|
| 1 | +""" |
| 2 | +
|
| 3 | +--- |
| 4 | +title: Receptance Weighted Key Value (RWKV) |
| 5 | +summary: > |
| 6 | + This implements the RWKV model |
| 7 | + using PyTorch with explanations. |
| 8 | +--- |
| 9 | +
|
| 10 | +# Receptance Weighted Key Value (RWKV) |
| 11 | +
|
| 12 | +##TODO: make colab ? |
| 13 | +
|
| 14 | +This is a tutorial/implementation of RWKV |
| 15 | +from paper [RWKV: Reinventing RNNs for the Transformer Era](https://arxiv.org/pdf/2305.13048.pdf) |
| 16 | +in [PyTorch](https://pytorch.org/). |
| 17 | +
|
| 18 | +Full definition of a RWKV Language Model, all of it in this single file. |
| 19 | +References: |
| 20 | +1) the official RWKV PyTorch implementation released by Bo Peng: |
| 21 | +https://github.com/BlinkDL/RWKV-LM/blob/main/RWKV-v4neo/src/model.py |
| 22 | +2) huggingface/transformers PyTorch implementation: |
| 23 | +https://github.com/huggingface/transformers/blob/main/src/transformers/models/rwkv/modeling_rwkv.py |
| 24 | +""" |
| 25 | + |
| 26 | + |
| 27 | +import math,time |
| 28 | +import os |
| 29 | +import inspect |
| 30 | +from dataclasses import dataclass |
| 31 | + |
| 32 | +import torch |
| 33 | +import torch.nn as nn |
| 34 | +from torch.nn import functional as F |
| 35 | + |
| 36 | +from labml_helpers.module import Module |
| 37 | + |
| 38 | + |
| 39 | +PREV_X_TIME = 0 |
| 40 | +NUM_STATE = 1 |
| 41 | +DEN_STATE = 2 |
| 42 | +MAX_STATE = 3 |
| 43 | +PREV_X_CHANNEL = 4 |
| 44 | + |
| 45 | +""" |
| 46 | +## Layernorm with bias |
| 47 | +""" |
| 48 | +class LayerNorm(Module): |
| 49 | + def __init__(self, ndim, bias): |
| 50 | + super().__init__() |
| 51 | + self.weight = nn.Parameter(torch.ones(ndim)) |
| 52 | + self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None |
| 53 | + |
| 54 | + def forward(self, input): |
| 55 | + return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5) |
| 56 | + |
| 57 | +""" |
| 58 | +# L2 loss wrapper |
| 59 | + https://github.com/BlinkDL/RWKV-LM/blob/cca1b5e8e597cf40675882bb10b46287c844e35c/RWKV-v4/src/model.py#L21 |
| 60 | +""" |
| 61 | +class L2Wrap(torch.autograd.Function): |
| 62 | + @staticmethod |
| 63 | + def forward(ctx, loss, y): |
| 64 | + ctx.save_for_backward(y) |
| 65 | + return loss |
| 66 | + @staticmethod |
| 67 | + def backward(ctx, grad_output): |
| 68 | + y = ctx.saved_tensors[0] |
| 69 | + # to encourage the logits to be close to 0 |
| 70 | + factor = 1e-4 / (y.shape[0] * y.shape[1]) |
| 71 | + maxx, ids = torch.max(y, -1, keepdim=True) |
| 72 | + gy = torch.zeros_like(y) |
| 73 | + gy.scatter_(-1, ids, maxx * factor) |
| 74 | + return (grad_output, gy) |
| 75 | + |
| 76 | +class ChannelMixing(Module): |
| 77 | + """ |
| 78 | + ## Channel Mixing |
| 79 | + """ |
| 80 | + def __init__(self,config,layer_id): |
| 81 | + super().__init__() |
| 82 | + self.time_shift = nn.ZeroPad2d((0, 0, 1, -1)) |
| 83 | + # token shifting |
| 84 | + self.layer_id = layer_id |
| 85 | + |
| 86 | + n_embd = config.n_embd |
| 87 | + intermediate_size = ( |
| 88 | + config.intermediate_size if config.intermediate_size is not None else 4 * n_embd |
| 89 | + ) |
| 90 | + |
| 91 | + ## Learnable Matrix |
| 92 | + self.key_proj = nn.Linear(n_embd,intermediate_size,bias=False) |
| 93 | + self.value_proj = nn.Linear(intermediate_size,n_embd,bias=False) |
| 94 | + self.receptance_proj = nn.Linear(n_embd,n_embd,bias=False) |
| 95 | + |
| 96 | + ## Learnable Vector |
| 97 | + self.time_mix_key = nn.Parameter(torch.empty(1, 1, n_embd)) |
| 98 | + self.time_mix_receptance = nn.Parameter(torch.empty(1, 1, n_embd)) |
| 99 | + |
| 100 | + def forward(self,x,state=None): |
| 101 | + # x = (Batch,Time,Channel) |
| 102 | + if state is not None: |
| 103 | + prev_x = state[self.layer_id,:,[PREV_X_CHANNEL],:] |
| 104 | + state[self.layer_id,:,[PREV_X_CHANNEL],:] = x |
| 105 | + else: |
| 106 | + prev_x = self.time_shift(x) |
| 107 | + |
| 108 | + """ |
| 109 | + ### $r_t=W_r \cdot (\mu_r x_t + (1-\mu_r)x_{t-1})$ |
| 110 | + """ |
| 111 | + receptance = x * self.time_mix_receptance + prev_x * (1 - self.time_mix_receptance) |
| 112 | + receptance = self.receptance_proj(receptance) |
| 113 | + |
| 114 | + """ |
| 115 | + ### $k_t=W_k \cdot (\mu_k x_t + (1-\mu_k)x_{t-1})$ |
| 116 | + """ |
| 117 | + key = x * self.time_mix_key + prev_x * (1 - self.time_mix_key) |
| 118 | + key = self.key_proj(key) |
| 119 | + |
| 120 | + """ |
| 121 | + ### $V_t=W_v \cdot max(k_t,0)^2$ |
| 122 | + """ |
| 123 | + value = self.value_proj(torch.square(torch.relu(key))) |
| 124 | + |
| 125 | + """ |
| 126 | + ### $o_t=\sigma(r_t) \odot v_t$ |
| 127 | + """ |
| 128 | + out = F.sigmoid(receptance) * value |
| 129 | + return out, state |
| 130 | + |
| 131 | +""" |
| 132 | +## Time Mixing |
| 133 | +""" |
| 134 | +class TimeMixing(Module): |
| 135 | + def __init__(self,config,layer_id): |
| 136 | + super().__init__() |
| 137 | + self.config = config |
| 138 | + self.time_shift = nn.ZeroPad2d((0, 0, 1, -1)) |
| 139 | + self.layer_id = layer_id |
| 140 | + |
| 141 | + n_embd = config.n_embd |
| 142 | + attn_sz = n_embd |
| 143 | + |
| 144 | + ## learnable matrix |
| 145 | + self.key_proj = nn.Linear(n_embd, attn_sz, bias=False) |
| 146 | + self.value_proj = nn.Linear(n_embd, attn_sz, bias=False) |
| 147 | + self.receptance_proj = nn.Linear(n_embd, attn_sz, bias=False) |
| 148 | + self.output_proj = nn.Linear(attn_sz, n_embd, bias=False) |
| 149 | + |
| 150 | + ## learnable vector |
| 151 | + self.time_decay = nn.Parameter(torch.empty(attn_sz)) |
| 152 | + self.time_first = nn.Parameter(torch.empty(attn_sz)) |
| 153 | + self.time_mix_key = nn.Parameter(torch.empty(1, 1, n_embd)) |
| 154 | + self.time_mix_value = nn.Parameter(torch.empty(1, 1, n_embd)) |
| 155 | + self.time_mix_receptance = nn.Parameter(torch.empty(1, 1, n_embd)) |
| 156 | + |
| 157 | + def forward(self,x,state=None): |
| 158 | + # x = (Batch,Time,Channel) |
| 159 | + if state is not None: |
| 160 | + prev_x = state[self.layer_id,:,[PREV_X_TIME],:] |
| 161 | + state[self.layer_id,:,[PREV_X_TIME],:] = x |
| 162 | + else: |
| 163 | + prev_x = self.time_shift(x) |
| 164 | + |
| 165 | + """ |
| 166 | + ### $r_t=W_r \cdot (\mu_r x_t + (1-\mu_r)x_{t-1})$ |
| 167 | + """ |
| 168 | + receptance = x * self.time_mix_receptance + prev_x * (1 - self.time_mix_receptance) |
| 169 | + receptance = self.receptance_proj(receptance) |
| 170 | + |
| 171 | + """ |
| 172 | + ### $k_t=W_k \cdot (\mu_k x_t + (1-\mu_k)x_{t-1})$ |
| 173 | + """ |
| 174 | + key = x * self.time_mix_key + prev_x * (1 - self.time_mix_key) |
| 175 | + key = self.key_proj(key) |
| 176 | + |
| 177 | + """ |
| 178 | + ### $v_t=W_v \cdot (\mu_v x_t + (1-\mu_v)x_{t-1})$ |
| 179 | + """ |
| 180 | + value = x * self.time_mix_value + prev_x * (1 - self.time_mix_value) |
| 181 | + value = self.value_proj(value) |
| 182 | + |
| 183 | + """ |
| 184 | + ## WKV calculation |
| 185 | + """ |
| 186 | + _, seq_length, _ = key.size() |
| 187 | + output = torch.zeros_like(key) |
| 188 | + |
| 189 | + if state is None: |
| 190 | + num_state = torch.zeros_like(key[:, 0], dtype=torch.float32) |
| 191 | + den_state = torch.zeros_like(key[:, 0], dtype=torch.float32) |
| 192 | + max_state = torch.zeros_like(key[:, 0], dtype=torch.float32) - 1e38 |
| 193 | + else: |
| 194 | + num_state = state[self.layer_id,:,NUM_STATE,:] |
| 195 | + den_state = state[self.layer_id,:,DEN_STATE,:] |
| 196 | + max_state = state[self.layer_id,:,MAX_STATE,:] |
| 197 | + |
| 198 | + time_decay = -torch.exp(self.time_decay) |
| 199 | + |
| 200 | + for current_index in range(seq_length): |
| 201 | + current_key = key[:, current_index].float() |
| 202 | + current_value = value[:, current_index] |
| 203 | + |
| 204 | + """ |
| 205 | + ### $wkv_t=\frac{\sum^{t-1}_{i=1}d^{-(t-1-i)w+k_i}v_i+e^{u+k_t}v_t}{\sum^{t-1}_{i=1}e^{-(t-1-i)w+k_i}+e^{u+k_t}}$ |
| 206 | + """ |
| 207 | + max_for_output = torch.maximum(max_state, current_key + self.time_first) |
| 208 | + e1 = torch.exp(max_state - max_for_output) |
| 209 | + e2 = torch.exp(current_key + self.time_first - max_for_output) |
| 210 | + numerator = e1 * num_state + e2 * current_value |
| 211 | + denominator = e1 * den_state + e2 |
| 212 | + output[:, current_index] = (numerator / denominator).to(output.dtype) |
| 213 | + |
| 214 | + # Update state for next iteration |
| 215 | + max_for_state = torch.maximum(max_state + time_decay, current_key) |
| 216 | + e1 = torch.exp(max_state + time_decay - max_for_state) |
| 217 | + e2 = torch.exp(current_key - max_for_state) |
| 218 | + num_state = e1 * num_state + e2 * current_value |
| 219 | + den_state = e1 * den_state + e2 |
| 220 | + max_state = max_for_state |
| 221 | + |
| 222 | + """ |
| 223 | + ### update states |
| 224 | + """ |
| 225 | + state[self.layer_id,:,NUM_STATE,:] = num_state |
| 226 | + state[self.layer_id,:,DEN_STATE,:] = den_state |
| 227 | + state[self.layer_id,:,MAX_STATE,:] = max_state |
| 228 | + wkv, state = self.wkv_function(key,value,use_customized_cuda_kernel=self.config.use_customized_cuda_kernel,state=state) |
| 229 | + |
| 230 | + """ |
| 231 | + ### $o_t=W_o \cdot (\sigma(r_t) \odot wkv_t)$ |
| 232 | + """ |
| 233 | + rwkv = F.sigmoid(receptance) * wkv |
| 234 | + rwkv = self.output_proj(rwkv) |
| 235 | + |
| 236 | + return rwkv, state |
| 237 | + |
| 238 | +""" |
| 239 | +## RWKV block element |
| 240 | +""" |
| 241 | +class Block(Module): |
| 242 | + |
| 243 | + def __init__(self, config,layer_id): |
| 244 | + super().__init__() |
| 245 | + self.ln_1 = LayerNorm(config.n_embd, bias=config.bias) |
| 246 | + self.attn = TimeMixing(config,layer_id) |
| 247 | + self.ln_2 = LayerNorm(config.n_embd, bias=config.bias) |
| 248 | + self.ffn = ChannelMixing(config,layer_id) |
| 249 | + |
| 250 | + def forward(self, x, state = None): |
| 251 | + # state: [batch_size, 5 , n_embd] |
| 252 | + """ |
| 253 | + ## time mixing |
| 254 | + """ |
| 255 | + residual = x |
| 256 | + x,state = self.attn(self.ln_1(x),state=state) |
| 257 | + x = x + residual |
| 258 | + """ |
| 259 | + ## channel mixing |
| 260 | + """ |
| 261 | + residual = x |
| 262 | + x, state = self.ffn(self.ln_2(x),state=state) |
| 263 | + x = x + residual |
| 264 | + return x, state |
| 265 | + |
| 266 | +class RWKV(Module): |
| 267 | + def __init__(self, config,lr_init=0.0008): |
| 268 | + super().__init__() |
| 269 | + assert config.vocab_size is not None |
| 270 | + assert config.block_size is not None |
| 271 | + self.config = config |
| 272 | + self.lr_init = lr_init ## used to initialize embedding parameters |
| 273 | + self.n_layer = config.n_layer |
| 274 | + self.n_embd = config.n_embd |
| 275 | + """ |
| 276 | + ## Initiate model layers |
| 277 | + """ |
| 278 | + self.rwkv = nn.ModuleDict(dict( |
| 279 | + wte = nn.Embedding(config.vocab_size, config.n_embd), |
| 280 | + ln_p = LayerNorm(config.n_embd, bias=config.bias), |
| 281 | + h = nn.ModuleList([Block(config,layer_id) for layer_id in range(config.n_layer)]), |
| 282 | + ln_f = LayerNorm(config.n_embd, bias=config.bias), |
| 283 | + )) |
| 284 | + """ |
| 285 | + ## Output linear layer |
| 286 | + """ |
| 287 | + self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
| 288 | + |
| 289 | + |
| 290 | + def forward(self, idx, targets=None, state=None, return_state=False): |
| 291 | + b, t = idx.size() |
| 292 | + assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" |
| 293 | + |
| 294 | + """ |
| 295 | + ## Embedding Layer |
| 296 | + """ |
| 297 | + x = self.rwkv.wte(idx) |
| 298 | + """ |
| 299 | + ## Layer Norm |
| 300 | + """ |
| 301 | + x = self.rwkv.ln_p(x) |
| 302 | + """ |
| 303 | + ## RWKV Blocks |
| 304 | + """ |
| 305 | + for block_idx,block in enumerate(self.rwkv.h): |
| 306 | + x, state = block(x,state) |
| 307 | + x = self.rwkv.ln_f(x) |
| 308 | + |
| 309 | + """ |
| 310 | + ## Logit Layer and loss Function (for training) |
| 311 | + """ |
| 312 | + if targets is not None: |
| 313 | + # if we are given some desired targets also calculate the loss |
| 314 | + logits = self.lm_head(x) |
| 315 | + loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) |
| 316 | + if self.training: |
| 317 | + loss = L2Wrap.apply(loss,logits) |
| 318 | + else: |
| 319 | + # inference-time mini-optimization: only forward the lm_head on the very last position |
| 320 | + logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim |
| 321 | + loss = None |
| 322 | + """ |
| 323 | + ## Return Logits and loss |
| 324 | + """ |
| 325 | + if return_state: |
| 326 | + return logits, loss, state |
| 327 | + else: |
| 328 | + return logits, loss |
0 commit comments