You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardexpand all lines: Lectures/Lecture 8.tex
+13-8
Original file line number
Diff line number
Diff line change
@@ -16,17 +16,17 @@ \chapter{Additive and abelian categories}
16
16
\end{enumerate}
17
17
\item If $X, Y, Z \in\cat C$ then the following are equivalent:
18
18
\begin{enumerate}
19
-
\item There are maps $X \xrightarrow{i} Z$ and $Y \xrightarrow{j} Z$ making $Z$ the coproduct.
20
-
\item There are maps $Z \xrightarrow{p} X$ and $X \xrightarrow{q} Y$ making $Z$ the product.
21
-
\item There are maps $X \rightleftarrows{i}[p] Z \leftrightarrows{j}[q] Y$ such that $p \circ i = \id_X$ and $q \circ j = \id_Y$ and $i\circ p + j \circ q = \id_Z$.
19
+
\item There are maps \[X \xrightarrow{i} Z\xleftarrow{j} Y\] making $Z$ the coproduct.
20
+
\item There are maps \[Z \xrightarrow{p} X\xleftarrow Y\] making $Z$ the product.
21
+
\item There are maps \[X \xrightleftarrows{i}[p] Z \xleftrightarrows{j}[q] Y\] such that $p \circ i = \id_X$ and $q \circ j = \id_Y$ and $i\circ p + j \circ q = \id_Z$.
22
22
\end{enumerate}
23
23
24
24
\end{enumerate}
25
25
26
26
\end{lem}
27
27
28
28
\begin{defn}
29
-
A biproduct in a pre-additive category of $X, Y \in\cat C$ is an object $Z$ with maps $X \rightleftarrows{i}[p] Z \leftrightarrows{j}[q] Y$ with $pi = \id_X$, $qj = \id_Y$ and $ip + jq = \id_Z$.
29
+
A biproduct in a pre-additive category of $X, Y \in\cat C$ is an object $Z$ with maps \[X \xrightleftarrows{i}[p] Z \xleftrightarrows{j}[q] Y\] with $pi = \id_X$, $qj = \id_Y$ and $ip + jq = \id_Z$.
30
30
\end{defn}
31
31
\begin{rmk}
32
32
Note that these force $q \circ i$ and $p \circ j$ to be zero. To see this it suffices to show that $j \circ q \circ i = 0$, because $j$ is monic.
@@ -37,7 +37,12 @@ \chapter{Additive and abelian categories}
37
37
\begin{enumerate}
38
38
\item If $x$ is initial, then $\Hom_{\cat C}(X, X) = 0$ so $\id_X = 0$.
39
39
Conversely, if $\id_x = 0$ then every map $f: X \to Y$ i n $\cat C$ satisfies $f = f \circ\id_X = f \circ0 = 0$. So $X$ is initial. This proves (i) is equivalent to (ii) and that (ii) is equivalent to (iii) follows dually.
40
-
\item If $X \rightleftarrows{i}[p] Z \leftrightarrows{j}[q] Y$ is a biproduct we saw $qi = 0$ and $pj = 0$. Then $X \xrightarrow{i} Z$ and $Y \xrightarrow{j} Z$ is a coproduct. If $X \xrightarrow{f} W$ and $Y \xrightarrow{g} W$ is any co cone, set $h = fp + gq: Z \to W$. Then $hi = (fp + gq)i = fpi + gqi = f \circ \id_X + g \circ 0 = f$, and likewise $hj = g$. If $h': Z \to W$ satisfies $h'i = f$ and $h'j = g$ then $h' = h' \circ \id_Z = h' \circ (ip + jq) = h'ip + h'jq = fp + gq = h$. So $X \xrightarrow{i} Z$ and $Y \xrightarrow{j} Z$ form a coproduct. Conversely, if these maps form a coproduct, then the cocones given by ($X \xrightarrow{\id} X$ and $Y \xrightarrow{0} X$) and by ($X \xrightarrow{0} Y$ and $Y \xrightarrow{\id} Y$) define maps $Z \xrightarrow{p} X$, $Z \xrightarrow{q} Y$ with $pi = \id_X, pj = 0, qi = 0, qj = \id_Y$. Then $ip + jq: Z \to Z$ satisfies $(ip + jq)i = ipi + jqi = i \circ \id_X + j \circ 0 = i$, and likewise $(ip + jq)\circ j = \cdots = j$. So $ip + jq = \id_Z$ by the universal property of the coproduct. This proves $(i) \Leftrightarrow (iii)$ and $(ii) \Leftrightarrow$ follows dually.
40
+
\item If \[X \xrightleftarrows{i}[p] Z \xleftrightarrows{j}[q] Y\] is a biproduct, we saw $qi = 0$ and $pj = 0$. Then $X \xrightarrow{i} Z$ and $Y \xrightarrow{j} Z$ is a coproduct. If \[X \xrightarrow{f} W \xleftarrow{g} Y\] is any cocone, set $h = fp + gq: Z \to W$. Then $hi = (fp + gq)i = fpi + gqi = f \circ\id_X + g \circ0 = f$, and likewise $hj = g$. If $h': Z \to W$ satisfies $h'i = f$ and $h'j = g$ then $h' = h' \circ\id_Z = h' \circ (ip + jq) = h'ip + h'jq = fp + gq = h$. So \[X \xrightarrow{i} Z \xleftarrow{j} Y\] form a coproduct. Conversely, if these maps form a coproduct, then the cocones
41
+
\begin{align*}
42
+
&X \xrightarrow{\id} X \xleftarrow{0} Y\\
43
+
&X \xrightarrow{0} Y \xleftarrow{\id} Y
44
+
\end{align*}
45
+
define maps $p: Z \to X$, $q: Z \to Y$ with $pi = \id_X, pj = 0, qi = 0, qj = \id_Y$. Then $ip + jq: Z \to Z$ satisfies $(ip + jq)i = ipi + jqi = i \circ\id_X + j \circ0 = i$, and likewise $(ip + jq)\circ j = \cdots = j$. So $ip + jq = \id_Z$ by the universal property of the coproduct. This proves $(i) \Leftrightarrow (iii)$ and $(ii) \Leftrightarrow$ follows dually.
41
46
\end{enumerate}
42
47
\end{proof}
43
48
\begin{defn}
@@ -47,7 +52,7 @@ \chapter{Additive and abelian categories}
47
52
By the lemma \todo{cite} if $\cat C$ is additive then
48
53
\begin{itemize}
49
54
\item the terminal object is also initial, hence a zero object $0$.
50
-
\item IF $X, Y \in\cat C$ then the biproduct $X \rightleftarrows{i}[p] X \oplus Y \leftrightarrows{j}[q] Y$ exists, so $\cat C$ has finite coproducts.
55
+
\item IF $X, Y \in\cat C$ then the biproduct \[X \xrightleftarrows{i}[p] X \oplus Y \xleftrightarrows{j}[q] Y\] exists, so $\cat C$ has finite coproducts.
51
56
\item If $X_1, \cdots, X_n \in\cat C$ then the map $X_1\coprod\cdots\coprod X_n \to X_1\times\cdots\times X_n$ such that $X_i \to X_1\coprod\cdots\coprod X_n \to X_1\times\cdots\times X_n \to X_j$ is $\id_X$ if $i = j$ and $0$ if $i \neq j$ is an isomorphism. We write $X_1\oplus\cdots\oplus X_n$ for the n-ary biproduct.
52
57
\end{itemize}
53
58
@@ -72,7 +77,7 @@ \chapter{Additive and abelian categories}
72
77
\begin{lem}
73
78
If $\cat C$ is semi-additive, then it is canonically enriched in commutative monoids. If $\cat C$ was additive, then this agrees with the given enrichment in abelian groups (under the inclusion $\catAbelianGroup\hookrightarrow\catCommutativeMonoid$).
74
79
\end{lem}
75
-
\begin{proof}(Sketch, in which the commutativity of the many diagrams is left to the reader)
80
+
\begin{proof}(Sketch, in which the commutativity of the many diagrams is left to the reader,)
76
81
For $f, g: X \rightrightarrows Y$ in $\cat C$, define $f + g$ to be
77
82
\[
78
83
X \xrightarrow{\Delta} X \times X = X \oplus X \xrightarrow{f \oplus g} Y \oplus Y = Y \coprod Y \xrightarrow{\triangledown} Y
@@ -140,7 +145,7 @@ \chapter{Additive and abelian categories}
140
145
shows that $g(f+ f') = gf + gf'$ and likewise $(g + g')f = gf + g'f$, proving the first statement.
141
146
If $\cat C$ is additive and $f,g: X \rightrightarrows Y$ then let
142
147
\[
143
-
X \rightleftarrows{i_1}[p_1] X \oplus X \leftrightarrows{i_2}[p_2] X
148
+
X \xrightleftarrows{i_1}[p_1] X \oplus X \xleftrightarrows{i_2}[p_2] X
144
149
\] be the biproduct, and likewise for $Y$. Then commutativity of
0 commit comments