-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
171 lines (130 loc) · 4.93 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import datetime
import os
import pickle
from typing import Tuple
import gym
import numpy as np
import absl
import wrappers
from evaluation import evaluate
from learner import Learner
from viskit.logging import logger, setup_logger
from JaxPref.utils import WandBLogger, define_flags_with_default, get_user_flags, \
set_random_seed, Timer, prefix_metrics
from JaxPref.dataset_utils import PrefD4RLDataset
from JaxPref.PrefTransformer import PrefTransformer
os.environ['XLA_PYTHON_CLIENT_MEM_FRACTION'] = '.50'
FLAGS_DEF = define_flags_with_default(
env_name='halfcheetah-medium-v2',
seed=42,
tqdm=True,
eval_episodes=10,
log_interval=1000,
eval_interval=5000,
batch_size=256,
max_steps=int(1e6),
model_type="PrefTransformer",
comment="base",
seq_len=100,
min_seq_len=0,
dropout=0.0,
lambd=1.0,
dist_temperature=0.1,
logging=WandBLogger.get_default_config(),
# params for loading preference transformer
ckpt_base_dir="./logs/pref",
ckpt_type="last",
pref_comment="base",
transformer=PrefTransformer.get_default_config(),
smooth_sigma=0.0,
smooth_in=True,
)
FLAGS = absl.flags.FLAGS
def initialize_model(pref_comment):
ckpt_dir = os.path.join(FLAGS.ckpt_base_dir, FLAGS.env_name, FLAGS.model_type, pref_comment, f"s{FLAGS.seed}")
if FLAGS.ckpt_type == "best":
model_path = os.path.join(ckpt_dir, "best_model.pkl")
elif FLAGS.ckpt_type == "last":
model_path = os.path.join(ckpt_dir, "model.pkl")
else:
raise NotImplementedError
print("Loading score model from", model_path)
with open(model_path, "rb") as f:
ckpt = pickle.load(f)
reward_model = ckpt['reward_model']
return reward_model
def make_env_and_dataset(env_name: str,
seed: int,
pref_comment: str,
) -> Tuple[gym.Env, PrefD4RLDataset]:
env = gym.make(env_name)
env = wrappers.EpisodeMonitor(env)
env = wrappers.SinglePrecision(env)
env.seed(seed)
env.action_space.seed(seed)
env.observation_space.seed(seed)
reward_model = initialize_model(pref_comment)
dataset = PrefD4RLDataset(
env=env,
seq_len=FLAGS.seq_len,
min_seq_len=FLAGS.min_seq_len,
reward_model=reward_model,
)
return env, dataset
def main(_):
VARIANT = get_user_flags(FLAGS, FLAGS_DEF)
FLAGS.logging.output_dir = os.path.join(FLAGS.logging.output_dir, "policy")
FLAGS.logging.group = "".join([s[0] for j, s in enumerate(FLAGS.env_name.split("-")) if j <= 2])
pref_comment = FLAGS.pref_comment
if FLAGS.smooth_sigma > 0:
pref_comment += f"_sm{FLAGS.smooth_sigma:.1f}_{FLAGS.transformer.smooth_w:.1f}"
comment = FLAGS.comment
comment += f"_lam{FLAGS.lambd:.2f}"
if FLAGS.dropout > 0:
comment += f"_do{FLAGS.dropout:.1f}"
comment = "_".join([pref_comment, comment])
FLAGS.logging.group += f"_{comment}"
FLAGS.logging.experiment_id = FLAGS.logging.group + f"_s{FLAGS.seed}"
save_dir = os.path.join(FLAGS.logging.output_dir, FLAGS.env_name,
FLAGS.model_type, comment, f"s{FLAGS.seed}")
setup_logger(
variant=VARIANT,
seed=FLAGS.seed,
base_log_dir=save_dir,
include_exp_prefix_sub_dir=False
)
FLAGS.logging.output_dir = save_dir
wb_logger = WandBLogger(FLAGS.logging, variant=VARIANT)
set_random_seed(int(FLAGS.seed))
env, dataset = make_env_and_dataset(FLAGS.env_name, FLAGS.seed, pref_comment)
agent = Learner(FLAGS.seed,
env.observation_space.sample()[np.newaxis],
env.action_space.sample()[np.newaxis],
max_steps=FLAGS.max_steps,
lambd=FLAGS.lambd,
dist_temperature=FLAGS.dist_temperature,
dropout_rate=FLAGS.dropout if (FLAGS.dropout > 0) else None,
)
for i in range(FLAGS.max_steps + 1):
metrics = dict()
metrics["step"] = i
with Timer() as timer:
batch = dataset.sample(FLAGS.batch_size)
train_info = prefix_metrics(agent.update(batch), 'train')
if i % FLAGS.log_interval == 0:
for k, v in train_info.items():
metrics[k] = v
if i % FLAGS.eval_interval == 0:
eval_info = prefix_metrics(evaluate(agent, env, FLAGS.eval_episodes), 'eval')
for k, v in eval_info.items():
metrics[k] = v
if len(metrics) > 1: # has something to log
metrics["time"] = timer()
logger.record_dict(metrics)
logger.dump_tabular(with_prefix=False, with_timestamp=True)
wb_logger.log(metrics, step=i)
# save model
agent.actor.save(os.path.join(save_dir, "model.pkl"))
if __name__ == '__main__':
os.environ['XLA_PYTHON_CLIENT_PREALLOCATE'] = 'false'
absl.app.run(main)