|
| 1 | +import argparse |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import torch |
| 5 | +from mmcv.parallel import MMDataParallel |
| 6 | + |
| 7 | +from mmdet.apis import init_detector |
| 8 | +from mmdet.models import detectors |
| 9 | + |
| 10 | +from tools.ssd_export_helpers import (get_proposals, PriorBox, |
| 11 | + PriorBoxClustered, DetectionOutput) |
| 12 | + |
| 13 | + |
| 14 | +def onnx_export(self, img, img_meta, export_name='', **kwargs): |
| 15 | + self._export_mode = True |
| 16 | + self.img_metas = img_meta |
| 17 | + torch.onnx.export(self, img, export_name, verbose=False) |
| 18 | + |
| 19 | + |
| 20 | +def forward(self, img, img_meta=[None], return_loss=True, **kwargs): #passing None here is a hack to fool the jit engine |
| 21 | + if self._export_mode: |
| 22 | + return self.forward_export(img) |
| 23 | + if return_loss: |
| 24 | + return self.forward_train(img, img_meta, **kwargs) |
| 25 | + else: |
| 26 | + return self.forward_test(img, img_meta, **kwargs) |
| 27 | + |
| 28 | + |
| 29 | +def forward_export_detector(self, img): |
| 30 | + x = self.extract_feat(img) |
| 31 | + outs = self.bbox_head(x) |
| 32 | + bbox_result = self.bbox_head.export_forward(*outs, self.test_cfg, True, |
| 33 | + self.img_metas, x, img) |
| 34 | + return bbox_result |
| 35 | + |
| 36 | + |
| 37 | +def export_forward_ssd_head(self, cls_scores, bbox_preds, cfg, rescale, |
| 38 | + img_metas, feats, img_tensor): |
| 39 | + num_levels = len(cls_scores) |
| 40 | + |
| 41 | + anchors = [] |
| 42 | + for i in range(num_levels): |
| 43 | + if self.anchor_generators[i].manual_anchors: |
| 44 | + anchors.append(PriorBoxClustered.apply( |
| 45 | + self.anchor_generators[i], self.anchor_strides[i], |
| 46 | + feats[i], img_tensor, self.target_stds)) |
| 47 | + else: |
| 48 | + anchors.append(PriorBox.apply(self.anchor_generators[i], |
| 49 | + self.anchor_strides[i], |
| 50 | + feats[i], |
| 51 | + img_tensor, self.target_stds)) |
| 52 | + anchors = torch.cat(anchors, 2) |
| 53 | + cls_scores, bbox_preds = self._prepare_cls_scores_bbox_preds( |
| 54 | + cls_scores, bbox_preds) |
| 55 | + |
| 56 | + return DetectionOutput.apply(cls_scores, bbox_preds, img_metas, cfg, |
| 57 | + rescale, anchors, self.cls_out_channels, |
| 58 | + self.use_sigmoid_cls, self.target_means, |
| 59 | + self.target_stds) |
| 60 | + |
| 61 | + |
| 62 | +def prepare_cls_scores_bbox_preds_ssd_head(self, cls_scores, bbox_preds): |
| 63 | + scores_list = [] |
| 64 | + for o in cls_scores: |
| 65 | + score = o.permute(0, 2, 3, 1).contiguous().view(o.size(0), -1) |
| 66 | + scores_list.append(score) |
| 67 | + cls_scores = torch.cat(scores_list, 1) |
| 68 | + cls_scores = cls_scores.view(cls_scores.size(0), -1, self.num_classes) |
| 69 | + if self.use_sigmoid_cls: |
| 70 | + cls_scores = cls_scores.sigmoid() |
| 71 | + else: |
| 72 | + cls_scores = cls_scores.softmax(-1) |
| 73 | + cls_scores = cls_scores.view(cls_scores.size(0), -1) |
| 74 | + bbox_list = [] |
| 75 | + for o in bbox_preds: |
| 76 | + boxes = o.permute(0, 2, 3, 1).contiguous().view(o.size(0), -1) |
| 77 | + bbox_list.append(boxes) |
| 78 | + bbox_preds = torch.cat(bbox_list, 1) |
| 79 | + return cls_scores, bbox_preds |
| 80 | + |
| 81 | + |
| 82 | +def get_bboxes_ssd_head(self, cls_scores, bbox_preds, img_metas, cfg, |
| 83 | + rescale=False): |
| 84 | + assert len(cls_scores) == len(bbox_preds) |
| 85 | + num_levels = len(cls_scores) |
| 86 | + mlvl_anchors = [ |
| 87 | + self.anchor_generators[i].grid_anchors(cls_scores[i].size()[-2:], |
| 88 | + self.anchor_strides[i]) |
| 89 | + for i in range(num_levels) |
| 90 | + ] |
| 91 | + mlvl_anchors = torch.cat(mlvl_anchors, 0) |
| 92 | + cls_scores, bbox_preds = self._prepare_cls_scores_bbox_preds( |
| 93 | + cls_scores, bbox_preds) |
| 94 | + bboxes_list = get_proposals(img_metas, cls_scores, bbox_preds, |
| 95 | + mlvl_anchors, cfg, rescale, |
| 96 | + self.cls_out_channels, |
| 97 | + self.use_sigmoid_cls, self.target_means, |
| 98 | + self.target_stds) |
| 99 | + |
| 100 | + |
| 101 | +def parse_args(): |
| 102 | + parser = argparse.ArgumentParser(description='MMDet onnx exporter for \ |
| 103 | + SSD detector') |
| 104 | + parser.add_argument('config', help='config file path') |
| 105 | + parser.add_argument('checkpoint', help='checkpoint file') |
| 106 | + parser.add_argument('output', help='onnx file') |
| 107 | + args = parser.parse_args() |
| 108 | + return args |
| 109 | + |
| 110 | + |
| 111 | +def main(): |
| 112 | + args = parse_args() |
| 113 | + |
| 114 | + model = init_detector(args.config, args.checkpoint) |
| 115 | + cfg = model.cfg |
| 116 | + assert getattr(detectors, cfg.model['type']) is \ |
| 117 | + detectors.SingleStageDetector |
| 118 | + model = MMDataParallel(model, device_ids=[0]) |
| 119 | + |
| 120 | + batch = torch.FloatTensor(1, 3, cfg.input_size, cfg.input_size).cuda() |
| 121 | + input_shape = (cfg.input_size, cfg.input_size, 3) |
| 122 | + scale = np.array([1, 1, 1, 1], dtype=np.float32) |
| 123 | + data = dict(img=batch, img_meta=[{'img_shape': input_shape, |
| 124 | + 'scale_factor': scale}]) |
| 125 | + model.eval() |
| 126 | + model.module.onnx_export = onnx_export.__get__(model.module) |
| 127 | + model.module.forward = forward.__get__(model.module) |
| 128 | + model.module.forward_export = forward_export_detector.__get__(model.module) |
| 129 | + model.module.bbox_head.export_forward = export_forward_ssd_head.__get__(model.module.bbox_head) |
| 130 | + model.module.bbox_head._prepare_cls_scores_bbox_preds = prepare_cls_scores_bbox_preds_ssd_head.__get__(model.module.bbox_head) |
| 131 | + model.module.bbox_head.get_bboxes = get_bboxes_ssd_head.__get__(model.module.bbox_head) |
| 132 | + model.module.onnx_export(export_name=args.output, **data) |
| 133 | + |
| 134 | +if __name__ == '__main__': |
| 135 | + main() |
0 commit comments