forked from open-edge-platform/training_extensions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
389 lines (305 loc) · 15 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import json
import re
import sys
from datetime import datetime
from pathlib import Path
from pprint import pprint
import torch
from tensorboardX import SummaryWriter
from torch import optim
from torch.optim import lr_scheduler
from torch.utils.data import WeightedRandomSampler, RandomSampler
from action_recognition.dataset import make_dataset
from action_recognition.logging import TrainingLogger, StreamHandler, TensorboardHandler, CSVHandler
from action_recognition.loss import create_criterion
from action_recognition.model import create_model
from action_recognition.options import parse_arguments
from action_recognition.spatial_transforms import (
MEAN_STATISTICS, STD_STATISTICS, CenterCrop, Compose, CornerCrop,
GaussCrop, HorizontalFlip, MultiScaleCrop, Normalize, RandomHorizontalFlip,
Scale, ToTensor
)
from action_recognition.target_transforms import ClassLabel
from action_recognition.temporal_transforms import (
LoopPadding, TemporalRandomCrop, TemporalStride)
from action_recognition.test import test
from action_recognition.train import train
from action_recognition.utils import (
TeedStream, json_serialize, load_state,
create_code_snapshot, mkdir_if_not_exists, print_git_revision)
from action_recognition.validation import validate
def export_onnx(args, model, export_name):
model = model.module if args.cuda else model
model.eval()
if hasattr(model, "export_onnx"):
model.export_onnx(export_name)
return
param = next(model.parameters())
x = param.new_zeros(1, args.sample_duration, 3, args.sample_size, args.sample_size)
with torch.no_grad():
torch.onnx.export(model, (x,), export_name, verbose=True)
print("Done")
def make_normalization(args):
if not args.mean_norm and not args.std_norm:
norm_method = Normalize([0, 0, 0], [1, 1, 1])
elif not args.std_norm:
norm_method = Normalize(MEAN_STATISTICS[args.mean_dataset], [1, 1, 1])
else:
norm_method = Normalize(MEAN_STATISTICS[args.mean_dataset], STD_STATISTICS[args.mean_dataset])
return norm_method
def setup_dataset(args, train=True, val=True, test=True):
temporal_stride_size = args.temporal_stride
sample_duration = args.sample_duration * temporal_stride_size
normalization = make_normalization(args)
train_spatial_transform = [Compose([
Scale(args.sample_size * 8 // 7),
MultiScaleCrop((args.sample_size, args.sample_size), args.scales),
# PhotometricDistort(),
ToTensor(args.norm_value),
normalization,
])]
if args.hflip:
train_spatial_transform[0].transforms.insert(1, RandomHorizontalFlip())
temporal_stride = TemporalStride(temporal_stride_size)
train_temporal_transform = Compose(
[temporal_stride, TemporalRandomCrop(sample_duration / temporal_stride_size)])
train_target_transform = ClassLabel()
train_data = make_dataset(args, 'training', train_spatial_transform, train_temporal_transform,
train_target_transform) if train else None
# validation data
val_spatial_transform = [Compose([
Scale(args.sample_size),
CenterCrop(args.sample_size),
ToTensor(args.norm_value),
normalization
])]
val_temporal_transform = Compose([temporal_stride, LoopPadding(sample_duration / temporal_stride_size)])
val_target_transform = ClassLabel()
val_data = make_dataset(args, 'validation', val_spatial_transform, val_temporal_transform,
val_target_transform) if val else None
# test data
test_spatial_transform = [Compose([
Scale(int(args.sample_size / args.scale_in_test)),
CornerCrop(args.sample_size, args.crop_position_in_test),
ToTensor(args.norm_value), normalization
])]
if args.tta:
test_spatial_transform = []
for i in range(5):
test_spatial_transform.append(Compose([
Scale(int(args.sample_size / args.scale_in_test)),
GaussCrop(args.sample_size),
ToTensor(args.norm_value), normalization
]))
test_spatial_transform.append(Compose([
Scale(int(args.sample_size / args.scale_in_test)),
GaussCrop(args.sample_size),
HorizontalFlip(),
ToTensor(args.norm_value), normalization
]))
test_temporal_transform = Compose([temporal_stride, LoopPadding(sample_duration / temporal_stride_size)])
test_target_transform = ClassLabel()
test_data = make_dataset(args, 'testing', test_spatial_transform, test_temporal_transform,
test_target_transform) if test else None
return train_data, val_data, test_data
def setup_solver(args, parameters):
if args.optimizer == 'adam':
optimizer = optim.Adam(parameters, lr=args.learning_rate, weight_decay=args.weight_decay,
eps=1e-3 if args.fp16 else 1e-8)
else: # args.optimizer == 'sgd'
optimizer = optim.SGD(parameters, lr=args.learning_rate, weight_decay=args.weight_decay,
momentum=0.9, nesterov=args.nesterov)
if args.scheduler == 'plateau':
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, patience=args.lr_patience, threshold=0.01, cooldown=0,
threshold_mode='abs', mode='max', factor=args.gamma)
else: # args.scheduler == 'step':
scheduler = lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.gamma)
return optimizer, scheduler
def setup_logging(args):
logger = TrainingLogger()
# Create handlers
logger.register_handler("val_batch", StreamHandler(prefix='Val: ', scope='batch'))
logger.register_handler("val_epoch", StreamHandler(fmt="* {epoch} epochs done: {values}", scope='epoch',
display_instant=False))
logger.register_handler("test_std", StreamHandler(fmt="Testing: [{step}/{total}]\t{values}",
scope='batch'))
logger.register_handler("test_end", StreamHandler(fmt="* Testing results: {values}", scope='epoch',
display_instant=False))
logger.register_handler("train_epoch", StreamHandler(fmt="* Train epoch {epoch} done: {values}", scope='epoch'))
logger.register_handler("train_batch", StreamHandler(prefix='Train: ', scope='batch'))
logger.register_handler("tb", TensorboardHandler(scope='epoch', summary_writer=args.writer))
logger.register_handler("tb_global", TensorboardHandler(scope='global', summary_writer=args.writer))
logger.register_handler("val_csv", CSVHandler(scope='epoch', csv_path=(args.result_path / 'val.csv'),
index_col='epoch'))
logger.register_handler("train_csv", CSVHandler(scope='epoch', csv_path=(args.result_path / 'train.csv'),
index_col='epoch'))
# Create logged values
logger.register_value("train/acc", ['train_batch', 'tb_global'], average=True, display_name='clip')
logger.register_value("train/loss", ['train_batch', 'tb_global'], average=True, display_name='loss')
logger.register_value("train/kd_loss", ['train_batch', 'tb_global'], average=True, display_name='loss')
logger.register_value("train/epoch_acc", ['train_epoch', 'tb', 'train_csv'], display_name='clip')
logger.register_value("train/epoch_loss", ['train_epoch', 'tb', 'train_csv'], display_name='loss')
logger.register_value_group("lr/.*", ['tb'])
logger.register_value("time/train_data", ['train_batch'], average=True, display_name='data time')
logger.register_value("time/train_step", ['train_batch'], average=True, display_name='time')
logger.register_value("time/train_epoch", ['train_epoch'], display_name='Train epoch time')
logger.register_value("val/acc", ['val_batch', 'val_epoch', 'tb', 'val_csv'], average=True, display_name='clip')
logger.register_value("val/video", ['val_batch', 'val_epoch', 'tb', 'val_csv'], average=False, display_name='video')
logger.register_value("val/loss", ['val_batch', 'tb', 'val_csv'], average=True, display_name='loss')
logger.register_value("val/generalization_error", ['val_epoch', 'tb', 'val_csv'],
display_name='Train Val accuracy gap')
logger.register_value("time/val_data", ['val_batch'], average=True, display_name='data time')
logger.register_value("time/val_step", ['val_batch'], average=True, display_name='time')
logger.register_value("time/val_epoch", ['val_epoch'], average=False, display_name='Validation time')
logger.register_value("test/acc", ['test_std', 'test_end', 'tb'], average=True, display_name='clip')
logger.register_value("test/video", ['test_std', 'test_end', 'tb'], average=False, display_name='video')
return logger
def log_configuration(args):
print("ARGV:", "-" * 80, sep='\n')
pprint(sys.argv)
print()
print("CONFIG: ", "-" * 80, sep='\n')
pprint(vars(args))
print_git_revision()
print()
def log_training_setup(model, train_data, val_data, optimizer, scheduler):
print("Model:", model)
print("Train spatial transforms: ", train_data.spatial_transform)
print("Train temporal transforms: ", train_data.temporal_transform)
print("Val spatial transforms: ", val_data.spatial_transform)
print("Val temporal transforms: ", val_data.temporal_transform)
print("Optimizer: ", optimizer)
print("Scheduler: ", scheduler)
print("-" * 89)
def find_latest_checkpoint(result_path):
latest_found = -1
latest_path = None
for ckpt_path in (result_path / 'checkpoints').iterdir():
ckpt_name = ckpt_path.name
match = re.match(r".*_(\d+)\..*", ckpt_name)
if match and int(match.group(1)) > latest_found:
latest_found = int(match.group(1))
latest_path = ckpt_path
return latest_path
def prepare_result_dir(result_path):
result_path = Path(result_path)
mkdir_if_not_exists(result_path)
# find first directory suffix
# if directory already ends-up with numeric suffix, use it as result path.
if not re.match(r'\d+', result_path.parts[-1]):
files = [str(f.name) for f in result_path.iterdir()]
i = 1
while str(i) in files:
i += 1
result_path = result_path / str(i)
result_path.mkdir()
# create aux dirs
mkdir_if_not_exists(result_path / 'tb')
mkdir_if_not_exists(result_path / 'checkpoints')
return result_path
def configure_paths(args):
relative_paths = ('video_path', 'annotation_path', 'video_path', 'flow_path', 'resume_path', 'pretrain_path')
if args.root_path:
# make paths relative to the args.root_path
for path in relative_paths:
arg_path = getattr(args, path, None)
if arg_path:
setattr(args, path, args.root_path / arg_path)
# create directory for storing results (checkpoints, logs, etc.)
args.result_path = prepare_result_dir(args.result_path)
# try resume training from latest checkpoint in a result dir
if args.try_resume and not args.resume_path:
args.resume_path = find_latest_checkpoint(args.result_path)
def configure_dataset(args):
dataset = args.dataset
if dataset in ('hmdb51', 'ucf101'):
dataset += '_' + str(getattr(args, 'split', 1))
config_path = Path(__file__).parent / 'datasets' / "{}.json".format(dataset)
if args.dataset_config:
config_path = Path(args.dataset_config)
with config_path.open() as fp:
dataset_config = json.load(fp)
if 'flow_path' not in dataset_config:
args.flow_path = None
# copy options from dataset config
for k, v in dataset_config.items():
if not hasattr(args, k) or not getattr(args, k):
setattr(args, k, v)
def configure():
args = parse_arguments()
configure_dataset(args)
configure_paths(args)
args.scales = [args.initial_scale]
for i in range(1, args.n_scales):
args.scales.append(args.scales[-1] * args.scale_step)
args.arch = args.model
with (args.result_path / 'opts.json').open('w') as opt_file:
json.dump(vars(args), opt_file, default=json_serialize)
args.tee = TeedStream(args.result_path / "output.log")
args.time_suffix = datetime.now().strftime("%d%m%H%M")
tb_path = args.result_path / "tb"
args.writer = SummaryWriter(tb_path.as_posix())
args.device = torch.device("cuda" if args.cuda else "cpu")
create_code_snapshot(Path(__file__).parent, args.result_path / "snapshot.tgz")
torch.manual_seed(args.manual_seed)
args.logger = setup_logging(args)
return args
def main():
args = configure()
log_configuration(args)
model, parameters = create_model(args, args.model, pretrain_path=args.pretrain_path)
optimizer, scheduler = setup_solver(args, parameters)
if args.resume_path:
print('loading checkpoint {}'.format(args.resume_path))
checkpoint = torch.load(str(args.resume_path))
load_state(model, checkpoint['state_dict'])
if args.resume_train:
args.begin_epoch = checkpoint['epoch']
if not args.train and checkpoint.get('optimizer') is not None:
optimizer.load_state_dict(checkpoint['optimizer'])
if args.onnx:
export_onnx(args, model, args.onnx)
return
criterion = create_criterion(args)
train_data, val_data, test_data = setup_dataset(args, args.train, args.val, args.test)
if args.train or args.val:
val_loader = torch.utils.data.DataLoader(
val_data,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.n_threads,
pin_memory=True,
drop_last=False
)
if args.train:
if args.weighted_sampling:
class_weights = getattr(args, 'class_weights', None)
sampler = WeightedRandomSampler(train_data.get_sample_weights(class_weights), len(train_data))
else:
sampler = RandomSampler(train_data)
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=args.batch_size,
sampler=sampler,
num_workers=args.n_threads,
pin_memory=True,
drop_last=args.sync_bn
)
log_training_setup(model, train_data, val_data, optimizer, scheduler)
train(args, model, train_loader, val_loader, criterion, optimizer, scheduler, args.logger)
if not args.train and args.val:
with torch.no_grad():
validate(args, args.begin_epoch, val_loader, model, criterion, args.logger)
if args.test:
test_loader = torch.utils.data.DataLoader(
test_data,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.n_threads,
pin_memory=True
)
with torch.no_grad():
with args.logger.scope():
test(args, test_loader, model, args.logger)
if __name__ == '__main__':
main()