-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdetect_val.py
99 lines (76 loc) · 3.03 KB
/
detect_val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
"""
The original code is created by Jang-Hyun Kim.
GitHub Repository: https://github.com/snu-mllab/Neural-Relation-Graph
"""
import os
import torch
from imagenet.data import load_data
from imagenet.train import validate_model
from feature import load_model_classifier, normalize, cal_prob
from metric import LabelNoise
class LoadData(LabelNoise):
""" Load inputs for relation graph: features, probs, labels, noisy set index
"""
def __init__(self, args):
super().__init__()
self.path = args.cache_dir
self.nclass = 1000
self._load_feat(args)
# Load index of noisy ImageNet validation sample (Beyer et al. Are we done with imagenet?, 2020)
cat = torch.load("./imagenet/real/val_category.pt")
self.noise = torch.tensor(~cat['clean'])
# Calculate scores for baselines
self.cal_tracin()
self.cal_margin()
# normalize feature
self.feat = normalize(self.feat)
print(f"feature: {list(self.feat.shape)}, "
f"# noisy label: {self.noise.sum()} ({self.noise.sum()/len(self.feat)*100:.1f}%)\n")
def _load_feat(self, args):
"""Load validation data features and prediction probabilities
Output:
self.feat (torch.tensor [N, D]): features of data
self.prob (torch.tensor [N, C]): probability vectors of data
"""
model, classifier, transform = load_model_classifier(args)
_, valset = load_data('imagenet', model, transform)
self.targets = torch.tensor(valset.targets).cuda()
tag = f"_{args.epoch}" if args.epoch is not None else ""
file = f"{self.path}/features/feat_val{tag}.pt"
if not os.path.isfile(file):
_, self.feat = validate_model(args, model, valset)
if args.save:
torch.save(self.feat.cpu(), file)
else:
self.feat = torch.load(file)
if args.dtype == "float16":
self.feat = self.feat.half()
# calculate probability vectors
with torch.no_grad():
self.feat = self.feat.cuda()
self.prob = cal_prob(classifier, self.feat)
print(f"Load feature from {self.path}")
def eval_score(score, data):
""" Calculate evaluation scores for neural relation graph
Args:
score ([N,]): label reliability score
data : instance of LoadData
"""
score = score[:50000]
score = score / score.abs().max()
cal_auc_ap(data.noise, -score, name=f'relation')
if __name__ == '__main__':
# Evaluate neural relation graph for label noise detection
from argument import args
from detect import cal_auc_ap, get_init_score, del_edge
data = LoadData(args)
data.cal_baselines()
n_iter = 2
score_orig = get_init_score(data, args, save=False)
score = score_orig.clone()
for t in range(1, n_iter):
noise = (score / score.abs().max() < -args.reg)
score_del = del_edge(data, noise, args)
score = score_orig - 2 * score_del
eval_score(score, data)
del data