Skip to content

Commit 421761b

Browse files
committed
Made things a tiny bit prettier, maybe? At least double arrows have labels
1 parent 5e25cb9 commit 421761b

File tree

2 files changed

+20
-8
lines changed

2 files changed

+20
-8
lines changed

Lectures/Lecture 8.tex

+13-8
Original file line numberDiff line numberDiff line change
@@ -16,17 +16,17 @@ \chapter{Additive and abelian categories}
1616
\end{enumerate}
1717
\item If $X, Y, Z \in \cat C$ then the following are equivalent:
1818
\begin{enumerate}
19-
\item There are maps $X \xrightarrow{i} Z$ and $Y \xrightarrow{j} Z$ making $Z$ the coproduct.
20-
\item There are maps $Z \xrightarrow{p} X$ and $X \xrightarrow{q} Y$ making $Z$ the product.
21-
\item There are maps $X \rightleftarrows{i}[p] Z \leftrightarrows{j}[q] Y$ such that $p \circ i = \id_X$ and $q \circ j = \id_Y$ and $i\circ p + j \circ q = \id_Z$.
19+
\item There are maps \[X \xrightarrow{i} Z \xleftarrow{j} Y\] making $Z$ the coproduct.
20+
\item There are maps \[Z \xrightarrow{p} X \xleftarrow Y\] making $Z$ the product.
21+
\item There are maps \[X \xrightleftarrows{i}[p] Z \xleftrightarrows{j}[q] Y\] such that $p \circ i = \id_X$ and $q \circ j = \id_Y$ and $i\circ p + j \circ q = \id_Z$.
2222
\end{enumerate}
2323

2424
\end{enumerate}
2525

2626
\end{lem}
2727

2828
\begin{defn}
29-
A biproduct in a pre-additive category of $X, Y \in \cat C$ is an object $Z$ with maps $X \rightleftarrows{i}[p] Z \leftrightarrows{j}[q] Y$ with $pi = \id_X$, $qj = \id_Y$ and $ip + jq = \id_Z$.
29+
A biproduct in a pre-additive category of $X, Y \in \cat C$ is an object $Z$ with maps \[X \xrightleftarrows{i}[p] Z \xleftrightarrows{j}[q] Y\] with $pi = \id_X$, $qj = \id_Y$ and $ip + jq = \id_Z$.
3030
\end{defn}
3131
\begin{rmk}
3232
Note that these force $q \circ i$ and $p \circ j$ to be zero. To see this it suffices to show that $j \circ q \circ i = 0$, because $j$ is monic.
@@ -37,7 +37,12 @@ \chapter{Additive and abelian categories}
3737
\begin{enumerate}
3838
\item If $x$ is initial, then $\Hom_{\cat C}(X, X) = 0$ so $\id_X = 0$.
3939
Conversely, if $\id_x = 0$ then every map $f: X \to Y$ i n $\cat C$ satisfies $f = f \circ \id_X = f \circ 0 = 0$. So $X$ is initial. This proves (i) is equivalent to (ii) and that (ii) is equivalent to (iii) follows dually.
40-
\item If $X \rightleftarrows{i}[p] Z \leftrightarrows{j}[q] Y$ is a biproduct we saw $qi = 0$ and $pj = 0$. Then $X \xrightarrow{i} Z$ and $Y \xrightarrow{j} Z$ is a coproduct. If $X \xrightarrow{f} W$ and $Y \xrightarrow{g} W$ is any co cone, set $h = fp + gq: Z \to W$. Then $hi = (fp + gq)i = fpi + gqi = f \circ \id_X + g \circ 0 = f$, and likewise $hj = g$. If $h': Z \to W$ satisfies $h'i = f$ and $h'j = g$ then $h' = h' \circ \id_Z = h' \circ (ip + jq) = h'ip + h'jq = fp + gq = h$. So $X \xrightarrow{i} Z$ and $Y \xrightarrow{j} Z$ form a coproduct. Conversely, if these maps form a coproduct, then the cocones given by ($X \xrightarrow{\id} X$ and $Y \xrightarrow{0} X$) and by ($X \xrightarrow{0} Y$ and $Y \xrightarrow{\id} Y$) define maps $Z \xrightarrow{p} X$, $Z \xrightarrow{q} Y$ with $pi = \id_X, pj = 0, qi = 0, qj = \id_Y$. Then $ip + jq: Z \to Z$ satisfies $(ip + jq)i = ipi + jqi = i \circ \id_X + j \circ 0 = i$, and likewise $(ip + jq)\circ j = \cdots = j$. So $ip + jq = \id_Z$ by the universal property of the coproduct. This proves $(i) \Leftrightarrow (iii)$ and $(ii) \Leftrightarrow$ follows dually.
40+
\item If \[X \xrightleftarrows{i}[p] Z \xleftrightarrows{j}[q] Y\] is a biproduct, we saw $qi = 0$ and $pj = 0$. Then $X \xrightarrow{i} Z$ and $Y \xrightarrow{j} Z$ is a coproduct. If \[X \xrightarrow{f} W \xleftarrow{g} Y\] is any cocone, set $h = fp + gq: Z \to W$. Then $hi = (fp + gq)i = fpi + gqi = f \circ \id_X + g \circ 0 = f$, and likewise $hj = g$. If $h': Z \to W$ satisfies $h'i = f$ and $h'j = g$ then $h' = h' \circ \id_Z = h' \circ (ip + jq) = h'ip + h'jq = fp + gq = h$. So \[X \xrightarrow{i} Z \xleftarrow{j} Y\] form a coproduct. Conversely, if these maps form a coproduct, then the cocones
41+
\begin{align*}
42+
&X \xrightarrow{\id} X \xleftarrow{0} Y\\
43+
&X \xrightarrow{0} Y \xleftarrow{\id} Y
44+
\end{align*}
45+
define maps $p: Z \to X$, $q: Z \to Y$ with $pi = \id_X, pj = 0, qi = 0, qj = \id_Y$. Then $ip + jq: Z \to Z$ satisfies $(ip + jq)i = ipi + jqi = i \circ \id_X + j \circ 0 = i$, and likewise $(ip + jq)\circ j = \cdots = j$. So $ip + jq = \id_Z$ by the universal property of the coproduct. This proves $(i) \Leftrightarrow (iii)$ and $(ii) \Leftrightarrow$ follows dually.
4146
\end{enumerate}
4247
\end{proof}
4348
\begin{defn}
@@ -47,7 +52,7 @@ \chapter{Additive and abelian categories}
4752
By the lemma \todo{cite} if $\cat C$ is additive then
4853
\begin{itemize}
4954
\item the terminal object is also initial, hence a zero object $0$.
50-
\item IF $X, Y \in \cat C$ then the biproduct $X \rightleftarrows{i}[p] X \oplus Y \leftrightarrows{j}[q] Y$ exists, so $\cat C$ has finite coproducts.
55+
\item IF $X, Y \in \cat C$ then the biproduct \[X \xrightleftarrows{i}[p] X \oplus Y \xleftrightarrows{j}[q] Y\] exists, so $\cat C$ has finite coproducts.
5156
\item If $X_1, \cdots, X_n \in \cat C$ then the map $X_1 \coprod \cdots \coprod X_n \to X_1 \times \cdots \times X_n$ such that $X_i \to X_1 \coprod \cdots \coprod X_n \to X_1 \times \cdots \times X_n \to X_j$ is $\id_X$ if $i = j$ and $0$ if $i \neq j$ is an isomorphism. We write $X_1 \oplus \cdots \oplus X_n$ for the n-ary biproduct.
5257
\end{itemize}
5358

@@ -72,7 +77,7 @@ \chapter{Additive and abelian categories}
7277
\begin{lem}
7378
If $\cat C$ is semi-additive, then it is canonically enriched in commutative monoids. If $\cat C$ was additive, then this agrees with the given enrichment in abelian groups (under the inclusion $\catAbelianGroup \hookrightarrow \catCommutativeMonoid$).
7479
\end{lem}
75-
\begin{proof}(Sketch, in which the commutativity of the many diagrams is left to the reader)
80+
\begin{proof}(Sketch, in which the commutativity of the many diagrams is left to the reader,)
7681
For $f, g: X \rightrightarrows Y$ in $\cat C$, define $f + g$ to be
7782
\[
7883
X \xrightarrow{\Delta} X \times X = X \oplus X \xrightarrow{f \oplus g} Y \oplus Y = Y \coprod Y \xrightarrow{\triangledown} Y
@@ -140,7 +145,7 @@ \chapter{Additive and abelian categories}
140145
shows that $g(f+ f') = gf + gf'$ and likewise $(g + g')f = gf + g'f$, proving the first statement.
141146
If $\cat C$ is additive and $f,g: X \rightrightarrows Y$ then let
142147
\[
143-
X \rightleftarrows{i_1}[p_1] X \oplus X \leftrightarrows{i_2}[p_2] X
148+
X \xrightleftarrows{i_1}[p_1] X \oplus X \xleftrightarrows{i_2}[p_2] X
144149
\] be the biproduct, and likewise for $Y$. Then commutativity of
145150

146151
\[\begin{tikzcd}

sheaves.sty

+7
Original file line numberDiff line numberDiff line change
@@ -501,6 +501,13 @@
501501
\NewDocumentCommand\catWalkingArrow{}{\vbb 2}
502502
\NewDocumentCommand\catTerminal{}{\vbb 1}
503503

504+
% Labelled double arrows in all directions
505+
\NewDocumentCommand\overunderlabels{mmO{}}{\overset{#2}{\underset{#3}{#1}}}
506+
\NewDocumentCommand\xrightrightarrows{mO{}}{\overunderlabels{\rightrightarrows}{#1}[#2]}
507+
\NewDocumentCommand\xrightleftarrows{mO{}}{\overunderlabels{\rightleftarrows}{#1}[#2]}
508+
\NewDocumentCommand\xleftrightarrows{mO{}}{\overunderlabels{\leftrightarrows}{#1}[#2]}
509+
\NewDocumentCommand\xleftleftarrows{mO{}}{\overunderlabels{\leftleftarrows}{#1}[#2]}
510+
504511
\NewDocumentCommand\To{}{\Rightarrow}
505512
\NewDocumentCommand\weakequivalenceTo{}{\mathrel{\tilde{\To}}}
506513
\NewDocumentCommand\weakequivalenceto{}{\mathrel{\tilde{\to}}}

0 commit comments

Comments
 (0)