-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathtrain.py
executable file
·285 lines (246 loc) · 13.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#!/usr/bin/env python3
from metric import print_f_score
from data_loader import AGNEWs
from model import CharCNN
from torch.utils.data import DataLoader
from torch.autograd import Variable
import torch.nn.functional as F
from torch import optim
from torch import nn
import argparse
import datetime
import errno
import torch
import sys
import os
parser = argparse.ArgumentParser(description='Character level CNN text classifier training')
# data
parser.add_argument('--train_path', metavar='DIR',
help='path to training data csv [default: data/ag_news_csv/train.csv]',
default='data/ag_news_csv/train.csv')
parser.add_argument('--val_path', metavar='DIR',
help='path to validation data csv [default: data/ag_news_csv/test.csv]',
default='data/ag_news_csv/test.csv')
# learning
learn = parser.add_argument_group('Learning options')
learn.add_argument('--lr', type=float, default=0.0001, help='initial learning rate [default: 0.0001]')
learn.add_argument('--epochs', type=int, default=200, help='number of epochs for train [default: 200]')
learn.add_argument('--batch_size', type=int, default=32, help='batch size for training [default: 64]')
learn.add_argument('--max_norm', default=400, type=int, help='Norm cutoff to prevent explosion of gradients')
learn.add_argument('--optimizer', default='Adam', help='Type of optimizer. SGD|Adam|ASGD are supported [default: Adam]')
learn.add_argument('--class_weight', default=None, action='store_true', help='Weights should be a 1D Tensor assigning weight to each of the classes.')
learn.add_argument('--dynamic_lr', action='store_true', default=False, help='Use dynamic learning schedule.')
learn.add_argument('--milestones', nargs='+', type=int, default=[5,10,15], help=' List of epoch indices. Must be increasing. Default:[5,10,15]')
learn.add_argument('--decay_factor', default=0.5, type=float, help='Decay factor for reducing learning rate [default: 0.5]')
# model (text classifier)
cnn = parser.add_argument_group('Model options')
cnn.add_argument('--alphabet_path', default='alphabet.json', help='Contains all characters for prediction')
cnn.add_argument('--l0', type=int, default=1014, help='maximum length of input sequence to CNNs [default: 1014]')
cnn.add_argument('--shuffle', action='store_true', default=False, help='shuffle the data every epoch')
cnn.add_argument('--dropout', type=float, default=0.5, help='the probability for dropout [default: 0.5]')
cnn.add_argument('-kernel_num', type=int, default=100, help='number of each kind of kernel')
cnn.add_argument('-kernel_sizes', type=str, default='3,4,5', help='comma-separated kernel size to use for convolution')
# device
device = parser.add_argument_group('Device options')
device.add_argument('--num_workers', default=1, type=int, help='Number of workers used in data-loading')
device.add_argument('--cuda', action='store_true', default=False, help='enable the gpu' )
# experiment options
experiment = parser.add_argument_group('Experiment options')
experiment.add_argument('--verbose', dest='verbose', action='store_true', default=False, help='Turn on progress tracking per iteration for debugging')
experiment.add_argument('--continue_from', default='', help='Continue from checkpoint model')
experiment.add_argument('--checkpoint', dest='checkpoint', default=True, action='store_true', help='Enables checkpoint saving of model')
experiment.add_argument('--checkpoint_per_batch', default=10000, type=int, help='Save checkpoint per batch. 0 means never save [default: 10000]')
experiment.add_argument('--save_folder', default='models_CharCNN', help='Location to save epoch models, training configurations and results.')
experiment.add_argument('--log_config', default=True, action='store_true', help='Store experiment configuration')
experiment.add_argument('--log_result', default=True, action='store_true', help='Store experiment result')
experiment.add_argument('--log_interval', type=int, default=1, help='how many steps to wait before logging training status [default: 1]')
experiment.add_argument('--val_interval', type=int, default=200, help='how many steps to wait before vaidation [default: 200]')
experiment.add_argument('--save_interval', type=int, default=1, help='how many epochs to wait before saving [default:1]')
def train(train_loader, dev_loader, model, args):
# optimization scheme
if args.optimizer == 'Adam':
optimizer = optim.Adam(model.parameters(), lr = args.lr)
elif args.optimizer == 'SGD':
optimizer = optim.SGD(model.parameters(), lr = args.lr, momentum = 0.9)
elif args.optimizer == 'ASGD':
optimizer = optim.ASGD(model.parameters(), lr = args.lr)
# continue training from checkpoint model
if args.continue_from:
print("=> loading checkpoint from '{}'".format(args.continue_from))
assert os.path.isfile(args.continue_from), "=> no checkpoint found at '{}'".format(args.continue_from)
checkpoint = torch.load(args.continue_from)
start_epoch = checkpoint['epoch']
start_iter = checkpoint.get('iter', None)
best_acc = checkpoint.get('best_acc', None)
if start_iter is None:
start_epoch += 1 # Assume that we saved a model after an epoch finished, so start at the next epoch.
start_iter = 1
else:
start_iter += 1
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
else:
start_epoch = 1
start_iter = 1
best_acc = None
# dynamic learning scheme
if args.dynamic_lr and args.optimizer != 'Adam':
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.milestones, gamma=args.decay_factor, last_epoch=-1)
# scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.5, patience=10, threshold=1e-3)
# multi-gpu
if args.cuda:
model = torch.nn.DataParallel(model).cuda()
# model = model.cuda()
model.train()
for epoch in range(start_epoch, args.epochs+1):
if args.dynamic_lr and args.optimizer != 'Adam':
scheduler.step()
for i_batch, data in enumerate(train_loader, start=start_iter):
inputs, target = data
target.sub_(1)
if args.cuda:
inputs, target = inputs.cuda(), target.cuda()
inputs = Variable(inputs)
target = Variable(target)
logit = model(inputs)
loss = F.nll_loss(logit, target)
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm(model.parameters(), args.max_norm)
optimizer.step()
if args.cuda:
torch.cuda.synchronize()
if args.verbose:
print('\nTargets, Predicates')
print(torch.cat((target.unsqueeze(1), torch.unsqueeze(torch.max(logit, 1)[1].view(target.size()).data, 1)), 1))
print('\nLogit')
print(logit)
if i_batch % args.log_interval == 0:
corrects = (torch.max(logit, 1)[1].view(target.size()).data == target.data).sum()
accuracy = 100.0 * corrects/args.batch_size
print('Epoch[{}] Batch[{}] - loss: {:.6f} lr: {:.5f} acc: {:.3f}% ({}/{})'.format(epoch,
i_batch,
loss.data,
optimizer.state_dict()['param_groups'][0]['lr'],
accuracy,
corrects,
args.batch_size))
if i_batch % args.val_interval == 0:
val_loss, val_acc = eval(dev_loader, model, epoch, i_batch, optimizer, args)
i_batch += 1
if args.checkpoint and epoch % args.save_interval == 0:
file_path = '%s/CharCNN_epoch_%d.pth.tar' % (args.save_folder, epoch)
print("\r=> saving checkpoint model to %s" % file_path)
save_checkpoint(model, {'epoch': epoch,
'optimizer' : optimizer.state_dict(),
'best_acc': best_acc},
file_path)
# validation
val_loss, val_acc = eval(dev_loader, model, epoch, i_batch, optimizer, args)
# save best validation epoch model
if best_acc is None or val_acc > best_acc:
file_path = '%s/CharCNN_best.pth.tar' % (args.save_folder)
print("\r=> found better validated model, saving to %s" % file_path)
save_checkpoint(model,
{'epoch': epoch,
'optimizer' : optimizer.state_dict(),
'best_acc': best_acc},
file_path)
best_acc = val_acc
print('\n')
def eval(data_loader, model, epoch_train, batch_train, optimizer, args):
model.eval()
corrects, avg_loss, accumulated_loss, size = 0, 0, 0, 0
predicates_all, target_all = [], []
for i_batch, (data) in enumerate(data_loader):
inputs, target = data
target.sub_(1)
size += len(target)
if args.cuda:
inputs, target = inputs.cuda(), target.cuda()
inputs = Variable(inputs, volatile=True)
target = Variable(target)
logit = model(inputs)
predicates = torch.max(logit, 1)[1].view(target.size()).data
accumulated_loss += F.nll_loss(logit, target, size_average = False).data
corrects += (torch.max(logit, 1)[1].view(target.size()).data == target.data).sum()
predicates_all += predicates.cpu().numpy().tolist()
target_all += target.data.cpu().numpy().tolist()
if args.cuda:
torch.cuda.synchronize()
avg_loss = accumulated_loss / size
accuracy = 100.0 * corrects / size
model.train()
print('\nEvaluation - loss: {:.6f} lr: {:.5f} acc: {:.3f}% ({}/{}) '.format(avg_loss,
optimizer.state_dict()['param_groups'][0]['lr'],
accuracy,
corrects,
size))
print_f_score(predicates_all, target_all)
print('\n')
if args.log_result:
with open(os.path.join(args.save_folder,'result.csv'), 'a') as r:
r.write('\n{:d},{:d},{:.5f},{:.2f},{:f}'.format(epoch_train,
batch_train,
avg_loss,
accuracy,
optimizer.state_dict()['param_groups'][0]['lr']))
return avg_loss, accuracy
def save_checkpoint(model, state, filename):
model_is_cuda = next(model.parameters()).is_cuda
model = model.module if model_is_cuda else model
state['state_dict'] = model.state_dict()
torch.save(state,filename)
def make_data_loader(dataset_path, alphabet_path, l0, batch_size, num_workers):
print("\nLoading data from {}".format(dataset_path))
dataset = AGNEWs(label_data_path=dataset_path, alphabet_path=alphabet_path, l0=l0)
dataset_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, drop_last=True, shuffle=True)
return dataset, dataset_loader
def main():
# parse arguments
args = parser.parse_args()
# load train and dev data
train_dataset, train_loader = make_data_loader(args.train_path,
args.alphabet_path, args.l0, args.batch_size, args.num_workers)
dev_dataset, dev_loader = make_data_loader(args.val_path,
args.alphabet_path, args.l0, args.batch_size, args.num_workers)
# feature length
args.num_features = len(train_dataset.alphabet)
# get class weights
class_weight, num_class_train = train_dataset.getClassWeight()
_, num_class_dev = dev_dataset.getClassWeight()
# when you have an unbalanced training set
if args.class_weight != None:
args.class_weight = torch.FloatTensor(class_weight).sqrt_()
if args.cuda:
args.class_weight = args.class_weight.cuda()
print('\nNumber of training samples: {}'.format(str(train_dataset.__len__())))
for i, c in enumerate(num_class_train):
print("\tLabel {:d}:".format(i).ljust(15)+"{:d}".format(c).rjust(8))
print('\nNumber of developing samples: {}'.format(str(dev_dataset.__len__())))
for i, c in enumerate(num_class_dev):
print("\tLabel {:d}:".format(i).ljust(15)+"{:d}".format(c).rjust(8))
# make save folder
try:
os.makedirs(args.save_folder)
except OSError as e:
if e.errno == errno.EEXIST:
print('Directory already exists.')
else:
raise
# args.save_folder = os.path.join(args.save_folder, datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))
# configuration
print("\nConfiguration:")
for attr, value in sorted(args.__dict__.items()):
print("\t{}:".format(attr.capitalize().replace('_', ' ')).ljust(25)+"{}".format(value))
# log result
if args.log_result:
with open(os.path.join(args.save_folder,'result.csv'), 'w') as r:
r.write('{:s},{:s},{:s},{:s},{:s}'.format('epoch', 'batch', 'loss', 'acc', 'lr'))
# model
model = CharCNN(args)
print(model)
# train
train(train_loader, dev_loader, model, args)
if __name__ == '__main__':
main()