha = 0.5
model = TYY_MobileNet_reg(image_size,alpha)()
save_name = 'mobilenet_reg_%s_%d' % (alpha, image_size)
model.compile(optimizer=optMethod, loss=["mae"], metrics={'pred_a':'mae'})
elif netType == 3:
N_densenet = 3
depth_densenet = 3*N_densenet+4
model = TYY_DenseNet_reg(image_size,depth_densenet)()
save_name = 'densenet_reg_%d_%d' % (depth_densenet, image_size)
model.compile(optimizer=optMethod, loss=["mae"], metrics={'pred_a':'mae'})
elif netType == 4:
N_densenet = 5
depth_densenet = 3*N_densenet+4
model = TYY_DenseNet_reg(image_size,depth_densenet)()
save_name = 'densenet_reg_%d_%d' % (depth_densenet, image_size)
model.compile(optimizer=optMethod, loss=["mae"], metrics={'pred_a':'mae'})
if db_name == "wiki":
weight_file = "imdb_models/"+save_name+"/"+save_name+".h5"
model.load_weights(weight_file)
#start_decay_epoch = range(0,nb_epochs,30)
elif db_name == "morph":
weight_file = "wiki_models/"+save_name+"/"+save_name+".h5"
model.load_weights(weight_file)
logging.debug("Model summary...")
model.count_params()
model.summary()
logging.debug("Saving model...")
mk_dir(db_name+"_models")
mk_dir(db_name+"_models/"+save_name)
mk_dir(db_name+"_checkpoints")
plot_model(model, to_file=db_name+"_models/"+save_name+"/"+save_name+".png")
with open(os.path.join(db_name+"_models/"+save_name, save_name+'.json'), "w") as f:
f.write(model.to_json())
decaylearningrate = TYY_callbacks.DecayLearningRate(start_decay_epoch)
callbacks = [ModelCheckpoint(db_name+"_checkpoints/weights.{epoch:02d}-{val_loss:.2f}.hdf5",
monitor="val_loss",
verbose=1,
save_best_only=True,
mode="auto"), decaylearningrate
]
logging.debug("Running training...")
data_num = len(x_data)
indexes = np.arange(data_num)
np.random.shuffle(indexes)
x_data = x_data[indexes]
y_data_a = y_data_a[indexes]
train_num = int(data_num * (1 - validation_split))
x_train = x_data[:train_num]
x_test = x_data[train_num:]
y_train_a = y_data_a[:train_num]
y_test_a = y_data_a[train_num:]
hist = model.fit_generator(generator=data_generator_reg(X=x_train, Y=y_train_a, batch_size=batch_size),
steps_per_epoch=train_num // batch_size,
validation_data=(x_test, [y_test_a]),
epochs=nb_epochs, verbose=1,
callbacks=callbacks)
logging.debug("Saving weights...")
model.save_weights(os.path.join(db_name+"_models/"+save_name, save_name+'.h5'), overwrite=True)
pd.DataFrame(hist.history).to_hdf(os.path.join(db_name+"_models/"+save_name, 'history_'+save_name+'.h5'), "history")
if __name__ == '__main__':
main()