-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathargument.py
64 lines (57 loc) · 2.5 KB
/
argument.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import argparse
import os
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
parser = argparse.ArgumentParser(description='')
parser.add_argument('--cache_dir', type=str, default='./results')
# Setting
parser.add_argument('-n', '--name', type=str, default='mae_large_noise0.08_49', help='model name')
parser.add_argument('-d', '--dataset', type=str, default='imagenet')
parser.add_argument('--hop', type=int, default=1, help='subsample hop size of target dataset')
# Hyperparameters
parser.add_argument('--kernel',
type=str,
default='cos_p',
choices=['cos_p', 'cos'],
help='kernel function type (cos_p: cosine similarity with compatibility term)')
parser.add_argument('--pow', type=int, default=4, help='temperature t')
parser.add_argument('--reg', type=float, default=0.05, help='lambda for noisy set estimation')
# Feature extraction
parser.add_argument('--batch_size', type=int, default=128, help='batch size for feature extraction')
parser.add_argument('--workers', type=int, default=16, help='number of data loader workers')
parser.add_argument('--print_freq',
type=int,
default=10,
help='step size for printing loss, acc, etc.')
# Misc
parser.add_argument('--chunk',
type=int,
default=250,
help='batch size for kernel value calculation (trade-off memory and speed)')
parser.add_argument('--dtype',
type=str,
default='float32',
help='data type for feature extraction',
choices=['float32', 'float16'])
parser.add_argument('--verbose', type=str2bool, default=True)
args = parser.parse_args()
if args.name.startswith("mae"):
args.folder = '_'.join(args.name.split('_')[:-1])
args.epoch = args.name.split('_')[-1]
else:
args.folder = args.name
args.epoch = None
args.cache_dir = os.path.join(args.cache_dir, args.folder)
os.makedirs(args.cache_dir, exist_ok=True)
print(f"Results will be saved at {args.cache_dir}\n")
args.print_freq = int(128 / args.batch_size * 10)
if 'resnet' in args.name:
args.chunk = min(args.chunk,
100) # smaller chunk for resnet models which have 2048 feature dimension