-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathutil.py
207 lines (158 loc) · 7.73 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# -*- coding: utf-8 -*-
#Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved.
#This program is free software; you can redistribute it and/or modify it under the terms of the BSD 0-Clause License.
#This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the BSD 0-Clause License for more details.
'''
This is a PyTorch implementation of the CVPR 2020 paper:
"Deep Local Parametric Filters for Image Enhancement": https://arxiv.org/abs/2003.13985
Please cite the paper if you use this code
Tested with Pytorch 1.7.1, Python 3.7.9
Authors: Sean Moran ([email protected]),
Pierre Marza ([email protected])
'''
import matplotlib
matplotlib.use('agg')
from torch.autograd import Variable
import numpy as np
import torch
import sys
from PIL import Image
from skimage.metrics import structural_similarity as ssim
np.set_printoptions(threshold=sys.maxsize)
class ImageProcessing(object):
@staticmethod
def rgb_to_lab(img, is_training=True):
""" PyTorch implementation of RGB to LAB conversion: https://docs.opencv.org/3.3.0/de/d25/imgproc_color_conversions.html
Based roughly on a similar implementation here: https://github.com/affinelayer/pix2pix-tensorflow/blob/master/pix2pix.py
:param img:
:returns:
:rtype:
"""
img = img.permute(2, 1, 0)
shape = img.shape
img = img.contiguous()
img = img.view(-1, 3)
img = (img / 12.92) * img.le(0.04045).float() + (((torch.clamp(img,
min=0.000001) + 0.055) / 1.055) ** 2.4) * img.gt(0.04045).float()
rgb_to_xyz = Variable(torch.FloatTensor([ # X Y Z
[0.412453, 0.212671,
0.019334], # R
[0.357580, 0.715160,
0.119193], # G
[0.180423, 0.072169,
0.950227], # B
]), requires_grad=False).cuda()
img = torch.matmul(img, rgb_to_xyz)
img = torch.mul(img, Variable(torch.FloatTensor(
[1/0.950456, 1.0, 1/1.088754]), requires_grad=False).cuda())
epsilon = 6/29
img = ((img / (3.0 * epsilon**2) + 4.0/29.0) * img.le(epsilon**3).float()) + \
(torch.clamp(img, min=0.0001)**(1.0/3.0) * img.gt(epsilon**3).float())
fxfyfz_to_lab = Variable(torch.FloatTensor([[0.0, 500.0, 0.0], # fx
[116.0, -500.0, 200.0], # fy
[0.0, 0.0, -200.0], # fz
]), requires_grad=False).cuda()
img = torch.matmul(img, fxfyfz_to_lab) + Variable(
torch.FloatTensor([-16.0, 0.0, 0.0]), requires_grad=False).cuda()
img = img.view(shape)
img = img.permute(2, 1, 0)
'''
L_chan: black and white with input range [0, 100]
a_chan/b_chan: color channels with input range ~[-110, 110], not exact
[0, 100] => [0, 1], ~[-110, 110] => [0, 1]
'''
img[0, :, :] = img[0, :, :]/100
img[1, :, :] = (img[1, :, :]/110 + 1)/2
img[2, :, :] = (img[2, :, :]/110 + 1)/2
img[(img != img).detach()] = 0
img = img.contiguous()
return img
@staticmethod
def swapimdims_3HW_HW3(img):
"""Move the image channels to the first dimension of the numpy
multi-dimensional array
:param img: numpy nd array representing the image
:returns: numpy nd array with permuted axes
:rtype: numpy nd array
"""
if img.ndim == 3:
return np.swapaxes(np.swapaxes(img, 1, 2), 0, 2)
elif img.ndim == 4:
return np.swapaxes(np.swapaxes(img, 2, 3), 1, 3)
@staticmethod
def swapimdims_HW3_3HW(img):
"""Move the image channels to the last dimensiion of the numpy
multi-dimensional array
:param img: numpy nd array representing the image
:returns: numpy nd array with permuted axes
:rtype: numpy nd array
"""
if img.ndim == 3:
return np.swapaxes(np.swapaxes(img, 0, 2), 1, 2)
elif img.ndim == 4:
return np.swapaxes(np.swapaxes(img, 1, 3), 2, 3)
@staticmethod
def load_image(img_filepath, normaliser):
"""Loads an image from file as a numpy multi-dimensional array
:param img_filepath: filepath to the image
:returns: image as a multi-dimensional numpy array
:rtype: multi-dimensional numpy array
"""
img = ImageProcessing.normalise_image(np.array(Image.open(img_filepath)), normaliser) # NB: imread normalises to 0-1
return img
@staticmethod
def normalise_image(img, normaliser):
"""Normalises image data to be a float between 0 and 1
:param img: Image as a numpy multi-dimensional image array
:returns: Normalised image as a numpy multi-dimensional image array
:rtype: Numpy array
"""
img = img.astype('float32') / normaliser
return img
@staticmethod
def compute_mse(original, result):
"""Computes the mean squared error between to RGB images represented as multi-dimensional numpy arrays.
:param original: input RGB image as a numpy array
:param result: target RGB image as a numpy array
:returns: the mean squared error between the input and target images
:rtype: float
"""
return ((original - result) ** 2).mean()
@staticmethod
def compute_psnr(image_batchA, image_batchB, max_intensity):
"""Computes the PSNR for a batch of input and output images
:param image_batchA: numpy nd-array representing the image batch A of shape Bx3xWxH
:param image_batchB: numpy nd-array representing the image batch A of shape Bx3xWxH
:param max_intensity: maximum intensity possible in the image (e.g. 255)
:returns: average PSNR for the batch of images
:rtype: float
"""
num_images = image_batchA.shape[0]
psnr_val = 0.0
for i in range(0, num_images):
imageA = image_batchA[i, 0:3, :, :]
imageB = image_batchB[i, 0:3, :, :]
imageB = np.maximum(0, np.minimum(imageB, max_intensity))
psnr_val += 10 * \
np.log10(max_intensity ** 2 /
ImageProcessing.compute_mse(imageA, imageB))
return psnr_val / num_images
@staticmethod
def compute_ssim(image_batchA, image_batchB):
"""Computes the SSIM for a batch of input and output images
:param image_batchA: numpy nd-array representing the image batch A of shape Bx3xWxH
:param image_batchB: numpy nd-array representing the image batch A of shape Bx3xWxH
:param max_intensity: maximum intensity possible in the image (e.g. 255)
:returns: average PSNR for the batch of images
:rtype: float
"""
num_images = image_batchA.shape[0]
ssim_val = 0.0
for i in range(0, num_images):
imageA = ImageProcessing.swapimdims_3HW_HW3(
image_batchA[i, 0:3, :, :])
imageB = ImageProcessing.swapimdims_3HW_HW3(
image_batchB[i, 0:3, :, :])
ssim_val += ssim(imageA, imageB, data_range=imageA.max() - imageA.min(), multichannel=True,
gaussian_weights=True, win_size=11)
return ssim_val / num_images