Skip to content

Commit 298e1d2

Browse files
authored
Add more documentation and notebooks (#106)
1 parent 43a8b6b commit 298e1d2

14 files changed

+404
-47
lines changed

.gitignore

+1-2
Original file line numberDiff line numberDiff line change
@@ -11,8 +11,7 @@ check_data/
1111
*.ipynb_checkpoints
1212
*.db
1313
site/
14-
notebooks/
1514
test.ipynb
1615
dist/
1716
build/
18-
whitebox_sdk.egg-info
17+
whitebox_sdk.egg-info

README.md

+33-18
Original file line numberDiff line numberDiff line change
@@ -103,37 +103,52 @@ mkdocs serve -f docs/mkdocs/mkdocs.yml -a localhost:8001
103103
```
104104

105105
# Deploy Whitebox
106+
106107
## Using docker
107108

108109
Whitebox uses postgres as its database. They need to run in the same docker network. An example docker-compose file is located in the `examples` folder. Make sure you replace the SECRET_KEY with one of your own. Look below for more info.
109110

110-
```bash
111-
docker-compose -f examples/docker-compose/docker-compose.yml up
112-
```
111+
```bash
112+
docker-compose -f examples/docker-compose/docker-compose.yml up
113+
```
113114

114115
If you just need to run Whitebox, make sure you set the `DATABASE_URL` in the environment.
115116

116-
```bash
117-
docker run -dp 8000:8000 sqdhub/whitebox:main -e DATABASE_URL=postgresql://user:password@host:port/db_name
118-
```
119-
To save the api key encrypted in the database, provide a SECRET_KEY variable in the environment that is consisted of a 16 bytes string.
120-
```bash
121-
python -c "from secrets import token_hex; print(token_hex(16))"
122-
```
123-
***Save this token somewhere safe.***
117+
```bash
118+
docker run -dp 8000:8000 sqdhub/whitebox:main -e DATABASE_URL=postgresql://user:password@host:port/db_name
119+
```
120+
121+
To save the api key encrypted in the database, provide a SECRET_KEY variable in the environment that is consisted of a 16 bytes string.
122+
123+
```bash
124+
python -c "from secrets import token_hex; print(token_hex(16))"
125+
```
126+
127+
**_Save this token somewhere safe._**
124128

125129
The api key can be retrieved directly from the postgres database:
126130

127-
```bash
128-
API_KEY=$(docker exec <postgres_container_id> /bin/sh -c "psql -U postgres -c \"SELECT api_key FROM users WHERE username='admin';\" -tA")
131+
```bash
132+
API_KEY=$(docker exec <postgres_container_id> /bin/sh -c "psql -U postgres -c \"SELECT api_key FROM users WHERE username='admin';\" -tA")
133+
134+
echo $API_KEY
135+
```
129136

130-
echo $API_KEY
131-
```
132137
If you've set the `SECRET_KEY` in the environment get the decrypted key using:
133138

134-
```bash
135-
docker exec <whitebox_container_id> /usr/local/bin/python scripts/decrypt_api_key.py $API_KEY
136-
```
139+
```bash
140+
docker exec <whitebox_container_id> /usr/local/bin/python scripts/decrypt_api_key.py $API_KEY
141+
```
142+
143+
## Using Helm
144+
145+
You can also install Whitebox server and all of its dependencies in your k8s cluster using `helm`
146+
147+
```bash
148+
helm repo add squaredev https://chartmuseum.squaredev.io/
149+
helm repo update
150+
helm install whitebox squaredev/whitebox
151+
```
137152

138153
# Contributing
139154

docs/mkdocs/docs/css/extra.css

+30
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,30 @@
1+
:root {
2+
3+
/* Primary color shades */
4+
--md-primary-fg-color: #21babe;
5+
--md-primary-fg-color--light: #21babe;
6+
--md-primary-fg-color--dark: #86e6e9;
7+
--md-primary-bg-color: hsla(0, 0%, 100%, 1);
8+
--md-primary-bg-color--light: hsla(0, 0%, 100%, 0.7);
9+
--md-typeset-a-color: #21babe;
10+
11+
/* Accent color shades */
12+
--md-accent-fg-color: #006493;
13+
--md-accent-fg-color--transparent: hsla(189, 100%, 37%, 0.1);
14+
--md-accent-bg-color: hsla(0, 0%, 100%, 1);
15+
--md-accent-bg-color--light: hsla(0, 0%, 100%, 0.7);
16+
}
17+
18+
:root > * {
19+
20+
/* Code block color shades */
21+
--md-code-bg-color: hsla(0, 0%, 96%, 1);
22+
--md-code-fg-color: hsla(200, 18%, 26%, 1);
23+
24+
/* Footer */
25+
--md-footer-bg-color: #21babe;
26+
--md-footer-bg-color--dark: hsla(0, 0%, 0%, 0.32);
27+
--md-footer-fg-color: hsla(0, 0%, 100%, 1);
28+
--md-footer-fg-color--light: hsla(0, 0%, 100%, 0.7);
29+
--md-footer-fg-color--lighter: hsla(0, 0%, 100%, 0.3);
30+
}

docs/mkdocs/docs/features.md

+4-4
Original file line numberDiff line numberDiff line change
@@ -10,19 +10,19 @@
1010

1111
## Descriptive Statistics
1212

13-
Whitebox provides a nice <a href="/monitor/descriptive-statistics/#descriptive-statistics" class="external-link" target="_blank">list of descriptive statistics</a> of input dataset, making the overview of data easy.
13+
Whitebox provides a nice [list of descriptive statistics](../metric-definitions/#descriptive-statistics) of input dataset, making the overview of data easy.
1414

1515
## Classification Models Metrics
1616

17-
Whitebox includes comprehensive <a href="/monitor/evaluation-metrics/#evaluation-metrics" class="external-link" target="_blank">metrics</a> tracking for classification models. This allows users to easily evaluate the performance of their classification models and identify areas for improvement. Additionally, users can set custom thresholds for each metric to receive alerts when performance deviates from expected results.
17+
Whitebox includes comprehensive [metrics](../metric-definitions/#evaluation-metrics) tracking for classification models. This allows users to easily evaluate the performance of their classification models and identify areas for improvement. Additionally, users can set custom thresholds for each metric to receive alerts when performance deviates from expected results.
1818

1919
## Data / Concept Drift Monitoring
2020

21-
Whitebox includes monitoring for <a href="/monitor/drift/#drift" class="external-link" target="_blank">data and concept drift</a>. This feature tracks changes in the distribution of the data used to train models and alerts users when significant changes occur. Additionally, it detects changes in the performance of deployed models and alerts users when significant drift is detected. This allows users to identify and address data and model drift early, reducing the risk of poor model performance.
21+
Whitebox includes monitoring for data and concept drift. This feature tracks changes in the distribution of the data used to train models and alerts users when significant changes occur. Additionally, it detects changes in the performance of deployed models and alerts users when significant drift is detected. This allows users to identify and address data and model drift early, reducing the risk of poor model performance.
2222

2323
## Explainable AI
2424

25-
Whitebox includes model explaination also. The explainability performed through the <a href="/monitor/explainability/#explainability" class="external-link" target="_blank">explainability report</a> which allows user to know anytime which feature had the most impact on model's prediction.
25+
Whitebox includes model explaination also. The explainability performed through the explainability report which allows user to know anytime which feature had the most impact on model's prediction.
2626

2727
## Alerts
2828

File renamed without changes.

docs/mkdocs/docs/metric-definitions.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -207,10 +207,10 @@ where:
207207

208208
### Light Gradient Boosting Machine
209209

210-
LightGBM is an open-source framework for gradient boosted machines. By default LightGBM will train a Gradient Boosted Decision Tree (GBDT), but it also supports random forests, Dropouts meet Multiple Additive Regression Trees (DART), and Gradient Based One-Side Sampling (Goss). The framework is fast and was designed for distributed training. It supports large-scale datasets and training on the GPU. LightGBM also provide highly optimised, scalable and fast implementations of gradient boosted machines (GBMs). The official documentation of LightGBM is accessible [here](https://lightgbm.readthedocs.io/en/latest/index.html).
210+
LightGBM is an open-source framework for gradient boosted machines. By default LightGBM will train a Gradient Boosted Decision Tree (GBDT), but it also supports random forests, Dropouts meet Multiple Additive Regression Trees (DART), and Gradient Based One-Side Sampling (Goss). The framework is fast and was designed for distributed training. It supports large-scale datasets and training on the GPU. LightGBM also provide highly optimised, scalable and fast implementations of gradient boosted machines (GBMs). The official documentation of LightGBM is accessible <a href="https://lightgbm.readthedocs.io/en/latest/index.html" class="external-link" target="_blank">here</a>.
211211

212212
## Explainable AI models
213213

214214
### Local Interpretable Model-agnostic Explanations
215215

216-
LIME (Local Interpretable Model-agnostic Explanations), an explainable AI technique, aids in illuminating a machine learning model and making each prediction's particular implications understandable. The technique is appropriate for local explanations since it describes the classifier for a particular single instance. LIME modifies the input data to produce a succession of false data that only partially retain the original features. The original implementation along with documentation of LIME technique could be found in [this repo](https://github.com/marcotcr/lime).
216+
LIME (Local Interpretable Model-agnostic Explanations), an explainable AI technique, aids in illuminating a machine learning model and making each prediction's particular implications understandable. The technique is appropriate for local explanations since it describes the classifier for a particular single instance. LIME modifies the input data to produce a succession of false data that only partially retain the original features. The original implementation along with documentation of LIME technique could be found in <a href="https://github.com/marcotcr/lime" class="external-link" target="_blank">this repo</a>.

docs/mkdocs/docs/sdk-docs.md

+23
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,7 @@
11
# SDK Documentation
22

3+
This is the documentation for Whitebox's SDK. For an interactive experience, you can expirement with the SDK's <a href="https://github.com/squaredev-io/whitebox/tree/main/examples/notebooks" class="external-link" target="_blank">Jupyter notebooks</a>.
4+
35
## Models
46

57
**_create_model_**_(name, type, features, prediction, probability, labels, description="")_
@@ -65,3 +67,24 @@ Inserts a set of inference rows into the database.
6567
!!! info
6668

6769
The non processed and processed dataframes along with the timestamps and actuals series must **ALL** have the same length.
70+
71+
## Monitors
72+
73+
**_create_model_monitor_**_(model_id, name, status, metric, severity, email, feature=None, lower_threshold=None)_
74+
75+
Creates a monitor for a specific metric.
76+
77+
| Parameter | Type | Description |
78+
| ------------------- | ---------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
79+
| **model_id** | `str` | The ID of the model. |
80+
| **name** | `str` | The name of the monitor. |
81+
| **status** | `MonitorStatus` | The status of the monitor. Possible values for `MonitorStatus`: `active`, `inactive`. |
82+
| **metric** | `MonitorMetrics` | The metric that will be monitored. Possible values for `MonitorMetrics`: `accuracy`, `precision`, `recall`, `f1`, `data_drift`, `concept_drift`, `missing_values_count`. |
83+
| **severity** | `AlertSeverity` | The severity of the alert the monitor produces. Possible values for `AlertSeverity`: `low`, `mid`, `high`. |
84+
| **email** | `str` | The email to which the alert will be sent. |
85+
| **feature** | `str` | The feature to be monitored. Defaults to `None`. |
86+
| **lower_threshold** | `float` | The threshold below which an alert will be produced. Defaults to `None`. |
87+
88+
!!! note
89+
90+
Some metrics like the data drift don't use a threshold so the feature that will be monitored should be inserted. In any case, both `feature` and `lower_threshold` can't be `None` at the same time.

docs/mkdocs/docs/tutorial/installation.md

+19-6
Original file line numberDiff line numberDiff line change
@@ -4,10 +4,11 @@
44

55
Install whitebox server and all of its dependencies using `docker-compose`
66

7-
Copy the folloing code in a file named `docker-compose.yml`:
7+
Copy the following code in a file named `docker-compose.yml`:
88

99
```yaml
1010
version: "3.10"
11+
name: Whitebox
1112
services:
1213
postgres:
1314
image: postgres:15
@@ -24,36 +25,48 @@ services:
2425
- "5432:5432"
2526
volumes:
2627
- wb_data:/var/lib/postgresql/data
28+
networks:
29+
- whitebox
2730

2831
whitebox:
29-
profiles: ["whitebox"]
3032
image: sqdhub/whitebox:main
3133
restart: unless-stopped
3234
environment:
3335
- APP_NAME=Whitebox | Docker
3436
- DATABASE_URL=postgresql://postgres:postgres@postgres:5432/postgres
37+
- SECRET_KEY=<add_your_own> # Optional, if not set the API key won't be encrypted
3538
ports:
3639
- "8000:8000"
3740
depends_on:
3841
- postgres
42+
networks:
43+
- whitebox
3944

4045
volumes:
4146
wb_data:
47+
48+
networks:
49+
whitebox:
50+
name: whitebox
4251
```
4352
44-
and then run the following command:
53+
With your terminal navigate to `docker-compose.yml`'s location and then run the following command:
4554

4655
<div class="termy">
4756

4857
```console
49-
$ docker compose up
58+
$ docker-compose up
5059
5160
```
5261

5362
</div>
5463

5564
## Kubernetes
5665

57-
!!! info
66+
You can also install Whitebox server and all of its dependencies in your k8s cluster using `helm`:
5867

59-
As kubernetes deployment is part of our Professional offering please [contact us](https://forms.office.com/pages/responsepage.aspx?id=-XXSgSIX1keVdU9wdH0U-XphvBYZ6r5PmfX1dlo1e3tUOFQyNkVNQkZRVUo0WTNXRkZTNVlPSzhJQy4u).
68+
```bash
69+
helm repo add squaredev https://chartmuseum.squaredev.io/
70+
helm repo update
71+
helm install whitebox squaredev/whitebox
72+
```

docs/mkdocs/docs/tutorial/monitors_alerts.md

+2-3
Original file line numberDiff line numberDiff line change
@@ -14,10 +14,9 @@ model_monitor = wb.create_model_monitor(
1414
name="test",
1515
status=MonitorStatus.active,
1616
metric=MonitorMetrics.accuracy,
17-
feature="feature1",
18-
lower_threshold=0.7,
1917
severity=AlertSeverity.high,
20-
18+
19+
lower_threshold=0.7
2120
)
2221
```
2322

docs/mkdocs/docs/tutorial/sdk.md

+5-3
Original file line numberDiff line numberDiff line change
@@ -2,12 +2,14 @@
22

33
## Installation
44

5-
Installing Whitebox is a pretty easy job. Just install it like any other python package:
5+
Installing Whitebox is a pretty easy job. Just install it like any other python package.
6+
7+
Install the SDK with `pip`:
68

79
<div class="termy">
810

911
```console
10-
$ pip install whitebox
12+
$ pip install whitebox-sdk
1113
```
1214

1315
</div>
@@ -107,7 +109,7 @@ wb.delete_model("some_model_id")
107109

108110
Once you have created a model you can start loading your data. Let's start with the training dataset!
109111

110-
In our example we will create a `pd.DataFrame` from a `.csv` file. Of course you can use any method you like to create your `pd.DataFrame` as long as your non-processed and processed datasets have **the same amount of rows** (a.k.a. the same length)!
112+
In our example we will create a `pd.DataFrame` from a `.csv` file. Of course you can use any method you like to create your `pd.DataFrame` as long as your non-processed and processed datasets have **the same amount of rows** (a.k.a. the same length) and there are **more than one rows**!
111113

112114
```Python
113115
import pandas as pd

docs/mkdocs/mkdocs.yml

+4-7
Original file line numberDiff line numberDiff line change
@@ -6,15 +6,11 @@ theme:
66
palette:
77
- media: "(prefers-color-scheme: light)"
88
scheme: default
9-
primary: cyan
10-
accent: blue
119
toggle:
1210
icon: material/weather-sunny
1311
name: Switch to dark mode
1412
- media: "(prefers-color-scheme: dark)"
1513
scheme: slate
16-
primary: cyan
17-
accent: blue
1814
toggle:
1915
icon: material/weather-night
2016
name: Switch to light mode
@@ -53,10 +49,11 @@ markdown_extensions:
5349
- toc:
5450
permalink: true
5551
extra_css:
56-
- css/termynal.css
57-
- css/custom.css
52+
- css/termynal.css
53+
- css/custom.css
54+
- css/extra.css
5855
extra_javascript:
5956
- js/termynal.js
6057
- js/custom.js
61-
- mathjax-config.js
58+
- js/mathjax-config.js
6259
- https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML

examples/docker-compose/docker-compose.yml

+1
Original file line numberDiff line numberDiff line change
@@ -21,6 +21,7 @@ services:
2121

2222
whitebox:
2323
image: sqdhub/whitebox:main
24+
platform: linux/amd64
2425
restart: unless-stopped
2526
environment:
2627
- APP_NAME=Whitebox | Docker

0 commit comments

Comments
 (0)