|
545 | 545 | "text": [ |
546 | 546 | "/Users/raymondpan/zephyr/Zephyr-repo/venv/lib/python3.8/site-packages/sklearn/impute/_base.py:555: UserWarning: Skipping features without any observed values: [ 1 2 6 7 9 10 15 16 17 18]. At least one non-missing value is needed for imputation with strategy='mean'.\n", |
547 | 547 | " warnings.warn(\n", |
548 | | - "[GUIDE] Successfully performed set_feature_matrix.\n", |
| 548 | + "[GUIDE] STALE WARNING: set_feature_matrix.\n", |
| 549 | + "\tPerforming step 2 with set_feature_matrix.\n", |
| 550 | + "\tThis is a forward step via a set method.\n", |
| 551 | + "\tAll previous steps' results will be considered stale.\n", |
| 552 | + "[GUIDE] DONE: set_feature_matrix.\n", |
549 | 553 | "\tYou can perform the next step by calling generate_train_test_split.\n", |
550 | | - "[GUIDE] Successfully performed generate_train_test_split.\n", |
| 554 | + "[GUIDE] DONE: generate_train_test_split.\n", |
551 | 555 | "\tYou can perform the next step by calling fit_pipeline.\n" |
552 | 556 | ] |
553 | 557 | }, |
|
604 | 608 | "execution_count": 3, |
605 | 609 | "id": "edffee03", |
606 | 610 | "metadata": {}, |
607 | | - "outputs": [], |
| 611 | + "outputs": [ |
| 612 | + { |
| 613 | + "name": "stderr", |
| 614 | + "output_type": "stream", |
| 615 | + "text": [ |
| 616 | + "[GUIDE] DONE: fit_pipeline.\n", |
| 617 | + "\tYou can perform the next step by calling predict or evaluate.\n" |
| 618 | + ] |
| 619 | + } |
| 620 | + ], |
608 | 621 | "source": [ |
609 | 622 | "hyperparameters = {\n", |
610 | 623 | " \"xgboost.XGBClassifier#1\": {\n", |
|
629 | 642 | "id": "78187756", |
630 | 643 | "metadata": {}, |
631 | 644 | "outputs": [ |
| 645 | + { |
| 646 | + "name": "stderr", |
| 647 | + "output_type": "stream", |
| 648 | + "text": [ |
| 649 | + "[GUIDE] DONE: predict.\n", |
| 650 | + "\tYou have reached the end of the predictive engineering workflow.\n", |
| 651 | + "\tYou can call predict or evaluate again or re-perform previous steps based on results.\n" |
| 652 | + ] |
| 653 | + }, |
632 | 654 | { |
633 | 655 | "data": { |
634 | 656 | "text/plain": [ |
|
644 | 666 | "zephyr.predict()" |
645 | 667 | ] |
646 | 668 | }, |
| 669 | + { |
| 670 | + "cell_type": "code", |
| 671 | + "execution_count": null, |
| 672 | + "id": "0c8440ee", |
| 673 | + "metadata": {}, |
| 674 | + "outputs": [], |
| 675 | + "source": [] |
| 676 | + }, |
647 | 677 | { |
648 | 678 | "cell_type": "markdown", |
649 | 679 | "id": "24cda971", |
|
657 | 687 | "execution_count": 5, |
658 | 688 | "id": "cd097853", |
659 | 689 | "metadata": {}, |
660 | | - "outputs": [], |
| 690 | + "outputs": [ |
| 691 | + { |
| 692 | + "name": "stderr", |
| 693 | + "output_type": "stream", |
| 694 | + "text": [ |
| 695 | + "[GUIDE] DONE: evaluate.\n", |
| 696 | + "\tYou have reached the end of the predictive engineering workflow.\n", |
| 697 | + "\tYou can call predict or evaluate again or re-perform previous steps based on results.\n" |
| 698 | + ] |
| 699 | + } |
| 700 | + ], |
661 | 701 | "source": [ |
662 | 702 | "res = zephyr.evaluate()" |
663 | 703 | ] |
|
675 | 715 | " 'sklearn.metrics.precision_score': 0.5,\n", |
676 | 716 | " 'sklearn.metrics.f1_score': 0.6666666666666666,\n", |
677 | 717 | " 'sklearn.metrics.recall_score': 1.0,\n", |
678 | | - " 'zephyr_ml.primitives.postprocessing.confusion_matrix': (array([[1, 1],\n", |
| 718 | + " 'zephyr_ml.primitives.evaluation.confusion_matrix': (array([[1, 1],\n", |
679 | 719 | " [0, 1]]),\n", |
680 | 720 | " <Figure size 640x480 with 2 Axes>),\n", |
681 | | - " 'zephyr_ml.primitives.postprocessing.roc_auc_score_and_curve': (0.5,\n", |
| 721 | + " 'zephyr_ml.primitives.evaluation.roc_auc_score_and_curve': (0.5,\n", |
682 | 722 | " <Figure size 640x480 with 1 Axes>)}" |
683 | 723 | ] |
684 | 724 | }, |
|
719 | 759 | ], |
720 | 760 | "source": [ |
721 | 761 | "%matplotlib inline\n", |
722 | | - "_, conf_matrix_fig = res[\"zephyr_ml.primitives.postprocessing.confusion_matrix\"]\n", |
| 762 | + "_, conf_matrix_fig = res[\"zephyr_ml.primitives.evaluation.confusion_matrix\"]\n", |
723 | 763 | "conf_matrix_fig" |
724 | 764 | ] |
725 | 765 | }, |
726 | 766 | { |
727 | 767 | "cell_type": "code", |
728 | | - "execution_count": 8, |
| 768 | + "execution_count": 9, |
729 | 769 | "id": "d59e86b1", |
730 | 770 | "metadata": {}, |
731 | 771 | "outputs": [ |
|
736 | 776 | "<Figure size 640x480 with 1 Axes>" |
737 | 777 | ] |
738 | 778 | }, |
739 | | - "execution_count": 8, |
| 779 | + "execution_count": 9, |
740 | 780 | "metadata": {}, |
741 | 781 | "output_type": "execute_result" |
742 | 782 | } |
743 | 783 | ], |
744 | 784 | "source": [ |
745 | 785 | "\n", |
746 | | - "_, roc_fig = res[\"zephyr_ml.primitives.postprocessing.roc_auc_score_and_curve\"]\n", |
| 786 | + "_, roc_fig = res[\"zephyr_ml.primitives.evaluation.roc_auc_score_and_curve\"]\n", |
747 | 787 | "\n", |
748 | 788 | "roc_fig\n" |
749 | 789 | ] |
| 790 | + }, |
| 791 | + { |
| 792 | + "cell_type": "code", |
| 793 | + "execution_count": null, |
| 794 | + "id": "38d109a1", |
| 795 | + "metadata": {}, |
| 796 | + "outputs": [], |
| 797 | + "source": [] |
750 | 798 | } |
751 | 799 | ], |
752 | 800 | "metadata": { |
|
0 commit comments