-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathchapter_1.3.lyx
2331 lines (1687 loc) · 39.3 KB
/
chapter_1.3.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.0 created this file. For more info see http://www.lyx.org/
\lyxformat 413
\begin_document
\begin_header
\textclass scrbook
\begin_preamble
\setcounter{chapter}{1}
\usepackage{graphicx}
\usepackage{pict2e}
\usepackage{graphpap}
\usepackage{color}
\usepackage{bm}
\end_preamble
\use_default_options false
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman default
\font_sans default
\font_typewriter default
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_amsmath 1
\use_esint 1
\use_mhchem 1
\use_mathdots 1
\cite_engine basic
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\use_refstyle 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
Integrals
\end_layout
\begin_layout Standard
\begin_inset CommandInset label
LatexCommand label
name "sec:Integrals"
\end_inset
\end_layout
\begin_layout Subsection
Introduction and Definition of Integral
\end_layout
\begin_layout Standard
\begin_inset Note Comment
status open
\begin_layout Itemize
I am sure that people have an intuition about what an integral is, but just
have trouble doing the actual calculations.
So, we should focus on just explaining calculation rules and calculating
some examples in the lectures, and leave out some theory.
But of course, we should leave it in the script so they can read up on
it.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Sometimes we face the situation that we are only given the rate of change
\begin_inset Formula $\dot{x}(t)$
\end_inset
of some quantity of interest.
How can we convert this rate into an absolute value? One simple idea would
be to start with a fixed value
\begin_inset Formula $x_{0}:=x(t_{0})$
\end_inset
and add up the changes
\begin_inset Formula $\dot{x}(t)\Delta t$
\end_inset
for small intervals
\begin_inset Formula $\Delta t$
\end_inset
until we arrive at the point
\begin_inset Formula $t_{n}$
\end_inset
where we want to know the value of
\begin_inset Formula $x$
\end_inset
:
\begin_inset Formula
\begin{eqnarray*}
x(t_{n}) & = & \sum_{i=0}^{n-1}\dot{x}(t_{i})\Delta t_{i}\\
& \mbox{with } & \Delta t_{i}=t_{i+1}-t_{i}.
\end{eqnarray*}
\end_inset
However, in most cases we will make an error, since the rate of change
within an interval
\begin_inset Formula $\Delta t_{i}$
\end_inset
might vary.
By only looking at the rate at the interval borders
\begin_inset Formula $t_{i}$
\end_inset
, we completely ignore that.
We could make the intervals shorter to keep the error small, but in general
we will always get an answer
\begin_inset Formula $x(t_{n})$
\end_inset
that is slightly wrong.
How can we avoid those errors?
\end_layout
\begin_layout Standard
In the previous section, we saw that taking the derivative of a function
is calculating the rate of change of this function at every point.
In this situation we were given the function and wanted to know the rate
of change.
Now, the situation is reverse.
Therefore, what we would really like to do is to reverse the process of
differentiation, i.e.
to get from the rate of change to the actual function value.
This is the subject of this chapter.
It will turn out that integration is not as easy as differentiation.
However, it has a nice geometrical interpretation that we already read
of the introductory example above.
Figure
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:approxIntegral"
\end_inset
shows a picture of our approximate integration from above.
When looking at the sum
\begin_inset Formula $\sum_{i=0}^{n-1}\dot{x}(t_{i})\Delta t_{i}$
\end_inset
we can interpret
\begin_inset Formula $\Delta t_{i}$
\end_inset
as the width of a rectangle with height
\begin_inset Formula $\dot{x}(t_{i})$
\end_inset
.
Summing up their products then means summing up the areas of those rectangles.
We saw in earlier sections, that taking the derivative is the same as computing
the rate of change of a function for infinitesimal small steps along the
\begin_inset Formula $x$
\end_inset
-axis.
This infinitesimal small step was incorporated via taking the limit of
the differential quotient, when letting the step size go to zero.
Integration involves a similar operation that we just mention here.
When integrating, you really apply the approximate summation from above,
but with infinitesimal small
\begin_inset Formula $\Delta t_{i}$
\end_inset
.
This means that an integral is the limit of the sum from above when letting
\begin_inset Formula $\Delta t_{i}$
\end_inset
go to zero.
This limit of the sum is then denoted by a new symbol ''
\begin_inset Formula $\int$
\end_inset
'', a stylized ''S'' for ''
\bar under
s
\bar default
um''.
The
\begin_inset Formula $\Delta t$
\end_inset
is replaced by the symbol
\begin_inset Formula $dt$
\end_inset
, which indicates that
\begin_inset Formula $\Delta t$
\end_inset
is infinitesimally small.
\end_layout
\begin_layout Standard
\begin_inset Float figure
placement h
wide false
sideways false
status open
\begin_layout Plain Layout
\align center
\begin_inset Graphics
filename figs/approxgaussintegral.eps
lyxscale 50
width 6cm
keepAspectRatio
\end_inset
\begin_inset Graphics
filename figs/gaussintegral.eps
lyxscale 50
width 6cm
keepAspectRatio
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption
\begin_layout Plain Layout
\begin_inset CommandInset label
LatexCommand label
name "fig:approxIntegral"
\end_inset
Left: Geometrical interpretation of the approximate integration: Areas of
width
\begin_inset Formula $\Delta t_{i}$
\end_inset
and height
\begin_inset Formula $\dot{x}(t_{i})$
\end_inset
are summed up.
Right: Geometrical interpretation of integration: The integral of the displayed
function in the interval
\begin_inset Formula $[-1,1]$
\end_inset
is the area under the curve of that function.
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Now we are ready to give the geometrical interpretation of the integral
\begin_inset Formula $\int_{t_{0}}^{t_{n}}\dot{x}(t)dt$
\end_inset
: By making the width of the rectangles infinitesimally small, the area
of all rectangles together is the area under the curve
\begin_inset Formula $\dot{x}(t)$
\end_inset
.
\end_layout
\begin_layout Subsubsection*
Definition:
\end_layout
\begin_layout Standard
The integral of the function
\begin_inset Formula $f(x)$
\end_inset
from
\begin_inset Formula $a$
\end_inset
to
\begin_inset Formula $b$
\end_inset
is denoted by
\begin_inset Formula $\int_{a}^{b}f(x)dx$
\end_inset
.
\end_layout
\begin_layout Standard
\align right
\begin_inset Formula $\Diamond$
\end_inset
\end_layout
\begin_layout Standard
We can read of another important property of the integral from the geometrical
interpretation.
When computing our approximate integral, we did not make sure that the
function values of
\begin_inset Formula $\dot{x}(t)$
\end_inset
where positive.
Since
\begin_inset Formula $\Delta t$
\end_inset
was always negative, it could in principle happen, that the area
\begin_inset Formula $\dot{x}(t_{i})\Delta t_{i}$
\end_inset
has a negative value.
In this case the area would really be subtracted from the whole area, instead
of being added.
Therefore, our approximate integral was really the signed area under the
curve.
This carries over to the real integral.
\emph on
The integral is the signed area under the graph of
\begin_inset Formula $f(x)$
\end_inset
.
All parts of
\begin_inset Formula $f(x)$
\end_inset
that lie under the
\begin_inset Formula $x$
\end_inset
-axis will be subtracted from the whole area.
\emph default
Therefore, if we really want to compute the area between the graph and
the
\begin_inset Formula $x$
\end_inset
-axis, we have to find out where
\begin_inset Formula $f(x)$
\end_inset
crosses the
\begin_inset Formula $x$
\end_inset
-axis and must compute the integrals between those points separately, putting
a minus in front of the integral where
\begin_inset Formula $f(x)$
\end_inset
is under the
\begin_inset Formula $x$
\end_inset
-axis.
\end_layout
\begin_layout Subsubsection*
Example
\end_layout
\begin_layout Standard
If a car is moving at constant speed
\begin_inset Formula $v,$
\end_inset
the distance it travels in time
\begin_inset Formula $t_{0}$
\end_inset
is given by
\begin_inset Formula $vt_{0}$
\end_inset
.
If we draw a plot of
\begin_inset Formula $v$
\end_inset
against
\begin_inset Formula $t_{0}$
\end_inset
, we can see that the distance traveled between times
\begin_inset Formula $0$
\end_inset
and
\begin_inset Formula $t_{0}$
\end_inset
is given by the following shaded region.
This is also true if the speed
\begin_inset Formula $v$
\end_inset
is not constant, but a function of time
\begin_inset Formula $v(t)$
\end_inset
.
\end_layout
\begin_layout Standard
Therefore, the distance traveled between times
\begin_inset Formula $0$
\end_inset
and
\begin_inset Formula $t_{0}$
\end_inset
can be computed by solving the integral
\begin_inset Formula $\int_{0}^{t_{0}}v(t)dt$
\end_inset
.
In the case of constant speed, the velocity
\begin_inset Formula $v$
\end_inset
does not depend on
\begin_inset Formula $t$
\end_inset
.
In this case we can already compute the integral geometrically.
As already said, it is the area under the constant curve between
\begin_inset Formula $0$
\end_inset
and
\begin_inset Formula $t_{0}$
\end_inset
.
This is simply
\begin_inset Formula $vt_{0}$
\end_inset
.
So far, we do not know how to compute the integral for the case where
\begin_inset Formula $v$
\end_inset
depends on
\begin_inset Formula $t$
\end_inset
.
We first have to introduce a few rules how to solve integrals.
This is what we are going to do in the following paragraphs.
\end_layout
\begin_layout Standard
\begin_inset Float figure
placement h
wide false
sideways false
status open
\begin_layout Plain Layout
\align center
\begin_inset Graphics
filename figs/speedconst.eps
lyxscale 50
width 6cm
keepAspectRatio
\end_inset
\begin_inset Graphics
filename figs/speedvary.eps
lyxscale 50
width 6cm
keepAspectRatio
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption
\begin_layout Plain Layout
\begin_inset CommandInset label
LatexCommand label
name "fig:approxIntegral"
\end_inset
Distance traveled at time in the time interval
\begin_inset Formula $[0,3]$
\end_inset
with constant speed (left) and with varying speed (right).
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align right
\begin_inset Formula $\lhd$
\end_inset
\end_layout
\begin_layout Standard
Most rules for solving simple integrals are actually the inverted rules
for differentiation.
Before reversing this rules we must make sure that integrating is indeed
the inverse of differentiation.
\end_layout
\begin_layout Subsubsection*
Proposition (Integrating is the inverse of differentiating)
\end_layout
\begin_layout Standard
Suppose that the function
\begin_inset Formula $F(x)$
\end_inset
is defined by
\begin_inset Formula $F(x)=\int_{0}^{x}f(s)ds$
\end_inset
, i.e.
\begin_inset Formula $F(x)$
\end_inset
is the area under the curve from
\begin_inset Formula $0$
\end_inset
to
\begin_inset Formula $x$
\end_inset
.
Then,
\begin_inset Formula $F'(x)=f(x),$
\end_inset
provided that
\begin_inset Formula $f(x)$
\end_inset
is continuous at
\begin_inset Formula $x.$
\end_inset
\end_layout
\begin_layout Subsubsection*
\series medium
\emph on
\bar under
Proof:
\series default
\emph default
\bar default
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Subsubsection*
\series medium
- draw picture as well
\end_layout
\begin_layout Subsubsection*
\series medium
- if pressed for time, leave this out
\end_layout
\end_inset
\end_layout
\begin_layout Standard
For simplicity, suppose that
\begin_inset Formula $f(s)$
\end_inset
is increasing near
\begin_inset Formula $x.$
\end_inset
Then
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{eqnarray*}
f(x)\Delta x & \leq\int_{x}^{x+\Delta x}f(s)ds & \leq f(x+\Delta x)\Delta x\\
f(x) & \leq\frac{\int_{x}^{x+\Delta x}f(s)ds}{\Delta x} & \leq f(x+\Delta x).
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Standard
Now, we can observe that
\begin_inset Formula
\[
F(x+\Delta x)-F(x)=\int_{x}^{x+\Delta x}f(s)ds,
\]
\end_inset
so
\begin_inset Formula
\[
f(x)\leq\frac{F(x+\Delta x)-F(x)}{\Delta x}\leq f(x+\Delta x).
\]
\end_inset
\end_layout
\begin_layout Standard
If we let
\begin_inset Formula $\Delta x\rightarrow$
\end_inset
0,
\begin_inset Formula $f(x+\Delta x)\rightarrow f(x)$
\end_inset
by continuity of
\begin_inset Formula $f(x)$
\end_inset
, and
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
\begin_inset Formula $\frac{F(x+\Delta x)-F(x)}{\Delta x}\rightarrow F'(x)$
\end_inset
by definition of derivative.
In summary,
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
f(x)\leq F'(x)\leq f(x),
\]
\end_inset
which implies that
\begin_inset Formula $F'(x)=f(x).$
\end_inset
\end_layout
\begin_layout Standard
\align right
\begin_inset Formula $\Box$
\end_inset
\end_layout
\begin_layout Standard
The proposition shows, that integrating is really inverse differentiation.
That is why the integral is also sometimes called
\emph on
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
anti-derivative
\end_layout
\end_inset
anti-derivative.
\emph default
So far we have only discussed so called
\emph on
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
definite integral
\end_layout
\end_inset
definite integrals,
\emph default
i.e.
integrals that are computed between two points on the
\begin_inset Formula $x$
\end_inset
-axis.
Often, we can also inverse the process of differentiation first and plug
in the borders of the integral later.
The notation for this kind of integral is the same except that the boundary
points are left out at the integral sign.
Now, we can collect all our kinds of integrals in a mathematical definition.
\end_layout
\begin_layout Subsubsection*
Definition (Anti-Derivative)
\end_layout
\begin_layout Standard
Any function
\begin_inset Formula $F(x)$
\end_inset
with the property that
\begin_inset Formula $F'(x)=f(x)$
\end_inset
is called an
\emph on
anti-derivative
\emph default
or
\emph on
indefinite integral
\emph default
of
\begin_inset Formula $f(x)$
\end_inset
.
A indefinite integral is denoted by
\begin_inset Formula $F(x)=\int f(s)ds$
\end_inset
.
Once we have the indefinite integral, calculating any definite integral
can be computed via:
\begin_inset Formula
\[
\int_{a}^{b}f(s)ds=F(b)-F(a).
\]
\end_inset
\end_layout
\begin_layout Standard
If
\begin_inset Formula $F(x)$
\end_inset
is an anti-derivative, so is
\begin_inset Formula $F(x)+C$
\end_inset
for any constant
\begin_inset Formula $C.$
\end_inset
This constant does not matter, because if evaluate the integral, the constants
cancel:
\begin_inset Formula $F(b)+C-(F(a)+C)=F(b)-F(a)+C-C=F(b)-F(a).$
\end_inset
\end_layout
\begin_layout Standard
In many cases, the shorthand
\begin_inset Formula $[F(x)]_{a}^{b}=F(b)-F(a)$
\end_inset
is used.
\end_layout
\begin_layout Standard
\align right
\begin_inset Formula $\Diamond$
\end_inset
\end_layout
\begin_layout Standard
The relationship between integrating and differentiating allows us to calculate
integrals.
Furthermore, once we have calculated an indefinite integral, we can easily
check whether it is correct by just differentiating it again.
If we get the original function we started with, everything is correct,
otherwise there is a mistake somewhere.
One could even just guess the integral, and then verify whether the guess
is correct.
So, even if integrating can be hard sometimes, checking whether the result
is correct is almost always easy.
\end_layout
\begin_layout Subsubsection*
Example
\end_layout
\begin_layout Standard
Even without knowing any rule how to integrate so far, we know the anti-derivati
ve of
\begin_inset Formula $f(x)=e^{x}$
\end_inset
is again
\begin_inset Formula $F(x)=e^{x}+C$
\end_inset
, since
\begin_inset Formula $\left(e^{x}\right)'=e^{x}$
\end_inset
.
The area under the graph of
\begin_inset Formula $f(x)$
\end_inset
between
\begin_inset Formula $0$
\end_inset
and some other point is given by the integral
\begin_inset Formula
\begin{eqnarray*}
\int_{0}^{T}f(x)dx & = & F(T)-F(0)\\
& = & e^{T}-e^{0}\\
& = & e^{T}-1.
\end{eqnarray*}
\end_inset
For
\begin_inset Formula $T\rightarrow\infty$
\end_inset
the integral diverges, which means that the area under
\begin_inset Formula $f(x)=e^{x}$
\end_inset
is not finite.
\end_layout
\begin_layout Standard
\align right
\begin_inset Formula $\lhd$
\end_inset
\end_layout
\begin_layout Subsubsection*
Exercise
\end_layout
\begin_layout Standard
\begin_inset Marginal
status collapsed
\begin_layout Plain Layout
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
fbox{
\backslash
bf{
\backslash
Large
\backslash
sf E}}
\end_layout
\end_inset
\end_layout
\end_inset
Calculate the derivative of
\begin_inset Formula $F(x)=\frac{1}{n+1}x^{n+1}$
\end_inset
and thus verify that
\begin_inset Formula $F(x)$
\end_inset