Skip to content

Commit cc238b5

Browse files
committed
Initial Overleaf Import
0 parents  commit cc238b5

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

54 files changed

+2306
-0
lines changed

Lectures/Introduction.tex

+31
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,31 @@
1+
\chapter*{Introduction}
2+
3+
These notes are based on lectures given by Remy van Dobben de Bruyn for the Master's course \emph{Sheaves in Topology}, taught at Utrecht University in the spring semester of 2023--2024.\footnote{See~\url{https://cursusplanner.uu.nl/course/WISM501/2023/SEM2} for the course description.}
4+
5+
The prerequisites for this course are a solid understanding of point-set topology, basic knowledge of fundamental groups and covering spaces, familiarity with the language of categories, and a working knowledge of modules over rings.
6+
7+
\paragraph{Recommended literature}
8+
Standard works:
9+
\NewDocumentCommand\citeauthortitlecite{om}{\citeauthor{#2}, \citetitle{#2}~\IfNoValueTF{#1}{\cite{#2}}{\cite[#1]{#2}}}
10+
\begin{itemize}
11+
\item \citeauthortitlecite{IversenCohomologyOfSheaves}
12+
\item \citeauthortitlecite{BredonSheafTheory}
13+
\item \citeauthortitlecite{TennisonSheafTheory}
14+
\item \citeauthortitlecite{KashiwaraSchapiraSheavesOnManifolds}
15+
\item \citeauthortitlecite[\href{https://stacks.math.columbia.edu/tag/006A}{Chapter~006A}]{stacks-project} (chapter on sheaves)
16+
\end{itemize}
17+
\noindent
18+
More advanced texts:
19+
\begin{itemize}
20+
\item \citeauthortitlecite{DimcaSheavesInTopology}
21+
\item \citeauthortitlecite{MacLaneMoerdijkSheavesGeometryLogic}
22+
\end{itemize}
23+
\noindent
24+
Exodromy correspondence (research papers):
25+
\begin{itemize}
26+
\item \citeauthortitlecite{TreumannExitPathsConstructibleStacks}
27+
\item \citeauthortitlecite{CurryPatelClassificationConstructibleCosheaves}
28+
\end{itemize}
29+
30+
\todo{course content}
31+

Lectures/Lecture 1.tex

+90
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,90 @@
1+
\chapter{Motivation, sheaves and presheaves}
2+
3+
\section{Introduction}
4+
\todo{Not sure if we want to add the examples etc.}
5+
6+
7+
\section{Sheaves and presheaves}
8+
9+
\begin{defn}
10+
Let $X$ be a topological space. Write $\open(X)$ for the partially ordered set of opens of $X$. A \emph{presheaf} of sets on $X$ is a functor
11+
\[
12+
F: \open(X)\opp \to \catSet.
13+
\]
14+
\end{defn}
15+
By changing the codomain we can obtain, for example, presheaves of abelian groups. In this course, we will focus almost entirely on presheaves of sets and of abelian groups.
16+
Let $U \subset V $ be open sets of $X$. The inclusion under $F$ gives a \emph{restriction} map $F(V) \to F(U)$. The naming comes from the following example:
17+
18+
\begin{exmp}\label{exmp:ct-maps-presheaf}
19+
Let $X$ and $Z$ be topological spaces. The assignment $h_Z: \open(X)\opp \to \catSet$ by $U \mapsto \cont(U,Z)$ can be turned into a presheaf: given $U \subseteq V$ opens of $X$, define $$r_{UV}: \cont(V,Z) \to \cont(U,Z)$$ by $f \mapsto f|_U$.
20+
\end{exmp}
21+
We generalise the notation of function restriction. For $F(V) \to F(U)$, we denote the map pointwise by $s \mapsto s|_U$.
22+
23+
\begin{defn}\label{defn:sheaf}
24+
Let $X$ be a topological space and $\mathcal{F}$ a presheaf \[\mathcal{F}: \open(X)\opp \to \catSet. \] We call $\mathcal{F}$ a \emph{sheaf} if
25+
for every open $U \subset X$ and every open cover $(U_i)_{i \in I}$ of $U$ with $\bigcup_i U_i = U$, the map
26+
\[
27+
\mathcal{F}(U) \to \prod_{i\in I}\mathcal{F}(U_i)
28+
\] given by $s \mapsto (s|_{U_i})_{i \in I}$:
29+
\begin{enumerate}
30+
\item injective, and
31+
\item its image satisfies a \emph{gluing} condition: it is given by $\setpred{(s_i)_{i\in I}}{s_i |_{U_i \cap U_j} = s_j | _ {U_i \cap U_j} \forall i,j \in I}$.
32+
\end{enumerate}
33+
\end{defn}
34+
35+
\begin{rmk}\label{rmk:sheafs-as-equalizers}
36+
One checks that requiring the conditions i) and ii) above are equivalent to requiring that
37+
\[\begin{tikzcd}
38+
{\mathcal{F}(U)} & {\prod_i\mathcal{F}(U_i)} & {\prod_{i,j}\mathcal{F}(U_i \cap U_j)}
39+
\arrow[from=1-1, to=1-2]
40+
\arrow["\alpha", shift left, from=1-2, to=1-3]
41+
\arrow["\beta"', shift right, from=1-2, to=1-3]
42+
\end{tikzcd}\]
43+
is an equaliser diagram for all $U$ open in $X$ and for all $(U_i)_{i \in I}$ open covers of $U$ , where $\alpha: (s_i)_{i \in I} \mapsto s_i|_{U_i \cap U_j}$ and $\beta: (s_i)_{i \in I} \mapsto s_j|_{U_i \cap U_j}$.
44+
\end{rmk}
45+
46+
\begin{lem} \label{lem:ct-maps-sheaf}
47+
The presheaf $h_Z$ from \cref{exmp:ct-maps-presheaf} is a sheaf.
48+
\end{lem}
49+
\begin{proof}
50+
If two functions agree on every open of a cover of $U$ they agree on $U$, this gives \cref{defn:sheaf} i). For ii), we use the pasting lemma.
51+
\end{proof}
52+
53+
\begin{exmp}
54+
Let $Z$ be a discrete topological space, let $X$ be a topological space. Given an open subset $U$ of $X$, a map $f: U \to Z$ is continuous if and only if it is locally constant. The sheaf $h_Z$ is called the \emph{constant sheaf} on the set $Z$, labelled $\constSheaf{Z}$ or $\constSheaf{Z}_X$.
55+
\end{exmp}
56+
57+
\begin{exmp}
58+
If $X$ is a manifold, then the assignment $U \mapsto C^\infty(U, \mathbb{R})$ is a sheaf of $\mathbb{R}$ vector spaces. One can show that the assignment $U \mapsto \Omega^k(U)$ (smooth differential $k$-forms) is a sheaf.
59+
\end{exmp}
60+
61+
\begin{lem}[name=Sheaf of sections]\label{exmp:sheaf-of-sections}
62+
Let $f: Y \to X$ be a continuous map of topological spaces. The assignment on opens of $X$ given by
63+
\[
64+
h_{Y/X}: U \mapsto \setpred{s: U \to f^{-1}(U) }{ f \circ s = \id_U} =: \cont[X](U, Y)
65+
\]
66+
is a sheaf.
67+
\end{lem}
68+
\begin{proof}
69+
One can prove the above lemma in a similar way we proved \cref{lem:ct-maps-sheaf}.
70+
Alternatively, consider the diagram
71+
\[\begin{tikzcd}
72+
{\cont[X](U,Y)} & {\cont(U,Y)} \\
73+
{\{U \to X\}} & {\cont(U,X)}
74+
\arrow["{f \circ -}", from=1-2, to=2-2]
75+
\arrow[from=1-1, to=2-1]
76+
\arrow[from=2-1, to=2-2]
77+
\arrow[from=1-1, to=1-2]
78+
\arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-1, to=2-2]
79+
\end{tikzcd}\]
80+
and check that it is a pullback. We will come back to this in more detail in later lectures.
81+
\end{proof}
82+
83+
The example in the lemma above is why the elements of $\mathcal{F}(U)$ are often called sections.
84+
85+
\begin{exmp}
86+
Let $Y \xrightarrow{f} X$ be the $2:1$ cover of the circle: $f: z \mapsto z^2$, with $X := S^1$ and $Y: S^1$.
87+
On small intervals $U \subset X$ we get $f^{-1}(U) \cong U \times \{1,2\}$. We thus have two sections: $U \mapsto (U, 1)$ and $U \mapsto (U, 2)$. So $h_{Y/X}(U)$ has two elements
88+
On $V$ a union of small intervals, we get $2^{|\pi_0(V)|}$ elements, where $|\pi_0(V)|$ is the number of path components of $V$.
89+
On $W = X$, we get no sections. If $s: X \to Y$ is a section, then the induced map $s_*: \pi_1(X) \to \pi_1(Y)$ is a section to the map $f_*: \pi_1(Y) \to \pi_1(X)$. But this induced map is multiplication by $2$, and it does not have a section.
90+
\end{exmp}

0 commit comments

Comments
 (0)