|
25 | 25 | assert_isadjoint
|
26 | 26 | """ # NOQA D205
|
27 | 27 |
|
| 28 | +import warnings |
| 29 | + |
28 | 30 | import numpy as np
|
29 | 31 | import scipy.sparse as sp
|
30 | 32 |
|
|
81 | 83 | _happiness_rng = np.random.default_rng()
|
82 | 84 |
|
83 | 85 |
|
| 86 | +def _warn_random_test(): |
| 87 | + stack = inspect.stack() |
| 88 | + in_pytest = any(x[0].f_globals["__name__"].startswith("_pytest.") for x in stack) |
| 89 | + in_nosetest = any(x[0].f_globals["__name__"].startswith("nose.") for x in stack) |
| 90 | + |
| 91 | + if in_pytest or in_nosetest: |
| 92 | + test = "pytest" if in_pytest else "nosetest" |
| 93 | + warnings.warn( |
| 94 | + f"You are running a {test} without setting a random seed, the results might not be" |
| 95 | + "repeatable. For repeatable tests please pass an argument to `random seed` that is" |
| 96 | + "not `None`.", |
| 97 | + UserWarning, |
| 98 | + stacklevel=3, |
| 99 | + ) |
| 100 | + return in_pytest or in_nosetest |
| 101 | + |
| 102 | + |
84 | 103 | def setup_mesh(mesh_type, nC, nDim, random_seed=None):
|
85 | 104 | """Generate arbitrary mesh for testing.
|
86 | 105 |
|
@@ -110,6 +129,8 @@ def setup_mesh(mesh_type, nC, nDim, random_seed=None):
|
110 | 129 | A discretize mesh of class specified by the input argument *mesh_type*
|
111 | 130 | """
|
112 | 131 | if "random" in mesh_type:
|
| 132 | + if random_seed is None: |
| 133 | + _warn_random_test() |
113 | 134 | rng = np.random.default_rng(random_seed)
|
114 | 135 | if "TensorMesh" in mesh_type:
|
115 | 136 | if "uniform" in mesh_type:
|
@@ -649,6 +670,8 @@ def check_derivative(
|
649 | 670 | x0 = mkvc(x0)
|
650 | 671 |
|
651 | 672 | if dx is None:
|
| 673 | + if random_seed is None: |
| 674 | + _warn_random_test() |
652 | 675 | rng = np.random.default_rng(random_seed)
|
653 | 676 | dx = rng.standard_normal(len(x0))
|
654 | 677 |
|
@@ -867,6 +890,8 @@ def assert_isadjoint(
|
867 | 890 | """
|
868 | 891 | __tracebackhide__ = True
|
869 | 892 |
|
| 893 | + if random_seed is None: |
| 894 | + _warn_random_test() |
870 | 895 | rng = np.random.default_rng(random_seed)
|
871 | 896 |
|
872 | 897 | def random(size, iscomplex):
|
|
0 commit comments