diff --git a/examples/decoding/decoding_xdawn_eeg.py b/examples/decoding/decoding_xdawn_eeg.py index 1d1bf3f8760..a7d70bcb5bb 100644 --- a/examples/decoding/decoding_xdawn_eeg.py +++ b/examples/decoding/decoding_xdawn_eeg.py @@ -30,6 +30,7 @@ from mne import Epochs, io, pick_types, read_events from mne.datasets import sample from mne.decoding import Vectorizer, XdawnTransformer, get_spatial_filter_from_estimator +from mne.utils import check_version print(__doc__) @@ -70,11 +71,16 @@ ) # Create classification pipeline +kwargs = dict() +if check_version("sklearn", "1.8"): + kwargs["l1_ratio"] = 1 +else: + kwargs["penalty"] = "l1" clf = make_pipeline( XdawnTransformer(n_components=n_filter), Vectorizer(), MinMaxScaler(), - OneVsRestClassifier(LogisticRegression(penalty="l1", solver="liblinear")), + OneVsRestClassifier(LogisticRegression(solver="liblinear", **kwargs)), ) # Get the data and labels