forked from uneupane/guided-filter
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbox_filter.c
260 lines (222 loc) · 6.21 KB
/
box_filter.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#include <float.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <memory.h>
#define nelem(a) (sizeof(a) / (sizeof(a[0])))
#define min(x,y) ((x) < (y) ? (x) : (y))
#define max(x,y) ((x) < (y) ? (y) : (x))
//typedef double element;
// 2D MEAN FILTER implementation
// image - input image
// result - output image
// N - width of the image (columns)
// M - height of the image (rows)
void meanfilter1(unsigned char *image, double* result, int N, int M)
{
int m, n, i, j;
// Move window through all elements of the image
for(m = 1; m < M - 1; m++)
{
for(n = 1; n < N - 1; n++)
// Take the average
{
result[(m - 1) * (N - 2) + n - 1] = (image[(m - 1) * N + n - 1] +
image[(m - 1) * N + n] +
image[(m - 1) * N + n + 1] +
image[m * N + n - 1] +
image[m * N + n] +
image[m * N + n + 1] +
image[(m + 1) * N + n - 1] +
image[(m + 1) * N + n] +
image[(m + 1) * N + n + 1]) / 9;
//printf("%d\t", result);
}
}
//for (j=1; j<M-1; j++) {
//for (i=1; i<N-1; i++){
//printf("%d\t", (int) result[j*N+i]);
//printf("hello");
//}
//printf("\n");
//}
}
// 2D MEAN FILTER wrapper//
// image - input image
// result - output image
// N - width of the image (columns)
// M - height of the image (rows)
void meanfilter(unsigned char* image, double* result, int N, int M)
{
unsigned char *extension;
int i;
// Check arguments
if (!image || N < 1 || M < 1)
return;
// Allocate memory for signal extension
extension = (unsigned char *) calloc((N+2)*(M+2), sizeof(unsigned char));
//double* extension = new double[(N + 2) * (M + 2)];
// Check memory allocation
if (!extension)
return;
// Create image extension
for(i = 0; i < M; i++)
{
memcpy(extension + (N + 2) * (i + 1) + 1,image + N * i, N * sizeof(unsigned char));
extension[(N + 2) * (i + 1)] = image[N * i];
extension[(N + 2) * (i + 2) - 1] = image[N * (i + 1) - 1];
}
// Fill first line of image extension
memcpy(extension, extension + N + 2, (N + 2) * sizeof(unsigned char));
// Fill last line of image extension
memcpy(extension + (N + 2) * (M + 1), extension + (N + 2) * M, (N + 2) * sizeof(unsigned char));
// Call mean filter implementation
meanfilter1(extension, result ? result : (double *)image, N + 2, M + 2);
// Free memory
free(extension);
}
void boxfilter1(unsigned char *image, double* distance, int N, int M, int radius)
{
int m, n, i, j;
int *cumsum;
calculatecumsum(image, M, N, &cumsum);
distance[M,N] = 0;
// Move window through all elements of the image
// Cumulative SUM over Y axis
for(n = 0; n <N; n++)
{
for(m = 0; m < M; m++)
{
if(m==0)
{
distance[m,n]= distance[m,n];
}
else
{
distance[m,n]= distance[m,n] + cumsum[m-1, n];
}
}
}
// Difference over Y axis
for(m = 0; m <=radius; m++)
{
for(n = 0; n < N; n++)
{
distance[m,n]= cumsum[m+radius, n];
}
}
//imDst(1:r+1, :) = imCum(1+r:2*r+1, :);
for(m = radius+1; m <= M-radius-1; m++)
{
for(n = 0; n < N; n++)
{
distance[m,n]= cumsum[m+radius, n]-cumsum[m*radius-1, n];
}
}
for(m = M-radius; m < M; m++)
{
for(n = 0; n < N; n++)
{
distance[m,n]= cumsum[M-1, n]-cumsum[m*radius-1, n];
}
}
// Cumulative SUM over X axis
for(m = 0; m <M; m++)
{
for(n = 0; n < N; n++)
{
if(n==0)
{
distance[m,n]= distance[m,n];
}
else
{
distance[m,n]= distance[m,n] + cumsum[m, n-1];
}
}
}
// Difference over X axis
for(m = 0; m <M; m++)
{
for(n = 0; n <= radius; n++)
{
distance[m,n]= cumsum[m,n+radius];
}
}
for(m = 0; m <M; m++)
{
for(n = radius+1; n <= N-radius-1; n++)
{
distance[m,n]= cumsum[m,n+radius]-cumsum[m,n*radius-1];
}
}
for(m = 0; m <M; m++)
{
for(n = radius+1; n <= N-radius-1; n++)
{
distance[m,n]= cumsum[m,n+radius]-cumsum[m,n*radius-1];
}
}
for(m = 0; m <M; m++)
{
for(n = N-radius; n < N; n++)
{
distance[m,n]= cumsum[m,N-1]-cumsum[m,n*radius-1];
}
}
//return distance;
}
void calculatecumsum(unsigned char *image, int rows, int cols,
int **cumsumim)
{
int y,x;
(*cumsumim) = (int *) calloc(rows*cols, sizeof(int));
(*cumsumim) = (int *) image;
for (y = 0 ; y < rows ; y++ )
{
for (x = 0; x < cols ; x++ )
{
(cumsumim)[y*cols+x] += (int)(cumsumim)[y*cols+ x];
}
}
}
void guidedfilter(unsigned char *srcimg, unsigned char *guideimg, float *result, int radius, float eps)
{
int i,j;
float N,mean_I, mean_Ip, cov_Ip, mean_II, var_I, a, b, mean_a, mean_b;
//the size of each local patch; N=(2r+1)^2 except for boundary pixels
[hei, wid] = size(I);
center = (*windowsize) / 2;
N = boxfilter(ones(hei, wid), r); //the size of each local patch; N=(2r+1)^2 except for boundary pixels.
mean_I = boxfilter(I, r) ./ N;
mean_p = boxfilter(p, r) ./ N;
mean_Ip = boxfilter(I.*p, r) ./ N;
cov_Ip = mean_Ip - mean_I .* mean_p; //this is the covariance of (I, p) in each local patch.
mean_II = boxfilter(I.*I, r) ./ N;
var_I = mean_II - mean_I .* mean_I;
// calculating the linear coefficients a and b
a = cov_Ip ./ (var_I + eps); // Eqn. (5) in the paper;
b = mean_p - a .* mean_I; // Eqn. (6) in the paper;
mean_a = boxfilter(a, r) ./ N;
mean_b = boxfilter(b, r) ./ N;
q = mean_a .* I + mean_b; // Eqn. (8) in the paper;
gaussian_smooth(img, rows, cols, &smoothedim);
derrivative_x_y(smoothedim, rows, cols, &delta_x, &delta_y);
free(smoothedim);
magnitude_x_y(delta_x, delta_y, rows, cols, edge_mag);
free(delta_x);
free(delta_y);
max_mag = -99999;
min_mag = 99999;
for (j=0; j<rows; j++)
for (i=0; i<cols; i++) {
if (edge_mag[j*cols+i] > max_mag)
max_mag = edge_mag[j*cols+i];
if (edge_mag[j*cols+i] < min_mag)
min_mag = edge_mag[j*cols+i];
}
for (j=0; j<rows; j++)
for (i=0; i<cols; i++)
edge_mag[j*cols+i] = 255*(edge_mag[j*cols+i]-min_mag)/
(max_mag-min_mag);
}